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Abstract

Computer‐aided design (CAD) programs are essential to engineering as they

allow for better designs through low‐cost iterations. While CAD programs are

typically taught to undergraduate students as a job skill, such software can also

help students learn engineering concepts. A current limitation of CAD pro-

grams (even those that are specifically designed for educational purposes) is

that they are not capable of providing automated real‐time help to students. To

encourage CAD programs to build in assistance to students, we used data

generated from students using a free, open‐source CAD software called

Aladdin to demonstrate how student data combined with machine learning

techniques can predict how well a particular student will perform in a design

task. We challenged students to design a house that consumed zero net energy

as part of an introductory engineering technology undergraduate course.

Using data from 128 students, along with the scikit‐learn Python machine

learning library, we tested our models using both total counts of design actions

and sequences of design actions as inputs. We found that our models using

early design sequence actions are particularly valuable for prediction. Our

logistic regression model achieved a >60% chance of predicting if a student

would succeed in designing a zero net energy house. Our results suggest that it

would be feasible for Aladdin to provide useful feedback to students when they

are approximately halfway through their design. Further improvements to

these models could lead to earlier predictions and thus provide students

feedback sooner to enhance their learning.
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1 | INTRODUCTION

Engineering design is a complex, interactive problem‐
solving process of satisfying a set of specific constraints
using scientific and engineering knowledge [15].

Sheppard [18] characterized engineering design as a
method to “scope, generate, evaluate, and realize ideas.”
This process requires experience and understanding of
multiple disciplines to address real‐world problems.
Consequently, it is a challenging concept to teach
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undergraduate students [8,12], particularly first‐ and
second‐year students who are in the process of learning
fundamental disciplinary concepts and have limited ex-
perience in the field. As a further complication, the
Fourth Industrial Revolution (i.e., Industry 4.0) and the
Internet of Things require virtual prototyping and in-
tegration between the physical and the digital worlds. As
such, computer‐aided design (CAD) software is increas-
ingly becoming both a central tool of the modern
engineering design process as well as a critical educa-
tional tool.

While the engineering industry needs incoming em-
ployees to be skilled in using CAD software [20,21], CAD
software can also be an essential tool for teaching the
engineering design process to undergraduate students. In
general, CAD software assists the “creation, modifica-
tion, analysis, or optimization of a design” [9]. As for
education, CAD software offers flexibility for students to
create and test their designs in various configurations
without the need for physical facilities or equipment,
which is safer and more cost‐effective [7,24]. Using CAD
solutions enable students to model mechanical and me-
chatronic systems using a base geometry and parametric
representations, thus eliminating physical constraints
while allowing students to build and see product and
process interactions [5].

Modern CAD software also provides an additional
benefit for education by allowing researchers to collect
user interactions in an unobstructive manner so that we
can study how individual students go through the design
process [23]. This allows us to observe, characterize, and
as we demonstrate in this study, predict students’ design
performance. Research in this area can provide technical
solutions that help instructors who may not be able to
attend to every student's needs in real‐time. Compared
with other disciplines in which data mining is viewed as
a way to develop instructional intelligence, engineering
design—a highly open‐ended cognitive and creative
process that is not well understood—may need this kind
of automatic tools even more. As there is no single cor-
rect answer to a design problem, every idea may need to
be taken seriously and evaluated objectively. This exerts
heavy burdens on instructors and calls for the assistance
of machine learning algorithms [13].

In this study, we used data generated by under-
graduate students using Aladdin, a CAD software pro-
gram developed by the Institute for Future Intelligence,
during an introductory engineering technology course.
Students were tasked with designing a house that con-
sumed zero net energy using Aladdin. As they used
Aladdin, their design actions were logged into JavaScript
Object Notation (JSON) files. We used those files along
with a machine learning technique to create a Python

code that can predict if randomly selected students would
achieve the design goal. With this study, we aim to an-
swer the following research questions: (1) What is the
promise of machine learning in predicting student suc-
cess with CAD? (2) How does this study help with im-
plementing automated CAD interventions to help future
learners?

2 | METHODS

2.1 | Course details

Student data for this study came from the ENGT 18000
(Engineering Technology Foundations) course at Purdue
University that took place during the Fall 2020 semester.
Students who enroll in this course are typically first‐year
undergraduate students from the School of Engineering
Technology. Due to the COVID‐19 pandemic, students
had the option of either taking the course in a hybrid
format (i.e., where the instructor delivered lectures on-
line, but students were expected to attend recitations in
person) or in a distance learning format (i.e., where all
components of the course were conducted online). Dur-
ing the Fall 2020 semester, there were a total of 323
students enrolled (248 students in the hybrid section and
75 students in the distance learning section).

