Caching with Delayed Hits

Nirav Atre Justine Sherry
Carnegie Mellon University ~ Carnegie Mellon University
ABSTRACT

Caches are at the heart of latency-sensitive systems. In this paper,
we identify a growing challenge for the design of latency-minimizing
caches called delayed hits. Delayed hits occur at high throughput, when
multiple requests to the same object queue up before an outstanding
cache miss is resolved. This effect increases latencies beyond the predic-
tions of traditional caching models and simulations; in fact, caching
algorithms are designed as if delayed hits simply didn’t exist. We show
that traditional caching strategies — even so called ‘optimal’ algorithms
—can failto minimize latency in the presence of delayed hits. We design a
new, latency-optimal offline caching algorithm called BELATEDLY which
reduces average latencies by up to 45% compared to the traditional,
hit-rate optimal Belady’s algorithm. Using BELATEDLY as our guide,
we show that incorporating an object’s ‘aggregate delay’ into online
caching heuristics can improve latencies for practical caching systems
by up to 40%. We implement a prototype, Minimum-AggregateDelay
(MAD), within a CDN caching node. Using a CDN production trace and
backends deployed in different geographic locations, we show that MAD
can reduce latencies by 12-18% depending on the backend RTTs.

CCS CONCEPTS

« Networks; « Theory of computation — Caching and paging
algorithms;

KEYWORDS
Caching, Delayed hits, Belatedly

ACM Reference Format:

Nirav Atre, Justine Sherry, Weina Wang, and Daniel S. Berger. 2020. Caching
with Delayed Hits. In Annual conference of the ACM Special Interest Group
on Data Communication on the applications, technologies, architectures, and
protocols for computer communication (SIGCOMM °20), August 10-14, 2020,
Virtual Event, NY, USA. ACM, New York, NY, USA, 19 pages. https://doi.org/
10.1145/3387514.3405883

1 INTRODUCTION

Caches are key components of the computer systems toolkit: they
reduce bandwidth consumption to a bottlenecked backing store,
they improve throughput for memory-intensive services, and they
reduce read delays for latency-sensitive applications. Consequently,
caches appear across seemingly every class of computer system:
e.g., in microprocessors [27], in distributed file systems [51], in CDN
proxies [12, 21], and in software switches [47].

In this paper, we focus on a surprisingly overlooked aspect of
caching and latency. Caching models and simulators assume that
there are exactly two possible outcomes when an object is requested:

This work is licensed under a Creative Commons Attribution International 4.0 License.

SIGCOMM °20, August 10-14, 2020, Virtual Event, NY, USA
© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-7955-7/20/08.
https://doi.org/10.1145/3387514.3405883

495

Weina Wang
Carnegie Mellon University

Daniel S. Berger
Microsoft Research

a low-latency ‘hit’, or a higher latency ‘miss.” In reality, there is a
third potential outcome: a delayed hit [25, 56]. Delayed hits occur
in high-throughput systems when multiple requests for the same
object occur before the object is fetched from the backing store.

Our group first encountered delayed hits on an FPGA-based soft-
ware switch, with incoming packets triggering access to a flow
context stored in either an SRAM-based cache (5 ns reads), or a
DRAM-based global backing store (100 ns reads). When a flow’s
packet results in a cache miss, it triggers the 100 ns fetch operation.
At high throughput, a second packet of the same flow arrives before
100 ns have passed. This packet requests the same object, and waits
for it to return from the fetch initiated by the first packet. While the
second packet does not have to wait the full 100 ns for the object to
arrive, it also does not experience a 5 ns ‘hit’ either. Per traditional
caching literature, the request corresponding to the second packet
would be counted as a hit. In reality, this second packet experiences
a slower, ‘delayed hit’.

We demonstrate throughout this paper that the traditional caching
objective of hit-rate maximization and the related goal of latency min-
imization are not equivalent problems when some hits are delayed.
We argue that therefore we need new algorithms for latency-sensitive
caching systems.

One way to understand fundamental trade-offs in caching design
is by studying an offline-optimal algorithm. The classic such algo-
rithm is called Belady’s algorithm [7]. Unlike real caching systems,
offline-optimal algorithms assume an oracle with perfect knowl-
edge of future requests. Offline algorithms can provide guidance and
bounds for practical algorithms, e.g., if the offline-optimal algorithm
achieves a k% hit-rate, then any online algorithm will achieve at most
k%. In the past, understanding which objects an offline algorithm
chooses to cache or evict has often guided the design of practical
systems [9, 29, 55]. Our approach to understanding delayed hits sim-
ilarly uses lessons from the offline setting to guide our design of a
practical online system.

Limitations of existing algorithms: We begin in §2 by showing
that Belady’s algorithm, the optimal offline approach for hit-rate
maximization, does not guarantee minimal latency in the presence
of delayed hits. We then measure the gap between hit-rate and
latency-oriented regimes on cache traces including a 10 Gbpslink and
alatency-sensitive CDN. We find that latency evaluations of practical
caching algorithms (e.g., LRU [64]) based on hit-rate alone underesti-
mate true latencies by 14-63% in switch caches and 22-36% in CDNs.

Optimal, latency-minimal caching: Having demonstrated that
existing caching algorithms fail to minimize latency, we turn to the
design of new algorithms that are aware of delayed hits. In §3, we de-
sign a new offline caching algorithm, BELATEDLY,! which computes
empirically tight bounds on the minimum latency in polynomial
time. Using BELATEDLY, we quantify the gap between Belady’s al-
gorithm — and thus the hit-rate maximization strategy — and true
latency-optimality. We find that Belady’s latencies are 0.1-38% worse

! Available at https://github.com/cmu-snap/Delayed-Hits

than BELATEDLY’s latency upper-bounds for packet switches and
1.8-17% worse than BELATEDLY for CDNGs.

Low-latency online caching: We use BELATEDLY as our guide
for the design of a practical online caching strategy, Minimum-
AggregateDelay (MAD), in §4. Specifically, we derive a simple ranking
function from BELATEDLY by modeling an object’s future ‘aggregate
delay’. This ranking function empirically approximates BELATEDLY's
decisions. We then design a practical aggregate delay heuristic which
can be used to make traditional caching algorithms aware of delayed
hits. We implement a prototype of MAD within a CDN caching node.
In experiments with backends deployed in the US, Europe, and East
Asia, we observe average latency reductions of 12% to 18% with a
memory overhead of under 3%. We use simulations to explore a
wider range of scenarios and find that MAD improves latencies over
traditional algorithms by 15-43% for packet switches, 10-60% for
CDNgs, and 5-40% for distributed storage systems. Most strikingly,
for caches with extremely high latencies to the backing store, MAD
can provide better average latencies than the latency provided by
Belady’s algorithm.

Why now? Why hasn’t anyone noticed before that delayed hits
play an important role in cache latencies? Delayed hits are noted in
passing in several places in the literature [25, 56], and anyone who
has ever implemented a cache has had to consider delayed hits as
well [1, 8, 35, 43, 53, 58].

We conjecture that the problem has only recently become percepti-
ble from a performance perspective due to an evolving ratio between
system throughputs and latencies. If throughput is low relative to la-
tency, it may only be possible for 1-2 requests to arrive during a fetch.
However, if throughput is higher relative tolatency, one would expect
more requests during a fetch. We refer to the ratio between the object
fetch time and mean request inter-arrival time as Z, and we show in
§3.2 thatas Z grows, the gap between Belady and BELATEDLY widens.

Inrecent years, Z has grown across a wide range of systems. For ex-
ample, DRAM latencies are only marginally improving, while newer
memory technologies (e.g. High Bandwidth Memory, or HBM) boast
order-of-magnitude improvements in bandwidth over current DDR
standards [37]. Similarly, the latency between a CDN forward proxy
and a central data center is defined by wide-area latencies; mean-
while, throughputs are rapidly growing, e.g., with network links
moving from 10Gbps to 100Gbps and 400Gbps [24]. The fundamen-
tal problem is that latencies are edging marginally closer and closer
to limits imposed by the speed of light, while throughputs keep
growing unhindered. Hence, we believe that the impact of delayed
hits on latency-minimizing caching systems will grow with time.

2 THE PROBLEM WITH DELAYED HITS

A basic delayed hit scenario is illustrated in Figure 1. When a
request arrives for an object and the object is not stored in the cache
@, the cache triggers a request to retrieve this object from a back-
ing store (2). The retrieval takes some non-zero amount of time, L
seconds, and the average inter-request arrival time is R seconds.
For simplicity we say that R seconds is one timestep, and that the
amount of time to fetch the objectis Z = % timesteps. After the object
is requested, but before Z timesteps have occurred, a new request
arrives (3). This request must wait some non-zero, but < Z amount
of time for the object to arrive as well (@.

496

A request arrives for object X at
T=0, resulting in a cache miss

The cache sends a fetch cucte
to the backing store, which
takes Z timesteps to return

| B

Backing Store

A second request for
object X arrives at T=n,

before the fetch returns

@ X arrives in the cache at
T=Z, and both requests are
served. The 2 requests see
latencies of Z and (Z-n),
respectively

Figure 1: Two requests for object X arrive within Z timesteps of
each other. The first request results in a miss, the second request is
a ‘delayed hit?

1.004 Idealized == = |dealized
-00 7 ealize
HR (75%) MR (25%) Actual
0754 o e o
o I
a
0 0501 |
el
0254 | TrueHR Delayed Hits
(40%)
0.001_{ : . : | |
Hit Latency Miss Latency

Request Latency

Figure 2: An example CDF of requestlatencies. Delayed hits account
for the gap between the true hit-rate (HR) and the miss-rate (MR).

To concretize this notion, consider a cache where Z = 10. At
timestep T = 3, a request for object A arrives, resulting in a cache
miss; this triggers a fetch to the backing store for object A which will
complete at time T =13, hence the first request will be served after
a total latency of 10 timesteps. If additional requests for A arrive at
T =5and T = 11, then they too will complete at T = 13, and will
experience latencies of 8 and 2, respectively.?

Traditional caching models ignore the contribution of delayed
hits, which, as we show in the following sections, can be significant
in systems with high latency to the backing store. Figure 2 depicts the
physical interpretation of delayed hits, and the relationship between
the true hit-rate, the idealized hit-rate, and the miss-rate.

2.1 Classic Caching Algorithms

Delayed hits subvert expectations of traditional caching algo-
rithms when it comes to latency. A caching algorithmis an algorithm
to decide, given a cache and an incoming stream of object requests,
when and which objects to store in the cache, and when and which
objects to evict. The caching algorithm produces a cache schedule:
a series of decisions about admissions and evictions for a given
set of cache parameters and a given sequence of object requests. A
caching algorithm aims to meet a particular objective, e.g., maximiz-
ing hit-rate. Offline (‘optimal’) algorithms know of all requests in the
future, and can therefore generate a theoretically optimal schedule
with regard to the objective. Online (‘practical’) algorithms are aware
of past object requests, but not future requests.

Classical caching algorithms are designed with the objective of
maximizing hit-rate, treating ‘true’ hits and delayed hits as one cat-
egory [27, 54]. Measuring the hit-rate (HR) allows cache designers
to evaluate numerous properties one might wish to extract from
a caching algorithm. For example, if a cache is deployed to reduce

ZNote that for the purposes of our modeling, we assume that processing time for each re-
quest is 0 - that is,as soon as the data arrives, all requests are served instantly. In many sys-
tems this is not true, and each request must be processed serially, e.g., reading, modifying,
and writing updates to the cached object. Non-zero processing times therefore introduce
an additional queueing delay which further increases the latency due to delayed hits.

@ Fetch for object C (started Z=3
timesteps earlier) returns

Hit Hit | Miss | Delayed Hits Belady
@ 0 0 3 2 | 1 | Average =6/5
S
A 0000
L Hit | Miss | Hit | Hit | Hit | Optimal
Average = 3/5
Cache is full. Which object 0 3 0 0 0 g

(A or B) should we evict?

Figure 3: For this trace for a cache of size 2 and a Z of 3, Belady’s
algorithm chooses a latency-suboptimal schedule.

bandwidth consumption to a backing store (e.g. a forward proxy in
a bandwidth-limited network), then the miss rate, MR = (1— HR)
is proportional to the bandwidth consumption on the path to the
backing store. Other caches are deployed to minimize latency. When
assuming delayed hits do not exist (and that backing store latencies
are uniform [23, 30, 39]), the average latency is equal to:

HRxhit latency + MR xmiss latency

1)

In the presence of delayed hits, the latency estimates derived from
traditional hit-rate based models underestimate true latency. Some
so-called ‘hits’ will in practice experience latencies closer to the high
latency of a miss than the low latency of a true hit. As a consequence
of this gap, traditional algorithms fail to minimize latency, which we
demonstrate in offline simulations (§2.3) and real experiments (§5).

2.2 Belady is Not Latency-Minimal

The classical Belady’s algorithm [7] is provably optimal at both
maximizing hit rates and minimizing latency in the basic setting
where all objects are the same size [10], and the backing store latency
is both uniform and less than the request inter-arrival time. The
algorithm itselfis simple: when choosing which object to evict froma

cache, evict the object whose next request is the farthest in the future.

However, Belady’s algorithm is notlatency minimal when delayed
hits are present, as illustrated in Figure 3. In the example, the cache
(Size =2, Z =3) currently contains objects A and B, and a fetch for
object C (initiated Z =3 timesteps earlier) has just completed. Now,
the cache must evict either object A or B to accommodate C. Since B
is accessed earlier than A, Belady’s algorithm would choose to evict
A. However, in our example, we see that there is a burst of requests
to A, resulting in a series of ‘delayed hits’ with several requests to
A experiencing higher latencies. A caching algorithm that evicts B
instead of A experiences a single miss corresponding to B, but all of
the subsequent requests to A would have been true hits, resulting
in a lower average latency.

|Algorithm Description

LRU |Recency-based heuristic. Evicts the least-recently-used item
from the cache [64].

LFU |Frequency-based heuristic. Evicts the least-frequently-used
item seen since the beginning of time [20].

ARC |Balances frequency and recency [41].

LHD |Learns hit and lifetime distributions, evicts the object with the
lowest hit density [5].

Belady |Offline-optimal algorithm for maximizing hit-rate ignoring
delayed hits [7]. Requires an oracle of future requests.

