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Abstract

We develop a thermodynamically consistent, fractional visco-elasto-plastic model coupled with damage for anomalous
materials. The model utilizes Scott-Blair rheological elements for both visco- elastic/plastic parts. The constitutive equations
are obtained through Helmholtz free-energy potentials for Scott-Blair elements, together with a memory-dependent fractional
yield function and dissipation inequalities. A memory-dependent Lemaitre-type damage is introduced through fractional damage
energy release rates. For time-fractional integration of the resulting nonlinear system of equations, we develop a first-order
semi-implicit fractional return-mapping algorithm. We also develop a finite-difference discretization for the fractional damage
energy release rate, which results into Hankel-type matrix—vector operations for each time-step, allowing us to reduce the
computational complexity from O(N 3) to O(N?) through the use of Fast Fourier Transforms. Our numerical results demonstrate
that the fractional orders for visco-elasto-plasticity play a crucial role in damage evolution, due to the competition between the
anomalous plastic slip and bulk damage energy release rates.
© 2020 Elsevier B.V. All rights reserved.

Keywords: Memory-dependent free-energy density; Fractional return-mapping algorithms; Memory-dependent damage; Fractional mechanical
dissipation; Hankel matrices

1. Introduction

Accurate and predictive modeling of material damage and failure for a wide range of materials poses multi-
disciplinary challenges on experimental detection, consistent physics-informed models and efficient algorithms.
Material failure arises in mechanical and biological systems as a consequence of internal damage, characterized
in the micro-scale by the presence and growth of discontinuities e.g., microvoids, microcracks and bond breakage.
Continuum Damage Mechanics (CDM) treats such effects in the macroscale through a representative volume element
(RVE) [1]. When loading plastic crystalline materials, an initial hardening stage is observed from motion, arresting
and network formation of dislocations, which is later overwhelmed by damage mechanisms, e.g. multiplication of
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Fig. 1. (left) Schematics of the SB element recovering standard limit cases. (right) The SB element seen as an infinite, hierarchical mechanical
representation of canonical elements, coding an infinite number of relaxation times. The pair (E, 8) represents a dynamic process of the
material.

micro-cracks/voids, followed by their growth and coalescing, releasing bulk energy from the RVE. Classical CDM
models were proposed and validated in the past decades to describe the mechanical degradation, e.g., of ductile,
brittle, and hyperelastic materials [2,3]. Particularly, Lemaitre’s ductile damage model [1,3] has been extensively
employed for plasticity and visco-plasticity modeling of ductile materials. In such models, developing proper damage
potentials driven by the so-called damage energy release rate [1] is a critical step.

Modeling the standard-to-anomalous damage evolution for power-law materials has additional challenges due to
the non-Gaussian processes occurring on fractal-like media. Fractional constitutive laws utilize Scott-Blair (SB)
elements [4,5] as rheological building blocks that model the soft material response as a power-law memory-
dependent device, interpolating between purely elastic/viscous behavior. A mechanical representation of the SB
element was developed by Schiessel [6], as a hierarchical, continuous “ladder-like” arrangement of canonical
Hookean/Newtonian elements (see Fig. 1). Later on, Schiessel [7] generalized several standard visco-elastic models
(Kelvin—Voigt, Maxwell, Kelvin—Zener, Poynting—-Thompson) to their fractional counterparts by fully replacing the
canonical elements with SB elements. Of particular interest, Lion [8] proved the thermodynamic consistency of the
SB element from a mechanically-based fractional Helmholtz free-energy density.

With particular arrangements of SB and standard elements, fractional models were applied, e.g., to desc-
ribe the far from equilibrium power-law dynamics of multi-fractional visco-elastic [9—14] and visco-elasto-plastic
[15-19] complex materials. Concurrently, significant advances in numerical methods allowed numerical solutions to
time- and space- fractional partial differential equations (FPDEs) for smooth/non-smooth solutions, such as finite-
difference (FD) schemes [20,21], fractional Adams methods [22,23], implicit—explicit IMEX) schemes [24,25],
spectral methods [26,27], fractional subgrid-scale modeling [28], fractional sensitivity equations [29], operator-based
uncertainty quantification [30] and self-singularity-capturing approaches [31].

Despite the significant contributions on fractional constitutive laws, few works incorporated damage mechanisms.
Zhang et al. [32] developed a nonlinear, visco-elasto-plastic creep damage model for concrete, where the damage
evolution was defined through an exponential function of time. A similar model was proposed by Kang et al. [33] and
applied to coal creep. Caputo and Fabrizio [34] developed a variable order visco-elastic model, where the variable
order was regarded as a phase-field driven damage. Alfano and Musto [35] developed a cohesive zone, damaged
fractional Kelvin—Zener model, and studied the influence of Hooke/SB damage energy release rates on damage
evolution, motivating further studies on crack propagation mechanisms in visco-elastic media. Tang et al. [36]
developed a variable order rock creep model, with damage evolution as an exponential function of time. Recently,
Giraldo-Londofio et al. [37] developed a two-parameter, two-dimensional (2-D) rate-dependent cohesive fracture
model.

A key aspect to develop failure models relies on consistent forms of damage energy release rates, usually
appearing in the material-specific form of Helmholtz free-energy densities. For standard materials, direct summations
of elastic/hyperelastic free-energies of the system are used. However, such process is non-trivial when modeling
anomalous materials, due to the intrinsic mixed elasticity/viscosity of SB elements. Fabrizio [38] introduced a
Graffi—Volterra free-energy for fractional models, but defined it without sufficient physical justification. Deseri
et al. [39] developed free-energies for fractional hereditary materials, with the notion of order-dependent elasto-
viscous and visco-elastic behaviors. Lion [8] derived the isothermal Helmholtz free-energy density for SB elements
using a discrete-to-continuum arrangement of standard Maxwell branches, and employed it in the Clausius—Duhem
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inequality to obtain the stress—strain relationship. Later on, Adolfsson et al. [40] employed Lion’s approach to prove
the thermodynamic admissibility of the SB constitutive law written as a Volterra integral equation of first kind.

To the authors’ best knowledge, only Alfano and Musto [35] coupled the fractional free-energy density to
a damage evolution equation in viscoelasticity, but fractional extensions of (non-exponential) damage for visco-
elasto-plastic materials are still lacking. In addition, for damage models, efficient numerical methods for fractional
free-energy computations are also virtually nonexistent in the literature. A numerical approximation was done by
Burlon et al. [41], through a finite summation of free-energies from Hookean elements, which is a truncation of the
infinite number of relaxation modes carried by the fractional operators. Alfano and Musto [35] briefly described how
to discretize the SB free-energy using a midpoint finite-difference scheme. A few numerical results were presented
for damage evolution, but the authors did not describe the discretizations and no accuracy is investigated for the
numerical scheme.

In this work we develop a thermodynamically consistent, one-dimensional (1-D) fractional visco-elasto-plastic
model with memory-dependent damage in the context of CDM. The main characteristics of the model follow:

e We employ SB elements in both visco-elastic and visco-plastic parts, respectively, with orders g, Bx € (0, 1),
leading to power-law effects in both ranges.

e The damage reduces the total free-energy of the model, while constitutive laws are obtained through the
Clausius—Duhem inequality.

e The yield function is time-fractional rate-dependent, while the damage potential is Lemaitre-like. The damage
energy release rate is taken as the SB Helmholtz free-energy density to describe the anomalous bulk energy
loss.

e We prove the positive dissipation, and therefore the thermodynamic consistency of the developed model (see
Theorem 1).

