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Abstract

Although the ultimate purpose of a seed is successful establishment of the next generation, seed
development involves more than just embryo growth. In angiosperms, seed development requires the
intimate coordination of three distinct entities — maternal tissue and two offspring, embryo and
embryo-nourishing endosperm. Although seeds are cornerstones of many terrestrial ecosystems and
human diets, we are only beginning to understand the interactions among seed tissues and the
molecular processes and genes that determine them. Recent studies of gene expression and function in
distantly related angiosperms, combined with over 100 years of angiosperm embryological research,
have repeatedly highlighted the endosperm associated with maternal-filial boundaries as a central point
in developmental dynamics within seeds. In this review, we highlight evidence that links this zone with
nutritional dynamics, developmental signaling, and imprinted gene expression. We suggest that the
underappreciated diversity of this specialized endosperm across angiosperms deserves further study

from developmental, molecular, and genetic perspectives.

Keywords: endosperm, haustoria, chalazal endosperm, seed development, endosperm transfer region,

developmental signaling, gene imprinting

Highlights:

Endosperm, a biparental, nutritive seed tissue, differentiates into specialized zones.

Transfer-specialized endosperm is found at maternal-filial boundaries in many species.

Transfer endosperm functions in nutrient dynamics, developmental signaling, and gene imprinting.
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Introduction

At the inception of each flowering plant (angiosperm) seed, two fertilization events produce two
offspring with distinct fates: the embryo, which represents the next sporophyte generation, and the
endosperm, an altruistic embryo-nourishing tissue. These fertilization events occur within an ovule, an
organ derived from the maternal sporophyte tissue that houses the gamete-producing female
gametophyte. The offspring therefore develop completely enclosed within the ovule: ovule integuments
become the seed coat, gametophyte-surrounding nucellus tissue may be incorporated into the seed
structure, and all maternally-supplied resources must be channeled to the offspring through ovule
vasculature [1] (Fig. 1A). From the site where maternal phloem terminates and nutrients are unloaded,

resources and developmental signals are passed on to the endosperm and embryo (Fig. 1A).

The apparent lack of symplastic connections between the embryo, endosperm, and maternal tissues [2]
begs the question: how do resources and developmental signals travel between the mother and
offspring tissues? The only direct embryo-maternal sporophyte connection is the embryo-derived
suspensor, the appearance and function of which varies greatly across flowering plants [3]. Rather, the
endosperm separates the embryo from the maternal sporophyte throughout seed development.
Indeed, endosperm is recognized as an important mediator of the developmental and nutritional
relationships between a mother and her embryo in all but two angiosperm lineages (the endosperm-less
Orchidaeae and Podostemaceae). Endosperm can perform a suite of functions related to nutrient
dynamics within the seed, including some combination of nutrient acquisition, processing, storage,
mobilization, and transfer to the embryo. In addition, the endosperm develops precociously relative to
the embryo, expanding the seed to allow for embryo growth and participating in cross-talk that
coordinates developmental cues with the embryo [4,5] and surrounding seed coat [6,7]. The space

occupied by endosperm is at least partially supplanted by the growing embryo, yet endosperm persists
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through seed maturity and germination, and plays an active role in controlling embryo sheath formation

[8] and germination [9].

While endosperm is an ephemeral tissue, it nonetheless differentiates into distinct zones or tissues. One
such zone occurs at the maternal-filial boundary, adjacent to maternal vascular tissue or near the site of
vascular strand termination (Fig. 1). The endosperm adjacent to this boundary often assumes distinct
morphologies associated with transfer cells and tissues. This zone, which we refer to as transfer
endosperm at maternal-filial boundaries, is best studied in Arabidopsis thaliana and cereal crops and

displays a remarkable diversity across angiosperms.

