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Abstract

Fractional calculus and fractional-order modeling provide effective tools for modeling
and simulation of anomalous diffusion with power-law scalings. In complex multi-fractal
anomalous transport phenomena, distributed-order partial differential equations appear
as tractable mathematical models, where the underlying derivative orders are distributed
over a range of values, hence taking into account a wide range of multi-physics from ultra-
slow-to-standard-to-superdiffusion/wave dynamics. We develop a unified, fast, and stable
Petrov—Galerkin spectral method for such models by employing Jacobi poly-fractonomials
and Legendre polynomials as temporal and spatial basis/test functions, respectively. By
defining the proper underlying distributed Sobolev spaces and their equivalent norms, we
rigorously prove the well-posedness of the weak formulation, and thereby, we carry out the
corresponding stability and error analysis. We finally provide several numerical simula-
tions to study the performance and convergence of proposed scheme.
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1 Introduction

Over the past decades, anomalous transport has been observed and investigated in a wide
range of applications such as turbulence [11, 21, 43, 49], porous media [4, 7, 16, 59, 66,
67], geoscience [5], bioscience [45—48], and viscoelastic material [20, 40, 54, 55, 60]. The
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underlying anomalous features, manifesting in memory effects, non-local interactions, power-
law distributions, sharp peaks, and self-similar structures, can be well described by fractional
partial differential equations (FPDEs) [27, 41, 42, 44]. However, in many physical processes,
which cannot be characterized with a certain single power-law scaling over the whole domain,
distributed-order differential equations (DDEs) can serve as a framework for accommodating a
distribution of power-law behavior. More specifically, distributed-order FPDEs are generating
considerable interests in terms of accelerating superdiffusion, decelerating subdiffusion ran-
dom processes in multi-physics anomalous phenomena. To model wave propagation in com-
plex media like viscoelastic media, acoustics, and seismology, Bazhlekov and Bazhlekov [6]
developed a subordination approach to multi-term time-fractional diffusion-wave equations.
Besides, Chechkin et al. [8] proposed distributed-order temporal fractional diffusion equations
for describing the (retarding) sub-diffusion random processes which are subordinated to the
Wiener process. A faithful description of such anomalous transport requires exploiting distrib-
uted-order derivatives, in which the derivative order has a distribution over a range of values.
The reader is referred to [14, 15, 19, 28, 36, 37, 42, 53, 58] and the references given therein for
more details on the distributed-order fractional equations.

Numerical methods for FPDEs, which can exhibit history dependence and non-local fea-
tures, have been recently addressed by developing finite-element methods [2, 23], spectral/
spectral-element methods [10, 26, 38, 39, 50, 61], and also finite-difference and finite-volume
methods [3, 12, 34]. Distributed-order FPDEs impose further complications in numerical
analysis by introducing distribution functions, which require compliant underlying function
spaces, as well as efficient and accurate integration techniques over the order of the fractional
derivatives. In [18, 22, 29, 33, 56, 62], numerical analysis of distributed-order FPDEs was
extensively investigated. More recently, Liao et al. [32] studied simulation of a distributed
subdiffusion equation, approximating the distributed-order Caputo derivative using piecewise-
linear and quadratic interpolating polynomials. Abbaszadeh and Dehghan [1] employed an
alternating direction implicit approach, combined with an interpolating element-free Galer-
kin method, on distributed-order time-fractional diffusion-wave equations. Kharazmi and
Zayernouri [24] developed a pseudo-spectral method of Petrov—Galerkin (PG) sense, employ-
ing nodal expansions in the weak formulation of distributed-order fractional PDEs. In [25],
Kharazmi et al. also introduced distributed Sobolev space and developed two spectrally accu-
rate schemes, namely, a PG spectral method and a spectral collocation method for distributed-
order fractional differential equations. Besides, Tomovski and Sandev [57] investigated the
solution of generalized distributed-order diffusion equations with fractional time-derivative,
using the Fourier-Laplace transform method.

The main purpose of this study is to develop and analyze a PG spectral method to solve a
(1 + d)-dimensional fully distributed-order FPDE with two-sided derivatives of the form

max

T d pmax
! . 2
/ o) thZTu dr + Z / 0,(u;) (c,laR_LDi”‘u + c,.[)]:LDb” u) dy;
£min i1 ”,mm ! ! !

i

- (1)
/ RLy2Y RLy2Y
= Z (v (Klja] ij- u+ Kp Dbi u) dv, —yu +f
& S .

subject to homogeneous Dirichlet boundary conditions and the zero initial condition,
where fori,j =1, 2, ---, d,
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€10, 7], x €la; b,
2¢Min < 27M e (), 2], 2¢™M £ 1, 27T £ |,
2uM < 2™ € (0, 1), 2v]¥“i" <2V e(l, 2],
0 < o(r) € L'((z™", 7™)), 0 < o,(4;) € L' (™", u™)),
0 < py(v) € L', V™)),

and the coefficients Cl» Cro Ky Koy and y are constant. We emphasize that (1) is reduced to
fractional advection-dispersion-reaction equations when @(7), ¢;(4;), and p;(v;) are chosen
to be a Dirac delta function, where for d = 1 and p,(v,) = 6(v; — 1), the two-sided Riesz
derivatives with proper coefficients recover the standard second-order dispersion terms. We
briefly highlight the main contributions of this study as follows.

— We consider fully distributed fractional PDEs as an extension of existing fractional PDEs
in [25, 50] by replacing the fractional operators by their corresponding distributed-order
ones. We further derive the weak formulation of the problem.

— We construct the underlying function spaces by extending the distributed Sobolev space in
[25] to higher dimensions in time and space, endowed with equivalent associated norms.

— We develop a PG spectral method, employing Legendre polynomials and Jacobi poly-frac-
tonomials [65] as spatial and temporal basis/test functions, respectively. We also formulate
a fast solver for the corresponding weak form of (1), following [50], which significantly
reduces the computational expenses in high-dimensional problems.

— We establish the well-posedness of the weak form of the problem in the underlying dis-
tributed Sobolev spaces respecting the analysis in [51] and prove the stability of proposed
numerical scheme. We additionally perform the corresponding error analysis, where the
distributed Sobolev spaces enable us to obtain accurate error estimate of the scheme.

To examine the performance and convergence of the developed PG method in solving differ-
ent cases, we also perform several numerical simulations.

The paper is organized as follows: in Sect. 2, we introduce some preliminaries from frac-
tional calculus. In Sect. 3, we present the mathematical framework of the bilinear form and
carry out the corresponding well-posedness analysis. We construct the PG method for the dis-
crete weak form problem and formulate the fast solver in Sect. 4. In Sect. 5, we perform the
stability and error analysis in detail. In Sect. 6, we illustrate the convergence rate and the effi-
ciency of method via numerical examples. We conclude the paper with a summary.

