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Abstract
Fractional calculus and fractional-order modeling provide effective tools for modeling 
and simulation of anomalous diffusion with power-law scalings. In complex multi-fractal 
anomalous transport phenomena, distributed-order partial differential equations appear 
as tractable mathematical models, where the underlying derivative orders are distributed 
over a range of values, hence taking into account a wide range of multi-physics from ultra-
slow-to-standard-to-superdiffusion/wave dynamics. We develop a unified, fast, and stable 
Petrov–Galerkin spectral method for such models by employing Jacobi poly-fractonomials 
and Legendre polynomials as temporal and spatial basis/test functions, respectively. By 
defining the proper underlying distributed Sobolev spaces and their equivalent norms, we 
rigorously prove the well-posedness of the weak formulation, and thereby, we carry out the 
corresponding stability and error analysis. We finally provide several numerical simula-
tions to study the performance and convergence of proposed scheme.

Keywords Distributed Sobolev space · Well-posedness analysis · Discrete inf-sup 
condition · Spectral convergence · Jacobi poly-fractonomials · Legendre polynomials
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1 Introduction

Over the past decades, anomalous transport has been observed and investigated in a wide 
range of applications such as turbulence [11, 21, 43, 49], porous media [4, 7, 16, 59, 66, 
67], geoscience [5], bioscience [45–48], and viscoelastic material [20, 40, 54, 55, 60]. The 
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underlying anomalous features, manifesting in memory effects, non-local interactions, power-
law distributions, sharp peaks, and self-similar structures, can be well described by fractional 
partial differential equations (FPDEs) [27, 41, 42, 44]. However, in many physical processes, 
which cannot be characterized with a certain single power-law scaling over the whole domain, 
distributed-order differential equations (DDEs) can serve as a framework for accommodating a 
distribution of power-law behavior. More specifically, distributed-order FPDEs are generating 
considerable interests in terms of accelerating superdiffusion, decelerating subdiffusion ran-
dom processes in multi-physics anomalous phenomena. To model wave propagation in com-
plex media like viscoelastic media, acoustics, and seismology, Bazhlekov and Bazhlekov [6] 
developed a subordination approach to multi-term time-fractional diffusion-wave equations. 
Besides, Chechkin et al. [8] proposed distributed-order temporal fractional diffusion equations 
for describing the (retarding) sub-diffusion random processes which are subordinated to the 
Wiener process. A faithful description of such anomalous transport requires exploiting distrib-
uted-order derivatives, in which the derivative order has a distribution over a range of values. 
The reader is referred to [14, 15, 19, 28, 36, 37, 42, 53, 58] and the references given therein for 
more details on the distributed-order fractional equations.

Numerical methods for FPDEs, which can exhibit history dependence and non-local fea-
tures, have been recently addressed by developing finite-element methods [2, 23], spectral/
spectral-element methods [10, 26, 38, 39, 50, 61], and also finite-difference and finite-volume 
methods [3, 12, 34]. Distributed-order FPDEs impose further complications in numerical 
analysis by introducing distribution functions, which require compliant underlying function 
spaces, as well as efficient and accurate integration techniques over the order of the fractional 
derivatives. In [18, 22, 29, 33, 56, 62], numerical analysis of distributed-order FPDEs was 
extensively investigated. More recently, Liao et  al. [32] studied simulation of a distributed 
subdiffusion equation, approximating the distributed-order Caputo derivative using piecewise-
linear and quadratic interpolating polynomials. Abbaszadeh and Dehghan [1] employed an 
alternating direction implicit approach, combined with an interpolating element-free Galer-
kin method, on distributed-order time-fractional diffusion-wave equations. Kharazmi and 
Zayernouri [24] developed a pseudo-spectral method of Petrov–Galerkin (PG) sense, employ-
ing nodal expansions in the weak formulation of distributed-order fractional PDEs. In [25], 
Kharazmi et al. also introduced distributed Sobolev space and developed two spectrally accu-
rate schemes, namely, a PG spectral method and a spectral collocation method for distributed-
order fractional differential equations. Besides, Tomovski and Sandev [57] investigated the 
solution of generalized distributed-order diffusion equations with fractional time-derivative, 
using the Fourier–Laplace transform method.

The main purpose of this study is to develop and analyze a PG spectral method to solve a 
(1 + d)-dimensional fully distributed-order FPDE with two-sided derivatives of the form

subject to homogeneous Dirichlet boundary conditions and the zero initial condition, 
where for i, j = 1, 2, ⋯ , d,
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and the coefficients cli , cri , �휅li , �휅ri , and �훾 are constant. We emphasize that (1) is reduced to 
fractional advection-dispersion-reaction equations when �휑(�휏) , �휚i(�휇i) , and �휌j(�휈j) are chosen 
to be a Dirac delta function, where for d = 1 and �휌1(�휈1) = �훿(�휈1 − 1) , the two-sided Riesz 
derivatives with proper coefficients recover the standard second-order dispersion terms. We 
briefly highlight the main contributions of this study as follows.

– We consider fully distributed fractional PDEs as an extension of existing fractional PDEs 
in [25, 50] by replacing the fractional operators by their corresponding distributed-order 
ones. We further derive the weak formulation of the problem.

– We construct the underlying function spaces by extending the distributed Sobolev space in 
[25] to higher dimensions in time and space, endowed with equivalent associated norms.

– We develop a PG spectral method, employing Legendre polynomials and Jacobi poly-frac-
tonomials [65] as spatial and temporal basis/test functions, respectively. We also formulate 
a fast solver for the corresponding weak form of (1), following [50], which significantly 
reduces the computational expenses in high-dimensional problems.

– We establish the well-posedness of the weak form of the problem in the underlying dis-
tributed Sobolev spaces respecting the analysis in [51] and prove the stability of proposed 
numerical scheme. We additionally perform the corresponding error analysis, where the 
distributed Sobolev spaces enable us to obtain accurate error estimate of the scheme.

To examine the performance and convergence of the developed PG method in solving differ-
ent cases, we also perform several numerical simulations.

The paper is organized as follows: in Sect. 2, we introduce some preliminaries from frac-
tional calculus. In Sect. 3, we present the mathematical framework of the bilinear form and 
carry out the corresponding well-posedness analysis. We construct the PG method for the dis-
crete weak form problem and formulate the fast solver in Sect. 4. In Sect. 5, we perform the 
stability and error analysis in detail. In Sect. 6, we illustrate the convergence rate and the effi-
ciency of method via numerical examples. We conclude the paper with a summary.

2  Preliminaries on Fractional Calculus

Recalling the definitions of the fractional derivatives and integrals from [42, 65], we denote 
by RL

a
D�휎

x
g(x) and RL

x
D�휎

b
g(x) the left-sided and the right-sided Riemann–Liouville fractional 

derivatives of order �휎 > 0,

t ∈ [0, T], xj ∈ [aj, bj],
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in which g(x) ∈ L1[a, b] and ∫ x

a
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(x−s)�휎+1−n
ds, ∫ b
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n = ⌈�휎⌉ . Besides, C
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The relationship between the RL and the Caputo fractional derivatives is given by

when ⌈�휈⌉ = 1 , see, e.g., (2.33) in [42]. In the case of homogeneous boundary conditions, 
we obtain RL
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mann–Liouville fractional integrals of Jacobi poly-fractonomials are analytically obtained 
in [64, 65] in the standard domain �휉 ∈ [−1, 1] as

and
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n

(�휉) denotes the standard Jacobi polynomials of 
order n and parameters �훼 and �훽 [9]. Accordingly,

and
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Let us define the distributed-order derivative as
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where �훼 → �휙(�훼) is a continuous mapping in [�훼min, �훼max] [25] and t > 0 . We note that by 
choosing the distribution function in the distributed-order derivatives to be the Dirac delta 
function �훿(�휏 − �휏0) , we recover a single (fixed) term fractional derivative, that is,

where �휏0 ∈ (�휏min, �휏max).

3  Mathematical Formulation

We introduce the underlying solution and test spaces along with their proper norms, and 
also provide some useful lemmas to derive the corresponding bilinear form and thus, prove 
the well-posedness of the problem.

3.1  Mathematical Framework

Let C∞
0
(Λ) represent the space of smooth functions with compact support in Λ = (a, b) . 

Recalling the definition of the Sobolev space for the real �휎 ⩾ 0 from [25, 30], the usual 
Sobolev space denoted by H�휎(Λ) is the closure of C∞

0
(Λ) on the finite interval Λ , which is 

associated with the norm ‖ ⋅ ‖H�휎 (Λ) . For the real index �휎 ⩾ 0 and �휎 ≠ n − 1

2
 on the bounded 

interval Λ , the following norms are equivalent [31]:
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Recalling from [25], �픇H�휑(ℝ) represents the distributed Sobolev space on ℝ , which is 
associated with the following norm:
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where 0 < �휑(�휏) ∈ L1( [�휏min, �휏max] ) , 0 < �휏min < �휏max < 1 (1 < �휏min, �휏max ⩽ 2) . Subse-
quently, we denote by �픇H�휑(I) the distributed Sobolev space on the bounded open interval 
I = (0, T) , which is defined as �픇H�휑(I) = {v ∈ L2(I)| ∃ṽ ∈ �픇H�휑(ℝ) s.t. ṽ|I = v} with the 
equivalent norms ‖ ⋅ ‖l,�픇H�휑(I) and ‖ ⋅ ‖r,�픇H�휑(I) in [25], where

and

In each realization of a physical process (e.g., sub- or super-diffusion), the distribution 
function �휑(�휏) can be obtained from experimental observations, while the theoretical set-
ting of the problem remains invariant. More importantly, choice of the distributed Sobolev 
space and the associated norms provides a sharper estimate for the accuracy of the pro-
posed PG method.