Distinct endosperm at maternal-filial boundaries in Arabidopsis and cereal crops

In many angiosperms endosperm is initially free-nuclear, developing as a multi-nucleate coenocyte with
nuclear-cytoplasmic domains differentiating along the micropylar-chalazal axis of the seed (Fig. 1A). In
Arabidopsis thaliana, endosperm at the chalazal pole forms transcriptionally distinct nodules and a cyst
[10**]; both are cytoplasmically dense and contain multiple nuclei, with cyst nuclei dividing
infrequently. The cyst interfaces with nucellar lysate and the chalazal proliferative tissue (CPT), a
nucellus-derived tissue adjacent to where ovule vasculature terminates [11,12]. Unlike the rest of
endosperm, the chalazal endosperm never fully cellularizes, but is rather characterized by dense,
organelle-rich cytoplasm [11,12] and multiple, polyploid nuclei [13]. The chalazal cyst also displays
transfer-cell characteristics: an absence of cuticle (which is otherwise prominent along endosperm-
maternal sporophyte boundary), projections into the CPT, and elaborated cell wall morphology [11,12].
Deterioration of cells within the nucellus/CPT is important for chalazal endosperm development and
function, suggesting some form of communication between the tissues [14]. The chalazal endosperm

cyst, meanwhile, persists throughout most of seed maturation [12,15].
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Cereal crop endosperm makes up a larger portion of the seed throughout development and is the
primary site of nutrient storage. Accordingly, there are also more distinct regions of the endosperm in
these species, such as the aluerone (a protein- or lipid-rich peripheral layer linked to nutrient
processing) and starchy/chalky central endosperm (which functions in nutrient storage). The concept of
a chalazal pole is generally less applied to cereal crop seeds, perhaps due to the longer contact zone
between ovule vasculature, nucellus and other maternal tissues, and endosperm (Figure 1B). Some
cereals have a vascular strand that runs along the length of the seed, near persistent nucellar tissues
that can project into endosperm cavity space [16,17,18]. The endosperm cells adjacent to the persistent
nucellar tissue, called endosperm transfer cells (ETCs), have been compared to chalazal endosperm of
Arabidopsis [16]. The ETC region in maize is called the basal endosperm transfer layer (BETL) and is
relatively restricted (Fig. 1B). BETL cells are distinctly elongated and exhibit transfer cell characters such
as prominent wall ingrowths [19]. In contrast to the chalazal endosperm of Arabidopsis, maize BETL and
ETCs in other cereals are fully cellularized. Another distinct feature of many cereals is the extensive
degeneration of maternal or endosperm cells near vascular-adjacent regions of the seed to create fluid-
or gel-filled cavities [20,21]. In maize, maternal cells in the placental-chalazal region (P-C) next to the
BETL undergo programmed cell death [19], which may be instigated by the BETL [22]. In wheat and
barley, a fluid- or gel-filled cavity occupies the P-C region of the endosperm and separate ETCs from the
nucellar projection [19,21]; this cavity in barley is formed by programmed cell death in the nucellus
[23*]. Proper development of ETCs and the nucellar cavity impact seed development, hydration, and

filling [20,23*].

Gene activity associated with nutrient transfer and processing at the maternal-filial interface
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In addition to morphology, gene expression profiling supports a nutrient transfer function for
endosperm at the maternal-filial boundary [10*%*,24,25]. In early Arabidopsis seed development, the
cyst is enriched for GO terms relating to phloem sucrose unloading and protein catabolism, while the
chalazal nodules are enriched for genes involved in a key step of one-carbon metabolism [10**].
Localization of a SWEET sugar transporter to the CPT further suggests that apoplastic loading of fructose
and glucose are key to import by the chalazal endosperm [26**], which itself shows high expression of
sugar transporters and invertases during early seed development [27]. A SWEET gene in maize,
ZmSWEETA4c, is expressed in the BETL cells, and both ZmSWEET4c and a rice ortholog are required for
proper nutrient accumulation in endosperm [28]. Indeed, the BETL transcriptome in maize is generally
enriched for transmembrane transport, ion transport, and sucrose transport [29] and transport proteins
are enriched at the BETL plasma membrane [1]. Transcriptomic information from ETCs of barley before,
during, and after endosperm cellularization show signatures of a range of cellular process, including

methionine and C:N metabolism and nutrient trafficking [16].

