
Agricultural and Forest Meteorology 307 (2021) 108521

Available online 19 July 2021
0168-1923/© 2021 Elsevier B.V. All rights reserved.

Quantifying carbon budget, crop yields and their responses to 
environmental variability using the ecosys model for U.S. 
Midwestern agroecosystems 

Wang Zhou a,b,*, Kaiyu Guan a,b,c,*, Bin Peng a,b,c,*, Jinyun Tang d, Zhenong Jin e, 
Chongya Jiang a,b, Robert Grant f, Symon Mezbahuddin f,g 

a Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA 
b Department of Natural Resources and Environmental Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana- 
Champaign, Urbana, IL 61801, USA 
c National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA 
d Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA 
e Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN 55108, USA 
f Department of Renewable Resources, University of Alberta, Edmonton, AB T6G2E3, Canada 
g Natural Resource Management Branch, Alberta Agriculture and Forestry, Edmonton, AB, Canada   

A R T I C L E  I N F O   

Keywords: 
Carbon fluxes 
Crop yield 
Ecosys 
Agroecosystems 
Environmental variabilities 
U.S. Midwest 

A B S T R A C T   

As one of the major agricultural production areas in the world, the United States (U.S.) Midwest plays a vital role 
in the global food supply and agricultural ecosystem services. Although significant efforts have been made in 
modeling the carbon cycle dynamics over this area, large uncertainty still exists in the previous simulations in 
terms of reproducing individual components of the carbon cycle and their responses to environmental variability. 
Here we evaluated the performance of an advanced agroecosystem model, ecosys, in simulating carbon budgets 
over the U.S. Midwest, considering both the magnitude of carbon flux/yield and its response to environmental 
(climate and soil) variability. We conducted model simulations and evaluations at 7 cropland eddy-covariance 
sites as well as over 293 counties of Illinois, Indiana, and Iowa in the U.S. Midwest. The site-level simulations 
showed that ecosys captured both the magnitude and seasonal patterns of carbon fluxes (i.e., net ecosystem 
carbon exchange (NEE), ecosystem gross primary production (GPP), and ecosystem respiration (Reco)), leaf area 
index (LAI), and dynamic plant carbon allocation processes, with R2 equal to 0.92, 0.87, 0.87, and 0.78 for GPP, 
NEE, Reco, and LAI, respectively across all the sites compared with the observations. For regional scale simu
lations, ecosys reproduced the spatial distribution and interannual variability of corn and soybean yields with the 
constraints of observed yields and a new remotely sensed GPP product, with R2 of multi-year averaged simulated 
and observed yield equal 0.83 and 0.80 for corn and soybean, respectively. The simulated responses of carbon 
cycle dynamics to environmental variability were consistent with that from the empirical observations at both 
site and regional scales. Our results demonstrated the applicability of ecosys in simulating the carbon cycle and 
soil carbon dynamics of the U.S. Midwestern agroecosystems under different climate and soil conditions.   

1. Introduction 

The terrestrial carbon balance of agroecosystems plays an important 
role in global carbon cycle (Dold et al., 2017; Verma et al., 2005). 
Depending on the temporal and spatial scales used for accounting as well 
as the geographical regions, croplands can be either carbon sinks or 
sources for the atmospheric CO2 (Blanco-Canqui and Lal, 2004; Kimble 

et al., 1998). In the U.S. Midwest, about 30–50% of soil organic carbon 
(SOC) has been lost when compared with that before cultivation for 
most croplands (Lal, 2002). Since SOC content is often positively related 
to soil fertility, SOC loss may enhance crop yield loss risk under future 
climate conditions (Lal, 2011, 2004, 2001). Fortunately, with recom
mended management practices (RMPs, i.e., conservation tillage, cover 
crops, and biosolids and manure, etc.), prior studies show that U.S. 
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croplands have the potential to sequester about 75-208 Tg C/year, 
which may recover 50–70% of the depleted soil carbon (Jarecki and Lal, 
2003; Lal, 2011, 2007, 2002; Meena et al., 2020; Hutchinson et al., 
2007; Chambers et al., 2016). Hence, in order to help realize this carbon 
sequestration potential in U.S. croplands and meanwhile ensure global 
food security, it is critical to accurately quantify the carbon balance of 
agroecosystems, including carbon fixation and emission. 

The carbon inventory (West et al., 2013, 2010, 2008; West and 
Marland, 2002), derived from crop yield survey reports (Vogel, 2018), 
SOC measurements (van Wesemael et al., 2010), and observation-based 
gross primary production (GPP) estimations (Jiang et al., 2021), can 
provide several components of cropland carbon budget. Among these 
carbon inventory methods, soil-sampling-based SOC measurement is the 
most direct approach to investigate SOC change, but it still has un
certainties associated with soil sampling strategies (i.e., sampling loca
tion, depth, and time), measurement methods, and duration between 
measurements (Jandl et al., 2014; Schrumpf et al., 2011; VandenBy
gaart and Angers, 2006). More importantly, it is difficult to scale up the 
soil sampling due to its high labor and financial costs. In the framework 
of carbon balance, SOC change can in principle be derived from the 
whole carbon mass balance, which requires different carbon cycling 
components (i.e., GPP, ecosystem respiration (Reco), and harvest etc.). 
However, most of the carbon inventories cover only part of the carbon 
cycling components, such as agroecosystem carbon input (i.e., GPP) or 
outputs (i.e., yield). Measurements of other key carbon cycling compo
nents (i.e., respiration and litterfall) of agroecosystems are still difficult 
and insufficient, especially at large scales (e.g., U.S. Midwest) (Osborne 
et al., 2010). All these factors limit wide and robust applications of 
carbon inventory to quantify agroecosystem carbon budgets and SOC 
change. 

Alternatively, we can use process-based models to quantify the 
cropland carbon budget (Brilli et al., 2017; Huang et al., 2009; Wat
tenbach et al., 2010; Zhang et al., 2015). However, existing studies using 
process-based models for cropland carbon budget quantification have 
suffered from one or few of the following limitations. First, very few 
model-based quantifications of the cropland carbon budget have gone 
through rigorous model validation covering the whole agroecosystem 
carbon cycle (i.e., carbon fixation, carbon allocation, and respiration), 
especially at regional scales. Most process-based modeling studies for 
agroecosystems evaluated and constrained their models with a limited 
number of observational variables, such as crop yield (Gilhespy et al., 
2014; Stehfest et al., 2007) and/or measured SOC (Li et al., 1997; Liu 
et al., 2006; Shirato, 2005). This lack of sufficient model constraint may 
cause simulations to be apparently right with wrong reasons (Peng et al., 
2018). For example, models can generate the same crop yield with 
higher carbon fixation but lower harvest index compared to the correct 
ones, because errors in plant carbon fixation can be reconciled by un
constrained fluxes of respiration and litterfall. Therefore, to ensure that 
the model simulates carbon emission and sequestration correctly in both 
short and long terms, we need to use more carbon-related observations 
with fine temporal resolution (i.e., daily GPP, net ecosystem carbon 
exchange (NEE), Reco, leaf area index (LAI), plant carbon allocation, 
and phenology) to sufficiently constrain and validate the carbon cycling 
processes of the models. 

