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ABSTRACT

We report on the demonstration of high-performance tunnel junction deep ultraviolet (UV) light-emitting diodes (LEDs) by using plasma-
assisted molecular beam epitaxy. The device heterostructure was grown under slightly Ga-rich conditions to promote the formation of
nanoscale clusters in the active region. The device operates at ~255nm with a maximum external quantum efficiency of 7.2% and wall-plug
of 4%, which are nearly one to two orders of magnitude higher than those of previously reported tunnel junction devices operating at this
wavelength. The devices exhibit highly stable emission, with a nearly constant emission peak with increasing current, due to the strong
charge carrier confinement related to the presence of Ga-rich nanoclusters. Efficiency droop, however, is observed at relatively low current
densities. Detailed temperature-dependent measurements suggest that the presence of efficiency droop of deep UV LEDs is largely due to

electron overflow.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0036286

Light within the UV-C wavelength range (<280 nm) inactivates
pathogens and can be used for the prevention of spoilage of food' as
well as for healthcare applications.” Such critical applications have
taken on an even more pressing need as UV-C light can effectively
contain the spread of infectious diseases, making it a vital tool against
the next global pandemic. Currently, mercury and xenon lamps are
primarily used for these applications. AlGaN-based deep UV optoelec-
tronic devices, however, are revolutionizing the industry, enabling
much broader applications due to the absence of toxic materials, tun-
able emission wavelengths, significantly reduced power consumption,
and relative ease of installation and use. To date, emission in the
260-280 nm range is commonly used for this purpose. Recent work
has shown that emission at even shorter wavelengths (higher energies),
from 255 nm to 220 nm, can be more effective at sterilization,” while
the reduced photon penetration depth in skin can avoid the deleteri-
ous effects of human exposure to UV light." At present, external
quantum efficiency (EQE) over 20% has been measured for UV light-
emitting diodes (LEDs) with emission at 275 nm’ and ~10% for LEDs
at ~265nm.” For LEDs emitting at ~255nm, EQE in the range of
1%-3% has been commonly reported.” ' With proper device packag-
ing, the highest reported EQE is only around 4.5%, with very limited
wall-plug efficiency (WPE) less than 4%, primarily due to the difficulty

in p-type doping and the result of poor hole transport.' " Ill-nitrides
have highly asymmetric doping:'” the hole mobilities and concentra-
tions of AlGaN are typically over one to several orders of magnitude
lower than those for electrons.'®'” The vast imbalance in the electron
and hole injection to the active region has several detrimental impacts
on device performance, including significantly reduced carrier injec-
tion efficiency, severe electron overflow, and parasitic recombination
outside the active region.'” *’ Recent studies further suggest that elec-
tron overflow, among other factors such as Joule heating,”’ Auger
recombination”” *® and carrier delocalization,””” is a primary cause
for the efficiency droop observed in UV LEDs.””’

Tunnel junction structures””’ " have been investigated as an
alternative to resistive p-AlGaN contact layers and absorptive p-GaN
contact layers’” in UV LEDs. The reduced resistivity of the n-AlGaN
contact layer helps to increase carrier injection to the active region and
improve current spreading, leading to UV-C LEDs operating at
265 nm with EQE >10%." Previous work has investigated the critical
effect of the thickness of the tunnel junction®”’ and doping of the
p-AlGaN layers on device characteristics.”” Earlier studies on nitride
tunnel junction structures have also shown that the transport of
carriers across the tunnel junction is primarily determined by trap-
assisted tunneling,” " indicating the crucial role of incorporating
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defects around tunnel junction to maximize hole injection. To date,
however, there have been no demonstrations of tunnel junction UV
LEDs operating at wavelengths below 260 nm with an EQE of more
than 0.1%.””"*"° Molecular beam epitaxy (MBE) offers distinct advan-
tages over metal-organic chemical vapor deposition (MOCVD) for the
growth of tunnel junction deep UV LEDs, due to the much more effi-
cient incorporation of Mg-dopant incorporation in wide bandgap
AlGaN.'****" Moreover, by varying the growth conditions, nanoscale
clusters can be formed in Al-rich AlGaN,"” " which can provide
strong carrier confinement and, therefore, effectively reduce nonradia-
tive recombination as well as quantum-confined Stark effect
(QCSE),"”*”"" resulting in high efficiency deep UV emission.