Maternal-filial transfer structures as developmental regulators

Transfer-specialized endosperm regions at maternal-filial boundaries also appear to act as hubs of
developmental regulation for seeds as a whole. Expression and activity of genes involved in hormone
dynamics, cross-talk between maternal tissue and endosperm, and regulation of developmental events

in other endosperm zones have been documented in both Arabidopsis and cereal crops.

Hormone biosynthesis genes, including those for gibberellic acid, abscisic acid, and cytokinin, are highly
expressed throughout Arabidopsis and Brassica napus chalazal endosperm development, as are genes
related to auxin signaling [24,25,30**]. Similar signatures of hormone activity have been found in

cereals, including links between ETCs and auxin in wheat [31] and barley [16,32]. In rice, the importance
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of auxin synthesis in the dorsal aleurone is borne out by the localization of auxin biosynthesis gene
OslAA29 specifically in this region of the endosperm, between the vascular-adjacent nucellus and the
rest of the offspring tissues [33]. Furthermore, hormones like auxin, ethylene, and/or cytokinins are
important for proper differentiation of the BETL in maize and ETCs in other cereals [1,16,34]. While the
role of hormones in seed development are as varied as they are across other aspects of plant biology, it
appears that endosperm transfer tissues as maternal-filial boundaries are a central point of hormone

signaling.

The role of transfer endosperm in developmental signaling is not limited to hormones. In Arabidopsis,
chalazal endosperm is enriched for defensins, a class of small signaling peptides that function beyond
plant immunity [35]. Transcriptional profiles of ETCs in barley cells show expression of almost all two-
component signaling system elements annotated in the barley genome [16] and the BETL-specific gene
expression module in maize includes multiple classes of small cysteine-rich proteins [29], suggesting that
cereal ETCs actively participate in signaling pathways. Furthermore, transport of signal proteins from
BETL cells to the adjacent maternal tissue has been documented [36]. Thus, ETCs at maternal-filial
boundaries are not only importing resources, but are also capable of generating and exporting signaling
molecules. Such signaling may underlie crosstalk between the maternal tissues and chalazal endosperm
that affect spatial tradeoffs during development and nutrient partitioning, such as degeneration of CPT

or P-C regions, which subsequently impact seed development as a whole [14].

Transfer endosperm at the maternal-filial boundaries also appears to impact differentiation of other
areas of the endosperm. The chalazal endosperm of Arabidopsis generates TFL1 protein, which
subsequently moves to peripheral endosperm and interacts with an ABA-sensitive mechanism to control
timing of peripheral endosperm cellularization [37**]. Timing of endosperm cellularization in
Arabidopsis and cereals is an important determinant of endosperm size and the ability to

import/process nutrients, which in turn affects final seed size [38,39]. Thus, the chalazal endosperm may
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also influence nutrient dynamics in seeds indirectly as a regulator of overall endosperm developmental

timing.

Imprinted gene expression and parental genome dosage sensitivity in maternal-filial transfer

structures

A gene is described as imprinted when expression of an allele depends on whether it was maternally or
paternally inherited. Imprinted gene expression has been linked to parent-of-origin effects on seed
development and the different strategies that mothers and fathers use to maximize their own fitness in
the context of nutrient investment during reproduction. According to interparental conflict theory,
genetic conflict over distribution of maternally-supplied resources to asymmetrically related offspring
should manifest during nutrient transfer between maternal tissue and biparental offspring [40,41].
Maternal control over maternal resources can act on both sides of the maternal-filial interface. Paternal
control is meanwhile limited to expression in tissues with paternal genetic contribution, such as
endosperm, and could be expected to manifest most strongly in structures and processes related to

nutrient allocation to offspring.