Table 1: Overview of traditional caching algorithms.

497

Trace Use Case |Latency Z
CDN Intra-datacenter proxy [63] 1ms 1K
Forward proxy, nearby datacenter [34] 10ms 10K
IRT=1us |Forward proxy, remote datacenter [34] 200ms 200K
Single cache line DRAM lookup [27] 100ns <1
Network |Traversing a DRAM datastructure [27] 500ns <1
RDMA Access in GEM-switch [33] 5us 2
IRT=3us |IDS with reverse DNS lookups [46] 200ms 67K
1MB SSD Disk Read [19] 50us 2
Storage .
Hard Disk Seek & Read [19] 3ms 100
IRT=30pus |Cross Datacenter Filesystem Read [19, 62] [150ms 5K

Table 2: Average inter-request times (IRT), typical latencies, and Z
values for a range of caching use cases.

== |dealized LRU == |dealized LRU

4000 A 2000 1
Actual LRU Actual LRU
2000 4 ”/ 1000 A
0 T T T T T 0 T T T T T
1500 A

= |dealized Belady
=== Actual Belady

== |dealized Belady
== Actual Belady

1000 A

Avg. Request Latency (Timesteps)

500 A
0 ——
10° 1 02 3 104 100 1 02 3 104
(3 us) (30us) (0.3ms) (3ms) (30ms) (1 us) (10us) (0.1ms) (1ms) (10ms)
z 4
Network CDN

Figure 4: Average latency estimates of Idealized (not accounting for
delayed hits) and Actual (accounting for delayed hits) versions of
two standard caching algorithms.

2.3 Delayed Hits and Practical Algorithms

In addition to leading Belady to sub-optimal caching schedules,
we also observe that delayed hits can mislead operators managing
caching systems in practice. In this section, we simulate four classes
of caching systems and observe that delayed hits can inflate latencies
beyond what operators might expect from analyzing hit rates; in
fact, delayed hits might even lead operators to choose the wrong
caching algorithm to deploy for minimal latency.

Experimental Setup: We implement a cache simulator! which
models delayed hits for a range of caching algorithms listed in Ta-
ble 1. We rely on datasets from three classes of caching systems: a
large content distribution network [11], the CAIDA Equinix 10G
Packet dataset [59], and a networked file system at Microsoft [28].
For each trace, we simulate a set of caching scenarios, each with a
different backing store latency normalized to Z, the average number
of requests arriving during a single object fetch. To provide some
context for what Z values one might find in practical systems, we
describe a few examples in Table 2.

Delayed hits increase latencies in practice when Z is large. If
delayed hits happened infrequently, the gap between the predicted
latency derived from hit-rates (1) and true latencies would be mar-
ginal. But, in Figure 4, we show how the average latency reported by
asimulator that models delayed hits differs from one that does not.In
our simulations, we scale up the latency to the backing store; on the
X-axis we plot Z, the ratio of the backing store latency to average re-
quest inter-arrivals. We see that for both traces, as the latency to the
backing store increases (and hence Z), so does the difference between
the simulated latency with delayed hits and the predicted latency
assuming no delayed hits. Referring back to Table 2, this means that

latencies are noticeably worse than expected for Forward but not
Reverse proxies, and for IDS DNS lookups but not DRAM accesses.

Evaluating caching policies on hit-rate alone can lead to se-
lecting the wrong algorithm. The gap between a hit-rate derived
estimate of latency and the true latency varies by trace and by al-
gorithm. This means that comparisons of caching policies — even
using real, not simulated systems — based on hit-rate measurements
and Eq. (1) rather than true measurements of latency may lead to
incorrect conclusions about which caching algorithm is ‘better’ for
the system under consideration. Figure 5 depicts pairwise compar-
isons between four online caching algorithms applied to different
application scenarios. X's denote situations where choosing an algo-
rithm on the basis of hit-rate alone would result in a worse average
latency. We find that in more than one-third of comparisons, not
incorporating delayed hits into the system evaluation would lead one
to make suboptimal decisions about the ‘right’ caching algorithm,
which would lead to higher average latency in practice.

2.4 Minimizing Latency is Challenging

We have seen that optimizing for hit rate alone is insufficient to
guarantee minimal latency. So, which caching schedule minimizes
latency when there are delayed hits? Answering this question is
more challenging than one might think.

To illustrate the challenge presented by delayed hits, we present
an example where the right decision highly depends on Z. Intrigu-
ingly, we find that, as Z increases, the right schedule can change
entirely. The example consists of the following sequence of requests
to objects A and B, which is repeated indefinitely. Requests in yellow
(indicated x) denote empty time slots.

[FrO000000OD0

Time(ms) 0 1 2 3 4 5 6 7 8 9

...repeat

10 11 12 13 14 15 16 17 lorever

We assume a cache of size 1 which either caches A or B. We consider
four different Z values corresponding to the following fetch delays
(L): 1ms, 5ms, 17ms, and 22ms (assuming R = 1ms). For each Z value,
we calculate the latency achieved by three algorithms: a) caching the
bursty flow (A), b) caching the paced flow (B), and c) LRU. A green
box denotes the lowest latency for each value of Z.

Algorithm | Z-1 Z=5 Z=17 Z=22
Cache Bursty, A | 1.1ms 1.1ms 2.5ms 3.5ms
Cache Paced, B | 0.9ms 0.9ms 4.4ms 3.2ms
LRU 0.3ms 1.4ms 6.9ms 6.7ms

We find that, while LRU is latency-optimal for Z =1, the paced algo-
rithm is optimal for Z =5. For Z =17, the bursty algorithm becomes
latency-minimizing (albeit not optimal), and for Z = 22, the paced
algorithm is latency-optimal once again. The difference in latencies
is significant (between 2x and 3x) even for this simple example. We
conclude that any traditional algorithm, which ignores delayed hits
and thus considers only the sequence of requests, cannot expect to
achieve good latencies. In fact, even an educated guess, e.g. prefer-
ring bursty flows — which suffer especially under delayed hits — does
not consistently lead to the right strategy.

To further complicate matters, parallel work in our group [40]
shows that the latency objective for the delayed hits caching prob-
lem is not antimonotone.> Consequently, a caching algorithm that

3For a request sequence of size T, we can encode a cache schedule as a hit vector of
boolean values, b € {0,1}7, where b; = 1 if the i’th request experienced a true hit,

498

improves average latency under delayed hits might actually lower
the true hit-rate. In fact, it might even increase the miss-rate (i.e.
inflate the number of requests sent to the backing store). This finding
confirms our intuition that optimizing for latency is a fundamen-
tally different problem than optimizing for hit- or miss-rates. It also
has implications for bandwidth consumption of latency-minimizing
caching algorithms, which we discuss further in §5.4.

3 LATENCY OFFLINE OPTIMAL

Belady, the offline hit-rate maximizing caching algorithm, fails to
minimize latency in the presence of delayed hits, and neither do the
heuristic algorithms in §2.4. In this section, we find the answer to the
latency-minimization question by reducing it to a Minimum-Cost
Multi-Commodity Flow (MCMCF) problem. We present BELATEDLY,
an offline caching algorithm we designed to minimize latency given
delayed hits. With BELATEDLY, we can measure the gap between
Belady and true latency-optimality. Furthermore, BELATEDLY
generates a latency-optimal cache schedule which we will later use
to guide the design of a practical, online algorithm (MAD).

A latency-minimizing cache schedule minimizes the mean latency
ofallrequests, where latency = 0 upon a true cache hit, latency € (0,2)
upon a delayed hit, and latency = Z upon a miss. In §3.1, we show
that the latency-minimization problem is equivalent to an MCMCF
problem.

However, computing integer solutions to MCMCF problems is
known to be NP-Complete, and naively implementing the algorithm
involves a significant number of decision variables. To make the
problem tractable enough to compute over our empirical datasets,
we apply two optimizations: (1) we ‘prune’ and ‘merge’ states in the
MCMCEF graph using a priori insights about caching, and (2) we con-
figure our MCMCEF solver (Gurobi [45]) to solve for a ‘fractional” so-
lution, which can be found in polynomial time, and then perform ran-
domized integer rounding [10, 50] to recover a valid caching schedule.
Due to space limitations, we defer the details of these optimizations
to Appendix §A.3, and summarize their impact on BELATEDLY's per-
formance in §A.4. The BELATEDLY pipeline is illustrated in Figure 6.

3.1 Network Flow Formulation

We first describe our MCMCF formulation. Due to space limi-
tations, some formal definitions are deferred to §A.1; we provide
a proof of equivalence between latency minimizing caching and
BELATEDLY in §A.2.

Overview: MCMCF is a classic network flow problem and a general-
ization of Min-Cost Flow (MCF) [2]. Min-Cost Flow involves a set of
sourcesand sinksembedded in a larger graph; every edge in the graph
has a capacity representing the maximum amount of flow which
may traverse that edge. A solution to MCF must route flow from the
sources to the sinks without exceeding any individual edge capacity.
Furthermore, each edge is also associated with a cost. The ultimate
goal of Min-Cost Flow is to route flow across the edges such that the
total cost of all traversed edges is minimized. MCMCF adds an addi-
tional twist to the problem: flows are associated with a commodity,
and edges may have different costs for different commodities.

and b; =0 otherwise (i.e. delayed hit, or miss). Then, we can define a latency function,
1:{0,1}T— IR, such that [(b) represents the total latency for schedule b. We say that
is antimonotone if, for every pair of schedules b, b’ € {0,1 }7, where b’ > b;Vi,itholds
that [(b") < I(b). Perhaps surprisingly, [40] shows that this is not the case, implying
that it is sometimes preferable to forgo a true cache hit in order to achieve lower latency.

LRU | LFU | ARC | LHD LRU | LFU | ARC | LHD LRU | LFU | ARC | LHD
LRU X v v LRU X X 4 LRU v 4 v
LFU X v LFU X 4 LFU X X
ARC X ARC v ARC v
(a) Network (CAIDA ORD, z =2K) (b) Network (CAIDA NYC, z=2K) (c) CDN (z=100K)
Figure 5: Pairwise comparisons between online policies.
T=0 T=1 T=2 T=3 T=4 T=5 T=6

MCMCF
Optimizer
(Prune &

MCMCF
Fractional
Solver
(Gurobi C++)

Optimal
Fractional
Solution

Request
Sequence

Input Parameters

Proof of Schedule Validity

Upper Bound on Min.
Total Latency
Per-Flow Average Latency

Figure 6: The BELATEDLY pipeline for computing bounds on
latency-optimal cache schedule using MCMCF reduction.

Merge)

Lower Bound on Min.
Total Latency

Integer
Cache
Schedule

Cache

! Integer
Simulator

Rounding

Our reduction from minimum latency caching to MCMCEF con-
structs a commodity for each object requested from the cache. Ver-
tices in the graph represent either that the object is in the cache, or
thatitis in the backing store; edges between vertices represent the ob-
ject entering the cache, remaining in the cache, or being evicted from
the cache. Weights along edges represent the latency cost of misses
and delayed hits. By minimizing the weights of traversed edges,
MCMCEF equivalently computes a cache schedule with a minimal
latency cost.

Akey component in this formulation is the costs we assign to edges
in the flow network, which reflect the true latency costs of misses.
Our main finding is that the right costs to assign are ‘aggregate de-
lays’. Specifically, the aggregate delay of a miss is the total delay of
the miss and all the delayed hits within a time window of Z of the miss
(see Eq. (2) for the mathematical definition). This notion of aggregate
delay influences the design of our online algorithms, discussed in §4.

Construction of the Flow Network: BELATEDLY operates ona flow
network, a directed graph consisting of a set of vertices and edges. In
our formulation, the vertex set, V, consists of two types of vertices,
which we draw as two rows. The bottom and top rows represent
the backing store and the cache, respectively. We refer to the set of
‘backing store’ nodes as Vipem, and the set of ‘cache’ nodes as V...

Backing Store

mem

Note that the rows are slightly offset. This is because we index each
row by time, and have vertices for each timestep. For the bottom
row, we have one vertex for each timestep T = 0,1,...,N — 1. We
denote these vertices as Vipem, 7,1 =0,1,...,N —1. For the top row, we
duplicate the vertices in the bottom row, but shift them to the right
by Z timesteps as shown in the figure below. We denote the vertices
in the top row by Veep, 7,7 =Z,1+Z,...,N~1+Z. In the figure below,
Z=2.

Flow moving along an edge represents an object moving in and
out of the cache. In the following figure, an object is requested at
time T =0, arrives in cache at time T'=2, and is evicted at time T =3.

499

Since there are multiple objects, we view each object as a com-
modity and index them by i € [M], where M is the number of objects
and [M] ={1,2,...,M}. We also say o(x) is the object requested at
time x. We have 1 unit of demand for each object. The source vertex
for each object, i, is the vertex Vinem, 7, Where T; is the first timestep
at which i is requested. We also add a sink vertex for each object i

in the bottom row, denoted by Vs(lln)k

At a high level, each node in the bottom layer represents the time
of request to exactly one object; we construct an edge from Vipem, ¢ to
Vech, 1+ to allow the flow for that object to move from the backing
store to the cache. In the top layer, each node V¢, ;17 represents the
request from time ¢ being served. Objects may stay in the cache by
following edges from some Ve, p, to the next Vip, 41 — all nodes in
Veeh, have an edge to the subsequent cache node. To leave the cache,
an object follows an edge from some V., ,, to some Vipem, x for x, the
next time (> n) the same object is requested — hence all nodes in Ve,
have M edges back to Vipem, nodes, one for each object that could be
evicted at this point. If there is no further request to an object, the
edge points to the sink node for that object rather than Vipem, x. We
illustrate the request sequence {A, B, A, A, B} for objects A and B:

T=0 T=1 T=2 T=3 T=4 T=5 T=6

Sources

Looking at the above figure, it is obvious that some edges will never
be taken (e.g. Vich, 2 has an edge to Vinem, 4 despite the fact that it is
impossible for flow for object B to have reached V., 2. We discuss
pruning superfluous edges and merging nodes to improve perfor-
mance in §A.3.

