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As the Internet of Things (IoT) is becoming increasingly popular, we have experienced more security
breaches that are associated with the connection of vulnerable IoT devices. Therefore, it is crucial
to employ intrusion detection techniques to mitigate attacks that exploit IoT security vulnerabilities.
However, due to the limited capabilities of IoT devices and the specific protocols used, conventional
intrusion detection mechanisms may not work well for IoT environments. In this paper, we propose
a novel intrusion detection model that uses machine learning to effectively detect cyber-attacks and
anomalies in resource-constraint IoT networks. Through a set of optimizations including removal of
multicollinearity, sampling, and dimensionality reduction, our model can identify the most important
features to detect intrusions using much fewer training data and less training time. Extensive
experiments were performed on the CICIDS2017 and NSL-KDD datasets respectively to evaluate the
proposed approach. The experimental results on two popular datasets show that our model has a high
detection rate and a low false alarm rate. It outperforms existing models in multiple performance
metrics and is consistent in classifying major cyber-attacks, respectively. Most importantly, unlike
traditional resource-intensive intrusion detection systems, the proposed model is lightweight and can
be deployed on IoT nodes with limited power and storage capabilities.
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1. Introduction

The Internet of Things (IoT) connects uniquely identifiable
heterogeneous embedded computing devices in the physical en-
vironment to the Internet. It offers pervasive connectivity of
devices, systems, and services, and has been widely used in
our daily life. We have witnessed the explosion in connected
devices and IoT technologies ranging from smart homes, smart
hospitals to drones and even autonomous bots. As more homes
and businesses adopt IoT devices, a large number of connected IoT
devices will revolutionize how data is processed and consumed.
IoT continues to enjoy an even greater surge in popularity, but on
the other hand, the associated security risks are also surging.

Many efforts have been applied to enhance IoT security, in-
cluding enforcement of encryption on data transmitted in the net-
work, strict access control mechanisms for data confidentiality,
and various privacy and trust policies and management among
users and IoT devices. However, even with these mechanisms,
IoT networks are still vulnerable to many kinds of cyber-attacks.
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Over the last few years, there have been a tremendous number
of loT-centric attacks: from more widescale, powerful distributed
denial of service (DDoS) attacks, to the hacking of baby monitors.
Intrusion Detection Systems (IDS) have, therefore, been used as
another layer of defense in order to better protect the legitimate
operation of the IoT devices.

IDS are devices or software applications that monitor network
or system behaviors for malicious activities or policy violations
and send reports to a management station. Many IDS have been
proposed to improve Internet hosts and network security. How-
ever, we cannot deploy traditional IDS systems directly onto IoT
networks because of the special characteristics of IoT networks:
nodes in IoT networks are deployed in resource-constrained de-
vices, e.g., with limited power, computing, communication, and
storage capabilities. This requires significant simplification, op-
timization, and adaptation of existing security techniques. In
addition, IoT network uses different protocol stacks and stan-
dards. These necessities require to devise of security mechanisms
accordingly.

To address the challenges faced by IDS in IoT networks, in
this paper, we propose a novel machine learning-based intrusion
detection mechanism, which has the following advantages over
traditional IDS systems:
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e Lightweight. Through a set of optimization mechanisms
including removal of multicollinearity, data scaling, dimen-
sionality reduction, and sampling, our mechanism can
quickly identify the most important feature and dramati-
cally reduce the size of the features and data points needed
for abnormality detection, and consequently, lower com-
putational complexity. The lightweight feature makes the
algorithm appropriate for IoT networks with resource con-
straints.

Less training time. The proposed algorithm needs a much
smaller training set. It, thus, dramatically reduces the train-
ing time compared to the existing techniques.

Higher detection rate for less popular cyber-attacks with
infrequent observations, such as the User to Root attack.
Lower false positive and false negative rates. Our algorithm
reduces the false positive rate while keeping or improving
the accuracy compared to the existing techniques.

The rest of the paper is organized as follows. Section 2 surveys
related work on various IDS for IoT networks and systems. Sec-
tion 3 describes our proposed methodology in detail. Section 4
presents our evaluation results. Finally, in Section 5, we provide
conclusions and future work directions.

2. Related work

According to Zarpeldo et al. [1], intrusion detection in IoT can
be classified into four categories depending upon the detection
mechanism used in the system: signature-based, anomaly-based,
specification-based, and hybrid. Signature-based and anomaly-
based are the most widely used two approaches.