The course covered a variety of introductory topics,
including plotting, programming, and data analysis using
Excel and MATLAB, conducting experiments and re-
porting results, basic statistics, energy, series and parallel
circuits, and statics (mechanics). For this study, we fo-
cused on the energy module of the course, which span-
ned 2 weeks of the semester. The energy module
consisted of a pre‐quiz that gauged students’ basic un-
derstanding of energy concepts, a lecture, two activities
based on Aladdin (discussed in more detail in
Section 2.2), and a post‐quiz that again gauged students’
basic understanding of energy concepts. The lecture
covered different forms of energy (e.g., potential, kinetic,
and internal), transformation of energy, the first and
second laws of thermodynamics, work, and power. The
energy section of the course was also used as a bridge to
help students understand conversions between electrical
and mechanical concepts taught in the course.

2.2 | Aladdin CAD software

To help students learn energy concepts during the
course, we used a free, open‐source CAD software tool
called Aladdin (formerly known as Energy3D) [24].
Aladdin has been specifically designed to help students
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from middle school through college learn engineering
design through computer modeling and simulation. Its
intuitive and easy‐to‐use interface allows students to
quickly design 3D buildings (see Figure 1 for an example
CAD house designed in Aladdin) and to then conduct
iterative analyses to improve their design step by step.
Features of Aladdin include adjusting the dimensions of
a building, changing the components of a building (e.g.,
doors and windows), including trees for shade, and
adding solar panels. In addition to design features,
Aladdin also includes analysis tools such as determining
the path of the sun throughout the year as a function of
geographic location and calculating the net energy use of
a building throughout the year.

2.3 | Course implementation

As mentioned in Section 2.1, we had students use Aladdin as
part of the energy module of the course. Students were given
instructions on how to install the software on their own
computers and were directed to YouTube tutorials that de-
monstrated how to use the software. Two researchers also
went to the in‐person recitation sessions to answer questions
and help students with any issues they had with the soft-
ware. While this additional help was not available to the
distance section, we provided answers to frequently asked
questions at the recitation sections through the learning

management system to those students. The instructor and
two researchers also answered emails from students and
provided answers in online meetings directly with students.

The first activity involving Aladdin was a small de-
sign exercise that was intended to help students get fa-
miliar with the software. For the small design exercise,
students were asked to build an energy‐efficient house
using Aladdin. They were asked to choose one factor to
change (e.g., solar panel tilt), make a prediction of what
would happen from the change by providing reasoning
for what they thought would happen due to the change
(using the Claim, Evidence, and Reasoning [CER] fra-
mework [25]), then observe what happened due to the
change, and finally justify why they thought the change
happened (again using the CER framework). See Sup-
porting Information for the small design exercise journal
that students had to complete.

The second activity with Aladdin was a more involved
design challenge. We had students design a zero net energy
house (viz., a house that consumed zero net energy
throughout the year). They were asked to design the house
in Indianapolis, Indiana (being the closest city available
within Aladdin that was near the Purdue University cam-
pus). They were also instructed that the house should not
cost more than $200,000, that it should comfortably fit a
four‐person family (i.e., have an area between 150 and 200
square meters and a total height [with wall and roof] of
between 6 and 10m). Additionally, each side of the house

FIGURE 1 An example house in Aladdin
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needed to have at least one window, tree trunks needed to be
at least 2m away from the house, and solar panels could not
hang over roof edges. Similar to the small design exercise,
students were asked to document their design process by
making predictions, observing changes, and justifying rea-
sons for those changes in a design journal. See Supporting
Information for the design challenge journal that students
had to complete.

2.4 | Aladdin data

Aladdin records actions that users take within the software
into JSON files. Those JSON files contain individual actions
(e.g., adding a wall and moving a solar panel) with time-
stamps, which provide great detail to retrace students’ steps
to better understand their design process. See Supporting
Information for an example JSON file from the course.