In Arabidopsis, several lines of evidence suggest that chalazal endosperm function is sensitive to gene
imprinting and parental gene/genome dosage. The MADS box transcription factor gene PHE1 is a
paternally expressed imprinted gene (PEG) that is specifically expressed in the chalazal endosperm [42]
and has been shown to regulate expression of genes related to endosperm cellularization, including
other imprinted genes [43]. Chalazal-specific expression during some stages of seed development has
also been documented for the Polycomb Repressive Complex 2 (PRC2) members, FIS2 and MEA, which
contributes to epigenetically marking the silenced maternal alleles of PEGs [10**,24,44]; fis2 mutants

exhibit enlarged chalazal endosperm and altered cellularization patterns across the rest of the
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endosperm [45]. More broadly, single-nuclei analyses of imprinted gene expression in Arabidopsis
endosperm demonstrated that about half of PEGs are most highly expressed in chalazal endosperm
compared to other endosperm regions, and that this is due to increased expression specifically from the
paternal allele [10**]. Studies from crosses between plants of different ploidies further highlight the
importance of paternal gene dosage in chalazal endosperm development. Endosperm with excess
paternal genome dosage develop enlarged cysts and show enrichment for gene expression programs

associated with chalazal endosperm identity [46,47].

Links between imprinting and ETCs at the maternal-filial boundary are also seen in cereal crops. Meg1 is
a maternally expressed imprinted gene (MEG) in maize that impacts BETL differentiation and function in
a dosage-dependent manner [48]. Yet in an intriguing parallel to chalazal endosperm in Arabidopsis, the
gene expression module associated with the maize BETL significantly overlaps with a subset of maize
PEGs [29]. The only other endosperm regions similarly enriched in PEGs are the BETL-adjacent region
and another area of endosperm specialized for nutrient transfer, the embryo-surrounding region [29].
Maize MEGs, meanwhile, significantly overlapped with expression modules of other endosperm regions.
Similar to the effect of increased paternal genome dosage in Arabidopsis, paternal-excess crosses in
maize show expansion of BETL identity [1,49]. Mutations in a copy of OsEMF2, a component of the PRC2
complex in rice, share phenotypes with PRC2 mutants in Arabidopsis, including changes to timing of
endosperm cellularization [50*,51*]. Effects on ETCs, however, have not been specifically analyzed.
Intriguingly, far more rice PEGs were shown to be targets of OsEMF2 activity than rice MEGs, which is
consistent with the connection between PRC2, PEG regulation, and chalazal endosperm in Arabidopsis
and the BETL in maize. Altogether, the apparent enrichment of imprinted genes, and in particular PEGs,
in endosperm transfer cells at the maternal-filial boundary suggests that this region does indeed

function as a checkpoint in nutrient dynamics during interparental conflict.
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Exploring Chazal/Transfer Endosperm Diversity to Understand Seed Nutritional and Developmental

Dynamics

Transfer cell activity, hormonal response and regulation, and genetic imprinting are associated with
chalazal endosperm in Arabidopsis and ETCs in cereals, despite differences in development and
morphology. While this suggests these processes may be a fundamental part of the interface between
endosperm and the maternal sporophyte, and may even date back to the origin of endosperm ~140
million years ago, such a hypothesis remains to be tested across the breadth of angiosperm seed
biology. Indeed, there are already many records of diverse endosperm ontogenies scattered across over
100 years of embryological literature. Endosperm outgrowths called haustoria, which can invade
surrounding maternal tissues, occur across angiosperm phylogeny — including multiple clades of parasitic
plants and economically important groups like Cucurbitaceae and legumes [3,52]. These structures are
de facto associated with nutrient transfer and exhibit distinct morphologies, such as complex branching
(e.g. Jodina) or growth as a single ceonocyte over 19 mm long (e.g. Cucumis)[52] (Fig. 2). Haustoria can
also occur in micropylar endosperm [3,52,53], raising the question of whether the documented
associations between chalazal endosperm and developmental signaling or PEGs could occur in other
regions of the endosperm. In addition, endosperm haustoria appear at some of the earliest divergences
in angiosperm evolution: several members of the Nymphaeales are characterized by enlarged,
unicellular chalazal domains that extend into maternal seed storage tissues (Nuphar [54];
Nymphaea[55]). Indeed, haustorial-like appearance of chalazal female gametophyte tissue has been
documented in endosperm-less gymnosperms like Gnetum [56]. This raises the question of whether
such chalazal female gametophyte differentiation represents independent evolution of haustorial
function, or whether transfer endosperm in angiosperms may have co-opted a pre-existing

