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We report observations of quasiparticle pair production by a modulational instability in an atomic
superfluid and present a measurement technique that enables direct characterization of quasiparticle
quantum entanglement. By quenching the atomic interaction to attractive and then back to weakly
repulsive, we produce correlated quasiparticles and monitor their evolution in a superfluid through
evaluating the in situ density noise power spectrum, which essentially measures a “homodyne” interference
between ground-state atoms and quasiparticles of opposite momenta. We observe large amplitude growth
in the power spectrum and subsequent coherent oscillations in a wide spatial frequency band within our
resolution limit, demonstrating coherent quasiparticle generation and evolution. The spectrum is observed
to oscillate below a quantum limit set by the Peres-Horodecki separability criterion of continuous-variable
states, thereby confirming quantum entanglement between interaction quench-induced quasiparticles.
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Coherent pair-production processes are enabling mech-
anisms for entanglement generation in continuous-variable
states [1,2]. In many-body systems, quasiparticle pair
production presents an interesting case, as interaction
creates entanglement shared among collectively excited
interacting particles. Entanglement distribution through
quasiparticle propagation is a direct manifestation of trans-
port property in a quantum many-body system [3,4].
Controlling quasiparticle pair production and detecting
entanglement evolution thus opens a door to probing
quantum many-body dynamics, enabling fundamental
studies such as information propagation [5,6], entangle-
ment entropy evolution [7], many-body thermalization [8],
as well as Hawking radiation of quasiparticles and thermo-
dynamics of an analog black hole [9–11].
In atomic quantum gases, coherent quasiparticle

pair production can be stimulated through an interaction
quench, which results in a rapid change of quasiparticle
dispersion relation that can project collective excitations,
from either existing thermal or quantum populations, into a
superposition of correlated quasiparticle pairs [12–14].
This has led to a prior observation of Sakharov oscillations
in a quenched atomic superfluid [13,15]. However, direct
verification of quasiparticle entanglement has remained an
open question.
An intriguing case occurs when the atomic interaction is

quenched to an attractive value. In that case, not only a
larger change of quasiparticle dispersion is involved, but
there is also an unstable band, in which quasiparticle
dispersion ϵðkÞ is purely imaginary, ϵ2ðkÞ < 0, where k
is the momentum wave number. As a consequence, the

early-time dynamics is governed by a modulational insta-
bility (MI), which continuously stimulates production of
quasiparticle pairs, and the ground state becomes unstable
with respect to an exponential growth of density waves.
This growth leads eventually to wave fragmentation and
soliton formation [16]. Although these consequences of
MI have been observed [17–21], the early-time evolution
itself has only been recently studied [21]. Nevertheless,
it is precisely the early-time dynamics that promises
MI-enhanced pair production and quantum entanglement.
We note there is a parallel scheme using a roton instability
for enhanced quasiparticle entanglement generation in
dipolar quantum gases [22].
In this letter, we demonstrate MI-enhanced coherent

quasiparticle pair production in a homogeneous 2D quan-
tum gas quenched to an attractive interaction, and report an
in situ detection method that enables direct characterization
of quasiparticle entanglement beyond an existing method
[9,23]. Specifically, we monitor coherent quasiparticle
evolution after quenching the interaction back to a positive
value (see Fig. 1 for protocol). Through in situ imaging,
we analyze the dynamics of density observables by a
method analogous to the well-established homodyne detec-
tion technique in quantum optics [24–26] and confirm
nonclassical correlations, that is, quantum entanglement in
quasiparticle pairs.
Our analyses are based on the time evolution of in situ

density noise, which is a manifestation of interference
between quasiparticle excitations and the ground-state
atoms that serve as a coherent local oscillator [27]. In
Fourier space, the density noise operator can be written as
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δn̂k ≈
ffiffiffiffi
N

p ðâ†k þ â−kÞ, where N ≫ 1 is the total atom
number nearly all accounted for by the ground-state atoms,

and âð†Þ�k are the annihilation (creation) operators for �k
single-particle momentum eigenstates. They are related
to quasiparticle operators α̂†�k by the Bogoliubov trans-
formation. We study the density noise power spectrum
SðkÞ ¼ hjδnkj2i=N, where h� � �i denotes ensemble averag-
ing. Within our resolution limit (jkj≲ 2.6=μm), the power
spectrum conveniently measures the combined variance
of two-mode (�k) quasiparticle quadrature operators
x̂k þ x̂−k and p̂k − p̂−k, where x̂k ¼ ðα̂†k þ α̂kÞ=

