

1 **Maternal-filial transfer structures in endosperm: a nexus of nutritional dynamics and seed**
2 **development**

3 Rebecca A. Povilus¹, Mary Gehring^{1,2,*}

4 1) Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA.

5 2) Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.

6 *Author for correspondence: mgehring@wi.mit.edu

7

8 **Abstract**

9 Although the ultimate purpose of a seed is successful establishment of the next generation, seed
10 development involves more than just embryo growth. In angiosperms, seed development requires the
11 intimate coordination of three distinct entities – maternal tissue and two offspring, embryo and
12 embryo-nourishing endosperm. Although seeds are cornerstones of many terrestrial ecosystems and
13 human diets, we are only beginning to understand the interactions among seed tissues and the
14 molecular processes and genes that determine them. Recent studies of gene expression and function in
15 distantly related angiosperms, combined with over 100 years of angiosperm embryological research,
16 have repeatedly highlighted the endosperm associated with maternal-filial boundaries as a central point
17 in developmental dynamics within seeds. In this review, we highlight evidence that links this zone with
18 nutritional dynamics, developmental signaling, and imprinted gene expression. We suggest that the
19 underappreciated diversity of this specialized endosperm across angiosperms deserves further study
20 from developmental, molecular, and genetic perspectives.

21

22 **Keywords:** endosperm, haustoria, chalazal endosperm, seed development, endosperm transfer region,
23 developmental signaling, gene imprinting

24

25 **Highlights:**

- 26 Endosperm, a biparental, nutritive seed tissue, differentiates into specialized zones.
- 27 Transfer-specialized endosperm is found at maternal-filial boundaries in many species.
- 28 Transfer endosperm functions in nutrient dynamics, developmental signaling, and gene imprinting.

29 Distinct and diverse endosperm transfer structures (including haustoria) are found across angiosperms.

30

31 **Introduction**

32 At the inception of each flowering plant (angiosperm) seed, two fertilization events produce two
33 offspring with distinct fates: the embryo, which represents the next sporophyte generation, and the
34 endosperm, an altruistic embryo-nourishing tissue. These fertilization events occur within an ovule, an
35 organ derived from the maternal sporophyte tissue that houses the gamete-producing female
36 gametophyte. The offspring therefore develop completely enclosed within the ovule: ovule integuments
37 become the seed coat, gametophyte-surrounding nucellus tissue may be incorporated into the seed
38 structure, and all maternally-supplied resources must be channeled to the offspring through ovule
39 vasculature [1] (Fig. 1A). From the site where maternal phloem terminates and nutrients are unloaded,
40 resources and developmental signals are passed on to the endosperm and embryo (Fig. 1A).

41 The apparent lack of symplastic connections between the embryo, endosperm, and maternal tissues [2]
42 begs the question: how do resources and developmental signals travel between the mother and
43 offspring tissues? The only direct embryo-maternal sporophyte connection is the embryo-derived
44 suspensor, the appearance and function of which varies greatly across flowering plants [3]. Rather, the
45 endosperm separates the embryo from the maternal sporophyte throughout seed development.
46 Indeed, endosperm is recognized as an important mediator of the developmental and nutritional
47 relationships between a mother and her embryo in all but two angiosperm lineages (the endosperm-less
48 Orchidaceae and Podostemaceae). Endosperm can perform a suite of functions related to nutrient
49 dynamics within the seed, including some combination of nutrient acquisition, processing, storage,
50 mobilization, and transfer to the embryo. In addition, the endosperm develops precociously relative to
51 the embryo, expanding the seed to allow for embryo growth and participating in cross-talk that
52 coordinates developmental cues with the embryo [4,5] and surrounding seed coat [6,7]. The space
53 occupied by endosperm is at least partially supplanted by the growing embryo, yet endosperm persists

54 through seed maturity and germination, and plays an active role in controlling embryo **sheath** formation
55 [8] and germination [9].

56 While endosperm is an ephemeral tissue, it nonetheless differentiates into distinct zones or tissues. One
57 such zone occurs at the maternal-filial boundary, adjacent to maternal vascular tissue or near the site of
58 vascular strand termination (Fig. 1). The endosperm adjacent to this boundary often assumes distinct
59 morphologies associated with transfer cells and tissues. This zone, which we refer to as *transfer*
60 *endosperm at maternal-filial boundaries*, is best studied in *Arabidopsis thaliana* and cereal crops and
61 displays a remarkable diversity across angiosperms.

62

63 **Distinct endosperm at maternal-filial boundaries in *Arabidopsis* and cereal crops**

64 In many angiosperms endosperm is initially free-nuclear, developing as a multi-nucleate coenocyte with
65 nuclear-cytoplasmic domains differentiating along the micropylar-chalazal axis of the seed (Fig. 1A). In
66 *Arabidopsis thaliana*, endosperm at the chalazal pole forms transcriptionally distinct nodules and a cyst
67 [10**]; both are cytoplasmically dense and contain multiple nuclei, with cyst nuclei dividing
68 infrequently. The cyst interfaces with nucellar lysate and the chalazal proliferative tissue (CPT), a
69 nucellus-derived tissue adjacent to where ovule vasculature terminates [11,12]. Unlike the rest of
70 endosperm, the chalazal endosperm never fully cellularizes, but is rather characterized by dense,
71 organelle-rich cytoplasm [11,12] and multiple, polyploid nuclei [13]. The chalazal cyst also displays
72 transfer-cell characteristics: an absence of cuticle (which is otherwise prominent along endosperm-
73 maternal sporophyte boundary), projections into the CPT, and elaborated cell wall morphology [11,12].
74 Deterioration of cells within the **nucellus/CPT** is important for chalazal endosperm development and
75 function, suggesting some form of communication between the tissues [14]. The chalazal endosperm
76 cyst, meanwhile, persists throughout most of seed maturation [12,15].

77 Cereal crop endosperm makes up a larger portion of the seed throughout development and is the
78 primary site of nutrient storage. Accordingly, there are also more distinct regions of the endosperm in
79 these species, such as the aluerone (a protein- or lipid-rich peripheral layer linked to nutrient
80 processing) and starchy/chalky central endosperm (which functions in nutrient storage). The concept of
81 a chalazal pole is generally less applied to cereal crop seeds, perhaps due to the longer contact zone
82 between ovule vasculature, nucellus and other maternal tissues, and endosperm (Figure 1B). **Some**
83 **cereals have a vascular strand that runs along the length of the seed, near persistent nucellar tissues**
84 **that can project into endosperm cavity space [16,17,18]. The endosperm cells adjacent to the persistent**
85 **nucellar tissue, called endosperm transfer cells (ETCs), have been compared to chalazal endosperm of**
86 ***Arabidopsis* [16].** The ETC region in maize is called the basal endosperm transfer layer (BETL) and is
87 relatively restricted (Fig. 1B). BETL cells are distinctly elongated and exhibit transfer cell characters such
88 as prominent wall ingrowths [19]. In contrast to the chalazal endosperm of *Arabidopsis*, maize BETL and
89 ETCs in other cereals are fully cellularized. Another distinct feature of many cereals is the extensive
90 degeneration of maternal or endosperm cells near vascular-adjacent regions of the seed to create fluid-
91 or gel-filled cavities [20,21]. In maize, maternal cells in the placental-chalazal region (P-C) next to the
92 BETL undergo programmed cell death [19], which may be instigated by the BETL [22]. In wheat and
93 barley, a fluid- or gel-filled cavity occupies the P-C region of the endosperm and separate ETCs from the
94 nucellar projection [19,21]; this cavity in barley is formed by programmed cell death in the nucellus
95 [23*]. Proper development of ETCs and the nucellar cavity impact seed development, hydration, and
96 filling [20,23*].

