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ABSTRACT
Caches are at the heart of latency-sensitive systems. In this paper,

we identify a growing challenge for the design of latency-minimizing
caches called delayed hits. Delayed hits occur at high throughput, when
multiple requests to the same object queue up before an outstanding
cache miss is resolved. This effect increases latencies beyond the predic-
tions of traditional caching models and simulations; in fact, caching
algorithms are designed as if delayed hits simply didn’t exist. We show
that traditional caching strategies ś even so called ‘optimal’ algorithms
ścan fail tominimize latency in thepresenceofdelayedhits.Wedesigna
new, latency-optimal offline cachingalgorithmcalledbelatedlywhich
reduces average latencies by up to 45% compared to the traditional,
hit-rate optimal Belady’s algorithm. Using belatedly as our guide,
we show that incorporating an object’s ‘aggregate delay’ into online
caching heuristics can improve latencies for practical caching systems
by up to 40%. We implement a prototype, Minimum-AggregateDelay
(mad), within a CDN caching node. Using a CDN production trace and
backends deployed in different geographic locations, we show thatmad
can reduce latencies by 12-18% depending on the backend RTTs.
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· Networks; · Theory of computation → Caching and paging
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1 INTRODUCTION
Caches are key components of the computer systems toolkit: they

reduce bandwidth consumption to a bottlenecked backing store,
they improve throughput for memory-intensive services, and they
reduce read delays for latency-sensitive applications. Consequently,
caches appear across seemingly every class of computer system:
e.g., in microprocessors [27], in distributed file systems [51], in CDN
proxies [12, 21], and in software switches [47].
In this paper, we focus on a surprisingly overlooked aspect of

caching and latency. Caching models and simulators assume that
there are exactly two possible outcomes when an object is requested:
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a low-latency ‘hit’, or a higher latency ‘miss.’ In reality, there is a
third potential outcome: a delayed hit [25, 56]. Delayed hits occur
in high-throughput systems when multiple requests for the same
object occur before the object is fetched from the backing store.

Our group first encountered delayed hits on an FPGA-based soft-
ware switch, with incoming packets triggering access to a flow
context stored in either an SRAM-based cache (5 ns reads), or a
DRAM-based global backing store (100 ns reads). When a flow’s
packet results in a cache miss, it triggers the 100 ns fetch operation.
At high throughput, a second packet of the same flow arrives before
100 ns have passed. This packet requests the same object, and waits
for it to return from the fetch initiated by the first packet. While the
second packet does not have to wait the full 100 ns for the object to
arrive, it also does not experience a 5 ns ‘hit’ either. Per traditional
caching literature, the request corresponding to the second packet
would be counted as a hit. In reality, this second packet experiences
a slower, ‘delayed hit’.

We demonstrate throughout this paper that the traditional caching
objective of hit-rate maximization and the related goal of latency min-
imization are not equivalent problems when some hits are delayed.
We argue that therefore we need new algorithms for latency-sensitive
caching systems.

One way to understand fundamental trade-offs in caching design
is by studying an offline-optimal algorithm. The classic such algo-
rithm is called Belady’s algorithm [7]. Unlike real caching systems,
offline-optimal algorithms assume an oracle with perfect knowl-
edge of future requests. Offline algorithms can provide guidance and
bounds for practical algorithms, e.g., if the offline-optimal algorithm
achieves ak%hit-rate, then any online algorithmwill achieve atmost
k%. In the past, understanding which objects an offline algorithm
chooses to cache or evict has often guided the design of practical
systems [9, 29, 55]. Our approach to understanding delayed hits sim-
ilarly uses lessons from the offline setting to guide our design of a
practical online system.

Limitations of existing algorithms: We begin in ğ2 by showing
that Belady’s algorithm, the optimal offline approach for hit-rate
maximization, does not guarantee minimal latency in the presence
of delayed hits. We then measure the gap between hit-rate and
latency-orientedregimesoncache traces includinga10Gbps linkand
a latency-sensitiveCDN.Wefind that latencyevaluationsof practical
caching algorithms (e.g., LRU [64]) based on hit-rate alone underesti-
mate true latencies by 14-63% in switch caches and 22-36% in CDNs.

Optimal, latency-minimal caching: Having demonstrated that
existing caching algorithms fail to minimize latency, we turn to the
design of new algorithms that are aware of delayed hits. In ğ3, we de-
sign a new offline caching algorithm, belatedly,1 which computes
empirically tight bounds on the minimum latency in polynomial
time. Using belatedly, we quantify the gap between Belady’s al-
gorithm ś and thus the hit-rate maximization strategy ś and true
latency-optimality.We find that Belady’s latencies are 0.1-38%worse

1Available at https://github.com/cmu-snap/Delayed-Hits
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A APPENDIX
Appendices are supportingmaterial that has not been peer-reviewed.

A.1 LatencyMinimization Problem
In this sectionwe give a formal definition of the latencyminimiza-

tion problem for caching with delayed hits.
Recall that we consider a cache of sizeC andM objects indexed by

i ∈ [M].We are given a sequence object requests, whereσ (T ) denotes
the object requested at timestepT withT =0,1,...,N .

