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Abstract

The plasma membrane defines the shape of the cell and plays an indispensable role in bridg-

ing intra- and extra-cellular environments. Mechanochemical interactions between plasma mem-

brane and cytoskeleton are vital for cell biomechanics and mechanosensing. A computational

model that comprehensively captures the complex, cell-scale cytoskeleton-membrane dynam-

ics is still lacking. In this work, we introduce a triangulated membrane model that accounts

for membrane’s elastic properties, as well as for membrane-filament steric interactions. The

corresponding force-field was incorporated into the active biological matter simulation plat-

form, MEDYAN (“Mechanochemical Dynamics of Active Networks”). Simulations using the

new model shed light on how actin filament bundling affects generation of tubular membrane

protrusions. In particular, we used membrane-MEDYAN simulations to investigate protrusion

initiation and dynamics while varying geometries of filament bundles, membrane rigidities and
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local G-Actin concentrations. We found that bundles’ protrusion propensities sensitively depend

on the synergy between bundle thickness and inclination angle at which the bundle approaches

the membrane. The new model paves the way for simulations of biological systems involving

intricate membrane-cytoskeleton interactions, such as occurring at the leading edge and the

cortex, eventually helping to uncover the fundamental principles underlying the active matter

organization in the vicinity of the membrane.

1 Introduction

Cytoskeletal fibers, along with regulatory molecules, such as α-actinin cross-linking nearby actin fila-

ments, and myosin walking on the actin filaments, work together to establish cell’s main mechanochem-

ical engine, continuously consuming energy. The plasma membrane, on the other hand, is mostly

inactive. However, it defines the boundary of a cell, playing an important role in being a mechanical

and chemical window to the outside world, regulating cytoskeletal functions.1

Mechanically, the membrane is a thin fluid film, resisting in-plane and out-of-plane deformations,

which, in turn, influences its cellular functions. For example, membrane tension has been shown to

influence exocytosis, endocytosis and cell motility.2,3 Membranes can interact with the cytoskeleton

mechanically via repulsion and adhesion.4 Cells with the plasma membrane attached to a dense

cross-linked actin cortex have their boundaries significantly rigidified.2 On the contrary, disruption

of filament-membrane attachments leads to cellular blebbing.5,6 Membrane proteins also participate

in numerous signaling processes, regulating, in particular, many cytoskeletal interactions. For in-

stance, the membrane attached WASp-VASP complex regulates Arp2/3 activation, which is an actin

branching protein essential in lamellipodia formation.7

Computer simulations can shed light on mechanisms of membrane-cytoskeleton interactions, build-

ing on and complementing extensive experimental observations of these processes.1 A variety of such

computational models have been proposed during the last two decades. Both analytical and compu-

tational models were used to study the filopodia formation and properties.8,9 To study lamellipodial

protrusions, the membrane leading edge was modeled as a quasi 1D curve, interacting mechanochem-
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ically with a branched actin filament network.10 Following up on these advances, it is desirable to

develop a flexible, scalable, 3D model for membranes and their interactions with cytoskeleton that

has detailed mechanochemical components essential for simulating whole-cell dynamics. With this

goal in mind, we based our work on MEDYAN (Mechanochemical Dynamics of Active Networks,

a software designed for carrying out detailed cytoskeletal simulations11), extending it such that

cytoskeletal networks can be enclosed within a movable membrane domain.

MEDYAN can simulate cytoskeletal behaviors at high spatial and temporal resolutions. It couples

cytoskeletal network mechanics with spatially resolved chemical dynamics, enabling studies of cy-

toskeletal processes at the micrometer scale and the time scale of tens of minutes.11 Simulations

using MEDYAN have shed light on the turnover and treadmilling dynamics for actin filaments,12 the

stability and shape transformations of actin bundles13 and the entropy production and cytoskeletal

avalanches (cytoquakes) of evolving actomyosin networks that are far from equilibrium.14–16 Cur-

rently, however, the enclosing domain for cytoskeletal evolution in MEDYAN is rigid and immovable,

imposing inflexible steric restriction on cytoskeletal filaments. In this work, we incorporate into ME-

DYAN an explicit membrane model, which accounts for membrane’s salient mechanical properties,

volumetric effects such as osmotic pressure, as well as filament-membrane interactions. The new

membrane model paves the way for whole-cell simulations using MEDYAN.

In this work, we applied membrane-MEDYAN to simulate cytoskeletal networks enclosed in a vesicle,

finding that actin network’s architecture plays an important role in generating membrane tubular

protrusions. Furthermore, our analysis indicates that bundle protrusion initiation sensitively de-

pends on local G-Actin concentration, bundle thickness, membrane rigidity and the inclination

angle of the bundle approaching the membrane.