97

98 **Gene activity associated with nutrient transfer and processing at the maternal-filial interface**

99 In addition to morphology, gene expression profiling supports a nutrient transfer function for
100 endosperm at the maternal-filial boundary [10**,24,25]. In early *Arabidopsis* seed development, the
101 cyst is enriched for GO terms relating to phloem sucrose unloading and protein catabolism, while the
102 chalazal nodules are enriched for genes involved in a key step of one-carbon metabolism [10**].
103 Localization of a SWEET sugar transporter to the CPT further suggests that apoplastic loading of fructose
104 and glucose are key to import by the chalazal endosperm [26**], which itself shows high expression of
105 sugar transporters and invertases during early seed development [27]. **A SWEET gene in maize,**
106 ***ZmSWEET4c*, is expressed in the BETL cells, and both *ZmSWEET4c* and a rice ortholog are required for**
107 **proper nutrient accumulation in endosperm [28]**. Indeed, the BETL transcriptome in maize is generally
108 enriched for transmembrane transport, ion transport, and sucrose transport [29] and transport proteins
109 are enriched at the BETL plasma membrane [1]. Transcriptomic information from ETCs of barley before,
110 during, and after endosperm cellularization show signatures of a range of cellular process, including
111 methionine and C:N metabolism and nutrient trafficking [16].

112

113 **Maternal-filial transfer structures as developmental regulators**

114 Transfer-specialized endosperm **regions** at maternal-filial boundaries also appear to act as hubs of
115 developmental regulation for seeds as a whole. Expression and activity of genes involved in hormone
116 dynamics, cross-talk between maternal tissue and endosperm, and regulation of developmental events
117 in other endosperm zones have been documented in both *Arabidopsis* and cereal crops.

118 Hormone biosynthesis genes, including those for gibberellic acid, abscisic acid, and cytokinin, are highly
119 expressed throughout *Arabidopsis* and *Brassica napus* chalazal endosperm development, as are genes
120 related to auxin signaling [24,25,30**]. Similar signatures of hormone activity have been found in
121 cereals, including links between ETCs and auxin in wheat [31] and barley [16,32]. In rice, the importance

122 of auxin synthesis in the dorsal aleurone is borne out by the localization of auxin biosynthesis gene
123 OsIAA29 specifically in this region of the endosperm, between the vascular-adjacent nucellus and the
124 rest of the offspring tissues [33]. Furthermore, hormones like auxin, ethylene, and/or cytokinins are
125 important for proper differentiation of the BETL in maize and ETCs in other cereals [1,16,34]. While the
126 role of hormones in seed development are as varied as they are across other aspects of plant biology, it
127 appears that endosperm transfer tissues as maternal-filial boundaries are a central point of hormone
128 signaling.

129 The role of transfer endosperm in developmental signaling is not limited to hormones. In Arabidopsis,
130 chalazal endosperm is enriched for defensins, a class of small signaling peptides that function beyond
131 plant immunity [35]. Transcriptional profiles of ETCs in barley cells show expression of almost all two-
132 component signaling system elements annotated in the barley genome [16] and the BETL-specific gene
133 expression module in maize includes multiple classes of small cysteine-rich proteins [29], suggesting that
134 cereal ETCs actively participate in signaling pathways. Furthermore, transport of signal proteins from
135 BETL cells to the adjacent maternal tissue has been documented [36]. Thus, ETCs at maternal-filial
136 boundaries are not only importing resources, but are also capable of generating and exporting signaling
137 molecules. Such signaling may underlie crosstalk between the maternal tissues and chalazal endosperm
138 that affect spatial tradeoffs during development and nutrient partitioning, such as degeneration of CPT
139 or P-C regions, which subsequently impact seed development as a whole [14].

140 Transfer endosperm at the maternal-filial boundaries also appears to impact differentiation of other
141 areas of the endosperm. The chalazal endosperm of Arabidopsis generates TFL1 protein, which
142 subsequently moves to peripheral endosperm and interacts with an ABA-sensitive mechanism to control
143 timing of peripheral endosperm cellularization [37**]. Timing of endosperm cellularization in
144 Arabidopsis and cereals is an important determinant of endosperm size and the ability to
145 import/process nutrients, which in turn affects final seed size [38,39]. Thus, the chalazal endosperm may

146 also influence nutrient dynamics in seeds indirectly as a regulator of overall endosperm developmental
147 timing.

148

149 **Imprinted gene expression and parental genome dosage sensitivity in maternal-filial transfer**
150 **structures**

151 A gene is described as imprinted when expression of an allele depends on whether it was maternally or
152 paternally inherited. Imprinted gene expression has been linked to parent-of-origin effects on seed
153 development and the different strategies that mothers and fathers use to maximize their own fitness in
154 the context of nutrient investment during reproduction. According to interparental conflict theory,
155 genetic conflict over distribution of maternally-supplied resources to asymmetrically related offspring
156 should manifest during nutrient transfer between maternal tissue and biparental offspring [40,41].

157 Maternal control over maternal resources can act on both sides of the maternal-filial interface. Paternal
158 control is meanwhile limited to expression in tissues with paternal genetic contribution, such as
159 endosperm, and could be expected to manifest most strongly in structures and processes related to
160 nutrient allocation to offspring.

161 In *Arabidopsis*, several lines of evidence suggest that chalazal endosperm function is sensitive to gene
162 imprinting and parental gene/genome dosage. The MADS box transcription factor gene *PHE1* is a
163 paternally expressed imprinted gene (PEG) that is specifically expressed in the chalazal endosperm [42]
164 and has been shown to regulate expression of genes related to endosperm cellularization, including
165 other imprinted genes [43]. Chalazal-specific expression during some stages of seed development has
166 also been documented for the Polycomb Repressive Complex 2 (PRC2) members, FIS2 and MEA, which
167 contributes to epigenetically marking the silenced maternal alleles of PEGs [10**,24,44]; *fis2* mutants
168 exhibit enlarged chalazal endosperm and altered cellularization patterns across the rest of the

169 endosperm [45]. More broadly, single-nuclei analyses of imprinted gene expression in *Arabidopsis*
170 endosperm demonstrated that about half of PEGs are most highly expressed in chalazal endosperm
171 compared to other endosperm regions, and that this is due to increased expression specifically from the
172 paternal allele [10**]. Studies from crosses between plants of different ploidies further highlight the
173 importance of paternal gene dosage in chalazal endosperm development. Endosperm with excess
174 paternal genome dosage develop enlarged cysts and show enrichment for gene expression programs
175 associated with chalazal endosperm identity [46,47].