We use the following quantities to describe the state of the system
at the beginning of each timestepT . For each object i , let

x
(i)
0
(T )=1{object i is in the cache atT }, (4)

x
(i)
τ (T )=1{object i was requested atT −(Z +1−τ )

and the request has not been resolved}

τ =1,...,Z . (5)

Here, when an object i is requested but cannot be resolved immedi-
ately, we say that we put it in a queue. So (5) describes the state of
the queue for i .

We specify a cache schedule using the followingdecisionvariables.
Let ai (T ) be defined by

ai (T )=




1 if object i is admitted to cache atT ,

−1 if object i is evicted from cache atT ,

0 if no action is taken on object i atT .

(6)

To make sure ai (T ) with i ∈ [M],T = 0,1, ... ,N form a valid cache
schedule,we enforce the following constraints for each object i ∈ [M]

and timestepT =0,1,...,N :

• An object can be admitted only when its data arrives:

1{ai (T )=1} ≤x
(i)
1
(T ). (7)

• An object can be evicted only when it is already in the cache:

1{ai (T )=−1} ≤x
(i)
0
(T ) (8)

• The schedule should guarantee that the number of objects in the
cache is no larger than the cache sizeC:∑

i ∈[M ]

x
(i)
0
(T )≤C . (9)

Although it seems that this is a constraint on the state, it is in fact
a constraint on the cache schedule since the state at the current
timestep is determined by the past decisions. This will become
clear after we describe the relation between the state and the
schedule next.

With the notation above, we can write out how the system state
evolves over time as follows:

• The data that just arrived resolves the requests for the same object
in the queue, and other requests move forward in queue:

x
(i)
τ (T +1)=x

(i)
τ+1

(T )·(1−x
(i)
1
(T )),

i ∈ [M],τ =1,...,Z−1,T =0,1,...,N −2. (10)

• The admission or eviction of an object changes the state in the
cache:

x
(i)
0
(T +1)=x

(i)
0
(T )+ai (T ),

i ∈ [M],T =0,1,...,N −2. (11)

• The new request comes in and is added to the queue if the re-
quested object is not in the cache:

x
(i)
Z
(T +1)=1{σ (T )=i } ·(1−x

(i)
0
(T +1)),

i ∈ [M],T =0,1,...,N . (12)

It can be proven that the state that evolves according to the dynamics
above satisfies that for anyT =0,1,...,N −2,

x
(i)
0
(T )+1

{
∑
Z

τ=1x
(i )
τ (T )>0}

≤ 1. (13)

This inequality states the fact that if object i is in the cache, then
there will not be requests for i in the queue, and if there are requests
of object i in the queue, then i is not in the cache.

At timestepT , object σ (T ) is requested. If it is not in the cache nor
requested during the pastZ timesteps, itwill trigger a sequence of de-
layed hits when σ (T ) is requested again during the nextZ timesteps.
Therefore, the total latency can be written as:

N−2∑

T=0

x
(σ (T ))
Z

(T +1)·

Z−1∏

τ=1

(
1−x

(σ (T ))
τ (T +1)

)

·

Z−1∑

t=0

1{σ (T+t )=σ (T )} ·(Z−t). (14)

Then the latency minimization problem is to find the cache sched-
ule subject to the constraints (7)ś(9) such that the resulting states
minimize the total latency in (14).

A.2 Proof of Theorem 1
We first give some notation for the flow variables and state the

MCMCF problem with the notation. We define a flow variable for
each object on each edge, which takes values from {0,1} and repre-
sents the fraction of flow for the object routed along that edge. In
particular, we define the flow variables below:

f
(i)
mem(T ) : object i along edge (Vmem,T ,Vcch,T+Z ),

T =0,1,...,N −1−Z ;

f
(i)

cch
(T ) : object i along edge (Vcch,T ,Vcch,T+1),

T =Z ,1+Z ,...,N −2+Z ;

f
(i)
evict

(T ) : object i along edge (Vcch,T ,V
(T )
next,i ),

T =Z ,1+Z ,...,N −1+Z .

Note that f
(i)
mem(T ) is always 0 if i,σ (T ) due to the infinite cost. Sim-

ilarly, the flow variable for object j along edge (Vcch,T ,V
(T )
next,i )with

j,i is also always 0. Here our formulation is a so-called ‘single-path
routing’ formulation, i.e., the flow variables are either 0 or 1 and they
together represent a path for each object. Additionally, for conve-

nience, for each vertexVmem,T , we use P
(j)(Vmem,T ) to denote the

set of vertices in the top row that have outgoing edges toVmem,T as-
sociatedwith object j . Our goal is tominimize the followingobjective
function:

N−1∑

T=0

c(σ (T ))(Vmem,T ,Vcch,T+Z )· f
(σ (T ))
mem (T ), (15)

where c(σ (T ))(Vmem,T ,Vcch,T+Z ) is the latency cost in (2). The min-
imization problem is subject to the following constraints for each
object i:

• Link capacity:

f
(σ (T ))
mem (T )≤ 1,T =0,1,...,N −1, (16)
∑

i ∈[M ]

f
(i)

cch
(T )≤C,T =Z ,1+Z ,...,N −2+Z , (17)

f
(i)
evict

(T )≤ 1,T =Z ,1+Z ,...,N −1+Z . (18)
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Here (17) models the constraint that we can have at mostC ob-
jects in the cache. The constraints (16) and (18) are automatically
satisfied.