Second, most existing model-based studies only calibrated and 
validated the models at a few specific sites due to limited availability of 
observations. In general, models involve both parameters that are site- 
specific (i.e., maturity group and climate zone) and parameters that 
are shared among sites at a regional scale (i.e., parameters controlling 
the temperature responses of activity of RuBP carboxylase-oxygenase) 
(Kuppel et al., 2012; Mäkelä et al., 2007). Thus optimizing a model at 
specific sites will tie the resultant model parameterization closely to the 
site information (e.g., climate, soil, groundwater depth, field micro
topography, and land management practices etc.), so that the model 
may not be suitable for other sites and regions with different soil and 
climate conditions. To ensure the model parameterization can be 

robustly transferred to other sites or regions, systematic evaluations are 
needed. Specifically, we need to constrain and evaluate models under a 
wide range of soil and climate conditions, using diverse data such as 
large-scale carbon inventories (e.g., crop yield reports and crop progress 
reports) and satellite remote sensing carbon-related observations (e.g., 
GPP and LAI). 

Finally, current model calibrations and validations have generally 
focused on matching the magnitude or time series of the target variables 
(e.g., GPP and yield) (Gurung et. al., 2020; Wang et al., 2020; Jin et al., 
2017), which is achieved by minimizing a cost function (which measures 
model-data discrepancy) that does not take into account the relationship 
between these target variables and environmental drivers. From the 
perspective of Bayesian inference (Tarantola, 2013), since only un
certainties in model parameters are constrained, such a practice leads to 
an underestimation of the prior information associated with the envi
ronmental drivers. To make a more comprehensive use of the informa
tion contained in observations and model driving variables, as well as to 
deliver more confident predictions of how agroecosystems will respond 
to environment changes, we thus further need to verify relationships 
between environment variables and model predicted variables to test 
whether the model can simulate emergent responses of those variables 
to environmental factors from empirical observations (Peng et al., 
2020). The accurate representation of the response of the target vari
ables to environmental factors (i.e., climate variability and soil condi
tions) will help expand the models to broader soil and climate 
conditions. 

Based on the above rationales, to demonstrate a new standard to 
achieve a comprehensive constraint and evaluation of an agroecosystem 
simulator, in this study we used an advanced ecosystem model, ecosys, to 
simulate surface carbon fluxes and corn/soybean yield in the U.S. 
Midwest at both eddy-covariance sites and county scales for the three I 
states (Illinois, Iowa and Indiana). As one of the world’s largest crop 
production areas, the U.S. Midwest produces about 85% of U.S. corn and 
soybean (USDA, 2020). The soil health and crop yield of the U.S. Mid
west in the future is vital to the global food supply and agricultural 
ecosystem services. To improve the quantification of carbon cycle dy
namics in the U.S. Midwest, both the absolute values of the simulated 
carbon fluxes and yield as well as the responses of those variables to the 
environmental variabilities were evaluated. Through the evaluations, 
we aim to evaluate the capability of ecosys in conducting spatiotemporal 
extrapolations of agroecosystem carbon cycle by addressing the 
following two questions: (1) To what extent can ecosys simulate agro
ecosystem carbon dynamics at different individual sites as well as across 
the broader regions in the U.S. Midwest? (2) How well can ecosys cap
ture the responses of carbon fluxes and crop yield to environmental 
variabilities? Although we use ecosys as an example, the procedures for 
model evaluation described in this study are applicable to many other 
agroecosystem models. 

2. Data and method 

2.1. The process-based model ecosys 

Ecosys is an advanced mechanistic ecosystem model developed to 
simulate water, energy, carbon, and nutrient cycles simultaneously for 
various ecosystems, including agroecosystems at hourly step (Fig. 1a) 
(Grant, 2001). It is one of the very few models that are formulated 
primarily based on biophysical and biochemical principles, with fully 
connected balances and interactions for water, energy, carbon and 
nutrient cycles in the soil-plant-atmosphere continuum, and has been 
extensively validated in various ecosystems ranging from agricultural 
(Grant et al., 2007, 2011; Mezbahuddin et al., 2020) to forest systems 
(Grant et al., 2001, 2010, R. F. Grant et al., 2006; R. Grant et al., 2006). 

The ecosys model was built based on the strategy that pursues the 
mechanistic representations and model outputs as directly comparable 
to observations as possible to realistically inform agricultural practices, 
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by combining reactive transport modeling and state of the art knowledge 
of biogeochemistry (Grant, 2001). For example, photosynthesis and 
plant hydraulics in ecosys are coupled through leaf osmotic pressure, and 
then turgor pressure and leaf water potential that is linked to stomatal 
conductance (Grant, 1995; Grant and Flanagan, 2007), rather than 
empirical stress functions (Van den Hoof et al., 2011; Liu et al., 2016; 
Yokohata et al., 2020), and all of which can be measured in the field 
(Salmon et al., 2020; Shekoofa et al., 2021; Xue et al., 2021). As it in
tegrates the plant hydraulics closely with the plant photosynthesis 
(Grant et al., 1999), the plant stomata conductance in ecosys is directly 
controlled by the balance between photosynthetic carbon assimilation 
and plant water hydraulics calculated for the soil-plant-atmosphere 
continuum, which can properly resolve the plant response to drought 
(Mekonnen et al., 2017). Due to the explicit simulation of plant hy
draulic impacts on stomatal conductance, the empirical crop response to 
atmospheric vapor pressure deficit does not need be prescribed as in 
many other models (Van den Hoof et al., 2011; Liu et al., 2016; Yoko
hata et al., 2020). In response to soil water and plant carbon stress, 
ecosys also dynamically adjusts the plants’ carbon and nutrient alloca
tion strategies (Grant et al., 2001a), so that all plant organs will balance 
their respective growth to help the plants survive the harsh growth 
conditions and flourish under favorable conditions. In addition, the 
plant carbon and nutrient allocation is represented following the 
source-storage-sink balance approach, rather than the fixed allometric 
relationship approach adopted by most existing models (Grant, 1989b; 
Drewniak et al., 2013; Liu et al., 2016). 