Since obtaining analytical solutions for the resulting nonlinear system of multi-term visco-elasto-plastic fractional
differential equations (FDEs) coupled with damage is cumbersome or even impossible, we performed an efficient
time-integration framework as follows:

e We develop a first-order, semi-implicit fractional return-mapping algorithm, with explicit evaluation of damage
in the stress—strain relationship and yield function. An implicit FD scheme is employed to the ODEs for plastic
and damage variables. The time-fractional stress—strain relationship and yield function are discretized using
the L1 FD scheme from Lin and Xu [21].

e We develop a fully-implicit scheme for the SB Helmholtz free-energy density, and hence to the fractional
damage energy release rate. We then exploit the structure of the discretized energy and apply Fast Fourier
Transforms (FFTs) to obtain an efficient scheme.

e The accuracy of free-energy discretization is proved to be of order O(At*~#), and numerical tests show a
computational complexity of order O(N?log N), with N being the number of time-steps.

The developed fractional return-mapping algorithm can be easily incorporated to existing finite element (FE)
frameworks as a constitutive box. Numerical tests are performed with imposed monotone and cyclic strains, and
demonstrate that:

e Softening, hysteresis and low-cycle fatigue can be modeled.
e Memory-dependent damage energy release rates induce anomalous damage evolutions with competing visco-
elastic/plastic effects, without changing the form of Lemaitre’s damage potential.

The developed model motivates applications to failure of biological materials [42], where micro-structural
evolution can be upscaled to the continuum through evolving fractional orders Bg, Bk [43] and damage D. The
memory-dependent fractional damage energy release rates motivate studies on anomalous bulk-to-surface energy loss
in damage accumulation/crack propagation of, e.g., bone tissue, where intrinsic/extrinsic plasticity/crack-bridging
mechanisms [44] lead to a complex nature of failure.

This work is organized as follows: In Section 2 we present definitions of fractional operators. In Section 3, we
present the thermodynamics and rheology of SB elements. In Section 4, we develop the fractional visco-elasto-plastic
model with damage, followed by its discretization. A series of numerical tests are shown in Section 5, followed by
discussions and concluding remarks in Section 6.
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2. Definitions of fractional calculus

We start with some preliminary definitions of fractional calculus [45]. The left-sided Riemann-Liouville integral
of order B € (0, 1) is defined as

RL7B _ Lt e
(ILI[ HE) = e ), — )P ds, t>1, %)

where I represents the Euler gamma function and ¢, denotes the lower integration limit. The corresponding inverse
operator, i.e., the left-sided fractional derivative of order §, is then defined based on (1) as

1 d " f(s)
A=pydt J,, @t —s)F
Also, the left-sided Caputo derivative of order 8 € (0, 1) is obtained as

Cpb _ (RL lfﬁﬂ _ 1 P AC)
D =G 200 = 57 e ds, t>1.

ds, t>1.

RLyB _iRL 1-p —
(,Lfo)(t)—dt(,LIt f)(t)—F

The definitions of Riemann—Liouville and Caputo derivatives are linked by the following relationship:

AUD)
(I=B)+1)
which denotes that the definition of the aforementioned derivatives coincide when dealing with homogeneous
Dirichlet initial/boundary conditions.

GDiNn = 5 + (D! ).

2.1. Interpretation of Caputo derivatives in terms of nonlocal vector calculus

In this section we show that the Caputo derivative can be reinterpreted as the limit of a nonlocal truncated
time derivative [46]. This fact establishes a connection between nonlocal initial value problems and their fractional
counterparts, which can benefit from the nonlocal theory.

Given a nonnegative and symmetric kernel function ps(s) = ps(|s|), a nonlocal, weighted, gradient operator can
be defined as [47]

8
Gsf() = !gl})/ (f()— f@ —s)sps(s)ds, ()

when the limit exists in L2(0, T) for a function f € L?(0, T). It is common to assume that the kernel function ps
has compact support in [—8, §] and a normalized moment:

)
/ s2ps(s)ds = 1. (3)
0

Here, the parameter § > 0 represents the extent of the nonlocal interactions or, in case of time dependence, the
memory span. In the nonlocal theory it is usually referred to as horizon.

Note that at the limit of vanishing nonlocality, i.e. as § — 0, G5 corresponds to the classical first order time
derivative operator %. In this work, we are interested in the limit of infinite interactions, i.e. as § — oo. Specifically,
when the initial data f(¢) := f(0) for all ¢ € (—o0, 0) and the kernel function is defined as

B g B2
Ia—p ’
the nonlocal operator Gs corresponds to the Caputo fractional derivative for r+ > 0, for a piecewise differentiable
function f € C(—oo, T) such that f’ € L'(0, T) N C(0, T]. Formally,

Goo f(1) = (§DF (1) (5)

Note that a similar property holds true for fractional derivatives in space, see [48].

4
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2.1.1. Note on well-posedness

Paper [46] analyzes the well-posedness of nonlocal initial value problems. More specifically, it proves, under
certain conditions on the parameters, that the following equation has a unique solution and depends continuously
upon the data.

Gsy +Hy = F 1€ (0,T],
y=G 1€(=4,0),

for H > 0 and F and G in suitable functional spaces.

(6)

3. Thermodynamics of fractional Scott-Blair elements

We present the thermodynamic principles used in this work, and then we introduce the Helmholtz free-energy
density and constitutive law for the fractional SB element. Such fractional element is the rheological building block
of our modeling approach, providing a constitutive interpolation between a Hookean (8 — 0) and Newtonian
(B — 1) element (see Fig. 1). Furthermore, the SB element can be interpreted as an infinite self-similar arrangement
of standard Maxwell elements, which naturally leads to fractional operators in the constitutive law [6].

3.1. Thermodynamic principles

Let a closed system undergo an irreversible, isothermal, strain-driven thermodynamic process. We analyze an
infinitesimal material region at a position x and time ¢ of a continuum deformable body 5. Let the first law of
thermodynamics in rate form [49] be defined as:

e=q—w, @)
where é(x, t) [J s7! kg’l] denotes the specific rate of internal energy, g(x, ) [J g1 kg’l] represents the rate of
specific heat exchange and the term w(x, ) [J s~' kg™!] denotes the stress power transferred into the bulk due

to external forces [50]. In this work, t(x, #) represents the stress state and ¢ the strain rate. We also consider the
second law of thermodynamics, postulating the irreversibility of entropy production, given, in specific form, by:

§>4/0, ®)
where §(x, 1) [J s~! kg7! K~!] denotes the rate of specific entropy production and 6(x, t) = 6, [K] represents the
constant temperature. Let ¥ (x,7) : R x Rt — R* be the Helmholtz free-energy density with “units [J m~],
representing the available energy to perform work, defined by ¥ := p (e — 0s), with the rate form ¢ = p (¢ — 65)

for the isothermal case. Combining the first and second laws, respectively, (7) and (8), with ¥ and taking the stress
power w = —té&, we obtain the Clausius—Duhem inequality, which states the non-negative dissipation rates [51]:

—Y+16>0, VxebB. )

Satisfying the dissipation inequality (9) is here taken as the necessary condition for the potential ¢ and the stress
T to be thermodynamically admissible.