2 Preliminaries on Fractional Calculus
Recalling the definitions of the fractional derivatives and integrals from [42, 65], we denote

by RED¢(x) and KD g(x) the left-sided and the right-sided Riemann—Liouville fractional
derivatives of order o > 0,

ELD)‘:g(x) -0) ddxn / (x _g;;3+1 -n ds, x€la,b], @
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_l)n dn (S)
RLDY g(x) = — / , x€la,b], 3
» P80 = T n @ | g & v lad] )
in which g(x) € L'[a,b]and [, —£2— ds, /; b 5 ds € C'[a, b], respectively, where

n = [o]. Besides, CD“ " g(x) and CD ,8(x) represent the left-sided and the right-sided Caputo
fractional derlvatlves where

(n)
aCDfC’f(x) a)/ (xg () ds, x€la,bl, )

— s)a+l n

(GO S SO
R A

“Dyf) =

ds, x €& la,b]. @)

The relationship between the RL and the Caputo fractional derivatives is given by

RL-yv _ f(@) Cryv

a Dxf(x) _F(l —V(x—a) + anf(x)’ (6)
(b) v

KD 0) = o + DI @

when [v] = 1, see, e.g., (2.33) in [42]. In the case of homogeneous boundary conditions,
we obtain RLD fx) = CD "f(x) := Dif(x) and RLDbf(x) CDbf(x) = D;f(x). The Rie-
mann—L10uv1lle fractlonal 1ntegrals of Jacobi poly-fractonomials are analytically obtained
in [64, 65] in the standard domain & € [—1, 1] as

I'n+p+1)

RL B pa.p - F 7
ST+ P O) = f et D

(1 +&)froprolto(g) (8)

and

I'n+a+1) _

RL a pa,p _ a+o pa+to,f—oc

1-&)"P =— “* (1- P ,

BT =0 PP = g (-0 PO )
where 0 <o <1,a > -1, > —1, and P} A(&) denotes the standard Jacobi polynomials of
order n and parameters a and f [9]. Accordingly,

RLyo _ Tm+1) c—c _

DR = P @O (10)
and

RLyo _ Tm+D p-oo —

p DlP,,(cf)——( e Ha-9, (11

where P, (&) 1= Pf’o(é) represents the Legendre polynomial of degree n (see [9]).
Let us define the distributed-order derivative as

max
T

PDOf(t,x) 1= P(0)yDif (1, x)dr, (12)

min
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where a — ¢(@) is a continuous mapping in [@™", ¢™**] [25] and ¢ > 0. We note that by
choosing the distribution function in the distributed-order derivatives to be the Dirac delta
function 6(z — 7)), we recover a single (fixed) term fractional derivative, that is,

max

/  8(r — 19, Df(t.x)dr = (DPf(1,), (13)

where 7, € (z™", 7MX),

3 Mathematical Formulation

We introduce the underlying solution and test spaces along with their proper norms, and
also provide some useful lemmas to derive the corresponding bilinear form and thus, prove
the well-posedness of the problem.

3.1 Mathematical Framework

Let C°(A) represent the space of smooth functions with compact support in A = (a, b).
Recalling the definition of the Sobolev space for the real ¢ > 0 from [25, 30], the usual
Sobolev space denoted by H?(A) is the closure of C°°(A) on the finite mterval A, which is
associated with the norm || - || (). For the real 1ndex c20ando #n— - on the bounded
interval A, the following norms are equivalent [31]:

- Mamay = M- Moy = 1 gy =1 |1*{.7(A), (14)
TPt . : . _ o
where “=” denotes equivalence rela}mon, Il liggecay = <|| Dl ( )||L2(A) +l - ||L2(A)>
I By = (105 Oy + 1120 )5 and 1+ 1) = 1GDIC) DY), From

Lemma 5.2 in [17], we have

1 ] 1
Ty 2 1 oo | Ly = 12O DO (15)

b . .
where | - 1700 = I, D2l 2ay ad | - liggony = |, Do)l z2(n)- According to Lemma 3.1 in
[51], the norms || - |liggo(ay @nd || - ||sf0(a) are equivalent to || - [|e e (p in space C°(A), where

1

- Bletecny = (195 Oy + 1,07 Ol + 11 Iy ) (16)
In the usual Sobolev space, for u € H°(A), we define

1
luliyopy = 1, D5 u, Dy v)Alz +1( Dy u, DIv)plz, Vv e H(A),

where we assume  sup [(,DJu, Dj v)A|% +1(, Dy u, D] v)A|% >0, VYveH(N),
u€He(A)
which excludes the solutions to |u|;[, W= 0. Denoted by 1H"(A) and "H{(A) are the clo-
sures of C°(A) with respect to the norms || - [|iyo(py and | - [|eggo(p)in A, respectlvely
Recalhng from [25], PH?(R) represents the distributed Sobolev space on R , which is
associated with the following norm:
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max

” : ”9H¢(R) = </ (T) ” (l + |CU| ) -7:( )(a))”LZ(R) ) s (17)

where 0 < @(7) € L'([t™", ™), 0 < 7™M < 7™ < [ (1 < 7™M 7™ < 2).  Subse-
quently, we denote by DH?(I) the distributed Sobolev space on the bounded open interval
I =(0,T), which is defined as ®H?(I) = {v € L*(I)| 37 € PH?(R) s.t. ¥|, = v} with the
equivalent norms || - [lie gy and || + [leo gy in [25], where

max

1
T 2
2
” : ”1.®H¢(]) = <” : ”LZ(I) + / (p(T) ” DT( )”Lz(]) >
Tmm

and

max

1
T 2
I+ ooy = <||-||iz(,>+ [ o0 10500, o ) .

In each realization of a physical process (e.g., sub- or super-diffusion), the distribution
function @(7) can be obtained from experimental observations, while the theoretical set-
ting of the problem remains invariant. More importantly, choice of the distributed Sobolev
space and the associated norms provides a sharper estimate for the accuracy of the pro-
posed PG method.

Let A, = (a;,b)) and A; = (a;, b;) X A,_, fori =2, ---,d. We define X; = ®H"1(A,) with
the associated norm || - [|o 1 (4, ), Where

1
V]mZIX E
” . ”9]{?1(/\1) = (” : ”22(1) + /min pl(vl) <” DV ( )”LZ(A ) + ” DVI( )”LZ(A )) dvl) .
i

(18)
Subsequently, we construct X, such that
2, =PH ((ay byiLP(A) ) 0 L3 (g, b)),
(19)
Xy = H" ((ad’ bd)§L2(Ad71)> n LZ((a[ﬁ by);Xy_1)
associated with the norm
1
2
-l ={|I-|I2 +1- 17 } . (20
Y 2104 ((ag by 52 (Mg 1)) 22 ((agbais )
Lemma3.1 Letv; > Oandv; #n — %fori =1,--,d. Then,
1
2
1, = { / 210 (1, D) Ol + 1, D2 Ol v+ 11 ||LW} .
2n

