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This article presents a nonlinear finite-time stable attitude estimation scheme for a rigid body
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1. Introduction

Estimation of attitude motion of a rigid body in three-
dimensional Euclidean space is vital for a number of applications
including unmanned aerial vehicles, spacecraft and underwater
vehicles. The set of possible rotations of a rigid body is given by
the set of 3 x 3 real orthogonal matrices of determinant 1, com-
monly called the Special Orthogonal group and denoted as SO(3).
The nonlinear and compact attitude configuration space SO(3),
makes the problem of attitude estimation an inherently nonlinear
problem. As the attitude of the rigid body cannot be directly
measured, the objective of an attitude estimator is to compute the
orientation of the rigid body from vector measurements obtained
from sensors mounted on the rigid body.

Attitude estimation has a long history, with early work like
(Black, 1964; Wahba, 1965), proposing static attitude determina-
tion schemes. The performance of static determination schemes
are often unsatisfactory in the presence of noise and bias compo-
nents in measurements. Often, estimation schemes like modified
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Kalman Filter (Choukroun, Bar-Itzhack, & Oshman, 2006; Shus-
ter, 1990) and Multiplicative Extended Kalman Filter (Markley,
1988) are used for attitude estimation. However, the implicit
linearization in Kalman filter-like schemes may cause poor per-
formance (Crassidis, Markley, & Cheng, 2007). More recent ap-
proaches have focused on nonlinear estimation schemes such
as Bonnabel, Martin, and Rouchon (2009), Mahony, Hamel, and
Pflimlin (2008) and Vasconcelos, Cunha, Silvestre, and Oliveira
(2010), where the attitude estimate evolves on the nonlinear
space SO(3) (or TSO(3), if angular velocity is also being esti-
mated). Other prior work on nonlinear deterministic estimation
schemes on SO(3) include Aguiar and Hespanha (2006), Barrau
and Bonnabel (2017), Bonnabel et al. (2009), Hashim, Brown, and
Mcisaac (2019), Lageman, Trumpf, and Mahony (2010), Mahony
and Hamel (2017), Markley (2006), Moutinho, Figueir6a, and
Azinheira (2015), Rehbinder and Ghosh (2003), Sanyal (2006)
and Vasconcelos et al. (2010). Recent work on attitude observer
on SO(3) with exponential stability are Gamagedara, Lee, and
Chang (2019), in which the observer is developed with time vary-
ing reference directions, and Reis, Batista, Oliveira, and Silvestre
(2018) that proposed an attitude observer based on single body-
vector measurement. Attitude estimation schemes based on the
Lagrange-d’Alembert principle from variational mechanics were
first introduced in Izadi and Sanyal (2014) and subsequently de-
veloped in Izadi, Sanyal, Barany, and Viswanathan (2015a), Izadi,
Sanyal, Beard, and Bai (2015b).
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Due to the topology of the compact manifold SO(3), no con-
tinuous attitude observer defined on the tangent bundle of SO(3)
can provide convergence of the attitude estimation error to iden-
tity from all initial attitude and angular velocity estimation er-
rors. This is shown in prior work like Bhat and Bernstein (2000)
and Chaturvedi, Sanyal, McClamroch, et al. (2011). A continu-
ous attitude observer at best can be almost global in terms of
the region of attraction. For an attitude observer, almost global
stability means that the attitude estimate stabilizes to the true
attitude from almost all initial attitude estimates except those in
a set of zero measure in the tangent space of SO(3). The attitude
estimation scheme presented in Izadi, Viswanathan, Sanyal, Sil-
vestre, and Oliveira (2016a) follows the variational framework of
the estimation scheme reported in Izadi and Sanyal (2014), but
includes bias in angular velocity measurements and estimates a
constant bias vector. It is also shown that the proposed scheme is
almost globally asymptotically stable, like the variational attitude
estimator for the bias-free case.