Signature-based IDS detects cyber-attacks the same way as
virus scanners, by searching for specific patterns or signatures
stored in the IDS internal databases. If any system or network
activity matches with stored patterns, it will be detected as an
intrusion. Sheikh et al. [2] proposed a lightweight signature-
based IDS for IoT networks. The IDS system consists of four parts
including signature generator, pattern generator, intrusion detec-
tion engine, and output engine. They tested their system using
the NSL-KDD dataset. Liu et al. [3] proposed another signature-
based IDS for IoT. It uses an Artificial Immune System to detect
attacks. Attack signatures are stored in immune cells which can
be further classified. The computation overhead of this approach
is high. However, the authors did not explain how this approach
can be applied to resource-limited IoT environments. Rebbah
et al. [4] proposed a signature-based IDS, named IoTSecurity, for
IoT systems using Cloud. It calculates the temporary and spatial
profile of each client based on the data of its request. Attacks
are detected based on matching the profile with the signature.
While signature-based IDS is very efficient at detecting known
cyber-attacks, it is not effective in detecting new cyber-attacks.

Anomaly-based IDS can identify an unknown activity by com-
paring it with a normal behavior profile and then classifying it
as either normal or anomalous. Anomaly-based IDS are different
from signature-based IDS that only detect attacks by matching
previously created signatures: Anomaly-based IDS are effective
in identifying new intrusions. Many approaches have been pro-
posed to implement anomaly-based intrusion detection systems,
among which deep learning has been widely used. Larijani et al.
[5] proposed a random neural network-based intrusion detec-
tion system (RNN-IDS) for IoTs. After selecting features, RNN-
IDS trains and tests neurons at different learning rates with
the NSL-KDD dataset. The performance is evaluated with the
benchmark NSL-KDD dataset for binary classification. The system
can obtain an accuracy of 94.50%. Similarly, Yin et al. [6] also
proposed a deep learning approach that uses a recurrent neural
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network (RNN) for anomaly-based intrusion detection. Diro and
Chilamkurti [7] applied deep learning for attack detection in
social IoT networks. Their experiments demonstrated that the
deep model is more effective in attack detection than its shal-
low counterparts. Alom et al. [8] used deep belief neural (DBN)
networks to create IDS and tested the system with the NSL-KDD
dataset. The proposed method achieved a detection accuracy of
about 97.5%. Ahsan and Nygard [9] proposed an approach using
a hybrid algorithm of Convolutional Neural Network (CNN) and
Long Short Term Memory (LSTM). leracitano et al. [10] proposed
a statistical analysis-driven optimized deep learning system for
intrusion detection. The system extracts features using big data
visualization and statistical analysis methods, followed by a deep
autoencoder (AE) for potential threat detection.

Different strategies have been proposed to reduce the false
prediction rate and improves accuracy. For example, Song et al.
[11] propose a multiple decision-based classification method to
identify misclassified data, and classify them into three different
classes, called a malicious, benign, and ambiguous dataset. They
evaluated their approach with the recent real-world network
traffic data, Kyoto2006+ datasets. Khan et al. [12] proposed a
hybrid-multilevel anomaly prediction approach to deal with un-
balanced intrusion data to improve the accuracy of the detection
system.

Many machine learning-based algorithms have been applied
for IDS based on the CICIDS2017 dataset [13]. A deep neural
network (DNN)-based IDS is proposed to detect and classify cy-
berattacks [14]. Researchers have performed a comprehensive
evaluation of DNNs and other classical machine learning clas-
sifiers using different datasets including KDDCup 99, NSL-KDD
[15], UNSW-NB15 [16], Kyoto [17], WSN-DS [18], and CICIDS2017
[13]. They confirmed that DNNs perform well in comparison with
the classical machine learning classifiers. Sethi et al. proposed a
reinforcement learning-based IDS that employs Deep Q-Network
logic in multiple distributed agents and uses attention mech-
anisms to classify network attacks [19]. They also tested their
data using NSL-KDD and CICIDS2017 and demonstrated improved
performance. Yulianto et al. apply a set of mechanisms including
oversampling, Principal Component Analysis (PCA), and Ensemble
Feature Selection (EFS) to improve the performance of AdaBoost-
based IDS on CICIDS 2017 Dataset [20]. Another work also tries
to solve the data imbalance problem by using the Generative
Adversarial Networks (GAN) model [21]. It uses a deep learn-
ing approach to address data imbalances and Random Forest to
classify attacks.