The design challenge was selected as the focus for this
study since the primary reason for the small design exercise
was to get students familiar with the software. We first
cleaned the JSON files by correcting formatting issues and
removing empty files. Empty files were eliminated by tra-
versing through all files and deleting any files with zero size.
Occasionally, Aladdin produces incorrectly formatted JSON
files, for example, due to a user abruptly closing the program.
To account for files with errors, we created a JSON parsing
tool to print out and highlight specific errors in each file (see
Supporting Information for a link to the Python code). Many
corrections involved adding a missing punctuation mark or
removing non‐UTF‐8 characters. While the total number of
students enrolled in both sections of the course was 323, the
total number of students with complete, error‐corrected
JSON files for their design challenge was 128. As such, those
128 students served as the cohort for this study.

2.5 | Machine learning model

For our machine learning models, we used the open‐source
scikit‐learn Python library [16]. For each student, we used
two types of inputs for our models: (1) tallied design actions
and (2) sequence of design actions. The tallied design actions
served as a preliminary test for our modeling, with the se-
quence of design actions being the input that would enable
predictions for the purpose of providing real‐time feedback
to students in the future. Additionally, we used both linear
and logistic regression models when trying to predict final
net energy values. The linear regression served as a pre-
liminary test for our modeling, with logistic regression being
the primary focus of our results. Both linear and logistic
regression models are relatively simple models and have
their limitations but being less complex (as compared with

other machine learning models) they are sufficient for the
initial stage of this study (the focus of this paper). We use
these models to demonstrate the feasibility of the idea (i.e.,
building in helpful interventions into the CAD software itself
in the future). We trained all our models using an 80–20 data
split (i.e., 80% of the data used for training and 20% used for
prediction), which is a common practice in machine learning
work e.g., [17].

In the case of the tallied design actions, we summed
design actions (e.g., adding, removing, and editing a building
element) by each category (e.g., wall, roof, and solar panel)
for each student. Those tallied actions were then added to a
Pandas (a Python data analysis library) data frame where
data for each student was a row and each tallied action was a
column. Since the goal of the design project was to design a
zero net energy house, having a zero net energy value at the
end was considered to be the metric of success. The final net
energy for each student was also added to a separate Pandas
data frame where each student was a row and the column
was their final net energy value. Students who did not have a
final net energy value in their JSON data were removed since
they could potentially skew the model. For our first set of
models, for each student, their tallied design actions were the
independent variables and their final net energy value was
the dependent variable. We explored using both linear and
logistic regression models (see results in Sections 3.1
and 3.2).

For the case of using sequences of design actions,
for each student, we created arrays of their design
actions and numerically coded each action based on
the category of the action. For example, all actions
pertaining to doors (e.g., adding, removing, or editing
them) were coded as 0 and actions pertaining to solar
panels were coded as 6 (see Table 1 for a complete list
of codes). Those numerically coded sequences of ac-
tions then served as independent variables for our
models (with the dependent variable still being the
final net energy values). For these models, we only
used logistic regressions (see results in Section 3.3)
since it was more important for models to be able to
predict if students were approximately close to a zero
net energy house design rather than having models
predict the precise final net energy value (as is the
case with linear regressions) for each student.

3 | RESULTS

3.1 | Linear regression model using
tallied design actions

In Figure 2, we show a histogram of the final net
energies for our cohort. The histogram shows that
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most students successfully designed a zero net energy
house. Figure 3 compares actual and predicted final
net energies for 11 randomly selected students (20% of
55 students) for our initial tests of our linear regres-
sion model with tallied design actions. While there
was a total of 128 students, we first used a batch of 55
students to test our methods and codes. The figure

demonstrates that a linear regression model is not
capable of making accurate predictions based solely
on tallied designed actions, which is not surprising
since the model is attempting to determine the precise
final net energy values for each student. For the
purpose of helping a student with their design in real‐
time, it is not necessary for a machine learning model

TABLE 1 Design action categories
with brief descriptions for each along
with their corresponding numerical
codes

Design action category Description Code

Door Actions related to doors (e.g., add, edit, and remove) 0

Floor Actions related to floors 1

Foundation Actions related to the foundation 2

Wall Actions related to walls 3

Window Actions related to windows 4

Roof Actions related to the roof 5

Solar panel Actions related to solar panels 6

Tree Actions related to trees 7

Building Actions related to the whole building 8

Analysis Actions related to analysis (e.g., show heliodon) 9

Parameters Actions pertaining to geography (e.g., change
latitude)

10

Thermal Actions pertaining to thermal characteristics 11

Color Actions that change colors of building components 12

FIGURE 2 Histogram of final net energy values for the study cohort showing that most students achieved the goal of designing a zero
net energy house. There are two outliers that do not appear on the figure (one student who had final net energy of ~210,000 kWh and
another who had ~660,000 kWh)
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to precisely predict their exact final net energy value.
Instead, the model should determine if a particular
student is or is not progressing toward a successful
design. As such, we decided that a logistic regression
model would be better suited since we could set a
certain range of final net energy values as being
sufficiently close to the zero net energy design
constraint.

