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A B S T R A C T   

From their birth in the manufacturing process, materials inherently contain defects that affect the mechanical 
behavior across multiple length and time-scales, including vacancies, dislocations, voids and cracks. Under-
standing, modeling, and real-time simulation of the underlying stochastic micro-structure defect evolution is 
therefore vital towards multi-scale coupling and propagating numerous sources of uncertainty from atomistic to 
eventually aging continuum mechanics. We develop a graph-based surrogate model of dislocation glide for 
computation of stochastic dislocation mobility. We model an edge dislocation as a random walker, jumping 
between neighboring nodes of a graph following a Poisson stochastic process. The network representation 
functions as a coarse-graining of a molecular dynamics simulation that provides dislocation trajectories for an 
empirical computation of jump rates. With this construction, we recover the original atomistic mobility esti-
mates, with remarkable computational speed-up and accuracy. Furthermore, the underlying stochastic process 
provides the statistics of dislocation mobility associated to the original molecular dynamics simulation, allowing 
an efficient propagation of material parameters and uncertainties across the scales.   

1. Introduction 

Multi-scale materials modeling and simulations are a rapidly 
growing scientific field, where it is critical to propagate uncertainties to 
accurately and efficiently bridge material properties between adjacent 
length- and time-scales. Among several types of material imperfections 
that cause disturbances in crystal structures, dislocations are line defects 
[1] that are naturally present from manufacturing until failure of crys-
talline materials. Describing the small-scale buildup and dynamics of 
dislocations can provide an important insight on early fatigue precursors 
[2,3], which are beyond the resolution of existing continuum models of 
high-cycle fatigue damage. In order to accurately propagate such early 
statistics of failure to the continuum for large-scale applications, 
consistent, robust and efficient coupling frameworks between the 
atomistic and meso-scales are fundamental. 

Molecular dynamics (MD) is a first-principle theory that explicitly 
describes the motion individual atoms at small scales based on Newton’s 
second law. In the context of dislocations, MD has been employed as an 
effective tool for the atomistic understanding of canonical types of 
dislocation motion for diverse crystal structures and their corresponding 

mobility/drag coefficients [4–8], as well as the estimation of core en-
ergies, responsible for dislocation self-interactions [9,10]. In order to 
describe the complex arrangements and mechanics of dislocation net-
works at the intermediate scale of scanning electron microscopy [11], 
discrete dislocation dynamics (DDD) has become a practical computa-
tional tool [12] that allowed the discovery of new physics, such as 
dislocation multi-junctions [13]. Accurate DDD simulations require 
precise experimental properties from dislocations and the corresponding 
medium, which can be obtained through MD experiments. However the 
large number of degrees of freedom required for robust MD simulations 
may render such experiments prohibitive, especially when a large 
number of realizations is needed to propagate the statistical qualities 
from small- to large-scales. 

Aiming to simulate processes at longer time-scales, while still 
respecting the intrinsic physics of lower-scale dynamics, different ap-
proaches have emerged. Kinetic Monte Carlo (KMC) methods became 
popular in the last decades in a myriad of materials science applications. 
KMC is a type of continuous-time Markov process [14,15], where the 
process rates should be known in advance. This method appeared 
originally for simulation of vacancies [16] and Ising spin systems [17], 
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gaining popularity among a variety of applications, including crystal 
growth [18], visco-elasticity [19], and surface kinetics [20]. Researchers 
have also used KMC methods to construct low-fidelity models for 
dislocation motion in materials ranging from bcc metals [21] to Silicon 
[22–24], where temperature, size, and stress effects are investigated. 
More recently, [25,26] used KMC to study the interaction between so-
lute atoms and screw dislocation bcc metals. This approach has the 
advantage to capture rare thermally-activated motions, which is not 
possible in MD simulations [27]. However, such models are limited due 
to uncertainties in atomistic estimation of parameters used in the 
computation of rate constants, commonly obtained from activation en-
ergies derived from transition state theory [28]. Phase Field Crystal 
(PFC) is another fast growing method for simulation of crystalline 
structures with atomistic detail, while reaching diffusive time-scales, 
and has been used to model dislocation dynamics [29–32]. 

More recently, graph theory [33] has also presented itself as a robust 
approach in the field of materials science, with applications in coarse- 
graining [34], and chemical kinetics, in combination with KMC 
method [35]. Graph theory has a leading potential to provide efficient 
coarse-graining of micro-scale dynamics, furnishing suitable ground for 
stochastic simulations of underlying dislocation dynamics through a 
random walk over a network. For an extensive review of random walks 
on networks, we refer the reader to [36] and references therein. 