In this Letter, we report on a detailed study of the epitaxy and
performance characteristics of tunnel junction AlGaN deep UV LEDs
operating at ~255nm. The device heterostructure was grown under
slightly Ga-rich conditions by MBE to promote the formation of nano-
scale clusters in the active region.”””” ~* The device exhibits highly sta-
ble emission at ~255nm, with virtually no change in the peak
emission for injection current density up to 200 A/cm?, which is attrib-
uted to the radiative emission originating from highly localized carriers
in Ga-rich regions formed in the active region. With the incorporation
of an AlGaN/GaN tunnel junction, we have demonstrated 255nm
deep UV LEDs with a maximum EQE of 7.2% and WPE of 4%, which
are nearly one to two orders of magnitude higher than those reported
previously for tunnel junction LEDs operating at this wave-
length.”>"**” Detailed temperature-dependent measurements further
suggest several critical factors that limit the device performance,
including charge carrier (hole) transport, electron overflow, and Joule
heating. This work provides a promising path for achieving high effi-
ciency far UV-C LEDs that were previously challenging.

Shown in Fig. 1(a) is the schematic of the AlGaN tunnel junction
deep UV LED, which was grown using a Veeco Gen930 MBE system
equipped with a radio frequency plasma-assisted nitrogen source. The
device heterostructures were grown on AIN-on-sapphire templates
from DOWA Holdings Co. Ltd. A nitrogen flow rate of 0.6 sccm and
an RF power of 350 W were used throughout the growth, resulting in
a growth rate of 160nm/h. First, a 500-nm-thick bottom n-
Aly 75Gag 25N contact layer was grown with a Si atom concentration of
~3 x 10" cm ™. During this growth, several steps of in situ annealing
at elevated temperatures were performed, which can significantly
improve the structural and optical properties as shown by recent
studies.”” " The n-AlGaN was then graded up from 75% Al composi-
tion to 90% over ~25nm. Subsequently, the active region was grown,
which consists of four AlGaN quantum wells (QWs) emitting at
255nm, with the barrier width decreasing from 6nm to 3.5nm.
Simulations have shown that the reduced barrier thickness closer to the
p-doped side of LEDs can help improve device performance by increas-
ing hole injection into the quantum wells, thereby leading to more even
charge carrier distribution in the active region.”*”” Following the active
region, a p-doped AlGaN electron blocking layer (EBL) was grown,
with Al composition graded down from 90% to 75% over 20 nm. The
graded down AlGaN layer results in an enhanced p-type doping due to
the strong spontaneous and piezoelectric polarization of AlGaN,"
which can maximize the injection of holes.”’ Prior to the tunnel junc-
tion, a 25 nm highly doped p-Aly5Gag,sN layer was grown, followed
by a 5nm GaN layer. The Mg atom concentration in the p-doped
layers is estimated to be ~5x 10" cm . Finally, a 150-nm-thick
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FIG. 1. (a) Schematic tunnel junction deep UV LED. The tunnel junction is shown
in the marked region. (b) and (c) Atomic scale HAADF-STEM images of an
Alp75Gap 25N layer showing the presence of nanoscale Ga-rich layers due to com-
positional variation. The brighter regions correspond to the higher Ga content. FFT
shows the superlattice peak (red arrows) associated with atomic ordering in wurtzite
AlGaN along the c-plane direction. (d) SEM image of the sample surface after epi-
taxial growth showing a smooth surface over a wide area. (€) High-resolution AFM
scan of the sample surface after epitaxial growth. (f) Photoluminescence spectrum
of the sample measured using a 193 nm laser for excitation at room temperature.