Other machine learning algorithms were also explored for IDS
based on the NSL-KDD dataset. Li et al. [15] proposed K-Nearest
Neighbor (KNN) classification algorithm in wireless sensor net-
works for intrusion detection. Shapoorifard and Shamsinejad [22]
worked on combining the KNN classifier with K-MEANS cluster-
ing for intrusion detection. Ingre et al. [23] proposed a Decision
Tree-based IDS and tested it with the NSL-KDD dataset. Farnaaz
et al. [24] used Random Forest for detection anomaly. As spec-
ified by Sasha, “Anomaly-based Intrusion Detection at both the
network and host levels have a few shortcomings; namely a high
false-positive rate and the ability to be fooled by a correctly
delivered attack” [25].

3. Methodology

The goal of this research is to construct an efficient classifier
model from limited information and resources to detect various
attacks as accurately as possible. This is achieved by a series
of mechanisms including (A) removal of multicollinearity, which
also reduces the dimensionality of data; (B) sampling data to
reduce the required training data size and improve detection rate;
(C) further dimensionality removal to reduce overfitting, and (D)
effective classification algorithm. In the following subsections, we
present the details of these four mechanisms.
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3.1. Data segmentation and feature ranking

Feature ranking is the process of assigning a score to each of
the independent variables. The information contained in these
independent variables helps the model to correctly predict the
class of the samples. This ranking method helps us to determine
the most important features in the dataset. This technique will
help add non-linearity to our reduced dataset which is described
in Section 3.3. To correctly identify the important features and
rank them based on their importance we have used regression
analysis. A regression model may cause problems to correctly
interpret the important features if multicollinearity exists within
the feature set. Multicollinearity is a condition when there is
a significant dependency or association between the indepen-
dent variables or the predictor variables. Multicollinearity may
misleadingly inflate the standard error of a data model in an
excessive amount [26]. In the presence of multicollinearity, the
coefficient may provide high estimates of changes in the multiple
regressions when only small changes can be seen in the model
or the data. Therefore, it is important to detect and remove
multicollinearity. We use the Variance Inflation Factor (VIF) [27]
to identify multicollinearity. As defined in Eq. (1), VIF measures
multicollinearity among the independent variables in a feature
set by using multiple regression analysis.

1
1R .

— N

VIF =

In Eq. (1), Riz, termed as r-squared, is the regression of the ith
independent variable from the feature set. r-squared is calculated
as:

2 Yi—p

ZYi—Y)
in which Y; is the actual class of the data point and w is the
predicted value by the logistic regression model. The numerator
in the fraction is known as sum squared regression and the
denominator is called sum squared total. The sum squared regres-
sion is the partial model where only the independent variable is
considered. VIF indicates how much the variance (behavior) of an
independent variable is influenced by its interaction with others.
If there is a significant presence of multicollinearity then the VIF
of the independent variable will be significantly high. Once the
VIF for all the features is obtained, it is important to determine
a threshold value, above which all the features will be called
multicollinearity.

Traditionally there are two ways to remove multicollinearity:
one is to drop features with high VIF; the other is to apply the
Partial Least Squares Regression (PLS) [28] or Principal Compo-
nent Analysis (PCA) [29] to all features above a threshold to merge
them to one feature [26]. Both methods may cause information
loss because of removing features directly. We try to keep as
much as possible information on the original dataset to avoid
information loss. For this purpose, we use data segmentation
that will generate new features. These new features represent
the original features of the dataset without multicollinearity.
We creatively propose to group variables (with VIF beyond the
threshold) into n groups according to their VIF. In our experi-
ment, we set n = 5. The 5 groups include least multicollinearity,
medium multicollinearity, moderate multicollinearity, high mul-
ticollinearity, and very high multicollinearity. We then apply PCA
to represent features in a group in a lower dimension. PCA is a
mathematical algorithm that reduces data dimensionality while
retaining most of the variation in the dataset. This is achieved
by identifying directions (i.e., principal components), along which
the variation in the data is maximal.

In order to decide on the number of principal components
needed for each group, we have used a scree plot [30]. This

R? = (2)

278

Future Generation Computer Systems 127 (2022) 276-285

plotting technique helps us to identify the minimum number of
principal components needed to retain the required percentage of
variance in the data. In our experiment, we choose the number of
principal components for each group to be the minimum number
to achieve 90% of the variance explained. The goal is to maximize
the percentage of variance while keeping the smallest number
of principal components. The 90% of variance defines most of
the information contained by the principal component compared
to the original features. Once the required number of principal
components for each group is obtained, we use the principal
components as an independent feature. The linear combination
of all the data points obtained from the principal components
is treated as new observations. We dropped all features hav-
ing VIF values higher than the collinearity threshold t from the
original dataset and appended these newly generated features.
Using this approach, in our experiment on the NSL-KDD dataset,
after removing multicollinearity from the dataset, we reduced the
features from 41 to 28. After the removal of multicollinearity, we
used a regression model to rank the features and understand the
importance of each of the independent variables to define the
class of the samples.