Let Λ1 = (a1, b1) and Λi = (ai, bi) × Λi−1 for i = 2,⋯ , d . We define X1 =
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Proof Considering (18), X1 is endowed with ‖ ⋅ ‖X1
≅ ‖ ⋅ ‖�픇H�휌1 (Λ1)
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x1
u|2 dx1 + ∫

b1

a1

|
x1
D

�휈1
b1
u|2 dx1

+ ∫
b1

a1

|u|2 dx1
)
dx2 d�휈1

= ∫
�휈max
1

�휈min
1

�휌1(�휈1)
(
‖
x1
D

�휈1
b1
u‖2

L2(Λ2)
+ ‖

a1
D�휈1

x1
u‖2

L2(Λ2)

)
d�휈1 + ‖u‖2

L2(Λ2)
.

‖ ⋅ ‖Xd−1
≅

{ d−1∑

i=1
∫

�휈max
i

�휈min
i

�휌i(�휈i)
(
‖
xi
D

�휈i
bi
(⋅)‖2

L2(Λd−1)

+ ‖
ai
D�휈i

xi
(⋅)‖2

L2(Λd−1)

)
d�휈i + ‖ ⋅ ‖2

L2(Λd−1)

} 1

2

,

(24)

‖u‖2
�픇H�휌d

(
(ad ,bd);L

2(Λd−1)
)

= ∫Λd−1

(

∫
bd

ad

|u|2 dxd + ∫
bd

ad
∫

�휈max
d

�휈min
d

�휌d(�휈d)
(
|
ad
D�휈d

xd
u|2 + |

xd
D

�휈d
bd
u|2

)
d�휈d dxd

)
dΛd−1

= ∫
�휈max
d

�휈min
d

�휌d(�휈d)
(
‖
xd
D

�휈d
bd
(u)‖2

L2(Λd)
+ ‖

ad
D�휈d

xd
(u)‖2

L2(Λd)

)
d�휈d + ‖u‖2

L2(Λd)
,
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Therefore, (21) arises from (22), (23), (24), and (25) by induction, and the proof is 
complete.

The following assumptions allow us to prove the uniqueness of the bilinear form by exclud-
ing the solutions to |

(
ai
D�휈i

xi
u,

xi
D

�휈i
bi
v
)
Λd
| + |

(
xi
D

�휈i
bi
u,

ai
D�휈i

xi
v
)
Λd
| = 0 for i = 1,⋯ , d and 

|(
0
D�휏

t
u,

t
D�휏

T
v)Ω| = 0.

Assumption 1 For u ∈ Xd,

when i = 1,⋯ , d , and Λi
d
=

d∏
j=1

j≠i
(aj, bj).

Assumption 2 For u ∈ l,�픇H�휑(I;L2(Λd)), sup
0≠u∈l,�픇H�휑(I;L2(Λd))

∫ �휏max

�휏min �휑(�휏) |(
0
D�휏

t
u,

t
D�휏

T
v)Ω|d�휏 > 0, 

∀v ∈ r,�픇H�휑(I;L2(Λd)).

In Lemma 3.3 in [51], it is shown that if 1 < 2�휈i < 2 for i = 1,⋯ , d and u, v ∈ Xd , then (
xi
D

2�휈i
bi
u, v

)
Λd

=
(
xi
D

�휈i
bi
u,

ai
D�휈i

xi
v
)
Λd
, and 

(
ai
D2�휈i

xi
u, v

)
Λd

=
(
ai
D�휈i

xi
u,

xi
D

�휈i
bi
v
)
Λd
. Consequently, we 

derive,

and

Additionally, in the light of Lemma 3.2 in [51], we have,

for i = 1,⋯ , d , where Assumption 1 holds.

(25)

‖u‖2
L2
(
(ad ,bd);Xd−1

)

= ∫
bd

ad
∫Λd−1

( d−1∑

i=1
∫

�휈max
i

�휈min
i

�휌i(�휈i)
(
|
ai
D�휈i

xi
u|2 + |

xi
D

�휈i
bi
u|2

)
d�휈i

)
dΛd−1 dxd

+ ∫
bd

ad
∫Λd−1

|u|2dΛd−1 dxd

=

d−1∑

i=1
∫

�휈max
i

�휈min
i

�휌i(�휈i)
(
‖
xi
D

�휈i
bi
u‖2

L2(Λd)
+ ‖

ai
D�휈i

xi
u‖2

L2(Λd)

)
d�휈i + ‖u‖2

L2(Λd)
.

sup
u∈Xd

∫
�휈max
i

�휈min
i

�휌i(�휈i)
(
|
(
ai
D�휈i

xi
u,

xi
D

�휈i
bi
v
)
Λd
| + |

(
xi
D

�휈i
bi
u,

ai
D�휈i

xi
v
)
Λd
|
)
d�휈i > 0, ∀v ∈ Xd

(26)∫
�휈max
i

�휈min
i

�휌i(�휈i)
(
xi
D

2�휈i
bi
u, v

)
Λd

d�휈i = ∫
�휈max
i

�휈min
i

�휌i(�휈i)
(
xi
D

�휈i
bi
u,

ai
D�휈i

xi
v
)
Λd

d�휈i

(27)∫
�휈max
i

�휈min
i

�휌i(�휈i)
(
ai
D2�휈i

xi
u, v

)
Λd

d�휈i = ∫
�휈max
i

�휈min
i

�휌i(�휈i)
(
ai
D�휈i

xi
u,

xi
D

�휈i
bi
v
)
Λd

d�휈i.

(28)

∫
�휈max
i

�휈min
i

�휌i(�휈i)
(
|
(
ai
D�휈i

xi
u,

xi
D

�휈i
bi
v
)
Λd
| + |

(
xi
D

�휈i
bi
u,

ai
D�휈i

xi
v
)
Λd
|
)
d�휈i

≅ |u|
�픇H�휌i

(
(ai,bi);L

2(Λi
d
)
) |v|

�픇H�휌i

(
(ai ,bi);L

2(Λi
d
)
)
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Next, we study the property of the fractional time-derivative in the following lemmas.

Lemma 3.2 If 0 < 2�휏min < 2�휏max < 1 (1 < 2�휏min < 2�휏max < 2) and u, v ∈ l,�픇H�휑(I) , when 
u|t=0(=

du

dt
|t=0) = 0 , then

where I = (0, T) , 0 < �휑(�휏) ∈ L1
(
[�휏min, �휏max]

)
.

Proof It follows from [25] that for u, v ∈ H�휏 (I) , when u|t=0(=
du

dt
|t=0) = 0 and 

v|t=T (=
dv

dt
|t=T ) = 0 , we have

Then, (29) arises from (30).   

Let 0 < 2�휏min < 2�휏max < 1 (1 < 2�휏min < 2�휏max ⩽ 2), and Ω = I × Λd , where I = (0, T) 
and Λd =

d∏
i=1

(ai, bi) . We define

which is endowed with the norm ‖ ⋅ ‖
l,�픇H�휑

(
I;L2(Λd)

) , where we have

Similarly, we define

which is equipped with the norm ‖ ⋅ ‖r,�픇H�휑(I;L2(Λd))
 . Following (32),

(29)∫
�휏max

�휏min

�휑(�휏)
(
0
D2�휏

t
u, v

)
I
d�휏 = ∫

�휏max

�휏min

�휑(�휏)
(
0
D�휏

t
u,

t
D�휏

T
v
)
I
d�휏,

(30)
(
0
D2�휏

t
u, v

)
I
=
(
0
D�휏

t
u,

t
D�휏

T
v
)
I
.

(31)

l,�픇H�휑
(
I;L2(Λd)

)

∶=
{
u | ‖u(t, ⋅)‖L2(Λd)

∈ l,�픇H�휑(I), u|t=0
(
=

du

dt
|t=0

)

= u|xi=ai = u|xi=bi = 0, i = 1,⋯ , d
}
,

(32)

‖u‖l,�픇H�휑(I;L2(Λd))
=
‖‖‖ ‖u(t, ⋅)‖L2(Λd)

‖‖‖l,�픇H�휑(I)

=
(

∫
�휏max

�휏min

�휑(�휏) ‖
0
D�휏

t
(u)‖2

L2(Ω)
d�휏 + ‖u‖2

L2(Ω)

) 1

2
.

(33)

r,�픇H�휑
(
I;L2(Λd)

)

∶=
{
v | ‖v(t, ⋅)‖L2(Λd)

∈ r,�픇H�휑(I), v|t=T
(
=

dv

dt
|t=0

)

= v|xi=ai = v|xi=bi = 0, i = 1,⋯ , d
}
,

(34)

‖v‖r,�픇H�휑(I;L2(Λd))
=
‖‖‖ ‖v(t, ⋅)‖L2(Λd)

‖‖‖r,�픇H�휑(I)

=
(

∫
�휏max

�휏min

�휑(�휏) ‖
t
D�휏

T
(v)‖2

L2(Ω)
d�휏 + ‖v‖2

L2(Ω)

) 1

2
.
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Lemma 3.3 For u ∈ r,�픇H�휑(I;L2(Λd)) and 0 < 2�휏min < 2�휏max < 1 (1 < 2�휏min < 2�휏max < 2), 
∫ �휏max

�휏min �휑(�휏) |(
0
D�휏

t
u,

t
D�휏

T
v)Ω| d�휏 ⩽ ‖u‖l,�픇H�휑(I;L2(Λd))

‖v‖r,�픇H�휑(I;L2(Λd)),
 ∀v ∈ r,�픇H�휑(I;L2(Λd)).