• Flow conservation:

f
(i)
mem(Ti )=1,whereVmem,Ti is the source of i, (19)

total incoming flow toV
(i)

sink
is 1, (20)

∑

t : Vcch,t ∈P(i )(Vmem,T )

f
(i)
evict

(t)= f
(i)
mem(T ),i=σ (T ),T >Ti , (21)

f
(i)

cch
(T −1)+ f

(i)
mem(T −Z )= f

(i)

cch
(T )+ f

(i)
evict

(T ),

T =Z ,1+Z ,...,N −1+Z . (22)

Here the constraints (19) and (20) at sources and sinks are straight-
forward. The constraint (21) is a flow conservation constraint at
vertexVmem,T . It implies that if object i was evicted from the cache
beforeT and has not been requested since, then its data will be
fetched from the backing store to the cachewhen it is requested at
T . The constraint (22) is a flow conservation constraint at vertex

Vcch,T . Let us set f
(i)

cch
(Z−1)= f

(i)

cch
(N −1+Z )=0 so (22) is valid at

T =Z andT =N −1+Z . This constraint guarantees the obvious
requirement that an object is either in the cache or not in the cache.

Both the MCMCF problem and the latency minimization problems
are optimization problems. To show the equivalence of these two
problems, we first show in Lemma 1 below that the feasible set of
flow variables is ‘equivalent’ to the feasible set of caching schedules.
In particular, from any feasible cache schedule, we can define a set
of flow variables that are also feasible for the MCMCF problem; con-
versely,givenanyfeasible setofassignments toflowvariables,wecan
define a feasible cache schedule. Once we have this bijection, we can
show that the objective functions of these two problems are the same.
With equivalent feasible sets and objective functions, the MCMCF
problem and the latency minimization problem are thus equivalent.

Lemma. Given a sequence of object requests, there is a bijection
between the set of feasible flow variables and the set of feasible cache
schedules.

Proof of Lemma 1. We first prove that any feasible cache sched-
ule defines a set of feasible flow variables. Let ai (T ),i ∈ [M],T =

0,1,...,N be a feasible cache schedule. We show that the flow vari-
ables defined below are feasible:

f
(i)
mem(T )=x

(i)
Z
(T +1)·

Z−1∏

τ=1

(
1−x

(i)
τ (T +1)

)
, (23)

f
(i)

cch
(T )=x

(i)
0
(T )·1{ai (T )=0}+x

(i)
1
(T )·1{ai (T )=1}, (24)

f
(i)
evict

(T )=x
(i)
0
(T )·1{ai (T )=−1}+x

(i)
1
(T )·1{ai (T )=0} . (25)

Let us first consider the capacity constraints (16)ś(18). It is easy to
check that the constraints (16) and (18) are satisfied. Nowwe check

the constraint (17). By the definition of f
(i)

cch
(T ) in (24),

∑

i ∈[M ]

f
(i)

cch
(T )

=

∑

i ∈[M ]

(
x
(i)
0
(T )·1{ai (T )=0}+x

(i)
1
(T )·1{ai (T )=1}

)
(26)

When ai (T ) = −1, the summand in (26) is 0; when ai (T ) = 0, the

summand equals x
(i)
0
(T )=x

(i)
0
(T +1); otherwise, when ai (T )=1 and

x
(i)
1
(T )= 1, object i will be admitted to the cache so x

(i)
0
(T +1)= 1.

Combining these cases, we have that the summand in (26) is always

no larger than x
(i)
0
(T +1). Thus,
∑

i ∈[M ]

f
(i)

cch
(T )≤

∑

i ∈[M ]

x
(i)
0
(T +1)≤C, (27)

and the constraint (17) is satisfied.
Next let us consider the flow conservation constraints (19)ś(22).

It is easy to check that the constraints (19) and (20) are satisfied.
For the constraint (21), let i=σ (T ). Let t∗=max{t : t <T ,σ (t)=i}.