ffiffiffi
2

p
and

p̂k ¼ iðα̂†k − α̂kÞ=
ffiffiffi
2

p
[28]. Since pair production should

be isotropic in our quantum gas samples, in the following
we discuss azimuthally averaged spectrum SðkÞ, and
use �k to denote opposite momenta. In the superfluid
ground state absent quasiparticle (phonon) excitations,
the Bogoliubov theory predicts SðkÞ ¼ Ck, where Ck ¼
ϵk=ϵðk; gÞ is the ground-state squeezing parameter, ϵk

the single-particle energy, ϵðk; gÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2k þ 2ðℏ2=mÞn̄gϵk

q

the phonon dispersion relation, n̄ the mean density, g the
interaction at the time of the measurement, m the atomic
mass, and ℏ the reduced Planck constant.
In the presence of quasiparticles with nonclassical

correlation, the power spectrum would squeeze below

the ground-state level, i.e., to SðkÞ < Ck. This intuitive
bound can be formally derived following Refs. [29,30],
which consider a continuous-variable version of the Peres-
Horodecki separability criterion for bipartite entanglement.
Adapted to our case [28], the criterion states that the
variance of two-mode quadratures must satisfy

SðkÞ ¼ Ck

2
½hðx̂k þ x̂−kÞ2i þ hðp̂k − p̂−kÞ2i� ≥ Ck ð1Þ

in the absence of quasiparticle entanglement. For non-
interacting atoms (g ¼ 0), Ck ¼ 1, and the above inequality
represents the limit of atomic shot noise. For phonons in a
superfluid (g > 0), the separability criterion requires a
lower limit (Ck < 1).
In the final state of our quench protocol (g > 0), coherent

quasiparticle pairs interfere, and SðkÞ should be time
dependent. In the special case of noninteracting phonons,
that dependence has the form

Sðk; τÞ ¼ Ck½1þ N̄k þ ΔNk cos ϕkðτÞ�; ð2Þ

where N̄k ¼ hα̂†kα̂ki þ hα̂†−kα̂−ki is the mean total phonon
number in �k modes, ΔNk ¼ 2jhα̂kα̂−kij is the pair-
correlation amplitude, and ϕkðτÞ ¼ 2ϵðk; gÞτ=ℏþ ϕkð0Þ
is the argument of hα̂kα̂−ki that evolves at twice the phonon
frequency. In this case, violation of the inequality Eq. (1) is
equivalent to having ΔNk > N̄k [31,32]. The presence
of maximal two-mode squeezing SðkÞ=Ck < 1 occurs at
ϕk ≈ ð2lþ 1Þπ, alternating with maximal antisqueezing
SðkÞ=Ck > 1 at ϕk ≈ 2lπ (l is an integer). In practice,
oscillations of SðkÞ are inevitably damped. Nevertheless,
�kmodes are entangled as long asΔNk remains larger than
N̄k, or more generally SðkÞ shows squeezing (< Ck)—a key
signature that we demonstrate in this letter.
To carry out the experiment, we prepare uniform

superfluid samples formed by N ≈ 4.9 × 104 nearly pure
Bose-condensed cesium atoms loaded inside a quasi-2D
box potential, which compresses all atoms in the harmonic
ground state along the imaging (z-) direction [21] with
lz ¼ 184 nm being the harmonic oscillator length. A time-
of-flight measurement estimates the sample temperature
T ≲ 8 nK. Mean atomic surface density n̄ ≈ 21=μm2 is
approximately uniform within a horizontal box the size of
≈48 × 48 μm2. The interaction strength of the quasi-2D
gas g ¼ ffiffiffiffiffiffi