Proof From Lemma 3.6 in [51], we have

Followingly, by the Hölder inequality,

  

Lemma 3.4 For any u ∈ l,�픇H�휑(I;L2(Λd)) and 0 < 2�휏min < 2�휏max < 1 (1 < 2�휏min < 2�휏max ⩽ 2) , 
there exists a constant c > 0 and independent of u, such that

under Assumption 2.

Proof Following Lemma 2.4 in [13] and Lemma 3.7 in [51], for any u ∈ l,�픇H�휑(I;L2(Λd)) , 
let Vu = H(t − T)

(
u − u|t=T

)
 , assuming that ∫ �휏max

�휏min �휑(�휏) |(
0
D�휏

t
u,

t
D�휏

T
u|t=T )Ω| > 0 , where 

H(t) is the Heaviside function. Evidently, Vu ∈
r,�픇H�휑(I;L2(Λd)) . From the Hölder inequal-

ity, we obtain

|(
0
D�휏

t
u,

t
D�휏

T
v)Ω| ⩽

(
‖
0
D�휏

t
u‖2

L2(Ω)
+ ‖u‖2

L2(Ω)

) 1

2
(
‖
t
D�휏

T
v‖2

L2(Ω)
+ ‖v‖2

L2(Ω)

) 1

2
.

(35)

∫
�휏max

�휏min

�휑(�휏) |(
0
D�휏

t
u,

t
D�휏

T
v)Ω|d�휏

= ∫
�휏max

�휏min

�휑(�휏) ∫Λd
∫

T

0

|
0
D�휏

t
u| |

t
D�휏

T
v|dt dΛd d�휏

⩽

(

∫
�휏max

�휏min ∫Λd
∫

T

0

�휑(�휏) |
0
D�휏

t
u|2 dtdΛd

) 1

2

⋅

(

∫
�휏max

�휏min ∫Λd
∫

T

0

�휑(�휏) |
t
D�휏

T
v|2 dtdΛd

) 1

2

=
(

∫
�휏max

�휏min

�휑(�휏) ‖
0
D�휏

t
u‖2

L2(Ω)
d�휏 + ‖u‖2

L2(Ω)

) 1

2

⋅

(

∫
�휏max

�휏min

�휑(�휏) ‖
t
D�휏

T
v‖2

L2(Ω)
d�휏 + ‖v‖2

L2(Ω)

) 1

2

= ‖u‖r,�픇H�휑(I;L2(Λd))
‖v‖r,�픇H�휑(I;L2(Λd))

.

(36)sup
0≠v∈r,�픇H�휑(I;L2(Λd))

∫ �휏max

�휏min �휑(�휏) |(
0
D�휏

t
u,

t
D�휏

T
v)Ω|d�휏

|v|r,�픇H�휑(I;L2(Λd))

⩾ c|u|l,�픇H�휑(I;L2(Λd))
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Regarding (12) in [51], ‖Vu‖2r,�픇H�휑(I;L2(Λd))
≅ ∫ �휏max

�휏min �휑(�휏) ‖
0
D�휏

t
u‖2

L2(Ω)
d�휏 = ‖u‖2

l,�픇H�휑(I;L2(Λd))
 . 

Hence, ‖
t
D�휏

T
Vu‖2L2(Ω) ≅ ‖

0
D�휏

t
u‖2

L2(Ω)
 . Therefore,

where �훽 > 0 and independent of u. Considering (37) and (38), we obtain

  

Lemma 3.5 If 0 < 2�휏min < 2�휏max < 1 (1 < 2�휏min < 2�휏max ⩽ 2) and u, v ∈ l,�픇H�휑(I;L2(Λd)) , 
then

where 0 < �휑(�휏) ∈ L1
(
[�휏min, �휏max]

)
.

(37)

‖Vu‖
2
r,�픇H�휑(I;L2(Λd))

= ∫
�휏max

�휏min

�휑(�휏) ‖
t
D�휏

T

(
H(t − T)

(
u − u|t=T

))
‖2
L2(Ω)

d�휏

= ∫
�휏max

�휏min

�휑(�휏)
‖‖‖‖
RL
t
I1−�휏
T

d

dt

(
H(t − T)

(
u − u|t=T

))‖‖‖‖

2

L2(Ω)

d�휏

= ∫
�휏max

�휏min

�휑(�휏)
‖‖‖‖‖
RL
t
I1−�휏
T

(
dH(t − T)

dt

(
u − u|t=T

)

+ H(t − T)
d
(
u − u|t=T

)

dt

)‖‖‖‖‖

2

L2(Ω)

d�휏

= ∫
�휏max

�휏min

�휑(�휏)
‖‖‖‖‖
RL
t
I1−�휏
T

(
H(t − T)

d
(
u − u|t=T

)

dt

)‖‖‖‖‖

2

L2(Ω)

d�휏

= ∫
�휏max

�휏min

�휑(�휏) ‖
t
D�휏

T
u‖2

L2(Ω)
d�휏.

(38)

∫
�휏max

�휏min

�휑(�휏) |(
0
D�휏

t
u,

t
D�휏

T
Vu)Ω| d�휏

= ∫
�휏max

�휏min

�휑(�휏) ∫Λd
∫

T

0

|
0
D�휏

t
u| |

t
D�휏

T
Vu|dt dΛd d�휏

⩾ �훽 ∫
�휏max

�휏min

�휑(�휏) ∫Λd
∫

T

0

|
0
D�휏

t
u|2dt dΛd d�휏

= |u|2l,�픇H�휑(I;L2(Λd))
,

(39)
sup

0≠v∈r,�픇H�휑(I;L2(Λd))

∫ �휏max

�휏min �휑(�휏) |(
0
D�휏

t
u,

t
D�휏

T
v)Ω|d�휏

|v|r,�픇H�휑(I;L2(Λd))

⩾
∫ �휏max

�휏min �휑(�휏) |(
0
D�휏

t
u,

t
D�휏

T
Vu)Ω|d�휏

|Vu|r,�픇H�휑(I;L2(Λd))

⩾�훽 |u|l,�픇H�휑(I;L2(Λd))
.

(40)∫
�휏max

�휏min

�휑(�휏)
(
0
D2�휏

t
u, v

)
Ω
d�휏 = ∫

�휏max

�휏min

�휑(�휏)
(
0
D�휏

t
u,

t
D�휏

T
v
)
Ω
d�휏,
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Proof By Lemma 3.2,

  

3.2  Solution and Test Function Spaces

Take 0 < 2�휏min < 2�휏max < 1 ( 1 < 2�휏min < 2�휏max ⩽ 2 ) and 1 < 2�휈min
i

< 2�휈max
i

⩽ 2 for 
i = 1,⋯ , d . We define the solution space

associated with the norm

Considering Lemma 3.1,

Therefore, from (32) and (44),

Similarly, we define the test space

equipped with the norm

(41)

∫
�휏max

�휏min

�휑(�휏)
(
0
D2�휏

t
u, v

)
Ω
d�휏 = ∫

�휏max

�휏min

�휑(�휏) ∫Λd
∫

T

0

|
0
D2�휏

t
u| |v| dt dΛd d�휏

= ∫Λd
∫

�휏max

�휏min

�휑(�휏) ∫
T

0

|
0
D�휏

t
u| |

t
D�휏

T
v| dt d�휏 dΛd

= ∫
�휏max

�휏min

�휑(�휏)
(
0
D�휏

t
u,

t
D�휏

T
v
)
Ω
d�휏.

(42)B�휑,�휌1,⋯,�휌d (Ω) ∶= l,�픇H�휑
(
I;L2(Λd)

)
∩ L2(I;Xd)

(43)‖u‖B�휑,�휌1,⋯,�휌d (Ω) =
{
‖u‖2l,�픇H�휑(I;L2(Λd))

+ ‖u‖2
L2(I;Xd)

} 1

2
.

(44)

‖u‖L2(I;Xd)
=
‖‖‖ ‖u(t, .)‖Xd

‖‖‖L2(I)

=

{ d∑

i=1
∫

�휈max
i

�휈min
i

�휌i(�휈i)
(
‖
xi
D

�휈i
bi
(u)‖2

L2(Ω)
+ ‖

ai
D�휈i

xi
(u)‖2

L2(Ω)

)
d�휈i + ‖u‖2

L2(Λd)

} 1

2

.

(45)
‖u‖B�휑,�휌1,⋯,�휌d (Ω) =

{
‖u‖2

L2(Ω)
+ ∫

�휏max

�휏min

�휑(�휏) ‖
0
D�휏

t
(u)‖2

L2(Ω)
d�휏

+

d∑

i=1
∫

�휈max
i

�휈min
i

�휌i(�휈i)
(
‖
xi
D

�휈i
bi
(u)‖2

L2(Ω)
+ ‖

ai
D�휈i

xi
(u)‖2

L2(Ω)

)
d�휈i

} 1

2
.