3.2 | Logistic regression model using
design action counts

Since logistic regression models predict binary outcomes,
we needed to choose the model‐dependent variable. We
could have limited our cases to only students who de-
signed a house that precisely used zero net energy.
However, we determined that to be too restrictive since it
likely would have removed students whose designs were
close to zero net energy. To test what range of values
near‐zero net energy to consider as meeting the design
requirement, we ran logistic regression models for a
series of final net energy ranges centered on 0 kWh.
Figure 4 shows logistic regression model accuracies as a
function of choosing various ranges of final net energy
values to be considered as being within the design range.
Based on these results, we decided that being within the
range of −10,000 to +10,000 kWh meant achieving a zero
net energy design. In practical terms, the U.S. Energy
Information Administration notes that in 2020, “the
average annual electricity consumption for a U.S. re-
sidential utility customer was 10,715 kWh” [22]. As such
our +/−10,000 kWh limits are within the U.S. average
residential power use. For example, if a particular stu-
dent had a design that used 20,000 kWh of net energy, we
considered that to be outside of the desired range. In
Figure 5 we show the results of one logistic regression
model that shows how many final net energies it was

FIGURE 3 Actual (blue) and predicted (orange) final net
energies for 11 randomly selected students using our linear model
with tallied design action counts

FIGURE 4 Logistic regression model
accuracies as a function of choosing various
ranges of final net energy values to be
considered as being within the design range.
Nominally, we considered being within the
range of −10,000 to +10,000 kWh as
achieving a zero net energy design
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able to predict correctly. Of course, due to the stochastic
nature of regression models, we also tested our logistic
regression model for stability. In Figure 6, we show the
accuracies of our logistic regression model for 10 itera-
tions. The figure demonstrates that our model accuracy
varies as expected but is consistently above 50% (with
most cases being above 65%). For the logistic regression
models, accuracy was the percentage of test data that the
model correctly predicted to be within the acceptable net
energy limits (i.e., +/−10,000 kWh).

3.3 | Logistic regression model using
sequence of design actions

While our results in Sections 3.1 and 3.2 demonstrate
that our regression models (particularly our logistic re-
gression models) are capable of predicting student suc-
cess based on their tallied design counts, they are not
ideal for the purposes of providing students feedback in
real‐time since they rely on tallied design actions, which
are of course only available after students have com-
pleted their designs. As such, it is important to consider
sequences of design actions as independent variables for
our logistic regression models. In Figure 7, we show the
accuracies of our logistic regression models as a function
of using varying percentages of the initial set of design
action sequences. For example, using 10% of a student's
action sequence means using only the first 10% of their
design actions as the independent variable for our mod-
els. To demonstrate stability, we ran each percentage of
the action sequence for 10 iterations. Our results show
that even when using only the very beginning of

students’ design action sequences (i.e., 10%), our models
are generally better than chance at predicting if a parti-
cular student will successfully design a zero net energy
house. If 60% of design action sequences are used, then
our models have a 60% or greater chance of predicting
success.

FIGURE 5 Results of a logistic regression model showing correct
and incorrect predictions of achieving a zero net energy design using
the complete sequence of design actions for each student

FIGURE 6 Accuracy of logistic regression models for 10
iterations to demonstrate that model accuracy varies as expected
but is mostly above 65%

FIGURE 7 Accuracy of logistic regression models as a function
of using varying percentages of the initial set of design action
sequences (with 10% meaning using the first 10% of the design
actions for each student and 100% meaning using the whole
sequence of design actions). Each percentage of the action
sequence has been run for 10 iterations to demonstrate the stability
of the results. Repeated horizontal markers indicate multiple
occurrences of the same accuracy for a given percentage of action
sequence. Markers are colored by percentage of action of sequence
for improved visibility
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4 | DISCUSSION

4.1 | What is the promise of machine
learning in predicting student success
with computer‐aided design?