3.2. Helmholtz free-energy density

We present the free-energy under consideration for the employed SB element, here referred to a given material
coordinate of a continuum body or a lumped mechanical system. We start with the fractional Helmholtz free-energy
density developed by Lion [8], obtained through an integration of a continuum spectrum of Maxwell branches
leading to the following definition for ¥(¢) : R — R™:

2

W(s):lf E@) [/ exp(—t;s)é(s)ds] dz, (10)
2 0 0 Z

where the strain ¢ is taken as the state variable. The term E(z) : Rt — R* denotes the power-law relaxation
spectrum, given by

E
Ira—pre)rt

E(z) = 0<pB<1 EeR"

5
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which with (10), codes an infinite number of relaxation times. The pseudo-constant [ has units [Pa s#], where the
unique pair (E, 8) codes a dynamic process instead of an equilibrium state of the material [9]. Let D,,.., denote
the mechanical dissipation of the SB element. We introduce the following Lemmas:

Lemma 1. The SB element stress—strain relationship t(t) : Rt — R resulting from (10) and the Clausius—Duhem
inequality (9) is given by

t(t) = /OO E@) (/l exp (-t%) é(s)ds) dz =ESDler), (11)
0 0

where the Caputo definition for the fractional derivative is a consequence of the adopted free-energy. The mechanical
dissipation Dyecn(€) : R — RY for the SB element is given by the following form:

00 I t 2
Dmech(g) = / @ (/ exXp (_t__s> E(S) dS) dz. (12)
0 Z 0 Z

Proof. See Appendix A.

Remark 1. The limit cases for the fractional free-energy (10) with respect to 8 are consistent with the well-known
stress—strain relationship (11). Therefore, v(¢) recovers a fully conserving Hookean spring when limg_.oyy =
Ee?/2, and a fully dissipative Newtonian dashpot when limg_,; ¥ = 0. We refer the readers to [8,39] for additional
details regarding memory-dependent free-energies.

4. Fractional visco-elasto-plastic model with damage

We develop a damage formulation for a fractional visco-elasto-plastic model (M1) by Suzuki et al. [16].
The closure for the damage variable is obtained through a Lemaitre-type approach [1,3]. We later prove the
thermodynamic consistency of the damage model, and hence for the visco-elasto-plastic model (M1) as a limiting,
undamaged case.

4.1. Thermodynamic formulation

The fractional visco-elasto-plastic device is illustrated in Fig. 2. It consists of a SB element with material pair
(E, Bg) for the visco-elastic part, under a corresponding logarithmic visco-elastic strain £%¢(¢) : R* — R. The visco-
plastic part is given by a parallel combination of a Coulomb frictional element with yield stress t¥ [Pa] € R*, a
linear hardening Hooke element with constant H [Pa] € RT, and a SB element with material pair (K, Bx), with
K[Pa s’] € R*, all subject to a logarithmic visco-plastic strain (f) : Rt — R and an internal hardening
variable a(r) : Rt — R™. The entire device is subject to a Kirchhoff stress t. The total logarithmic strain is given
by:

e(t) = &" (@) + &P (1). (13)

Let D(t) : RT — (2p, with 2p = [0, 1) be a time-dependent and monotonically increasing internal damage
variable representing the internal material degradation. Our model has the following assumptions:

Assumption 1. The visco-elastic response is linear, under an isothermal strain-driven process.

Assumption 2. There is a state coupling between the visco-elastic strains/hardening variable €', «, and damage
D. However, the damage evolution is solely driven by the visco-elastic free-energy potential.

Assumption 3. There is no state coupling between visco-elasticity and visco-plasticity.

Assumption 4. The damage D(¢) and hardening «(t) are irreversible, i.e., there is no material healing. Also, there
are no crack closure effects.
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(a) Rheological diagram. (b) Stress vs. strain response.

Fig. 2. Damaged fractional visco-elasto-plastic model. (A) Constitutive diagram with visco-elastic/plastic rheological elements. (B) Stress
response showing the yield surface expansion (hardening) and contraction (softening).

Assumption 5. All state and internal variables are subject to homogeneous initial conditions, e.g., £(0) = ¢"°(0) =
e"(0) = «(0) = D(0) = 0.

Assumption 3 implies a linearity between the visco-elastic and visco-plastic free-energy components, both
multiplicatively coupled with damage.

4.1.1. Free-energy densities
We write the Helmholtz free-energy density ¥ (", a, D) : R x RT x 2, — R* for the model as:

Y(e*, a, D)= (1= D) (¥"(") + ¥ (@), (14)

where ¥¢(e") : R — R* and ¥"(«) : Rt — R* represent the undamaged visco-elastic and visco-plastic
free-energy densities. Utilizing (10) for the SB elements and the Hookean spring, the free-energy density is given
by:

2

V. a. D)=~ (1— D) [/w E@) (/l exp (-tJ) éW(s)ds> dz (15)
2 0 0 z
o0 t _ 2
+/ K(z) </ exp (_t_s) d(s)ds) dz + Ha2:| ,
0 0 z

with the following relaxation spectra for visco-elasticity and visco-plasticity:
E K

I = Be)(Be)zPet!’ I — )l (Bx)zhr+l’

where 0 < Bg, Bk < 1.

E(z) = K(z) =

Remark 2 (Recovery of Classical Free-Energy Potentials). Similar to the SB element case, we recover the Hookean
and Newtonian limit cases for the asymptotic values of Bg, Bx. Also, if D — 0, we recover an undamaged case,
and when D — 1, we have (1 — D)y¥ — 0 (material failure).

4.1.2. Constitutive laws

We use the Clausius—Duhem inequality (9) in the local form of classical thermodynamics of internal variables,
which induces near-equilibrium states for every time ¢ of the thermodynamic process. However, the fractional
free-energy densities introduce memory effects and therefore far-from-equilibrium states in the scope of rational
thermodynamics [38]. Using (14) and (13), inequality (9) is given by:

— pyr(e™, o, D) + T (8" + &) > 0, (16)

where we evaluate ¢ as follows:

W e, W Wy (17)

(g%, &, a, &, D, D) =
4 ) dgve Jo aD

7
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Similar to the proof of Lemma 1, the partial derivatives are obtained by chain and Leibniz rules. For the first term
on the RHS of (17), we have:

oy, [ © ! r—s\. )
& =(1—-D) / E(z) </ exp (——) sve(s)ds) dz &%
deve 0 0 z
0 Iy t 2
—/ @ (/ exp (_t;s) £%(s) ds) dz:| .
0 Z 0 Z

Recalling (12), we rewrite the above equation as:

al// sve * = ' L—=5\ .ve sve ve ve
e =01-D) E(z) exp| ——— | & (s)ds | dz " — D,,,.,(e) |, (18)
aeve 0 0 z
where DY, . (") : R — R™ represents the visco-elastic mechanical energy dissipation, given by:

00 I t _ 2
Dyecn (™) = / £® (/ exp (-t—s> é”e(s)ds) dz.
0 < 0 Z

Similarly, we obtain the second term on the RHS of (17):

W R(t)e — (1 — D)D” (), (19)
oo

where R(?) : Rt — R represents the accumulated stress acting on the SB and Hooke elements on the visco-plastic
part due to the accumulated visco-plastic strains. Recalling Lemma 1, R(¢) reads:

R(t) = (1 — D) [/w R (/ exp (—"Ts) d(s)ds) dz + Hoz:|
0 0

—(1-D) [KngK (a)+Ha].

