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local fracture criteria are typically formulated as combinations of stress 
and strain histories up to critical values that trigger ductile crack initi
ation. These models can be broadly distinguished between “uncoupled,“ 
where the failure criterion is applied after the stress and strain fields of 
the continuum have been determined, or as “coupled”, where the 
interaction of material damage with the surrounding stress–strain fields 
is explicitly simulated through modification of constitutive response (e. 
g., Gurson [8]). This paper addresses uncoupled models, which are more 
convenient to apply to simulate fracture initiation, requiring only the 
post-processing of stress–strain fields typically determined through 
continuum finite element simulations of the component or structure of 
interest. 

In contrast to damage mechanics based fracture criteria that have 
focused on monotonic loading and been under development for over 
four decades (e.g., (Hancock and Mackenzie [9]; Rousselier [10]) 
criteria for ULCF fracture have been more recently developed, motivated 
by earthquake-induced fractures in buildings and other civil infra
structure. Recent work has also provided new focus on characterizing 
the critical plastic strain under low stress triaxiality (i.e., T < 0.7) and 
variable shear stress states, as characterized by the Lode parameter X. 
Triaxiality is defined as the ratio of the mean (hydrostatic) stress to the 
von Mises (deviatoric) stress, i.e., T = (I1/3)/

̅̅̅̅̅̅̅̅
3J2

√
, where I1 and J2 are 

the first and second invariants of the stress tensor, and deviatoric stress 
tensor respectively. The Lode parameter relates J3, the third stress 
invariant, to J2, i.e., X = 3

̅̅̅
3

√
⋅J3/(2⋅J3/2

2 ), distinguishing shear stress 
states ranging from axisymmetric (X = ±1) to plane strain (X = 0). 
Previously proposed models to simulate ULCF fracture include Kanvinde 
and Deierlein [4] and Kiran and Khandelwal [11], which consider 
dependence on triaxiality, and Wen and Mahmoud [12], which con
siders dependence on both triaxiality and Lode parameters. These 
models all feature a primary dependence of damage on accumulation by 
plastic strain, weighted by functions of T and X. 

The above criteria are generally consistent and accurate within the 
scope of the datasets on which they are developed, often round notched 
bars with axisymmetric stress–strain conditions. Generally, this scope 
has focused on high T fracture because 1) high T significantly promotes 
void growth that can lead to ductile fracture, and 2) many structures 
contain geometric imperfections that give rise to strain localization and 
high T. Recognizing these points, modern design and detailing re
quirements for steel structures have been revised to avoid high stress 
triaxiality in areas where large plastic strains are expected during 
earthquakes and other extreme loading. These changes in design stan
dards have given rise to the need for models that can better capture 
ULCF fracture in non-axisymmetric and low-triaxiality conditions. 

The main objective of this paper is to propose and validate a new 
criterion for ductile fracture in structural steels, with the following 
features: (1) inclusion of the effects of both the Lode parameter and the 

stress triaxiality (X and T) over a wide range, (2) fewer calibration co
efficients compared to other competing models, (3) validation against 
both new and previously published data from tests of low-carbon steel 
specimens under a range of monotonic and cyclic loading protocols, and 
(4) quantitative comparisons with other models. To this end, the paper 
synthesizes data from 66 tests of various coupon-scale specimen geom
etries for two structural steels, ASTM A572 and A36, and a along with 
supporting observations from a computational void cell model study, 
culminating in the development of a newly proposed Stress-Weighted 
Ductile Fracture Model (SWDFM). The SWDFM, and three previously 
published models, are calibrated and evaluated against finite element 
simulation results of the 66 tests. 