(46)�픅
�휑,�휌1,⋯,�휌d (Ω) ∶= r,�픇H�휑

(
I;L2(Λd)

)
∩ L2(I;Xd)
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by Lemmas 3.1 and 3.2. Take Ω = I × Λd for a positive integer d. The PG spectral method 
reads as: find u ∈ B�휑,�휌1,⋯,�휌d (Ω) , such that

where the functional l(v) = (f , v)Ω and

following (26), (27) and Lemma 3.5 and �훾 , cli , cri , �휅li , and �휅ri are all constant. 
Besides, 0 < 2�휏min < 2�휏max < 1 ( 1 < 2�휏min < 2�휏max ⩽ 2 ), 0 < 2�휇min

i
< 2�휇max

i
< 1 , and 

1 < 2�휈min
j

< 2�휈max
j

⩽ 2 for i, j = 1, 2,⋯ , d.

Remark 1 In the case �휏 < 1

2
 , additional regularity assumptions are required to ensure 

equivalence between the weak and strong formulations, see [23] for more details.

UN and VN are chosen as the finite-dimensional subspaces of B�휑,�휌1,⋯,�휌d (Ω) and 
�픅�휑,�휌1,⋯,�휌d (Ω) , respectively. Then, the PG scheme reads as: find uN ∈ UN , such that

where

(47)

‖v‖�픅�휑,�휌1,⋯,�휌d (Ω) =
{
‖v‖2rH�휑(I;L2(Λd))

+ ‖v‖2
L2(I;Xd)

} 1

2

=
{
‖v‖2

L2(Ω)
+ ∫

�휏max

�휏min

�휑(�휏) ‖
t
D�휏

T
(v)‖2

L2(Ω)
d�휏

+

d∑

i=1
∫

�휈max
i

�휈min
i

�휌i(�휈i)
(
‖
xi
D

�휈i
bi
(v)‖2

L2(Ω)
+ ‖

ai
D�휈i

xi
(v)‖2

L2(Ω)

)
d�휈i

} 1

2

(48)a(u, v) = l(v), ∀v ∈ �픅
�휑,�휌1,⋯,�휌d (Ω),

(49)

a(u, v) = ∫
�휏max

�휏min

�휑(�휏) (
0
D�휏

t
u,

t
D�휏

T
v)Ωd�휏

+

d∑

i=1
∫

�휇max
i

�휇min
i

�휚i(�휇i)
(
cli (ai

D�휇i
xi
u,

xi
D

�휇i

bi
v)Ω + cri (ai

D�휇i
xi
v,

xi
D

�휇i

bi
u)Ω

)
d�휇i

−

d∑

j=1
∫

�휈max
j

�휈min
j

�휌j(�휈j)
(
klj (aj

D
�휈j
xj
u,

xj
D

�휈j
bj
v)Ω + krj (aj

D
�휈j
xj
v,

xj
D

�휈j
bj
u)Ω

)
d�휈j

+ �훾(u, v)Ω

(50)a(uN , vN) = l(vN), ∀v ∈ VN ,

(51)

a(uN , vN) = ∫
�휏max

�휏min

�휑(�휏) (
0
D�휏

t
uN , tD

�휏
T
vN)Ωd�휏

+

d∑

i=1
∫

�휇max
i

�휇min
i

�휚i(�휇i)
[
cli (ai

D�휇i
xi
uN , xi

D
�휇i

bi
vN)Ω + cri (ai

D�휇i
xi
uN , xi

D
�휇i

bi
vN)Ω

]
d�휇i

−

d∑

j=1
∫

�휈max
j

�휈min
j

�휌j(�휈j)
[
klj (aj

D
�휈j
xj
uN , xj

D
�휈j
bj
vN)Ω + krj (aj

D
�휈j
xj
uN , xj

D
�휈j
bj
vN)Ω

]
d�휈j

+ �훾(uN , vN)Ω.
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Representing uN as a linear combination of elements in UN , the finite-dimensional problem 
(51) leads to a linear system, known as the Lyapunov system, introduced in Sect. 4.

3.3  Well-Posedness Analysis

The following assumption permits us to prove the uniqueness of the weak form in (48) in 
Theorem 3.8.

Assumption 3 For all v ∈ �픅�휑,�휌1,⋯,�휌d (Ω),

when j = 1,⋯ , d.

Lemma 3.6 (Continuity) Let Assumption 3 hold. The bilinear form in (49) is continuous, 
i.e., for u ∈ B�휑,�휌1,⋯,�휌d (Ω),

Proof It follows from (28) and Lemma 3.3.   

Theorem 3.7 Let Assumption 3 holds. The inf-sup condition of the bilinear form (49) for 
any d ⩾ 1 holds with �훽 > 0 , that is,

where Ω = I × Λd.

Proof For u ∈ B�휑,�휌1,⋯,�휌d (Ω) and v ∈ �픅�휑,�휌1,⋯,�휌d (Ω) under Assumption 3,

Following (28) and Theorem 4.3 in [51],

sup
u∈B�휑,�휌1,⋯,�휌d (Ω)∫

�휏max

�휏min

�휑(�휏) |(
0
D�휏

t
u,

t
D�휏

T
v)Ω|d�휏 > 0,

sup
u∈B�휑,�휌1,⋯,�휌d (Ω)∫

�휈max
j

�휈min
j

�휌j(�휈j)
(
|(
aj
D

�휈j
xj
u,

xj
D

�휈j
bj
v)Ω| + |(

xj
D

�휈j
bj
u,

aj
D

�휈j
xj
v)Ω|

)
d�휈j > 0,

sup
u∈B�휑,�휌1,⋯,�휌d (Ω)

|(u, v)Ω| > 0,

(52)∃�훽 > 0, |a(u, v)| ⩽ �훽 ‖u‖B�휑,�휌1,⋯,�휌d (Ω)‖v‖�픅�휑,�휌1,⋯,�휌d (Ω), ∀v ∈ �픅
�휑,�휌1,⋯,�휌d (Ω).

(53)inf
0≠u∈B�휑,�휌1,⋯,�휌d (Ω)

sup
0≠v∈�픅�휑,�휌1,⋯,�휌d (Ω)

|a(u, v)|
‖v‖�픅�휑,�휌1,⋯,�휌d (Ω)‖u‖B�휑,�휌1,⋯,�휌d (Ω)

⩾ �훽 > 0,

(54)

|a(u, v)| ≅|(u, v)Ω| + ∫
�휏max

�휏min

�휑(�휏) |(
0
D�휏

t
u,

t
D�휏

T
v)Ω|d�휏

+

d∑

i=1
∫

�휇max
i

�휇min
i

�휌i(�휇i)
(
|(
ai
D�휇i

xi
u,

xi
D

�휇i

bi
v)Ω| + |(

xi
D�휇i

ai
u,

ai
D�휇i

xi
v)Ω|

)
d�휇i

+

d∑

j=1
∫

�휈max
j

�휈min
j

�휌j(�휈j)
(
|(
aj
D

�휈j
xj
u,

xj
D

�휈j
bj
v)Ω| + |(

xj
D

�휈j
bj
u,

aj
D

�휈j
xj
v)Ω|

)
d�휈j.
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Thus,

where C̃1 is a positive constant and independent of u. Considering Lemma 3.4, there exists 
a positive constant C̃2 > 0 and independent of u, such that

Furthermore, for u ∈ B�휑,�휌1,⋯,�휌d (Ω),

and

Therefore, from (55), (56), (57), and (58), we have

d∑

i=1
∫

�휈max
i

�휈min
i

�휌i(�휈i)
(
|(
ai
D�휈i

xi
(u),

xi
D

�휈i
bi
(v))Ω| + |(

xi
D

�휈i
bi
(u),

ai
D�휈i

xi
(v))Ω|

)

⩾ C̃1

d∑

i=1

[

∫
�휈max
i

�휈min
i

�휌i(�휈i)
(
‖
ai
D�휈i

xi
(u)‖L2(Ω)

)
d�휈i ∫

�휈max
i

�휈min
i

�휌i(�휈i)
(
‖
xi
D

�휈i
bi
(v)‖L2(Ω)

)
d�휈i

+ ∫
�휈max
i

�휈min
i

�휌i(�휈i)
(
‖
xi
D

�휈i
bi
(u)‖L2(Ω)

)
d�휈i ∫

�휈max
i

�휈min
i

�휌i(�휈i)
(
‖
ai
D�휈i

xi
(v)‖L2(Ω)

)
d�휈i

]
.

(55)

d∑

i=1
∫

�휈max
i

�휈min
i

�휌i(�휈i)
(
|(
ai
D�휈i

xi
(u),

xi
D

�휈i
bi
(v))Ω| + |(

xi
D

�휈i
bi
(u),

ai
D�휈i

xi
(v))Ω|

)
d�휈i

⩾ C̃1

d∑

i=1
∫

�휈max
i

�휈min
i

�휌i(�휈i)
(
‖
ai
D�휈i

xi
(u)‖L2(Ω) + ‖

xi
D

�휈i
bi
(u)‖L2(Ω)

)
d�휈i

×

d∑

j=1
∫

�휈max
j

�휈min
j

�휌j(�휈j)
(
‖
xj
D

�휈j
bj
(v)‖L2(Ω),+‖ajD

�휈j
xj
(v)‖L2(Ω)

)
d�휈j

= C̃1|u|L2(I;Xd)
|v|L2(I;Xd)

,

(56)sup
0≠v∈�픅�휑,�휌1,⋯,�휌d (Ω)

∫ �휏max

�휏min �휑(�휏) |(
0
D�휏

t
(u),

t
D�휏

T
(v))Ω|d�휏

|v|r,�픇H�휑(I;L2(Λd))

⩾ C̃2|u|l,�픇H�휑(I;L2(Λd))
.