On the other hand, the term D,” , («) : RT — R* denotes the visco-plastic mechanical energy dissipation in the
model, which is given by:

0o t _ 2
Dyfen(@) = / @ (/ exp (—t—s) d(s)ds) dz.
0 < 0 4

Finally, the direct calculation of the last term on the RHS of (17) yields:
oy .
W
oD

where Y%¢(¢¥) : R — R~ and Y"(«) : Rt — R~ denote, respectively, the visco-elastic/plastic damage energy
release rates. From (14), they are respectively given by:

) t _ 2
YV(e¥) = —y¥(e") = _%f E(z) </ exp <_th) é”e(s)ds> dz. (21)
0 0
2

Y (a) = =y (a) = —l /OO K(z) </l exp <_t;s> o'z(s)ds) dz. (22)
2 0 0 Z

We observe from the above result that, in principle, both visco-elastic and visco-plastic parts release bulk energy
with respect to damage. Inserting (18), (19) and (20) into (16), recalling Lemma 1, and dropping the function
variables, we obtain:

= [r"(") + Y ()] D = Y(¢*, @)D, (20)

2= (= DYESD" (%) | + 7" — Ra = YD + (1 = D) (Dj, + D},

mec mech

) = 0. (23)

Since the strain rate £¢ in (23) is arbitrary, without violating the inequality, we can set its multiplying argument to
zero, and obtain the following stress—strain relationship:

t(t) = (1 = DYESDJ* (s%°), 24)
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and alternatively, using (13), we obtain:

©(t) = (1 = DYESDJ* (e — &%), (25)
and hence, the total energy dissipation (23) becomes:

té" —Ré — YD + (1 — D) (D%, + D.2.,) = 0. (26)

Hence, we obtained the stress—strain relationships and dissipation potentials.

4.1.3. Evolution laws for visco-plasticity and damage
In order to obtain the kinematic equations for the internal variables, we define a combined hardening and damage
dissipation potential F (t,a, Y, D) : R x Rt x R~ x Rt — R, in the form [1,3]:

F(tr,a,Y, D)= f(t,a, D)+ Fp (Y, D), (27)

where f (1,a, D) : R x Rt x RT — R~ U {0} represents a yield function, defined here as the difference between
the absolute value of the applied stress in the device and the stress acting on the visco-plastic part [16]:

f (@ a,D)=|t|-[(1-D)yx" +R]
—|t|— (1 - D) [zY+Kng'< (a)—l—Hot], (28)

which softens the visco-plastic stresses.

Lemma 2. The set of admissible stresses lies in a closed convex space (see Fig. 2) with respect to the associated
thermodynamic variables Tt and R [1], given by:

E. ={r e R|f(r,a, D) < 0}. (29)
The boundary of E., denoted by 0E., is the convex set given by:
0E; = {t € R|f(z,a, D) =0},

where f(t,a, D) = 0 denotes the yield condition in classical plasticity.

Proof. See Appendix C.

The term Fp (Y'Y, D) : R~ x R™ — RT represents a damage potential driven by the plastic strains and
visco-elastic free-energy (see Assumption 2), where we adopt Lemaitre’s form for ductile materials [1]:

S yve s+1
R 0= i (5 ) .

where S € RT [Pa] and s € R" represent material parameters, identified, e.g., by Cao et al. [52] for a Zirconium
alloy, and by Bouchard et al. [53] for highly ductile metals. In the latter, an inverse power-law form for Fp was
defined with respect to the equivalent plastic strains to avoid damage over-estimation. The sensitivity of Lemaitre’s
model with respect to S and s was studied by Roux and Bouchard [54].

From the defined yield function (28), and the principle of maximum plastic dissipation [55], the following
properties hold: (i) associativity of the flow rule, (ii) associativity in the hardening law, (iii) Kuhn-Tucker
complimentary conditions, and (iv) convexity of E;. Therefore, we obtain a set of evolution equations for %7,
o and D:

) of .. af . - Fp .

g = —y, =—-=Y, D=———y,

ar” “ T T9RY ayve”
where y(7) : Rt — R™ denotes the plastic slip rate. For simplicity, we consider only variations of the potential Fp
with respect to the free-energy from the visco-elastic component for the damage evolution. Evaluating the above

9
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equations using (28) and (30), we obtain, respectively, the evolution for visco-plastic strains, hardening variable,
and damage:

& = sign(t)y, (31

a=vy, (32)

p=—7 (_YW> , (33)
(1-D) S

where the first two evolution laws coincide with the ones defined for the model M1 by Suzuki et al. [16] for
fractional visco-elasto-plasticity.

Remark 3. The obtained nonlinear damage evolution (33) coincides with local Lemaitre’s form [1,3]. However,
due to the time-fractional form of Y4, power-law memory effects for damage are introduced in the model.

Theorem 1 (Positive Dissipation). The mechanical dissipation for the damaged, fractional visco-elasto-plastic model
is positive and given by,

(1= D) [t"y @) + Dy (") + Dpp(@)] = Y (™, @) D(2) = 0,

mech

where the above Clausius—Duhem inequality holds. Therefore, the defined Helmholtz free-energy density (15), the
obtained stress—strain relationship (25) and evolution Egs. (31)—(33) of the developed model are thermodynamically
admissible.

Proof. See Appendix B.
4.2. Time-fractional integration

We develop two new algorithms for time-fractional integration of the developed model. The first one is a semi-
implicit fractional return-mapping algorithm, that can be implemented in zero- or one-dimensional systems as a
constitutive box. The second one is an FD discretization for the fractional Helmholtz free-energy density and damage
energy release rate Y(21). Let # € (0, T], and a uniform time grid given by t, = nA¢, withn =0, 1, ..., N and
time-step size At = T/N.

4.2.1. Semi-implicit fractional return-mapping algorithm

We employ a backward-Euler scheme considering all variables to be implicit, except the damage D in the stress—
strain relationship and yield function. We refer the readers to [53] for a comparison between implicit/semi-implicit
integer-order return-mapping algorithms. Such explicit treatment of D weakly couples the damage and plastic slip,
simplifying the visco-plastic time-integration. Given known total strains ¢, at time #,, and a strain increment Ag, 1,
we have ¢,11 = &, + Ae,41. The discrete form of the stress—strain relationship (25) reads:

Tyt = (1 = DYESDLE (6 — &'P) P (34)
The backward-Euler discretization of the flow rule (31) yields:
e, = el +sign(t,4) Ay, (35)

with Ay =y, — y, representing the plastic slip increment in the interval [¢,, f,.]. Similarly, the discretization
of the hardening law (32) and the damage evolution (33) are given, respectively, by

Ay = a, + Ay, (36)

A]/ Yv_eH s
D,..=D,+ ——— L , 37
+1 + Do) ( S 37

10
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with the following discrete form for the damage energy release rate (21):
2

— 1 S Int1 tn — 5 .
Yo =¥, = _E/ E(z) (/ exp (—L> sve(s)ds) dz.
0 0 z

Similarly, the yield function (28) evaluated at f,; is given by:
fort = ltual = (0 = D) [ + KEDI @), + Haya ] (38)

We utilize trial states, were we freeze the internal variables (except for damage) for the prediction step at 4.
Therefore, we have:

trial
vp __aup trial
Sn+l =€ Opy1 = Qn.