176 Links between imprinting and ETCs at the maternal-filial boundary are also seen in cereal crops. *Meg1* is
177 a maternally expressed imprinted gene (MEG) in maize that impacts BETL differentiation and function in
178 a dosage-dependent manner [48]. Yet in an intriguing parallel to chalazal endosperm in *Arabidopsis*, the
179 gene expression module associated with the maize BETL significantly overlaps with a subset of maize
180 PEGs [29]. The only other endosperm regions similarly enriched in PEGs are the BETL-adjacent region
181 and another area of endosperm specialized for nutrient transfer, the embryo-surrounding region [29].
182 Maize MEGs, meanwhile, significantly overlapped with expression modules of other endosperm regions.
183 Similar to the effect of increased paternal genome dosage in *Arabidopsis*, paternal-excess crosses in
184 maize show expansion of BETL identity [1,49]. Mutations in a copy of OsEMF2, a component of the PRC2
185 complex in rice, share phenotypes with PRC2 mutants in *Arabidopsis*, including changes to timing of
186 endosperm cellularization [50*,51*]. Effects on ETCs, however, have not been specifically analyzed.
187 Intriguingly, far more rice PEGs were shown to be targets of OsEMF2 activity than rice MEGs, which is
188 consistent with the connection between PRC2, PEG regulation, and chalazal endosperm in *Arabidopsis*
189 and the BETL in maize. Altogether, the apparent enrichment of imprinted genes, and in particular PEGs,
190 in endosperm transfer cells at the maternal-filial boundary suggests that this region does indeed
191 function as a checkpoint in nutrient dynamics during interparental conflict.

192 **Exploring Chazal/Transfer Endosperm Diversity to Understand Seed Nutritional and Developmental**
193 **Dynamics**

194 Transfer cell activity, hormonal response and regulation, and genetic imprinting are associated with
195 chalazal endosperm in *Arabidopsis* and ETCs in cereals, despite differences in development and
196 morphology. While this suggests these processes may be a fundamental part of the interface between
197 endosperm and the maternal sporophyte, and may even date back to the origin of endosperm ~140
198 million years ago, such a hypothesis remains to be tested across the breadth of angiosperm seed
199 biology. Indeed, there are already many records of diverse endosperm ontogenies scattered across over
200 100 years of embryological literature. Endosperm outgrowths called haustoria, which can invade
201 surrounding maternal tissues, occur across angiosperm phylogeny – including multiple clades of parasitic
202 plants and economically important groups like Cucurbitaceae and legumes [3,52]. These structures are
203 *de facto* associated with nutrient transfer and exhibit distinct morphologies, such as complex branching
204 (e.g. *Jodina*) or growth as a single ceonocyte over 19 mm long (e.g. *Cucumis*)[52] (Fig. 2). Haustoria can
205 also occur in micropylar endosperm [3,52,53], raising the question of whether the documented
206 associations between chalazal endosperm and developmental signaling or PEGs could occur in other
207 regions of the endosperm. In addition, endosperm haustoria appear at some of the earliest divergences
208 in angiosperm evolution: several members of the Nymphaeales are characterized by enlarged,
209 unicellular chalazal domains that extend into maternal seed storage tissues (*Nuphar* [54];
210 *Nymphaea*[55]). Indeed, haustorial-like appearance of chalazal female gametophyte tissue has been
211 documented in endosperm-less gymnosperms like *Gnetum* [56]. This raises the question of whether
212 such chalazal female gametophyte differentiation represents independent evolution of haustorial
213 function, or whether transfer endosperm in angiosperms may have co-opted a pre-existing
214 developmental program. Studying species from lineages whose origin predate the divergence of

215 monocots and eudicots, ~136 MYA [57], can determine which aspects of endosperm development at
216 maternal-filial boundaries may have been associated with the very origin of endosperm itself.

217 **Future Directions**

218 So far our views on the diverse functions of transfer-specialized endosperm at maternal-filial boundaries
219 have been restricted to a relatively small number species and seed types. Indeed, the diversity of
220 endosperm transfer structures is rarely discussed outside of the context of being structural oddities, and
221 seed development of most angiosperms remains undocumented. We propose that in order to advance
222 our understanding of maternal and offspring tissue interactions, including economically important
223 processes like seed filling, we must first continue exploring seed development across angiosperm
224 diversity. We can then take advantage of emerging technologies that allow for tissue-specific
225 characterization of gene activity and metabolomic processes in species with few genetic or technical
226 resources. While the enclosed, complex, and internally delicate nature of seeds make them difficult to
227 study, combining traditional histological techniques with advances in confocal microscopy, non-light
228 based 3-D imaging such as micro-CT [58*-61], and metabolite-sensitive imaging [62*] could trigger a
229 renaissance in seed plant embryology. Meanwhile, technologies like single-nuclei sequencing or other
230 low-input sequencing allow for gene expression profiling specifically in tissues at maternal-filial
231 interfaces [10**,16,24,29], and are becoming increasingly accessible and affordable. Even in the
232 absence of stable transformation techniques, applying these technologies to species with diverse
233 structures at maternal-filial interfaces holds much promise for uncovering novel strategies that mothers
234 and offspring use to negotiate resource allocation into seeds.

235

236 **References:**

237 (Of interest) = *

238 (Of special interest) = **

239 [1] Yuan J, Bateman P, Gutierrez-Marcos J: Genetic and epigenetic control of transfer cell
240 development in plants. *J Genet Genom* 2016, 43(9): 533-539,
241 <https://doi.org/10.1016/j.jgg.2016.08.002>.

242 [2] Stadler R, Lauterbach C, Sauer N. Cell-to-cell movement of green fluorescent protein reveals
243 post-phloem transport in the outer integument and identifies symplastic domains in *Arabidopsis*
244 seeds and embryos. *Plant Physiol* 2005, 139: 701-71, <https://doi.org/10.1104/pp.105.065607>.

245 [3] Maheshwari P: *Embryology of angiosperms*. McGraw-Hill Book Company, Inc; 1950: 221-267.

246 [4] Yang S, Johnston N, Talideh E, Mitchell S, Jeffree C, Goodrich J, Ingram G: The endosperm-specific
247 *ZHOUPI* gene of *Arabidopsis thaliana* regulates endosperm breakdown and embryonic epidermal
248 development. *Development* 2008, 135(21): 3501-3509, <https://doi.org/10.1242/dev.026708>.

249 [5] Song J, Xie X, Chen C, Shu J, Thapa RK, Nguyen V, Bian S, Kohalmi SE, Marsolais F, Zou J, Cui Y:
250 *LEAFY COTYLEDON1* expression in the endosperm enables embryo maturation in *Arabidopsis*. *Nat
251 Comm* 2021, 12: 3963, <https://doi.org/10.1038/s41467-021-24234-1>.

252 [6] Garcia D, Saingery V, Chambrier P, Mayer U, Jürgens G, Berger F: *Arabidopsis haiku* mutants
253 reveal new controls of seed size by endosperm. *Plant Physiol* 2003, 131(4): 1661-1670,
254 <https://doi.org/10.1104/pp.102.018762>.

255 [7] Figueiredo DD, Batista R, Roszak P, Hennig L, Köhler C: Auxin production in the endosperm drives
256 seed coat development in *Arabidopsis*. *eLife* 2016;5: e20542, doi: 10.7554/eLife.20542.

257 [8] Doll NM, Bovio S, Gaiti A, Marollier A, Chamot S, Moussu S, Widiez T, Ingram G. The endosperm-
258 derived embryo sheath is an anti-adhesive structure that facilitates cotyledon emergence during

259 germination in *Arabidopsis*. *Curr Biol* 2020, 30(9): 909-915,
260 <https://doi.org/10.1016/j.cub.2019.12.057>.