Moreover, ecosys employs much more complete physical and chem
istry theories in simulating soil related processes. Specifically, ecosys 
mechanistically resolves the oxygen stress throughout the soil and plant 
roots (Grant, 1998), such that a flood condition will suppress plants’ 
growth and alter the soil carbon and nutrient cycling. In addition, ecosys 
explicitly includes microbes’ competitive and symbiotic nutrient in
teractions with plants (Grant and Pattey, 2003; Grant et al., 2006; Grant 
and Pattey, 2008; Grant et al., 2016), enabling a nutrient-based analysis 
of how various management practices can affect plant productivity. 
Meanwhile, soil organic carbon dynamics in ecosys are driven explicitly 
by microbial community dynamics that emerge from the interactions 
between bacteria and fungi, and another five functional groups carrying 
out fermentation, methane and nitrogen cycling (Grant, 2013; Grant and 
Rochette, 1994). Emergent microbial population structure, e.g., bacteria 
to fungi ratio, can be directly evaluated with respect to field measure
ments (Anderson and Domsch, 1975; Bardgett and McAlister, 1999). 
Moreover, the partitioning of soil carbon in ecosys is amenable to the 
density fractionation that is often used by empiricists to characterize soil 
organic matter. In addition, ecosys outputs profiles and fluxes of many 
easily measurable chemicals, including different phase existences of 
CO2, CH4, N2O, NH3, NO3, HPO4

(2-), etc. Finally, ecosys resolves many 
common agricultural practices, such as mixed cropping, depth depen
dent irrigation and tillage (Grant, 1997), banded vs broadcast 

fertilization (Grant et al., 2001b), soil liming, manure application 
(Grant et al., 2001c), denitrification inhibitor (Grant et al., 2020), and 
tile-drainage system (Mezbahuddin et al., 2017) etc. Finally, ecosys 
generally requires no calibration for the soil and hydrological processes 
due to its complete mechanistics thus provides scalability to regional 
scale applications (Grant et al., 2012). All these features make ecosys 
stand out as an unique simulator as compared to many other models that 
tend to lump processes into simplified representations. We here refer 
detailed information about the processes represented in ecosys to the 
supplement of Grant et al. (2019), and the code of ecosys can be obtained 
from the online repository (https://github.com/jinyun1tang/ECOSYS). 
Below we only describe major carbon cycling processes of agro
ecosystems simulated in ecosys (Eqs. (1) and ((2)). 

−NEE = GPP − Reco
= GPP − (Ra + Rh)

= GPP − ((Rm + Rg) + Rh)

(1)  

NBP = −NEE − Yield − ε (2)  

where NEE is net ecosystem exchange, GPP is gross primary production, 
Ra is ecosystem autotrophic respiration, Rh is ecosystem heterotrophic 
respiration, Reco is ecosystem respiration, Rm and Rg are plant main
tenance and growth respiration, NBP is net biome productivity, Yield is 
harvested crop yield, and ε is the carbon losses caused by disturbances 
(e.g., fire) excluding harvest. 

In ecosys, the change of SOC (ΔSOC) is equal to the difference be
tween plant litter fall, Rh, and ecosystem carbon leakage, including CH4 
emission, dissolved organic (DOC) and inorganic carbon (DIC) leaching, 
etc (Eq. (3a)). For annual cropping system in most of the U.S. Corn Belt 
regions, we can use NBP to approximate ΔSOC at long term scales 
(≥annual scale). By using Eq. 3, most part of simulated cropland soil 
carbon balance can be directly backuped with the eddy-covariance 
measurements or carbon inventory data, which provided another 
approach to evaluate and verify the model performance in carbon 
budget estimations (Baker and Griffis, 2005). 

ΔSOC = Litter Fall − Rh − ε (3a)  

= (GPP − Ra − Yield + Seed C) − Rh − ε (3b)  

= −NEE + Seed C − Yield − ε (3c)  

= NBP + Seed C − ε
(3b)-(3d) works ≥ annual scale for annual cropping systems (3d)  

where Litter_Fall is the litter fall from plants, including leaf senescence, 
harvest residue, and root carbon exudation, Seed_C is the seed mass at 
planting, ε is the carbon leakage through CH4 emission, and DOC and 
DIC are leaching terms. 

Fig. 1. (a) Major processes represented in the ecosys model (revised from (Grant, 2004)), and (b) locations of the seven eddy-covariance sites and the three I states in 
the U.S. Midwest. 
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2.1.1. Photosynthesis (GPP) 
The ecosys model uses a multiple-layer canopy module to simulate 

canopy light absorption and carbon assimilation (Grant et al., 1989). 
Photosynthesis of each individual leaf is calculated independently using 
the Farquhar model for C3 plants and explicitly considering the 
mesophyll-bundle sheath carbon exchange for C4 plants at hourly time 
step (Farquhar et al., 1980; Grant, 1989a) with specific azimuth, leaf 
inclination, exposure of light conditions (i.e., sunlit and shaded leaves), 
and canopy height. The canopy stomatal resistance (rc) is controlled by 
canopy turgor potential (ψ t = ψc - ψπp, where ψ t, ψc, and ψπp represent 
canopy turgor potential, total water potential, and osmotic potential, 
respectively) and canopy photosynthesis (Eq. 4) (Grant, 1995; Grant 
et al., 1993). ψc is calculated through explicitly modeling the plant hy
draulics, i.e., by balancing the root water uptake from different soil 
layers with that transferred from root to canopy, and transpired from the 
canopy to the atmosphere (Grant, 1995). Canopy photosynthesis is 
calculated by summing the photosynthesis of all individual leaves, and is 
coupled with the calculation of canopy stomatal resistance as: 

rcmin = 0.64(Cb − Ci
’)/Vc

’

rc driven by rates of carboxylation vs. diffusion (4a)  

rc = rcmin + (rcmax − rcmin)e(−βψt ) rc constrained by water status (4b)  

where rc is canopy stomatal resistance to vapor flux, rcmin is the mini
mum rc at ψc = 0 MPa, Cb is the CO2 concentration in canopy air, Ci’ is 
the intercellular CO2 concentration at ψc = 0 MPa, Vc’ is the potential 
canopy CO2 fixation rate at ψc = 0 MPa, rcmax is canopy cuticular 
resistance to vapor flux, and β is the stomatal resistance shape 
parameter. 