We apply data normalization to normalize the range of in-
dependent variables. The floor and ceiling values of the data
points for each feature may not fall in the same range and the
distribution of the data is unknown, using standardization allows
us to rescale the features which have the properties of a standard
normal distribution. We use z-score [27] normalization that is
defined in Eq. (3):

Xi—X
Sx

in which X; is the individual value belonging to an observation of
a feature, x is the mean value of each feature and S is the stan-
dard deviation. Z-score allows the data points to follow a normal
distribution curve and ensures each feature’s data distribution has
a mean value of 0 and a standard deviation of 1. If the dataset
has unextreme outliers, using scaling, we do not need to remove
them.

7 =

(3)

3.2. Sampling

Due to the nature of imbalanced network attacks [31], the
occurrences of some cyber-attacks are destined to be much more
frequent than some others. Therefore, the dataset used to de-
velop the classification model is often unbalanced, i.e., classes are
unevenly distributed. For example, compared with other attacks,
the number of User to Root attacks is much smaller in our
experimental dataset. Class imbalance can give rise to a series of
problems, such as a biased model towards predicting the majority
class, misclassification of observations, overfitting of the model,
etc.

One of our goals is to reduce the training time yet be effective
in detecting anomalies. We use sampling techniques to select
individuals to draw statistical inferences about the population.
Specifically, we apply undersampling on the majority classes and
oversampling on the minority ones. Random undersampling with
replacement is used where a sample is selected from the dataset
in which every data has equal chances of being selected. The
probability of each sample being selected from the population is
1/N where N is the size of the population.

The oversampling method we have used is SMOTE [32]. It uses
the concept of nearest neighbors to generate synthetic data for
a minority class. The new synthetic data are generated between
existing minority instances. This method takes three parameters
to generate new instances which are T, N, k where T is the num-
ber of minority class samples, N is the percentage explaining the
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minority class to be over-sampled and k is the number of near-
est neighbors that need to be considered for the oversampling
technique.

Under- and oversampling may cause the cross-class nearest
neighbors’ problem, a complication in which a single data point
may have equidistant neighbors falling in different categories.
When this happens, it is difficult to place the data point to
its correct class. Therefore, it is important to eliminate these
data points; otherwise, they can cause misclassification. We use
Tomek Link [33] to clean up overlap between classes. A Tomek
Link is defined as follows: given two samples s;, and s;, d(s;, s;)
is the distance between s; and s;. s;, s; is called a Tomek link if
there are no other samples s,, such that d(s;, o)< d(s;, sj) or d(s;,
S0)< d(si, s;). When two samples form a Tomek link, either one
of these samples is noise or both of them are close to the class
border. Removing such samples helps us to create well-defined
classes, and consequently improving classification performance.

3.3. Dimensionality reduction and addition of non-linearity

After removing multicollinearity and sampling, we reduce the
number of features and samples used in the dataset. These ap-
proaches dramatically reduce the computation complexity and
help fast response in detecting attacks in real-time. However, as
the number of observations gets reduced, the sample density of
the dataset will decrease. The result of decreased sample density
and sparsity in the dataset will cause a model overfitting problem,
i.e., corresponding too closely to the training data, but fail to
fit additional data or predict the future. To solve this problem,
dimensionality reduction is applied. A dimensionality reduction
is a statistical procedure where a set of independent variables are
projected to a lower dimension using a set of principal variables.
We utilize the PCA approach that uses unsupervised learning to
detect hidden patterns within the data. Assume that we have a
dataset M with dimension N

X1 Xin

M= (4)

Xn1 XN
M is a NxN dimensional Matrix, in which

e Xj; are the data points where 1 <i<Nand 1 <j <N.
e Each column in M is an independent variable F, where 1 <
k<N

The covariance score between F, of M can be calculated as

1 — —
coviX,Y) =% (X, —X) (v, —Y) (5)
where X,Y € F,X #Y,X, € X, Y, € Y. The resulting matrix is
the covariance matrix A.

M My

A= (6)

Mn1 Mnn
in which Mj; represents the covariance score between each inde-
pendent variable.

After obtaining the covariance matrix A, we need to find the
eigenvalues. Each eigenvalue is considered as a principal com-
ponent. The eigenvalues are used to determine the eigenvector
of the matrix. We determine the eigenvalue by the following
equation:

det(A—Al) =0 (7)
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Fig. 1. Number of Principal Components defining the percentage of explained
variance by the dataset.