In this work, we propose a data-driven framework for the construc-
tion of a surrogate model of edge dislocation glide at the atomistic level, 
where dislocation position as a time-series data is collected from high- 
fidelity MD simulations to train the model. We first perform a coarse- 
graining of the atomistic domain through a graph-theoretical formula-
tion. In the case of dislocation glide in a periodic domain, a ring graph 
provides an accurate representation. However, the general construction 
of the network and associated operators allows further enhancements 
for more complex dynamics in a direct way. We model dislocation mo-
tion as a random walker, jumping between neighboring nodes on the 
network, following a continuous-time, Markovian stochastic process. 
The waiting times for forward or backward jumps between neighboring 
nodes is exponentially distributed with rate parameter directly 
computed from the MD time-series data. We supply a KMC algorithm 
with the estimated rate constants to simulate the dislocation motion 
under different applied shear stresses, providing fast and accurate cal-
culations of dislocation velocity and mobility. 

Ultimately, beyond the efficient estimates of material properties at 
the atomistic-level, the proposed framework allows the propagation of 
uncertainties across the scales. With the stochastic description of dislo-
cation motion through a random walk over a network, governed by a 
Markov jump process, we can compute statistics associated to the 
dislocation motion that are intrinsically attached to the original atom-
istic setup. In that sense, we provide a mobility experiment of similar 
nature to the associated MD simulation, with the advantage of quanti-
fying parametric uncertainty, which would be prohibitively costly 
through high-fidelity MD simulations. This approach differs from 
existing KMC dislocation models that simulate dislocations at the meso- 
scale [22], and expands over current atomistic coarse-graining methods 
for dislocations [37], which do not estimate uncertainties associated 
with the high-fidelity simulations. To the best of our knowledge, this is 
the first computational effort in providing uncertainty estimates of 
dislocation mobility properties from the atomistic level. Mobility esti-
mates and associated uncertainties provided by the surrogate model can 
later be upscaled to meso-scale dislocation simulations, such as DDD. At 
that stage, the collective behavior of dislocations would intrinsically 
incorporate stochastic effects of lower scales that would be propagated 
to the continuum (i.e., through dislocation density and plastic strains), 
therefore providing efficient multi-scale coupling starting in the MD 
domain. This feature is essential to the development of predictive 
models at the component level, whether the interest is on visco-elasto- 
plasticity [38–40], fracture [41,42] or fatigue [43]. 

2. Data-driven framework 

We develop a surrogate model for dislocation glide parameterized by 
MD data to quickly obtain estimates of dislocation mobility in a short 
time-frame. The numerical framework for model construction and 
simulation is illustrated in Fig. 1. To construct the surrogate, the 
atomistic domain is coarse-grained and idealized as a periodic line graph 
(a ring graph), where nodes correspond to the sub-domains inside the 
crystal. 

From the coarse-grained description, we represent the dislocation as 
a random walker that jumps between neighboring nodes following a 
Poisson stochastic process. The rate constants that parameterize the 
process are obtained directly from MD simulation data of an edge 
dislocation gliding under shear stress, allowing the reconstruction and 
simulation of the stochastic dislocation motion through KMC method. 
KMC and MD are independent techniques for dislocation motion, yet 
here we combine both, leading to a fast computation of dislocation 
mobility using KMC, in which the parameters come from high-fidelity, 
costly, MD simulations. 

We start by discussing the methodology of dislocation simulation 
through MD. Then, we describe the coarse-graining of the physical 
domain as a ring graph, and construct the dislocation random walker 
based on Poisson processes. Computing the rate constants from MD 
simulations, we ensure that sequences of states coming from KMC 
converge in distribution with MD trajectories [14], yet using far less 
computation time, allowing for longer simulation times that are not 
achievable in MD. 

2.1. Molecular dynamics simulation of edge dislocation glide 

Following body-centered-cubic Fe-C simulations from [10], we 
generate synthetic dislocation motion data in a pure Fe system and es-
timate the edge mobility property through MD simulations utilizing the 
Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) 
[44]. All the MD simulations in this work are run in 80 Intel Xeon Gold 
6148 CPUs with 2.40 GHz. 

The MD system under consideration is illustrated in Fig. 2, consisting 
of a simulation box of 61 × 40 × 20 α-Fe unit cells with dimensions 
25.14 × 26.96 × 24.06 [nm] in the x, y, z directions. A straight edge 
dislocation with Burgers’ vector b = 1

2[1, 1,1] is generated by removing a 
(1, 1,1) half-plane of atoms from the center of the box. The MD domain 
consists of 1353132 atoms with periodic boundary conditions applied 
in the x and z directions, and shrink-wrapped boundary conditions 
applied to the unit cells in the top- and bottom-planes along the y-di-
rection. We perform an NVE time-integration, where the system’s tem-
perature is relaxed to T = 750 [K] through velocity-rescaling for 100 [ps]
(see Fig. 3a). We utilize a combined Tersoff bond-order and repulsive 
Ziegler–Biersack–Littmark (ZBL) interatomic potential, with corre-
sponding parameters from [45]. 