2.1.2. Carbon allocation, crop yield, and autotrophic respiration (Ra) 
Ecosys simulates phenologically-driven plant carbon allocation to 

shoot and root (Grant, 1989b, 1989c). The dynamic ratio of shoot and 
root carbon allocation are functions of the number of phyllochron in
tervals and of the water and nutrient status of the plant (Grant, 1989b). 
The allocated carbohydrate will be first used for maintenance respira
tion (Rm) in both shoot and root, which is calculated based on the 
canopy temperature (shoot)/soil temperature (root), shoot/root dry 
biomass, and nutrient stoichiometry. If the allocated carbohydrate can 
not meet the maintenance respiration, the unmet requirement is remo
bilized from the existing foliage carbohydrate pool, driving leaf senes
cence. Remaining carbohydrate after subtracting the maintenance 
respiration from total carbohydrate is used for growth respiration (Rg) 
and dry mass (DM) formation. For shoots, DM is partitioned to as many 
as seven organs, including leaf, sheath, stalk, soluble reserves, husk, cob, 
and grain, with dynamic partitioning coefficients varying with growth 
stages (Grant, 1989b). Before floral induction, the shoot DM only con
sists of leaf and sheath compartments. After floral induction and before 
anthesis, the shoot DM is allocated to all seven compartments except 
grain, which begins after anthesis, with partition coefficients calculated 
from organ growth curves (Grant, 1989b). The modelled yield upon 
harvest is determined by the seed number and kernel mass set during 
pre- and post-anthesis growth stages. The plant growth status during 
stem elongation and the length of post anthesis period together deter
mine the seed number formulation. The kernel mass is determined by 
the seed growth during the early grain filling stage, limited by the pre
defined maximum kernel mass (Grant et al., 2011). The grain filling rate 
in ecosys is limited by canopy temperature, and soluble reserve carbon 
and reserve nutrients in the grain. 

2.1.3. Heterotrophic respiration (Rh) and soil carbon dynamics 
Ecosys computes Rh with explicit microbial dynamics that considers 

the stoichiometric interactions among carbon, nitrogen and phosphorus 
(Grant, 2013; Grant and Rochette, 1994). Specifically, organic matter 
and their transformation occur in five organic matter-microbial 

complexes, which are coarse woody litter, fine nonwoody litter 
(including root exudates), animal manure (if applied), particulate 
organic matter (POM) and humus. Each complex has five organic states, 
including solid organic matter, sorbed organic matter, microbial res
idue, dissolved organic matter, and the decomposition agents (mi
crobes), all of which are vertically resolved from the surface litter layer 
to the bottom of the soil column. The microbes include diverse func
tional groups, such as obligate aerobes (bacteria and fungi), aerobic and 
facultative nitrifiers, facultative anaerobes (denitrifiers), obligate an
aerobes (fermenters), heterotrophic (acetotrophic) and autotrophic 
(hydrogenotrophic) methanogens, and aerobic and anaerobic hetero
trophic diazotrophs (non-symbiotic N2 fixers). In computing the organic 
matter transformation, solid organic matter is first decomposed by mi
crobes as a function of active microbial biomass (as an approximation to 
the exoenzyme hydrolysis), the product (aka soluble organic matter) is 
then taken up by microbes in the presence of mineral soil sorption to 
support microbial catabolic activity (i.e., heterotrophic respiration), 
which drives microbial biomass growth and mortality. Mineralization 
associated with heterotrophic respiration produces ammonium, CO2 and 
inorganic phosphorus to drive the metabolism of lithotrophic groups. To 
maintain the elemental stoichiometry, all microbial groups compete 
with plants for inorganic nutrients, such as ammonium, nitrate and 
dissolved inorganic phosphorus. Besides, aerobic microbes also compete 
with plant roots for oxygen. Therefore, the heterotrophic respiration 
simulated by ecosys comprehensively resolves important process con
straints from microbial population dynamics, organic matter formation 
and destabilization, nutrient limitation and plant-microbial interaction 
as influenced by the soil physical conditions. Mechanistically, ecosys is 
well positioned to conduct a comprehensive assessment of SOC change 
and greenhouse gas budget of agroecosystems. More details on the soil 
biogeochemistry in ecosys can be found at Grant (2014). 

2.2. Model setup 

2.2.1. Site-scale simulation, calibration, and validation 
We evaluated the performance of ecosys using seven agricultural sites 

from the AmeriFlux network (https://ameriflux.lbl.gov/) that span a 
wide range of climate and soil conditions (Fig. 1b and Table 1) located in 
the U.S. Midwest. Among these sites, US-Ne1 planted corn during the 
study period, whereas other sites had corn-soybean rotations; US-Ne1 
and US-Ne2 are irrigated sites, whereas other sites are rainfed. 
Ecosystem CO2, water, and energy fluxes were measured using the eddy 
covariance technique at these sites (Baldocchi et al., 2001; Baldocchi, 
2003). 

The hourly gap-filled meteorological variables (i.e., air temperature, 
precipitation, downward shortwave radiation, humidity, and wind 
speed) from AmeriFlux and soil information (i.e., bulk density (BD), 
field capacity (FC), wilting point (WP), soil texture, saturated hydraulic 
conductivity (KSat), soil organic carbon (SOC), pH, and cation exchange 
capacity (CEC)) from the Gridded Soil Survey Geographic Database 
(gSSURGO) at these sites were used to drive ecosys. For US-Ne1, US-Ne2 
and US-Ne3, detailed land management practices (including planting 
time and density, irrigation and fertilizer time and amount, tillage time 
and intensity) from the site records were also available as inputs for the 
model. For other sites, we used 7.5 plants/m2 and 37.1 plants/m2 for 
corn and soybean with the planting date from the Risk Management 
Agency (RMA) of United States Department of Agriculture (USDA) 
(Lobell et al., 2014), and applied 18 gN/m2/year fertilizer before 
planting for corn years. 

The time series of GPP, NEE, and Reco of US-Ne sites during 
2001–2012 were obtained from the FLUXNET2015 Tier 1 dataset 
(http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/), and the LAI 
and carbon allocation data at different growth stages for those three sites 
during 2003–2012 were obtained from Carbon Sequestration Program 
(CSP) at University of Nebraska-Lincoln’s Agricultural Research and 
Development Center (http://csp.unl.edu/Public/sites.htm). For other 
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four sites, the gap-filled GPP, NEE, Reco, and LAI from the AmeriFlux 
website were used for the model evaluation. We fine tuned the rubisco 
carboxylation activity and plant maturity group parameters of corn and 
soybean to match the seasonal patterns and magnitude of GPP and LAI at 
US-Ne1, US-Ne2 and US-Ne3 sites. The tuned model was evaluated at 
US-Ne sites using NEE, Reco, and carbon allocation measurements, and 
at other sites using the observed GPP, NEE, Reco, and LAI data. 