261 [9] Carrera-Castaño G, Calleja-Cabrera J, Pernas M, Gómez L, Oñate-Sánchez L: An updated overview
262 on the regulation of seed germination. *Plants* 2020, 9(6): 703,
263 <https://doi.org/10.3390/plants9060703>.

264 **[10] Picard CL, Povilus RA, Williams BP, Gehring M: Transcriptional and imprinting complexity in
265 *Arabidopsis* seeds at single-nucleus resolution. *Nat Plants* 2021, 7: 730-738,
266 <https://doi.org/10.1038/s41477-021-00922-0>.

267 This study applies single-nuclei sequencing technology to *Arabidopsis* samples enriched for
268 endosperm nuclei; previously uncharacterized transcriptionally distinct types of endosperm
269 nuclei are described. Two such types correlate to the chalazal endosperm nodules and cyst,
270 providing the first gene expression profiles of chalazal sub-domains. Furthermore,
271 imprinting variability across all endosperm nuclei types is characterized, indicating that PEG
272 expression is strongest and most paternally-biased in chalazal endosperm.

273 [11] Nguyen H, Brown RC, Lemmon BE: The specialized chalazal endosperm in *Arabidopsis thaliana*
274 and *Lepidium virginicum* (Brassicaceae). *Protoplasma* 2000, 212: 99–110,
275 <https://doi.org/10.1007/BF01279351>.

276 [12] Brown RC, Lemmon BE, & Nguyen H. Comparative anatomy of the chalazal endosperm cyst in
277 seeds of the Brassicaceae, *Bot J Linn Soc* 2004, 144(4): 375–394, <https://doi.org/10.1111/j.1095-8339.2003.00263.x>.

- 279 [13] Baroux C, Fransz P, Grossniklaus U: Nuclear fusions contribute to polyploidization of the gigantic
280 nuclei in the chalazal endosperm of *Arabidopsis*. *Planta* 2004, 220(1): 38-46, doi: 10.1007/s00425-
281 004-1326-2.
- 282 [14] Xu W, Fiume E, Coen O, Pechoux C, Peiniec L, Magnani E: Endosperm and nucellus develop
283 antagonistically in *Arabidopsis* seeds. *The Plant Cell* 2016, 28(6): 1343-1360,
284 <https://doi.org/10.1105/tpc.16.00041>.
- 285 [15] Leprince O, Pellizzaro A, Berriri S, Buitink J: Late seed maturation: drying without dying. *J Exp*
286 *Bot* 2017, 68(4): 827-841, <https://doi.org/10.1093/jxb/erw363>.
- 287 [16] Thiel J: Development of endosperm transfer cells in barley. *Front Plant Sci* 2014, 5: 108,
288 <https://doi.org/10.3389/fpls.2014.00108>.
- 289 [17] Wu X, Liu J, Li D, Liu C: Rice caryopsis development II: Dynamic changes in the endosperm. *J*
290 *Integr Plant Biol* 2016, 58(9):786-798, <https://doi.org/10.1111/jipb.12488>.
- 291 [18] Wilkinson LG, Bird DC, Tucker MR: Exploring the role of the ovule in cereal grain development
292 and reproductive stress tolerance. *Ann Plant Rev* 2018, 1(1):1-35,
293 <https://doi.org/10.1002/9781119312994.apr0609>.
- 294 [19] Chourey PS, Hueros G: The basal endosperm transfer layer (BETL): gateway to the maize kernel.
295 In *Maize Kernel Development*. Edited by Larkins BA. CABI; 2017: 56-67, doi:
296 10.1079/9781786391216.0056.
- 297 [20] Lim WL, Collins HM, Byrt CS, Lahnstein J, Shirley NJ, Aubert MK, Tucker MR, Peukert M, Matros
298 A, Burton RA: Overexpression of HvCsf6 in barley grain alters carbohydrate partitioning plus
299 transfer tissue and endosperm development. *J Exp Bot* 2020, 71(1): 138-153,
300 <https://doi.org/10.1093/jxb/erz407>, <https://doi.org/10.1093/jxb/erz407>.

- 301 [21] Chateigner-Boutin A, Alvarado C, Devaux M, Durand S, Foucat L, Geairon A, Grélard F, Jamme F,
302 Rogniaux H, Saulnier L, Guillon F: The endosperm cavity of wheat grains contains a highly hydrated
303 gel of arabinoxylan. *Plant Sci* 2021, 306:110845, <https://doi.org/10.1016/j.plantsci.2021.110845>.
- 304 [22] Kladnik A, Chamusco K, Dermastia M, Chourey P: Evidence of programmed cell death in post-
305 phloem transport cells of the maternal pedicel tissue in developing caryopsis of maize. *Plant Physiol*
306 2004, 136: 3572–3581, <https://doi.org/10.1104/pp.104.045195>.
- 307 *[23] Radchuk V, Tran V, Hilo A, Muszynska A, Gündel A, Wagner S, Fuchs J, Hensel G, Ortleb S,
308 Munz E, Rolletschek H, Borisjuk L: Grain filling in barley relies on developmentally controlled
309 programmed cell death. *Commun Biol* 2021, 4: 428, <https://doi.org/10.1038/s42003-021-01953-1>.
- 310 By exploring the role of vacuolar processing enzymes in barley grains, this study links
311 programmed cell death in the nucellar projection, development of endosperm transfer cells
312 at the maternal-filial interface, transport of sucrose into endosperm, and ultimately starch
313 accumulation within the grain.
- 314 [24] Belmonte MF, Kirkbride RC, Stone SL, Pelletier JM, Bui AQ, Yeung EC, Mashimoto MH, Fei J,
315 Harada CM, Munoz MD, Le BH, Drews GN, Brady SM, Goldberg RB, Harada JJ: Comprehensive
316 developmental profiles of gene activity in regions and subregions of the *Arabidopsis* seed. *PNAS*
317 2013, 110(5): E435-E444, <https://doi.org/10.1073/pnas.1222061110>.
- 318 [25] Ziegler DJ, Khan D, Kalichuk JL, Becker MG, Belmonte MF: Transcriptome landscape of the early
319 *Brassica napus* seed. *J Integr Plant Biol* 2019, 61: 639– 650, <https://doi.org/10.1111/jipb.12812>.
- 320
- 321 **[26] Lu J, Le Hir R, Gómez-Páez D, Coen O, Péchoux C, Jasinski S, Magnani E: The nucellus:
322 between cell elimination and sugar transport. *Plant Physiol* 2021, 185(2): 478-490,
323 <https://doi.org/10.1093/plphys/kiaa045>.

324 This paper builds a discrete model for how sugars are transported from maternal
325 vasculature into offspring tissue, via chalazal nucellus elimination and chalazal endosperm.
326 By characterizing localization of SWEET sugar transporters, along with sugar metabolism in
327 mutants that lack chalazal nucellus elimination, the authors determine that apoplastic
328 nutrient unloading by maternal tissues is a key step before nutrient uptake by the adjacent
329 endosperm.

330 [27] Hedhly A, Vogler H, Schmid MW, Pazmino D, Gagliardini V, Santelia D, Grossniklaus U: Starch
331 turnover and metabolism during flower and early embryo development. *Plant Physiol* 2016, 172(4):
332 2388-2402, <https://doi.org/10.1104/pp.16.00916>.