Then one can check that {t : Vcch,t ∈ P(i)(Vmem,T )} = {t∗ +1,t∗ +

2,...,T }. So it suffices to show that

T∑

t=t ∗+1

(
x
(i)
0
(t)·1{ai (t )=−1}+x

(i)
1
(t)·1{ai (t )=0}

)

=x
(i)
Z
(T +1)·

Z−1∏

τ=1

(
1−x

(i)
τ (T +1)

)
. (28)

First, consider the case where x
(i)
1
(t)= 1 for some t∗ < t ≤T . Then

we must have t ≤ t∗+Z since there is no request for object i after t∗

and beforeT . This arrival at t will resolve all the requests for i in the

queue (if there exist any). We observe that x
(i)
0
(u)=0 for t∗ <u ≤ t

by (13) and x
(i)
t+1−u (u) = x

(i)
1
(t) = 1. Also x

(i)
1
(u) = 0 for t∗ < u < t

since otherwise it would have resolved the request and thus results
in no data arrival at t . If ai (t)=0, then the data is not admitted to the
cache. Also there is no request for object i on or after t (beforeT ). So

x
(i)
1
(u)=x

(i)
0
(u)=0 for t <u ≤T . Then when the request for i comes

in atT , it sees nothing in the cache nor the queue. So by the dynamics

in (12), we have x
(i)
Z
(T +1)=1. Therefore, the right-hand-side (RHS)

of (28) is equal to 1, which is equal to the left-hand-side (LHS). For
the case that ai (t)=1, the data is admitted to the cache at t . There
can be at most one eviction after t and no later thanT (two evictions
require data arrival in between). If there is no eviction, then the LHS
is 0. The RHS is also 0 since the request for i atT will not be put in

the queue and thus x
(i)
Z
(T +1)= 0. If there is an eviction at some u

with t <u ≤T , then all the summands except x
(i)
0
(u) ·1ai (u)=−1 on

the LHS are 0. So the LHS is equal to 1. The RHS is also equal to 1
since the request for i atT sees nothing in the cache nor the queue.

In summary, (28) holds when x
(i)
1
(t)=1 for some t∗< t ≤T .

Next, consider the case where x
(i)
1
(t)= 0 for all t with t∗ < t ≤T .

In this case there is no data arrival for object i during the whole time
period. Then again there can be at most one eviction. Suppose there
is no eviction for all t with t∗< t ≤T . Then the LHS of (28) is 0. In this
case, object i is either in the cache for all timestep t with t∗ < t ≤T
or it is not in the cache for all t with t∗ < t ≤T . If it is in the cache

all the time, then the RHS is also 0 since x
(i)
Z
(T +1)=0. If it is always

not in the cache, thenT < t∗+Z since the request at t∗ is put in the

queue and arrive at t∗+Z , but we have assumed thatx
(i)
1
(t)=0 for all

t with t∗ < t ≤T . However,T < t∗+Z implies that x
(i)
t ∗+Z−T

(T +1)=

x
(i)
Z
(t∗+1)=1, which implies that the RHS of (28) is 0. Therefore, for

the case of no eviction, LHS and RHS are equal. Suppose there is an
eviction at some t with t∗< t ≤T . Then the LHS of (28) is equal to 1.

Sincewe have assumed thatx
(i)
1
(t)=0 for all t with t∗< t ≤T , object i

cannot reenter the cache after the eviction. Sox
(i)
τ (T )=0 for 0≤τ ≤Z .

Then the request for i atT will be added to the queue, so the RHS of
(28) is equal to 1. Therefore, LHS and RHS are also equal in this case.

509



Combining the arguments above, we have shown that the flow
conservation constraint (21) is satisfied.

Now let us check the constraint (22), i.e., we want to show that

x
(i)
0
(T −1)·1{ai (T−1)=0}

︸                         ︷︷                         ︸
Term (L1)

+x
(i)
1
(T −1)·1{ai (T−1)=1}

︸                         ︷︷                         ︸
Term (L2)

+x
(i)
Z
(T +1−Z )·

Z−1∏

τ=1

(
1−x

(i)
τ (T +1−Z )

)

︸                                          ︷︷                                          ︸
Term (L3)

=x
(i)
0
(T )·1{ai (T )=0}

︸                 ︷︷                 ︸
Term (R1)

+x
(i)
1
(T )·1{ai (T )=1}

︸                 ︷︷                 ︸
Term (R2)

+x
(i)
0
(T )·1{ai (T )=−1}

︸                   ︷︷                   ︸
Term (R3)

+x
(i)
1
(T )·1{ai (T )=0}

︸                 ︷︷                 ︸
Term (R4)

.

(29)

We start by discussing different cases of Term (L3). Suppose (L3)=1.
Then

x
(i)
Z
(T +1−Z )=1,x

(i)
τ (T +1−Z )=0,τ =1,2,...,Z−1. (30)

In this case, x
(i)
0
(T + 1−Z ) = 0 by (13) and object i will not arrive

until timestepT . So x
(i)
0
(t) = 0 for t =T +1−Z ,T +2−Z ,...,T , and

x
(i)
1
(T ) = 1. Then (L1) = (L2) = (R1) = (R3) = 0 and (R2)+ (R4) = 1.

Therefore (29) holds.

Now suppose (L3)=0. Then either x
(i)
τ (T +1−Z )=1 for some 1≤

τ ≤Z−1 orx
(i)
τ (T +1−Z )=0 for all 1≤τ ≤Z−1 andx

(i)
Z
(T +1−Z )=0.