2.2.2. Regional-scale crop yield and GPP simulation, calibration, and 
validation 

For regional-scale simulations, we focused on the three I states (Il
linois, Indiana, and Iowa), which is the major corn and soybean pro
duction area of the U.S. We conducted simulations at each county within 
three I states from 2001 to 2018 using corn-soybean rotation without 
irrigation (the major planting strategies within this area), with the North 
American Land Data Assimilation System (NLDAS-2) hourly meteoro
logical data and gSSURGO soil data as inputs. NLDAS-2 meteorological 
data is from the integration of observation-based and model reanalysis 
data, with 0.125◦ spatial resolution covering central North America. The 
county scale meteorological variables were aggregated from the NLDAS- 
2 grids within that county. The National 2020 Cultivated Layer (based 
on 2016-2020 USDA Cropland Data Layer) (USDA, 2021) and gSSURGO 
datasets were used to obtain the county-scale soil properties (i.e., BD, 
soil texture, WP, FC, KSat, SOC, pH, and CEC) that correspond to the 
county-scale cropland majority soil type. For regional scale simulations, 
corn and soybean were also planted with 7.5 plants/m2 and 37.1 
plants/m2 at the county scale based on the RMA planting date 
(2001–2012) (Lobell et al., 2014) and the state-scale/agricultural dis
trict-scale crop progress reports (2013–2018) depending on the data 
availability (Figure S4), and all crops were harvested on October 31. The 
state-wise crop specific fertilizer information provided by USDA (USDA, 
2019) was applied in the simulations. 

For model calibration and evaluation, we used county-scale rainfed 
corn and soybean yield from USDA National Agricultural Statistics 
Service (NASS), and a new 250m resolution daily GPP estimation using 
MODIS-based soil-adjusted near-infrared reflectance of vegetation 
(SANIRv) and photosynthetically active radiation (PAR) (Jiang et al., 
2021). The fixed linear yield trend was calculated from the NASS crop 
yield data for corn and soybean respectively for each county, and was 
used to adjust the simulated yield to year 2009 (the midpoint of 
2001-2018). To constrain ecosys efficiently, we built surrogate models 
for crop yield and GPP separately using the Long Short Term Memory 
networks (LSTM) to predict daily GPP and end-of-seasonal crop yield 
under different corn and soybean parameters. In these models, the daily 
climate meteorological data, three layers soil parameters (i.e., 0-5, 5-30, 
and 30-100 cm), crop type, corn parameters, soybean parameters, fer
tilizer amount, planting and harvest date, and day of year (DOY) were 
used as inputs, and GPP or crop yield were used as output, respectively. 
The RMSE of the surrogate models were 13.5 gC/m2 and 0.46 
gC/m2/day for yield and GPP, respectively. The parameters for soybean 
include rubisco carboxylation activity, plant maturity group, maximum 
number of fruiting sites per reproductive node, and maximum rate of 
kernel filling; and for corn include fraction of leaf protein in bundle 
sheath chlorophyll, plant maturity group, maximum number of fruiting 
sites per reproductive node, and maximum rate of kernel filling. We 
conducted the parameter calibration for each county based on the sur
rogate models, and used data from even years during 2001 to 2018 for 
model constraint and those from odd years for model validation. In 
applying the constraint, the difference between simulated and observed 
yield, accumulated growing season (i.e., May to September) GPP, and 
monthly growing season GPP were minimized using the cost function in 
Eq. (5c). 

L(soybean) = NRMSEyield(soybean) + NRMSEGPP(soybean)

+NRMSEGPP monthly(soybean)
(5a)  
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L(corn) = NRMSEyield(corn) + NRMSEGPP(corn)

+NRMSEGPP monthly(corn)
(5b)  

L = L(soybean) + L(corn) (5c)  

where NRMSEyield(soybean) and NRMSEyield(corn) are normalized RMSE 
of model simulated and measured crop yield for corn and soybean, 
respectively based on Eq. (6); NRMSEGPP(soybean) and NRMSEGPP(corn) 
are normalized RMSE of model simulated and measured growing season 
accumulated GPP for corn and soybean, respectively based on Eq. (7); 
NRMSEGPP_monthly(soybean) and NRMSEGPP_monthly(corn) are normalized 
RMSE of model simulated and measured multi-year averaged growing 
season monthly GPP for corn and soybean, respectively based on Eq. (8). 

NRMSEyield =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
9

∑
year=even years

(
Yieldsim(year) − Yieldobs(year)

)2
√

1
9

∑
year=even yearsYieldobs(year)

(6)  

NRMSEGPP =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
9

∑

year=even years

(
GPPsim(year) − GPPobs(year)

)2
√

1
9

∑

year=even years
GPPobs(year)

(7)  

NRMSEGPP monthly =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
5

∑9

month=5

⎛

⎜
⎝

(
∑

year=even years
(GPPsim(year,month)−GPPobs(year,month))

)

9

⎞

⎟
⎠

2
√
√
√
√
√
√

1
45

∑

year=even years

∑9

month=5
GPPobs(year,month)

(8)  

where Yieldsim(year) and Yieldobs(year) are the simulated and observed 
yield, GPPsim(year) and GPPobs(year) are the simulated and observed 
growing season accumulated GPP, GPPsim(year,month) and GPPobs(year,month) 
are the simulated and observed GPP at certain month, even_years is the 
years used for model constrain (i.e., 2002, 2004, ..., 2018). 

3. Results 

3.1. Site-scale validation of ecosys in simulating carbon dynamics 

We compared observed and modelled GPP, NEE, Reco fluxes at 7 
eddy-covariance sites in the U.S. Midwest (Fig. 1b). The results indicate 
that ecosys can capture both the magnitude and seasonal patterns of 

Fig. 2. Comparing ecosys simulated GPP, NEE, Reco and carbon allocation with site observations at US-Ne3 site in Nebraska for both corn (light yellow shaded) and 
soybean (light blue shaded). 
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these carbon fluxes with high accuracy at both daily and monthly scales 
(i.e., Figs. 2, 3, S1, S2, and Table 2). The simulated GPP is consistent 
with the observations for both corn and soybean throughout the growing 
season, and can reflect the magnitude difference between corn and 
soybean during peak growing season. At the daily scale, R2 and RMSE 
are 0.94 and 2.15 gC/m2/day for corn, and are 0.86 and 1.90 gC/m2/day 
for soybean at US-Ne3, respectively (Fig. 2a). The seasonal pattern and 
magnitude of Reco, which is high during summer and low during winter 
in the U.S. Midwest, can be captured by ecosys for both corn and soybean 
with high modeling skills (i.e., R2=0.86 and RMSE=2.04 gC/m2/day for 
corn, and R2=0.80 and RMSE=1.37 gC/m2/day for soybean at US-Ne3, 
Fig. 2c). As for NEE, the magnitude, peaking time, and zero-crossing 
points in observations are all captured by ecosys with R2=0.89 and 
RMSE=1.73 gC/m2/day for corn, and R2=0.75 and RMSE=1.27 gC/m2/ 
day for soybean, respectively, at US-Ne3 (Fig. 2b). 