developmental program. Studying species from lineages whose origin predate the divergence of
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monocots and eudicots, ~136 MYA [57], can determine which aspects of endosperm development at

maternal-filial boundaries may have been associated with the very origin of endosperm itself.

Future Directions

So far our views on the diverse functions of transfer-specialized endosperm at maternal-filial boundaries
have been restricted to a relatively small number species and seed types. Indeed, the diversity of
endosperm transfer structures is rarely discussed outside of the context of being structural oddities, and
seed development of most angiosperms remains undocumented. We propose that in order to advance
our understanding of maternal and offspring tissue interactions, including economically important
processes like seed filling, we must first continue exploring seed development across angiosperm
diversity. We can then take advantage of emerging technologies that allow for tissue-specific
characterization of gene activity and metabolomic processes in species with few genetic or technical
resources. While the enclosed, complex, and internally delicate nature of seeds make them difficult to
study, combining traditional histological techniques with advances in confocal microscopy, non-light
based 3-D imaging such as micro-CT [58*-61], and metabolite-sensitive imaging [62*] could trigger a
renaissance in seed plant embryology. Meanwhile, technologies like single-nuclei sequencing or other
low-input sequencing allow for gene expression profiling specifically in tissues at maternal-filial
interfaces [10**,16,24,29], and are becoming increasingly accessible and affordable. Even in the
absence of stable transformation techniques, applying these technologies to species with diverse
structures at maternal-filial interfaces holds much promise for uncovering novel strategies that mothers

and offspring use to negotiate resource allocation into seeds.
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Figure legends

Figure 1: Seed and endosperm structure. A) Generalized diagrams of ovule and seed structure in
angiosperms. B) Diagrams of ovule and developing seed structure in Arabidopsis thaliana (thale cress),
Zea mays (maize), and Hordeum vulgare (barley). Color scheme is consistent between A and B, in order

to facilitate comparisons between different ovule and seed types. Light blue = nucellus; light yellow =

Page 24



496

497

498

499

500

501

502

503

504

505

506

507

central cell (before fertilization) or endosperm (after fertilization); dark yellow = transfer-specialized

endosperm; green = egg cell (before fertilization) or embryo (after fertilization); pink = vascular tissue.

Figure 2: Selection of diverse endosperm haustoria in angiosperms. Offspring tissues are shown, with an
emphasis on characters in different endosperm regions: cellularized (ex. Magnolia obvata) vs.
uncellularized (ex. Lomatia polymorpha), unicellular (ex. Nymphaea thermarum) vs. multicellular (ex.
Magnolia obvata), single- (ex. Nemophila menziesii) vs. multi-nucleate (ex. Glycine max), branched (ex.
lodina rhombifolia) vs. unbranched (ex. Cucumis melo), and micropylar and/or chalazal haustoria (ex.
Rhinanthus serotinus). Green = embryo; dark yellow = nucleus; yellow = endosperm haustorium; light
yellow = non-haustorial endosperm. Diagrams after: Cucumis melo [63], Glycine max [64], Jodina
thombifolia [65], Lomatia polymorpha [65], Magnolia obovata [66], Nemophila menziesii [67],

Nymphaea thermarum [55], Rhinanthus serotinus [68].
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