• Suppose it is the former case. Then let t∗ be the earliest time with

T +1−Z ≤ t∗ ≤T −1 such that x
(i)
1
(t∗) = 1. In fact, since all the

requests in queue will be resolved when the data arrives, t∗ is

also the only time betweenT −Z +1 andT such that x
(i)
1
(t∗)= 1.

So (R2) = (R4) = 0. Also, x
(i)
0
(t) = 0 for all t with T −Z ≤ t ≤ t∗.

If t∗ = T − 1, then (L1) = 0 and (L2) = (R1) + (R3). If t∗ < T − 1,

then (L2) = 0. Since x
(i)
0
(T ) = x

(i)
0
(T − 1) + ai (T − 1), we have

(L1)= (R1)+(R3). So (29) holds.

• Suppose it is the latter case, i.e.,x
(i)
τ (T +1−Z )=0 forall1≤τ ≤Z−1

and x
(i)
Z
(T +1−Z ) = 0. Then x

(i)
1
(t) = 0 for T +1−Z ≤ t ≤T . So

(L2)= (R2)= (R4)=0. Similar to the former case, it can be shown
that (L1)= (R1)+(R3).

Combining the arguments above, we have shown that (29) always
holds and thus the flow conservation constraint (22) is satisfied.

Nowwe prove the other direction of the lemma, i.e., we prove that
any feasible set of flow variables define a feasible cache schedule. Let

f
(i)
mem(T ),f

(i)

cch
(T ),f

(i)
evict

(T ) be a set of feasible flowvariables.We show

that the cache schedule defined below is feasible. For each timestep
T ≥Z ,

ai (T )=




1 when f
(i)
mem(T −Z )=1, f

(i)

cch
(T −1)=0,

and f
(i)
evict

(T )=0,

−1 when f
(i)

cch
(T −1)=1 and f

(i)
evict

(T )=1,

0 otherwise.

(31)

For T with 0 ≤ T < Z , let ai (T ) = 0, which is always feasible. Let

x
(i)
τ (T )with i ∈ [M],τ =0,...,Z be the state of the system as defined
in (4) and (5) under this cache schedule in (31) . To show that this
schedule is feasible, we first prove the following claims.

Claim 1. For any object i and any timestepT ≥Z ,

x
(i)
0
(T )= f

(i)

cch
(T −1). (32)

Claim 2. For any object i and anyT ≥ 0,

f
(i)
mem(T )=x

(i)
Z
(T +1)·

Z−1∏

τ=1

(
1−x

(i)
τ (T +1)

)
. (33)

We note that in Claim 2,

x
(i)
Z
(T +1)·

Z−1∏

τ=1

(
1−x

(i)
τ (T +1)

)
=1

⇔x
(i)
Z
(T +1)=1,x

(i)
τ (T +1)=0 for all τ =0,1,...,Z−1

⇔x
(i)
1
(T +Z )=1.

Therefore, it is equivalent to f
(i)
mem(T )=x

(i)
1
(T +Z ).

We prove both claims by induction.

Proof of Claim 1. Base case.WhenT =Z , x
(i)
0
(T )= 0 for all i since

we start from an empty cache and ai (u)= 0 for 0≤u <Z . We have

also defined f
(i)

cch
(Z−1) to be 0 as an custom. So x

(i)
0
(Z )= f

(i)

cch
(Z−1).

Induction step.Assume that for someT ≥Z ,x
(i)
0
(T )= f

(i)

cch
(T −1).

We want to show that x
(i)
0
(T +1)= f

(i)

cch
(T ). Note that by the system

dynamics in (11), we have that x
(i)
0
(T +1)=x

(i)
0
(T )+ai (T ).

We consider the different cases of ai (T ).

• If ai (T ) = 1, then by (31), f
(i)

cch
(T − 1) = 0, f

(i)
mem(T −Z ) = 1 and

f
(i)
evict

(T ) = 0. By the flow conservation at Vcch,T , we have that

f
(i)

cch
(T ) = 1. By the induction assumption, x

(i)
0
(T ) = f

(i)

cch
(T − 1).

Then x
(i)
0
(T +1)=x

(i)
0
(T )+ai (T )=1. So x

(i)
0
(T +1)= f

(i)

cch
(T ).

• If ai (T ) = −1, then by (31), f
(i)

cch
(T −1) = 1 and f

(i)
evict

(T ) = 1. Due

to the unit demand of each object, it is not hard to show that the
total incoming flow an object to a vertex is at most 1. Specifically,

consider the vertexVcch,T . Then f
(i)

cch
(T −1)+ f

(i)
mem(T −Z )≤1. So

f
(i)
mem(T −Z )= 0. By the flow conservation atVcch,T , f

(i)

cch
(T )= 0.

Since x
(i)
0
(T +1)=x

(i)
0
(T )+ai (T )=0, we have x

(i)
0
(T +1)= f

(T )

cch
.