(57)

sup
0≠v∈�픅�휑,⋯,�휌d (Ω)

∫ �휏max

�휏min �휑(�휏) |(
0
D�휏

t
(u),

t
D�휏

T
(v))Ω|d�휏

|v|r,�픇H�휑(I;L2(Λd))

≅ sup
0≠v∈�픅�휑,⋯,�휌d (Ω)

∫ �휏max

�휏min �휑(�휏) |(
0
D�휏

t
(u),

t
D�휏

T
(v))Ω|d�휏

|v|B�휑,�휌1,⋯,�휌d (Ω)

(58)

sup
0≠v∈�픅�휑,�휌1,⋯,�휌d (Ω)

d∑
j=1

∫ �휈max
j

�휈min
j

�휌j(�휈j)
(
|(
aj
D

�휈j
xj
u,

xj
D

�휈j
bj
v)Ω| + |(

xj
D

�휈j
bj
u,

aj
D

�휈j
xj
v)Ω|

)
d�휈j

‖v‖L2(I;Xd)

≅ sup
0≠v∈�픅�휑,�휌1,⋯,�휌d (Ω)

d∑
j=1

∫ �휈max
j

�휈min
j

�휌j(�휈j)
(
|(
aj
D

�휈j
xj
u,

xj
D

�휈j
bj
v)Ω| + |(

xj
D

�휈j
bj
u,

aj
D

�휈j
xj
v)Ω|

)
d�휈j

‖v‖�픅�휑,�휌1,⋯,�휌d (Ω)

.
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where C̄ = min{C̃2, C̃1} . Accordingly,

where �훽 = �훽 C̄ is a positive constant and independent.   

Theorem  3.8 (Well-posedness) For 0 < 2�휏min < 2�휏max < 1 ( 1 < 2�휏min < 2�휏max ⩽ 2 ), 
1 < 2�휈min

i
< 2�휈max

i
⩽ 2 , and i = 1,⋯ , d , there exists a unique solution to (50), which is 

continuously dependent on f ∈
(
B�휏,�휈1,⋯,�휈d

)⋆
(Ω) , where 

(
B�휏,�휈1,⋯,�휈d

)⋆
(Ω) is the dual space 

of B�휏,�휈1,⋯,�휈d (Ω).

Proof In virtue of the generalized Babuška–Lax–Milgram theorem [52], the well-posed-
ness of the weak form in (48) in ( 1 + d ) dimensions is guaranteed by the continuity and the 
inf-sup condition, which are proved in Lemma 3.6 and Theorem 3.7, respectively.   

4  Petrov–Galerkin Method

To construct a PG spectral method for the finite-dimensional weak form problem in (50), we 
first define the proper finite-dimensional basis/test spaces and then implement the numerical 
scheme.

4.1  Space of Basis ( UN ) and Test ( VN ) Functions

As discussed in [51], we take the spatial basis, given in the standard domain �휉 ∈ [−1, 1] as 
�휙
m
(�휉) = �휎m

(
Pm+1(�휉) − Pm−1(�휉)

)
, m = 1, 2,⋯ , where Pm(�휉) are the Legendre polynomials 

of order m and �휎m = 2 + (−1)m . Besides, employing Jacobi poly-fractonomials of the first 
kind [63, 65], the temporal basis functions are given in the standard domain �휂 ∈ [−1, 1] as 
�휓�휏
n
(�휂) = �휎n(1 + �휂)�휏P−�휏,�휏

n−1
(�휂), n = 1, 2,⋯.

We also let �휂(t) = 2t∕T − 1 and �휉j(s) = 2
s−aj

bj−aj
− 1 to be temporal and spatial affine map-

pings from t ∈ [0, T] and xj ∈ [aj, bj] to the standard domain [−1, 1] , respectively. Therefore,

Similarly, we employ Legendre polynomials and Jacobi polyfractonomials of the second 
kind in the standard domain to construct the finite-dimensional test space as

(59)

sup
0≠v∈�픅�휑,�휌1,⋯,�휌d (Ω)

|a(u, v)|
‖v‖�픅�휑,�휌1,⋯,�휌d (Ω)

⩾ �훽 sup
0≠v∈�픅�휑,�휌1,⋯,�휌d (Ω)

|(u, v)Ω| + ∫ �휏max

�휏min �휑(�휏) |(
0
D�휏

t
u,

t
D�휏

T
v)Ω|d�휏

‖v‖�픅�휑,�휌1,⋯,�휌d (Ω)

+

d∑
j=1

∫ �휈max
j

�휈min
j

�휌j(�휈j)
(
|(
aj
D

�휈j
xj
u,

xj
D

�휈j
bj
v)Ω| + |(

xj
D

�휈j
bj
u,

aj
D

�휈j
xj
v)Ω|

)
d�휈j

‖v‖�픅�휑,�휌1,⋯,�휌d (Ω)

⩾ �훽 C̄
(
‖u‖L2(Ω) + |u|l,�픇H�휑(I;L2(Λd))

+ |u|L2(I;Xd)

)
,

(60)inf
0≠u∈B�휑,�휌1,⋯,�휌d (Ω)

sup
0≠v∈�픅�휑,�휌1,⋯,�휌d (Ω)

|a(u, v)|
‖v‖�픅�휑,�휌1,⋯,�휌d (Ω)

⩾ �훽 ‖u‖B�휑,�휌1,⋯,�휌d (Ω),

UN = span
{(

�휓 �휏
n
◦�휂

)
(t)

d∏

j=1

(
�휙
mj
◦�휉j

)
(xj) ∶ n = 1, 2,⋯ ,N, mj = 1, 2,⋯ ,Mj

}
.
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where Ψ�휏
r
(�휂) = �휎r(1 − �휂)�휏 P�휏,−�휏

r−1
(�휂), r = 1, 2,⋯ and �훷

k
(�휉) = �휎k

(
P
k+1

(�휉) − P
k−1

(�휉)
)
, k = 1, 2,⋯ . The 

coefficient �휎k is defined as �휎k = 2 (−1)k + 1.
Since the univariate basis/test functions belong to the fractional Sobolev spaces (see 

[65]) and 0 < �휑(�휏) ∈ L1((�휏min, �휏max)) , 0 < �휌j(�휈j) ∈ L1((�휈min
j

, �휈max
j

)) for j = 1,⋯ , d , 
UN ⊂ B�휑,�휌1,⋯,�휌d (Ω) and VN ⊂ �픅�휑,�휌1,⋯,�휌d (Ω) . Accordingly, we approximate the solution in 
terms of a linear combination of elements in UN , which satisfies the initial and boundary 
conditions.

4.2  Implementation of the PG Spectral Method

The solution uN of (50) can be represented as

in Ω , and also, we take vN = Ψ�휏
r
(t)

d∏
j=1

Ψkj
(xj) , r = 1, 2,⋯ ,N  , kj = 1, 2,⋯ ,Mj . Accord-

ingly, by replacing uN and vN in (50), we obtain the following Lyapunov system:

in which ⊗ represents the Kronecker product and F denotes the multi-dimensional load 
matrix whose entries are given as

and STot
j

= cljS
�휚j
l
+ crjS

�휚j
r − �휅lj S

�휌j
l
− �휅rjS

�휌j
r  . The matrices S�휑�휏  and M�휏 denote the temporal stiff-

ness and mass matrices, respectively; S�휚j
l

 , S�휚jr  , S�휌j
l
 , S�휌jr  , and Mj denote the spatial stiffness and 

mass matrices. The entries of the spatial mass matrix Mj are computed analytically, while 
we employ proper quadrature rules to accurately compute the entries of the temporal mass 
matrix M�휏 as discussed in [50]. The entries of S�휑�휏  are also computed based on Theorem 3.1 
(spectrally/exponentially accurate quadrature rule in �훼-dimension) in [25]. Likewise, we 
present the computation of STot

j
 in Lemma A.1 in Appendix A.

Remark 2 The choices of coefficients in the construction of finite-dimensional basis/test 
functions lead to symmetric mass/stiffness matrices, which help formulating the following 
fast solver.

VN = span
{(

Ψ�휏
r
◦�휂

)
(t)

d∏

j=1

(
�훷

kj
◦�휉j

)
(xj) ∶ r = 1, 2,⋯ ,N, kj = 1, 2,⋯ ,Mj

}
,

(61)uN(x, t) =

N∑

n=1

M1∑

m1=1

⋯

Md∑

md=1

ûn,m1,⋯,md

[

�휓�휏
n
(t)

d∏

j=1

�휙mj
(xj)

]

(62)

(
S�휑
�휏
⊗M1 ⊗M2 ⋯⊗Md +

d∑

j=1

(M�휏 ⊗M1 ⊗⋯⊗Mj−1 ⊗ STot
j

⊗Mj+1 ⋯⊗Md)

+ �훾M�휏 ⊗M1 ⊗M2 ⋯⊗Md

)
U = F,

(63)Fr,k1,⋯,kd
= ∫Ω

f (t, x1,⋯ , xd)
(
Ψ �휏

r
◦�휂

)
(t)

d∏

j=1

(
�훷

kj
◦�휉j

)
(xj) dΩ,
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4.3  Unified Fast FPDE Solver

To formulate a closed-form solution to the Lyapunov system (62), we follow [64] and 
develop a fast solver in terms of the generalized eigen-solutions.