The last features to add to our construction are capacities and costs
along edges to ensure that each object’s flow obeys a valid caching
schedule that minimizes latency. For example, we want to prevent
all objects simply following the edges (Vich, nVech, n+1) for the entire
duration and exceeding the cache capacity. No more than capacity
flows may traverse an edge, and our solver will try to minimize the
total cost of routing flow across these edges. We assign capacity and
cost to edges as follows:

® (Vech, n>Vech, n+1) edges (which represent staying in the cache) are

assigned capacity C, and the cost of routing flow across them is 0.

This models the fact that staying in the cache does not increase

latency, but the cache can only hold C objects at the same time.
® (Vech, n»Vmem, x) edges (which represent evicting an object whose
next request is at T = x) are assigned capacity 1, and the cost is
oo for all commodities except o(x) (the object requested at time
x), for which the cost is 0. This prevents objects from exiting the
cache along edges for a different object. Intuitively, the action
of eviction itself does not incur a latency cost. But it forces the
object out of the cache so the next request for the object and the
corresponding delayed hits will experience non-zero latencies.
(Vinem, T»Veeh, T+) are the edges that represent bringing an object
into the cache, which happens when there is a miss. It is here
that we encode delayed hit latency into the cost. The capacity
of (Vinem, T»Veeh, T+2) 18 1, and the cost is oo for all objects other
than o(T). The cost of routing o(T) along (Vinem, 7> Vech, T+2) is
the aggregate delay for requests of object o(T) while the data is
being fetched; i.e., it is the total latency for the miss plus all re-
quests that arrive during the delayed hits. The miss experiences
alatency of Z, and a delayed hit that arrives ¢ timesteps after the
miss experiences a latency of Z —t. Therefore, the cost is:

Z-1
Z+) L(o(Trn)=0(T))(Z-1).
=1

@)

All other edges (not shown) have cost = 0 e e

In the above figure, the cost for all edges is 2 (the latency Z to the
backing store) except for the edge (Vinem, 2, Vech, 4)- Because A is also
requested at T =3, it will be queued and later served by the request
being fetched; as such, we need to account for both the cost of serving
the request at =4 (which is 2) and the request at T =3 (which is 1).
Routing Flows: The MCMCF problem is to find routes for the ob-
jects such that the total routing cost is minimized. Specifically, the
routes are represented by flow variables, where each flow variable
represents whether an object/commodity is routed along an edge or
not. Here flow variables need to satisfy link capacity constraints and
flow conservation constraints, which will guarantee that the flow
variables can be converted to a valid cache schedule.

Equivalence to Latency-Minimizing Caching;:

THEOREM 1. BELATEDLY’s underlying MCMCF problem (§A.2) is
equivalent to the latency minimization problem (§A.1).

The detailed proof of Theorem 1 can be found in §A.2. Both the
MCMCEF problem and the latency minimization problems are op-
timization problems. To show that these are equivalent,? we first

4 At this juncture, one might ask: why bother with MCMCF instead of solving the
latency minimization ILP directly? The answer is three-fold. First, the LP is convoluted
and quite unintuitive (in fact, we discovered the MCMCF formulation first!). Second,
it is the network flow formulation that allows us to implement the optimizations
described in §A.3; without these, even modest LP instances of the problem are too
compute- or memory-intensive for today’s solvers. Finally, formulating the problem

500

S
o

W 1MB Disk Read (1 ms)
B Disk Seek (3 ms)
B Cross-DC (150 ms)

| === DRAM Read (100 ns)

I 6 DRAM Reads (500 ns)
RDMA Access (5 us)

I DNS Lookup (5 ms)

W Rev. Proxy (500 us)
Bl Fwd. Proxy (5 ms)

N
o
L

16.46%

o
12.14% 9.09%
0.08% 0.51% 0.91% 1.76% 0.86% 1.80%
:

33.23%

S
oo
L

16.87%

N
o
L

13.14%

0.04% 0.30% 0.67% 0.20% 1.54%
r

37.43%

%Relative Latency Difference
o

17.16%

N
o
!

14.81%

1.95%

0.38%
Storage

0.02% 0.17% 0.51%
Network (10 Gbps)

CDN

Figure 7: Latency gap between Belady and BELATEDLY for different
application scenarios (Network, CDN, Storage) today. Top to bottom:
1%, 5%, and 10% cache sizes.

E 40 == Network
> CDN
S =A= Storage
® 20 A
|
3 PR
%
> 0 !

10° 10! 102 103 10*

z

Figure 8: %Relative latency difference between Belady and BELAT-
EDLY versus z. Cache size, c =5%.

show in Lemma 1 that the feasible set of flow variables is “equivalent”
to the feasible set of caching schedules (i.e. from any feasible cache
schedule, we can define a set of flow variables that are also feasible
for the MCMCEF problem, and vice versa).

LEmMMA 1. Given a sequence of object requests, there is a bijection
between the set of feasible flow variables and the set of feasible cache
schedules.

Once we have this bijection, we can show that the objective func-
tions of these two problems are the same. With equivalent feasible
sets and objective functions, the MCMCF problem and the latency
minimization problem are thus equivalent.

3.2 Delayed Hits and Empirical Latencies

We now evaluate BELATEDLY s latency estimates relative to Belady
for a range of application scenarios.

BELATEDLY provides significantly better average latency
than Belady for today’s highest-latency systems. In Figure 7,
we plot Belady’s percent error relative to the optimal upper-bound
provided by BELATEDLY.? For the highest latencies - referring to
Table 2, those with Z values in the thousands - Belady deviates from
the optimal by 9-37%. However, for more modest latencies to the
backing store, BELATEDLY does not have noticeably lower latencies
than Belady. Even in the original FPGA-based switching scenario
which caused us to detect delayed hits, the gap between Belady and
BELATEDLY is less than 1%.

as an MCMCF naturally leads to the notion of aggregate delay; as we show in §4, this
is akey component of our online algorithm.

5 (Belady—BELATEDLY)
BELATEDLY x100%

=R= Network
CDN
=A= Storage

10

%Rel. Latency Diff.

Y e S SR

o

10t 102

Cache Size%

10°

Figure 9: %Relative latency difference between Belady and BELAT-
EDLY versus cache size (expressed as a percentage of the maximum
number of concurrent flows). Using Z =500.

Z is correlated with an increasing gap between Belady and
BELATEDLY. In Figure 8 we see that for all three datasets, Belady
performs progressively worse with respect to true latency optimality
as Z increases — until Z moves past 10K. The growth correlation
follows intuition: as Z grows, there are more chances for delayed
hits to occur, and hence more opportunities for Belady to err. We find
that narrowing of the gap between Belady and BELATEDLY beyond
Z = 10K is an artifact of our simulation duration; since Z is large
relative to the size of the trace (250K requests), it also exceeds the
duration of most flows. As a result, most requests experience ‘forced’
cache misses, raising the latency baseline and giving BELATEDLY
fewer opportunities to make meaningful caching decisions.

The gap between Belady and BELATEDLY varies with cache
size. In Figure 9, we see that the latency difference first rises, then
falls as the cache size increases. When the cache is extremely small,
neither BELATEDLY nor Belady’s caching decisions have significant
impact on latency (since most requests experience cache misses, the
average latency is close to the full latency of a cache miss); similarly,
as the cache capacity becomes very large, both strategies can afford
to simply cache all or almost all objects (the extreme case being a
cache large enough to fit all concurrent flows or active objects). In
between, however, all three datasets ‘peak’ at different points. In
particular, the Network trace has a sharp spike at 10%, while the
CDN and Storage traces have more gradual curves.

BELATEDLY’s caching decisions are correlated with the bursti-
ness of requests. The Goh-Barabasi Score [26] is a statistical mea-
sure of ‘burstiness’ in a sequence of events. A score of ‘1’ reflects
many arrivals in a short period of time (a ‘train’) followed by longer
periods with no requests. A score of -1’ represents a perfectly paced
stream of arrivals with one request every fixed number of timesteps.
In Figure 10, we see that bursty traffic (with a high Goh-Barabasi
score) incurs a lower percent latency relative to Belady. This suggests
that burstiness may be a worthwhile candidate for consideration
in the design of online algorithms that optimize for latency in the
context of delayed hits. It is this observation that guides us in the
development of our online strategy, and we discuss it in more detail
in the following section.

4 APPROXIMATING BELATEDLY

BELATEDLY provides two principal lessons for the design of im-
proved low-latency caching algorithms. First, BELATEDLY demon-
strates that the opportunity for latency improvement is high: the
gap between latency-optimal and hit-rate optimal can be as much
as 45%. Second, BELATEDLY provides us with a caching schedule that
achieves optimal latency for a given trace and Z value.

501

= 100 1 Protocol
] <« HTTPS
E 4

3 75 « HTTP
23 50+ s NTP
£o . = TCP
Eg _

5 . UDP
gg 09

© 5

RS 251

;n:

S _50-

&

g -754

-1.00 -0.75-0.50 —0.25 0.00 0.25 0.50 0.75 1.00
Goh-Barabasi Score
Figure 10: Relative latency improvement vs burstiness (for Network
traffic). Bursty flows suffer less under BELATEDLY.

Unfortunately, BELATEDLY is slow - taking up to 8 hours to compute
an optimal schedule for a trace with 250,000 requests — and requires
knowledge of the future. Both of these properties mean that BELATEDLY
itself cannot serve as a caching algorithm for practical systems.

In this section, we learn from BELATEDLY s optimal schedule how
to achieve better latencies in practical implementations. In §4.1 we
first explore heuristics in the offline setting. In this setting, we still
assume an oracle with perfect knowledge of future requests, but
we target a computationally tractable algorithm. In §4.2 we then
move to a fully online setting where the algorithm both needs to be
efficient and operate without knowledge of future requests.

4.1 Offline Approximations: Belady-AD

We seek a heuristic ranking function which quickly tells us the pri-
ority of an object for our goal to minimize latency. In practice, almost
all caching algorithms use some ranking function, e.g., LRU — an
online algorithm - prioritizes objects by how recently they were last
used. Belady — an offline algorithm - is the inverse and ranks objects
by how soon they will be used in the future. These ranking functions
prioritize hit rate whereas we seek a ranking that minimizes latency.

To derive a ranking function, we look to BELATEDLY. While we
cannot simply emulate BELATEDLY’s behavior (unfortunately, flow
algorithms like BELATEDLY don’t reveal how they make decisions), we
can search for easily measurable metrics correlated with BELATEDLY s
caching decisions. As we discussed in §3.2, BELATEDLY prioritizes
caching bursty objects, i.e. those objects with a high Goh-Barabasi
score [26]. We experimented with ranking functions based on this
score. While these functions had excellent runtime performance (the
Goh-Barabasi score is a function of mean and variance, both of which
can be measured cheaply with online algorithms), they delivered
poor latency results. Therefore, burstiness on its own is not a good
ranking function, which confirms the intuition we derived in §2.4

Instead, we turn to another metric that is directly associated with
the latency cost of bursty flows: aggregate delay, which is computed
in Eq. (2). To compute the rank of an object, we assume that the ob-
ject’s next access in the future is a miss. Its aggregate delay is the sum
of the delay due to the miss and any delayed hits which occur during
the next Z timesteps while the object would be fetched. Intuitively,
an object with a higher delay cost — with a burst of requests during
that Z window - increases average latency more than an object with
alower delay cost, and hence should be prioritized.

Nevertheless, aggregate delay by itself is still not an effective
ranking function. Consider the ranking of two objects Aand Bina
cache where Z =3 asshowninFigure 11. Ahas an aggregate delay of 6
and will notbe accessed for another 100 timesteps. Bhas an aggregate

________l0Otimesteps 000

A's Aggregate Delay: 6

___________________ |
B's Aggregate Delay: 5

Figure 11: Ranking objects solely based on aggregate delay may lead

to poor utilization of cache space.

delay of 5 and will be accessed only 10 timesteps in the future. Should
the rank function prefer A or B? Assuming we keep the cached object
until its next access, keeping A utilizes one cache line — which cannot
be used for other objects - for a very long interval. On average, each
timestep we keep A in the cache will ‘save’ an average of % units of
delay. On the other hand, for each timestep we keep B in the cache,
we save an average of 1—50 units of delay, with the opportunity to
cache other objects in the remaining 90 timesteps. Hence, B appears
to be - on average — a more efficient use of cache space.®

Following this intuition, our offline ranking function, BELADY-AD,
computes two values for each object. AggDelay(x) is the aggregate
delay for the next access to object x, and TTNA(x) is the number of
timesteps until the next access to x.” The rank is then:

AggDelay(x) 5

TTNA(x) ®)

We find that, across all Z values, the average request latency pro-
vided by BELADY-AD is within 0.1-12% of BELATEDLY. In Figure 12, we
show the average latency for BELADY-AD and BELATEDLY (normalized
against the performance of Belady’s algorithm) for a range of Z val-
ues for the CAIDA Chicago network trace; BELADY-AD closely trails
BELATEDLY, although the gap between the two widens as Z grows.
Furthermore, BELADY-AD runs several orders of magnitude faster
than BELATEDLY, computing a cache schedule in under 3 seconds for
a trace containing 250,000 requests, where BELATEDLY would take
up to 8 hours.

Rank(x)=

4.2 Online Algorithm: map

Finally, we turn to the true online setting, where we both need
to use simple heuristics to rank objects and do not have knowledge
of the future. Fortunately, we can use the past to make predictions
about the future. Just as LRU uses recency as a ranking function -
the ‘inverse’ of Belady’s algorithm - we need to ‘flip’ our measures
of AggDelay(x) and TTNA(x) to use data from past requests rather
than future ones.
©This intuition does not necessarily lead to optimal decisions! For example, if we were
to prefer B and evict A, but in the 90 timesteps after B no other requests arrived then

it would have been better to prefer A.

"Note that Belady’s algorithm uses the ranking function alone.

1
TTNA(X)

w
o
L

Policy
== BELATEDLY
Belady-AD

N
o

fay
o
1

| L SR
T

10°

o
1

102 103 104

z

10t

%Latency Improvement
Relative to Belady

Figure 12: BELADY-AD closely trails BELATEDLY.

502

Luckily, we already have alarge literature of estimators for TTN A(x),
asalmostall algorithms are essentially predictors of the next access to
an object. Recall that Belady’s algorithm ranks objects by TTN A(x)
alone, and is optimal in the absence of delayed hits. Hit-rate optimiz-
ing algorithms aim to operate as close to Belady as possible [55], and
so the closer their ranking function is to m, the better they
perform. Hence, in §5 we experiment with using LRU [64], ARC [41],
and LHD [5] as estimators of TTNA(x).