• If ai (T )=0, by (31), we have the following possibilities:

f
(i)

cch
(T −1)=0,f

(i)
mem(T −Z )=1, (34)

f
(i)

cch
(T )=0,f

(i)
evict

(T )=1; (35)

or f
(i)

cch
(T −1)=1,f

(i)
mem(T −Z )=0, (36)

f
(i)

cch
(T )=1,f

(i)
evict

(T )=0; (37)

or f
(i)

cch
(T −1)=0,f

(i)
mem(T −Z )=0, (38)

f
(i)

cch
(T )=0,f

(i)
evict

(T )=0. (39)

For all the possibilities, f
(i)

cch
(T ) = f

(i)

cch
(T −1). Since x

(i)
0
(T +1) =

f
(i)

cch
(T −1)+ai (T ), we have x

(i)
0
(T +1)= f

(i)

cch
(T ).

This completes the proof of Claim 1.
Proof of Claim 2. Base case. When T = 0, by flow conservation,

f
(i)
mem(0)=1 if and only ifσ (0)=i . Sincewe start from an empty cache

andai (u)=0 for 0≤u <Z , by the state dynamics (10)ś(12),x
(i)
τ (1)=0

for all i ∈ [M] and τ = 0,1,...,Z , and x
(i)
Z
(1)= 1 for i =σ (0) and 0 for

other objects. So (33) holds forT =0.
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Induction step.Assume that for each timestepu with 0≤u ≤T ,

f
(i)
mem(u)=x

(i)
Z
(u+1)·

Z−1∏

τ=1

(
1−x

(i)
τ (u+1)

)
. (40)

We want to show

f
(i)
mem(T +1)=x

(i)
Z
(T +2)·

Z−1∏

τ=1

(
1−x

(i)
τ (T +2)

)
. (41)

First, it is not hard to see that

x
(i)
Z
(u+1)·

Z−1∏

τ=1

(
1−x

(i)
τ (u+1)

)
=1

⇔x
(i)
Z
(u+1)=1,x

(i)
τ (u+1)=0 for all τ =0,1,...,Z−1

⇔x
(i)
1
(u+Z )=1.

Therefore, the induction assumption (40) is equivalent to f
(i)
mem(u)=

x
(i)
1
(u+Z ).
Observe that the RHS of (41) is equal to 1 if and only if σ (T +1)=i

and x
(i)
τ (T +2)= 0 for all τ = 1,2,...,Z −1. Then (41) is trivially true

for i,σ (T +1). So it suffices to focus on the case where i=σ (T +1).

IfVmem,T+1 is a source vertex of object i , then f
(i)
mem(T +1)=1. By

flow conservation, f
(i)
mem(u) = f

(i)

cch
(u) = f

(i)
evict

(u) = 0 for 0 ≤ u ≤ T .

Then ai (u)=0 for all 0≤u ≤T . So by the dynamics in the system, at
T +1 the request will see that i is not in the cache and the queue for
i is also empty. Then the RHS of (41) is equal to 1.

WhenVmem,T+1 is not a source vertex, let t
∗ be the last time object

i was requested, i.e.,

t∗=max{t : t <T +1,σ (t)=i}. (42)

Suppose f
(i)
mem(T +1)=1. Then by flow conservation atVmem,T+1,

f
(i)
evict

(t)=1 for some t with t∗< t ≤T +1. Let t ′ be the latest timestep

with t ′≤ t such that f
(i)
mem(t

′−Z )=1. By the induction assumption,

x
(i)
Z
(t ′−Z +1) = 1 and x

(i)
τ (t ′−Z +1) = 0 for all τ = 1,2,...,Z −1. If

t ′≤ t−1, then by flow conservation f
(i)

cch
(t ′−1)=0 and f

(i)
evict

(t ′)=0.

So ai (t
′)=1 and x

(i)
0
(t ′+1)=1. Then this enforces x

(i)
τ (t ′+1)=0 for

allτ =1,2,...,Z . For alluwith t ′<u < t , we can verify that f
(i)
evict

(u)=0.

Then by the construction of the cache schedule, ai (u) = 0. There-

fore, the queue stays empty, i.e., x
(i)
τ (t) = 0 for τ = 1,2, ... ,Z . At

t , since f
(t−1)

cch
= 1 and f

(t )
evict

= 1, we have ai (t) = −1, and thus

x
(i)
0
(t + 1) = 0. For any u with t < u ≤ T + 1, we can show that

f
(i)
mem(u) = f

(i)

cch
(u) = f

(i)
evict

(u) = 0, so ai (u) = 0. We also know that

σ (u −1) , i . So the queue for i stays empty at T +1 and i is not in

the cache atT +1. Combing these, we can see that x
(i)
τ (T +1)=0 for

τ =1,2,...,Z−1 andx
(i)
Z
(T +2)=1. So f

(i)
mem(T +1)=RHS. If t

′
=t , then

we have f
(i)
mem(t −Z )= f

(i)
evict

(t)= 1 and f
(i)

cch
(t −1)= f

(i)

cch
(t)= 0, and

thus ai (t)=0. Using similar arguments as above, we can show that
the queue for i stays empty and i is not in the cache atT +1. Then

the RHS is 1 and thus f
(i)
mem(T +1)=RHS.