@ Springer



Communications on Applied Mathematics and Computation (2021) 3:61-90
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Proof Considering (18), X is endowed with || '.”Xn x| - ”mH,:](AI). A&, is associated with
. — . 2 . 2 = . .
-1y, = {ll |IcH'”2((a2,h2);L2(/\l))+“ ”LZ((az,bz);X,)}z’WhICh is proved to be
2
u
I IlﬁHﬂz((az,bz);Lz(Al))
e b, by , by .
V-
= [ non [ e [T D an,
e a, a, a,
b2
+/ |u|2dx2)dx1 dv,
)
S
— \¢) 2 v, 2 2
B / Pz(\@)(IIXZDbZ WMzn,y + 1o, Py (u)||L2(A2)>dV2+ ltll 2,
" (22)
and
lJull?
22 @by )
ymax b, b, b
2 V12
= [non [C([ e [, Dy
vt a, a, a;
bl
+/ Juf? dx, ) dxy dv,
a
T 2 2 2
— Vi \2
B /min V) <I|X1Db1 ul 2(Ay) + ||u1Dxl ull 2(A2)>dvl + “””Lz(Az)-
v (23)
Next, providing that
d—1 max
o~ ’ Vi e )12
Il ={ > / ) (1,05 Oy,
i=1 7]
1
DY O, )+ 1,
a; X L2(Ag-)) ! L2(Agy) ’
the inductive step is attained according to
flull?
DHr ((”wbd)le(/\dq ))
by by V™
2 2 \Y 2
=/ (/ lul dxd+/ / PV 1, Dl + 1, Dltul?)dv dx, A,
Ny [ ag  Jvt
S D) (I, Py @iz, + N, D2 @l dvy + [lull;
- min PatVa) \ Iy, s, LX(Ay) aq Xq Ay ) L2(Ag) 24)
d

and
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2
” M“L2 ((a,pbd)?qu )

max

by d-1 v;
= / / (X / ) (1, Dl + 1, Dy ul)dv, JdA,, dg
aq Agy i=1 V,-mm '

by (25)
+/ / |ul*dA,_, dx,
aq Agoy

max
V.

d-1

Z ' Vi 112 ;|2 2

= . pi(vi) (||XiDb u”Lz(Ad) + ”a D;[ u”L2(/\d)>dvi + ”u”Lz(/\d)'
-1 Vimm i i i

Therefore, (21) arises from (22), (23), (24), and (25) by induction, and the proof is
complete.

The following assumptions allow us to prove the uniqueness of the bilinear form by exclud-
ing the solutions to |(, Dlu, D,'v) |+|(, Dyu,, Dv), |=0 for i=1,--,d and
i i i i d i i i i d
|, Dfu, Div)gl = 0.

Assumption 1 Foru € X,

v
su)[() / v (| (avD;{u, vaZi,V)Adl + l(x,DZ,”’a D;{V)Adl)dvi >0, Wwedi]
Ue. ) Vimm 1 v 1 1 1 i 1 i

d
wheni=1,-,d, and AZ = H (a;,b)).
=

H-‘l max
Assumption2 Foru € "WH?(I;L2(A))), sup f;,m (1) |(0Dt’u, Div)gldr >0,
0£ue D Ho (I.L2(A )
Vv € "PHP(L,LA(A)).

In Lemma 3.3 in [51], it is shown that if 1 <2v; <2 fori=1,:-,d and u,v € &, then

2v; _ V; V. v _ V. V;
(X,Db,» u, v)/\,1 = (XiDb‘lu, aiDX:v)Ad, and (a‘Dxilu,v)Ad = (ali:u’xiDbl,v)A,,' Consequently, we
derive,
max pmax
! 2v; _ ! \7 V.
/vmin piv) (XiDbilu’ V)Ad dv; = '/Vmin Pilvi) (xiDb:'u’ “,DX:V)Ad dv; (26)
i i
and
ymax ymax
! 2v; _ ! V: v,
/Vmin Pi(v) (“lii “ V)Ad dv; = '/me Pilvi) (ali:'u’ XiDb’iv)Ad v @7

i i

Additionally, in the light of Lemma 3.2 in [51], we have,

v[
/ o) (| (, D, Dyiv) 1+ 1(, Dy D) 1),

min
Vi

= ul

510 (@, b L2 Moy (@bprr2a))) (28)

fori =1,---,d, where Assumption 1 holds.
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Next, we study the property of the fractional time-derivative in the following lemmas.

Lemma 3.2 [f 0 < 27™" < 2¢™ < [ (1 < 27™" < 2¢™X < 2) and u,v € "“DH?(I), when
u|t=0(= i_,:h:o) = 0, then

max max
T

/ L PO Py b = / @@ (,Dfu, D), dr, 29)
where I = (0, T),0 < ¢(z) € L! ([Tmin’ Tmax])'

Proof It follows from [25] that for u,v € H'(I), when ul,_y(= (;—L;h:o) =0 and
V=r(= %h:r) =0, we have

(6D u.v), = (4Dfu, D7v),. (30)
Then, (29) arises from (30).

Let 0 < 2™ < 26™% < 1 (1< 26" < 20™ < 2), and Q =1 x A, where I = (0,7)
and A, = l];ll (a;, b;). We define
e (LA, )
= (e Mzn, € 2HOD, o = S1ico) 31)
—uly_y =ty =0, i= 1, ,d},

which is endowed with the norm || - || , where we have
LD Fe <1;L2(A[,)

”l’t”mH(a(I;L?(Ad)) = ” [lu(z, ')”LZ(AJ) 1)

max

= ([ 01,0 @l e+l )

=

min (32)
Similarly, we define
Do (1;L2(Ad))
dv
= {1V, € PHO D ( = Tl (33)
= lei:a‘ = lex:b, = O’ 1= 1, ’d}’
which is equipped with the norm || - [l 0 (7,12(a,)- Following (32),
Wlkonzons =[ 1Moy [y
pmax 1
— r 2 2 2
([ oD 0 g+ ) a0
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Lemma 3.3 For u € "PH?(I;L*(A)) and 0 < 2t™" < 273 < [ (1 < 2¢™iN < 27MX < ),

max

S @(@) 1Dy u, Divigl dz < llullogoui2a,y W2 pogiza,y, Vv € SRHO(LLA(A)).

T

Proof From Lemma 3.6 in [51], we have

1 1

2 2 2 2 2 2
D5 Dl (1Pl gy + gy ) (1 D512 gy + Mg )

Followingly, by the Holder inequality,

[ oD Dpyglas

max

7! T
- / o (7) / / | Drul | DivldrdA, de
Zmin A, Jo

max

T T L

<( / / / P01, Druf? didA, )’
Tmin Ad 0

o T 1

( / / / (p(r)|tD;v|2dtdAd>2
Tmin Ad 0

2 2 2
= ( / 0@ 1Dl g0 + Nl )
,

T
2 2 2
([ o@D g 05 + 0l
T

min

= ”||'~®H¢(1;L2(Ad)) ||V||r-®1-1v»(1;L2(Ad))~ (35)

Lemma 3.4 For any u € "PH*(I,L*(A,)) and 0 < 2™ < 20™% < 1 (1 < 27™" < 2¢MX L 2),
there exists a constant ¢ > 0 and independent of u, such that

max

S @@ 1(,Dfu, Djv)glde

sup 2 cluliogoi2a,) (36)
OvErDHO LA (A,) Vlonoqizn,)

under Assumption 2.