This leaves us with estimating AggDelay(x). Recall that we mea-
sure Aggregate Delay by assuming that the next request to object x
will be a miss, and computing the sum of delays for the miss to x and
any subsequent delayed hits for x. We ‘flip’ this by assuming that
all past requests to x were misses and then calculating the average
aggregate delay per miss; we illustrate this in Algorithm 1. We find
that this approximates the true AggDelay(x) well, e.g. with a Pearson
Correlation Coeflicient of 0.7 for the network trace.

Finally, to create MAD, we combine the code® from Algorithm 1
with a known estimator for TT NA(x). We can now compute the rank
using Eq. (3).

Algorithm 1 Estimating AggregateDelay

1: struct OBJECTMETADATA
2 NumWindows = 0

3: CumulativeDelay = 0

4 WindowStartldx = —co
5

6: function ESTIMATEAGGREGATEDELAY(X: OBJECTMETADATA)

) t X.CumulativeDelay
7 re urn‘ X NumWindows
8: end function

9:
10: function ONAccess(Timeldx, X: OBJECTMETADATA)
11: // Time since start of the previous miss window
TSSW = (Timeldx - X WindowStartIdx)

14: if TSSW > Z then

15: // This access commences a new miss window

16: X.NumWindows += 1

17: X.CumulativeDelay +=Z

18: X WindowStartldx = Timeldx

19: else

20: // This access is part of the previous miss window
21: X.CumulativeDelay += (Z - TSSW)

22: end if

23: end function

We note that parallel work [40] in our group has shown that any
deterministic online algorithm for the delayed hits problem has a
competitive ratio’ of Q(kZ), where k is the size of the cache. Despite
falling in that category, our empirical evaluations show that MAD
yields considerable latency improvements over traditional caching
algorithms, and its simplicity lends itself well to implementation. We
leave to future work to find a randomized caching strategy which
improves upon MAD’s worst-case performance.

8For the sake of brevity, the provided pseudocode assumes discrete timesteps and prior
knowledge of Z. Both of these assumptions are easily dispensable.

9The competitive ratio of an online algorithm, a, is the worst-case ratio between the
costs of the solution computed by « to that of the optimal, offline solution for the same
problem instance. Knowledge of a caching algorithm’s competitive ratio allows us to
impose bounds on its worst-case performance (i.e. for the most pessimal workload) [57].

5 EVALUATION

We evaluate the effectiveness and the overhead of MaD in a CDN
caching system. We then use our simulator from §2.3 to explore a
wider range of applications and parameters.

5.1 Experimental setup

Prototype. We emulate a CDN deployment with clients and back-
ends in geographically different locations. For rapid prototyping, we
implement our own asynchronous caching system in 1500 lines of
C++ code, using Boost.ASIO [4, 52]. Our architecture uses sharding
and a single thread per cache shard [5, 12, 22]. An overview of the
system architecture is depicted in Figure 13.

Trace
Replayer

Cache Shard
Cache Shard
Cache Shard

Load Balancer
Flow Manager
Network
To Origins

Latency

Logging Cache Shard

Client

CDN Caching Node
Figure 13: Architecture of our experimental prototype.

The client sends requests as 16B object IDs to the Load Balancer,
which forwards it to the Cache Shard corresponding to the object ID.
The shard’s thread performs a cache look-up. If the object is cached,
the request is resolved immediately by relaying a response back to
the client (a true hit). Else, the request is forwarded to the Flow Man-
ager, which maintains queues of outstanding requests separately
for each unique object ID.!? On receiving a request, if the object ID
is not mapped to an existing queue, the Flow Manager allocates a
new queue for the object and forwards the request to the Network
Manager (a miss). Else, the request is simply inserted at the tail of the
queue (a delayed hit). The Network Manager use a pool of threads
with long-running TCP connections to the backing stores. These
threads perform the actual fetch operation and relay the response to
the Flow Manager. The Flow Manager buffers the response, flushes
the request queue for the corresponding object ID, and issues a write
request to the appropriate cache shard. The cache is updated (based
on the specified caching policy), and the responses are sent to resolve
all queued client requests.

To achieve low latency and high concurrency, the system compo-
nents communicate using lock-free, single-producer single-consu-
mer queues. The system is capable of sustaining a throughput of 1.2M
requests/sec using 12 threads on an x86 server with 16GB of DRAM.

Cache configuration and policies. We use a 64-way set-associative
cache, with the total cache size set to 5% of the maximum number of
active concurrent objects (e.g, 67k cache entries overall for the CDN
trace from §2.3). For the purpose of our experiments, we fix the object
size to 1KB. We implement two policies: LRU, and LRU-MAD, which
combines LRU’s TTN A(x) estimator and our AggDelay(x) estimator.

Traces. We use a busy period from the CDN trace from §2.3 which
contains 243M requests, 7.7M unique object IDs, a maximum of 1.3M
active concurrent objects, and an average inter-request time of 1 ys.

Setup. To emulate different Z values, we set up backing stores (using
GCP VMs) in three different locations around the world: The U.S.
West Coast (Los Angeles), Western Europe (the Netherlands), and

10We use separate request queues to avoid head-of-line blocking,

503

o 50 mmm LRU 40.68
S @ LRU-MAD
£ 404 33.24
z (+0.14)
< 24.71
T i
£ 30 . (£0.37) 20.56
- 16.32
+0.37,
2 201 1235 1982 SC0 (noon)
I (£0.34) (L0 0g)
2104
<

o
I

Origin A
(RTT: 68 ms)

Origin B
(RTT: 103 ms)

Origin C Multi-backend
(RTT: 223 ms) (Avg. RTT: 140 ms)

Figure 14: Prototype results for different origin locations.

1.00 1
0.80]
0.75 1
& .50 | == LRU (Simulated) 0751
© —— LRU (Actual) 0.70
0.25 1 — = LRU-MAD (Simulated) |-
0.00] —— LRU-MAD (Actual) | | & Magniked
0 200 400 600 800 0 50 100 150 200

Request Latency (ms)

Figure 15: CDF of latencies in simulation versus real experiments.

East Asia (Singapore). For simplicity, we refer to these as Origin A,
with an RTT of 68ms (Z =68k), Origin B, with an RTT of 103ms (Z =
103k), and Origin C, with an RTT of 226ms (Z = 226k), respectively.!!
We deploy our CDN caching node on a server at CMU in Pittsburgh.

5.2 Prototype Evaluation on CDN Trace

What latency improvements does LRU-MAD provide for our
wide area cache? To answer this question, we consider each of the
three backing stores independently, and measure the average request
latency provided by the two caching policies for the given workload.
Figure 14 shows the average latencies achieved using LRU-MAD ver-
sus LRU. Overall, using LRU-MAD, we see a 12.4%, 14.7%, and 18.3%
reduction in average latency for Origins A, B, and C, respectively.
As expected, LRU-MAD’s benefit increases with Z.

Does the maDp caching strategy still work if multiple, non-
uniform backing store latencies'? are involved? This differs
significantly from our offline formulation which only considered uni-
form latencies (i.e., a single Z value). We find that MaD indeed works
wellin the multi-backend scenario. Figure 14 shows a 16.8% reduction
in average latency for this case. This result suggests that maintaining
per-object estimates of the backing store latency (instead of a single,
global average) is an important feature of the online strategy, since
it gives MAD a higher degree of freedom in computing ranks.

What are the overheads of using map? We discuss two kinds of
overheads associated with MAD: memory and request latency. We
evaluate the memory overhead of two different implementations
of MAD. Both implementations maintain 4 counters per object. Our
strawman implementation faithfully implements MAD by persisting
these counters for both cached and uncached objects. However, in
along-running caching system, this would require an unbounded
amount of memory. Our efficient implementation only stores the

We remark that, although the backing store latencies are known a priori, we do
not explicitly provide this information to MAD; instead, MAD automatically computes
per-object estimates of backing store latencies at run-time.

12We map each object ID to a randomly-generated origin location, which places a third
of object IDs on each origin server. The distribution of requests is: 29% to Origin A, 39%
to Origin B, and 32% to Origin C.

counters for currently cached objects. Fortunately, we find that the
average latency provided by the efficient implementation never di-
verges from the strawman by more than 6% over the entire range of
Z values, across all traces. In fact, all results presented so far have
been using the efficient implementation. Our counters are 8B; so,
the overall overhead is 32B per cached object, which is comparable
to existing key value stores [22]. Our efficient implementation thus
has a memory overhead of just over 3% for small 1KB objects and
under 0.003% for objects in the MB range (e.g., video caching [42]).
We compare MAD’s request latency to LRU, where eviction is a
constant-time operation (the entry to evict is always at the head
of a linked list). Evictions in MAD require computing the rank(X)
function from §4.2 over all objects in the corresponding cache set.
While each computation is cheap, its complexity scales linearly with
the set-associativity of the cache in our naive implementation. This
leads to several microseconds of overhead, which is orders of magni-
tude lower than the latency of the backing store. We remark that this
small overhead can be further reduced using existing techniques.!3

How accurately do our simulations reflect results in the wide
area? We use simulated results in §2.3 and in the following evalua-
tion sections. While our simulator models the effects of delayed hits,
it makes several simplifications. For example, it assumes that arrivals
neatly fall into discrete time slots, that cache management operations
are instantaneous, and that network latencies are deterministic. We
validate these simulation results by comparing the latency distribu-
tion (CDF) measured with our prototype to simulations based on
averaged estimates of Z for Origin B (results for other origins are the
same). Figure 15 shows that the simulated latencies indeed closely
match the empirical measurements.

5.3 Simulation Results: Systems

Our prototype experiments focus on the CDN setting with a small
set of backing latencies and a single algorithm. We now return to our
delayed hits aware simulator to test three MAD variants (LRU-MAD,
LHD-MAD, and ARC-MAD) in the context of CDNs, network traces,
and storage traces.

How does maD help CDNs with other base algorithms and a
wider range of latencies? Figure 16 illustrates the performance
gains from combining AggDelay(x) with LRU, LHD, and ARC. The y-
axis measures the relative improvement inlatency between LRU-MAD
and LRU, LHD-MAD and LHD, and ARC-MAD and ARC. MAD always
performs better than the baseline algorithm, suggesting that there is
no downside, from a latency minimization perspective, to adopting
MAD- regardless of what ranking algorithm was used initially. As
with our LRU prototype, we see gains of 5-20% when latencies are
in the 10’s of milliseconds.

We also see that as Z reaches some extreme values — 1M or even
10M - the gains from MAD increase dramatically. Today, these exam-
ples are only useful for an imaginary web user with a CDN cache on
the moon. However, they may serve as an estimate for the impact of
delayed hits on future workloads. Recall that Z does not represent
latency itself, but the ratio between latency to the backing store and
request inter-arrival time (§2). Hence, as link and request rates grow
by 10x%, a Z value of 1M would only represent a 100ms latency for the
CDN. Nonetheless, these extreme values remain flawed estimators —

BLarge-scale production systems achieve constant-time evictions using sampling
techniques [5], which can be immediately applied to an implementation of MAD.

504

f=)
o

Policy Forward Proxy

o
3o
€C LRU-MAD (Remote DC)
o] - N
-] Forward Proxy
= 40 ARC-MAD (Local DC)
ES =A= LHD-MAD Intra-DC A
2220 Proxy A/
C 2
U © -
=] - e
Joc
&0 ' : ! ! e :

1 10 100 1K 10K 100K M 10M

(Lus) (10wus) (100us) (1 ms) (10 ms) (100 ms) (1s) (10 s)
z

Figure 16: MAD simulations for the CDN Trace.
5 @ 40 Policy Reverse DNS
gﬁ =i | RU-MAD
e§ 30 ARC-MAD
Q

= LHD-MAD ot

EJE 20 = - ~h,
2.8 RDMA e
ég 10 1 praAM = ik
:\el « 0 i —

1 10 100 1K 10K 100K iMm 1o0M

(3us) (30us) (300us) (3ms) (30ms) (300ms) (3s) (30s)

z

Figure 17: maD simulations for the Network Trace.

40
Cross-DC

Poli
olicy Filesystem

=N [RU-MAD
ARC-MAD
=A= LHD-MAD

30
20 Disk Read

10 SSD Read

%Latency Improvement
Relative to Baseline

0 -

100K
3s)

v 1(IJK
(300 ms)

1K
(30 ms)

100
(3 ms)
z

1 10
(30 us) (300 us)

Figure 18: MAD simulations for the Storage Trace.

we expect that request arrival rates, their burstiness, and the number
of requested objects may all change in this time; these datapoints
are hence little more than an educated guess towards the future.

Canmab help network switch caches? Asdiscussedin §1, wefirst
observed delayed hits in a programmable switch. Hence, we were sur-
prised to see the lowest gains with regard to practical caching scenar-
ios (recall Table 2). The 100ns DRAM latency we worried about had
a Z <1 given our 10Gbps network trace and our simulation suggests
essentially no performance gains for this scenario from using MAD.
The only application where we would expect to see any gains is an
IDS with a reverse-DNS lookup, which we would expect to run in the
10s or 100s of milliseconds; the simulation here predicts latency gains
of 10-35%. Nonetheless, most IDSes which perform such lookups are
not inline, and hence we would not expect to see these latency gains
passed on to Internet users whose traffic is intercepted by the IDS.
Looking to the future and very high Z values, we see a tapering
off trend which we do not observe in the CDN scenario. As discussed
in our BELATEDLY results, this tapering off in the network setting is
due to flows beginning and ending during the entire Z window; we
do not see this trend in the CDN or storage scenarios because objects
are much longer lived than a few milliseconds or even seconds. The
simulations are hence flawed for network traffic in this regard - in
practice, a switch would ‘hold’ the first SYN packet until its flow
context were fetched and subsequent packets would not arrive at
the switch until the SYN completed. We leave to future work a more

3
*

-~ Trace
40 4 =l Network
CDN
30 P =d= Storage

R

=p= Online Game

%Latency Improvement
Relative to Baseline

201 prrTTTETeTT
> y....
10 4 iR T
0+ . .
107! 10° 10!