Now consider the case where f
(i)
mem(T +1)= 0. Then f

(i)
evict

(t)= 0

for all t with t∗< t ≤T +1. If f
(i)

cch
(T )=1, then by flow conservation,

f
(i)

cch
(T +1)= 1. Then by Claim 1, x

(i)
0
(T +2)= f

(i)

cch
(T +1)= 1. Then

x
(i)
Z
(T +2)=0 and thus f

(i)
mem(T +1)=RHS. If f

(i)

cch
(T )=0, then again,

by flow conservation, we have that f
(i)

cch
(t−1)=0 and f

(i)
mem(t−Z )=0

for all t with t∗ < t ≤ T + 1. By Claim 1, x
(i)
0
(t∗ + 1) = f

(i)

cch
(t∗) =

0. If f
(i)
mem(t

∗) = 1, then we must have T + 1 − t∗ < Z . Therefore,

x
(i)
t ∗+Z−T−1

(T +2)=x
(i)
Z
(t∗+1)=1 and thus the RHS of (41) is equal

to 0. If f
(i)
mem(t

∗) = 0, then x
(i)
Z
(t∗ + 1) = 0 or x

(i)
τ (t∗ + 1) = 1 for

some τ = 1,2, ... ,Z − 1. Since x
(i)
0
(t∗ + 1) = 0, there must exists a

τ =1,2,...,Z−1 such that x
(i)
τ (t∗+1)=1. Let τ ∗ be the smallest τ such

thatx
(i)
τ (t∗+1)=1. Thenx

(i)
1
(t∗+τ ∗)=1. Since1≤τ ∗ ≤Z−1,wehave

t∗+τ ∗−Z ≤T and thus by the induction assumption f
(i)
mem(t

∗
+τ

∗−

Z )=x
(i)
1
(t∗+τ ∗)=1. Wemust have t∗+τ ∗>T +1 since f

(i)
mem(t−Z )=

0 for all t with t∗ < t ≤ T + 1. Then 1 ≤ t∗ +τ ∗ −T − 1 ≤ Z − 1 and

x
(i)
t ∗+τ ∗−T−1

(T +2)=x
(i)
1
(t∗+τ ∗)=1. Thus 0= f

(i)
mem(T +1)=RHS.

This completes the proof of Claim 2.
From Claims 1 and 2, it is easy to see that

1ai (T )=1 ≤ f
(i)
mem(T −Z )=x

(i)
1
(T +Z ) (43)

1ai (T )=−1 ≤ f
(i)

cch
(T −1)=x

(i)
0
(T ) (44)

∑

i ∈[M ]

x
(i)
0
(T )≤C=

∑

i ∈[M ]

f
(i)

cch
(T −1)≤C . (45)

This verifies the constraints (7)ś(9) and proves that the cache sched-
ule defined in (31) is feasible. □

Once we have Lemma 1, the only thing left is to show that the
MCMCF problem and the latency minimization problem have the
same objective function. This is easy to see once we compare the
objective functions (15) and (14) and apply Claim 2 from the proof
of Lemma 1.

A.3 Optimizations to Reduce Complexity
In this section, we provide implementation details of belatedly

for reducing complexity. Our overall approach is illustrated in Fig-
ure 6.

A.3.1 Pruning andMerging.

While theMCMCF formulation is conceptually simple, a naive imple-
mentation of the algorithmhas serious practical limitations. Observe
that the number of flowvariables in theMCMCF formulation isO(N ·

M). For a request sequence of sizeN =250,000 containingM =20,000
objects, the number of decision variables alonewould be on the order
of 1010. Further, the total number of flow conservation constraints
isO(N ·M) (see (19)ś(22)). In Gurobi, where decision variables are
encoded as 64-bit floating-point values, and constraint expressions
as vectors of 64-bit pointers to the relevant decision variables, simply
encoding the model would require well over 400 GB of memory.

In this section, we describe two optimizations to the above formu-
lation that allowus to significantly tighten the resource requirements
(memory and execution time) for solving the MCMCF problem and
to make it more tractable. Our goal is to be able to compute be-
latedly on a 32-core x86 server with 128 GB of RAM, for request
sequences containing N ≈250,000 requests,M ≈50,000 objects, and
any combination of z andC .

Caching Intervals. Since the majority of decision variables stem
from either (Vcch,n ,Vcch,n+1) (cache-to-cache) or (Vcch,n ,Vmem,x )

(cache-to-memory) edges, we first attempt to reduce the number
of elements in these sets. The key idea here is that, for each object,
the request sequence can be partitioned into disjoint intervals
(composed of one or more consecutive timesteps) where belatedly
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. . . a a a . . .

a. . . a . . .

1
2 3

Vmem,t Vmem,t+4 Vmem,t+6

Vcch,t+3 Vcch,t+4 Vcch,t+5 Vcch,t+6 Vcch,t+7

x1 x2 x3 x4

x1 x ′
2Optimized caching intervals for a:

Naive caching intervals for a:

Figure 23: A fragment of a request sequence highlighting nodes and

edges corresponding to object a (colored red), with Z =3.

is never incentivized to change its caching decision for that object;
we call these caching intervals.