The trial visco-elastic stress and yield function are given, respectively, by

ria trlal
/el = (1 — D,)E§DE (e — Ny 1o (39)
fri:_z;zl |T’i$¢lzl| _ (1 D,,) I:T + KCDﬁK (atrzal)}t o Hatrial:l )
Substituting (35) into (34) and recalling (39), we obtain:
T = 51 = sign(m)(1 = DOEGDE (An) |,
where we observe that
[Tt + (1= DOESD™ (Ap) |, | | sienran) = 12174 sign(e/5).

Since the argument inside brackets on the LHS above is positive, we note that sign(z,; ) = sign(t’7/%!

ot ). Hence, we
have the updated stress:

Topr = 74— sign(z74(1 — D,)ESDIE (Ay) |

(40)

1=tyq1”

Our last step is to derive the closure to for the plastic slip Ay. Substituting (40) and (36) into (38), we obtain:
fot = f4 = (0 = DO [ESDIE (Ap) |, KD (4p)|

Finally, setting the discrete yield condition f,1; = 0, we obtain the following multi-term fractional differential
equation for the plastic slip:

— HA)/].

I=lp41

trial
cnb cnb _Jn+l
ESDPE (Ay) |[:In+l +KSDI (Ay)],_ . THAy =a o (41)
After solving (41) for Ay, we dlrectly update the internal variables «,;+; and 8 . The damage update is done

through Newton iteration. Let Pn 41 given at a sub-iteration k:

(v
Py, =Dy, — Dn_l——"H(’:S ,

with the following derivative, obtained analytically:

dP X Ay (anil)s

=1+
de|'=fn+1 (1-pk 2\ s

Therefore, the new iterated damage is given by:

Pk
Dk — pk n+1

Y 5 N L S
n+1 n+1 (dP/de) |[:[ R
The developed fractional return-mapping algorithm is summarized in Algorithm 1.

11
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Algorithm 1 Fractional return-mapping algorithm.

1: Database for ¢, €7, o, Ay, D, and total strain &, .

2: Ul’mal vp trial

8n+l =én , an+l =0
rial

3 il = (1= DYEGDE (e — ™) _,
4 ;:Llfl |.[lrzal| _ (1 - D ) I:.L, + KCDﬁK (atrzal)|[ et Hatrial:l
5. if frfﬁr’f’ < 0 then
6: 8n+1 = gnpa Qpt1 = Oy, Dn+1 = D,, Tntl = 7:,[111111-
7: else
8:  Solve for Ay:
o ESDIE(Ay)|_,  +KED(Ay)|_,  +HAy = [/ =Dy

100 Ty = rﬁ?l — sign(rn’i"i‘l)(l — Dn)IEgD,BE (Ay) ’
1 gl = e +sign(t,4)Ay
122 opy =a, + Ay
ve 1 oo 7 Int1 tib1—5\ sve 2 .
13: Yoo = 5/0 E(z) (fo exp (—f>s (s)ds) dz (Algorithm 2).

14: while [P | > € do

1=lp41

. Ay TN
1. P, =Dk, Dy — (T
n+1 ¢
. k _ Ay (Yﬁl)‘
16: (dP/dD ) |t:tn+1 1 -’; (1,D§+|)2 S
17: Dk — pk Py

D _
+1 = Pt
n " (dP/dDk) iy
18:  end while
19: end if

4.2.2. Numerical discretization of fractional operators
The fractional derivatives in the fractional return-mapping Algorithm 1 are evaluated implicitly using the L1 FD
method [21]. Let u(f) : R* — R. The time-fractional Caputo derivative of order 0 < B < 1 is discretized as:

1 " Upplei — Up—;
CcC B ntl—j n—j n+l1

Dy u(t = d; , 42
o Dy u(r) imtes T2 — B) ]Z:; j AP + i 42)
where r'”rl < C,Ar*# and di =+ D=8 — jl’ﬁ, j=0,1,...,n. The above expression can be rewritten and

approximated as:

1

CDﬁ t ~ - -
oDru]_ N AT a = p)

(i1 = un + Hu],

where the so-called history term HPu is given by:

HﬂMZZdj [un+1_j—un_j]. (43)

j=1

Using (42) does not cause any loss of accuracy for the return-mapping, since the backward-Euler approach for

internal variables is first-order accurate. For trial state variables u!"4' = u,, the discretized Caputo fractional
derivatives are given by:
4 HPu
§DL el (1) N (44)

=ty AtPI'(2—B)
12
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Free-Energy/Damage Energy Release Rate: We now discretize the visco-elastic damage energy release rate
YV = —rv¢. We first rewrite (10) as [8]:

_ E T EGE(s)
Y =5 —,3)./0 /o @t — 51— s P )

We then decompose the integral signs of (45) into a discrete summation of n integrals and approximate &(¢) using
a backward-Euler scheme to obtain,

E e e e(s)i(s)
)= dsid
¥ (Ene1) 2F(1—ﬁ)/o /o Qin1 — 51 — )P 14

E e [ [l Agip1Agjy
= dsid , 46
20 (1= ) ;;/ / Ar? srds 475! (46)

4 Qi1 — 51 — 52"

with Agryy = era1 — &

Theorem 2. The local truncation error r”'H for (46) satisfies
it < cArP, 47)

where C denotes a constant depending only on the strain &(t).

Proof. See Appendix D.

Let the first term of the RHS of (46) be the approximation w ~ Y (e,41) evaluated at t = t,,4. Performing a

n+1
change of variables v; = f,.1 — 51 and v, = 4.1 — $», We obtain:
AngAg Int1—i fIn+1—j
]+] _
A —E*ZZ A / / (1 + v2) P dv; dvs, (48)
i=0 j=0 In—i In—j

with E* = E/ (2I'(1 — B)). Using the symmetry between the indices of strains and integration limits in (48), we
obtain:

Ag,_it1 Agp_ lit1 Tj+1
n+1—E"ZZ = / / (1 + v2) P dvidvs. (49)

i=0 j=0

We can analytically evaluate the double integral sign in (49) to obtain:

vl Lt A28
f / (1 4+ v2) P dvy dv, = a ,Bt)(2 5 [+ )P =20+j+D"P+G+j+2"7]. (50

Substituting (50) into (49), we obtain the discrete free-energy density,

E
W,fﬂ mzzb,,)@nﬂ i — En—i)(Ent1-j — En—j) (51)
=0 j=0

with the following entries for the convolution weight matrix:

b =G+ )PP =2+ j+ D P+ j+2* P i j=0.1,...,n
We can also rewrite (51) as the following matrix—vector product:
E
B T
= ———Ae¢, B, 1A, 52
wrﬂrl ZA[/SF(:; — ﬂ) n+192n+1 +1 ( )

where we note that B, is an n x n Hankel matrix of convolution weights with 2n — 1 unique entries b(’s ). The
n x 1 vector Aeg,. is given by:

T
Ay = [8nt1 — &, &0 — En—1, ..., E2— &1, &1 — &0l . (53)

Fast Computation of Matrix-Vector Products: The form (52) requires a full matrix—vector product with
complexity O(n?) for every time-step, and consequently O(N?) for full time-integration. Our aim is to reduce

13
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Algorithm 2 Fast computation of fractional damage energy release rate.