Proof Following Lemma 2.4 in [13] and Lemma 3m7 in [51], for any u € L2ge ;Lz(Ad)),
let V, =H(t—T)(u—ul_g), assuming that [ @(z)|(,Diu, Dyul,_r)gl >0, where
H(t) is the Heaviside function. Evidently, V, € "®H?(I;L*(A,)). From the Holder inequal-
ity, we obtain
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A

EOHOLLAA,)

max

= / Q@) I, D7 (H(t = T) (u = uli—g) ) 1 ] 47

max 2

T
. d
z/_ o(7) ||RT; a(H(t—T) (u—ul_r)) dr
in J2(S)
- L (dH@t-T)
=/_ o(1) RV <—dt (u—ul—7)
in 37
2
d(u—u|_
+ H(t - T)%) dr
d L2(Q)
max 1 d (I/l _ Mltzr) 2
= / o(r) |RI,F <H(t—T)T> dr
min LZ(Q)
= [ oDl g .
Regarding (12) in [51], IIVMIIEQHQ,(,;U(ACI» = [T o) llyDf ull}, g d7 = IIuIIEQHw(,;Lz(AA)).
Hence, ||,D;Vu||iz(g) =~ ||0Dfu||22(g). Therefore,

max

/ 0(2) |, D, DV,gl dr

min

max

T T
= / 9(0) / / (| D%ul | DSV, ldr dA, de

pmax T
>p @(1) / / lDruldrdA, dr
gmin Ad 0
12
- |M|IA®H¢(1;L2(A‘1))’
where f > 0 and independent of u. Considering (37) and (38), we obtain

[ @@ |(,Du, Div)gldr N [ @@ |(,Du, DV, )g ldz
sup

>
0£veErDH (ILL2(A,)) [VIeopoiza D) V. |r-®Hw(1;L2(A,,)) 39)

2P luhonoian, -

Lemma3.5 [f0 < 2t™" < 27™% < 1 (1 < 27™" < 2¢™ < Q) and u,v € PHY (I, L (A)),
then

max pmax

/ @) (D uv) ydr = / o) (,Diu, Dyv), dr, (40)

where 0 < @(t) € L! ([rmm, rmaX]).
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Proof By Lemma 3.2,

max m;

T ghmax T
/ o) (, D} u,v) dr = / @) / / lo D7 ul [v] dtdA, dr
Tmm Tmm Ad 0

- T
=// (p(r)/ lyDrul |, DyvldedzdA,  (41)
Ad Tmin 0

= / (1) (OD:u, tDTTv)Q dr.

min

3.2 Solution and Test Function Spaces

Take 0 <27™M < 2¢7MX% <1 (1 <27™" < 27M% < 2) and 1< 2vl?“i“ < 2vl."‘“" <2 for
i=1,-,d. We define the solution space

Berra(Q) 1= "2 H? (1;L2(Ad)> N LX) (42)

associated with the norm

_ 2 2 2
||u||3fﬂ«l’1-""l’d(g) - { ”u”L%HW(I;LZ(Ad)) + ”u”LZ(I;Xd) } M (43)
Considering Lemma 3.1,
il ey = || e M |,
d ymax 1
i \A V. 2
= { Z /min pi(vi) (”J\;Dbi (u)lliZ(Q) + ”a‘-Dx:- (u)”iZ(Q))dvz + ”u”IZ‘Z(Ad)} .
i=1 7V
(44)
Therefore, from (32) and (44),
sy ={ o, + | 021,27 @ g
d 1 (45)
‘ V. 2
£ 3 [ 00 (1,0 @l 1, D @ Jav |
i=1 7,
Similarly, we define the test space
B (@) = OH (LA ) 0 (15, 46)

equipped with the norm
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[SIE

2
”V”%‘ﬂ-ﬂ]‘---‘ﬂd(g) = {”v”qu;(];LZ(Ad)) + ”v”LZ(IX)}

max

=Uwgm+/ P(0) 1,05 0P e

min

ymax

/ 2D (I, D} )12 gy + 11, D 0l ) | @
7

by Lemmas 3.1 and 3.2. Take Q = I X A, for a positive integer d. The PG spectral method
reads as: find u € B?*r"*4(Q), such that

a(u,v) = I(v), Vv € B/ 0u(Q), (48)

where the functional I(v) = (f, v)o and

a(u,v) = / @(t) (D] u, Dy v)qdr

min

d
+ Z / ) (sz(aiDi"f U, D vig +c,(, D, Dhiwg, )dyi

—Z/ pj(v)<k,( DY u, D} Vg +k,(,Div, D} u)g)

+ 7, Vg (49)

following (26), (27) and Lemma 3.5 and YsCps Cps Ky and «, are all constant.
Besides, 0 < 27™MM < 27MX <1 (] < 270 < 2rmax 2) 0< Zymm <2u™ <1, and
1< ZV;“i“ < ZV;“" < 2forij=1,2,--,d.

Remark 1 In the case 7 < 2, additional regularity assumptions are required to ensure
equivalence between the weak and strong formulations, see [23] for more details.

Uy and V) are chosen as the finite-dimensional subspaces of B?#1?4(€) and
Be-ri-oPa(Q), respectively. Then, the PG scheme reads as: find u,, € Uy, such that

aluy,vy) =1lvy), Yv eV, (50)

where

a(uN,vN)=/_ @(7) (, D] uy, D vy)adr
+2/ pl(y)[c,( 2 uys D vN)Q+c ( D fuys D vN)Q]dul

ymax

_2/ p/(v)[kl( DY uy, , D} vl +k;(, Dy tys D} vN)Q]

+ y(uy, Vy)o-

(G
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Representing u,, as a linear combination of elements in Uy, the finite-dimensional problem
(51) leads to a linear system, known as the Lyapunov system, introduced in Sect. 4.

3.3 Well-Posedness Analysis

The following assumption permits us to prove the uniqueness of the weak form in (48) in
Theorem 3.8.

Assumption 3 For all v € B##1-24(Q),

max

T
sup / () (,D; u, Dyv)gldr > 0,
ueBPP10d (Q) J pmin

max

vl V; \ V; \Z
su (v; Dlu, D' v)g|l+|(D u, D v )dv~>0,
uEB‘”’”'RP"(Q) /V;nin pj( j)<|(aj % Xj bi )Q| |(X/ b/ a; % )QI J
J
sup |, v)g| > 0,
UEBPP1d (Q)

when j=1,---,d.

Lemma 3.6 (Continuity) Let Assumption 3 hold. The bilinear form in (49) is continuous,
i.e., foru € B’ ra(Q),

3p >0, la(u,v)| < B llull gori-sayllVllgosoa(qy, Vv € BPPrPi(Q). (52)

Proof It follows from (28) and Lemma 3.3.

Theorem 3.7 Let Assumption 3 holds. The inf-sup condition of the bilinear form (49) for
any d > 1 holds with p > 0, that is,

: |la(u, v)|
inf sup
0#4uEB?144(Q) gzyeor-ra (@) |V|goorra |1l goor-va (€2)

2 p>0, (53)

where Q =1 X A,.