8π
p

a=lz is controlled by the s-wave scattering
length a via a magnetic Feshbach resonance [33], giving an
initial interaction strength g ¼ gi ≈ 0.127. An uncertainty
in g (δg ≈�0.0006) is primarily contributed by the
uncertainty in the magnetic field at the scattering length
zero crossing [21].
As illustrated in Fig. 1(a), an MI period is initiated

by quenching the atomic interaction (within 0.8 ms)
to a negative value gMI ≈ −0.026. The quench time-
scale is short compared with the initial phonon cycle
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FIG. 1. Experiment scheme for quasiparticle pair production
and detection. (a) A homogeneous 2D superfluid (red square)
undergoes an interaction quench protocol from (i) g ¼ gi > 0 to
gMI < 0 for broadband generation of quasiparticle pairs of
opposite momenta (illustrated by black curvy arrows) for a time
duration Δτ; (ii) a second interaction quench to g ¼ gf > 0

allows quasiparticles to evolve as phonons for a variable hold
time τ; (iii) in situ density noise in spatial frequency domain δnk
is essentially a “homodyne” measurement of excitations in
opposite momentum states interfering with ground-state atoms.
(b)–(e) Single-shot density images taken prior to (b) or after the
interaction quench (c)–(e) and held for the indicated time τ.
Image size: 77 × 77 μm2.
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2πℏ=ϵðk; giÞ≳ 2.5 ms for k≲ 2.6=μm, and the interaction
quench is considered quasi-instantaneous. To terminate
the MI after additional short hold time Δτ ≈ 1–2 ms, we
quench the atomic interaction back to a small positive value
gf ≈ 0.007, allowing quasiparticles to evolve as phonons in
a stable superfluid for another variable time τ before
we perform in situ absorption imaging. We have also
analyzed quenches without an MI period (Δτ ¼ 0).
Figures 1(b)–1(e) show sample images measured before
and after we initiate the quench protocol. We evaluate δnk
for each sample through Fourier analysis [34] and obtain
their density noise power spectra. Typically around 50
experiment repetitions are analyzed for each hold time τ.
Each power spectrum has been carefully calibrated with
respect to the atomic shot noise measured from high
temperature normal gases [28,34].
We expect amplified density fluctuations following the

MI period due to a sudden change of quasiparticle energy
dispersion and pair production [12,13,21]. To quantify the
growth of density fluctuations, in Fig. 2 we compare the
density noise power spectra measured before and immedi-
ately after the MI period, that is, for hold time τ ¼ 0. Before
MI, the initial spectrum S0ðkÞ is mostly below the atomic
shot noise due to low temperature T ≲ 8 nK and small
initial squeezing parameter Ck < 1. Excessive noise in
k≲ 0.75=μm may be due to technical heating in the
box potential. After the MI time period Δτ, we indeed
find a significant increase in the density noise, Sðk; 0Þ > 1.
The growth occurs both in the instability band

k≲ kc ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
n̄jgMIj

p
≈ 1.5=μm, where the dispersion

ϵðk; gMIÞ is purely imaginary, and in the stable regime
k≳ kc as well. Within these short MI periods, we observe
the largest growth near k ≈ kc, where ϵðk; gMIÞ ≈ 0. We
comment that for a much longer MI period, density waves
in the instability band eventually dominate the noise power
spectrum due to continuously stimulated quasiparticle
pairs, as observed in [21].
Our measured spectra can be well captured by a model

that considers coherent evolution from quasiparticle
pair production within the Bogoliubov theory and their
damping as well as decoherence due to coupling to single-
particle Markovian quantum noise (for details, see
Supplemental Material [28]). We refer to the coherent
signal in the absence of damping as ScohðkÞ ¼ S0ðkÞf1þ
½(ϵðk; giÞ2 − ϵðk; gMIÞ2)=ϵðk; gMIÞ2�sin2½ϵðk; gMIÞΔτ=ℏ�g,
which describes the hyperbolic growth of density fluctua-
tions in the instability band (k≲ kc) [21] and sinusoidal
Sakharov oscillations for stable modes (k≳ kc) [13].
On the other hand, quantum noise causes damping
(reduction) of the coherent signal and the appearance
of an additive incoherent background SincðkÞ. The
total power spectrum at the end of the MI period
is Sðk;0Þ¼e−ΓkΔτScohðkÞþSincðkÞ, where SincðkÞ ¼
1
2
fη−½Γ2

k=(Γ2
k þ 4ϵðk; gMIÞ2=ℏ2)�½1 − e−ΓkΔτðcos½2ϵðk; gMIÞ

Δ τ= ℏ � − ½2ϵ ðk; gMIÞ=ℏΓk� sin½2ϵðk; gMIÞΔτ=ℏ�Þ� þ ηþ
ð1 − e−ΓkΔτÞg, with η� ¼ 1� ϵ2k=ϵðk; gMIÞ2. The coherent
and incoherent contributions are coupled by a
k-dependent damping rate Γk. Our theory fits (solid curves
in Fig. 2) suggest Γk ∼ 0.5ϵk=ℏ [28], which is of the
same order of magnitude as the decay rate extracted
from the subsequent time-evolution measurements at
g ¼ gf (Fig. 3).
To demonstrate phase coherence and pair correlation in