1: Database: €% and 2N — 1 coefficients bé’?g), e bff,’fﬁ, b(f,’f,), e, bggﬁ\;
2: Compute Aeg | using (53), and form Ae,”ﬁ:l using (56).
3: Compute the FFT ]—"(Ast’:l).
4: Compute cfffl) using (55), using the known bP%) coefficients.
5: Compute the FFT F (cflﬂfl)).
E T (BE) *
6 Yyt = —samrra s Aen T (‘F(cn-l—El) O F(Ag,, )
7. return YV,

such complexity by leveraging the obtained matrix forms. Since B is a Hankel matrix, it relates to a Toeplitz matrix
T+ through B,y = T,41J,,+1, where J,, ;| represents a reflection matrix with ones in the secondary diagonal and
zero everywhere else. Therefore, we obtain:
Ynpt = G
LT 2ABI 3 — B)
The Toeplitz matrix has a circulant embedding of size 2n x 2n [56], fully described by a 2n x 1 vector of unique
coefficients:

B _ | 4B B
n+l — I:bO,n’ bl,n’ .

A€;+1Tn+lJn+1A€n+l' (54)

T
¢ b0 b bl ] (55)

n,n’

*

el with size 2n x 1:

Let the following zero-padded vector Ae

. T

Ay =[(Ael ety Ouat] (56)
where As{H = J,+1A¢€, denotes the reflection of Ae,;, given by:

Ael,  =1le1—¢0, €2— €1, ey 0= Enty Envi — &l (57)

Finally, we obtain the fast form of (52) for every time-step #,;:
E
5
=— A
Vi 2AtBT (3 — B)

where F(-) and F~!(-) denote, respectively, the forward and inverse FFTs and © represents the Hadamard entry-wise

el ! (f(c(ﬂ) ) O ]-"(Ae:H)) , (58)

n+1

product. Recalling Y"¢(£"¢) = —1/"*(¢"), the discrete damage energy release rate is given by:
PR I WPy (Felth o Faes)) (59)
n+1 ZA[/SEF(S _ ﬁE) n+1 n+1 n+1 ’
where,
ve ve ve ve ve ve ve ve ve T
Aeyi =[er —ers, e —eny, ..., e —el’, el — ], (60)
and with Aer:l being the reflected and zero-padded form of (60). Also, the vector cfﬁfl) is given by:
T
ofr) = [bg‘f”f% I X N 2 S bg?,fjl] , 61)
with b,(-fE) =G+ ) PE -2 4+j+1)?>PE4(i+j+2PEandi, j=0,1, ..., n. Algorithm 2 demonstrates

the numerical evaluation of the damage energy release rate for every time-step ¢ = f,41.

Computational Complexity of the Developed Scheme: Employing (59) for the full time-fractional integration
over {2 yields a total computational complexity of O(N?log N), similar to the O(N?) complexity of the employed
L1 FD scheme for fractional Caputo derivatives. Furthermore, the required storage for the developed scheme is
O(N).
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Fig. 3. Numerical results for the free-energy computation with a quadratic form for &(¢). (Left) ¥° vs. strain with varying 8. (Right) Relative
error vs. time-step size for varying §, with second-order accuracy.

5. Numerical tests

We present two qualitative examples with monotone/cyclic loads for the SB free-energy density and the
developed damaged, visco-elasto-plastic model, where we verify the convergence and computational complexity of
the developed algorithms. For convergence analyses, let u* and u® be, respectively, the reference and approximate
solutions in {2 = (0, T], for a specific time-step size At¢. The global relative error and convergence order are given,
respectively, as:

[lu* — u6||L°C(Q)

err(Ar) = (62)

err( Ar)
,  Order = log,

err(At/2)
We consider homogeneous initial conditions for all model variables in all cases. The presented algorithms were

implemented in MATLAB R2019a and were run in a system with Intel Core i7-6700 CPU with 3.40 GHz, 16 GB
RAM and Ubuntu 18.04.2 LTS operating system.

] oo )

Example 1 (Convergence for Free-energy Density). We start with two convergence tests for the fractional Helmholtz
free-energy density using fabricated solutions. The first one employs second-order increasing monotone strains, and
the second uses cyclic varying strains.

e Monotone Strains. Let 7 € (0, T, with total time 7' = 1 [s]. We define the quadratic strain form &(¢) = (1/T)>.
Therefore, analytical solution for the Helmholtz free-energy (10) can be obtained directly as:

27F[8+20 (B—5)]
rs—-p

We set E = 100 [Pa s?], and estimate the computational complexity of the direct (54) and fast (58) forms, with
varying At. Fig. 3 presents the approximate free-energy solution, where we recover the standard limit cases of a
Hookean spring (8 — 0) and a Newtonian dashpot (8 — 1), as well as second-order accuracy for the developed
discretization. Fig. 4 presents the obtained O(N?) and O(N?log N) computational complexities, respectively, for
the direct and FFT-based free-energy time-integration schemes. The break-even point lies at N = 200 time-steps.

o Cyclic Strains. We utilize a fabricated sinusoidal strain solution e(z) = ggsin(wt), with ¢t € (0, T], with
amplitude ¢) and frequency w. The corresponding analytical solution for i* is cumbersome, and therefore not
shown here. We set g = 1, w = 7w [s7'], T = 50[s], 8 = 0.5 and E = 1[Pa $%3], and start with a sufficient
number of time-steps to capture the oscillation modes. Fig. 5 illustrates the obtained results, where we capture the
highly oscillatory behavior for both transient and steady-state parts with second-order accuracy.

T4E82’%.

Yi(e) =

Example 2 (Fractional Visco-Elasto-Plastic Model with Damage). We test our developed model and fractional
return-mapping algorithm subject to prescribed monotone/cyclic strains. The convergence analysis is done with a
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Fig. 4. CPU time vs. number of time-steps of the developed time-integration schemes for the fractional Helmholtz free-energy density under
monotone strains.
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Fig. 5. (A) Free-energy density computations for cyclic strains vs. time, N = 3200 time-steps and 8 = 0.5. (B) Convergence analysis showing
second-order accuracy.

benchmark solution and we analyze the quality of the anomalous damage response with respect to the fractional
orders Bg, Bx from visco-elasticity/plasticity under different strain amplitudes/frequencies.

e Monotone Strains. Let e(¢) = &t, where ¢t € (0, T], final time 7 = 0.03125 [s] and strain rate ¢ = 0.64 [s~'],
and therefore £(T) = 0.02. We set B = 0.5, E = 50[Pa s"’], K = 10[Pa s’%], t¥ = 1[Pa], § = 10~*[Pa]
and s = 1. A benchmark solution for the stress (see Fig. 6) is computed with time-step size At = 272°[s] and
varying fractional orders Bk, where we observe that higher values for Bk led to increased hardening and damage
for the prescribed strain rate. We observe a linear convergence rate in Fig. 7a, due to the employed backward-Euler
discretization in the fractional return-mapping algorithm. A second-order computational complexity for the fractional
return-mapping algorithm is also verified in Fig. 7b.

The influence of hardening and visco-elastic damage energy release rate is shown in Fig. 8. We observe that
higher damage values are obtained for Sx = 0.7, despite the higher accumulated plastic strains for lower values
of Bk. The higher damage is instead due to higher values of damage energy release rates shown in Fig. 8b for
Bk = 0.7. We note that similar to the stress—strain response, the visco-elastic fractional free-energy is power-law
memory-dependent on the strain rates, therefore leading to the observed anomalous behavior.

e Cyclic Strains. To investigate the interplay between the damage/hardening/viscosity and hysteresis effects, we
perform a constant rate loading/unloading cyclic strain test, mathematically expressed as:

2e4 S
e(t) = — arcsin (sin 2 wt)),
/4

where ¢4 and w represent, respectively, the amplitude and frequency of total strains. Here, we focus on low-cycle
fatigue behavior, and therefore we set ¢ = 0.1, and three strain frequencies w = {2, 47, 87} [s~!], which
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Fig. 6. Stress vs. strain for the benchmark solution with time-step size At =272, Bz = 0.5 and different Sx values.
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(a) Convergence behavior. (b) Computational complexity.