The remainder of the paper has the following organization. In Section 2, we introduce the new mem-

brane model, including its discrete representation, the mechanical energy model and the membrane-

cytoskeleton interactions. In Section 3, we discuss the application of membrane-MEDYAN to several

relatively simple model systems. In particular, we report on our simulations of vesicles containing
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various actomyosin networks, exploring conditions that lead to formation of successful protrusions.

Finally, in Section 4, we summarize our work, and further elaborate on the limitations and potential

applications of the new model.

2 Methods

2.1 MEDYAN Simulations

The new membrane model was incorporated into MEDYAN. The latter can be used to simulate

active matter systems using a compartment-based reaction-diffusion scheme, where diffusing chem-

ical species are considered “well-mixed” in each compartment, but the locations for force bearing

species (such as actin filaments and bound myosin motors) are explicitly modeled and tracked.11

MEDYAN simulations are based on iteratively interleaving stochastic draws of chemical events, us-

ing the Gillespie algorithm, followed by a mechanical equilibration step. Importantly, chemistry

influences mechanics and vice versa, creating intricate mechanochemical feedbacks.

2.2 Membrane mechanics and discretization

Typically, the phospholipid bilayer has a thickness of 3 − 7 nm.17 At the scale of a whole cell

(1 − 10µm), the thickness of the plasma membrane is much smaller than its lateral dimensions.

Therefore, we model the plasma membrane as a 2D Riemannian manifold, M, embedded in the 3D

Euclidean space. Some of the mechanical properties of the lipid bilayer, arising from in-plane and

out-of-plane deformations and from interactions with the cytoskeleton, are mapped onto this 2D

manifold. We note here that from the perspective of a point on the surface, we use the term “lateral

directions” to denote the directions in its tangent plane.

Next, we discretize the 2D surface M into a triangulated meshwork M̂ (Fig. 1a). The mesh is

comprised from sets of vertices V , edges E and triangles T . Each vertex vi ∈ V is a representative

point on the original surface. The 3D coordinates of all vertices control the shape of the surface.

Each triangle t ∈ T is a set of 3 vertices {vi, vj , vk} ⊂ V . These piecewise linear triangles tile the
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entire surface of M̂, which, in turn, approximates the original manifold M. Each edge e is a set

of 2 vertices {vi, vj} ⊂ V , and the set of all edges E := {e = {vi, vj} : e ⊂ t for some t ∈ T}.

We define the 1-ring neighbor vertices Nv,1(v) := {vi ∈ V : {v, vi} ∈ E}, and the 1-ring neighbor

triangles Nt,1(v) := {t ∈ T : v ∈ t}. Several other constraints are added to the structure of the

mesh to enforce a manifold-like structure. See the SI for more information. Below, all membrane

related potentials take a discretized form as well, using coordinates of the vertices as corresponding

arguments for the potentials and force functions elaborated below.

Figure 1: (a) The plasma membrane is represented as a 2D manifold M, and is implemented as

a triangulated mesh M̂. (b) The potential terms in our membrane model are illustrated. The

shapes with a dashed stroke indicate allowed deformations that lead to: (top-left) surface tension;

(top-right) membrane bending rigidity; (bottom-left) volumetric potentials in case of closed surface;

(bottom-right) membrane-filament repulsion. The actin filaments are shown in red.

Excluding interactions with the cytoskeleton, we define the total mechanical energy for the membrane
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as the sum of the following potentials (see Fig. 1b top-left, top-right, bottom-left),

Emembrane = Earea + Etension + Ebending + Evolume, (1)

where Earea is the area elastic energy, Etension is the surface tension energy, Ebending is the bending

energy, and Evolume is the free energy associated with the 3D volume enclosed by the membrane,

which can arise, for example, as a result of the intracellular osmotic pressure. The discretized form

of these free energies are functions of mesh vertex coordinates, hence, one can compute the forces

on vertices, with fij = −∂E/∂xj(vi), where fij indicates the j-th component of the force on vertex

vi, xj(vi) is the j-th coordinate of vertex vi, for vi ∈ V and j ∈ {1, 2, 3}.

In the above outlined discretization scheme, mesh vertices do not have to represent the material

points: the time evolution of an individual vertex does not represent the trajectory of any lipid

molecule in the membrane. Therefore, one may also freely remesh the original surface at any time

as long as the resulting shape is a good approximation of the original shape. Alternatively, we can

enforce the vertices to be material points, where each vertex represents a patch of lipid molecules on

the membrane that always stay together. In this case, the local area elasticity can be incorporated

naturally in the membrane model, which will be discussed below. Our membrane model supports

both options.

In addition to closed surfaces, we can also represent membranes with fixed boundaries. The bound-

aries can optionally connect the membrane surface to an implicit lipid reservoir, allowing the total

number of lipid molecules to change.