We apply shear stress values in the range τ ∈ [15, 100]MPa to the top 
layer in Fig. 2, parallel to b, which induces a glide motion in the x-di-
rection on the (1, 1, 0) plane. No temperature control is enforced in this 
stage and we run the simulation over 1 [ns] with time-step size ΔtMD =
2 [fs]. The MD time-series data is saved every 100 time-steps and the 
atom positions are post-processed utilizing the Polyhedral Template 
Matching (PTM) method [46] implemented in OVITO ( https://www. 
ovito.org/.) [47], which allows us to detect and track the lattice 
disturbance. We define the dislocation position as the average of all x- 
coordinates of atoms belonging to the disturbed region (dislocation 
core) in Fig. 2. Therefore, for every applied shear stress τ, we obtain a 
position vector xMD(t) with 5000 data-points (see Fig. 3b) of size ΔtMD =
2 [fs], from which we compute the corresponding velocity vMD through a 
linear fit. The obtained velocity from the post-processed MD simulation 
can be related to the one-dimensional solution from dislocation dy-
namics denoted by vx, and given by the following relationship: 

E.A. Barros de Moraes et al.                                                                                                                                                                                                                 

https://www.ovito.org/
https://www.ovito.org/


Computational Materials Science 197 (2021) 110569

3

vx = M⋅b⋅τ. (1)  

where M denotes the edge dislocation mobility, and b =
̅̅̅
3

√ a/2 repre-
sents the magnitude of b. Eq. (1) is obtained from the balance between 
the applied Peach-Kohler force induced by the shear stress τ and the 
dislocation drag force. Therefore, setting vMD = vx and from the slope 
m = M⋅b of the velocity versus stress curve in Fig. 3c, we estimate the 

edge dislocation glide mobility as M = m/b ≈ 5931.3 [(Pa.s)−1], which is 
in good quantitative agreement (1.73% difference) compared to the 
results obtained by Lehtinen et al. [10]. 

2.2. Graph-theoretical coarse-graining 

We begin the surrogate framework by idealizing a coarse-grained 
version of the atomistic domain as a graph G(V, E), with a set vertices 

Fig. 1. Framework for constructing a network-based KMC surrogate model for dislocation glide. The surrogate is then employed for fast and accurate simulations of 
dislocation motion, obtaining velocity data at different stress levels, leading to the estimation of the dislocation mobility. 

Fig. 2. MD domain of the dislocation mobility test. (a) x−y plane, illustrating the edge dislocation core as the lattice perturbation at the center. (b) 3D view of the 
MD domain with the BCC lattice removed, showing the dislocation line along the z-axis. 

Fig. 3. (a) Temperature and total energy for the equilibration step, (b) Edge dislocation position xMD(t) and (c) mobility through MD simulations for distinct values of 
applied shear stresses τ under T = 750 [K]. We observe an overdamped motion for the applied shear stress range and a linear mobility relationship. 
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(or nodes) V connected by edges E. In this representation, each node on 
the network represents a sub-domain from the original MD system. In 
the case of a dislocation glide along a single slip plane, a one- 
dimensional ring graph is an adequate simplification of the dislocation 
movement, also assuring the periodicity presented in the MD domain. 

The coarse-graining is achieved by dividing the domain into n sub- 
domains, or bins, such that 

n = ⌊ L
max(d)⌋ (2)  

where L is the size of the domain (in the x−y plane), and d is the vector 
containing the distance traveled by the dislocation between each MD 
time-step, with entries di = xMD

i+1 −xMD
i . We choose this upper bound to 

ensure that the dislocation only travels to neighboring nodes. In this 
sense, we identify the dislocation as corresponding to node i of the graph 
if the dislocation position in the MD simulation lies between the bounds 
of bin i of width Δx = L/n. 

We now define the standard operators for a continuous-time random 
walk on a network. The adjacency matrix A has elements Aij = 1 if there 
is a link between nodes i and j, and Aij = 0 otherwise, for i,j = 1,2,…,N. 
The degree matrix K represents the number of edges attached to the 
node, computed as Kii =

∑N
j=1Aij, and Kij = 0 for i ∕= j. From A and K we 

define the transition matrix W, with elements wi→j = Aij
Ki

, representing the 
probability of the random walker to transition from node i to node j. 

Specifically for the ring graph considered for the surrogate model, 
every node is attached to two other nodes, which makes entries Aii+1 =
Aii−1 = 1, except when i = 1 or i = N. In those cases, A1n and An1 are set 
to one to ensure periodicity. As a consequence, degree matrix K has all 
entries Kii = 2. 

The transition matrix is finally computed with elements wi→i =
wi→i+1 = wi→i−1 = 1

2. Again, the exception is for nodes i = 1 and i = N, 
where we obtain w1→N = 1

2 and wN→1 = 1
2, respectively, due to period-

icity. At this point we use the transition matrix W as a building block for 
introducing the dynamics of dislocation motion. Its purpose is to initially 
restrict the movement of the random walker to the neighboring nodes 
with equal probability, later modulated by empirical rates computed 
from MD simulations. 