The comparison of observed and modelled above ground biomass 
(AGB) and its partition showed that the dynamics of AGB and its allo
cation to leaf, stem, and reproductive organs can be reproduced by 
ecosys for both corn and soybean, ensuring the application of ecosys for 
crop yield simulation (Figs. 2, S1, and S2). The R2 between the measured 
and simulated AGB and its leaf, stem, and reproductive percentages are 
0.95, 0.92, 0.60, and 0.94 at US-Ne3. In both observations and simula
tions, during the early growing season, the AGB increase appears mostly 
as leaves to increase photosynthesis; during the peak growing season, 
the AGB increase is mostly found in stem for plant structural support; 
and at the late stage, the AGB increase is mostly allocated to the 
reproductive organ for grain formulation. 

We also compared the responses of the modelled and observed GPP, 

Reco, and NEE to air temperature (Ta) and vapor pressure deficit (VPD) 
at those eddy-covariance sites (Fig. 4 and S3). The results indicate that 
ecosys captured the responses of major carbon fluxes, e.g., GPP, Reco and 
NEE to variations in air temperature and VPD at the eddy-covariance 
sites reasonably well. Taking corn as an example, when Ta is less than 
30℃, GPP increases quickly, but stays stable when Ta becomes higher. 
Both observations and simulations show such a response, which is pri
marily controlled by the limitation of temperature on leaf rubisco ac
tivity. As for the response of GPP to VPD, GPP increases when VPD is 
small, but decreases when VPD gets higher in both observations and 
simulations, which reveals the emergent influence of VPD on crop sto
matal conductance. The observed Reco showed a strong response to Ta 
(i.e., increases quickly with higher Ta when Ta is below the optimal 
value) and no significant response to VPD, which can also be captured by 
ecosys simulations. As for NEE, the balance of carbon fixation and 
respiration, shows similar responses to Ta and VPD as that of GPP in 
both observations and simulations. The reason that results in the similar 
response of NEE and GPP to environmental factors is that NEE is 
dominated by crop photosynthesis during peak growing season. Similar 
responses of GPP, NEE, and Reco to Ta and VPD are also captured by 
ecosys simulations for soybean at the eddy-covariance sites (Fig. S3). 

3.2. Regional-scale crop yield and gross primary productivity simulation 

3.2.1. Regional-scale corn and soybean yield simulation 
The comparison between modelled and NASS reported crop yield 

shows that ecosys can reproduce the spatial distribution and interannual 
variability of crop yield over three I States for both corn and soybean 

Fig. 3. Comparison of simulated and observed carbon fluxes (monthly) and LAI at the eddy-covariance sites. Red dashed lines indicate the 1-to-1 line.  
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(Figs. 5, S5-7). Modeled long-term (2001–2018) averaged crop yield and 
NASS ground truth shows similar spatial patterns over three I States 
during both calibration years and validation years for both corn and 
soybean. The R2, RMSE, and bias between the spatial patterns of 
modelled and measured yield are 0.83, 8.23 Bu/Acre, and 2.72 Bu/Acre 
for corn, and 0.80, 2.39 Bu/Acre, and 0.07 Bu/Acre for soybean, 
respectively. Long-term averaged corn and soybean yield in the northern 
part of three I States are higher than that of the southern part in both 
observations and simulations, which may be caused by the differences in 
soil (i.e., higher SOC in the northern part) and climate conditions (i.e., 
more frequent heat stress and extreme precipitation events in the 

southern part). The temporal variation of simulated average yield dur
ing 2001 to 2018 is also consistent with the observations with R2 of 0.83 
and 0.63 for corn and soybean, respectively. 

3.2.2. Regional-scale corn and soybean GPP simulation 
We also compared the modeled long-term averaged GPP and a new 

satellite-based GPP estimation during the peak growing season (June to 
August). The spatial patterns of simulated and NIRv-based peak growing 
season accumulated GPP are similar during calibration years and vali
dation years for both corn and soybean (Fig. 6), which are consistent 
with the spatial patterns of yield (Fig. 5). The R2, relative RMSE between 

Table 2 
Comparison statistics of ecosys simulated daily surface carbon fluxes with eddy-covariance sites observations.  

Sites NEE GPP Reco 

RMSE(gC/m2/day) Bias(gC/m2/day) R2 RMSE(gC/m2/day) Bias(gC/m2/day) R2 RMSE(gC/m2/day) Bias(gC/m2/day) R2 

US-Ne1 1.96 -0.60 0.86 2.44 0.67 0.93 1.92 -0.07 0.87 
US-Ne2 1.67 -0.28 0.88 2.32 0.25 0.92 1.98 -0.03 0.83 
US-Ne3 1.51 -0.04 0.86 2.02 -0.18 0.91 1.72 -0.11 0.79 
US-Bo1 2.26 0.11 0.65 3.31 0.06 0.74 2.04 0.21 0.67 
US-Br1 2.34 0.04 0.59 2.66 -0.06 0.80 1.46 -0.01 0.77 
US-Ib1 1.90 -0.35 0.69 1.64 0.28 0.91 1.66 0.05 0.77 
US-Ro1 1.77 -0.15 0.69 2.12 -0.69 0.89 1.30 -0.78 0.89  

Fig. 4. Responses of simulated and observed daily GPP, NEE, and Reco to air temperature and VPD for corn during peak growing season (June to August).  
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Fig. 5. Comparison of ecosys simulated crop 
yield and NASS reported crop yield. (a) Spatial 
patterns of simulated and observed multi-year 
averaged corn yield in calibration and valida
tion years. (b) Density scatter plot of simulated 
and observed multi-year averaged corn yield. 
Different colors mean the ratio of points density 
to maximum points density, similar for the 
density scatter plots in other figures. (c) Spatial 
patterns of simulated and observed multi-year 
averaged soybean yield in calibration and vali
dation years. (d) Density scatter plot of simu
lated and observed multi-year averaged 
soybean yield. (e) and (f) is the time series of 
three I states averaged corn and soybean yield 
respectively. Light green shaded years in (e) 
and (f) are calibration years, and grey shaded 
years are validation years.   