Membrane area elasticity A piece of free open membrane spontaneously relaxes to an equi-

librium area that has zero surface tension.18 Assuming homogeneity of lipid composition of the

membrane, in the continuum limit, the membrane is considered to have a constant equilibrium mass

density (mass per unit surface area) ρ0, so the free energy density (free energy per unit surface area)

earea can be written in a quadratic form

earea =
karea

2

(
ρ

ρ0
− 1

)2

, (2)
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where ρ is the local density on the surface, and karea is a positive constant with dimension MT−2,

where M and T are the dimensions for mass and time, respectively. Total elastic energy is then,

Earea =
�
M eareadS. For a membrane not connected to a lipid reservoir, the mass conservation

equation
�
M ρdS = m must be satisfied, where m is the constant total mass. In these integrals, dS

is the surface area element.

Assuming that vertices represent material points, there is a natural discretization of surface elastic

energy using Eq. 2. Each vertex vi carries a fixed amount of lipid molecules around it, and, therefore,

has a well-defined equilibrium area A0(vi) around it. The actual area around a vertex A(vi) is defined

as a third of the sum of areas of its 1-ring neighbor triangles, so A(vi) =
∑

t∈Nt,1(vi)
A(t)/3, where

A(t) is the area of triangle t. Assuming that the surface area density in the vicinity of a vertex is

uniform, the area elastic energy of the discretized membrane can be written as

Êarea =
∑
v∈V

karea

2A0(v)
(A(v)−A0(v))

2
, (3)

where the “hat” on E indicates that it is a discretized form.

On the other hand, if the vertices only parametrically represent the surface, not being connected

to material points, the area elasticity cannot be naturally discretized around each vertex. However,

if the membrane is not buffered by a lipid reservoir, we can use the mass conservation equation,

with the assumption that the surface density is uniform across the whole membrane, to obtain the

following relation,

Êarea =
karea

2A0(M̂)

(
A(M̂)−A0(M̂)

)2

, (4)

where A(M̂) =
∑

v∈V A(v) is the area of the discretized membrane, and A0(M̂) is the equilibrium

area of the membrane. One can check, using the Cauchy-Schwarz inequality, that the energy in Eq.

4 is a minimum of the energy reachable in Eq. 3, if A0(M̂) =
∑

v∈V A0(v). The uniform density

assumption is valid, because at the smallest time resolution that we are interested in (∼1ms), the

inhomogeneity of density on the membrane is quickly relaxed throughout the membrane due to its

in-plane fluidity.2,19

In fact, the value of karea for biomembranes is so large, that often the membrane area incompress-
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ibility is assumed, and the Lagrange multipliers are used in calculations to fix the total area.20

However, since we employ energy minimization as the main mechanical simulation method, we use

Eq. 3 or Eq. 4 to enforce a softer constraint, by allowing the area of membrane to change but with

large energy penalty, instead of strictly fixing the area.

Membrane surface tension Many types of cells can actively maintain the membrane tension

within a certain range via various biological processes, such as membrane undulation and caveolae

formation and dissolution, which function as implicit lipid reservoirs.2 The experimentally measured

tensions typically range from 0.01mNm−1 to 0.04mNm−1.21

If an implicit lipid reservoir is considered, the total mass of the membrane is no longer conserved,

and in this case, the vertices in our model will not be associated with material points. Assuming

a constant surface mass density and a constant chemical potential of the lipid reservoir, the total

area-dependent energy is reduced to a linear form,

Etension = γA(M), (5)

being further discretized to Êtension = γA(M̂) where γ is the surface tension, a property of the

external reservoir.

Membrane bending elasticity The bending energy can be described using the Helfrich Hamil-

tonian,22,23

Ebending =

�
M

dS
[
2κH(H −H0)

2 + κGK
]
, (6)

where κH and κG are the bending modulus and the saddle-splay modulus respectively, H is the

mean curvature, H0 is the spontaneous curvature and K is the Gaussian curvature.

According to the Gauss-Bonnet theorem, the contribution from the second term (the Gaussian

curvature term) is constant with fixed membrane topology and boundary conditions, so we can

ignore the second term for most purposes. We discretize the first term in Eq. 6 on a per-vertex

basis.

Êbending = 2κH

∑
v∈V

(Ĥ(v)−H0(v))
2A(v), (7)
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where Ĥ(v) and H0(v) are the mean curvature and the spontaneous mean curvature estimated

around vertex v, and are assumed to be uniform in the neighborhood of the vertex with area

A(v).