2.3. Construction of the random walk 

The construction of the random walk representative of dislocation 
glide is dependent on two main aspects: first, on the simplification of 
dislocation motion and its coarse-graining through a graph-theoretical 
framework, as discussed before; second, on the statistical representa-
tion of dislocation mobility through a Poisson process that naturally 
leads to the use of KMC method. We now discuss the formulation of the 
random walk, where we will follow closely the ideas in [14]. 

The main attractiveness of KMC is the simplification of complex 
dynamics into a counting process, where the entire system moves from 
state to state. For each possible escape path from the current state, there 
is an associated rate constant qij, which is the probability per unit time to 
transition to state j from state i. 

For modeling the dislocation motion through a random walk, we first 
assume that the transition probabilities for dislocation motion are in-
dependent of history, therefore, characteristic of a Markov processes. 
Second, for systems such as the pure Fe-Fe studied in this work, there is 
no evident acceleration of dislocation in the long range. Therefore, we 
assume that the underlying process is stationary with independent 
increments. 

Let (Ω,F ,P) be a complete probability space, where Ω is the space 
of outcomes ω,F is the σ-algebra and P is a probability measure, 
P : F →[0; 1]. From the assumptions, we model the total number of 
jumps Nt(t) between states over time t ∈ [0,∞) as a Poisson process with 
total rate Q, such that for any t,Nt(t) ∼ Poisson(Qt). 

For an arbitrary process with several possible states j from current 
state i, each with rate qij, the total rate Q is Q =

∑
jqij, following the 

assumption that the different processes are independent and non- 
overlapping. In the dislocation motion studied here, there are only 
two possible escape paths from any current state, a forward or backward 
jump, with respective rates qf and qf . Therefore, we have 

Q = qf + qb. (3)  

Furthermore, let X : Ω→R be a random variable that represents the 
waiting times between jumps over the graph G. Then, 
X ∼ Exponential(Q), meaning that the process is first-order with expo-
nential decay statistics, i.e., memoryless. The probability of the random 
walker not performing any jump, therefore staying on the current node, 
is given by 

pstay(t) = e−Qt, (4)  

leading to the standard computation of time increments Δt in KMC al-
gorithms, 

Δt = − ln(r)
Q , (5)  

where r is a random number sampled from the uniform distribution U (0,
1). 

After each time-step with size given by Eq. (5), the system will evolve 
to a new state with probability proportional to qf and qb. In general, this 
is accomplished by recomputing the elements of W as pij, representing 
the probability of a jump per unit of time, in units of s−1. Probabilities 
are obtained through 

pij =
wi→jqj∑

jwi→jqj
, (6)  

where pij is now the walker’s probability to go from node i to node j, per 
unit time. The result is normalized to make 

∑
jpij = 1. Equivalently, we 

may simply take 

pij =
qj∑

jqj
= qj

Q (7)  

for qj ∈ {qf ,qb}. 

Remark 1. Note that the increment in time and the selection of the 
next state are independent of each other. First the system waits for any 
jump with probability related to the total jump rate Q. Then, in a 
separate drawing, the next state is chosen with probabilities propor-
tional to qf and qb. 

Remark 2. The general graph-theoretical description of the physical 
system allows flexibility and future incorporation of more complex 
cases, beyond the ring graph currently adopted for the case of disloca-
tion glide. The inclusion of inhomogeneous Poisson processes (either in 
time or space), dislocation climb, or even non-Markovian network dy-
namics as in the case of Lévy flights [48] can be built on top of this 
fundamental framework in a straight-forward fashion. 

Since the graph nodes are positioned in the center of each bin, as 
illustrated in Fig. 1, we have an approximation for distance traveled by 
the dislocation from the internodal distance Δx. Then, at each time-step, 
the dislocation spatial position is updated by 
{

xn+1 = xn + Δx, if dislocation jumps forward
xn+1 = xn − Δx, if dislocation jumps backwards (8)  

where xn+1 is the new dislocation position ate time-step tn+1. In that 
sense, this model is still a discrete-space random walk, which calls for 
extra care when computing the dislocation velocity. 

One possibility is to mimic the procedure from MD simulations, and 
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plot the dislocation distance as a function of time, performing a linear 
regression to obtain the dislocation velocity v. We run the simulation for 
each stress level, and plot the dislocation velocity as a function of stress. 
Again, a linear regression is used to obtain the slope of the curve m for a 
linear mobility rule as in MD, and the dislocation mobility from the 
network dynamics is estimated through Eq. (1). 

Algorithm1 summarizes the procedure of running a KMC simulation 
of dislocation glide through a random walk on a network for a total of M 
time-steps when we know the rates of forward qf and backward qb 
jumps. We implemented Algorithm1 in Python 3.7, in addition to a 
routine for the computation of empirical jump rates from MD. The ring 
graph, corresponding matrices, and operators are constructed using the 
NetworkX Python package [49].  

Algorithm1: Kinetic Monte Carlo method for Dislocation Glide as a Random Walk on 
a Graph 

1: Given: rates for jump forward qf and jump backward qb, compute total rate through 
Eq. (3).  