Fig. 6. Comparison of ecosys simulated peak 
growing season accumulated (June to August) 
GPP and NIRv-based GPP. (a) Spatial patterns 
of simulated and NIRv-based multi-year aver
aged corn GPP in calibration and validation 
years. (b) Density scatter plot of simulated and 
NIRv-based multi-year averaged corn GPP. (c) 
Spatial patterns of simulated and NIRv-based 
multi-year averaged soybean GPP in calibra
tion and validation years. (d) Density scatter 
plot of simulated and NIRv-based multi-year 
average soybean GPP.   
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the spatial patterns of modelled and NIRv-based GPP are 0.83 and 3.7% 
for corn, and 0.85 and 4.6% for soybean, respectively. The seasonal 
variation of GPP for both corn and soybean can also be captured by 
ecosys at regional scale when benchmarked with NIRv-based GPP (Fig. 7, 
S8, and S10). For example, GPP of corn and soybean grows quickly from 
June to July, and peaks at July and August in both simulations and NIRv- 
based observations (Fig. 7). 

3.3. Response of crop yield to environmental variability in the U.S. 
Midwest 

Besides comparing the absolute value of modelled and observed 
yield and GPP, we also investigated the response of these variables to the 
environmental factors to evaluate whether the model can capture such 
response (Figs. 8, 9, and S12). The LOWESS (LOcally Weighted 

Scatterplot Smoothing) was used to fit the response of observed and 
modelled crop yield to key environmental factors, including Ta, pre
cipitation, VPD, soil water content (SWC), bulk density, and SOC, in the 
U.S. Midwest for corn and soybean during the growing season (Fig. 8). 

We found that the trend and inflection points of the observation- 
based response curves can be simulated by ecosys at the regional scale 
for most of the months for climate variables and different depths for soil 
properties, demonstrating the ability of ecosys in capturing the response 
of crop yield to environmental variabilities in the U.S. Midwest. Both 
observations and simulations show that yield increases with increasing 
Ta until an optimal Ta value, and then decreases with higher Ta. The 
yield~Ta response is caused by the plant enzyme and growth activity 
with temperature, which is also reflected in the GPP~Ta response (Fig. 
S12) during key growing months (i.e., July and August). For precipita
tion, the yield increases with increasing precipitation when 

Fig. 7. Comparison of multi-year averaged 
ecosys simulated and NIRv-based monthly GPP 
for corn and soybean in validation years. (a) 
Simulated multi-year averaged monthly corn 
GPP during validation years. (b) NIRv-based 
multi-year averaged monthly corn GPP during 
validation years. (c) Comparison of simulated 
and NIRv-based multi-year averaged monthly 
corn GPP at Champaign, IL during validation 
years. (d) Simulated multi-year averaged 
monthly soybean GPP during validation years. 
(e) NIRv-based multi-year averaged monthly 
soybean GPP during validation years. (f) Com
parison of simulated and NIRv-based multi-year 
averaged monthly soybean GPP at Champaign, 
IL during validation years.   

Fig. 8. Fitted responses of ecosys simulated and observed crop yield to climate variables at three I States for corn and soybean using LOWESS. The shaded regions are 
the 95% confidence intervals of LOWESS. 
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precipitation is smaller and then decreases at higher precipitation, 
revealing the tradeoff between water limitation and excessive precipi
tation on crop growth (Li et al., 2019). For VPD, the yield increases with 
VPD when VPD is low, and decreases when VPD is higher, confirming 
the impacts of VPD on crop productivity in both photosynthesis (through 
the VPD control on stomatal conductance) (Ball, 1988; Grant et al., 
1993; Zhang et al., 2021) and crop yield (Kimm et al., 2020; Lobell et al., 
2014; Zhou et al., 2020). The response of yield~SWC is similar to other 
environmental variables, revealing the tradeoff between water supply 
and oxygen stress at high soil moisture on crop growth. For both ob
servations and simulations, the multi-year averaged crop yield decreases 
with larger bulk density and increases with larger SOC in the U.S. 
Midwest. 

4. Discussion 

In this study, we used an advanced agroecosystem model, ecosys, to 
thoroughly simulate carbon budget for the U.S. Midwestern agro
ecosystems at both the site and regional scales. To address the gap that 
most previous model-based cropland carbon balance quantification 
studies with insufficient validations that only cover a small part of the 
carbon cycle components, we evaluated the model performance across a 
more comprehensive range of carbon cycle components, including car
bon fixation, carbon allocation, and ecosystem respiration at site scale. 
In particular, we tested ecosys performance at seven majority cropland 
eddy-covariance sites (with 55 site-years observations) across the U.S. 
Midwest regarding GPP, NEE, Reco, LAI, and carbon allocation simu
lations. The model validation results reveal that ecosys can simulate the 
seasonal cycle and magnitude of agroecosystem carbon dynamics at 
different individual sites with high accuracy. Across all the sites, the R2 

of the simulated and observed value for GPP, NEE, Reco, and LAI were 
0.92, 0.87, 0.87, and 0.78, respectively (Fig. 3). In addition, the dy
namics of above ground biomass and its allocation to leaf, stem, and 
reproductive can be reproduced by ecosys (Figs. 3, S1, and S2). The 
overall model performance at US-Ne1, Ne2, and Ne3 sites are better than 
that at the other 4 sites in simulating GPP, NEE and Reco (Table 2), 
which may largely be attributed to the more accurate records of land 

management practice (i.e., planting date and planting density, tillage 
information, and irrigation information) at the US-Ne sites. 

Since the crop cultivar (e.g., maturity group) and management 
practices (e.g., fertilizer application rate, planting date) may varies in 
spatial, and is hard to obtain the information at high resolution, we 
calibrated the ecosys model using the existing observations from both 
USDA survey for yield and satellite-based novel GPP estimations in even 
years to take the spatial variation of cultivars and management practices 
into account, and validated the model in odd years at the regional scale 
by simulating over 293 counties in the three I States. The model vali
dation results show that ecosys can capture the spatial and temporal 
variability of crop yield as well as the magnitude and seasonal patterns 
of GPP for both corn and soybean across the broader regions in the U.S. 
Midwest. The R2 of the multi-year averaged simulated and observed 
yield for corn and soybean is 0.83 and 0.80, respectively, showing the 
advanced ability of ecosys in capturing the crop yield spatial variance. 
Based on our best knowledge, such a high performance in simulating 
crop yield with a direct benchmark with county-level NASS data has not 
been achieved before (Zhang et al., 2015, 2020), which is a strong 
demonstration of the ability of ecosys in simulating the carbon cycle for 
agroecosystems. The interannual variability of the observed crop yield 
can also be matched by ecosys simulations, but with some deviations at 
some years (i.e., 2003) between the observations and simulations for 
soybean, which may be caused by abiotic stress, such as pest, diseases, or 
uncaptured environmental impacts (e.g., hail, wind storm). 