Many different ways of estimating the surface curvature on a triangulated surface mesh are discussed

in.24,25 Based on our numerical experiments, we decided to allow for two different ways of estimating

the mean local curvature at a vertex in MEDYAN, which provide good numerical stability for the

systems that we studied. The first way is described in the Surface Evolver,26,27

Ĥ(vi) =
〈∇iA,∇iV 〉
2〈∇iV,∇iV 〉

, (8)

where A is the total area of the membrane, V is the total volume enclosed by the membrane, ∇i

means “taking the gradient with respect to coordinate of vertex vi”, and 〈·, ·〉 denotes taking the

inner product of the vectors. This definition gives a continuous and signed curvature value, the

sign depending on the orientation of the surface, because the volume calculation is orientation-

dependent. Therefore, this curvature estimate is suitable for bending energy computation when

the spontaneous curvature H0 is not zero. In the continuum limit, ∇A and ∇V are both parallel

to the normal direction, but computed numerically on a discretized mesh. Hence, there can be

misalignments between these vectors. Under extreme conditions these two vectors can even become

almost perpendicular, leading to unphysical geometries.

When H0 = 0, the sign of the curvature no longer matters in Eq. 7, and we rely on a way to directly

estimate the unsigned curvature as,

Ĥ(vi) =
‖∇iA‖
2‖∇iV ‖

. (9)

This equation provides better numerical stability under extreme conditions. For detailed discussion

on how the bending energy was implemented, see the SI.

The volume for a closed discretized surface mesh can be computed as V (M̂) =
∑

t∈T V (t), where

V (t) is the signed volume of the tetrahedron formed by the triangle t and an arbitrary fixed point

p ∈ R3, and the sign depends on the orientation. It is often convenient to use the origin of the

coordinate system as the fixed point.

9



In-plane shearing of the membrane is ignored We do not explicitly include the in-plane

shearing stress of the membrane in our model. Because the membrane behaves as a fluid in the

lateral directions, the in-plane shearing stress cannot be sustained, while there can be a dynamic

stress, which depends on fluid’s properties. In MEDYAN, mechanical energy minimization steps

imply that the system is nearly equilibrated.11 Therefore, we also ignore the dynamic shearing

stress.

Volumetric energy A membrane vesicle is also resistant to a change of its enclosing volume.

The following quadratic expression captures the volume dependent free energy near the equilibrium

volume,

Evolume =
kvolume

2V0(M)
(V (M)− V0(M))

2
, (10)

where V (M) and V0(M) are the volume and the equilibrium volume enclosed by the membrane M

respectively, and kvolume is a positive constant, with dimension ML−1T−2, where M, L and T are the

dimensions for mass, length and time, respectively. Next, we show how this formula can be derived

using the osmotic pressure difference across the membrane vesicle.

Assuming a constant osmotic pressure outside the vesicle, the free energy due to osmotic pressure

inside an enclosed volume is,

Eosmotic = −
� V

V ∗
∆Π(V )dV = −

� V

V ∗
(Πin(V )−Πout)dV, (11)

where Πin and Πout are the osmotic pressure inside and outside the vesicle respectively, ∆Π =

Πin−Πout, V is the volume enclosed by the membrane and V ∗ is an arbitrary reference volume.

Under an assumption that the membrane is perfectly permeable to water and impermeable to solutes,

the minimum osmotic energy occurs when V = V0 and Πin(V0) = Πout. Under further assumptions

that the total mole fraction of the solutes is far less than the mole fraction of the solvent, and that

the solutes are well mixed in the system, one can write Πin = NkBT/V , where N is the total number

of solute molecules in the vesicle. In this case, V0 = NkBT/Πout, and by choosing V ∗ = V0, the
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energy can be evaluated as

Eosmotic = Πout

[
−V0 ln

V

V0
+ (V − V0)

]
≈ Πout

2V0
(V − V0)

2,

(12)

where the approximation is the result of expanding the energy to the second order with respect to

V around V0.

Additional discussion of the membrane force field Our membrane model is based on Hel-

frich’s scheme, which assumes that the lipid molecules are perpendicular to the membrane surface.22

However, lipid tilting may also contribute to the total free energy, which was shown to be important

at length scales of lipid molecules themselves.28 In our current model, we are not including the

tilting effect because the resolution of the membrane mesh in our model (i.e., the triangle element

length) is typically 20− 70 nm, which is much larger than the length scale at which tilting plays an

important role.

Our current model also does not include a repulsive potential among the membrane elements. Al-

though this may hypothetically allow unphysical geometries for folded membranes, in our simulations

reported below, we have not observed any membrane self-crossing. In part this is explained by the

steric interactions between the membrane and actomyosin networks that engender a positive tension,

preventing crossing of membrane’s segments. In future, a self-avoidance potential can be naturally

incorporated if self-crossing becomes a problem, however, at the expense of added computational

effort.