2: Given: number of nodes n through Eq. (2), and the distance between nodes Δx, 
compute transition matrix W.  

3: for Time-steps m = 0→M−1 do  
4: Given the current node position i, get the corresponding i−th line of W.  
5: Update line Wi as in Eq. (7).  
6: Choose next position j based on the pdf given by Wi.  
7: Generate a random number r ∼ U (0,1).  
8: Advance time by a time-step Δt from Eq. (5).  
9: Update the dislocation’s spatial position by Δx using Eq. (8).  

10: end for  

2.4. Empirical computation of rate constants 

One of the major drawbacks of KMC methods is the required 
knowledge of process rates as inputs to the method, which may not al-
ways be a trivial task, where traditional approaches involve the 
computation of rates through physical principles [28,14]. In this work, 
we propose a data-driven approach for the computation of jump rates 
from dislocation position data obtained in MD simulations. In this way, 
the atomistic, high-fidelity simulation with observable dislocation mo-
tion parameterizes the surrogate model through the rate constants. 

From the coarse-graining procedure, at each time-step we can 
identify and track the node associated with the dislocation position in 
MD. With this information, we are able to compute the waiting times 
between two consecutive jumps, classified in three main groups of 
events: forward, backward, or any jump. We also compute the total 
number of jump events in any of the three groups, respectively Nf ,Nb, 
and Nt = Nf + Nb. Both groups of data can be used to estimate the rate 
constants. 

We model Nt(t) following a Poisson distribution, and given that the 
expectation of a Poisson random variable with parameter λ = Qt [50] is 

E[Nt(t)] = Qt, (9)  

we may infer the rate parameter Q from empirical data by taking 

Q = E[Nt(t)]
t . (10) 

The expected number of jumps E[Nt(t)] is taken here to be the number 
of jumps that occurred in the MD simulation during simulation time t. 
Equivalently, we can replace Nt(t) by Nf and Nb, to respectively compute 
qf and qb. 

Alternatively, we can look at the probability that a jump happened 
by time t′ , which is the integral of the probability of the first jump p(t), 
and it is given by 
∫ t′

0
p(t)dt = 1− pstay(t

′ ). (11) 

It follows that p(t) can be obtained by taking p(t) = −∂pstay(t)
∂t , so that 

p(t) = Qe−Qt, (12)  

which is an exponential distribution of waiting times. Taking the first 
moment of Eq. (12) gives the average waiting time for a jump μ as 

μ =
∫ ∞

0
tp(t)dt = 1

Q . (13) 

Note that again we may generalize the result from Eq. (13) to average 
waiting time between two consecutive forward and backward jumps 
exclusively, μf and μb, just by isolating those events from the complete 
time-series of waiting times. In that case, we can also obtain qf and qb 
from waiting time distributions. 

The last method we may use to compute the rate constants is also 
through distributions of waiting times. Yet, this time we fit an expo-
nential function to the histogram of waiting times using Maximum 
Likelihood Estimation (MLE). The MLE estimator for an exponential fit is 
equivalent to the reciprocal of sample mean, i.e. 1/μ, therefore we can 
expect identical results when using both methods [51]. We compare the 
accuracy of all three methods in the following section by using user- 
defined true rates as reference solution. 

3. Results and discussion 

We now present the numerical results from the surrogate model 
simulations. We start by investigating the accuracy of the rate estimation 
algorithm, and the convergence as a function of the number of time- 
steps from the original data-set using manufactured known process 
rates. Then, we apply the framework to real MD simulation data of 
dislocation glide and compute the mobility using the surrogate, 
comparing the results with MD mobility computations. 

3.1. Convergence of rate constant estimation 

We investigate the accuracy and convergence of the rate estimation 
algorithm through KCM simulation of a single random walker in a ring 
graph, with manufactured true rates qtrue for forward and backward 
jumps. We test different rate combinations for the jumps, and apply Eqs. 
(10) and (13), and MLE to estimate the original rates in one realization 
of the stochastic process. We check the convergence of the rate estimate 
with different number of time-steps, which in this case is the exact 
number of total jumps Nt(t). We consider a graph with n = 20 nodes. 

We show results in Tables 1 and 2, for the estimation through Eq. 
(10). The other two methods yield identical results for the manufactured 
solution, and are omitted. We present the estimated rates qest, and the 
relative error to the true rates, computed as 

error = |qtrue − qest|
|qtrue|

. (14)  

We observe that accuracy is dependent on the number of time-steps, 
which is natural, since more time-steps provide more data for a reli-
able statistical representation of the true rates. Second, the estimate is 
more accurate for higher rates, relative to lower ones, as in Table 1, 
where the ratio between the rates is large. For rates of similar 

Table 1 
True rates: 200 (forward) and 1 (backward), in units of s−1.  