Cache Size%

Figure 19: Relative latency difference between LRU-maD and LRU
as a function of the cache size. Using Z =100K.

accurate model of network traffic and Z values where the arrival time
of packets is dependent on the time it takes to serve the first packet.

Can MaD help distributed storage? Our storage trace has simi-
lar results to the CDN result; we see that in the millisecond range
we achieve gains between 3-30% from adopting MAD, representing
improvements for wide-area or cross-datacenter storage systems.
However, when deployed intra-datacenter where network latencies
are in the microseconds and system latencies in the low milliseconds,
we would expect much more minimal gains of zero to a few percent.

Summary. Overall, our experiments suggest that the systems that
would benefit most from MAD toady are CDNs and distributed stor-
age systems with high latencies to the backing store. While switch
workloads tend to be more bursty (resulting in higher gains for maDp
even at relatively low Z values), few scenarios involve this latency
being passed on to end-users.

We note that there are several interesting properties of real sys-
tems that are not captured here. For instance, while MAD may only
shave off a few ms worth of latency on each individual request, some
tasks, such asloading web pages, involve chains of serialized requests
(e.g. due to recursive dependencies in HTML or CSS elements [44]);
consequently, the overall impact (e.g. on page load time) may be more
significant. Similarly, fetching large objects from the backing store
may require multiple RTTs, exacerbating the effect of delayed hits.
Additionally, certain objects must be periodically purged from the
cache due to TTL expiration (e.g. cached DNS entries), introducing
an additional layer of complexity in the design of online algorithms.
We leave a more detailed investigation of these effects to future work.

5.4 Simulation Results: Analysis
We now present findings that are not tied to any particular system.

Impact of cache sizing: We evaluate how cache size impacts MAD’s
improvements over traditional caching algorithms. Recall that we
measure the cache size as afraction of the peak number of concurrently-
active objects.!* We calculate the latency improvement of MAD rel-
ative to LRU for all four scenarios while keeping Z fixed at Z =100k.
Figure 19 shows the results for cache sizes between 0.1% and 10%.
We find that MAD’s improvement is around 20% for small caches
(<1%) in the CDN and online gaming scenarios. In the networking
scenario, MAD’s improvement is between 20% and 43% (we fix Z to
demonstrate the effect of cache sizing, but we note that the chosen
value is higher than one would expect to see in a networked setting).

4Note that our cache size definition is motivated by networking applications where
flow state only needs to be tracked for ’active’ flows. Caching papers on CDNs
and storage systems typically express the cache size as a fraction of the working
set [5, 12, 41], which is orders of magnitude larger. The cache size numbers shown in our
graphs thus might look comparably large but they are based on a different denominator.

505

é 100 1 Protocol
] <« HTTPS
>
oc 50 « HTTP
5=
Ed s+ NTP
— @©
5,m = TCP
c8 01 -
g5 UDP
© >
45
S

o —501
;:x
Y
5 -100

~1.00-0.75-0.50—0.25 0.00 0.25 0.50 0.75 1.00
Goh-Barabasi Score

Figure 20: Like BELATEDLY, MAD prioritizes bursty objects.

10% =i | RU-MAD

0% 4 ,__;.__-V" = W ARC-MAD
o -

=A= LHD-MAD
-10% 4 Network

10%

0%-Fﬁ_—ﬂ=$k_ T,
V

-10% 4 CDN
10% H~
A *g
0% A i-—%v
-10% 4 Storage
1 10 100 1K 10K 100K 1M 10M
z

%Relative Increase in
Miss-Rate vs. Baselme

A

Figure 21: Percent relative change in miss-rate between map and
various baseline caching algorithms for Network, CDN, and Storage.

Finally, we see that MAD’s improvement is highest in the storage
scenario, with a 26% to 50% lower latency than LRU.

MAD prioritizes bursty objects, just like BELATEDLY. We de-
scribed the intuition behind MAD as prioritizing bursty objects, just
like BELATEDLY. Nonetheless, we use aggregate delay rather than
true burstiness (Goh-Barabasi score) and we weigh aggregate delay
against time to next access. Hence it is worth asking - does our
intuition about burstiness indeed map on to why mMaD is doing well?
Figure 20 shows per-object latency gain (or loss) between LRU and
LRU-MAD’s caching schedule for the Network trace. Much like Fig-
ure 10 illustrating BELATEDLY s correlation with burstiness, MAD
prioritizes bursty objects as well.

Impacton cache miss-rate. Asdescribed in§2.4, latency-minimizing
algorithms might in fact increase the overall miss-rate. Hence, we
quantify the impact of MAD - an algorithm designed to minimize
latency - on the overall cache miss-rate (which in turn affects the
bandwidth consumption on the link to the backing store). Figure 21
depicts the relative change in miss-rates'> between MaD and our
three baseline algorithms as a function of Z. Regions where MaD
increases the miss-rate (i.e. performs worse than the baseline) are
highlighted in red. We find that, across all Z values and choice of
baseline algorithms, MAD increases miss-rates by at most 10% ¢ for
the Network and Storage settings (+1.84% and +1.43% on average),
but almost always reduces miss-rates in the CDN setting (—1.89% on
average). We conclude that, depending on the workload, there is a
tradeoff between optimizing for latency and bandwidth.

15 MR(MAn)’MR(Baseline)
M R(Baseline)

16Note that this value represents a relative increase in miss-rate compared to the

baseline. In our experiments, the absolute difference in miss-rates never exceeds 1%.

x100%

é > 251 Policy

g8 | =¥ LRUMAD 1

o& ARC-MAD L

£8 _55 | =A= LHD-MAD

ES -

2 o= - —

2% _s04 S=ye——4 ik T Lk

T &

- - L -

R -T5AT Y : = ; ; :

10 100 1K 10K 100K ™M 10M

(1us) (10us) (100us) (1ms) (10ms) (100ms) (1s) (10s)

z
Figure 22: At extremely high latencies, MAD outperforms Belady’s
algorithm for CDN.

MAD can out-perform Belady’s algorithm. We were surprised
to notice that MAD can out-perform Belady’s algorithm. Figure 22
illustrates LRU-maD, LHD-MAD, and ARC-MAD in the CDN setting,
now normalized to the latency achieved by Belady’s algorithm rather
than their baseline online algorithms.

6 LIMITATIONS AND OPEN QUESTIONS

This paper opens up a broad range of theoretical and practical
questions and we are only able to answer some of them.

Our model of caches (§2.2) is very simple and there are many at-
tributes of practical systems that it does not capture; richer and more
complex scenarios hence merit additional investigation in both the
online and offline setting. For example, our theoretical model does
not account for variable backing store latency (although our eval-
uation does measure this setting), nor does it account for differing
object sizes. Both our theory and simulator assume that, once the data
fetch delay has passed, all outstanding delayed hits are immediately
processed and released, although many systems may instead operate
over each response sequentially leading to additional queuing at the
cache. Finally, in the online setting, prefetching algorithms may also
merit a second look with respect to latency and delayed hits.

Another nagging concern of ours is that we have have yet to prove
the hardness of the delayed hits optimization problem. While all in-
dicators point towards a hard problem, a formal proof remains open.

Finally, while the online algorithm we propose in this paper seems
to perform well empirically, we now know that it has a poor compet-
itive ratio [40]. Consequently, we don’t expect MAD to be the final
word on latency-minimizing caching in the presence of delayed hits;
indeed, we believe randomized algorithms will yield better results.

7 RELATED WORK

Caching algorithms have received a significant amount of research
attention, but the aspect of delayed hits is largely disregarded in the
literature. We are not aware of any prior work proposing an analytical
model for the delayed hits problem, or designing algorithms targeting
delayed hits. Most existing caching algorithms focus on maximizing
hit ratios, with significant advances in recent work [5, 12, 13, 29, 38,
55] and excellent surveys of older work [48, 60]. There are two groups
of prior work that look at maximizing metrics other than hit ratios.

(1) Cost-aware online caching algorithms. This group of algo-
rithms [15, 30-32, 36, 65, 66] seeks to minimize the average cost
of misses, where an object’s cost models differences in retrieval
latencies or computation costs. In this setting, if an object is
cached, its next request does not contribute to the overall av-
erage cost, but no other requests are affected. This is different
from the delayed hits settings where a single caching decision

506

may affect many future requests (to the same object). By assum-
ing independence, cost-aware caching assumes that misses are
retrieved before another request to the same object arrives.

(2) Weighted, general, and other offline caching theory. This
group of algorithms [3, 6, 10, 14, 16-18, 61] considers offline
caching problems beyond Belady. Weighted caching is like cost-
aware caching, but using offline knowledge [17]. Caching for
variable object sizes optimizes hit ratios, but considers objects
that require a different number of bits to be stored in cache [3, 10].
General caching generalizes both by considering both weighted
and variably-sized objects at once [14, 18]. In general, these prob-
lems are NP-hard, except for weighted caching which can also
be approximated using a flow formulation.

The architecture community has a rich literature on implementing
non-blocking caches to handle multiple outstanding misses [1, 8, 35,
43, 53, 58] - a prerequisite for the occurrence of delayed hits. In ad-
dition, [49] considers the effect of correlated cache misses (different
from delayed hits, but in a similar vein) on Memory Level Parallelism
(MLP) performance in processors. Finally, we are aware of two prior
works [25, 56] which observe improved accuracy when accounting
for delayed hits in simulations of processor caches.

8 CONCLUSION

As we look forward to continuous increases in bandwidth and
throughput (e.g., in networks, memory, new storage technologies,
and CPU-interconnects), access latencies will become larger and
larger relative to request inter-arrivals, increasing the likelihood of
delayed hits. Indeed, we believe that the problem of delayed hits will
surface in almost any caching scenario sooner or later.

Our work constitutes a first step in recognizing and possibly mit-
igating the increased latencies created by this fundamental trend.
Nonetheless, as we discuss in §6, there remain many open questions
about incorporating delayed hits into practical caching schemes.
We look forward to future work in engaging with delayed hits as
we extend the theoretical literature and observe the importance of
delayed hits become more apparent in practical systems.

Ethics: This paper raises no ethical concerns.

9 ACKNOWLEDGEMENTS

We thank our shepherd, Anirudh Sivaraman and the anonymous
reviewers for their insightful comments. We also thank Jalani Williams,
Peter Manohar, and Sai Sandeep Pallerla for helpful discussions re-
garding the underlying theory, and Nathan Beckmann for his feed-
back and help with implementing LHD. We are also grateful to the
Parallel Data Lab (PDL) at CMU for providing compute resources to
us. This work was funded by NSF Grants 1700521 and 2007733, and
supported in part by the CONIX Research Center, one of six centers
in JUMP, a Semiconductor Research Corporation (SRC) program
sponsored by DARPA.

REFERENCES

[1] K. Aasaraai and A. Moshovos. An efficient non-blocking data cache for soft
processors. In 2010 International Conference on Reconfigurable Computing and
FPGAs, pages 19-24, 2010.

[2] RavindraK Ahuja, Thomas L Magnanti, and James B Orlin. Network Flows: Theory,
Algorithms, and Applications. Prentice hall, 1993.

[3] Susanne Albers, Sanjeev Arora, and Sanjeev Khanna. Page replacement for
general caching problems. In SODA, pages 31-40, 1999.

[4] Wisnu Anggoro and John Torjo. Boost. Asio C++ Network Programming. Packt
Publishing Ltd, 2015.

(5]

[13]

[14]

[15]

[16]

[17]
[18]
[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

[28]
[29]

[30]
[31]

[32

[33

[34]

[35]

[36

[37

Nathan Beckmann, Haoxian Chen, and Asaf Cidon. Lhd: Improving hit rate by
maximizing hit density. In USENIX NSDL, pages 1-14, 2018.

Nathan Beckmann, Phillip B Gibbons, Bernhard Haeupler, and Charles McGuffey.
Writeback-aware caching. In Symposium on Algorithmic Principles of Computer
Systems, pages 1-15. SIAM, 2020.

Laszlo A. Belady. A study of replacement algorithms for a virtual-storage
computer. IBM Systems journal, 5(2):78-101, 1966.

Samson Belayneh and David R. Kaeli. A discussion on non-blocking/lockup-free
caches. SIGARCH Comput. Archit. News, 24(3):18-25, June 1996.

Daniel S Berger. Towards lightweight and robust machine learning for cdn
caching. In ACM HotNets, pages 134-140, 2018.

Daniel S. Berger, Nathan Beckmann, and Mor Harchol-Balter. Practical bounds
on optimal caching with variable object sizes. ACM POMACS, 2(2):32, 2018.
Daniel S Berger, Benjamin Berg, Timothy Zhu, Siddhartha Sen, and Mor
Harchol-Balter. Robinhood: Tail latency aware caching—dynamic reallocation
from cache-rich to cache-poor. In USENIX OSDI, pages 195-212, 2018.

Daniel S. Berger, Ramesh Sitaraman, and Mor Harchol-Balter. Adaptsize:
Orchestrating the hot object memory cache in a cdn. In USENIX NSDI, pages
483-498, March 2017.

Aaron Blankstein, Siddhartha Sen, and Michael] Freedman. Hyperbolic caching:
Flexible caching for web applications. In USENIX ATC, pages 499-511, 2017.

Niv Buchbinder, Joseph Seffi Naor, et al. The design of competitive online
algorithms via a primal-dual approach. Foundations and Trends in Theoretical
Computer Science, 3(2-3):93-263, 2009.

Pei Cao and Sandy Irani. Cost-aware www proxy caching algorithms. In Usenix
symposium on internet technologies and systems, volume 12, pages 193-206, 1997.
Yue Cheng, Fred Douglis, Philip Shilane, Grant Wallace, Peter Desnoyers, and
Kai Li. Erasing belady’s limitations: In search of flash cache offline optimality.
In USENIX ATC, pages 379-392, 2016.

Marek Chrobak, H Karloof, Tom Payne, and S Vishwnathan. New ressults on
server problems. SIAM Journal on Discrete Mathematics, 4(2):172-181, 1991.
Marek Chrobak, Gerhard J Woeginger, Kazuhisa Makino, and Haifeng Xu.
Caching is hard—even in the fault model. Algorithmica, 63(4):781-794, 2012.