Fig. 7. Fractional visco-elasto-plastic model with damage under monotone strains. (A) First-order convergence behavior. (B) Computational

time vs. number of time-steps, with second-order computational complexity.
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Fig. 8. Developed model under monotone strains: (A) Damage vs. accumulated plastic strain, with higher damage but less plasticity for
higher Bx. (B) Damage energy release rate vs. visco-elastic strains, which are both larger for higher values of fractional order Bg.
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Fig. 9. Stress hysteresis response for cyclic strains with frequencies (A)—~(C) w = 2n, (D)~(F) w = 4n, (G)—(I) w = 8x.

correspond, respectively, to approximate absolute strain rates of |¢] ~ {2.51, 5.02, 10.05}. We set a total time
T = 10[s], and for each frequency, we use N = {8000, 16000, 32000} time-steps, corresponding to Ar =
{1.25x 1073, 6.25 x 1074, 3.125 x 107*} [s]. The material parameters are set to E = 25 [Pa sPE], K = 10 [Pa sP% ],
¥ = 1[Pa], S = 1[Pa] and s = 1, where we set the fractional order values Sz = Bx = {0.3, 0.5, 0.7}.

The stress—strain hysteresis results are presented in Fig. 9. We observe that higher frequencies led to more
softening in the model, while higher values of fractional orders Bg, Bk led to increased hardening, followed by
softening. Such damage increase is illustrated in Fig. 10, where we observe that higher Br and Bx values led
to increased plasticity for all cases, with a significant increase of damage rates for B = Bx = 0.5,0.7 when
o = 8. We also observe from Fig. 11 that due to the anomalous nature of the fractional visco-elastic free-energy
potential, the damage energy release rates substantially increase with higher fractional orders and loading rates,
which contribute to the observed higher values of damage. Therefore, for this model, higher material viscosity in
both visco-elastic and visco-plastic parts might be sufficient to yield lower values of damage at low frequencies
due to internal dissipation mechanisms, but at higher frequencies and therefore more loading cycles, they lead to
earlier material failure.
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Fig. 10. Damage vs. accumulated plastic strains with varying strain frequencies.
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Fig. 11. Damage energy release rate vs. time for the total strain with varying frequency.

6. Conclusions

We developed a thermodynamically consistent, fractional visco-elasto-plastic model with memory-dependent
damage using fractional Helmholtz free-energies, visco-plastic/damage potentials and the Clausius—Duhem inequal-
ity. The damage energy release rate was derived from the visco-elastic free-energy to obtain a consistent bulk energy
loss for anomalous materials.

A first-order, semi-implicit fractional return-mapping algorithm, which generalizes existing standard ones, was
developed to solve the resulting nonlinear system of FDEs. We note that most existing algorithms for standard
plasticity models are not more accurate than ours. We also developed a new FD scheme with accuracy O(At>~#)
for the free-energy/damage energy release, with computational complexity of O(N?log N) through FFTs.

We also performed a set of numerical tests and observed that:

e The fractional orders B and Bk tune the competition between the plastic slip and damage energy release rate
for damage evolution.

e Higher values of Bg, Bk yielded lower damage levels for lower strain rates/cycles; However, the damage
increased significantly faster than lower values of g, B; for higher strain rates/cycles.

e For the free-energy discretization, the break-even point between the original and fast schemes was low, about
N =200 time-steps.

e The developed discretization recovered the limit Hookean 8 — 0 and Newtonian 8 — 1 cases for the
free-energy.

In the presence of single- to multi-singularities, the accuracy of the developed scheme can improve through
a variant of a self-singularity-capturing approach [31] for all fractional operators. Nevertheless, non-smooth
loading/unloading conditions pose additional challenges to develop high-order schemes for the model. In terms of
efficiency, the computational bottleneck lies in the free-energy discretization, which needs further improvements
before employing fast schemes for the fractional derivatives, e.g., fast convolution [57,58] and fast multi-pole
approaches [59]. Variants of the developed model can be incorporated in a straightforward fashion. The visco-
elastic part could be composed of any data/design-driven arrangement of SB elements, e.g. Kelvin—Voigt, Maxwell,
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Kelvin—Zener [7], while adding the corresponding energy release rates to the damage potential. In addition, similar
frameworks involving fractional damage energy release rates can be employed to phase field models [60]. Potential
applications of the developed work could be, e.g., failure of polymers, bio-tissues, and ductile metals, where the
fractional-orders Sg, Bk can be related to the evolving fractal-like microstructure [43]. The presented model could
also be employed in the context of nonlinear dynamics of mechanical systems [61,62].

Finally, the employment of nonlocal truncated time derivatives [46] and potentials could have additional impacts
on reducing the computational complexity of the developed scheme, due to the shorter memory. Furthermore, the
use of such operators seems particularly interesting to naturally address the “memory reset” for internal variables
such as the hardening « for hysteresis loading [16].
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Appendix A. Proof of Lemma 1

We take the time derivative of the free-energy (10) and obtain:

= ” E) | exp (—t;s) &(s)ds (i / exp (—[;S) é(s)ds) dz (A.1)
0 0 b4 dt Jy Z
with
d [! t—s)\ . . | t—s\ .
— exp (——) e(s)ds = é(t) — / — exp (——) &(s)ds. (A.2)
dt Jy z 0 2 z

Substituting (A.2) into (A.1), we obtain:

. |: 0o ! t—s)\. ) ® E(z) ! t—sY\. 2
Y= / E(z) (/ exp (——) s(s)ds> dz] & — / — </ exp <——> s(s)ds) dz. (A.3)
0 0 < 0 z 0 z

Let E* = ri=pr:
0 t t—s\ . 0o [E* t t—s\ .
/ E(2) /exp ——— ) &(s)ds dz=/ —_ /exp ——— ) é(s)ds ) dz
0 0 z o 2P \UJo z
N A I e, r—s :
=K z exp| —— | dz| é(s)ds
o LJo z

t ) v—1
= IE*‘/O‘ -/(; (tu_—s)ﬂexp(—u)du} &(s)ds

:]E*/t [_[®) } (s)ds = — = CEO
o L(t—s)F ra—-p)Jo t—s>*
=ESD! (). (A4

Note that the term inside brackets in (A.3) equals:

~
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Substituting (A.4) into (A.3), and the result into (9), we obtain:

[ b 1.1 [CTEQ ([ t—s\, ?
T —E;D; (8)] & +/ — / exp| —— ) é(s)ds ) dz = 0. (A.5)
0 Z 0 z

Since the strain rate ¢ is arbitrary, we set the argument inside brackets to zero without violating the above inequality,
to obtain the stress—strain relationship for the SB model:

t=ESD (e).

Furthermore, the remainder of (A.5) represents an internal positive mechanical dissipation, given by:

0o I t _ 2
Dmech(g) = / @ (/ exXp <_t_s) S(S)dS) dz = O’
0 < 0 Z

where the above inequality holds, since z and E(z) are positive.