Theorem 4.1 [50] Take {�퐞jmj
, �휆

j
mj
}
Mj

mj=1
 as the set of general eigen-solutions of the spatial 

stiffness matrix STot
j

 with respect to the mass matrix Mj . Besides, let {�퐞�휏
n
, �휆�휏

n
}N
n=1

 be the set of 
general eigen-solutions of the temporal mass matrix M�휏 with respect to the stiffness matrix 
S
�휑
�휏  . Then, the unknown coefficients matrix U is obtained as

where

and

Remark 3 The naive computation of all entries in (65) leads to a computational complexity 
of O(N2+2d) , including construction of stiffness and mass matrices. By performing sum-
factorization [64], the operator counts can be reduced to O(N2+d).

5  Stability and Error Analysis

The following theorems provide the finite-dimensional stability and error analysis of the 
proposed scheme, based on the well-posedness analysis from Sect. 3.3.

5.1  Stability Analysis

Theorem 5.1 Let Assumption 3 hold. The PG spectral method for (51) is stable; that is

holds with �훽 > 0 and independent of N.

(64)U =

N∑

n=1

M1∑

m1=1

⋯

Md∑

md=1

�휅n,m1,⋯,md
�퐞
�휏
n
⊗ �퐞

1
m1

⊗⋯⊗ �퐞
d
md
,

(65)�휅n,m1,⋯,md
=

(�퐞 �휏
n
�퐞
1
m1

⋯ �퐞
d
md
)F

[(�퐞�휏T
n
S
�휑
�휏 �퐞

�휏
n
)

d∏
j=1

(�퐞
jT

mj
Mj�퐞

j
mj
)]Λn,m1,⋯,md

,

Λn,m1,⋯,md
=
[
(1 + �훾 �휆�휏

n
) + �휆�휏

n

d∑

j=1

(�휆j
mj
)
]
.

(66)inf
0≠uN∈UN

sup
0≠v∈VN

|a(uN , vN)|
‖vN‖�픅�휑,�휌1,⋯,�휌d (Ω)‖uN‖B�휑,�휌1,⋯,�휌d (Ω)

⩾ �훽 > 0
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Proof Regarding UN ⊂ B�휑,�휌1,⋯,�휌d (Ω) and VN ⊂ �픅�휑,�휌1,⋯,�휌d (Ω) , (66) follows directly from 
Theorem 3.7.   

Remark 4 The bilinear form (51) can be expanded in terms of the basis and test functions 
to obtain the lower limit of �훽 , see [50, 64].

5.2  Error Analysis

Denoting by PM(Λ) the space of all polynomials of degree ⩽ M on Λ ⊂ ℝ , 
P
�휑
M
(Λ) ∶= PM(Λ) ∩ �픇H�휑(Λ) , where 0 < �휑(�휏) ∈ L1((�휏min, �휏max)) and �픇H�휑(Λ) is the dis-

tributed Sobolev space associated with the norm ‖ ⋅ ‖�픇H�휑(Λ) . In this section, we take 
I0 = (0, T) , Ii = (ai, bi) for i = 1,⋯ , d , Λi = Ii × Λi−1 , and Λ

j

i
=

i∏
k=1
k≠j

Ik . Besides, 

0 < 2�휏min < 2�휏max < 1 ( 1 < 2�휏min < 2�휏max ⩽ 2 ), 1 < 2�휈min
i

< 2�휈max
i

⩽ 2 for i = 1,⋯ , d . 
Where there is no confusion, the symbols Ii , Λi , and Λj

i
 and the intervals of (�휏min, �휏max) and 

(�휈min
i

, �휈max
i

) will be dropped from the notations.

Theorem 5.2 [35] Let r1 be a real number, where r1 ≠ M1 +
1

2
 , and 1 ⩽ r1 . There exists a 

projection operator �훱�휈1
r1,M1

 from Hr1 (Λ1) ∩ H
�휈1
0
(Λ1) to P�휈1

M1
(Λ1) , such that for any 

u ∈ Hr1 (Λ1) ∩ H
�휈1
0
(Λ1), we have ‖u −�훱

�휈1
r1,M1

u‖cH�휈1 (Λ1)
⩽ c1M

�휈1−r1
1

‖u‖Hr1 (Λ1)
 , where c1 is a 

positive constant.

Theorem  5.3 [25] Let r0 ⩾ 1 , r0 ≠ N + 1

2
 . There exists an operator �훱�휑

r0,N
 from 

Hr0 (I) ∩ l,�픇H�휑(I) to P�휑
N
(Λ1) , such that for any u ∈ Hr0 (I) ∩ l,�픇H�휑(I) , we have

where c0 is a positive constant and 0 < �휑(�휏) ∈ L1((�휏min, �휏max)).

In the following, employing Theorems  5.2 and 5.3 and also Theorem  5.3 from [51], 
we study the properties of higher dimensional approximation operators in the following 
Lemmas.

Theorem 5.4 Let r1 ⩾ 1 , r1 ≠ M1 +
1

2
 . There exists a projection operator �훱�휌1

r1,M1
(I1) from 

Hr1 (I1) ∩
l,�픇H�휌1 (I1) to P�휌1

M1
(I1) , such that for any u ∈ Hr1 (I1) ∩

l,�픇H�휌1 (I1) , we have

where 0 < �휌1(�휈1) ∈ L1((�휈min
1

, �휈max
1

)).

Proof From Theorem 5.2 for u ∈ Hr1 ∩ cH�휈1 , we have ‖u −�훱
�휈1
r1,M1

u‖cH�휈1 (Λ1)
⩽ M

�휈1−r1
1

‖u‖Hr1 (Λ1)
. 

Therefore, for u ∈ Hr1 (I1) ∩
lH�휌1 (I1) , we have

‖u −�훱�휑
r0,N

u‖2lH�휑(I)
⩽ c0 N

−2r0 ∫
�휏max

�휏min

�휑(�휏)N2�휏‖u‖Hr0 (I)d�휏,

‖u −�훱
�휌1
r1,M1

u‖2l,�픇H�휌1 (I1)
⩽ M

−2r1
1 ∫

�휈max
1

�휈min
1

�휌1(�휈1)M
2�휈1
1

‖u‖Hr1 (I1)
d�휈1,
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Lemma 5.5 Let the real-valued 1 ⩽ r1, r2 and Ω = I1 × I2 . If u ∈ l,�픇H�휌2 (I2,H
r1 (I1)) ∩ Hr2

(I2,
l,�픇H

�휌1
0
(I1)) , then

where ‖ ⋅ ‖B�휌1,�휌2 (Ω) =
{
‖ ⋅ ‖2

H�휌1 (I1,L
2(I2))

+ ‖ ⋅ ‖2
H�휌2 (I1,L

2(I1))

} 1

2 , 0 < �휌1(�휈1) ∈ L1([�휈min
1

, �휈max
1

]) , 
and 0 < �휌2(�휈2) ∈ L1([�휈min

2
, �휈max

2
]).

Proof For u ∈ l,�픇H�휌2 (I2,H
r1 (I1)) ∩ Hr2 (I2,H

�휌1 (I1)) , evidently u ∈ Hr2 (I2,H
r1 (I1)) , 

u ∈ Hr2 (I2, L
2(I1)) , and u ∈ Hr1 (I1, L

2(I2)).
Besides, from the definition of ‖ ⋅ ‖B�휌1,�휌2 (Ω) , we have

Following Lemma 5.3 in [51] and Theorem 5.4, ‖u −�훱
�휌1
r1,M1

�훱
�휌2
r2,M2

u‖2
�픇H�휌2 (I2,L

2(I1))
 can be 

simplified to

‖u −�훱
�휌1
r1,M1

u‖2l,�픇H�휌1 (I1)
= ∫

�휈max
1

�휈min
1

�휌1(�휈1) ‖u −�훱
�휈1
r1,M1

u‖2cH�휈1 (Λ1)
d�휈1

⩽ ∫
�휈max
1

�휈min
1

�휌1(�휈1)M
2�휈1−2r1
1

‖u‖2
Hr1 (Λ1)

d�휈1

= M
−2r1
1 ∫

�휈max
1

�휈min
1

�휌1(�휈1)M
2�휈1
1

‖u‖Hr1 (I1)
d�휈1.

(67)

‖u −�훱
�휌1
r1,M1

�훱
�휌2
r2,M2

u‖2
B�휌1,�휌2 (Ω)

⩽ M
−2r2
2 ∫

�휈max
2

�휈min
2

�휌2(�휈2)
(
M

2�휈2
2

‖u‖Hr2 (I2,L
2(I1))

+M
2�휈2
2

M
−2r1
1

‖u‖Hr2 (I2,H
r1 (I1))

)
d�휈2

+M
−2r1
1 ∫

�휈max
1

�휈min
1

�휌1(�휈1)
(
M

2�휈1
1

‖u‖Hr1 (I1,L
2(I2))

+M
2�휈1
1

M
−2r2
2

‖u‖Hr1 (I1,H
r2 (I2))

)
d�휈1

+M
−2r2
2

‖u‖�픇H�휌1 (I1,H
r2 (I2))

+M
−2r1
1

‖u‖�픇H�휌2 (I2,H
r1 (I1))

,

‖u −�훱
�휌1
r1,M1

�훱
�휌2
r2,M2

u‖B�휌1,�휌2 (Ω)

=
{
‖u −�훱

�휌1
r1,M1

�훱
�휌2
r2,M2

u‖2
�픇H�휌1 (I1,L

2(I2))
+ ‖u −�훱

�휌1
r1,M1

�훱
�휌2
r2,M2

u‖2
�픇H�휌2 (I2,L

2(I1))

} 1

2 .
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where I  is the identity operator. Furthermore,

Therefore, (67) can be derived immediately from (68) and (69).   