Number of time-steps Forward Rate Error Backward Rate Error 

101  191.9520 4.02% 0.0000 100.00% 

102  202.8340 1.42% 0.0000 100.00% 

103  214.0373 7.02% 1.9438 94.38% 

104  197.1265 1.44% 0.9309 6.91% 

105  199.2291 0.39% 0.9066 9.34% 

106  200.0162 0.01% 0.9272 7.28%  
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magnitude, error levels are comparable, since there is sufficient data for 
both estimates. 

3.1.1. Uncertainty quantification of rate estimation 
Due to the probabilistic nature of this framework, results from Ta-

bles 1 and 2 show oscillations in error measures, which only represent 
the accuracy of a single realization of the problem in the stochastic 
space. This motivates an Uncertainty Quantification (UQ) analysis, 
where we using Monte Carlo method to quantify the level of uncertainty 
in the rate estimation for data with different number of time-steps. 

Two types of analysis were performed. First, for a fixed number of 
1000 time-steps, expectation and standard deviation were obtained for 
different number of MC realizations. Last, for a fixed number of 1000 
realizations, we obtained expectation and standard deviation for 
different number of time-steps, i.e., by considering different final 
simulation times from the time-series data. To show this result, we 
average the number of statistical events (total jumps) from each reali-
zation to construct the x-axis. For the same network of n = 20 nodes as 
before, and true rates of qf ,true = 200 s−1 and qb,true = 1 s−1 as in Table 1, 
we plot UQ results in Fig. 4. 

From Fig. 4 we see that the precise computation of rates from data is 
almost exclusively dependent on the number of statistical events, 
therefore on the length of the simulation. Increasing the number of re-
alizations does not increase the accuracy of the recovered rates, and the 
uncertainty region is kept constant. However, increasing the number of 
time-steps through considering longer simulation times leads to the 
expected value to converge to the true rate, and shrinks the uncertainty 
region. 

3.2. Dislocation mobility 

Here we present numerical results for one complete cycle of the 
framework, from MD simulation of dislocation glide, to rate estimation 
and final surrogate simulation through a random walk in the constructed 
network. 

3.2.1. Rate estimation 
From the raw data of dislocation position and time obtained from 

LAMMPS and Ovito, we apply the domain decomposition into bins 
equivalently to graph nodes, and track the current node over time. We 
count the number of jumps forward and backward between two nodes, 
as well as the waiting times between events. This also allow us to 
compute the waiting times between two forward or backward jumps. 

Now we show the rate estimation procedure. First, we compile the 
waiting time statistics in histograms, and plot the normalized histograms 
with a corresponding exponential fit in Fig. 5 for two values of shear 
stress, τ = 25 MPa and τ = 100 MPa. Observe that distributions of 
waiting times can be approximated by an exponential decay through its 
mean value, given the assumption made in the random walk 
construction. 

We also point that for the lower stress (top row), the distribution of 
backward waiting times, Fig. 5(c), is closer to the forward case, when 
compared to a higher stress level (bottom row), Fig. 5(f), which is a 
direct translation of physical effects that occur at the atomic level into a 
statistical description of dislocation motion. Furthermore, waiting times 
for backward jumps at τ = 100 MPa are longer than at τ = 25 MPa, 
since higher stresses hinder the backward dislocation motion. 

From the statistical description of waiting times, we compute the rate 
constants for forward, backward, and total jumps using the expectation 
of number of events, Eq. (10), average waiting times, Eq. (13), and the 
parameter of the exponential fit in Fig. 5, obtained by MLE. Again, we 
compare results for τ = 25 MPa and τ = 100 MPa, and construct 
Table 3. 

Table 3 shows the estimates of qf ,qb, and Q directly. We also compute 
the quantity qf +qb and compare it with total rate Q through a relative 
error measure. We assume that Q is the reference value since it comes 
directly from data. We observe that all methods yield nearly identical 
results, specially for qf , which has more available data points. For qb, 
difference is greater in the τ = 100 MPa case due to lower number of 
data points. We also observe greater error between qf +qb and Q for τ =
100 MPs, for the same reason. 

Nevertheless, the three methods are equivalent, and the differences 
between their results are negligible, so the choice of any particular 
method yields nearly identical results in the stochastic simulation. The 
MLE estimate and the 1/μ result are identical, as expected for the 
exponential fit. The sample mean estimation from 1/μ should converge 
to the first case, E[N(t)]/t as t→∞ or as N→∞, since the computation of μ 
involves the summation of waiting times, which will approach the total 
simulation time when the t or N are large. For simplification purposes, 
for the remaining simulations we will use the expectation estimate, Eq. 
(10) only due to the agreement between qf + qb, and total rate Q ob-
tained directly from data points. 

We also check the convergence of estimated rates as in the example 
with manufactured true rates. Here, we do not know the exact rates, 

Table 2 
True rates: 100 (forward) and 100 (backward), in units of s−1.  