333 [28] Sosso D, Luo D, Li Q, Sasse J, Yang J, Gendrot G, Suzuki M, Koch KE, McCarty DR, Chourey PS,
334 Rogowsky PM, Ross-Ibarra J, Yang B, Frommer WB: Seed filling in domesticated maize and rice
335 depends on SWEET-mediated hexose transport. *Nat Genet* 2015, 47(12): 1489-1493. doi:
336 10.1038/ng.3422

337 [29] Zhan J, Thakare D, Ma C, Lloyd A, Nixon NM, Arakaki AM, Burnett WJ, Logan KO, Wang D, Wang
338 X, Drews GN, Yadegari R: RNA sequencing of laser-capture microdissected compartments of the
339 maize kernel identifies regulatory modules associated with endosperm cell differentiation. *Plant Cell*
340 2015, 27(3): 513-531, <https://doi.org/10.1105/tpc.114.135657>.

341 **[30] Batista RA, Figueiredo DD, Santos-González J, Köhler C: Auxin regulates endosperm
342 cellularization in *Arabidopsis*. *Genes & Dev.* 2019, 33: 466-476, doi: 10.1101/gad.316554.118.

343 This study manipulates auxin production or signaling in seeds, resulting in changes to timing
344 of endosperm cellularization – a key developmental transition that can determine seed size
345 and viability. The auxin-linked phenotypes are furthermore tied to parental gene/genome
346 dosage sensitivity, as developmental defects in paternal-excess seeds are affected by

347 altering auxin production. The chalazal endosperm, which is enlarged in paternal-excess
348 seeds, is shown to be a hub of auxin-related gene activity in seeds.

[31] Kabir MR, Nonhebel HM, Backhouse D, Winter G: Expression of *TaTAR2.3-1B*, *TaYUC9-1* and *TaYUC10* correlates with auxin and starch content of developing wheat grains. *bioRxiv* 2020, <https://doi.org/10.1101/2020.10.12.336560>.

[32] Hertig C, Melzer M, Rutten T, Erbe S, Hensel G, Kumlehn J, Weschke W, Weber H, Thiel J: Barley HISTIDINE KINASE 1 (HvHK1) coordinates transfer cell specification in the young endosperm. The Plant J 2020, 103(5): 1869-1884; <https://doi.org/10.1111/tpj.14875>.

[33] Basunia MA, Nonhebel HM, Backhouse D, McMillan M: Localised expression of OsIAA29 suggests a key role for auxin in regulating development of the dorsal aleurone of early rice grains. bioRxiv 2021, <https://doi.org/10.1101/2021.03.04.434009>

[34] Bernardi J, Battaglia R, Bagnaresi P, Lucini L, Marocco A: Transcriptomic and metabolomic analysis of ZmYUC1 mutant reveals the role of auxin during early endosperm formation in maize. Plant Sci 2019, 281: 133-145, <https://doi.org/10.1016/j.plantsci.2019.01.027>.

361 [35] Stotz HU, Thomson JG, Wang Y: Plant defensins: Defense, development and application. *Plant
362 Signal Behav* 2009, 4(11): 1010-1012, <https://doi.org/10.4161/psb.4.11.9755>.

[36] Serna A, Maitz M, O'Connell T, Santandrea G, Thevissen K, Tienens K, Hueros G, Falieri C, Cai G, Lottspeich F, Thompson RD. Maize endosperm secretes a novel antifungal protein into adjacent maternal tissue. *The Plant J* 2002, 25(6): 687-698, <https://doi.org/10.1046/j.1365-313x.2001.01004.x>.

367 **[37] Zhang B, Li C, Li Y, Yu H: Mobile TERMINAL FLOWER1 determines seed size in *Arabidopsis*. *Nat*
368 *Plants* 2020, 6: 1146-1157, <https://doi.org/10.1038/s41477-020-0749-5>.

369 This study explores the role of TERMINAL FLOWER1 (TFL1), previously known to function in
370 inflorescence meristem identity, during seed development in *Arabidopsis*. They
371 demonstrate that TFL1 is a mobile signal that is generated in the chalazal endosperm and
372 then transported to the peripheral endosperm where it stabilizes the transcription factor
373 AB15, thereby instigating proper timing of peripheral endosperm cellularization. Together,
374 these data establish that the chalazal endosperm is capable of influencing development of
375 other endosperm regions.

376 [38] Lafon-Placette C, Köhler C: Embryo and endosperm, partners in seed development. *Curr Opin*
377 *Plant Biol* 2014, 17: 64-69. <https://doi.org/10.1016/j.pbi.2013.11.008>.

378 [39] Olsen O: The modular control of cereal endosperm development. *Trends Plant Sci* 2020, 25(2):
379 279-290. <https://doi.org/10.1016/j.tplants.2019.12.003>.

380 [40] Haig D: Kin conflict in seed plants. *Trends Ecol Evol* 1987, 2(11): 337-340,
381 [https://doi.org/10.1016/0169-5347\(87\)90110-8](https://doi.org/10.1016/0169-5347(87)90110-8).

382 [41] Patten MM, Ross L, Curley JP, Queller DC, Bonduriansky R, Wolf JB: The evolution of genomic
383 imprinting: theories, predictions and empirical tests. *Heredity* 2014, 113: 119-128,
384 <https://doi.org/10.1038/hdy.2014.29>.

385 [42] Le BH, Cheng C, Bui AQ, Wagstaff JA, Henry KF, Pelletier J, Kwong L, Belmonte M, Kirkbride R,
386 Horvath S, Drews GN, Fischer RL, Okamoto JK, Harada JJ, Goldberg RB: Global analysis of gene
387 activity during *Arabidopsis* seed development and identification of seed-specific transcription
388 factors. *PNAS* 2010, 107(18): 8063-8070, <https://doi.org/10.1073/pnas.1003530107>.

- 389 [43] Batista RA, Moreno-Romero J, Qiu Y, van Boven J, Santos-González J, Figueiredo DD, Köhler C:
390 The MADS-box transcription factor PHERES1 controls imprinting in the endosperm by binding to
391 domesticated transposons. *eLife* 2019, e50541, doi: 10.7554/eLife.50541.
- 392 [44] Moreno-Romero J, Del Toro-De León G, Yadav VK, Santos-González J, Köhler C: Epigenetic
393 signatures associated with imprinted paternally expressed genes in the *Arabidopsis* endosperm.
394 *Genome Biol* 2019, 20(41): 1-11, <https://doi.org/10.1186/s13059-019-1652-0>.
- 395 [45] Sørensen MB, Chaudhury AM, Robert H, Bancharel E, Berger F: Polycomb group genes control
396 pattern formation in plant seed. *Cell* 2001, 11(4): 277-281, [https://doi.org/10.1016/S0960-9822\(01\)00072-0](https://doi.org/10.1016/S0960-9822(01)00072-0).
- 398 [46] Martinez 2018: Martinez G., Wolff P, Wang Z, Moreno-Romero J, Santos-González J, Conze LL,
399 DeFraia C, Slotkin RK, Köhler C: Paternal easiRNAs regulate parental genome dosage in *Arabidopsis*.
400 *Nat Genet* 2018, 50: 193–198, <https://doi.org/10.1038/s41588-017-0033-4>.
- 401 [47] Satyaki PRV, Gehring M: Paternally acting canonical RNA-directed DNA methylation pathway
402 genes sensitize *Arabidopsis* endosperm to paternal genome dosage. *The Plant Cell* 2019, 31(7):
403 1563–1578, <https://doi.org/10.1105/tpc.19.00047>.
- 404 [48] Costa LM, Yuan J, Rouster J, Paul W, Dickinson H, Gutierrez-Marcos JF: Maternal control of
405 nutrient allocation in plant seeds by genomic imprinting. *Curr Biol* 2012, 22(2): 160-165. doi:
406 10.1016/j.cub.2011.11.059.
- 407 [49] Pennington PD, Costa LM, Gutierrez-Marcos JF, Greenland AJ, Dickinson HG: When genome
408 collide: aberrant seed development following maize interploidy crosses. *Ann Bot* 2008, 101(6): 833-
409 843, <https://doi.org/10.1093/aob/mcn017>.