I = (8)

0o --- 1
I is the identity matrix of the same dimension as a covariance
matrix. Then I is multiplied with scalar A, and the result matrix
is Al

A 0

A = (9)

0 A
The result of the determinant of Eq. (7) will provide an n-degree
polynomial in terms of A:

arM"+ b 4 c=0 (10)

Solving this equation gives us a scalar of 1xn eigenvalues, and
these eigenvalues can be used to produce eigenvectors. Each of
the values is treated as a principal component in the following
order: the first eigenvalue is the first principal component, the
second eigenvalue is the second principal component, and so on.
After we obtain all of the eigenvalues, we use the following equa-
tion to produce the eigenvector corresponding to each eigenvalue.

A—A)x=0 (11)

The process is generally known as the Gaussian Elimination pro-
cess [34]. The number of eigenvectors will be equal to the number
of eigenvalues. Each eigenvector will contain the same number
of data points as the original matrix M. Once we have all the
eigenvectors, they are sorted in decreasing order. Afterward, k
vectors are chosen to form an N x k dimensional matrix. This new
matrix will serve as the dataset in the process of model training
and testing.

Again, we use a scree plot to determine the number of prin-
cipal components required for dimensionality reduction. Fig. 1
shows the percentage of variance explained by our NSL-KDD
experimental dataset with respect to the number of principal
components. As shown in Fig. 1, 10 principal components explain
almost 95% of the variance in the original variables. Further
adding principal components would not increase variance per-
centage much. Therefore, we choose 10 principal components.
It has obtained the best results considering the least number of
principal components. The dataset obtained after using PCA is
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linear. It is obvious that any kind of model used for classifying
a linear dataset will always have satisfying results. To prove
that our model is equally trustworthy in classifying a non-linear
dataset, we added three independent variables from the original
dataset as features. The three features have the least variance
influential factor which is added as features besides the principal
components. We conducted extensive experiments on adding
the different number of independent variables from the original
dataset besides the principal components. The experimental re-
sults help us to identify that three is the best and least number
of independent variables which can be used, as adding more
than three independent variables does not improve the classifier’s
performance

3.4, Ensemble learning

As presented in Section 2 Related Work, various machine
learning approaches have been proposed to classify network in-
trusions. We propose B-Stacking, a new approach of stacking
based on an adaptive combination of boosting and stacking al-
gorithms. Boosting and stacking are ensemble learning methods
that are normally used separately. A stacking model involves two
or more base models, often referred to as level-0 models, and
a meta-model that combines the predictions of the base models
referred to as a level-1 model. The level-0 classifiers pass on prob-
abilities or predicted values as features to the level-0 classifier,
which then uses these values and the original observation vector
to make the final classification.

Our B-Stacking algorithm chooses several simple classifiers
as the level-0 weak learners. Among the weak learners, one
of them should be a boosting algorithm, an ensemble meta-
algorithm for primarily reducing bias and variance. For instance,
in our experiments, we choose K-Nearest Neighbors, Random
Forest, and XGBoost [35] as the level-0 learners. XGBoost is a
booting learning algorithm. In XGBoost, weights are the sum of
gradients scaled by the sum of Hessians. Choosing a boosting
learner in level-0 aims to reduce the bias of the feature set on
which the level-1 learner will be trained. In addition, a stacking
ensemble model helps to minimize the variance in the data.
Therefore, combining the stacking and boosting at level-0 will
create a generalized intrusion detection system that can perform
unbiased classification across all the classes. Boosting is also
used as the level-1 learner in the B-Stacking algorithm with the
purpose of reducing the bias of the learning model, as the level-1
boosting learner makes the final prediction. In summary, level-0
boosting helps to minimize the bias of the dataset, while level-1
learner boosting makes the architecture of the model generalized
enough to fit various datasets. Therefore, combining boosting
and stacking algorithms in both level-0 and level-1 brings us
multiple benefits. Another advantage of the B-stacking algorithm
is that the boosting leaner can be trained parallelly to reduce
computation time.
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Algorithm 1: B-Sacking Algorithm

/* Input: Sample data of N X k (N is the number of observation, and k
is the number of features) */

/*Output: Trained B-stacking Classifier */

/*Training of Base Classifiers. */
Initiate a Stacked Ensemble Model S
Assign Weak classifiers L to S’s lower level
Set the Boosting model B to S’s top level
Fori=1toN

train L on k features

Seed output of L to input of B

extracts n features where n#k using B
End For
/*Training of Meta-Classifier. */
Pass n features to meta classifier M
Forj=1to N

train M on n features
End For
End

PN R BN~

The advantage of our B-Staking classifier is that it does not
require a large amount of training data and training time, as
what the Neural Network requires. But the voting process of
each learner gives the model the advantages of multiple deci-
sion models. The basic procedure for the proposed algorithm is
summarized in Algorithm 1.