Proof Foru € B?*1""*4(Q)and v € B¢*1-4(Q) under Assumption 3,

pmax

la(u, v)| =[(u, v)g| + o(0) (D] u, Dy v)gldr

min

d e
3 / " ) (1,22 D gl 410D, D g Y
i= i

max

d g Vi Vi Vi Vi
+Y [ (|(aij-j_ u, Dy Val + 1, D} ., Dy vl )dvj.
j=] ijm J J (54)

Following (28) and Theorem 4.3 in [51],
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d Jmax
> / o) (16, @), Dy Dl +1(, D} (0., D2 ())gl )
1:1 V;mn t 1 t L i 1 i

max
\2

d v
>a %[ [ oo (1,2l o [
i= v;“|ﬂ i U Vimm

) (llxl,D;; (v)||Lz(Q))dv,.
\/[ V;'
y
+/ pi(Vi) <||x-Db’. (u)“LZ(Q))dVl- /
me g i men

n;

2. (1, D )l ).
Thus,

d max
Y [ 00 (1,2 @, D 0l +1,2] @, D2 gl o
2 /..

d Ly
>0 % [ 000 (1,2 @l + 1,0} Wl )a
i=1 v ‘ L
d V/max
v v
x Y / , p,-(v,-)(nijé 2+, Y (V)”LZ(Q))de
=T
=C; |M|L2(1;Xd) |V|L2(1;Xd)’ (55)

where C, is a positive constant and independent of u. Considering Lemma 3.4, there exists
a positive constant C, > 0 and independent of u, such that

o
S 9@ |GDF ). D(gldr
sup ° = C2|M|1'®H“’(1;L2(Ad))' (56)
OFVEBO1 0 (Q) Vleo o2,

Furthermore, for u € B#*1?4(Q),

ax

S @@ |(,DF @), Dy(W)gldz

sup
0FAVEBPPd (Q) |V|fv'«‘>H¢(1;L2(Ad))
[ 0@ (D W), DEm))glde
= sup
0AvEBPd (Q) [V g va ) 57)
and
d max
. Dy u, Dy Vol +1(, D, u, , Dy Vgl )d
Jgfvfmm A\ |(“f 5t 5 5, Ve 50 a7 Vel J4Y)
sup
0£vEBPP1-0d (Q) ”V”LQ(I;Xd)
& Y Y Y v
Z] Lo 2% |G, s Dy Val +1(, D, us , Dy Vgl )dv;
J= J
= sup
0£vEBPP1-0d (Q) ||v”§8‘/’v/’1v”’~/’d(9)

(58)
Therefore, from (55), (56), (57), and (58), we have
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la(u, v)| [, ol + [ @@ (D} u, Dy v)gldz

= >

0¢Ve%¢'P1""'”d(9)||v||%(/”ﬂ"”"ﬂd(g) 0£vEBPP10d (Q) ”V”%w,m,”.pd(ﬁ)
%/v;unx (V) I( DV,- u ,DV/' V) | + I( 'DV/ u va V) | dv;
j=1 v pily; @ N G T by R AL A e !

VIl g1 Q)

>pC (”u“LZ(Q) + lulogoq2a,y) + |u|L2(I;Xd))’
(59
where C = min{C,, C, }. Accordingly,

la(u, v)|

inf ——— > P ||ull grereaias 60
0FAUEBP10d(Q) £y Bo-r1-0a (Q) ”V”%wr---ﬂd(ﬂ) g s “ (60)

where § = § C is a positive constant and independent.

Theorem 3.8 (Well-posedness) For 0 <27™" < 2¢m% <1 (1 < 27M0 < 27M% D),
1< 2vl¥ni“ < 2\/;“""‘ <2, andi=1,-,d, there exists a unique solution to (50), which is
continuously dependent on f € (BT’V"””Vd)*(Q), where (B”""""Vd)*(Q) is the dual space
of BEV1 Y (Q).

Proof In virtue of the generalized Babuska-Lax—Milgram theorem [52], the well-posed-
ness of the weak form in (48) in (1 + d) dimensions is guaranteed by the continuity and the
inf-sup condition, which are proved in Lemma 3.6 and Theorem 3.7, respectively.

4 Petrov-Galerkin Method

To construct a PG spectral method for the finite-dimensional weak form problem in (50), we
first define the proper finite-dimensional basis/test spaces and then implement the numerical
scheme.

4.1 Space of Basis (Uy) and Test (V) Functions

As discussed in [51], we take the spatial basis, given in the standard domain & € [—1, 1] as
¢, (&) = am(PmH(f) - Pm_](é)), m=1,2,-, where P, (&) are the Legendre polynomials
of order m and o,, = 2 + (—1)". Besides, employing Jacobi poly-fractonomials of the first
kind [63, 65], the temporal basis functions are given in the standard domain n € [—1, 1] as
W, =o,(L+m) P (), n=1,2,

We also let n(#) = 2¢/T — 1 and §;(s) = 2hj_afj

pings from ¢ € [0, T]and x; € [a;, bj] to the standard domain [—1, 1], respectively. Therefore,

— 1 to be temporal and spatial affine map-

Uy = span{ (W;‘W)(Oﬁ (d)mjofj)(xj) tn=12,-,N, m;=1,2,- ,./\/lj}.
j=1

Similarly, we employ Legendre polynomials and Jacobi polyfractonomials of the second
kind in the standard domain to construct the finite-dimensional test space as
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Vy = span{ (¥ on)(t)H( &)t =12 Nk = 1,2, M, ],

where ¥ () = 5,(1 — )" PZ” T(n) r=1,2,--and ® (&) =5, (P, (&) —P,_ (&), k=1,2,--. The
coefficient 5, is defined as &, = 2 (— 1)" + 1
Since the univariate basis/test functions belong to the fractional Sobolev spaces (see
[65]) and O < @(r) € LI((z™", z™)), 0 < pi(v)) € L ((vmln max)) for j=1,--,d,
C B#PrPa(Q) and V), € BPrra(Q). Accordingly, we appr0x1mate the solution in
terms of a linear combination of elements in Uy, which satisfies the initial and boundary
conditions.

4.2 Implementation of the PG Spectral Method

The solution uy of (50) can be represented as

N M,
uy(x, 1) = Z Z Z A lw (t)H¢ (x)} 1)
n=1 m;=1 my=1

d
in Q, and also, we take vy = ‘Pf(t)H‘ij(xi), r=12,-,N, ki =1,2,-- ,./\/l]-. Accord-
b= g y :

ingly, by replacing u, and v, in (50), we obtain the following Lyapunov system:

d
(S;ﬂ QM, @M, @M, + Z(Mf OM ® - ®M,_, ®SjTot @M, -+ ®M,)
= (62)

+yM, @M, ®M2---®Md)L{:F,

in which @ represents the Kronecker product and F denotes the multi-dimensional load
matrix whose entries are given as

d
Frpooos, = /Q £ty ,xd)(\y;on)(z)n (qskjo;,.)(xj) aQ, (63)
=1

and S Tot = ¢, So’ +c, So’ K S;” - K, S The matrices S¥ and M, denote the temporal stiff-

ness and mass matrlces respectwely, S‘)’ Sf’ s S;” s Spf and M denote the spatial stiffness and
mass matrices. The entries of the spatlal mass matrix M; are computed analytically, while
we employ proper quadrature rules to accurately compute the entries of the temporal mass
matrix M, as discussed in [50]. The entries of S? are also computed based on Theorem 3.1
(spectrally/exponentially accurate quadrature rule in a-dimension) in [25]. Likewise, we
present the computation of SjT"‘ in Lemma A.1 in Appendix A.