2. Background: local rupture criteria for predicting ULCF in steel 

Local rupture criteria arise from the observation that the damage 
driving the fracture process occurs with the accumulation of plastic 
strain, wherein the rate of accumulation depends on the local stress and 
strain state. These models are represented in the following generic form: 

D =

∫

dD =

∫ εp

0
f (σ̃, ε̃)⋅dεp⩾1 (1)  

where f(σ̃, ε̃) is a scalar function of the stress and strain tensors σ̃,̃ε and 

dεp =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(2/3) × dεp : dεp

√

is the incremental equivalent plastic strain. 
Ductile fracture is predicted to occur when the damage D equals unity. 
The function f(σ̃, ε̃), which modifies the instantaneous damage rate with 
respect to the plastic strain, represents the underlying fracture mecha
nism and the material properties. In some models, e.g., the Stress 
Modified Critical Strain – SMCS model (Hancock and Mackenzie [9]), 
the fracture criterion is pre-integrated to represent the critical plastic 
strain as a function of stress state, assuming that the stress state (and 
hence the damage rate) is relatively constant over the loading history. As 
will be demonstrated later, for lower triaxiality conditions, the evolution 
in the damage rate is significant. Therefore the focus in this paper is on 
path dependent models of the form in (1). The above criterion is applied 
locally within the continuum, often in conjunction with a characteristic 
length l* to account for material sampling effects. The effect of l* is 
significant when steep damage gradients are present, for example ahead 
of a sharp crack tip. This paper addresses only the fracture criterion 
based on test data from specimens with shallow damage gradients that 
are not sensitive to l*. Once the fracture criterion is established, l* can be 
determined from fractographic measurements (e.g., Kanvinde and Dei
erlein [5]) or calibration to data from tests with sharp cracks, such as 
compact tension specimens (Norris et al. [13]). 

Previous fracture criteria have been developed as a best fit through 
test data, or through adaptations of analytical derivations for void 

Inclusions Microvoid Nucleation Growth Coalescence and ductile initiation Dimpled fracture surface

Fig. 1. Progression of micromechanical processes leading to ductile rupture in steel.  
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other specimens) are subsequently processed through all four fracture 
models (CVGM, KK, WM and SWDFM) to examine and compare their 
effectiveness in predicting fracture. 

5. Results and discussion 

The four fracture models are evaluated using data from the 66 tests 
summarized in Table 1, which include two structural steels and reflect a 
wide range of stress triaxiality, Lode parameter and loading history. The 
values of characteristic X and T in Table 1 are determined, as outlined in 
more detail later, from the finite element simulations. For an objective 
comparative assessment of the four fracture models, three free param
eters of each are first calibrated against the test data using the following 

process:  

1. The free material parameters for each of the criteria are identified, as 
listed in Table 2. For the CVGM and WM models, the free parameters 
are as published in the corresponding original references, whereas 
for the KK model, in addition to dcr,KK, which is identified as the sole 
free parameter in the original publication, a1,KK, b1,KK, a2,KK, and b2,KK 

are also considered free parameters in this study. This is because trial 
studies showed the single parameter to be insufficient to predict 
fracture in a satisfactory manner. Assuming all parameters to be free 
significantly improves model performance.  

2. A full-factorial sampling grid of trial parameter sets is generated, 
where each free parameter (for each model) is varied within a wide 

Fig. 6. Force-deformation curves of experimental and continuum finite element simulations of: (a) CNT specimen, (b) RN specimen and (c) GP specimen.  

Table 1 
Summary of test specimens.  

Steel Grade Specimen Critical dimensions Loading Replicates Tavg 
1 Xavg 

ASTM A572 ¡ 345 
MPa 

CNT DUN = 12.7 mm, DNR = 5.36 mm, RN = 7.27 mm Monotonic 2 1.6 1   

DUN = 12.7 mm, DNR = 5.21 mm, RN = 1.45 mm Cyclic (CTF)2 1 1.6 1  
GP tUN = 11.9–12.7 mm, tNR = 2.26–2.59 mm, RN = 1.2–3.2 mm, WN = 25.4 mm Monotonic 3 0.9–1.253 0  
RN tIUN = tIIUN = 25.4 mm, tINR = 7.75–11.15 mm, tIINR = 5.13–7.58 mm, RN =