4. Evaluations
4.1. Datasets and data processing

We tested our approach on two popular and publicly available
datasets, CICIDS2017 [13]. NSL-KDD [33]. CICIDS2017 is one of the
most recent IDS datasets that contains benign and some common
attack network flows, which meet real-world criteria and are
publicly available. It is widely used in the most recent studies
of cybersecurity for real-world intrusion detection. This dataset
also contains network traffic analysis results obtained by using
CICFlowMeter. It contains 79 features for each record, with 78 of
the features refer to the network traffic and the remaining one
defines whether it is a particular kind of intrusion or normal.
There are 14 different intrusion detection classes present in the
dataset. We represent the record count of each class in Fig. 2. As
can be seen from Fig. 2, five classes including Infiltration, Web
Attack Brute Force, Web Attack XSS, Web Attack SQL Injection
and Heartbleed have almost no records compared to other classes
of the dataset. We combined these five classes and represent
them as a single class. In addition, we find that DDoS, PortScan,
and DoS Hulk have significantly more records than other classes.
Therefore, we apply different sampling techniques in sequential
order mentioned in Section 3.2 to create a balanced dataset. After
combining the five classes in CICIDS2017 we have 11 classes
where 0 represents normal traffic and all the anomaly classes
are represented by each number ranging from 1 to 10. We have
removed some records with missing values.

Because of its popularity, we also used NSL-KDD as another
dataset to evaluate our system. The NSL-KDD dataset was a re-
vised, cleaned-up version of the KDD'99 dataset [36] from the
University of New Brunswick Canadian Institute for Cybersecu-
rity. These datasets contain the records of the Internet traffic with
ghosts of the traffic encountered by real IDS. The dataset contains
43 features per record, with 41 of the features referring to the
traffic input itself and the last two are labels as normal traffic or
malicious traffic and Score indicating the severity of the traffic
input itself. The 41 features include 7 discrete and 34 continuous
variables. There are 39 different types of cyber-attacks in the
training and testing dataset which can be categorized into 5 major
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Fig. 2. Record Count of Each Class in CICIDS2017.

[ CICIDS2017 Dataset ]

‘ 2450532 * 78

[ Data Segmentation ]

Our performance metrics, such as Recall, Precision, Accuracy,
and AUC-ROC Curve, are defined based on the confusion ma-
trix. The confusion matrix is a summary of prediction results
on a classification problem. The number of correct and incor-
rect predictions are summarized with count values and broken
down by each class. From the confusion matrix, we get the
following derivations: True Positive (TP), False Positive (FP), True
Negative (TN), and False Negative (FN). Base on the confusion
matrix, we have used the following metrics to evaluate our
proposed mechanism: Accuracy, Area Under the Curve (AUC):

24020 * 24 o o .
020 True Positive Rate (TPR), False Positive Rate (FPR), Precision,
Addition of Non-linearity Recall, F1-Score, and Precision-Recall Curve (PRC).
Dimensionality from Original Dataset
£ These metrics were used for binary classification and do not
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J 24020 * 3
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Meta-Classifier (XG-Boost)

A4

Classified Intrusions

Fig. 3. Experimental Model Setup.

classes, and they are termed as Normal, Denial of Services (DoS),
Root to Local (R2L), User to Root (U2R), and Probe. We classify the
four major types of attack categories for the NSL-KDD dataset. We
define class labels as multivariate where each class is represented
by a number ranging from 0 to 4 (the value 0 represents normal
traffic and other values represent an attack type).

Fig. 3 Shows the setup procedure of the experimental model.
We applied the procedures presented in Section 3 on the CI-
CIDS2017 datasets to execute our methodology. The figure also
shows the size of the data after each operation. We applied the
same procedure to the NSL-KDD dataset.

4.2. Performance metrics

e In order to evaluate the proposed detection mechanism, we
have compared our mechanism with other states of the arts.
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natively support our classification task with more than two
classes. We apply the One-vs-Rest strategy [37] to use these
binary classification algorithms for the multi-classification prob-
lem. The basic idea of this strategy is to split the multi-class
classification dataset into multiple binary classification datasets
and fit a binary classification model on each.