For 2D manifold, all free energy terms mentioned above, except for the neglected in-plane shearing

energy, are parametrization invariant, which means that the energy of the surface depends only on the

shape of the surface. How the surface is triangulated or how the surface coordinates are chosen only

affect the discretization error. More specifically, in the absence of membrane shearing energy, as long

as the triangulations represent the same shape of the surface up to some precision (the similarity

between two surfaces can be measured using the Hausdorff distance29), the total discretized free

energies computed on those triangulations should be approximately the same. This is, in fact, very
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useful in a simulation, because it allows us to re-triangulate the membrane meshwork to improve the

triangulation quality, without changing membrane’s physical behaviors. This approach effectively

addresses the problem of the quality of triangulation becoming poor over time due to membrane’s

large deformations, which, in turn, leads to undesirable numerical instabilities.

2.3 Adaptive surface remeshing

The aforementioned membrane potentials (especially bending energy, that is based on a discretized

estimate for curvature) suffer numerical issues when the membrane deformation becomes large. To

resolve this problem, we rely on the method of triangulated surface remeshing, which essentially

optimizes the membrane quality without changing its shape.30,31

The quality of the mesh is related to the following: the triangle shape qualities and the dihedral

qualities. For best numerical stability, the triangles used in the mesh should be as equilateral as

possible, while the dihedral angles between the triangles sharing an edge should be as close to π

as possible (or the angle between oriented normal vectors of the two triangles are as close to 0 as

possible).

Our implementation of such an algorithm was inspired by.30,31 We apply local operations on the

meshwork in an iterative manner to optimize both triangle and dihedral quality. With this algorithm,

we are able to get an isotropic surface triangular mesh with good quality, where the vertex density

adapts to the local curvature, making numerical simulations accurate for high curvature regions,

while being efficient for low curvature regions. See the figures in the SI for an example of the

remeshing procedure.

In MEDYAN, the adaptive mesh quality optimization for a membrane is carried out after every

energy minimization. We rely on the Marching Tetrahedra algorithm as the mesh generator,32 which

is fast, robust and easy to implement. However, the quality of the mesh by Marching Tetrahedra

may lead to triangles that are far from being equilateral. Therefore, the mesh optimization algorithm

is essential for achieving numerical stability.
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2.4 Interactions between the membrane and the cytoskeleton

2.4.1 Membrane-filament repulsion

Without tethering proteins connecting the cytoskeletal filaments to the plasma membrane, the fil-

aments and the membrane sterically repel each other (Fig. 1b bottom-right). A hypothetical

repulsive interaction between filament beads and membrane vertices would be insufficient in this

case, because our simulations showed that the filaments are able to occasionally pierce through the

triangle. Therefore, we developed an excluded volume interaction via repulsion between filament’s

tip and a meshwork triangle, where essentially every point on the surface of the membrane interacts

with the tip. The interaction energy between a given filament tip and membrane takes the following

form,

Eexcl = kexcl

�
M

dS
1

dn
= kexcl

∑
t∈T

�
t

dS
1

dn
, (13)

where kexcl is the force constant to the interaction and n describes the steepness of the potential,

and d is the distance between the filament tip and a point on the membrane. This form of the

potential generalizes the potential for segmented interactions from33 to higher dimensional discrete

elements. We found that choosing n = 4 produces a repulsive force field that is steep enough while

still amenable to analytical evaluation of forces. For detailed derivation of this volume exclusion

energy, see the SI.

The force acting on the filament tip from this repulsive interaction is f = −∇Eexcl, where ∇

means “taking the gradient with respect to the coordinate of the filament tip”. The reaction force

(repulsive forces on the membrane by the filament tip) is balanced by the load on the membrane

when the mechanical energy is minimized. Therefore, we directly use the value of f to be the

load force when a filament polymerizes against a membrane. The polymerization of a filament near

the membrane ratchets the membrane thermal fluctuation,34 and statistically work is done against

the membrane load, resulting in membrane protrusion or deformation.35 In the absence of explicit

modeling of membrane fluctuation, we use the value of the load force f to compute a scaled filament
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polymerization rate,11,35

kpoly,eff = kpolye
〈f,δ〉
kBT , (14)

where 〈·, ·〉 indicates an inner product, and δ is a vector pointing in the direction of polymerization.

The average monomer length projected along an actin filament is, ‖δ‖ ∼2.7 nm. This coupling

introduces a non-linear feedback that allows instantaneously generated mechanical stresses to locally

modulate chemical dynamics. A schematic diagram of membrane-filament interaction can be seen

in Fig. 2.

Figure 2: An illustration of membrane as a chemical regulator in 2D space. The membrane dis-

allows big diffusing molecules to move across, such as G-Actin molecules or the α-actinin linkers.