heavily doped n-Aly;5Gag 5N top contact layer was grown, with an
annealing step included after the first 100 nm of growth. The incorpo-
ration of a thin GaN layer sandwiched between the p-AlGaN and
n-AlGaN top contact layers can significantly reduce the depletion
width and enhance tunneling probability by taking advantage of the
large polarization charges generated at the interfaces.””* The growth
was carried out under slightly Ga-rich conditions, which has been pre-
viously shown to enhance dopant incorporation' """ and increase the
internal quantum efficiency of AlGaN heterostructures.””">*" The
enhanced luminescence efficiency using this technique has been sug-
gested to be a consequence of compositional inhomogeneities present
within the AlGaN." Atomic-resolution high-angle annular dark-field
scanning transmission electron microscopy (HAADF-STEM) shows
the ordering of Ga-rich atomic layers in the Al, ;5Gag,sN layer; it indi-
cates the presence of compositional non-uniformity within the layer

Appl. Phys. Lett. 117, 241101 (2020); doi: 10.1063/5.0036286
Published under license by AIP Publishing

117, 241101-2


https://scitation.org/journal/apl

Applied Physics Letters

and is consistent with previous reports'w’(’3 [Figs. 1(b) and 1(c)]. Low
frequency background was removed to reduce contrast loss to thickness
variation. Fast Fourier transform (FFT) patterns of the HAADF-STEM
images exhibit ordering of the Ga-rich layer along the [001] direction;
the peaks are forbidden in the electron diffraction pattern of wurtzite
hexagonal symmetry. HAADF-STEM was performed using a Cs
aberration-corrected JEOL 3100R05 microscope (300keV, 22 mrad)
with a detector angle from 74 to 200 mrad. While the Ga-rich growth
conditions have distinct advantages, prolonged growth in this regime
can lead to the formation of crystalline defects due to the presence of
gallium droplets on the sample surface. To eliminate the excess Ga at
the growth interface, the aforementioned annealing steps were incorpo-
rated within the growth, wherein the sample temperature was raised by
50°C above the growth temperature, while keeping the plasma and
source shutters closed. The RHEED screen was monitored to ensure
that the dim, streaky RHEED pattern during growth gave way to a
brighter, streaky pattern, which signifies the desorption of excess metal
at the growth interface.”””* A scanning electron microscope (SEM)
image of the sample surface after cleaning following epitaxial growth is
shown in Fig. 1(d). The SEM does not show the presence of any drop-
lets or defects on the sample surface even over large regions, showing
the advantages of the annealing process. A high-resolution atomic force
microscopy (AFM) scan of the surface is shown in Fig. 1(e), depicting a
very smooth surface with RMS roughness below 0.5 nm. The photolu-
minescence of the sample measured using a 193 nm ArF excimer laser,
shown in Fig. 1(f), displays an emission with a peak at 255 nm. The full
width at half maximum is around 20 nm, which is a result of emission
not only from the active region, but also from the graded layers sur-
rounding the active region, as well as luminescence from the Mg-accep-
tor-related transitions in the p-doped layers.

The devices were fabricated using standard photolithography,
etching, and contact metallization techniques. First, argon ion beam
milling was used to define the device mesas, with an area of
30 um x 30 um. The regions surrounding the devices were etched
down to the bottom n-AlGaN layer. This was followed by the deposi-
tion of a 300-nm-thick SiO, passivation layer. Vias were then etched
into the SiO, to allow for the deposition of Ti/Al/Ni/Au contacts to
the top and bottom n-AlGaN layers. The contacts were then annealed
at 700°C in a nitrogen ambient for 30s. Finally, a thick reflective
Al/Au contact pad was deposited over the devices to maximize light
reflection toward the backside of the substrate, where a detector was
placed for power measurements.