3.18 mm 
Monotonic 6 1.2–1.53 0.3–1.03  

IN θ = 30◦, RN = 3.18 mm, tNR = 4.42 mm Monotonic 1 0.7 0.8   
θ = 30◦, RN = 1.59 mm, tNR = 4.72 mm Monotonic 1 0.65 0.7   
θ = 30◦, RN = 3.18 mm, tNR = 5.08 mm Cyclic (C- 

PTF)3 
1 0.6 0.8   

θ = 30◦, RN = 1.59 mm, tNR = 5.84 mm Cyclic (CTF) 1 0.45 0.4   
θ = 50◦, RN = 3.18 mm, tNR = 5.08 mm Monotonic 1 0.45 0.55   
θ = 50◦, RN = 3.18 mm, tNR = 4.28 mm Monotonic 1 0.45 0.6   
θ = 50◦, RN = 3.18 mm, tNR = 4.83 mm Cyclic (C-PTF) 1 0.4 0.5   
θ = 70◦, RN = 3.18 mm, tNR = 4.61 mm Monotonic 1 0.25 0.4   
θ = 70◦, RN = 3.18 mm, tNR = 5.08 mm Cyclic (CTF) 1 0.2 0.3   
θ = 70◦, RN = 3.18 mm, tNR = 4.83 mm Cyclic (C-PTF) 1 0.2 0.3   
θ = 90◦, RN = 3.18 mm, tNR = 4.51 mm Monotonic 1 0.1 0.15   
θ = 90◦, RN = 3.18 mm, tNR = 4.95 mm Cyclic (C-PTF) 1 0.1 0.15 

ASTM A36 ¡ 250 MPa CNT DUN = 12.7 mm, DNR = 6.35 mm, RN = 12.7 mm Monotonic 1 0.5 1    
Cyclic (CTF) 6     

DUN = 12.7 mm, DNR = 6.35 mm, RN = 3.18 mm Monotonic 1 1     
Cyclic (CTF) 6     

DUN = 12.7 mm, DNR = 6.35 mm, RN = 1.27 mm Monotonic 1 1.5     
Cyclic (CTF) 6    

GP tUN = 9.53 mm, tNR = 2.54 mm, WN = 19.05 mm, RN = 2.03 mm Monotonic 3 1 0   
tUN = 9.53 mm, tNR = 2.54 mm, WN = 19.05 mm, RN = 0.76 mm  3 1.5 0  

RN tIUN = tIIUN = 19.05 mm, tINR = 8.89 mm, tIINR = 5.08 mm, RN = 5.08 mm Monotonic 3 1 0.6   
tIUN = tIIUN = 19.05 mm, tNR,1 = 9.53 mm, tNR,2 = 7.11 mm, RN = 1.52 mm  3 1.5 0.8  

BN LPN = 25.4 mm, B = 19.05 mm, RN = 2.03 mm, LP = 15.24 mm, LV = 68.56 mm Monotonic 3 0.5 0.5    
Cyclic (CTF) 6   

1Values shown are average values of triaxiality magnitude and Lode parameter over the loading history. 
2,3CTF represents constant amplitude cyclic loading (Cycle-To-Failure), whereas C-PTF represents cyclic loading followed by a tensile excursion (Cycle and Pull To 
Failure). Details of loading histories are available in Smith et al., [39] and Terashima [41]. 
4The GP and RN series represent a range of geometry which are spaced within these bounds, and summarized for brevity. A complete test summary is available in Smith 
et al. [39]. 
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model, they do not help to discern trends with respect to the influential 
loading variables. To examine such trends, the calculated damage pa
rameters Dfracture,i

optimal (i.e., the damage computed for the observed fracture 
point in each test using the optimal set of parameters shown in Table 2) 
are plotted versus triaxiality, T, Lode parameter, X, and the equivalent 
critical plastic strain, εp

fracture, in Figs. 8a-d. As illustrated previously in 
Fig. 3b, the values of T and X vary over the loading history from the 

onset of yielding up to fracture. For the purposes of the trend compar
isons in Figs. 8a-d, the values of Tavg and Xavg are averaged over the 
loading history to provide a representative value for each test, using the 
following equations: 

Tavg = (1/εfracture
p )

∫ εfracture
p

0
T⋅dεp (11) 

Fig. 8a. Damage at fracture using optimal parameters plotted against average triaxiality, average Lode angle parameter, and equivalent plastic strain for SWDFM.  