In practice, the measured value of angular velocity often has
bias. In the literature, separate schemes for bias estimation are
employed to compensate for this bias. For example, in the esti-
mation schemes provided in Izadi et al. (2016a), Mahony et al.
(2008) and Tayebi, Roberts, and Benallegue (2011), an unknown
constant bias is estimated along with the attitude. However,
most of the proposed attitude estimation schemes and the bias
estimation schemes are only asymptotically stable. There are
advantages in having finite time stable estimation schemes: they
have been shown to be more robust to disturbances and noise,
and provide faster convergence than an asymptotically stable
scheme with similar initial transience. Additionally, a finite time
stable estimation scheme can automatically make a “separation
principle" possible in case estimated state variables are used for
feedback control. Finite time estimation schemes in the absence
of bias using sliding mode controller and neural networks are
proposed in Li, Wu, Shi, and Lim (2015), which are not contin-
uous. Prior work by Bohn and Sanyal (2014) and Sanyal, Izadi,
and Bohn (2014) proposed an almost global finite time stable
attitude observer. However, the exact dynamical model including
the moment of inertia is assumed to be available for estimation
and the angular velocity bias was not considered. The algorithm
in Warier, Sanyal, and Viswanathan (2019) provides finite time
stable attitude estimation in the absence of bias without requiring
the dynamics model of the rigid body.

This paper proposes an attitude estimation scheme with al-
most global finite time stability in the presence of constant an-
gular velocity bias. The main contributions of the paper are:
(1) the proposed attitude estimation scheme evolves on the spe-
cial orthogonal group SO(3) and does not suffer from singularities
or unwinding; (2) the estimation scheme is model-free in the
sense that no assumptions are made on the attitude dynamics
model including knowledge of the moment of inertia or the
measurement noise model; (3) the estimation scheme is con-
tinuous and almost globally finite time stable in the absence of
measurement errors even when the angular velocity measure-
ment has an unknown constant bias; (4) the angular velocity bias
estimate is also stabilized to the true value in finite time; (5) the
robustness of the proposed scheme under time-varying noise in
angular velocity measurements is analytically shown; and (6) the
proposed algorithm is numerically compared with existing results
from the literature including the discrete-time variational esti-
mator (VAE) given in Izadi et al. (2016a), the geometric approxi-
mate minimum-energy (GAME) of Zamani, Trumpf, and Mahony
(2011), and the constant gain observer (CGO) given in Mahony
et al. (2008).

This work presents advancements over two of our prior publi-
cations: Warier et al. (2019), which provided a finite time stable
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attitude motion estimation scheme without any bias in measure-
ments; and Sanyal, Warier, and Hamrah (2019), which provided
preliminary results on the finite time stable attitude motion
estimation scheme in the presence of bias in angular velocity
measurements. The current manuscript adds to the paper (Warier
et al,, 2019) by providing an attitude motion estimator that is
finite time stable when the angular velocity measurements have
a constant bias. In addition, the bias in the angular velocity
measurements is estimated in finite time. This work also adds to
our preliminary work reported in the conference paper (Sanyal
et al., 2019). The new additions here are: (a) in addition to the
proof of finite-time stability in Sanyal et al. (2019), we explicitly
prove the robustness of the proposed scheme under time-varying
noise in angular velocity measurements; and (b) comparing the
behavior of the proposed estimation scheme with some existing
schemes from the literature that estimate attitude motion and
angular velocity bias. The effectiveness of the proposed esti-
mation scheme is then demonstrated by numerical simulations
comparing its performance with that of the above-mentioned
estimation schemes for a given attitude motion and a given set
of measurements.