The devices were first measured in continuous-wave (CW) oper-
ation conditions using a Keithley 2400 SMU. The J-V characteristics
of a representative device are shown in Fig. 2(a). The device exhibits a
sharp turn-on voltage, with negligible reverse leakage current. It is
noticed that the device has much improved current rectification,
compared to previously reported tunnel junction devices emitting at
similar wavelengths,”” due to the reduced leakage current in the pre-
sent devices. An image of a device operating at a current density of
~10 A/cm® is shown in the inset, demonstrating extremely bright
luminescence. The electroluminescence from the device was collected
using an optical fiber and analyzed through a spectrometer. The elec-
troluminescence emission spectra measured at different injection cur-
rents are shown in Fig. 2(b). The inset is a scan over a wider range,
confirming the absence of any defect-related emission at longer wave-
lengths that were often observed in previous studies.”*"° The position
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FIG. 2. (a) J-V characteristic of the tunnel junction deep UV LED. The inset shows
an LED under a CW bias injection current of ~10 Alcm?. (b) Room-temperature
electroluminescence spectra measured at different injection currents. Inset: electro-
luminescence spectrum at an injection current of 10 A/cm? measured from 200 nm
to 500 nm, showing the absence of defect-related emission. (c) Plot of the peak
positions of the electroluminescence spectra at different injected current densities.
(d) Variation of the full-width half maxima extracted from the electroluminescence
spectra recorded at different injected current densities.

of the electroluminescence peak is plotted against injection current in
Fig. 2(c), showing that the emission peak position is highly stable with
virtually no variation for injected current densities up to 200 A/cm?,
which is in direct contrast to the expected peak variation due to the
QCSE in AlGaN quantum wells. This can be explained by the strong
charge carrier confinement in the Ga-rich nanoclusters in AlGaN
quantum wells grown under slightly Ga-rich conditions by MBE.
From Fig. 2(d), an increase in the full width at half maximum
(FWHM) is seen with increasing injection current. While the increase
in the FWHM is gradual up to ~10 A/cm?, at higher current injection,
the FWHM starts to rapidly increase. This broadening of the linewidth
occurs primarily on the longer wavelength side of the emission peak,
which can be explained by luminescence from recombination of car-
riers within the graded p-doped region of the device.

To determine the efficiency of the device, the emitted light from
the back of the sample was collected with a Newport 818-ST2-UV
photodetector with a calibrated Newport Model1919-R power meter,
while the devices were probed using CW bias. As the light was only
collected from the back side of the substrate, there are some losses
from emission on the top and sides of the devices which were not
included. Figures 3(a) and 3(b) show the variation of EQE and WPE,
respectively, with injected current density. The maximum EQE and
WPE measured are 5.2% and 3%, respectively. These values are nearly
one to two orders of magnitude higher than those of previously
reported tunnel junction devices operating at such short wave-
lengths.”” The light extraction from the presented devices can be
increased with proper packaging, which will further improve the
efficiency.
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FIG. 3. (a) EQE of the tunnel junction deep UV LED vs current density measured
under CW bias at room temperature. (b) WPE vs current density measured under
CW bias. (c) EQE of the tunnel junction deep UV LED measured using pulsed bias
with a 0.5% duty cycle. Error bars are provided. (d) WPE measured using pulsed
bias with a 0.5% duty cycle. Error bars are provided.

It is also noticed that the device exhibits severe efficiency droop
with further increasing current. As the samples were fabricated on sap-
phire substrates, heating is expected to be an issue. To mitigate the
heating effect, the device efficiencies were measured under pulsed con-
ditions, shown in Figs. 3(c) and 3(d). An AV-1010B pulse generator
was used to bias the samples with a 0.5% duty cycle. A peak EQE of
72% and WPE of 4% were measured, respectively. Despite the
improved efficiency with the reduced heating effect, the onset of effi-
ciency droop is measured at a similar level of injection current to that
under CW biasing conditions, suggesting that Joule heating may not
be the primary cause for the efficiency droop. Recent studies have sug-
gested that the primary cause for efficiency droop of deep UV LEDs is
directly related to electron overflow.'* ”*” In this study, it is observed
that there is a direct correlation between the onset current density of
efficiency droop with the rapid broadening of the FWHM, shown in
Fig. 2(d), because of luminescence from recombination of overflowed
electrons within the p-doped regions of the device. This observation is
consistent with the hypothesis that the overflow of electrons from the
active region is the primary cause of the efficiency droop, due to the
highly asymmetric electron and hole transport of AlGaN.