To concretize this notion, consider the subproblemdepicted in Fig-
ure 23. Per the original MCMCF formulation, there are four distinct
decision variables on edges between cache vertices corresponding
to a (denoted by x1, x2, x3, and x4). Now, consider the possibility of
routing flow along edges labeled 1, 2, and 3. All three edges have the
same capacity, cost-per-unit-flow, and destination node. Effectively,
the latency cost incurred by evicting a using any of these edges is
identical. However, observe that routing a’s flow along edge 2 in-
volves keeping a in the cache for one timestep longer than routing
it along edge 1. Similarly, routing a’s flow along edge 3 involves
keeping it in the cache for two additional timesteps. Since deferring
the eviction consumes valuable cache space (but yields no tangible
benefit in terms of latency cost), it is strictly better to evict a using
edge 1 (at timestep t+4) than using edges 2 or 3.

This simple observation gives us three major optimization oppor-
tunities. In particular, it enables us to:

• Eliminate the redundant edges 2 and 3 (along with the corre-
sponding decision variables).

• Replacex2,x3, andx4 with a single decision variable,x
′
2
. Since

edges 2 and 3 no longer exist, any flow entering cch(t+4) must
remain in the cacheuntilcch(t+7); inotherwords,belatedly’s
caching decision remains the same for the entire duration of
the interval [(t+4), (t+7)).

• Eliminate flow conservation constraints involving object a
for nodes cch(t+5) and cch(t+6). In the new representation, for
each object, i , we only need flow conservation constraints for
Vcache nodes corresponding to the end-points of i’s caching
intervals.

Lastly, this representation also allows us to bound the total num-
ber of caching intervals for any request sequence. Let ni denote the
number of requests to object i in a given request sequence of size
N . Observe that an endpoint of object i’s caching intervals is aVcch
node that either corresponds to i being admitted into the cache, i
being evicted from it, or both. Since there are exactly ni admission
edges corresponding to object i , there must be at least ni endpoints
(or, equivalently, ni−1 intervals) corresponding to i . Conversely, in
the worst case, there are ni −1 additionalVcch nodes which have
eviction edges corresponding to objecta. Thus, theremay asmany as
2ni−1 unique endpoints (or, equivalently, 2ni−2 caching intervals)
corresponding to i . The total number of caching intervals (for all

. . . . . . a a . . .

a. . . a a a . . .

3(u=
1, c

(a) =
6)

1 2

Vmem,t

Vcch,t−k Vcch,t−1 Vcch,t+3

cost (t )=3+2+1=6

Figure 24: A fragment of a request sequence highlighting ingress

and egress edges for nodeVmem,t , with Z =3.

. . . . . . a a . . .

1’

(u=1, c(a)=6)
2’

(u=1, c(a)=6)

Vcch,t−k Vcch,t−1 Vcch,t+3

Figure 25: The optimized representation with backing store nodes

removed.

objects),K , can then be bounded as follows:
∑

i ∈[M ]

(ni−1)≤K ≤
∑

i ∈[M ]

2(ni−1)

⇒N −M ≤K ≤ 2(N −M).

For a fragment of an empirical trace (CAIDA Chicago, 2014) con-
taining N =250,000 packets andM =37,725 objects (unique flows),
the total number of caching intervals is on the order of 400,000.
Compared to the naive formulation, this optimization reduces the
number of decision variables from 18×109 to 106, and the number
of model constraints from 9×109 to 106.

Optimizing Away Backing Store Nodes. Partitioning the global set
of nodes into cache nodes and backing store nodes is a convenient
abstraction since it allows us to reason about cache evictions and
admissions independently of one another. Unfortunately, this rep-
resentation also adds considerable overhead: excluding sink nodes,
there are N backing store nodes, each of which contributes one de-
cision variable on an edge (Vmem,T ,Vcch,T+Z ), as well as one flow
conservation constraint. However, observe that, in our MCMCF for-
mulation, any flow entering aVmem,T nodemust be routed to the
corresponding cache node,Vcch,T+Z . This leads us to our next op-
timization: replacing pairs of cache eviction and admission edges of
the form (Vcch,T ,Vmem,x ) and (Vmem,x ,Vcch,x+Z )with a single edge

(Vcch,T ,Vcch,x+Z )withunit capacity and costc
(i)(Vcch,T ,Vcch,x+Z )=

c(i)(Vmem,x ,Vcch,x+Z ) for object i .
As an example, consider the subproblem depicted in Figure 24.

Here,Vmem,t has two in-edges, labelled 1 and 2, and one out-edge,
labeled 3. Using the optimization strategy discussed above, we can
coalesce edges 1 and 3 into a single edge, 1’, with a capacity of 1 and

a cost-per-unit-flow of c(a) =6. Similarly, we can coalesce edges 2
and 3 into a single edge, 2’. This effectively disconnects nodeVmem,t

from the remainder of the flow graph, and we can safely remove
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