Fig. 8b. Damage at fracture using optimal parameters plotted against average triaxiality, average Lode angle parameter, and equivalent plastic strain for CVGM.  

Fig. 8c. Damage at fracture using optimal parameters plotted against average triaxiality, average Lode angle parameter, and equivalent plastic strain for KK.  

Fig. 8d. Damage at fracture using optimal parameters plotted against average triaxiality, average Lode angle parameter, and equivalent plastic strain for WM.  
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suggesting that a full interrogation of the T-X space (using more 
expensive IN specimens) may not be necessary for model calibration. 

6. Summary and conclusions 

The aim of this paper is to develop a criterion to characterize Ultra 
Low Cycle Fatigue fracture in structural steels over the wide range of 
stress states commonly encountered in structural details. To support the 
model development and calibration, 66 coupon scale experiments were 
conducted using two common steels, including specimens that interro
gated a stress triaxiality ranging from 0.1 to 1.6 and Lode parameters 
from 0 to 1.0 under monotonic and cyclic loading histories. The model 
development was further informed by prior theoretical studies of void 
growth, microvoid cell simulations, and fractographic imaging to 
characterize the ductile fracture mechanism of void growth and coa
lescence. The proposed Stress Weighted Ductile Fracture Model 
(SWDFM) includes a dependence on stress triaxiality that was previously 
demonstrated by Smith et al. [15], modified by the unequal weighting of 
the positive (tension) and negative (compression) triaxiality terms to 
reflect irrecoverable damage under cyclic loading. The fracture model 
requires only three free parameters that can be independently calibrated 
from material tests. 

The proposed SWDFM criterion was assessed against the experi
mental data, along with three other recently proposed ULCF rupture 
models (CVGM, KK, and WM). Of these, two (CVGM and KK) were 
developed primarily using high-triaxiality axisymmetric specimens for 
validation. As a result, these are unable to accurately characterize ULCF 
across the entire range of stress states. On the other hand, the SWDFM 
criterion is most successful, closely followed by the WM – both of these 
are based on specimens that interrogate a large range of triaxiality and 
Lode parameter. A cross-validation analysis confirms that the SWDFM is 
able to characterize ULCF with a fairly low error compared to the other 
criteria. 

While this is encouraging, some limitations of the proposed SWDFM 
and other fracture models are important to note. First, the model has 
only been evaluated for two fairly similar low-carbon structural steels =
. As the fundamental mechanism of void growth and coalescence is 
known to cause fracture in a wider range of materials, it is expected that 
this model, like other void-growth-based models, would be applicable to 
these materials. Expanded application of this criteria may demonstrate 
the parameters κSWDFM or βSWDFM may be material independent, causing 
the model to be significantly easier to calibrate and apply. Other con
siderations not addressed in this paper, but important to its application, 
include: (1) evaluation of the characteristic length, which becomes 
necessary to apply the model to sharp stress–strain gradients, (2) spatial 
randomness in material properties, which is needed to scale the model to 
structural-scale applications (Pericoli and Kanvinde [45]). Finally, the 
ductile fracture criterion is only one part of the fracture assessment 
framework for steel structures. Reliable calculation of the internal stress 
and strain fields requires detailed finite element simulations with ac
curate constitutive models [44]. Moreover, the SWDFM fracture crite
rion is limited to evaluating fracture initiation, which is the precursor to 
crack propagation. 
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