Likewise, Lemma 5.4 can be easily extended to the d-dimensional approximation opera-
tor as

(68)

‖u −�훱
�휌1
r1,M1

�훱
�휌2
r2,M2

u‖2
�픇H�휌2 (I2,L

2(I1))

= ‖u −�훱
�휌2
r2,M2

u +�훱
�휌2
r2,M2

u −�훱
�휌1
r1,M1

�훱
�휌2
r2,M2

u‖2
�픇H�휌2 (I2,L

2(I1))

⩽ ‖u −�훱
�휌2
r2,M2

u‖2
�픇H�휌2 (I2,L

2(I1))

+ ‖�훱�휌2
r2,M2

u −�훱
�휌1
r1,M1

�훱
�휌2
r2,M2

u‖2
�픇H�휌2 (I2,L

2(I1))

⩽ M
−2r2
2 ∫

�휈max
2

�휈min
2

�휌2(�휈2)M
2�휈2
2

‖u‖2
Hr2 (I2,L

2(I1))
d�휈2

+ ‖(�훱�휌2
r2,M2

− I)(u −�훱
�휌1
r1,M1

u)‖2
�픇H�휌2 (I2,L

2(I1))

+ ‖u −�훱
�휌1
r1,M1

u‖2
�픇H�휌2 (I2,L

2(I1))

⩽ M
−2r2
2 ∫

�휈max
2

�휈min
2

�휌2(�휈2)M
2�휈2
2

‖u‖2
Hr2 (I2,L

2(I1))
d�휈2

+M
−2r2
2

M
−2r1
1 ∫

�휈max
2

�휈min
2

�휌2(�휈2)M
2�휈2
2

‖u‖2
Hr2 (I2,H

r1 (I1))
d�휈2

+M
−2r1
1

‖u‖2
�픇H�휌2 (I2,H

r1 (I1))
,

(69)

‖u −�훱
�휌1
r1,M1

�훱
�휌2
r2,M2

u‖2
L2(I2,H

�휌1 (I1))

= ‖u −�훱
�휌1
r1,M1

u +�훱
�휌1
r1,M1

u −�훱
�휌1
r1,M1

�훱
�휌2
r2,M2

u‖2
�픇H�휌1 (I1,L

2(I2))

⩽ ‖u −�훱
�휌1
r1,M1

u‖2
�픇H�휌1 (I1,L

2(I2))

+ ‖�훱�휌1
r1,M1

u −�훱
�휌1
r1,M1

�훱
�휌2
r2,M2

u‖2
�픇H�휌1 (I1,L

2(I2))

⩽ M
−2r1
1 ∫

�휈max
1

�휈min
1

�휌1(�휈1)M
2�휈1
1

‖u‖2
Hr1 (I1,L

2(I2))
d�휈1

+ ‖(�훱�휌1
r1,M1

− I)(u −�훱
�휌2
r2,M2

u)‖2
�픇H�휌1 (I1,L

2(I2))

+ ‖u −�훱
�휌2
r2,M2

u‖2
�픇H�휌1 (I1,L

2(I2))

⩽ M
−2r1
1 ∫

�휈max
1

�휈min
1

�휌1(�휈1)M
2�휈1
1

‖u‖2
Hr1 (I1,L

2(I2))
d�휈1

+M
−2r2
2

M
−2r1
1 ∫

�휈max
1

�휈min
1

�휌1(�휈1)M
2�휈1
1

‖u‖2
Hr1 (I1,H

r2 (I2))
d�휈1

+M
−2r2
2

‖u‖2
�픇H�휌1 (I1,H

r2 (I2))
.
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where �훱h
d
= �훱

�휌1
r1,M1

⋯�훱
�휌d
rd ,Md

.

Theorem  5.6 Let 1 ⩽ ri , I0 = (0, T) , Ii = (ai, bi) , Ω = I0 × (
d∏
i=1

Ii) , Λk =
k∏

i=1

Ii , Λj

k
=

k∏
i=1
i≠j
Ii , 

and 1
2
< �휈min

i
< �휈max

i
⩽ 1 for i = 1,⋯ , d . If

then

(70)

‖u −�훱h
d
u‖2

m�픇H�휌i (Ii,L
2(Λi

d
))

⩽ M
−2ri
i ∫

�휈max
i

�휈min
i

�휌i(�휈i)M
2�휈i
i
‖u‖2

Hri (Ii,L
2(Λi

d
))
d�휈i

+

d∑

j=1
j≠i

M
−2rj
j

‖u‖2
�픇H�휌i (Ii ,H

rj (Ij ,L
2(Λ

i,j

d
)))

+M
−2ri
i ∫

�휈max
i

�휈min
i

�휌i(�휈i)M
2�휈i
i

d∑

j=1
j≠i

M
−2rj
j

‖u‖2
Hri (Ii,H

rj (Ij ,L
2(Λ

i,j

d
))
d�휈i

+

d∑

k=1
k≠i

d∑

j=1
j≠i,k

M
−2rj
j

M
−2rk
k

‖u‖2
�픇H�휌i (Ii,H

rk ,rj (Ik×Ij ,L
2(Λ

i,j,k

d
)))

+⋯ +M
−2ri
i ∫

�휈max
i

�휈min
i

�휌i(�휈i)M
2�휈i
i

⋅

d∏

j=1
j≠i

M
−rj
j
‖u‖2

cH�휈i (Ii,H
r1,⋯,rd (Λi

d
))
d�휈i,

u ∈
( d⋂

i=1

Hr0 (I0,
�픇H�휌i (Ii,H

r1,⋯,ri−1,ri+1,⋯,rd (Λi
d
))
)
∩ l,�픇H�휑(I0,H

r1,⋯,rd (Λd)),

(71)

‖u −�훱�휑
r0,N

�훱h
d
u‖2

B�휏,�휈1,⋯,�휈d (Ω)

⩽ N−2r0 ∫
�휏max

�휏min

�휑(�휏)N2�휏‖u‖Hr0 (I0,L
2(Λd))

d�휏

+N−2r0 ∫
�휏max

�휏min

�휑(�휏)N2�휏
d∑

j=1

M
−2rj
j

‖u‖2
Hr0 (I0,H

rj (Ij ,L
2(Λ

j

d
))
d�휏 +⋯

+N−2r0 ∫
�휏max

�휏min

�휑(�휏)N2�휏
( d∏

j=1

M
−2rj
j

)
‖u‖Hr0 (I0,H

r1,⋯,rd (Λd))
d�휏

+

d∑

i=1
∫

�휈max
i

�휈min
i

�휌i(�휈i)
{
M

2�휈i−2ri
i

‖u‖Hri (Ii,L
2(Λi

d
×I0))

+⋯

+M
2�휈i−2ri
i

( d∏

j=1
j≠i,k

M
−2rj
j

)
‖u‖Hri (Ii,H

r1,⋯,rd (Λi
d
,L2(I0)))

}
d�휈i,
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where �훱h
d
= �훱

�휌1
r1,M1

⋯�훱
�휌d
rd ,Md

 and �훽 is a real positive constant.

Proof Directly from (45), we conclude that

Next, it follows from Theorem 5.3 that

‖u‖2
B�휏,�휈1,⋯,�휈d (Ω)

⩽ ‖u‖2lH�휏 (I0,L
2(Λd))

+

d∑

i=1

‖u‖2
L2(I0,

�픇H�휌i (Ii,L
2(Λi

d
)))
.

Fig. 1  Temporal/spatial p-refinement for case I with singularity of order �훼 = 10−4 . (a): p1 = 3 , p2 = p3 = 2 , 
and expansion order of N × 9 . (b): p1 = 2 , p2 = p3 = 2 , and expansion order of 3 ×M . (c): p1 = 3 , 
p2 = p3 = 2 , and expansion order of 4 ×M
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Therefore, (71) is obtained immediately from (70) and (72).   

Remark 5 Since the inf-sup condition holds (see Theorem 5.1), by Lemma 3.6, the error in 
the numerical scheme is less than or equal to a constant times the projection error. Hence, 
the results above imply the spectral accuracy of the scheme.

(72)

‖u −�훱�휑
r0,N

�훱h
d
u‖2l,�픇H�휑(I0,L

2(Λd))

⩽ N−2r0 ∫
�휏max

�휏min

�휑(�휏)N2�휏

⋅

[
‖u‖2

Hr0 (I0,L
2(Λd))

+

d∑

j=1

M
−rj
j
‖u‖2

Hr0 (I0,H
rj (Ij ,L

2(Λd)))
+⋯

+
( d∏

j=1

M
−rj
j

)
‖u‖Hr0 (I0,H

r1,⋯,rd (Λd))

]
d�휏.