The device performance, including current-voltage and electrolu-
minescence emission, was further measured in the temperature range
of 100-400 K under CW biasing conditions. Shown in Fig. 4(a) are the
current-voltage characteristics measured at different temperatures.
The measured current at similar bias shows a significant increase with
temperature. The device remains operational even at low tempera-
tures, despite the high Mg acceptor ionization energy, which can be
explained by the involvement of tunneling transport of holes in the
depletion region.'®***” Recent studies suggest that the characteristic
tunneling energy for hole transport is directly related to the Mg accep-
tor activation energy of Al(Ga)N and can be significantly reduced with
enhanced Mg dopant incorporation, due to the Mg acceptor level dis-
persion at very high doping concentrations.”** At room temperature,
the ideality factor is derived to be ~5.8, which is comparable to other
Ill-nitride LEDs,””*” in spite of the large bandgap and the presence of
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FIG. 4. (a) J-V characteristics measured at different temperatures for a tunnel junc-
tion deep UV LED. (b) Inverse of the ideality factor extracted from the J-V curves
plotted against temperature. (c) Electroluminescence spectra for a device measured
at different temperatures under the same injection current. (d) Variation of the peak
emission wavelength with temperature.

a tunnel junction. The inverse of the ideality factor is plotted against
temperature in Fig. 4(b). A continuous decrease in the ideality factor is
measured for the device as temperature is increased, which can be
explained by the growing dominance of diffusion current in the deple-
tion region with increasing temperature, due to the more efficient hole
current injection. The electroluminescence spectra were also measured
at different temperatures at a similar current density around 50 A/cm?,
shown in Fig. 4(c). The peak position is plotted in Fig. 4(d), and an
expected blue shift is observed with decreasing temperature. The
S-shaped temperature dependence of the curve is consistent with the
presence of significant alloy disorder and nanoclusters’””" as a result
of the Ga-rich nanoclusters present in the active region [Fig. 1(b)]. A
small peak at ~290 nm is also observed. This can be explained by the
increased internal quantum efficiency at low temperatures of the lumi-
nescence from overflowed carriers recombining within the p-doped
region. At higher temperatures, this peak is too weak to detect. This
observation confirms that the UV LEDs have severe electron overflow.
Moreover, a sharp decrease in electroluminescence intensity was
observed in the range of 225 K-400 K, which illustrates the significance
of carrier delocalization and thermal effects in inhibiting efficient
radiative recombination. The decrease in electroluminescence at tem-
peratures above room temperature exemplifies the importance in con-
ducting heat away from the active region when devices are operated at
high current densities for high-power applications.

In conclusion, we have demonstrated high performance tunnel
junction deep UV LEDs by using plasma-assisted MBE. The device
operates at ~255 nm with a maximum EQE of 7.2% and WPE of 4%,
which are nearly one to two orders of magnitude higher than those of
previously reported tunnel junction devices operating at this
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wavelength.”>”* The devices exhibit highly stable emission, with a
nearly constant emission peak with increasing current, due to the
strong charge carrier confinement related to the presence of Ga-rich
nanoclusters. However, the device suffered from efficiency droop at
relatively low current densities. Detailed temperature-dependent mea-
surements suggest that the presence of severe efficiency droop of deep
UV LEDs is largely due to electron overflow. Furthermore,
temperature-dependent measurements have shown the impact of ther-
mal effects on the electrical and emission properties of the device. The
device performance can be further improved with proper packaging
and thermal management.
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