Providing students with feedback throughout their
learning process is critical for their growth and success
[6]. In the case of design‐based learning, where students
need to both learn and apply designated concepts [10,11],
formative assessments (also called responsive teaching) are
especially necessary to provide students with timely
feedback. This is the case since design‐based learning has
challenges such as “chance of design” whereas students
may develop a successful solution without an in‐depth
understanding of the relevant theoretical concepts
[1,4,14]. Specifically, when we asked students to design a
zero net energy house, it is possible that students got to
the desired outcome merely by trying a series of hapha-
zard design actions. Thus, if not considered with caution,
design‐based learning challenges may limit a student's
ability to transfer knowledge to novel contexts or pro-
blem scenarios [2]. This then requires great attention
from instructors toward formative assessments and pro-
viding quality feedback to students. But, as any instructor
knows, this is a time‐intensive process [3], and as such, is
difficult to scale to all students especially in large classes
and in online learning environments, which will only
continue to become more prevalent.

4.2 | How does this study help with
implementing automated CAD
interventions to help future learners?

In this initial work, we used two relatively simple models
(i.e., linear and logistic regression) to demonstrate that it
is feasible to use students’ design action data within
Aladdin to make predictions on how well they design a
house within the defined constraints. Due to the sim-
plicity of the models and due to the complexity of making
predictions on human behavior, it is expected that our
current models will not be very accurate. However, even
a 60% probability of predicting design success is presently
useful given that currently students are working on their
designs with no (or limited) real‐time feedback. Results
from this study may begin to open the potential to scale
quality formative assessment and real‐time feedback
when using CAD software such as Aladdin. We devel-
oped an algorithm that could begin to automate the
process of providing just‐in‐time learning to students to
improve their designs as well as the understanding of
important engineering concepts related to these

improvements. This type of information can be tied to
on‐screen avatars in the future to engage learners in
design dialogue, which guides them while they learn
which design actions could lead to more successful out-
comes and why. Stables [19] piloted the use of digital
avatars as surrogate mentors to design students in a way
that prompted an ongoing conversation between the
learner and the avatar. These conversations were based
on a dialogic framework that consisted of a sequence of
questions that asked learners to (a) describe what they
were designing, (b) provide an evaluation of their current
progress, c) speculate on how their project could be im-
proved, and (d) to comment on their plans for next steps.
Preliminary research on this approach indicated that the
design dialogue made students think more deeply about
their design work. While this on‐screen dialogue was
based on questions related to established design heur-
istics, this type of work could be tied to design efficiency
data within the CAD program and, using machine
learning, could provide just‐in‐time feedback to the stu-
dents. By intervening and allowing students to recognize
which of their actions will not likely lead to an optimal
design, students can better learn what effect certain de-
sign actions have on outcomes such as the net energy use
of a building. This would not only help students learn
about design processes but also support them in reaching
success with the outputs of their design work. In sum-
mary, expanding this study has the potential to scale the
quality of feedback provided to students via formative
assessments, particularly for present and future online,
hybrid, and HyFlex educational environments.

5 | LIMITATIONS AND
FUTURE WORK

There are several limitations to this study that can be
improved with future work. As noted above, we used
relatively simple linear and logistic regression models to
demonstrate the feasibility of making predictions on de-
sign success based on students’ design actions within the
Aladdin software. Future work can explore more com-
plex machine learning models to help improve the ac-
curacy of the model predictions. Additionally, currently,
we do not know why certain sequences of design actions
produced successful zero net energy designs while others
did not. In this study, we demonstrated that there are
patterns in the design action sequences that help our
machine learning model predict success. However, future
work can explore the meanings of specific design ac-
tions so that the machine learning model can be further
improved. Another limitation is that we have not yet
explored how students’ design performance is connected
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to their knowledge of energy concepts. Are better de-
signers also the ones that have a better understanding of
energy concepts? Are there some who performed poorly
in the pre‐ and/or post‐quizzes who performed well as
designers? These are some of the questions that can be
addressed in future work. Additionally, future work can
improve the machine learning models by integrating
additional emerging techniques such as recurrent neural
networks (RNN).

6 | CONCLUSIONS

We trained machine learning models to predict if a
particular student would achieve a successful design as
they used CAD software to design a zero net energy
house. This study indicates that it is possible to use stu-
dents’ design action sequences to predict their en-
gineering design success. Specifically, our logistic
regression model achieved a >60% chance of predicting if
a student would succeed in designing a zero net energy
house by using the first 60% of their design action se-
quences. While this means that we can currently imple-
ment interventions when students are about halfway
through their design process, future improvements could
lead to predictions of success based on a smaller set of
design actions. That would in turn mean that we will be
able to create software interventions earlier in the design
process. Timely and effective feedback that is built into
the CAD software can greatly improve student learning
and engineering designs in the future.
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