410 * [50] Tonosaki K, Ono A, Kunisada M, Nishino M, Nagata H, Sakamoto S, Kijima ST, Furuumi H,
411 Nonomura K, Sato Y, Ohme-Takagi M, Endo M, Comai L, Hatakeyama K, Kawakatsu T, Kinoshita T:
412 Mutation of the imprinted gene *OsEMF2a* induces autonomous endosperm development and
413 delayed cellularization in rice. *The Plant Cell* 2020, 33(1): 85-103,
414 <https://doi.org/10.1093/plcell/koaa006>.

415 Similar to [51*], this paper characterizes aspects of seed development in rice mutants of
416 *OsEMF2a*, which is homologous to the Polycomb Repressive Complex 2 member *FIS2* in
417 Arabidopsis. Timing of endosperm cellularization is altered in *OsEMF2a* mutant seeds in a
418 manner similar to *fis2* mutants in Arabidopsis. This paper furthermore characterizes
419 H3K27me3 patterning in *OsEMF2a* mutant endosperm, thereby identifying PRC2 targets in
420 rice.

421 * [51] Cheng X, Pan M, E Z, Zhou Y, Niu B, Chen C: The maternally expressed polycomb group gene
422 OSEMF2a is essential for endosperm cellularization and imprinting in rice. *Plant Comm* 2021, 2(1):
423 100092, <https://doi.org/10.1016/j.xplc.2020.100092>.

424 Similar to [50*], this paper characterizes aspects of seed development in rice mutants of
425 *OsEMF2a*, which is homologous to the Polycomb Repressive Complex 2 member *FIS2* in
426 Arabidopsis. Similar to *fis2* mutants, endosperm cellularization and gene imprinting is
427 altered in *OsEMF2a* mutants. Intriguingly, while these phenotypes were associated with
428 altered cytokinin production, they were not linked with over-production of auxin (as is the
429 case in Arabidopsis mutants that show similar changes to endosperm cellularization). These
430 results show that hormones are broadly, if variably, important regulators of endosperm
431 development.

- 432 [52] Mikesell J: Anatomy of terminal haustoria in the ovule of plantain (*Plantago major L.*) with
433 taxonomic comparison to other angiosperm taxa. *Bot Gaz* 1990, 151(4): 452-464,
434 <https://doi.org/10.1086/337845>.
- 435 [53] Kordyum EL, Mosyakin SL: Endosperm of angiosperms and genomic imprinting. *Life* 2020, 10(7):
436 104, <https://doi.org/10.3390/life10070104>.
- 437 [54] Floyd SK, Friedman WE: Developmental evolution of endosperm in basal angiosperms: evidence
438 from *Amborella* (*Amborellaceae*), *Nuphar* (*Nymphaeaceae*), and *Illicium* (*Illiciaceae*). *Plant Syst Evol*
439 2001, 228: 153–169, <https://doi.org/10.1007/s006060170026>.
- 440 [55] Povilus RA, Losada JM, Friedman WE: Floral biology and ovule and seed ontogeny of *Nymphaea*
441 *thermarum*, a water lily at the brink of extinction with potential as a model system for basal
442 angiosperms. *Ann Bot* 2014, 115(2): 211–226, <https://doi.org/10.1093/aob/mcu235>.
- 443 [56] Carmichael JS, Friedman WE: Double fertilization in *Gnetum gnemon*: the relationship between
444 the cell cycle and sexual reproduction. *The Plant Cell* 1995, 7(12): 1975-1988,
445 <https://doi.org/10.1105/tpc.7.12.1975>.
- 446 [57] Magallón S, Gómez-Acevedo S, Sánchez-Reyes LL, Hernández-Hernández T: A metacalibrated
447 time-tree documents the early rise of flowering plant phylogenetic diversity. *New Phytol* 2015,
448 207(2): 437-453, <https://doi.org/10.1111/nph.13264>.
- 449 *[58] Bidola P, Morgan K, Willner M, Fehringer A, Allner S, Prade F, Pfieffer F, Achterhold K:
450 Application of sensitive, high-resolution imaging at a commercial lab-based X-ray micro-CT system
451 using propagation-based phase retrieval. *J Microscopy* 2017, 266(2): 211-220,
452 <https://doi.org/10.1111/jmi.12530>.

453 This study presents improvements to micro-computed tomography, by demonstrating
454 single-distance X-ray phase-contrast imaging on complex samples. Seeds of *Lepidium* are
455 used as an example of a complex biological sample; resulting phase tomograms display
456 differentiated tissues with cellular resolution throughout whole seeds.

457 [59] Wang Z, Verboven P, Nicolai B: Contrast-enhanced 3D micro-CT of plant tissues using different
458 impregnation techniques. *Plant Methods* 2017, 13: 105, <https://doi.org/10.1186/s13007-017-0256-5>.

460 [60] Hesse L, Bunk K, Leupold J, Speck T, Masselter T: Structural and functional imaging of large and
461 opaque plant specimens. *J Exp Bot* 2019, 14(1): 3659-3678, <https://doi.org/10.1093/jxb/erz186>.

462 [61] Besançon L, Rondet E, Grabulos J, Lullien-Pellerin V, Lhomond L, Cuq B: Study of the
463 microstructure of durum wheat endosperm using X-ray micro-computed tomography. *J Cereal Sci*
464 2020, 96: 103115, <https://doi.org/10.1016/j.jcs.2020.103115>.

465 *[62] Montini L, Crocoll C, Gleadow RM, Motawia MS, Janfelt C, Bjarnholt N: Matrix-assisted laser
466 desorption/ionization-mass spectrometry imaging of metabolites during Sorghum germination.
467 *Plant Physiol* 2020, 193(3): 925-942, <https://doi.org/10.1104/pp.19.01357>.

468 In order to characterize the spatial patterns for metabolism of a cyanogenic glucoside in
469 germinating sorghum seeds, the authors combine combined targeted metabolite profiling
470 with matrix-assisted laser desorption/ionization-mass spectrometry. Furthermore, the
471 authors show tissue-specific distribution patterns of key sugar and protein metabolites and
472 amino acids across whole seeds. This study demonstrates the utility of metabolic-sensitive
473 imaging techniques to address nutrient dynamics and metabolism in seeds.

474 [63] Singh D: A further contribution to the endosperm of the Cucurbitaceae. Proc Indian Acad Sci B
475 1964, 60: 399-413.