4.3. Result and discussion

To better understand the performance of our proposed intru-
sion detection mechanism, we compare its performance with the
state of the arts in terms of the metrics presented in the previous
section. All these systems used the same CICIDS2017 or NSL-KDD
datasets.

4.3.1. Evaluation of the CICIDS2017 dataset

Fig. 4 shows the confusion matrix of our model for the CI-
CIDS2017 dataset. We had a 7:3 split on our sample data of the
size 24,020, i.e., 70% for training and 30% for testing. The diagonal
elements in Fig. represent the number of instances from each
class that has been correctly classified by our algorithm in this
dataset. The total number of observations in our test data are
597, 704, 639, 650, 651, 666, 684, 660, 661, 661, and 633 for
Benign, DDoS, PortScan, Bot, the combined class (Infiltration, Web
Attack Brute Force, Web Attack XSS, Web Attack SQL Injection
and Heartbleed), FTP-Patator, SSH-Patator, DoS Slowloris, DoS
Slowhttptest, DoS Hulk, DoS GolenEye respectively. As shown
in the confusion matrix, the false-positive rates for each of the
classes in the CICIDS2017 dataset are very low which should
be the main purpose of an anomaly-based IDS. Our B-Stacking
algorithm only misclassified 60 samples among 7,206 in the test
data. It has a very high detection rate in classifying the anomaly
classes correctly.
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Fig. 4. Confusion matrix of our detection model on CICIDS2017 dataset.
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Fig. 5. ROC curve of each class on CICIDS2017 dataset.

Based on the confusion matrix, we plot the ROC curve and
Precision-Recall curve using our detection model. ROC Curves
summarize the trade-off between the TPR and FPR for a predictive
model using different probability thresholds. While Precision-
Recall curves summarize the trade-off between the TPR and the
positive predictive value for a predictive model using differ-
ent probability thresholds. We used the One-vs-Rest strategy to
extend the precision-recall curve to our multi-class problem.
Specifically, we converted the output for each class to binary
and use those outputs to draw one curve for each label. The
same process was executed for producing the ROC curve for each
class. As illustrated in Figs. 5 and 6, both curves cover 100% or
near 100% of the area while detecting the classes. We evaluated
the performance of our model on each class independently. The
micro-average value of the ROC and Precision-Recall curve that
our model shows excellent performance.

To further understand the performance of our proposed de-
tection model, we compare its performance with state-of-the-art
techniques including DNN [14], A-DQN [19], Adaboost [20], and
GAN [21]. In Table 1, we examined the performance of our B-
Stacking algorithm in terms of accuracy, precision, recall, and
F1 score with the four other representative intrusion detection
systems that have been explained in Section 2 Related Work. As
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Fig. 6. Precision-recall curve of each class on CICIDS2017 dataset.

Table 1

Performance comparison on CICIDS2017 dataset.
Model name Accuracy (%) Precision (%) Recall (%) F1-score (%)
DNN 95.6 96.2 95.6 95.7
GAN 99.83 98.69 92.76 95.04
A-DQN 98.7 98.6 99.4 98.9
ADABOOST 91.83 91.15 100 90.01
B-STACKING 99.11 99.08 99.11 99.08

can be seen from the table that our B-stacking algorithm achieves
good performance on all four metrics. It is comparable to the
state-of-the-art. Moreover, as can be seen in the latter part of
this section, we have compared the overhead of our B-stacking
model with other algorithms, and it incurs much less overhead
compared with others, such as DNN_KNN [38], which is a hybrid
model comprising of a neural network and k-nearest neighbor.

We also studied the system overhead in terms of memory
overhead and CPU overhead on the CICIDS2017 dataset. The
computing node which has been used in performing the analysis
of memory overhead and CPU overhead for the B-stacking model
is an Intel®Core TM i5-9400F CPU 2.90 GHz * 6 notebook with
8GB of RAM. Fig. 7 plots the memory overhead of the B-Stacking
model while performing the classification task of the CICIDS2017
dataset. It can be noticed from the figure that during the 60 s
evaluation time of packet flows to detect anomalies, our model
used a constant memory of 3.4% of 8GB RAM. Compared with
a recently proposed lightweight IDS system [38] that used a
similar testing environment, they allocate 10% of the memory
before their DNN-KNN algorithm started the analysis. During the
analysis phase, DNN-KNN occupied around 15% of the memory
which determines that around 5% of the memory is required by
DNN-KNN to operate. Therefore, our system performs similarly to
theirs in terms of memory overhead.