Number of time-steps Forward Rate Error Backward Rate Error 

101  51.5011 48.50% 51.5011 48.50% 

102  124.4437 1.82% 101.8176 1.82% 

103  108.6405 3.66% 96.3416 3.66% 

104  98.6444 0.40% 100.3960 0.40% 

105  100.3814 0.32% 99.6812 0.32% 

106  99.8083 0.04% 100.0381 0.04%  

Fig. 4. Convergence to true rates (y-axis) as a function of number of realizations with fixed time-steps (a), or number of time-steps with fixed realizations (b). Dashed 
lines are the true rates (200 and 1), solid lines are the expected rates, and the shaded areas are the regions of uncertainty based on standard deviation. 
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therefore we observe the trend of forward and backward rates as we 
increase the number of observations. Similarly to the manufactured 
case, each data point in the plot is generated by considering a truncated 
time-series, until the final data point which includes the whole time 

series. Fig. 6 shows the results of rate estimation, where the x-axis again 
shows the number of statistical events (total number of jumps Nt(t)). We 
observe that the higher the stress level, the smoother is the curve, which 
is physically consistent. Higher stresses make the forward rates much 
larger than the backward rates, and the dislocation movement in the MD 
simulation flows with less noise, so the rate estimates will tend towards a 
final value with less oscillations. 

3.2.2. Surrogate results 
For each value of shear stress in the surrogate simulation, we obtain 

the corresponding rate constants through Eq. (10) and simulate the 
random walk on a ring graph through the KMC framework, Algorithm1. 
In the end, we are able to plot the distance traveled by the dislocation as 
a function of time, similar to what is done in MD, by updating the spatial 
position using Eq. (8). We plot the position-time evolution of one real-
ization of the random walk under three different shear stresses, in 
comparison with the MD results in Fig. 7. 

Fig. 5. Normalized histograms of waiting times between forward (a) and (d), backward (b) and (e), and any jump (c) and (f), along an exponential fitted curve 
resulted from MLE parameter estimation for τ = 25 MPa (top row) and τ = 100 MPa (bottom row). 

Table 3 
Rate estimates from MD data for different values of shear stress, using Eq. (10), 
Eq. (13) and MLE fit.  

τ  25 MPa  100 MPa  

Method E[N(t)]/t  1/μ  MLE E[N(t)]/t  1/μ  MLE 

qf  0.633 0.634 0.634 0.625 0.626 0.626 
qb  0.352 0.353 0.353 0.060 0.062 0.062 
Q 0.985 0.987 0.987 0.685 0.686 0.686 
qf + qb  0.985 0.987 0.987 0.685 0.688 0.688 
Error (%) 0.00 0.00 0.00 0.00 0.29 0.29  

Fig. 6. Convergence in the jump rates from MD time-series data for different stress levels. We observe a more steady and monotonic trend with higher stress levels.  
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From Fig. 7 we make some observations. First, under lower stress, 
MD results are intrinsically noisy, with the dislocation moving more 
easily under higher stresses, where the MD plot becomes smoother. 
Those characteristics are manifested in the rate constants as discussed in 
Table 3 and Fig. 6, and in the position versus time plots generated from 
the stochastic process in Fig. 7. 

We also verify form Fig. 7 that the position evolution of the random 
walk closely follows the same trend as in the original data set. We then 
compute the dislocation velocity by applying a linear regression model 
to the plots and computing the slope of the linear fit. We repeat this 
procedure for a large number of realizations, and run a UQ analysis to 
obtain the statistics of dislocation mobility. 

We use a simple MC framework to run several realizations of the 
surrogate simulation, and we obtain the expectation E[v], and standard 
deviation σ2[v] of dislocation velocity under each value of stress. We 
collect velocity results under τ = 25 MPa, τ = 50 MPa, and τ =
100 MPa, and plot the histograms in Fig. 8. Using the estimated values 
of E[v] and σ2[v] we approximate a Gaussian to the velocity distributions, 
closely following the histogram. The agreement between the curve and 
the histogram comes from the Central Limit Theorem [52], given that 
the total simulation time of the surrogate is a summation of exponen-
tially distributed random variables X. 

We plot the results of velocity as a function of applied stress in Fig. 9, 
where we show the expected velocity value, and its corresponding un-
certainty represented as error bars, for 1000 MC realizations of the 
surrogate model. We apply a linear regression model to the velocity- 
stress plot and obtain the mobility M using the linear fit slope m, as in 
Eq. (1). 

By introducing the expected velocity with corresponding uncer-
tainty, as in Fig. 9, we can propagate the uncertainty to the computation 

of mobility itself. For the set of 1000 realizations shown in Fig. 9, we 
obtain the corresponding standard deviation for mobility σM =
137.27 [1/(Pa.s)]. This is an important contribution of this framework, 
as it allows a multi-scale propagation of uncertainties related to material 
properties, starting with the mobility estimate through its modeling as a 
Poisson process. 

Fig. 7. Position versus time of edge dislocation, comparison between MD results from LAMMPS and one realization of surrogate model through the random walk on 
a network. 

Fig. 8. Normalized histograms of velocity estimates from different applied shear stresses. Gaussian fit is plotted after computation of expectation E[v] and standard 
deviation σ2[v] from 1000 MC realizations. 