To fill the gap that previous studies only focused on matching the 
magnitude of the simulated target variables with observations, we also 
corroborated the simulated and observed responses of carbon-related 
variables to climate and soil variabilities in both the site scale and 
regional scale simulations. The response of the carbon fluxes and crop 
yield to the environmental variabilities obtained from the observations 
can be captured well by ecosys. For the site scale simulations, the re
sponses of the modelled and observed GPP, Reco, and NEE to the 
ambient climate conditions (i.e., temperature and VPD) at the eddy- 
covariance sites are consistent; for the regional scale simulations, the 
responses of simulated crop yield/GPP to the environmental factors 
were similar to those of the observations during the growing season (i.e., 

Fig. 9. Fitted responses of ecosys simulated and observed crop yield to soil conditions within different soil depths at three I States for corn and soybean using 
LOWESS. The shaded regions are the 95% confidence intervals of LOWESS. 
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Figs. 8, 9, and S12). These results indicate the ability of ecosys in 
simulating carbon fluxes and crop yield across the border soil and 
weather conditions. 

Through the comprehensive evaluation of the simulated carbon 
components with the observations (including GPP, Reco, and carbon 
allocation at the eddy-covariance sites, and GPP and yield at the regional 
scales), we are able to simulate the NBP at the regional scale (Fig. 10). 
The simulated multi-year averaged NBP had higher negative correlation 
to the SOC and NEE in the same period with r of -0.88 and -0.52, 
respectively, which indicates that both SOC stock and NEE drives NBP 
dynamics across space. As indicated in Eq. (3), annually, the accumu
lated NBP is approximately equal to ΔSOC, assuming ε (carbon leakage 
through runoff and methane emission) is sufficiently small. Our simu
lation results confirmed that using the carbon mass balance approach, 
we can regiously predict ΔSOC (Fig. 10b). This means that our method 
has the potential to be applied for quantifying annual-scale soil carbon 
dynamics for agroecosystems. However, cautions are given that, in 
being able to ensure the carbon mass balance approach work or have a 
low uncertainty, rigorous tests of different carbon cycle components, i. 
e., GPP, Reco, and harvest carbon, all should be conducted - currently no 
existing modeling-based study has demonstrated such a capability 
except this current study. 

Although we had validated the ability of ecosys in simulating the 
carbon cycle processes for both crop yield and GPP, there are still some 

limitations in the regional scale carbon balance simulation that need to 
be further addressed. Specifically, in current simulations, we only focus 
on the case that with no tillage and no cover crop. In the U.S. Midwest, 
tillage and cover crop are the commonly adopted conservation practices 
(Deines et al., 2019; Seifert et al., 2019), and may change the soil carbon 
sequestration rate compared with the no till and no cover crop situation 
(Baker et al., 2007; Poeplau and Don, 2015). For the tillage practice, it 
may redistribute SOC content in the soil profile, affect the crop growth 
by influencing soil minimization and soil water content, and also affect 
ecosystem respiration especially Rh (Mehra et al., 2018). For cover 
crops, it may influence the SOC sequestration rate by increasing GPP 
during the winter period and competing the water and nutrients with the 
main crops in the summer (Abdalla et al., 2019). Studying the impacts of 
cover crop and tillage is beyond the scope of the current paper, but they 
are under active investigation in our other studies. 

5. Conclusion 

In conclusion, we evaluated an advanced agroecosystem model, 
ecosys, to thoroughly simulate carbon budget for the agroecosystems at 7 
cropland eddy-covariance sites and 293 counties in the U.S. Midwest. 
Both the magnitude of simulated carbon flux/yield and their response to 
the environmental variabilities had been compared with that from the 
observations. For site scale simulations, the R2 of the simulated GPP, 

Fig. 10. Simulated multi-year averaged corn- 
soybean rotation cropland NBP during 2001- 
2018, and its correlation with ΔSOC, SOC con
tent, NEE, and harvest over three I states. (a) 
Simulated multi-year averaged corn-soybean 
rotation cropland carbon budget over three I 
states during 2001 to 2018. (b) The scatter plot 
of simulated SOC change and the sum of seed 
mass at planting and NBP. (c) The scatter plot of 
averaged simulated SOC and NBP. (d) The 
scatter plot of simulated NEE and NBP. (e) The 
scatter plot of simulated harvest carbon and 
NBP. The black lines and shaded regions in (b)- 
(e) are the fitted linear regression models and 
the corresponding 95% confidence interval.   
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NEE, Reco, and LAI is 0.92, 0.87, 0.87, and 0.78, respectively. In addi
tion, the dynamics of carbon allocation processes for both corn and 
soybean can also be reproduced by ecosys. For the regional scale simu
lations, the spatial pattern and interannual variance of crop yield are 
consistent with that from the USDA survey for both corn and soybean. 
Specifically, the R2 of the multi-year averaged simulated and observed 
yield is 0.83 and 0.63 for corn and soybean, respectively; while the R2 of 
spatial-averaged simulated and observed crop yield from 2001 to 2018 
is 0.83 and 0.80 for corn and soybean, respectively. This study is a strong 
demonstration of the ability of ecosys in simulating the carbon cycle for 
agroecosystems. The response of carbon cycle processes/yield to the 
environmental variabilities obtained from the simulations is consistent 
with that from the observations at both site-scale and regional scale 
simulations, revealing the applicability of ecosys in simulating the im
pacts of future climate change on the carbon cycle of the U.S. Mid
western agroecosystems. In addition, by evaluating and constraining the 
majority carbon cycle process (i.e., GPP and yield at regional scale), we 
are able to simulate the net biome productivity, which can be applied to 
quantify the soil carbon dynamics of agroecosystems. The method and 
framework adopted in this study can also be applied to other land sur
face models and terrestrial biosphere models to improve the accounting 
of ecosystem carbon budget by integrating the mechanism models, ob
servations, and advanced machine learning tools. 
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