Fig. 8 shows the CPU consumption for processing the network
traffics. It can be noticed that B-stacking used CPU with a range
of 1.5% to 2.9%. As a comparison, the CPU usage for the DNN-
kNN model [38] was around 12%. We conclude that compared to
DNN-KNN, our model is extremely lightweight and can be easily
used in fog nodes or IoT nodes where the computational resource
is limited.

4.3.2. Evaluation of the NSL-KDD dataset

Similar experiments have been performed on the NSL-KDD
dataset. Figs. 9 and 10 plot the ROC curve and Precision-Recall
curve using our detection model. Again, both curves cover 100%
or near 100% of the area while detecting the classes. We com-
pared B-stacking with other state-of-the-art techniques. In Ta-
ble 2, we examine the accuracy of our B-Stacking algorithm
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with 8 other representative intrusion detection systems that have
been explained in Section 2 Related Work. The accuracy value
of our model exceeds most of these approaches, except CNN-
LSTM (Ahsan and Nygard, [9]) and kFN-KNN (Shapoorifard et al.
[12]). However, researchers of kFN-KNN reported accuracy alone
without any other metrics in their paper. This is problematic
as NSL-KDD is an imbalanced dataset, high accuracy does not
mean the system can classify minority classes well. Moreover,
they classified the dataset as a binary classification. Our model,
instead, is a multi-class classifier that can track the specific type
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Fig. 10. Precision-recall curve of each class on the NSL-KDD dataset.

Table 2
Comparison of accuracy on the NSL-KDD dataset.

Models

Accuracy (%)

Deep Model (Diro and Chilamkurti, [7]) 98.27
Shallow Model (Diro and Chilamkurti, [7]) 96.75
KFN-KNN (Shapoorifard et al. [12]) 99

CFS-DT (Ingre et al. [13]) 90.3

DBN (Alom et al. [8]) 97.5

RNN (Yin et. al., [6]) 83.28
CNN-LSTM (Ahsan and Nygard, [9]) 99

AE (leracitano et al. [10]) 87
B-Stacking (Our Algorithm) 985 + 0.3

of attacks and allows users to take measures accordingly. Sim-
ilarly, although CNN-LSTM slightly outperformed our model in
accuracy, this model cannot identify the probe attack at all. It is
also possible that their test data did not contain any observations
falling into the Probe class. Therefore, it is not clear about the
performance of the model regarding the classification of all types
of attacks. This can be demonstrated by the following tests shown
in Figs. 11-13.

Figs. 11-13 compare our B-Stacking model with 5 other IDS,
namely AE (Ieracitano et al. [10]), CNN-LSTM (Ahsan and Nygard,
[9]), RNN (Yin et al. [6]), Shallow Model, and Deep Model (Diro
and Chilamkurti, [7]). As KFN-KNN (Shapoorifard et al. [ 12]), CFS-
DT (Ingre et al. [13]), and DBN (Alom et al. [8]) only provides
accuracy and we cannot find these metrics for comparison). From
these figures, we can see as Deep Model and Shallow Model
combined the Root to Local and User to Root class as one class
and both models have not performed very well in classifying the
different attack types. RNN model also performed similarly and
there lies an inconsistency in detecting each of the attack types.

Comparing with these models our B-Stacking algorithm is
consistent across all the classes and can classify most of the
instances correctly. Our model involves a sample set of 10,904
instances which is 0.07% of the whole dataset. The use of a
stacking classifier helps our meta-classifier to train on the most
important features in the whole dataset. Since we used 3 base
learners as the process of feature extraction, our final meta-
classifier is trained on 3 features. These improvements make the
B-Stacking model very lightweight and take much less amount of
time in terms of training and prediction. The total time taken to
train the meta-classifier after extracting features from the base-
classifier is 0.28 s and the prediction time is 0.02 s. The deep
learning-based approaches including CNN-LSTM, RNN, AE, Deep
Model, and Shallow model are time-consuming procedures, as
deep neural networks take much more computation time when
a large number of records are involved.
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5. Conclusion

One of the most important technological progress over the
past decade was the widespread adoption of IoT devices across
industries. Improving the security of IoT infrastructure is crucial
to ensure the security and safety of industries and societies. In
this paper, we present a novel [oT intrusion detection model
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B-Stacking, which uses optimized machine learning approaches
to effectively detect cyber-attacks in an IoT network. We have
performed extensive experiments to evaluate the performance of
our system. The result shows that B-Stacking has a high detection
rate and a very low false alarm rate. It overperforms most of
the state of the art techniques. In the future, we plan to test
our model with different IoT datasets and apply it to a real IoT
network.
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