Remark 2 The choices of coefficients in the construction of finite-dimensional basis/test
functions lead to symmetric mass/stiffness matrices, which help formulating the following
fast solver.
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4.3 Unified Fast FPDE Solver

To formulate a closed-form solution to the Lyapunov system (62), we follow [64] and
develop a fast solver in terms of the generalized eigen-solutions.

Theorem 4.1 [50] Take {ej ﬂj } | as the set of general eigen-solutions of the spatial

stiffness matrix ST with respect to the mass matrix M;. Besides, let {e;, A" } | be the set of
general eigen-solutions of the temporal mass matrix M with respect to the stlﬁ‘ness matrix
Sf. Then, the unknown coefficients matrix U is obtained as

N M,
U= Z 2 Z'fnml 6 ®e, ®-®e . (64)
n=1 m=1 my=1
where
(enfe}nl el F
Knmyeeimy = ’ (65)
[(e,;TS“’ef)Hw MO,
and

d
Aoy, = |7 A+ 22 D)

i=1

Remark 3 The naive computation of all entries in (65) leads to a computational complexity
of O(N**9), including construction of stiffness and mass matrices. By performing sum-
factorization [64], the operator counts can be reduced to ON*),

5 Stability and Error Analysis

The following theorems provide the finite-dimensional stability and error analysis of the
proposed scheme, based on the well-posedness analysis from Sect. 3.3.

5.1 Stability Analysis

Theorem 5.1 Let Assumption 3 hold. The PG spectral method for (51) is stable; that is

. a(uy,vy)

inf  sup latuy. vy)l =>2p>0 66
(66)

0#uy€Uy ozvev, ||VN”8W~¢'1»'“~M(Q) ||14N||5¢-m~~w(g)

holds with § > 0 and independent of N.
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Proof Regarding Uy C B?""74(Q) and V) C BP-*4(Q), (66) follows directly from
Theorem 3.7.

Remark 4 The bilinear form (51) can be expanded in terms of the basis and test functions
to obtain the lower limit of g, see [50, 64].

5.2 Error Analysis

Denoting by P, (A) the space of all polynomials of degree <M on ACR,
P/?A(A) =P, (A) N DH?(A), where 0 < @(z7) € L'((z™", z™)) and PH?(A) is the dis-

tributed Sobolev space associated with the norm || - ||oges). In this section, we take
I,=0,7), I,=(a;,b) for i=1,---,d, Aj=I;xA_,, and A’l: = []I;. Besides,
k=1
k#j

0 < 2¢Min < 27mX < 1 (1 < 27™MN < 27X L D) | < ZV;“i“ < 2vimax <2 for i=1,--,d.
Where there is no confusion, the symbols ;, A;, and A’i and the intervals of (z™", 7™2%) and

(v;“i“, vi"®) will be dropped from the notations.

Theorem 5.2 [35] Let r| be a real number, where r| # M, + %, and 1 < ry. There exists a
projection operator H:‘ . Jrom H'(A)N H(;' (A)) to P;\‘/l (Ay), such that for any
1M 1
ue H'(A)N H(‘;‘ (A;), we have ||lu — Hrvll,M,“”“H”(Al) < CIMY' "Nl g () Where ciis a

positive constant.

Theorem 5.3 [25] Let ro=1, rg # N+ % There exists an operator Hf; N from
Ho () n "2 H?(I) to Pf/(Al), such that for any u € H'o(I) n "2 H?(I), we have

pmax

2 -2
= 119 gy < oM [ 00Nl

min

where ¢, is a positive constant and 0 < (r) € L ((g™Min zmaxyy.

In the following, employing Theorems 5.2 and 5.3 and also Theorem 5.3 from [51],
we study the properties of higher dimensional approximation operators in the following
Lemmas.

Theorem 5.4 Letr, > 1,r; # M, + % There exists a projection operator I1”' . (4y) from
My
H" (1) N2 HA(I) to Pj\]/ll (1)), such that for any u € H" (I,) " "2 H?1(I,), we have

ymax

p 2 =2r ! 2v
“u_HrI],M,uH@H“(II) SMT [ v M, 1||u||Hr,(11)dV1,
V:mn
where 0 < p;(v)) € Ll((v{“i“, v;“ax)).

Proof From Theorem 5.2 foru € H"' N °H", we have ||lu — Hrvl‘,MlulchV, ) SMIT ullgn -
Therefore, foru € H"1(I;) N'H?1(I,), we have
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Vmux
_gh 2 _ _ Vi 2
Hlfi Hrl,Mlu”l'gHﬂ](ll) - </vain P](Vl) ”M Hr,,/\/llu”CH"‘(Al)dvl
Ivlﬂ"lﬂ)(
2v-2r 2
< [ n o MY il v
ymin
1

ymax

-2r ! 2v
=M1 . /’1(V1)M1l||14||Hf1(11)dV1-

min
Yi

Lemma 5.5 Let the real-valued 1 < ry, r, and Q = I, X I,. If u € " H(I,, H" (1)) N H"
(I,"®H} (1)), then

Pi 123 2
[l — Hr,,MIHrZ,Mzu”B””’Z(Q)

Vmax
—2r 2 2v. 2v. —2r
< M2 : ) p2(v2) <M2 2||”“H'2(12,L2(11)) + M2 le l||M||H'z(12,11r1 (m))d‘/z
v;‘mn

max
\2

=2r ! 2v 2v =2r.
+ M PNW)(”ﬁ'”WMme@»+A4UA4zZ”WMwnﬂmedW

min
Vi

_2r -2r
+ M2 Nulloge (I,,H2(I,)) + M1 : ||M||®Hﬂz(12,Hf1 )’
(67)

1
- 2 2 : Lo mi
where || - | gy = {Il - [ ||Hﬂ2(1|,L2(1,))}2’ 0 <py(vp) € L (v, vi™ D),

and 0 < p,(v,) € Ll([v;“i“, vy D).

Proof For u € “®H"(I,,H"(I,)) n H(I,, H*\(I})), evidently u € H"(I,,H"(I,)),
u € H (I, L*(1,)), and u € H" (I,, L*(I,)).
Besides, from the definition of || - || o1 ), We have

4 4
”M — Hrll,./\/llHVQZ»MZMHBMYI’Z(Q)

— {”M_Hﬂl Hﬂz

2 _qgh P2
r, M, ’2’M2u||®Hp‘(11»L2(12)) + ”u 1 1

1
) 1
r, M, r2~M2u”®H”2(12,L2(11))} g

Following Lemma 5.3 in [51] and Theorem 5.4, ||u — HZI,M]Hr’;z,/\/tzu”émz(lz,ya,)) can be

simplified to
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_ 2 P2 2
YR LIS VILL PSR

_ _ P2 ) N 24 ) 2
= Ilu H”z’Mzu + H"z’Mzu H’lleH"z,MzullgH"z(Iz,Lz(ll))

p 2
< “Ll - H’zaMzu”gH”Uz»Lz(]l))

12} _gh P2 2
HIL u = I TLC 0l s 12,

max
V.