Appendix B. Proof of Theorem 1
We recall the mechanical dissipation (26):

18" — Ri — YD + (1 — D) (D%, + D),

mech

) =0, (B.1)
where we must prove that the above inequality holds. Substituting (31), (32) into (26) yields:
tsign(t)y — Ry — YD + (1 — D) (Dyie + Dyiy) = 0,

mech

Rearranging the above equation, we obtain:

[lzl = (1 =D)x" + R)]y =YD+ (1 = D) (c"y + Dy + Do) = 0,

mech mech

where the first term is related to the persistency condition [55]:
[lz] = (1 = D)x" + R(@)]y = f(z,, D)y =0,
and therefore,

(1-D)("y + DY, + DY) — YD > 0. (B.2)

mech

We check the positiveness for each term of the above inequality. For the first term, since the damage is always
positive, so is (1 — D). Also, we have ¥ > 0and y > 0 [55]. From Lcmma 1 the mechanical dissipations D"¢

mech
and D,” . are also positive. For the second term, —Y is positive and so is D, since D is a monotonically increasing

function. Therefore, inequality (B.2) holds, and thus the developed model is thermodynamic admissible.

Appendix C. Convexity of the yield function

Proof. Recalling (28), we have
f(,a,D):=|t|-[(1-D)x" +R],

where R(x, D) = (1 — D) [K ng K (a) + Hoz]. We fix D since we are interested in showing the convexity of f
with respect to 7 and R. Let x; = (11, Ry), x2 = (12, R»), § € [0, 1], with R; = («;, D) = Kgl?f’( () |a=a_ + Ha;.
Therefore, we have: l
FEx+ (1= 6)x) =T + (1 —§)nl — (1 = Dyt —§R = (1 =R,
=61 + (1 = 5)n| — £[(1 — D)ty + Rl — (1 — &) [(1 = D)t” + Ro],
<t {lul-[A=D)yx" + R} + (1 =& {|nal = [(1 = D)T" + Ry},
(by Jensen inequality)
=6f(x1) + (1 = §) f(x2).
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Appendix D. Local truncation error for the free-energy discretization
We prove the local truncation error (47) for the discretized Helmholtz free-energy density. Before we prove it,
we need the following result.

Lemma 3. Ler 8 € (0, 1), then

li+1
/ [ni1 =) = Qtyr =) Plds < AP, 0<i<n, (D.1)
43

where Cy is a constant independent of At.

Proof. We can obtain

fi (g1 = )" P @ty =)'
(tns1 = 8)F = @ty =) P]ds = = = | 4
/f; [ ! ! ] -8 4 1=p t

At'=F
—@n+2-0)'"F].

[(n+1-D"F - —)P+@n+1-0)"7

Since
0
(n+D'"F—n'F=1- ﬂ)/ n—s)Pds <1 —-pm"’, n=1,
-1
then, when 0 <i <n — 1, we have

fit+1
/ [t = )77 = @ty — ) ]ds < Ar'F [
1,

i

1 1 - At'=h
nm—i)f @Cn+1-0D|~ m—0)#’
for i = n, it holds that

Int1 Atlfﬁ
/ [(ths1 = )P — @ty —5)F]ds = 5 [1+m+D'"F —@m+2)'7]
At!—# [ 1-8 ] At!—#
< 1-— < .
“1-8 n+1F]~1-8

Therefore this lemma is proved. Next, we prove the local truncation error for the free-energy discretization. From

C phart s &(s1)&(s2)
n =E d d
pren =k [ [ G s

I litl Ll Agi 1 Ag i
= / f hs hs dsids, + 75,
Z t; tj At2(2tn+l — 81— s2)ﬁ At

i,j=0
with E = ﬁ_ﬂ) and Agiy = g1y — &¢. We know that
. e i [ Agiv14¢j41
| = f f @1 =51 =527 | EsE(s2) = = ]dsldsz
i,j=0 li -
lit1 Lj+1 r i1 i1 A5i+1A8j+1
= st — 51— 5278 | 861062 — &) DL 4 gspy 252 _ dsids)

/,, / " | At At Ar2

le

litl [l . . Agjyg Ae &
= / / Qlyyr — 51 —52) P 8(51)<8(Sz)— A’:)+ A’“(( - A’:l)}dsldsz

ljo

tit1 LLjtd
Z / / Qtyg1 — 51— 52) Pé(s1) (8(52)
ti

i,j=0

)ds1dsz
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n
- Ae 1 tit1 tit1
+ E‘ Z ]+ / / (2tn+1 — 51 —82)" b <5(S1) )dS1dS2
i,j=

=N + Dy,

)

I = INE fl+ f Qtyi1 — 51— 52) Pé(sy) (8(52)

i,j=0

)dsldS2

A fit1 fjt1 ;
8’“ / / Qi1 — 51— 52)F (8(S1) +1)dsldsz

Assume &(t) € C2[0, T, then one can obtain that:

and

S
I
=

i,j=0

et)<Cy, e()<Cs tel0,T].

On each small interval [#;, t;+1] (0 <i < n), denoting the linear interpolation function of e(¢) as IL;e(¢t):
T —tiy1 =1
IIie(t) = & + Eitl,
li = lit1 liv1 — 1

it follows from the linear interpolation theory that

S(t) - Ijig(t) - (Sl)(t - tz)(t tl+1) = CiAtzv re [tu tl+1 gl € (tz» tH—l)

with 0 <i < n, and here ¢; is a constant independent of At.
For I, we have

2 lit1 Ljit1 ,
I =E Z / é(S1)f Qtyy1 — 51— 52) P [e(s2) — Ie(s2)] dsydsy
ij—O fi 1
lit1
gy J / Qs — 51 — 52)Pd [e(52) — Tje(52)] dsy
i,j=0 li
- fit+1 . j+1 :
=BE Z / 8(51)f [6(52) — IT;6(52)] Qi1 — 51 — $2) P dsydsy
ij—O i 1
iyl
<BE Z / e(sl)/ ¢ A Q2yyy — 51 — 52) P dsidsy
i,j=0 li
- fit1 Int1
SﬁEC4AZ‘2 Z/ S(Sl)/ (2[,1+1 — 5 — SQ)_ﬁ_]dS]dSQ
i=0 t; 0
- 5 n fil
=EC, At Z/ &) (a1 =50 7P = @turr —s1) P ds)
i=0 Vi
N n lit1
<EC;C4 A2 Z/ [(tns1 — 51)7F = 2ty — sl)_ﬂ]dsl ,
i=0 Vi

where C4 = maxg< <, c;. For I, it holds that

Ae Lj+1
Z ]H / / Qtur — 51— 52) P [e(s1) — ITe(s1)] dsidsa

i, j*O

L, =E

A€;+1 / f " Qs — 51— 52 Pd [e(s1) — Te(s)] dss
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- Ae fit1
=BE ]H f / [e(s1) — Iie(s1)] tyyr — 51— 52) P~ dsds,
ij 0
- A lit1
fﬂE EH—I / / C,Al Qtyr1 — 51— $2)~ p- dsldsz
i,j=0
L+l fIn+1
<ﬂEC5Al ZA8]+1/ / (Ztn_H — 851 —8)" p- dS]dSz
j=0
- lj+1
=ECs At Z 48j+1/ [(tug1 — 52)7F = Qturs — 52) P dss|,
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where Cs = maxo<;<, ¢;. Then, it follows from Lemma 3 that

nIEC1C3C4At3_5 EC,CsA Ar?F
L+ < Z Agjyy
2I'(1 - B) 2I'(1 - B)
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