quasiparticles, we plot the complete time and momentum
dependence of the density noise power spectrum Sðk; τÞ,
as shown in Fig. 3(a). Here, oscillatory behavior is clearly
visible over the entire spectrum. The oscillations are a
manifestation of the interference between coherent quasi-
particles of opposite momenta �k, as suggested by Eq. (2),
with the relative phase winding up in time as ϕkðτÞ ¼
2γk;fτ þ ϕ0, where γk;f ¼ ϵðk; gfÞ=ℏ is the expected
Bogoliubov phonon frequency and ϕ0 is an initial phase
difference. In Figs. 3(b)–3(d), we plot Sðk; τ̃Þ in the
rescaled time τ̃ ¼ γk;fτ and confirm that all spectra oscillate
synchronously with a time period ≈π, thus validating the
phonon interference picture. For comparison, we also plot
the evolution of samples with a direct interaction quench
from gi to gf without anMI period (Δτ ¼ 0). Oscillations in
Sðk; τ̃Þ can also be observed, albeit with smaller amplitudes
and phase offsets ϕ0 ≈ 0, as these oscillations result solely
from the interference of in phase quasiparticle projections
from suddenly decreasing the Bogoliubov energy [13]. In
either case, with or without MI, we observe that phase

FIG. 2. Growth of density noise during the MI period. Density
noise power spectra measured before, S0ðkÞ (open circles), and
right after the MI period, Sðk; 0Þ, with Δτ ≈ 1 ms (gray circles)
and 2 ms (black squares), respectively. Horizontal dashed line
marks the atomic shot-noise level. Gray band represents calcu-
lated initial phonon spectrum assuming equilibrium temperature
T ¼ 8� 2 nK. Dashed curve shows the squeezing parameter Ck
at g ¼ gi ≈ 0.127. Solid curves are theory fits to data; see text.
Vertical dotted line marks the wave number kc, below (above)
which quasiparticles are expected to be unstable (stable) at
g ¼ gMI ≈ −0.026.
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coherence is lost in a few cycles and the density noise
spectra reach new steady-state values.
To quantify phase coherence and dissipation at final

g ¼ gf, we perform simple sinusoidal fits Sðk; τ̃Þ ¼ Sf −
Soe−Γ̃k τ̃ − Ake−Γ̃k τ̃ cosð2τ̃ þ ϕ0Þ to the data to extract (Ak,
ϕ0, Γ̃k), as shown in Figs. 3(e)–3(g) (the steady-state values
Sf and So are not shown). The larger oscillation amplitudes
Ak found in samples with Δτ ≈ 1 ms and 2 ms show that
MI-induced quasiparticles are highly phase coherent. This
can also be seen in the nonzero phase offset ϕ0 ≳ π=2 at
k≳ 0.5=μm in Fig. 3(f), which is coherently accumulated
during the MI period. Furthermore, in Fig. 3(g), we observe
a nearly constant decay rate Γ̃k ≈ 0.31ð8Þ at k≳ 0.8=μm
for these MI-induced oscillations. This is close to the
decay rate Γ̃k ≈ 0.22ð4Þ in samples without an MI period
(Δτ ¼ 0), suggesting that the short MI dynamics does not
heat up the sample significantly to increase the phonon
dissipation rate.
We now focus on identifying a key signature of non-

classical correlations. To search for entanglement in the

final phonon basis, we evaluate the squeezing parameter
Ck ¼ ϵk=ϵðk; gfÞ at g ¼ gf and plot the rescaled phonon
spectra S̃ðk; τ̃Þ ¼ Sðk; τ̃Þ=Ck, as shown in Figs. 4(a)–4(c)
[35]. In this basis, the phonon spectra at momenta k≳
1.5=μm can be observed to oscillate above and below the
rescaled quantum limit S̃ ¼ 1, showing signatures of two-
mode squeezing and antisqueezing as time evolves. The first
minimum S̃min identified at various momenta k is plotted in
Fig. 4(d), in which we find that S̃min violates the inequality
Eq. (1) in a wider range for the MI sample with Δτ ≈ 1 ms
than it does for the samples without MI or with longer Δτ.
The strongest violation is in the range of 2.1=μm≲ k≲
2.2=μm and has an average S̃min ≈ 0.77ð7Þ < 1, compared
with S̃min ≈ 0.84ð8Þ without MI and S̃min ≈ 0.91ð5Þ for
Δτ ≈ 2 ms. Lastly, we comment that the initial violation
of inequality for samples without MI at τ̃ ≈ 0 is also clear.
However, fewer modes show squeezing when the phonon
spectra return back to the first minima S̃min.