Jeff Dean and R. Colin Scott. Numbers every programmer should know.
https://people.eecs.berkeley.edu/ rcs/research/interactive_latency.html.

John Dilley and Martin Arlitt. Improving proxy cache performance: Analysis
of three replacement policies. IEEE Internet Computing, 3(6):44-50, 1999.

John Dilley, Bruce Maggs, Jay Parikh, Harald Prokop, Ramesh Sitaraman, and Bill
Weihl. Globally distributed content delivery. IEEE Internet Computing, 6(5):50-58,
2002.

Bin Fan, David G Andersen, and Michael Kaminsky. Memc3: Compact and
concurrent memcache with dumber caching and smarter hashing. In USENIX
NSDI, pages 371-384, 2013.

A. Feldmann, R. Caceres, F. Douglis, G. Glass, and M. Rabinovich. Performance of
web proxy caching in heterogeneous bandwidth environments. In IEEE INFOCOM,
volume 1, pages 107-116 vol.1, 1999.

Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou, Alireza
Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, et al. Azure accelerated networking: Smartnics in the public cloud. In
USENIX NSDI, pages 51-66, 2018.

Davy Genbrugge and Lieven Eeckhout. Memory data flow modeling in statistical
simulation for the efficient exploration of microprocessor design spaces. IEEE
Transactions on Computers, 57(1):41-54, 2007.

K.-I. Goh and A.-L. Barabasi. Burstiness and memory in complex systems. EPL
(Europhysics Letters), 81(4):48002, jan 2008.

John L Hennessy and David A Patterson. Computer architecture: a quantitative
approach. Elsevier, 4 edition, 2011.

SNIA IOTTA. Microsoft production server traces, 2011.

Akanksha Jain and Calvin Lin. Back to the future: leveraging belady’s algorithm
for improved cache replacement. In ACM/IEEE ISCA, pages 78-89, 2016.
Jaeheon Jeong and Michel Dubois. ~Cache replacement algorithms with
nonuniform miss costs. IEEE Transactions on Computers, 55(4):353-365, 2006.
Shudong Jin and Azer Bestavros. Popularity-aware greedy dual-size web proxy
caching algorithms. In IEEE ICDCS, pages 254-261, 2000.

Shudong Jin and Azer Bestavros. Greedydualx web caching algorithm: exploiting
the two sources of temporal locality in web request streams. Computer
Communications, 24(2):174-183, 2001.

Daehyeok Kim, Yibo Zhu, Changhoon Kim, Jeongkeun Lee, and Srinivasan Seshan.
Generic External Memory for Switch Data Planes. In ACM HotNets, pages 1-7, 2018.
Rupa Krishnan, Harsha V Madhyastha, Sridhar Srinivasan, Sushant Jain, Arvind
Krishnamurthy, Thomas Anderson, and Jie Gao. Moving beyond end-to-end path
information to optimize cdn performance. In ACM IMC, pages 190-201, 2009.
David Kroft. Lockup-free instruction fetch/prefetch cache organization. In
ACM/IEEE ISCA, page 81-87, Washington, DC, USA, 1981. IEEE Computer Society
Press.

Conglong Li and Alan L Cox. Gd-wheel: a cost-aware replacement policy for
key-value stores. In EUROSYS, pages 1-15, 2015.

Shang Li, Dhiraj Reddy, and Bruce Jacob. A performance & power comparison
of modern high-speed dram architectures. In Proceedings of the International
Symposium on Memory Systems, MEMSYS *18, page 341-353, New York, NY, USA,

2018. Association for Computing Machinery.

Suoheng Li, Jie Xu, Mihaela van der Schaar, and Weiping Li. Popularity-driven
content caching. In IEEE INFOCOM, pages 1-9, 2016.

Shuang Liang, Ke Chen, Song Jiang, and Xiaodong Zhang. Cost-aware caching
algorithms for distributed storage servers. In Andrzej Pelc, editor, Distributed
Computing, pages 373-387, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.
Peter Manohar and Jalani Williams. Lower Bounds for Caching with Delayed
Hits. arXiv:2006.00376 [cs.DS], 2020.

Nimrod Megiddo and Dharmendra S Modha. Arc: A self-tuning, low overhead
replacement cache. In USENIX FAST, pages 115-130, 2003.

Matthew K Mukerjee, David Naylor, Junchen Jiang, Dongsu Han, Srinivasan
Seshan, and Hui Zhang. Practical, real-time centralized control for CDNM-based
live video delivery. In ACM SIGCOMM, pages 311-324, 2015.

A. Musa, Y. Sato, T. Soga, R. Egawa, H. Takizawa, K. Okabe, and H. Kobayashi.
Effects of mshr and prefetch mechanisms on an on-chip cache of the vector
architecture. In 2008 IEEE International Symposium on Parallel and Distributed
Processing with Applications, pages 335-342, 2008.

Ravi Netravali, Ameesh Goyal, James Mickens, and Hari Balakrishnan. Polaris:
Faster page loads using fine-grained dependency tracking. In USENIX NSDI,
March 2016.

Gurobi Optimization. Inc.,‘gurobi optimizer reference manual,” 2015, 2014.

Vern Paxson. Bro: a system for detecting network intruders in real-time. Computer
networks, 31(23-24):2435-2463, 1999.

Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jackson, Andy Zhou, Jarno
Rajahalme, Jesse Gross, Alex Wang, Joe Stringer, Pravin Shelar, et al. The design
and implementation of open vswitch. In USENIX NSDI, pages 117-130, 2015.
Stefan Podlipnig and Laszlo Boszérmenyi. A survey of web cache replacement
strategies. ACM Computing Surveys, 35(4):374-398, 2003.

M. K. Qureshi, D. N. Lynch, O. Mutlu, and Y. N. Patt. A case for mlp-aware cache
replacement. In ACM/IEEE ISCA, pages 167-178, 2006.

Prabhakar Raghavan and Clark D Tompson. Randomized rounding: a technique
for provably good algorithms and algorithmic proofs. Combinatorica, 7(4):365-374,
1987.

KV Rashmi, Mosharaf Chowdhury, Jack Kosaian, Ion Stoica, and Kannan
Ramchandran. Ec-cache: Load-balanced, low-latency cluster caching with online
erasure coding. In USENIX OSDI, pages 401-417, 2016.

Boris Schaling. The boost C++ libraries. Boris Schaling, 2011.

James Edward Sicolo. A multiported nonblocking cache for a superscalar
uniprocessor. Master’s thesis, University of Illinois at Urbana-Champaign, 1992.
Abraham Silberschatz, Greg Gagne, and Peter B Galvin. Operating system concepts.
Wiley, 2018

Zhenyu Song, Daniel S. Berger, and Lloyd Wyatt LI, Kai. Learning relaxed belady
for content distribution network caching. In USENIX NSDI, 2020.

Edward S Tam. Improving cache performance via active management. PhD thesis,
University of Michigan, 1999.

Eric Torng. A unified analysis of paging and caching. Annual Symposium on
Foundations of Computer Science - Proceedings, 08 1995.

J. Tuck, L. Ceze, and J. Torrellas. Scalable cache miss handling for high
memory-level parallelism. In ACM/IEEE MICRO, pages 409-422, 2006.

Colby Walsworth, Emile Aben, K Claffy, and D Andersen. The caida anonymized
2019 internet traces, 2019.

Jia Wang. A survey of web caching schemes for the internet. ACM SIGCOMM
Computer Communication Review, 29(5):36—46, 1999.

Justin Wang, Benjamin Berg, Daniel S Berger, and Siddhartha Sen. Maximizing
page-level cache hit ratios in largeweb services. ACM SIGMETRICS Performance
Evaluation Review, 46(2):91-92, 2019.

Sage A Weil, Scott A Brandt, Ethan L Miller, Darrell DE Long, and Carlos Maltzahn.
Ceph: A scalable, high-performance distributed file system. In USENIX OSDI,
pages 307-320, 2006.

Wikipedia. Reverse proxy. https://en.wikipedia.org/wiki/Reverse_proxy.
Maurice V Wilkes. Slave memories and dynamic storage allocation. IEEE
Transactions Electronic Computers, 14(2):270-271, 1965.

Neal E Young. On-line caching as cache size varies. In ACM SODA, 1991.

Neal E Young. On-line file caching. Algorithmica, 33(3):371-383, 2002.

A APPENDIX

Appendices are supporting material that has not been peer-reviewed.

A.1 Latency Minimization Problem

In this section we give a formal definition of the latency minimiza-
tion problem for caching with delayed hits.

Recall that we consider a cache of size C and M objects indexed by
i € [M]. We are given a sequence object requests, where o(T) denotes
the object requested at timestep T with T=0,1,...,N.

We use the following quantities to describe the state of the system
at the beginning of each timestep T. For each object i, let

(&) 1y —
X0 (1)=1 {object i is in the cache at T }» 4)
)y —
x7 (T)=1 {object i was requested at T—(Z+1-1)
and the request has not been resolved }
r=1,..,2. (5)

Here, when an object i is requested but cannot be resolved immedi-
ately, we say that we put it in a queue. So (5) describes the state of
the queue for i.
We specify a cache schedule using the following decision variables.
Let a;(T) be defined by
1 ifobjectiisadmitted to cacheat T,
ai(T)=9-1
0 ifno action is taken on objecti at T
To make sure a;(T) with i € [M],T =0,1,...,N form a valid cache
schedule, we enforce the following constraints for each object i € [M]
and timestep T =0,1,...,N:

e Anobject can be admitted only when its data arrives:

(6)

if object i is evicted from cache at T,

1 (q,(1)=1) <, (T). ™
e Anobject can be evicted only when it is already in the cache:
L q,(1)=-1) <%, (T) ®)

o The schedule should guarantee that the number of objects in the

cache is no larger than the cache size C:

> almsc.

ie[M]

Although it seems that this is a constraint on the state, it is in fact

a constraint on the cache schedule since the state at the current

timestep is determined by the past decisions. This will become

clear after we describe the relation between the state and the
schedule next.

©

With the notation above, we can write out how the system state
evolves over time as follows:

o The data that just arrived resolves the requests for the same object
in the queue, and other requests move forward in queue:
D11 =x" (1)-(1-x" (1)),

ie[Ml,r=1,...Z-1,T=0,1,...N—2. (10)

e The admission or eviction of an object changes the state in the
cache:

(T +1)=x(T)+ai(T),
ie[M],T=01,..,N-2. (11)
e The new request comes in and is added to the queue if the re-
quested object is not in the cache:

xg)(T+ 1)= IL{o‘(T):i} -(1—x(<)i)(T+ 1)),

ie[M],T=0,1,...N. (12)

508

It can be proven that the state that evolves according to the dynamics
above satisfies that for any T=0,1,...,N-2,

x(<)z>(7)+1{zilx(ri)m>0} <1 (13)
This inequality states the fact that if object i is in the cache, then
there will not be requests for i in the queue, and if there are requests
of object i in the queue, then i is not in the cache.

At timestep T, object o(T) is requested. If it is not in the cache nor
requested during the past Z timesteps, it will trigger a sequence of de-
layed hits when o(T) is requested again during the next Z timesteps.
Therefore, the total latency can be written as:

N-2 Z-1
sy D[(16 r4)
T=0 =1
Z-1
: Z Yiorein=o(my (Z-1). (14
t=0

Then the latency minimization problem is to find the cache sched-
ule subject to the constraints (7)-(9) such that the resulting states
minimize the total latency in (14).

A.2 Proof of Theorem 1

We first give some notation for the flow variables and state the
MCMCEF problem with the notation. We define a flow variable for
each object on each edge, which takes values from {0,1} and repre-
sents the fraction of flow for the object routed along that edge. In
particular, we define the flow variables below:

FAD(T): object i along edge (Vinem, 7-Veeh, 7+2)»
T=0,1,.,N-1-Z;

fC(Cl})I(T) : object i along edge (Vech, 7 Vech, T+1)
T=Z1+Z,..,.N-2+7Z,

i Lo T
fé\ii)ct(T) : object i along edge (Vech, T’Vrsex)t, i)
T=Z1+Z,...N—-1+Z.

Note that frggm(T) is always 0 if i # o(T) due to the infinite cost. Sim-
ilarly, the flow variable for object j along edge (VCCh’T,V(T)) with

next 1
Jj#iisalso always 0. Here our formulation is a so-called ‘single—path
routing’ formulation, i.e., the flow variables are either 0 or 1 and they
together represent a path for each object. Additionally, for conve-
nience, for each vertex Vipem, 1, We use PU)(Vmem,T) to denote the
set of vertices in the top row that have outgoing edges to Vipem, T as-
sociated with object j. Our goal is to minimize the following objective
function:

N-1
T
Z C(U(T))(Vmem, T’Vcch,T+Z) frgl(gn >)(T)’
T=0
where C(G(T))(Vmem,T,‘/cch, T+2) is the latency cost in (2). The min-
imization problem is subject to the following constraints for each
object i:

(15)

e Link capacity:

o (M <1T=01...N-1, (16)
3 fOm<er=za+z...N-2+2, a”)
ie[M]

fciii)ct(T)S1’T=Z,1+Z,...,N—I+Z. (18)

Here (17) models the constraint that we can have at most C ob-
jects in the cache. The constraints (16) and (18) are automatically
satisfied.

e Flow conservation:

frge)m(Ti) =1, where Vipem, 7, is the source of i, (19)
total incoming flow to ‘/S(li'l)k is1, (20)
2. A (D= fla@i=eMT>T (1)
t: Veeh,t EP“)(Vmem T)
S T=D+ fem(T=2)= QD+ f (D).
T=Z1+Z,..N—-1+Z. (22)

Here the constraints (19) and (20) at sources and sinks are straight-
forward. The constraint (21) is a flow conservation constraint at
vertex Vipem, 7. It implies that if object i was evicted from the cache
before T and has not been requested since, then its data will be
fetched from the backing store to the cache when it is requested at
T. The constraint (22) is a flow conservation constraint at vertex
Veeh, - Let us set]‘Lf;l)l(Z— 1) =fc(cl})l(N— 1+Z)=0so0 (22) is valid at
T=Zand T=N-1+Z. This constraint guarantees the obvious
requirement that an object is either in the cache or not in the cache.