Fig. 9. Velocity versus stress plot, comparison between MD results of disloca-
tion glide from LAMMPS, and surrogate model simulations using a random walk 
in a network under two different system temperatures. The surrogate model 
accurately estimates the mobility with 1.29% relative error. 
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3.3. Discussion 

Through the definition of a KMC algorithm for a random walk 
defined on a ring graph topology, where the jump rates are computed 
directly from time-series data of dislocation motion from an MD simu-
lation, we successfully reproduced the stochastic motion of a dislocation 
glide in a bcc crystal. The computational advantage of this procedure is 
twofold. First, the coarse-graining lumps all the atomic domain infor-
mation into the network topology, with the dislocation represented as a 
random walker. The atomistic degrees-of-freedom are condensed into 
the n nodes that define the graph. Second, we are able to reach the same 
simulation time faster, which allows for longer time integration, due to 
the computation of waiting time statistics that feed the KMC algorithm. 
In the end, 94 h of one MD simulation with postprocessing at a single 
stress level turns into an average of 0.45 s surrogate simulation. If we 
consider the MC estimation of the mobility with 1000 runs at each stress 
level, the surrogate takes around 50 min. 

One important aspect is that the physics of dislocation motion is 
embedded in the time-series data originated from the MD simulation. 
Therefore, the computation of process rates of forward and backward 
jumps already takes that into account from the data itself. This is 
evident, for example, in Fig. 6, where the effect of higher stress rates 
applied to the atomistic structure translates into higher forward jump 
rates and lower backward rates. Much of the physics of dislocation 
motion is embedded in the jump rates, and it would be natural to expand 
this reasoning to other physical features beyond stress. The character-
ization of process rates in this broader parametric space can then be 
achieved with the use of state-of-the-art machine learning (ML) algo-
rithms, with MD simulations used as training data, for a more effective 
and robust upscaling of dislocation properties. 

Furthermore, the mobility uncertainty can be propagated to higher 
scales to be used as an input with associated error, e.g., in DDD simu-
lations. Later, outputs from stochastic DDD may be used to inform 
lumped-element models of elasto-visco-plasticity, or even phase-field 
models of failure. Through the use of this surrogate model, we provide 
a quick and efficient method for propagation of uncertainties across 
scales, starting form the uncertainty estimation at the atomistic level. 

4. Summary and conclusions 

We developed a data-driven framework for constructing a surrogate 
model of dislocation glide. Atomistic simulations of dislocation motion 
provide the statistics that inform the underlying stochastic process of the 
surrogate. This is achieved firstly through the coarse-graining of MD 
domain using a graph-theoretical representation. Over this network, the 
dislocation is idealized as a random walker jumping between the nodes, 
where the waiting time distribution is parameterized directly from time- 
series data obtained in MD simulation. The random walk over the 
network is simulated through a KMC algorithm based on the waiting 
times obtained empirically. By tracking the dislocation position over we 
computed the dislocation velocity for each applied shear stress, which in 
turn leads to the estimation of dislocation mobility. 

We highlight the following observations from the model and its nu-
merical results:  

• The construction followed the assumption of a memoryless, 
Markovian process governing the dislocation motion, which was a 
sufficient description based on an estimate of average waiting times 
from empirical data.  

• The estimation of rate constants, often a major difficulty in the 
application of KMC, was performed directly through MD data. We 
compared three different methods that yielded nearly identical 
results.  

• From the computed rates, the actual simulation of the stochastic 
process resulted in dislocation motion in agreement with trajectories 
simulated by MD. Next, computation of mobility through the 

surrogate also had excellent agreement with original atomistic 
estimates.  

• Simulation through the surrogate achieved remarkable speedup 
compared with MD computation times.  

• Uncertainty levels dependent on the number of data points used to 
construct the surrogate. We provided uncertainty estimates for the 
mobility through the surrogate, taking into account the variance of 
the underlying stochastic process. 

The current framework is still limited in the sense that it only sim-
ulates a single dislocation under glide, and it disregards more complex 
mechanisms that are not consistent with Markovian processes, such as 
heavy-tailed processes, which may appear during failure [53,54]. 
However, multiple dislocations could be simulated by considering 
additional random walkers in the surrogate model. Furthermore, the 
construction of the model is still dependent on performing high-fidelity 
atomistic simulations to obtain the rate constants. However, we provide 
the groundwork that allows the incorporation of more elaborate physics, 
with the advantage of running the simulation for longer times due to 
speedup. 

We emphasize that our proposed framework establishes a meaning-
ful bridge for coupling scales, where not only the value of mobility is 
provided, but its associated uncertainty. Through the description of 
dislocation motion as a stochastic process informed by high-fidelity 
data, we can propagate the uncertainty associated with mobility esti-
mations or any other quantity of interest, even with a limited number of 
MD samples. As a consequence, this framework acts as a tool for more 
predictive multi-scale material characterization. 
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