(a)
(d)

(e)

(b)

(c)

FIG. 4. Testing two-mode squeezing and quantum entangle-
ment in the phonon basis. (a)–(c) Rescaled phonon spectrum
S̃ðk; τ̃Þ for k ≈ ð1.3; 1.6; 1.8; 2.1; 2.2; 2.4Þ=μm (filled circles from
bright to dark), evaluated using data as shown in Figs. 3(b)–3(d).
Solid curves are guides to the eye. (d) First minima S̃min in
the phonon spectra of various wave numbers k, at Δτ ≈ 0 ms
(filled circles), 1 ms (squares), and 2 ms (triangles), respectively.
In (a)–(d), horizontal dashed lines mark the quantum limit, below
which Eq. (1) is violated. Error bars include systematic and
statistical errors. (e) Mean phonon population N̄k (filled symbols)
and pair-correlation amplitude ΔNk (open symbols) extracted
using the first minima and maxima identified in (a), circles; (b),
squares; and (c), triangles, respectively. Blue (red) shaded areas
mark the region where ΔNk > N̄k (ΔNk < N̄k). Error bars
represent statistical errors.

(a) (b)

(c)

(e)

(f)

(g)

(d)

FIG. 3. Coherent oscillations in the density noise power
spectrum. (a) Full evolution of the power spectrum Sðk; τÞ with
Δτ ≈ 1 ms, showing coherent oscillations in time and k space.
(b)–(d) Synchronized oscillations of Sðk; τ̃Þ plotted in the
rescaled time unit τ̃ ¼ γk;fτ for various k ≈ ð1; 1.3; 1.6; 1.8;
2.1; 2.2Þ=μm (gray circles from bright to dark). Horizontal dashed
lines mark the atomic shot-noise limit. Solid lines are sinusoidal
fits. Fitted amplitude Ak, phase offset ϕ0, and decay rate Γ̃k from
samples with Δτ ≈ 0 ms (filled circles), 1 ms (filled squares), and
2 ms (filled triangles) are plotted in (e)–(g), respectively.
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To further interpret our result, we extract the mean
phonon number N̄k and the pair-correlation amplitude ΔNk

by using the first maximum S̃max and minimum S̃min

identified in S̃ðk; τ̃Þ at each k in Figs. 4(a)–4(c):

N̄k ≈
S̃max þ S̃min

2
− 1

ΔNk ≈
S̃max − S̃min

2
: ð3Þ

As shown in Fig. 4(e), both N̄k and ΔNk have comparably
increased due to pair production in MI samples of Δτ ≠ 0.
Quantum entanglement appears to better prevail for Δτ ≈
1 ms and at k≳ 1.5=μm, where ΔNk ≳ N̄k. This may be
understood as any excessive incoherent population
N̄k − ΔNk > 0 in our samples can be due partially to
quasiparticle dissipation during the quench and partially to
incoherent (thermal) phonons present in the initial state.
The latter are better suppressed at k > 1.5=μm as
ϵðk; giÞ > kBT ≈ ℏ × 1 kHz.
In summary, we observe pair-correlation signal and

nonclassical correlation in atomic quantum gases quenched
to an attractive interaction, with two-mode squeezing
S̃min ≈ 0.8 < 1 below the quantum limit. Further reduction
of initial incoherent phonon populations or of decoherence
during pair-production processes may increase the non-
classical signal in future experiments. Reaching S̃ < 0.5
could open up applications requiring Einstein–Podolsky–
Rosen entangled quasiparticle pairs [36–40]. Our method
may be extended to analyze entanglement distribution
between noncausal regions before the interaction quench.
Furthermore, analogously to the discussion in Ref. [41],
extending our analyses of two-mode quadrature variance to
skewness [42] and other higher-order correlation terms may
provide necessary observables for probing entanglement
entropy and transport in a quantum gas.
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