476 [64] Dute RR, Peterson CM: Early endosperm development in ovules of soybean, *Glycine max* (L)
477 Merr. (Fabaceae). Ann Bot 1992 69(3): 263-271,
478 <https://doi.org/10.1093/oxfordjournals.aob.a088339>.

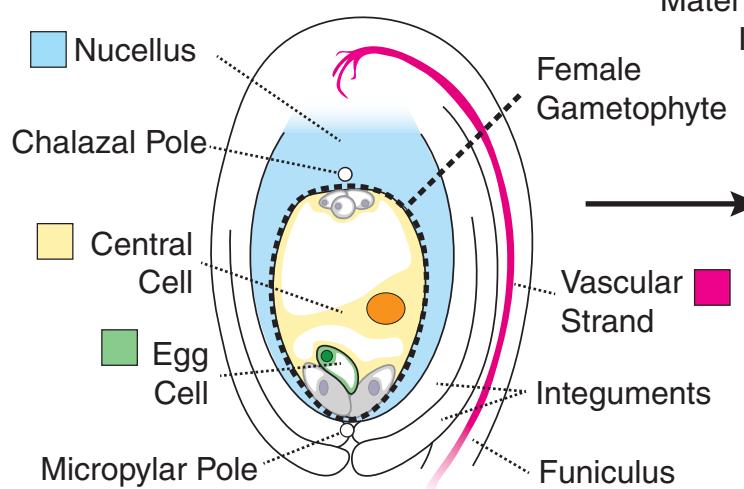
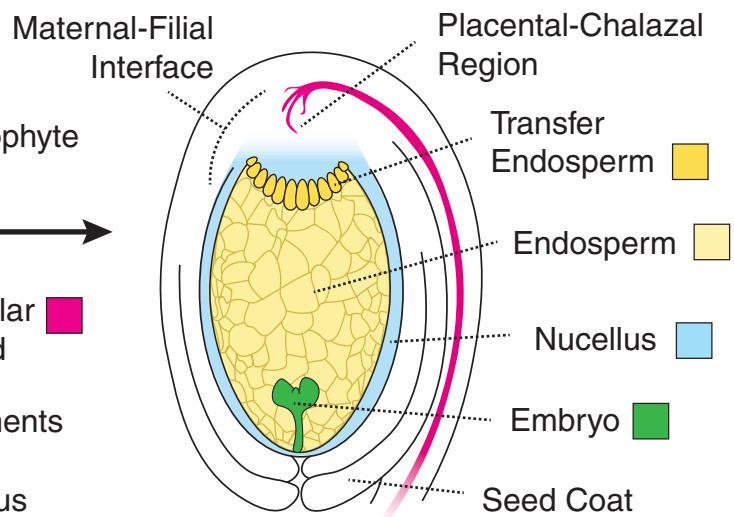
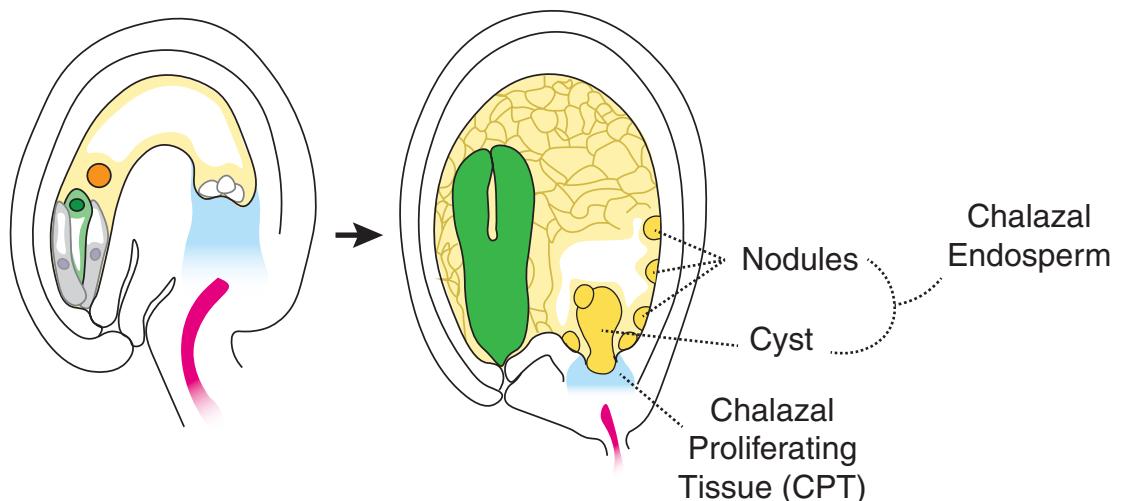
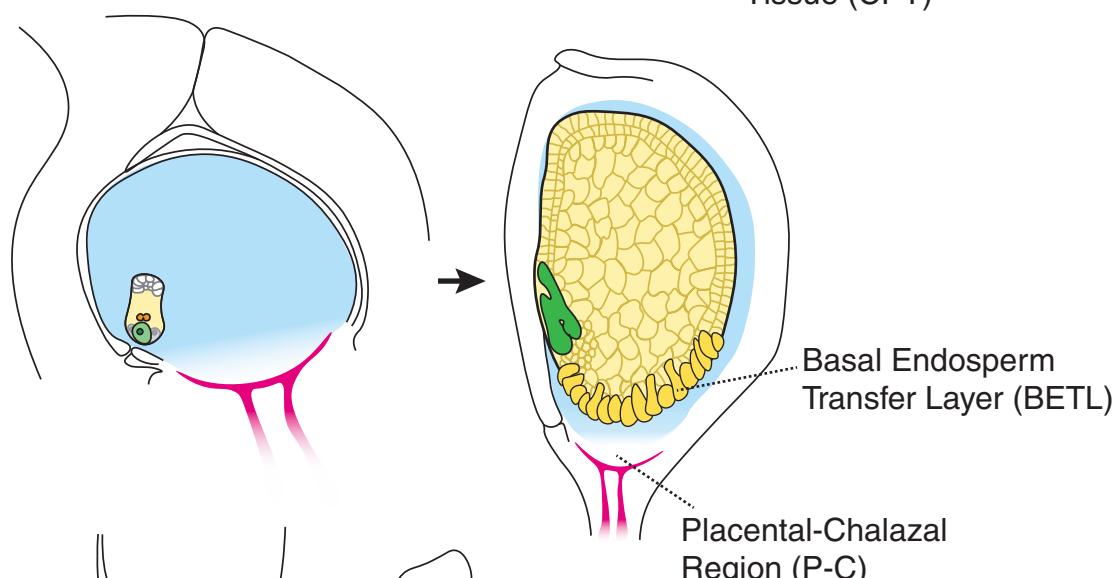
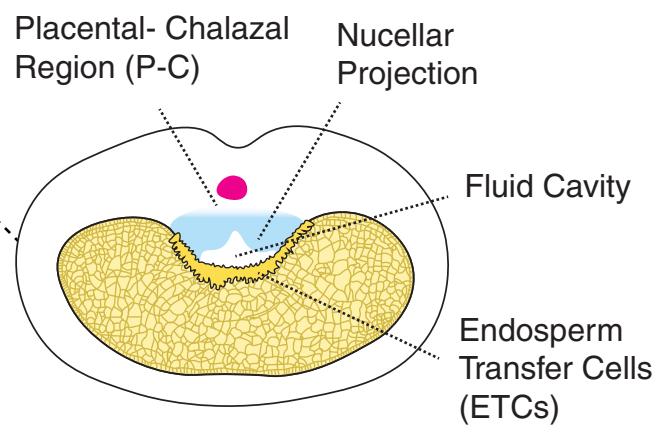
479 [65] Vijayaraghavan MR, Prabhakar K: The endosperm. In Embryology of Angiosperms. Edited by
480 Johri BM. Springer-Verlag 1984: 319-376.