Both the MCMCEF problem and the latency minimization problems
are optimization problems. To show the equivalence of these two
problems, we first show in Lemma 1 below that the feasible set of
flow variables is ‘equivalent’ to the feasible set of caching schedules.
In particular, from any feasible cache schedule, we can define a set
of flow variables that are also feasible for the MCMCF problem; con-
versely, given any feasible set of assignments to flow variables, we can
define a feasible cache schedule. Once we have this bijection, we can
show that the objective functions of these two problems are the same.
With equivalent feasible sets and objective functions, the MCMCF
problem and the latency minimization problem are thus equivalent.

LEMMA. Given a sequence of object requests, there is a bijection
between the set of feasible flow variables and the set of feasible cache
schedules.

PRrRoOOF OF LEMMA 1. We first prove that any feasible cache sched-
ule defines a set of feasible flow variables. Let a;(T),i € [M],T =
0,1,...,N be a feasible cache schedule. We show that the flow vari-
ables defined below are feasible:

Z-1
fatm@=x@+1)- [(1-x"T41), (23)
7=1
W ry=x(1).1 Dry.1 24
Jean M=% (D)L igym)=0y +x; (D) Lygur)=13. (24
S0 =360)=y +2 (DL gy rr0y (29)

Let us first consider the capacity constraints (16)-(18). It is easy to
check that the constraints (16) and (18) are satisfied. Now we check

the constraint (17). By the definition of fC(CI})I(T) in (24),
> fe™
ie[M]
2 (xéi)(T)'ﬂ{a,-m:o}+X§i)(T)‘]1{a,-(T>:l})
i€[M]
When q;(T) = —1, the summand in (26) is 0; when a;(T) = 0, the
summand equals x(()l)(T) = x(()l)(T+ 1); otherwise, when a;(T)=1 and
xii)(T) =1, object i will be admitted to the cache so xéi)(T +1)=1.

(26)

509

Combining these cases, we have that the summand in (26) is always
no larger than x(()l)(T +1). Thus,

> fdm< Y xPaen<c,
i€[M] ie[M]
and the constraint (17) is satisfied.
Next let us consider the flow conservation constraints (19)-(22).
It is easy to check that the constraints (19) and (20) are satisfied.
For the constraint (21), let i=o(T). Let t* =max{t: t<T,o(t)=i}.
Then one can check that {t: Voo ; € P(i)(VmemT)} ={t"+1,t*+
2,...,T}. So it suffices to show that

(27)

T
2 (xél)(f)']l{aiu):—l}+X§1)(f)']1{a,-(t)=o})

t=t*+1
. Z_l .
=xg)(r+1)-ﬂ(1—x(;)(T+1)). (28)
=1

First, consider the case where xgi)(t) =1 for some t* <t < T. Then
we must have t <t* +Z since there is no request for object i after t*
and before T. This arrival at ¢ will resolve all the requests for i in the

queue (if there exist any). We observe that x(()i)(u) =0fort*<u<t

by (13) and ngl_u(u) = xil)(t) =1. Also xgl)(u) =0fort*<u<t
since otherwise it would have resolved the request and thus results
inno data arrival at t. If a; (¢) = 0, then the data is not admitted to the
cache. Also there is no request for object i on or after t (before T). So
xiw(u) :x(()l)(u) =0 for t <u <T.Then when the request for i comes
inat T, it sees nothing in the cache nor the queue. So by the dynamics
in (12), we have xg)(T+ 1) =1. Therefore, the right-hand-side (RHS)
of (28) is equal to 1, which is equal to the left-hand-side (LHS). For
the case that a;(t) = 1, the data is admitted to the cache at t. There
can be at most one eviction after ¢ and no later than T (two evictions
require data arrival in between). If there is no eviction, then the LHS
is 0. The RHS is also 0 since the request for i at T will not be put in

the queue and thus xg)(T +1)=0. If there is an eviction at some u

with t <u <T, then all the summands except x(()i)(u) 14, (u)=—10n
the LHS are 0. So the LHS is equal to 1. The RHS is also equal to 1
since the request for i at T sees nothing in the cache nor the queue.

In summary, (28) holds when xii)(t) =1forsome t* <t <T.

Next, consider the case where xil)(t) =0forall t witht* <t <T.
In this case there is no data arrival for object i during the whole time
period. Then again there can be at most one eviction. Suppose there
isno eviction for all t with t* <t < T. Then the LHS of (28) is 0. In this
case, object i is either in the cache for all timestep ¢ with t* <t <T
or it is not in the cache for all t with t* <t <T.If it is in the cache
all the time, then the RHS is also 0 since xg) (T+1)=0.Ifit is always
not in the cache, then T <t*+Z since the request at t* is put in the

queue and arrive at t* + Z, but we have assumed that xgi)(t) =0 forall

t with t* <t <T.However, T <t* +Z implies that x£i+Z_T(T+ 1)=

xg)(t* +1) =1, which implies that the RHS of (28) is 0. Therefore, for
the case of no eviction, LHS and RHS are equal. Suppose there is an
eviction at some ¢ with t* <t <T. Then the LHS of (28) is equal to 1.

Since we have assumed that xgi)(t) =0forallt with t* <t <T, object i
cannot reenter the cache after the eviction. So x(Ti) (T)=0for0<7<Z.

Then the request for i at T will be added to the queue, so the RHS of
(28) is equal to 1. Therefore, LHS and RHS are also equal in this case.

Combining the arguments above, we have shown that the flow
conservation constraint (21) is satisfied.
Now let us check the constraint (22), i.e., we want to show that

35 (T =11 (g, (7-m0) +%y (T=1)-L (g, 7-1)=1)

Term (L1) Term (L2)

27
+xg)(T+l—Z)' r[l(l—x(ri)(T*l_Z))
=1

Term (L3) (29)

=x)1 (ayry=0y 21 (D)1 g,1)-1)

Term (R1) Term (R2)

2 (1)1 gy (1114 (D)L,)=0)-

Term (R3) Term (R4)

We start by discussing different cases of Term (L3). Suppose (L3) =1.

Then A A
D(T41-2)=120(T+1-2)=0r=12....2-1. (30)
In this case, xéi)(T +1—Z) =0 by (13) and object i will not arrive

until timestep T. So x(()i)(t) =0fort=T+1-2Z,T+2-Z2,....,T,and

«(T) = 1. Then (L1) = (L2) = (R1) = (R3) = 0 and (R2) + (R4) = 1.

Therefore (29) holds.
Now suppose (L3) =0. Then either x(Tl)(T+ 1-Z)=1for some 1<

1<Z-1 orx(fi)(T+l—Z):0forall 1<7<Z-1 andxg)(T+1—Z):0.

e Suppose it is the former case. Then let t* be the earliest time with
T+1-Z <t* <T-1such that xgl)(t*) = 1. In fact, since all the
requests in queue will be resolved when the data arrives, t* is

also the only time between T—Z+1 and T such that xii)(t*) =1.
So (R2) = (R4) = 0. Also, x\(¢t) = 0 for all ¢ with T~ Z < t < 1*.

If t* =T —1, then (L1) = 0 and (L2) = (R1) + (R3). If t* < T — 1,
then (L2) = 0. Since x(()l)(T) = x(()')(T — 1)+ a;(T — 1), we have
(L1)=(R1)+(R3). So (29) holds.

e Supposeitisthelatter case, i.e.,x(Ti)(T+ 1-Z)=0forall1<r<Z-1
andxg)(T+ 1-Z)=0. Then xil)(t) =0forT+1-Z<t<T.So
(L2)=(R2)=(R4) =0. Similar to the former case, it can be shown
that (L1) =(R1)+(R3).

Combining the arguments above, we have shown that (29) always
holds and thus the flow conservation constraint (22) is satisfied.

Now we prove the other direction of the lemma, i.e., we prove that
any feasible set of flow variables define a feasible cache schedule. Let
fn(flie)m(T)’fc(ci})l(T)’fe(xii)ct(T) be a set of feasible flow variables. We show
that the cache schedule defined below is feasible. For each timestep

T>Z,

1 when fn(T-2)=1, £ (T-1)=0,

and f 3, (1)=0,

-1 when fC(Cl})I(T—l)z land f(i)

evict

ai(T)= (D=1,

0 otherwise.
For T with 0 < T < Z, let a;(T) = 0, which is always feasible. Let

x(Ti)(T) with i € [M],r =0,...,Z be the state of the system as defined
in (4) and (5) under this cache schedule in (31) . To show that this
schedule is feasible, we first prove the following claims.

510

Cramm 1. For any object i and any timestep T > Z,

()= fAT-1). (32)
Cram 2. For any objecti and anyT >0,
Z-1
fam@=x@+1)-[| (1—x(T')(T+1)). (33)
=1

We note that in Claim 2,
Z-1
s @en) [(1= 1) =1
=1

oxD(T+1)=1.2(T+1)=0forall r=0,1,...2-1
ox(T+z)=1.

Therefore, it is equivalent to f]ggm (M= xii) (T+2).
We prove both claims by induction.

Proof of Claim 1. Base case. When T = Z, x(()i)(T) =0 for all i since
we start from an empty cache and a;(u) =0 for 0 <u < Z. We have

also defined fc(ci})l(Z— 1) to be 0 as an custom. So x(()i)(Z) :fc(cil)q(Z— 1).
Induction step. Assume that for some T > Z, x(()i)(T) =]‘(fcil)l(T— 1).
We want to show that x(()i)(T+ 1)= fc(cl])q(T) Note that by the system
dynamics in (11), we have that x(()i)(T+ 1)= x(()i)(T) +a;i(T).
We consider the different cases of a;(T).

o If a;(T) = 1, then by (31), £ (T ~1) = 0, {2 (T~Z) = 1 and
fe(\ii)ct(T) = 0. By the flow conservation at V..p, 7, we have that
fc(cl})l(T) = 1. By the induction assumption, x(()i)(T) = fc(cl})l(T —1).
Then x(T+1)=x/(T) +a;(T) = 1. So x{ (T +1) = £ (7).

o If a;(T) = -1, then by (31), £)(T~1)=1and £) (T) = 1. Due

evict
to the unit demand of each object, it is not hard to show that the

total incoming flow an object to a vertex is at most 1. Specifically,
cogsider the vertex Voep, 7. Then f(fcl})l(T— 1)+f,§{gm(T—Z) <1.So
I;le)m(T—Z) =0. By the flow conservation at Ve, 7, fc(cl})I(T) =0.
Since x(()i)(T+ 1)= x(()i)(T)+a,~(T) =0, we have x(()i)(T+ 1)= fc(cTh)'

e Ifa;(T)=0, by (31), we have the following possibilities:

FT-n=0flnT-2)=1, (34)
£ my=0,£0 (1)=1; (35)
or fO(T-1)=1,f0(T-2)=0, (36)
ST =11 D=0 (37)
or f(T-1)=0, il (T-2)=0, (38)
SanM=0.f4,(T)=0. (3)

For all the possibilities, fc(ci})l(T) = fc(cl})l(T —1). Since x(()i)(T +1)=
FO(T-1)+a;(T), we have x (T +1)= £ ().
This completes the proof of Claim 1.
Proof of Claim 2. Base case. When T = 0, by flow conservation,
frﬁfe)m(o) =1ifand only if 0(0) =i. Since we start from an empty cache
and a;(u) =0for 0 <u < Z, by the state dynamics (10)-(12), x(ri)(l) =0
forallie[M]and r=0,1,...,Z, and xg)(l) =1fori=0(0)and 0 for
other objects. So (33) holds for T=0.

Induction step. Assume that for each timestep u with 0<u <T,

mem(u)—x l)(u+1) I_[(l xT)(u+l)) (40)
We want to show
£ T+ =xD (1 +2)-]_[(1 A(T+2). (41)

First, it is not hard to see that
2'7
xg)(u+ 1) l_[(l Xy)(u+ l)) =1

<:>x(l)(u+1) 1 x(l)(u+1)=0 forall7=0,1,....2-1

Sx l)(u+Z): 1.

Therefore, the induction assumption (40) is equivalent to f]ggm(u) =

Dw+2).

Observe that the RHS of (41) is equal to 1 if and only if o(T +1) =i
and x(l)(T+2) =0forall 7 =1,2,...,Z—1. Then (41) is trivially true
for i#o(T+1). So it suffices to focus on the case where i=o(T+1).

If Vinem, T+1 is a source vertex of object i, then fmem(T+ 1)=1.By
flow conservation, félle)m(u) fc(l)(u) f(l) (u)y=0for0<u<T.

evict

Then a;(u) =0 for all 0 <u <T. So by the dynamics in the system, at
T+1 the request will see that i is not in the cache and the queue for
i is also empty. Then the RHS of (41) is equal to 1.
When Vipem, 7+1 is not a source vertex, let t* be the last time object
i was requested, i.e.,
t* =max{t: t<T+1,0(t)=i}. (42)
Suppose fmem(T +1)=1. Then by flow conservation at Vipem, 741,
fe(ézct(t) =1 for some t with t* <t <T+1. Let ¢’ be the latest timestep

with ¢’ <t such that frggm(t —Z)=1.By the induction assumption,
D -z+)=1andx(' ~Z+1)=0forall r = 1,2,.., 2~ L.If

. (i) (l) "N
t’ <t-1, then by flow conservatlonf (t —-1)=0and f,/ (t")=0.
Soa;(t’)=1and x(l)(t +1)=1. Then this enforces x(T)(t + 1) 0 for

allt=1,2,...,Z.Forallu with t’ <u < t, we can verify that f Vlct(u) =0.
Then by the construction of the cache schedule, a;(u) = 0. There-
LZ. At

= 1, we have q;(t) = -1, and thus

fore, the queue stays empty, ie., xT)(t) =0forz =1,2,.
t smcef(D _1a ndfe

(l)(t +1) = 0. For any u with t < u < T + 1, we can show that
félle)m()= fc(l)()= fé\fi)ct(u) =0, so aj(u) = 0. We also know that
o(u—1) #i. So the queue for i stays empty at T + 1 and i is not in
the cache at T+1. Combing these, we can see that x(’)(T+ 1)=0 for
r=12,....Z1andxY)(T+2)=1.S0 fil(T+1)=RHS.If ¢’ =1, then

we have fggma_a 4 @=1and £ t-1)= 2 (1)=0,and

thus a;(t) =0. Using similar arguments as above, we can show that
the queue for i stays empty and i is not in the cache at T+ 1. Then

the RHS is 1 and thus fmem(T+ 1)= RHS.
Now consider the case where fmem(T+ 1)=0. Then f(ll) =0

forall t with t* <t <T+1. Iff(-, (T)=1, then by flow conservation,
F9(T+1)=1. Then by Claim 1, x\ (T +2) = f) (T +1) = 1. Then
xJ(T+2)=0and thus fii(T+1)=RHS.If f) (T)=0, then again,
by flow conservation, we have that f 0 L(t—1)=0and féllgm(t—Z) =0

vict

511

for all t with t* < ¢t < T + 1. By Claim 1, x(()i)(t* +1) = fc(cll)l(t*) =
0.If fé:e)m(t) = 1, then we must have T + 1 — t* < Z. Therefore,

f‘)+Z T 1(T+2)—x(i)(t* +1)=1 and thus the RHS of (41) is equal

to0 0. If £i2,(*) = 0, then x(#* + 1) = 0 or x(+* + 1) = 1 for
some 7 = 1,2,...,Z — 1. Since x()(t + 1) = 0, there must exists a

7=1,2,...,Z—1 such that x;)(t +1)=1.Let " be the smallest = such
thatx(l)(t +1)=1. Thenx(l)(t +7*)=1.Since1 < t* < Z—-1,wehave

t*+1* —Z <T and thus by the induction assumption fmem(t +7*

Z)—x()(t +7%)=1.We must have t* +1 >T+151ncefmem(t Z)=
0f0ralltw1tht <t<T+1 Then 1 < t* +T —T 1<Z-1land

xgll_r (T+2)—x (t +7%)=1.Thus 0= fmem(T+1) RHS.