=2r 2 2v. 2
S M2 : min p2(v2) M2 ’ ||u”Hr2(]2vL2(ll))dV2
V’)

3 Pl 2
ULy, =D =1Ly Dl 124,

_ 141 2
+ ||I/t Hrl,MlullmHm(IZsz(]l))
2 N 2
- r2 V2 2
M, e PO M 2 )V
V2

max
V.,

=2r, =2r 2 2v. 2
MM pa ) Ml g, e 9V2

ymin
—2r, 2
+ M o g, 1 (68)
where 7 is the identity operator. Furthermore,

=TT 3 172 0t 0 1,
_ ||”_H2],M,”+HZI,M,”_HZI,MI :;Z’Mzu”%m](/l,l_z(lz))
Slu=17" 3 oy

i LLISVRTE LAOVIR VRl S

max

-2 ! 2 2
SMT L g v Ml dv,
min
1

11 L2(1)

Py P2 2
T v, = D= I 0, 0o, 2200

),
P2 2
+ ||M - Hrz,MzullgH”l (I],Lz(lz))

max
\2

Zor 1 2v. 2
SMT [ o) M Nl oAV
min
1
VlTHiK
o o 1 2v 2
+M2 2'/Vll l smin pl(Vl)Mll”“”H’l(ll,HQ(Iz))dvl
i
+ MG Jull?
2 DHPI(1H2 (L))" (69)

Therefore, (67) can be derived immediately from (68) and (69).

Likewise, Lemma 5.4 can be easily extended to the d-dimensional approximation opera-
tor as
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—rrh 2
“M Hdu”mgHﬂ;(thZ(Ajj))

max
12

=2r; ! 2v; 2
SM [ DM gy

V.
i

d
—2r
+ Ml
j=1

SHA (U HI (1L )

J#
V[max d
+ Mi_zr‘ Pi(Vi)MiZViZMTZVj ||"‘||2 R i, dvi
V;nin = J Hi(I;,H'T(1,LA(A]))
J#i

d d
=2r -2
+ 0D MM w2

D HPI (I H®T (L XLLA(A )

k=1 j=1
ki joti k
Jmax
=2r; ! 2v;
+o M / pi(v) M
me

d
7 2
-HM,. [ I 72
J=
J# (70)

h _ 4 Pa
where Hd = HrI’M] Hrded.

d k ok
Theorem 5.6 Let 1 <1y, Iy = (0.7), I; = (a;,b), @ = Iy x ([11), A, =11, A, =11,
i=1 i=1 i=1

i
1 ; ; .
andi < vlfm“ < vim“"‘ Llfori=1,-,d. If

d
u e ([H" Uy DHOL, HIv i (AL ) ) 0 RHO (T, H (M),
i=1

then J
|l — HZ!NH[;IA”

max

T
~2
<N ro/ (P(T)/VQT||M||H’0(10,L2(Ad))df
T

min

2
B (Q)

max d
2
+N—2’o/ PN Y M |Jull?
min j:1 J

AN (&
HO (I, H'T (I,L* (X))

max

d
T
- 2,
+ N\ ro/‘ W(T)/VQT< I IMj j)||M||Hro(10,Hn-----m(/\d))df
Zmin =

max

d v
! 2v,-2r;
+Z]‘, / P M Nl 200t +
£

d
2v;=2r; =2r;
+M; (HM/' j ) et 1, a0 2003 }dvi’

j=1
ik 71
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(1+1)-dimensional temporal p-refinement (1+1)-dimensional spatial p-refinement
10! 3 :
5 103 _ 5 107
£ 5
[ N [ 10—6 -
8107k 3
10_11 i 10—10 L
1 1 1 L 1 1 1 1 1
1 2 3 3 4 5 6 7
#Temporal basis (V) # Spatial basis (A7)
@ (b)
(1+1)-dimensional spatial p-refinement
10! 3
4
,\]8 1077 3
; 1 1 1 1 1

1 L
3 4 5 6 7 89
# Spatial basis (A1)
©
Fig. 1 Temporal/spatial p-refinement for case I with singularity of order @ = 107*. (a): p, =3, p, =p; =2,

and expansion order of A'xX9. (b): p; =2, p, =p; =2, and expansion order of 3 X M. (¢): p; =3,
P> = p3 = 2, and expansion order of 4 X M

h — P1 “es Pa ] it
where I1; = 11 M, Hm-Md and P is a real positive constant.

s,

Proof Directly from (45), we conclude that
d

2 2 2
”u”lgf-w.--nvd(g) < ||u||]H1(10’L2(Ad)) + 2; “u||L2(10,9H"i(l,-,L2(A;)))'
i=

Next, it follows from Theorem 5.3 that
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Fig.2 Spatial p-refinement for (1+1)-dimensional spatial p-refinement
caseII, py =3, = 0.1, and 100F
a=0.9
107 F
S 107k
3
3107 F
~
1077 3
10_9 é_ 1 1 1 1 1
6 10 14 18 22
#Spatial basis (A7)
(1+2)-dimensional spatial p-refinement (143)-dimensional spatial p-refinement
101 E 101 E
[ _3 :_ = 3
g 10 g 10
H i H
8 1077L 810”7
- 10 - 10 :
107! - 1071 -
é 1 1 1 1 1 1 1 1 1 E 1 1 1 1 1 1 11 1
1 22 32 4% 52627%8%92 1 23 33 4 536378393
# Spatial basis (A X A1) # Spatial basis (A X My X AM3)

(@) (b)

Fig.3 Spatial p-refinement for case III with singularity of order @ = 107*. (a): (1 +2)-dimensional,
P1 =3, Py =Paip = 1, where the expansion order is N'x M; X M,. (b): (1 + 3)-dimensional, p, =3,
Dai = Doy = 1, where the expansion order is N'X M, X M, X M,

[ h, 112
”M - HrO,NHdu”LgHQ’(IO,LZ(Ad))

<N / T e N

‘min

d
. 2 =2 (72)
[”” oy 220, 214 MG o gy 5 0, 2000+
=

d
.
+ ( [1M; ’)||u||H,(,(,0,Hr1,...,rd(,\d))] dr.
j=1

Therefore, (71) is obtained immediately from (70) and (72).
Remark 5 Since the inf-sup condition holds (see Theorem 5.1), by Lemma 3.6, the error in

the numerical scheme is less than or equal to a constant times the projection error. Hence,
the results above imply the spectral accuracy of the scheme.
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Table1 CPU 3time, PG spectral method for fully distributed (14d)-dimensional diffusion problems.