Therefore, the reaction volume is defined by the region inside the membrane (approximated by the

straight dotted lines cutting through the compartments). The polymerization of filaments against

the membrane is, however, possible but with reduced rates due to the Brownian ratchet effect. The

actual implementation is carried out with 3D geometrical elements.
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2.4.2 Membrane and diffusing species

Diffusing large molecules, such as G-actin monomers, cannot move across the membrane without as-

sistance. Therefore, the membrane must confine the space where the protein diffusion and chemical

reactions take place. In a compartment based reaction-diffusion system, the effect of membrane con-

finement of reaction volume is achieved by full or partial deactivation of reaction networks in affected

compartments. As shown in Fig. 2, a completely deactivated compartment does not allow chem-

ical reactions or diffusion with neighboring compartments. A partially deactivated compartment,

however, works as a normal compartment, but the reaction and diffusion rates are scaled by the

diminished volume as well as the diminished contact area between neighboring compartments.

To simplify computation, if a part of a membrane cuts through a certain compartment, we fit the

shape of that part of the membrane into a plane, and perform a planar cut through that compartment

to obtain the sliced volume and the sliced area on each side of the compartment.

This latter method introduces a small inaccuracy in sliced volume computation. To estimate the

corresponding error, we initialized a 0.8 µm radius spherical vesicle at the center of a 6 × 6 × 6

compartment grid, where each compartment is a cube of size 500 nm. For each partially activated

compartment sliced by the membrane mesh, we first estimated the actual sliced volume using a

Monte-Carlo integration with 10000 samples. We found that the average relative error between the

planar approximation of the sliced volume and the more accurate Monte Carlo estimate is below

4%. If needed, this error can be further reduced by choosing a smaller compartment size.

2.5 Computational efficiency

Every simulation in this work was run on a single CPU core. Detailed benchmarks on the perfor-

mance of perpendicular bundle protrusion simulations (discussed in the next section) are reported

in the SI. These benchmarks indicate that mechanical force relaxation is the most time-consuming

process in our simulations. Hence, parallelization of the mechanical energy computation will enable

accessing significantly larger time and length scales.
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2.6 Code availability

The source code for this work is published with MEDYAN version 5 on http://medyan.org, where

example input files for simulating filament-vesicle interactions are provided in the examples direc-

tory. Additionally, simulation input files and trajectories for results presented below have been

archived in Digital Repository at the University of Maryland.36

3 Results and Discussion

We first applied the new force field to investigate how a spherical vesicle would deform as its volume

starts to shrink under hyperosmotic conditions. The latter causes a mismatch of internal and external

pressures, which affects our new volumetric term, leading to corresponding reduction of system’s

volume. We started simulations with an initially spherical vesicle having a radius of 1µm, applying

potentials given in Eqs. 4, 7 and 12. The equilibrium area, A0, was fixed to be the initial spherical

surface area. We continuously decreased the equilibrium volume V0 over time, which effectively

creates an increasingly hyperosmotic chemical environment, since V0 = NkBT/Πout under dilute

conditions.

Several snapshots of the simulation trajectory are shown in Fig. 3, indicating that under a constant

area constraint, the membrane is unable to maintain its original spherical shape, crumpling as the

vesicle volume shrinks. The local surface deformations, however, are smooth, because the bending

potential prevents formation of sharp features where the mean curvature would be too large. We

also notice that, over time, the regions with high convex curvature (as shown in blue in Fig. 3)

become more distinct and highly localized.

Next we investigated how two classes of actomyosin architectures interact with the vesicle membrane

boundary. Our simulations of vesicles containing disordered actomyosin networks, which are not

bundled, indicate that randomly initialized filaments growing toward the membrane tend to bend

instead of making a membrane protrusion, continuously inducing small membrane ruffles (Fig. 4a).

At a steady state, the filaments accumulate just beneath the membrane surface. On the other
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Figure 3: Evolution of the vesicle shape is shown under increasingly hyperosmotic conditions. Scale

bar: 1µm. The red-white-blue coloring scale marks the local mean curvature, with red being the

most concave and blue being the most convex. The membrane surface becomes more crumpled over

time, and the bending stress is balanced by the forces arising from volume and area potentials. Using

adaptive remeshing, the mesh is sampled more densely where the absolute values of local curvatures

are higher.

hand, as displayed in Fig. 4b, the initially bundled filaments grow toward two poles of the vesicle,

forming strong tubular protrusions. Interestingly, in some cases, a few filaments grow away from

the axis of the bundle, become eventually buckled, hence, resembling the behavior of filaments

in disordered actomyosin networks. Finger-like membrane protrusions, such as the filopodia, are

ubiquitous structures in eukaryotic cells.37,38 Although the biological functions of the filopodia

were widely explored,38–40 a clear understanding of how filopodia form as a result of membrane-

cytoskeleton interactions is still lacking. Overall, these results demonstrate that distinct seeding

patterns lead to different actomyosin network architectures, where formation of bundles is crucial

for generating tubular membrane protrusions.