Fig. 2  Spatial p-refinement for 
case II, p1 = 3 , �훼 = 0.1 , and 
�훼 = 0.9

Fig. 3  Spatial p-refinement for case III with singularity of order �훼 = 10−4 . (a): (1 + 2)-dimensional, 
p1 = 3 , p2i = p2i+1 = 1 , where the expansion order is N ×M1 ×M2 . (b): (1 + 3)-dimensional, p1 = 3 , 
p2i = p2i+1 = 1 , where the expansion order is N ×M1 ×M2 ×M3
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6  Numerical Tests

We provide several numerical examples to investigate the performance of the proposed 
scheme. We consider a (1 + d)-dimensional fully distributed diffusion problem with the 
left-sided derivative by letting cli = cri = �휅ri = 0 , �휅li = 1 , 0 < 2�휏min < 2�휏max < 1 , and 
1 < 2�휈min

i
< 2�휈max

i
⩽ 2 in (50) for i = 1,⋯ , d , where the computational domain is 

Ω = (0, 2) ×
d∏
i=1

(−1, 1) . We report the measured L∞ error, ‖e‖L∞ = ‖uN − uext‖L∞ as the 
maximum bound of ‖e‖L2.

In each of the following test cases, we use the method of fabricated solutions to con-
struct the load vector, given an exact solution uext . Here, we assume uext = ut ×

d∏
i=1

uxi . We 
project the spatial part in each dimension, uxi , on the spatial bases, and then, construct the 
load vector by plugging the projected exact solution into the weak form of the problem. 
This helps us to take the fractional derivative of the exact solution more efficiently, while 
by truncating the projection with a sufficient number of terms, we make sure that the cor-
responding projection error does not dominantly propagate into the convergence analysis of 
numerical scheme.

Case I We consider a smooth solution in space with finite regularity in time as

to investigate the spatial/temporal p-refinement. We allow the singularity to take order of 
�훼 = 10−4 , while p1 , p2 , and p3 take some integer values. We show the L∞-error for different 
test cases in Fig. 1, where by tuning the fractional parameter of the temporal basis, we can 
accurately capture the singularity of the exact solution, when the approximate solution con-
verges as we increase the expansion order. In each case of spatial/temporal p-refinement, 
we choose sufficient number of bases in the other directions to make sure that their corre-
sponding error is of machine precision order.

Considering �훼 = 10−4 , p1 = 2 , p2 = p3 = 2 in (73), and the temporal order of expansion 
being fixed ( N = 4 ) in the spatial p-refinement, we get the rate of convergence as a func-
tion of the minimum regularity in the spatial direction. From Theorem 5.6, the rate of con-
vergence is bounded by the spatial approximation error, i.e., ‖e‖L2(Ω) ⩽ ‖e‖L∞(Ω) ⩽ M

−2r1
1

⋅

∫ �휈max
1

�휈min
1

�휌1(�휈1)M
2�휈1
1

‖u‖Hr1 (I1,L
2(I0))

d�휈1 , where r1 = p2 +
1

2
− �휖 is the minimum regularity of the 

exact solution in the spatial direction for �휖 < 1

2
 . Conforming to Theorem 5.6, the practical 

rate of convergence r̄1 = 16.05 in ‖e‖L∞(Ω) is greater than r1 ≈ 2.50.
Case II We consider uext = tp1+�훼 sin(2�휋x1) , where p1 = 3 , and let �훼 = 0.1 and �훼 = 0.9 . 

We set the number of temporal basis functions, N = 4 , and show the convergence of 

(73)uext = tp1+�훼 × ((1 + x1)
p2 (1 − x1)

p3 )

Table 1  CPU time, PG spectral method for fully distributed (1+d)-dimensional diffusion problems. 
uext = tp1+�훼 ×

3∏
i=1

(1 + xi)
p2i (1 − xi)

p2i+1 , where �훼 = 10−4 , p1 = 3 , and the expansion order is 4 × 11d

p2i = p2i+1 = 2 p2i = p2i+1 = 3

d = 1 d = 2 d = 3 d = 1 d = 2 d = 3

CPU time/s 1 546.81 1 735.03 2 358.67 1 596.16 1 786.61 2 407.22
‖e‖L∞(Ω) 6.84 × 10−12 4.45 × 10−12 3.27 × 10−12 6.27 × 10−12 3.86 × 10−12 2.71 × 10−12
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approximate solution by increasing the number of spatial basis, M in Fig. 2. The main dif-
ficulty in this case is the construction of load vector. To accurately compute the integrals 
in the load vector, we project the spatial part of forcing function, sin(2�휋x1) , on the spatial 
bases. To make sure that the corresponding error is of machine-precision order and thus, 
not dominant, we truncate the projection at 25 terms, where there error is of order 10−16 . 
Therefore, the quadrature rule over derivative order should be performed for 25 terms 
rather than only a single sin(2�휋x1) term. This will increase the computational cost.

Case III (High-dimensional p-refinement) We consider the exact solution of the form,

with singularity of order �훼 = 10−4 , where p1 = 3 , and p2i = p2i+1 = 1 . Similar to previ-
ous cases, we set the number of temporal bases, N = 4 , and study convergence by uni-
formly increasing the number of spatial bases in all dimensions. Figure  3 shows the 
results for (1 + 2)-dimensional and (1 + 3)-dimensional problems with expansion order of 
N ×M1 ×M2 , and N ×M1 ×M2 ×M3 , respectively. Following Case I, the computed 
rate of convergence r̄1 = r̄2 = r̄3 = 16.13 in (74) for �훼 = 10−4 is greater than the minimum 
regularity of the exact solution r ≈ 2.05 , which is in agreement with Theorem 5.6.

In addition to the convergence study, we examine the efficiency of the developed 
method and fast solver by comparing the CPU times for (1 + 1) -, (1 + 2) -, and (1 + 3)
-dimensional space-time hypercube domains in case III. The computed CPU times are 
obtained on an INTEL(XEON E52670) processor of 2.5 GHz, and reported in Table 1.

7  Summary

We developed a unified PG spectral method for fully distributed-order PDEs with constant 
coefficients on a ( 1 + d)-dimensional space-time hypercube, subject to homogeneous Dir-
ichlet initial/boundary conditions. We obtained the weak formulation of the problem, and 
proved the well-posedness by defining the proper underlying distributed Sobolev spaces 
and the associated norms. We then formulated the numerical scheme, exploiting Jacobi 
poly-fractonomials as temporal basis/test functions, and Legendre polynomials as spatial 
basis/test functions. To improve the efficiency of the proposed method in higher dimen-
sions, we constructed a unified fast linear solver employing certain properties of the stiff-
ness/mass matrices, which significantly reduced the computation time. Moreover, we 
proved the stability of the developed scheme and carried out the error analysis. Finally, 
via several numerical test cases, we examined the practical performance of the proposed 
method and illustrated the spectral accuracy.
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Appendix A Entries of Spatial Stiffness Matrix

Here, we provide the computation of entries of the spatial stiffness matrix by performing 
an affine mapping �휗 from the standard domain �휇stn

j
∈ [−1, 1] to �휇j ∈ [�휇max

j
,�휇min

j
].

Lemma A.1 The total spatial stiffness matrix STot
j

 is symmetric and its entries can be 
exactly computed as

where j = 1, 2,⋯ , d.

Proof Regarding the definition of the stiffness matrix, we have

where �훽1 = �휎r �휎n

(
�휇max
j

−�휇min
j

2

)
 and

S̃
�휚j
r,n can be computed accurately using Gauss–Legendre (GL) quadrature rules as

in which Q ⩾ Mj + 2 represents the minimum number of GL quadrature points {�휇stn
j
|q}

Q
q=1

 
for exact quadrature, and {wq}

Q

q=1
 are the corresponding quadrature weights. Exploit-

ing the property of the Jacobi polynomials where P�훼,�훽
n

(−�휉j) = (−1)nP�훽,�훼
n

(�휉j) , we have 
S̃
�휚stn
j

r,n = (−1)(r+n) S̃
�휚stn
j

n,r  . Following [50], �휎r and �휎n are chosen, such that (−1)(n+r) is canceled. 
Accordingly, {S�휚j

l
}n,r = {S

�휚j
l
}r,n = {S

�휚j
r }r,n = {S

�휚j
r }r,n due to the symmetry of S�휚j

l
 and S�휚jr  . 

Similarly, we get {S�휌j
l
}n,r = {S

�휌j
l
}r,n = {S

�휌j
r }n,r = {S

�휌j
r }r,n . Eventually, we conclude that the 

(A1)STot
j

= clj × S
�휚j
l
+ crj × S

�휚j
r − �휅lj × S

�휌j
l
− �휅rj × S

�휌j
r ,

(A2)

{S
�휚j
l
}r,n = ∫

1

−1 ∫
�휇max
j

�휇min
j

�휚j(�휇j
)
−1
D

�휇
j

�휉j

(
�휙
n
(xj)

)
�휉j
D

�휇
j

1

(
�훷

r
(xj)

)
dxj,

= �훽1 ∫
1

−1 ∫
1

−1

�휚j
(
�휗(�휇stn

j
)
)
−1
D

�휇stn
j

�휉j

(
Pn+1(�휉j) − Pn−1(�휉j)

)

× �휉j
D

�휇stn
j

1

(
Pk+1(�휉j) − Pk−1(�휉j)

)
d�휉j,

= �훽1

(
S̃
�휚j
r+1,n+1

− S̃
�휚j
r+1,n−1

− S̃
�휚j
r−1,n+1

+ S̃
�휚j
r−1,n−1

)
,
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(A3)
S̃
�휚stn
j

r,n =

Q∑

q=1

Γ(r + 1)
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j
|q + 1)
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stiffness matrix S �휚j
l

 , S �휚j
r  , S �휌j

l
 , S �휌j

r  , and thereby {STot
j

}n,r as the sum of symmetric matrices is 
symmetric.   
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