Ut = P+ x T (1 + x;)P2 (1 — x;)P2, where @ = 1074, p; = 3, and the expansion order is 4 X 11¢

i=1

P2i =Paip1 =2 P2i = Paiv1 =3

d=1 d=2 d=3 d=1 d=2 d=3
CPU time/s 1 546.81 1735.03 2 358.67 1596.16 1786.61 2407.22
llell =) 6.84x 10712 445%x 10712 327x107'2 627x10712 386x10712 2.71x107!2

6 Numerical Tests

We provide several numerical examples to investigate the performance of the proposed

scheme. We consider a (1 + d)-dimensional fully distributed diffusion problem with the

left-sided derivative by letting €, =¢, =K, = 0, K, = I, 0 <2zMn < 27max < 1 and

l<2vlf“in <2vl¥“a" <2 in (50) for i=1,---,d, where the computational domain is
d

Q=(0,2) x [[ (=1, 1). We report the measured L™ error, |le||;» = |luy — u*'||,« as the

i=1
maximum bound of ||e|| ..
In each of the following test cases, we use the method of fabricated solutiong to con-

struct the load vector, given an exact solution u®*'. Here, we assume u®* = u, X [] u,. We
] i

project the spatial part in each dimension, u,, on the spatial bases, and then, COIIISEI’UCt the
load vector by plugging the projected exact solution into the weak form of the problem.
This helps us to take the fractional derivative of the exact solution more efficiently, while
by truncating the projection with a sufficient number of terms, we make sure that the cor-
responding projection error does not dominantly propagate into the convergence analysis of
numerical scheme.

Case I We consider a smooth solution in space with finite regularity in time as

Ut = e 1 +xl)l72(1 _xl)I’}) (73)

to investigate the spatial/temporal p-refinement. We allow the singularity to take order of
a = 107%, while p,, p,, and p, take some integer values. We show the L®-error for different
test cases in Fig. 1, where by tuning the fractional parameter of the temporal basis, we can
accurately capture the singularity of the exact solution, when the approximate solution con-
verges as we increase the expansion order. In each case of spatial/temporal p-refinement,
we choose sufficient number of bases in the other directions to make sure that their corre-
sponding error is of machine precision order.

Considering @ = 107, p; = 2, p, = p; = 2in (73), and the temporal order of expansion
being fixed (A = 4) in the spatial p-refinement, we get the rate of convergence as a func-
tion of the minimum regularity in the spatial direction. From Theorem 5.6, the rate of con-
vevr ence is boglvlded by the spatial approximation errlor, e, llell 2@ < llell s < M]_z’l.
/v;"]i" p1(v) MUl gy g, 22, dvi> Where r = py + = — e is the minimum regularity of the
exact solution in the spatial direction for € < 1 Conforming to Theorem 5.6, the practical
rate of convergence 7, = 16.05 in ||e|| ;g is greater than r; = 2.50.

Case II We consider u®*' = /1** sin(2zx,), where p; = 3, and let « = 0.1 and a = 0.9.
We set the number of temporal basis functions, A'=4, and show the convergence of
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approximate solution by increasing the number of spatial basis, M in Fig. 2. The main dif-
ficulty in this case is the construction of load vector. To accurately compute the integrals
in the load vector, we project the spatial part of forcing function, sin(2zx,), on the spatial
bases. To make sure that the corresponding error is of machine-precision order and thus,
not dominant, we truncate the projection at 25 terms, where there error is of order 10716,
Therefore, the quadrature rule over derivative order should be performed for 25 terms
rather than only a single sin(2zx,) term. This will increase the computational cost.
Case III (High-dimensional p-refinement) We consider the exact solution of the form,

U = 1t ¢

3
(1+x5(1 = xya (74)

i=1

with singularity of order @ = 1074, where p, = 3, and p,; = py;,; = 1. Similar to previ-
ous cases, we set the number of temporal bases, A= 4, and study convergence by uni-
formly increasing the number of spatial bases in all dimensions. Figure 3 shows the
results for (1 + 2)-dimensional and (1 + 3)-dimensional problems with expansion order of
Nx M, x M,, and N'x M, x M, X M, respectively. Following Case I, the computed
rate of convergence 7, = 7, = 7, = 16.13 in (74) for « = 10™* is greater than the minimum
regularity of the exact solution r ~ 2.05, which is in agreement with Theorem 5.6.

In addition to the convergence study, we examine the efficiency of the developed
method and fast solver by comparing the CPU times for (1 + 1)-, (1 + 2)-, and (1 + 3)
-dimensional space-time hypercube domains in case III. The computed CPU times are
obtained on an INTEL(XEON E52670) processor of 2.5 GHz, and reported in Table 1.

7 Summary

We developed a unified PG spectral method for fully distributed-order PDEs with constant
coefficients on a (1 + d)-dimensional space-time hypercube, subject to homogeneous Dir-
ichlet initial/boundary conditions. We obtained the weak formulation of the problem, and
proved the well-posedness by defining the proper underlying distributed Sobolev spaces
and the associated norms. We then formulated the numerical scheme, exploiting Jacobi
poly-fractonomials as temporal basis/test functions, and Legendre polynomials as spatial
basis/test functions. To improve the efficiency of the proposed method in higher dimen-
sions, we constructed a unified fast linear solver employing certain properties of the stiff-
ness/mass matrices, which significantly reduced the computation time. Moreover, we
proved the stability of the developed scheme and carried out the error analysis. Finally,
via several numerical test cases, we examined the practical performance of the proposed
method and illustrated the spectral accuracy.
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Appendix A Entries of Spatial Stiffness Matrix

Here, we provide the computation of entries of the spatial stiffness matrix by performing
an affine mapping 9 from the standard domain ;4/?‘“ e[-1,1]to H; € [u}“ax, /,t;m“].

Lemma A.1 The total spatial stiffness matrix S/T"t is symmetric and its entries can be
exactly computed as '

ST =, xS +c, xS =k xS =K, XS/, (A1)
where j =1,2,--,d.

Proof Regarding the definition of the stiffness matrix, we have

v | |
(87} = / / © o) DY ((6,0), D (@,06)) ax
"y / / 0,(86s™) D) (Pusi(©) - Proi(8)) )
D (P - Pk_l(:j)) s,

T
_‘B1< r+1n+1 )+1n 1 Sr—l,n+1 +S} 1,n— 1>

ax _ mm

where f, =5, 0, ( )and

~o/ / / 0] 19(/4“") g;'" ( Pn(fj))gj_])’;;l" < Pr(fj)> dg; dﬂ;m

~ Wy TE+1) Tn+1)
- /_ 0;(94™) K= @™ + 1) T — " + 1)

_ ?m ”qn Msm sln’_”sln
x/ (1-5}?) # ol dé; dus.
-1 :

Eff,, can be computed accurately using Gauss—Legendre (GL) quadrature rules as

o™ ZQ: o+ 1) i+ 1)

LT —u", + DI -], Tl

(A3)

stn |

/ (1 =gyl p e ey Pl g ya

in which Q > M +2 represents the minimum number of GL quadrature points { ,u“”l }
for exact quadrature and {w, } are the corresponding quadrature weights. Explort-
1ng the property of the Jacobr polynomrals where P2 A(— =£)=(- 1)"Pﬂ“(éj) we have

S,J,, = (=1)+m Sn’, Following [50], &, and o, are chosen, such that (—1)?*" is canceled.
Accordingly, {Sz bor = {Sf’},,n = {Sf’},’n = {Sf’},.,n due to the symmetry of Sl’ and 7.
Similarly, we get {S/'},, = {S]'},,, = {8/'},., = {5/}, Eventually, we conclude that the
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stiffness matrix Sf’, Sf’, Slp’, S,p/, and thereby {SJTO‘}"’, as the sum of symmetric matrices is

symmetric.
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