To study what bundle properties most facilitate protrusion, we explored how the tubulation process

depends on the number of actins filaments and G-Actin concentrations. To sustain stable tubular

growth, the number of filaments, N , should satisfy kpoly[A] exp
(
−‖f‖‖δ‖

NkBT

)
≥ kdepoly,8,9 where ‖f‖ =

2π
√
2κγ, which is the load force at the tip of a stable filopodium. This imposes a minimum G-Actin

concentration threshold which increases exponentially as the number of actin filaments decreases.

For example, a bundle with 7 actin filaments requires at least 3.9× 10−4 mol/m3 of G-Actin at the
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Figure 4: Vesicle deformation by actin filaments crucially depends on the spatial organization of

actin filaments. The color codes are the same for two images: Cyan: Membrane, Red: Actin

filaments, Green: α-actinin cross linker, Blue: Myosin motor. Filaments are randomly initialized

in (a), and initialized as a bundle in (b). The boxed images on the bottom right show the initial

filament arrangements for each condition. Bundled filaments can generate tubular protrusion, while

filaments in disordered actomyosin networks accumulate under the membrane, being largely parallel

to the surface.
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tip to sustain protrusion against the membrane with γ = 0.02 pNnm−1 and κ = 100 pNnm, but

with 1 filament alone, the concentration has to be at least 0.474mol/m3. Furthermore, for a tube

to form in the first place, the filaments need to overcome the initial resistive force, which is greater

in magnitude than subsequent steady state load forces. Another salient requirement for successful

protrusion formation is for the bundle to avoid buckling.8

To elaborate on these ideas, we simulated an actin bundle polymerization against a sheet of planar

membrane at a constant surface tension with fixed edge boundaries. The results are summarized in

Fig. 5. Our simulations show that a bundle with 4 filaments cannot effectively protrude against the

membrane because it is not strong enough to resist buckling (Fig. 5a/b). With more actin filaments

comprising the bundle, the protrusion can form at sufficiently high G-Actin concentrations (Fig.

5c/d). When a finger-like protrusion is successfully formed, its rate of growth increases with both

the number of filaments in the bundle, and the G-Actin concentration (Fig. 5e).

We assumed in this work that the pointed ends of the filaments are fixed, so there is no overall ret-

rograde flow41 of actin filaments. We also assumed that the G-Actin concentration is uniform along

a membrane tube. Under these assumptions, the dependencies of the growth rate on the number

of filaments in the bundle and the G-Actin concentration are qualitatively in accord with previous

theoretical models.8,42 However, these assumptions allow the filopodia to grow at a constant speed

indefinitely, which is unphysical in real filopodia. The existence of actin retrograde flow and the

finite diffusion rate of G-Actin molecules lead to a steady state filopodial structure having a finite

length and a dynamically generated G-Actin concentration gradient along the tube.9 Furthermore,

transportation of G-Actin by motor molecules, such as Myosin-X, may lead to a non-monotonic

G-Actin concentration profile along the filopodium.43,44 These additional aspects of growth of ma-

ture filopodia are potentially amenable to simulations based on further elaboration of our new

model.

In real cells, the polymerization directions of filament bundles are not necessarily perpendicular to

the membrane. At sufficiently high G-Actin concentrations, we anticipate that the tubular protrusion
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Figure 5: Filament bundle deforming the membrane. Color codes for (a) and (c): Cyan: Membrane,

Red: Actin filaments. (a) An actin bundle with 4 filaments cannot make a successful protrusion. (b)

The maximum height of the membrane corresponding to (a) is shown. The growing filaments slightly

deform the membrane in the initiation phase, subsequently becoming buckled and, hence, failing to

form a tubular protrusion. (c) A bundle with 7 filaments form a finger-like membrane protrusion.

(d) The protrusion height on the membrane corresponding to (c) is shown. Interestingly, bundles

tend to buckle less when surrounded by the membrane, in agreement with a previous work.45 (e) The

growth rate for a nascent tubular protrusion increases almost linearly as the G-Actin concentration

increases, and also increases with the number of filaments in the bundle.
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is less likely to form when the filaments are inclined to the membrane surface, in particular, because

those filaments would be more susceptible to buckling.

To investigate how bundle’s orientation affects protrusion formation, we simulated a filament bundle

polymerizing towards a planar membrane sheet, where we varied the incident angle, α, which is the

angle between the axis of the filament polymerization and the normal vector of the membrane.