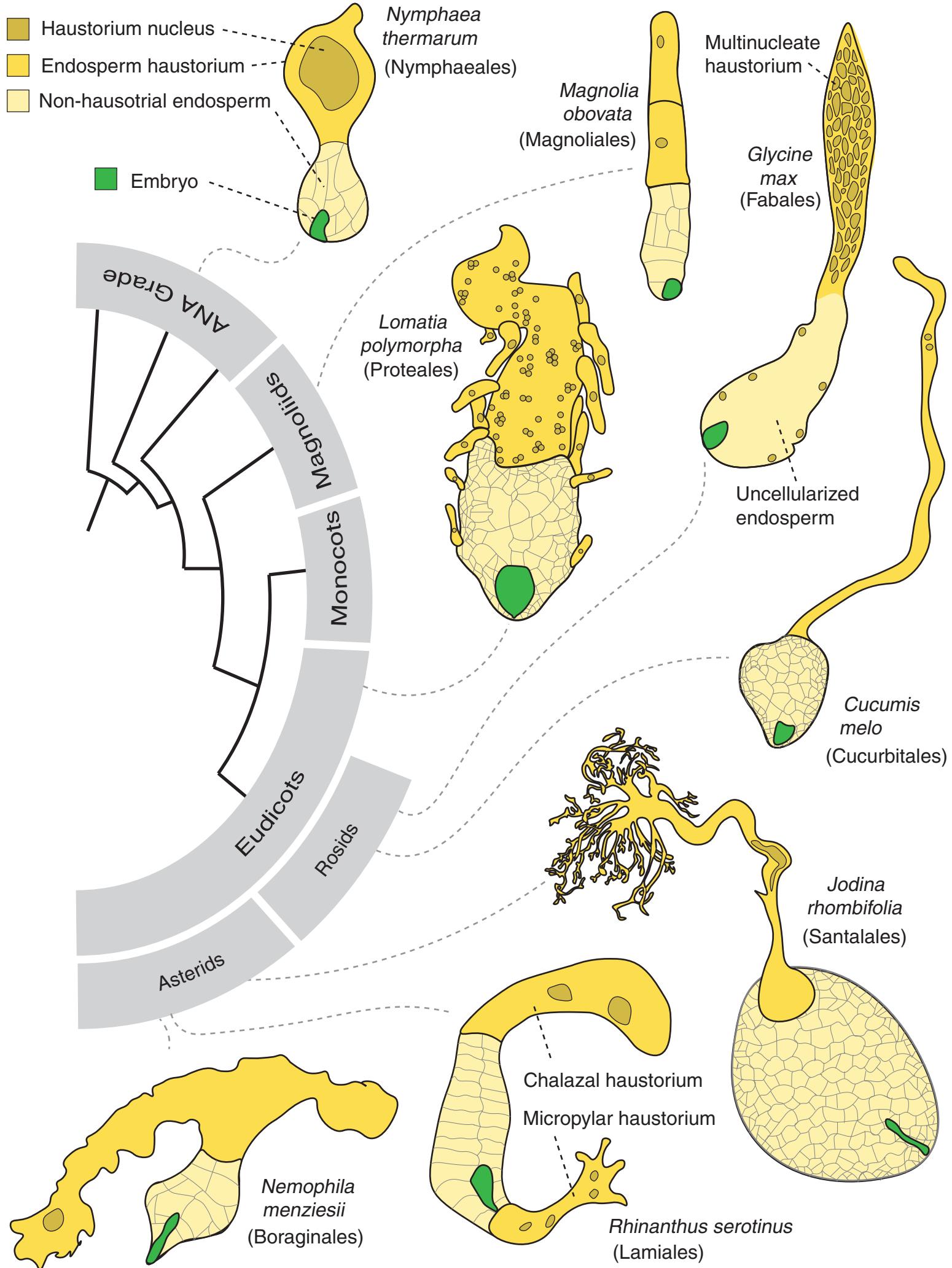
481 [66] Bhandi NN: Embryology of the Magnoliales and comments on their relationships. J Arnold Arbor
482 1971, 52(1): 1-39.

483 [67] Berg RY: Embryo sac, endosperm and seed of *Nemophila* (Boraginaceae) relative to taxonomy,
484 with a remark on embryogeny in *Pholistoma*. Am J Bot 2009, 96(3): 567-79;
485 <https://doi.org/10.3732/ajb.0800208>.

486 [68] Świerczyńska J, Kozieradzka-Kiszko M, Bohdanowicz J: *Rhinanthus serotinus* (Schönheit)
487 Oborny (Scrophulariaceae): immunohistochemical and ultrastructural studies of endosperm chalazal
488 haustorium development. Protoplasma 2013, 250: 1369-1380, <https://doi.org/10.1007/s00709-013-0520-0>.

490






491 **Figure legends**


492 Figure 1: Seed and endosperm structure. A) Generalized diagrams of ovule and seed structure in
493 angiosperms. B) Diagrams of ovule and developing seed structure in *Arabidopsis thaliana* (thale cress),
494 *Zea mays* (maize), and *Hordeum vulgare* (barley). Color scheme is consistent between A and B, in order
495 to facilitate comparisons between different ovule and seed types. Light blue = nucellus; light yellow =

496 central cell (before fertilization) or endosperm (after fertilization); dark yellow = transfer-specialized
497 endosperm; green = egg cell (before fertilization) or embryo (after fertilization); pink = vascular tissue.

498 Figure 2: Selection of diverse endosperm haustoria in angiosperms. Offspring tissues are shown, with an
499 emphasis on characters in different endosperm regions: cellularized (ex. *Magnolia obvata*) vs.
500 unicellularized (ex. *Lomatia polymorpha*), unicellular (ex. *Nymphaea thermarum*) vs. multicellular (ex.
501 *Magnolia obvata*), single- (ex. *Nemophila menziesii*) vs. multi-nucleate (ex. *Glycine max*), branched (ex.
502 *Iodina rhombifolia*) vs. unbranched (ex. *Cucumis melo*), and micropylar and/or chalazal haustoria (ex.
503 *Rhinanthus serotinus*). Green = embryo; dark yellow = nucleus; yellow = endosperm haustorium; light
504 yellow = non-haustorial endosperm. Diagrams after: *Cucumis melo* [63], *Glycine max* [64], *Jodina*
505 *thombifolia* [65], *Lomatia polymorpha* [65], *Magnolia obovata* [66], *Nemophila menziesii* [67],
506 *Nymphaea thermarum* [55], *Rhinanthus serotinus* [68].

507

A**Before Fertilization
(Ovule)****After Fertilization
(Developing Seed)****B***Arabidopsis thaliana**Zea mays**Hordeum vulgare*