This completes the proof of Claim 2.
From Claims 1 and 2, it is easy to see that

ai(1)=1 < Fom(T=2) = (T+2) (43)
L, (1)1 < S (T=D)=x(T) (44)
> amsc=) filr-n<c (45)
i€[M] i€[M]
This verifies the constraints (7)—(9) and proves that the cache sched-
ule defined in (31) is feasible. m]

Once we have Lemma 1, the only thing left is to show that the
MCMCEF problem and the latency minimization problem have the
same objective function. This is easy to see once we compare the
objective functions (15) and (14) and apply Claim 2 from the proof
of Lemma 1.

A.3 Optimizations to Reduce Complexity

In this section, we provide implementation details of BELATEDLY
for reducing complexity. Our overall approach is illustrated in Fig-
ure 6.

A.3.1 Pruning and Merging.

While the MCMCF formulation is conceptually simple, a naive imple-
mentation of the algorithm has serious practical limitations. Observe
that the number of flow variables in the MCMCF formulation is O(N -
M).For arequest sequence of size N = 250,000 containing M = 20,000
objects, the number of decision variables alone would be on the order
0f 1012, Further, the total number of flow conservation constraints
is O(N - M) (see (19)—(22)). In Gurobi, where decision variables are
encoded as 64-bit floating-point values, and constraint expressions
as vectors of 64-bit pointers to the relevant decision variables, simply
encoding the model would require well over 400 GB of memory.

In this section, we describe two optimizations to the above formu-
lation that allow us to significantly tighten the resource requirements
(memory and execution time) for solving the MCMCF problem and
to make it more tractable. Our goal is to be able to compute BE-
LATEDLY on a 32-core x86 server with 128 GB of RAM, for request
sequences containing N ~ 250,000 requests, M ~ 50,000 objects, and
any combination of z and C.

Caching Intervals. Since the majority of decision variables stem
from either (Vech, n» Vech, n+1) (cache-to-cache) or (Vech, > Vinem, x)
(cache-to-memory) edges, we first attempt to reduce the number
of elements in these sets. The key idea here is that, for each object,
the request sequence can be partitioned into disjoint intervals
(composed of one or more consecutive timesteps) where BELATEDLY

Optimized caching intervals for a: | X i 1

. Lo x
Naive caching intervals for a: | L} | | |

Vcch, t+6 Vcch, t+7

Vcch, t+4 Vcch, t+5

Veeh, £43

. ‘4;2

Vmem t+6
Figure 23: A fragment of a request sequence highlighting nodes and
edges corresponding to object a (colored red), with Z =3.

Vmem, t Vmem, t+4

is never incentivized to change its caching decision for that object;
we call these caching intervals.

To concretize this notion, consider the subproblem depicted in Fig-
ure 23. Per the original MCMCF formulation, there are four distinct
decision variables on edges between cache vertices corresponding
to a (denoted by x1, x2, x3, and x4). Now, consider the possibility of
routing flow along edges labeled 1, 2, and 3. All three edges have the
same capacity, cost-per-unit-flow, and destination node. Effectively,
the latency cost incurred by evicting a using any of these edges is
identical. However, observe that routing a’s flow along edge 2 in-
volves keeping a in the cache for one timestep longer than routing
it along edge 1. Similarly, routing a’s flow along edge 3 involves
keeping it in the cache for two additional timesteps. Since deferring
the eviction consumes valuable cache space (but yields no tangible
benefit in terms of latency cost), it is strictly better to evict a using
edge 1 (at timestep ¢ +4) than using edges 2 or 3.

This simple observation gives us three major optimization oppor-
tunities. In particular, it enables us to:

o Eliminate the redundant edges 2 and 3 (along with the corre-
sponding decision variables).

e Replace x3, x3, and x4 with a single decision variable, xé. Since
edges 2 and 3 no longer exist, any flow entering cch(;, 4) must
remain in the cache until cch; ,7); in other words, BELATEDLY's
caching decision remains the same for the entire duration of
the interval [(t+4), (t+7)).

e Eliminate flow conservation constraints involving object a
for nodes cchy; 45) and cchy;). In the new representation, for
each object, i, we only need flow conservation constraints for
Veache Nodes corresponding to the end-points of i’s caching
intervals.

Lastly, this representation also allows us to bound the total num-
ber of caching intervals for any request sequence. Let n; denote the
number of requests to object i in a given request sequence of size
N. Observe that an endpoint of object i’s caching intervalsisa V..,
node that either corresponds to i being admitted into the cache, i
being evicted from it, or both. Since there are exactly n; admission
edges corresponding to object i, there must be at least n; endpoints
(or, equivalently, n; —1 intervals) corresponding to i. Conversely, in
the worst case, there are n; — 1 additional V., nodes which have
eviction edges corresponding to object a. Thus, there may as many as
2n;—1 unique endpoints (or, equivalently, 2n; —2 caching intervals)
corresponding to i. The total number of caching intervals (for all

512

Vcch, t—k Vcch, -1 Vcch, t+3

Vinem, t
[

cost(t)=3+2+1=6

Figure 24: A fragment of a request sequence highlighting ingress
and egress edges for node Vinem, r, with Z =3.

Vcch, t—k Vcch, -1 Vcch, t+3

Figure 25: The optimized representation with backing store nodes
removed.

objects), K, can then be bounded as follows:

D i-D<K< Y 2Ani-1)

i€[M] i€[M]
=S>N-M<K<2(N-M).

For a fragment of an empirical trace (CAIDA Chicago, 2014) con-
taining N =250,000 packets and M =37,725 objects (unique flows),
the total number of caching intervals is on the order of 400, 000.
Compared to the naive formulation, this optimization reduces the
number of decision variables from 18x10? to 10°, and the number
of model constraints from 9% 10° to 10°.

Optimizing Away Backing Store Nodes. Partitioning the global set
of nodes into cache nodes and backing store nodes is a convenient
abstraction since it allows us to reason about cache evictions and
admissions independently of one another. Unfortunately, this rep-
resentation also adds considerable overhead: excluding sink nodes,
there are N backing store nodes, each of which contributes one de-
cision variable on an edge (Vimem, 7> Vech, T+2)> as well as one flow
conservation constraint. However, observe that, in our MCMCEF for-
mulation, any flow entering a Vipem, 7 node must be routed to the
corresponding cache node, Vecp, 74z- This leads us to our next op-
timization: replacing pairs of cache eviction and admission edges of
the form (Vech, 7 Vinem, x) and (Vinem, x»Vech, x+2) With a single edge
(Vcch, T7Vcch,x+Z) with unit capacity and cost ¢ (Vcch, T 7VCCh,x+Z) =
C(i)(Vmem,XaVcch,x+Z) for object i.

As an example, consider the subproblem depicted in Figure 24.
Here, Vinem, + has two in-edges, labelled 1 and 2, and one out-edge,
labeled 3. Using the optimization strategy discussed above, we can
coalesce edges 1 and 3 into a single edge, 1’, with a capacity of 1 and
a cost-per-unit-flow of @ =¢. Similarly, we can coalesce edges 2
and 3 into a single edge, 2’. This effectively disconnects node Vinem, ¢
from the remainder of the flow graph, and we can safely remove

it from V. A visual representation of the optimized flow graph is
depicted is Figure 25. Overall, this optimization:

o Eliminates N decision variables corresponding to all N back-
ing store to cache edges.

e Eliminates N flow conservation constraints corresponding to
backing store nodes (excluding sink nodes).

For the aforementioned empirical trace, this optimization reduces
the total number of decision variables and model constraints by
another 25% (down to 750,000 each). Overall, the optimized MCMCF
formulation (expressed in Gurobi C++ format) occupies under 25
GB of memory.!”

A.3.2 Rounding to Approximate Integer Solutions.

Recall that, since the integer version of MCMCF is NP-Complete,
we instead opt to solve a fractional (or relaxed) version of the prob-
lem by removing the integrality constraints. However, this often
results in solutions that do not map on to realistic caching strate-
gies.® In this section, we describe our methodology for extracting
an implementable caching schedule from a fractional solution.

A naive, yet intuitive, strategy is to simply round any non-zero
fractions of evicted flows to 1, thereby always creating enough space
in the cache for the next object to be admitted; unfortunately, this
greedy rounding strategy does not generally work. It is easy to con-
struct request sequences where evicting too much flow results in
aviolation of the cache capacity constraint several timesteps later.
Further, attempting to satisfy the constraint by randomly evicting
objects causes the upper-bound on the latency cost to diverge signif-
icantly from the true optimum. BELATEDLY addresses this problem
in two ways:

(1) Instead of rounding all non-zero evicted flow fractions to 1, round-
ing is done with a probability corresponding to the fraction itself
(a form of randomized rounding). In other words, if the fraction of

flow for object i evicted at timestep T is f(i) (T) € [0,1], then we

evict
perform eviction with probability fe(;)ic (). This ensures that, in
expectation, the cache occupancy at any timestep is equal to the total
flow routed along the corresponding edge in the MCMCEF solution.
(2) While randomized rounding works well in theory, it does not
guarantee that the cache capacity constraint is satisfied. In order to
enforce this, we introduce the notion of flow balance. The idea is to
track the expected amount of cached flow for each object (according
to the fractional solution); then, at any timestep, if the cache occu-
pancy would exceed the cache size, we evict the flow that is most
unbalanced (deviates the most from its expected cached fraction). In
practice, this is implemented using a priority queue.

A.4 BELATEDLY Performance Evaluation

Recall that we apply two optimizations to make the MCMCF prob-
lem described in §3.1 tractable: first, we prune and merge states in
the flow graph to reduce the number of decision variables (§A.3.1);
second, we solve a ‘relaxed’ version of the problem, followed by
integer rounding (§A.3.2), to ensure that the algorithm terminates
in polynomial time. In this section, we evaluate the benefits of these
optimizations (using the naive MCMCEF formulation as a baseline),
as well the impact of rounding on BELATEDLY s latency upper-bound.

7This includes overheads incurred by Gurobi’s internal data-structures; the raw model
itself is significantly more compact.

8For instance, the optimal fractional solution may involve caching half an object,
which is not particularly meaningful.

513

Il Naive

10.86B 3.048 BELATEDLY

1.24B

905K 972K

546K

—
o
o

#Decision Variables
(Log-scale)
-
A

-

o
°
I

Network CDN Storage

Figure 26: Number of decision variables in the naive MCMCF
formulation versus BELATEDLY for different application scenarios.

Our optimizations to the original MCMCF formulation re-
duces BELATEDLY’s memory and compute requirements by
orders of magnitude. In Figure 26 we count the number of decision
variables in the MCMCF formulation given our naive construction
(§3.1) and our pruned version (§A.3.1). For all three application sce-
narios, the number of decision variables is reduced by three to four
orders of magnitude.

Empirically, the formulation provides tight bounds. While
solving a ‘relaxed’ version of the problem only gives us alower-bound
on the total latency (and not an implementable schedule), our ran-
domized rounding strategy and flow balance heuristics work well in
practice. For each application scenario, we perform 20 runs of BELAT-
EDLY sweeping different Z values and cache sizes. Across all three
scenarios, we see a median error of at most 0.05% and a maximum
error of 1.71%. Table 3 lists the relative error between the upper- and
lower-bounds of the solution generated by BELATEDLY.

Mean Err.% | Median Err.% | Max. Err.%
Network 0.017 0.004 0.124
CDN 0.325 0.051 1.707
Storage 0.015 0.007 0.072

Table 3: Empirical bounds on BELATEDLY’s error (calculated by
comparing the integer upper-bound to the relaxed lower-bound).

	Abstract
	1 Introduction
	2 The Problem with Delayed Hits
	2.1 Classic Caching Algorithms
	2.2 Belady is Not Latency-Minimal
	2.3 Delayed Hits and Practical Algorithms
	2.4 Minimizing Latency is Challenging

	3 Latency Offline Optimal
	3.1 Network Flow Formulation
	3.2 Delayed Hits and Empirical Latencies

	4 Approximating belatedly
	4.1 Offline Approximations: Belady-AD
	4.2 Online Algorithm: mad

	5 Evaluation
	5.1 Experimental setup
	5.2 Prototype Evaluation on CDN Trace
	5.3 Simulation Results: Systems
	5.4 Simulation Results: Analysis

	6 Limitations and Open Questions
	7 Related Work
	8 Conclusion
	9 Acknowledgements
	References
	A Appendix
	A.1 Latency Minimization Problem
	A.2 Proof of Theorem 1
	A.3 Optimizations to Reduce Complexity
	A.4 belatedly Performance Evaluation