We also varied the load force at the tip of a stable protrusion, by modifying both the membrane

tension and the bending rigidity simultaneously, while keeping their ratio constant, i.e. γ = χγ0,

κ = χκ0 where γ0 and κ0 are the reference membrane tension and bending rigidity, and χ is a unitless

parameter. In this way, the tubes formed would have the same radius R =
√
κ0/2γ0,8 but the load

force at the tip for a stable protrusion changes as ‖f‖ = χ2f0. The results are demonstrated in Fig.

6. When the filament bundle is perpendicular to the membrane surface (α = 0), as the membrane

rigidity increases (with increasing χ), the filaments first bend, and then eventually buckle, resulting

in a protrusion failure. Furthermore, our simulations show that when filaments are not perpendicular

to the membrane (α > 0), they easily buckle even under low membrane rigidities.

The above-discussed results suggest that bundle’s orientation relative to the membrane is important

in controlling the process of protrusion initiation. These insights help to explain the prior experimen-

tal observations showing that bundles growing within a vesicle can either be bent by the membrane

and form ring-like structures, or protrude the membrane to form finger-like structures.46

4 Conclusions

In this work we have addressed the problem of the interactions between the active matter and the

plasma membrane, which are important for cell functions and have been a growing field of study.

To study the rich behaviors arising from these mechanochemical interactions, we have developed

a new force field for simulating the plasma membrane and its interaction with the active network.

These algorithms were incorporated into MEYDAN, which is a broad simulation platform for active

matter. The new membrane model enables simulations of rich cytoskeletal behaviors near the
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Figure 6: Membrane protrusion behaviors are shown under different relative membrane rigidities

characterized by a unitless parameter χ (where a larger χ means larger membrane tension and

bending modulus) and the incident angle α between the filament bundle and the membrane surface

normal. All protrusions are made by a bundle comprised of 7 actin filaments. Color codes: Cyan:

Membrane, Red: Actin filament, Green: α-actinin cross-linker.
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cell membrane, accounting for geometrical, mechanical and chemical details. On a single CPU,

membrane-MEDYAN simulations can treat systems on the length scale up to several micrometers

and time scales on the order of thousand seconds. Our software implementation allows to easily tune

various model parameters, such as the elastic coefficients characterizing a membrane, and its initial

shape. Our new model enables simulations of various cellular systems where membrane-cytoskeleton

interactions play a salient role, such as lamellipodia, filopodia and dendritic spines.

In the current work, we applied membrane-MEDYAN to simulate a membrane vesicle, as well as

the membrane-cytoskeleton systems under a variety of conditions. Simulations of an empty mem-

brane vesicle under hyperosmotic stress lead to membranes’ intricate crumpling. Simulations of

vesicles containing actomyosin networks show that bundling of actin filaments is crucial for generat-

ing tubular membrane protrusions. We found that the initial growth rate of successful protrusions

is determined by the thickness of the protruding actin bundle and the G-Actin concentrations at the

growth tip. Furthermore, unsurprisingly, lowering membrane’s surface tension or bending modulus

facilitates the tubulation process. Finally we showed that the inclination angle between the filaments

and the membrane is also critically important for the formation of finger-like protrusions. However,

softer membranes can significantly mitigate this constraint.

One limitation of the current membrane model is the absence of membrane-associated proteins and

membrane-cytoskeleton adhesions, which modulate both mechanical and chemical properties of the

membrane-cytoskeleton system. Membrane based proteins, such as the BAR-domain proteins, can

cause membrane remodeling by generating local membrane curvatures, being present in many cellu-

lar processes such as membrane trafficking and endocytosis.47,48 Membrane-cytoskeleton adhesions

could increase the apparent rigidity of membrane attached to the actin cortex, which is important in

cell blebbing.1,4,48 They are also important in creating membrane invaginations, which are impor-

tant in initiating endocytosis.49 Moreover, chemical signaling via membrane receptors are known to

regulate cytoskeleton behaviors.50 Our current model can be naturally extended in future to enable

studying of such intricate processes.
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5 Supporting Information

We provide more details on our membrane-cytoskeleton model in the SI. First, we list all parameters

and the setup details for the reported simulations. Then, we present a detailed description of our

triangular mesh representation, highlighting, in particular, the effects of the adaptive remeshing

algorithm. We also provide a detailed discussion of membrane curvature and bending energy cal-

culations, including a comparison of our curvature estimates with a previous analytical model.51

Next, we give derivation and interpretation of the analytical formula of the triangle-bead volume

exclusion potential. Finally, we include the performance benchmark for the bundle protrusion sim-

ulation.

Additionally, we provide 2 videos, vesicle-rand.mp4 and vesicle-bundle.mp4, which show the

animated trajectories of actomyosin network growing inside membrane vesicle (Fig. 4), with initially

randomized actin filaments and initially bundled actin filaments, respectively.
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