The structure of the paper is as follows. Section 2 outlines the
mathematical notations and concepts used in the paper. The static
attitude determination problem from vector measurements is
posed in Section 3. Wahba'’s cost function is generalized by choos-
ing a symmetric weight matrix and the resulting cost function is
shown to be a Morse function on the Lie group of rigid-body ro-
tations under some easy-to-satisfy conditions. Additionally, some
useful lemmas associated with the cost function and its deriva-
tives are provided. The real-time attitude and angular velocity
bias estimation problem is detailed in Section 4. In Section 5,
the estimation scheme is presented and finite time stability and
robustness to angular velocity measurement errors are proved.
Some existing state-of-the-art methods for attitude estimation
are briefly introduced in Section 6. Numerical simulations of the
finite-time stable attitude motion estimator with bias estimation,
and comparisons of this estimator with the state-of-the-art non-
linear attitude observers of Section 6, are provided in Section 7.
Finally, a summary of results and possible future directions are
presented in Section 8.

2. Mathematical preliminaries

In this paper the set of real numbers are noted by R. Similarly,
R"™ and R™™ denote the set of real n-dimensional column vectors
and real n x m matrices, respectively. N denotes the set of natural
numbers. The set of all possible configurations of a rigid body
is the special orthogonal group SO(3) (Murray, 2017), which is
defined by:

50(3) = {R e R¥3RTR = RRT = I, det(R) = 1} .

This is a matrix Lie group under matrix multiplication. The Lie
algebra (tangent space at identity) of SO(3) is denoted by s0(3)
and is defined as:

0 —S3 So
s03)={SeR¥|s=-sT}, s=|s3 0 —s;.
—S2 S1 0

Let (-)* : R3 — so(3) denote the bijective map from three dimen-
sional Euclidean space to so(3). For a vector s = [s1 s 53]T € R3,
the matrix s> represents the vector cross product operator, that
is s x r = s*r, where r € R3; this makes (-)* a vector space
isomorphism. The inverse of (-)* is denoted by vex(-) : so(3) —
R3, such that vex(a*) = q, for all a* € so(3). We define the trace
inner product on R™" (-, -} as,

(A1, Ay) = ti(A,TAy).
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Any square matrix A € R™" can be written as sum of unique
symmetric and skew-symmetric matrices as follows:

A = sym(A) + skew(A), (1)

where the symmetric and skew-symmetric components are de-
fined as,

1 1
sym(4) = S (A + AT), skew(A) = SA - AD). 2)
Additionally, following property holds. Let A; € R™" be a sym-
metric matrix and A; € R™" be a skew symmetric matrix, then,

(A1, Ay) = 0. (3)

In other words, symmetric and skew matrices are orthogonal
under the trace inner product. For all a1, a, € R,

(a¥,ay)=2a; - a (4)

With these definitions, we proceed to lay out the attitude esti-
mation problem.

3. Static attitude determination from vector measurements

The aim of this section is to formulate the problem of attitude
determination from vector measurements. Let Z denote an iner-
tial frame that is spatially fixed. A body-fixed frame is fixed to
the rigid body with its origin at the center of mass of the body,
and is denoted by B. We denote the attitude of the rigid body by
R € SO(3), which transforms vectors in the body frame B to their
counterparts in the inertial frame Z.

3.1. Vector measurements

The attitude of the rigid body is determined from body-fixed
measurements of k known inertial vectors. Let e1,e5, ..., e, k €
N be the known inertial vectors and uf', u, ..., uy be the corre-
sponding body-fixed measurements. The ith vector measurement
in the body-fixed frame B satisfies,

u;" = RTei + o; (5)

where o; € R? is the noise in the ith vector measurement,
for all i € 1,2,...,k The attitude of the rigid body can be
calculated from the vector measurements provided the following
assumption is satisfied.

Assumption 1. There are at least two non-collinear vectors
in the set {eq, ..., e} for attitude determination at all times. If
k =2, e3 = e; x e, is selected as the third non-collinear vector.

Define the matrix consisting of k known inertial vectors e; as
column vectors,
_ [ler ez e x €] € R¥*3
“ler ey ...e] € R3xk
Assumption 1 can be alternatively specified as follows: matrix E

should have rank equal to 3. The corresponding matrix composed
of body-fixed measurements as column vectors can be defined as,

when k = 2,
when k > 2.

(6)

when k = 2,
when k > 2.

(7)

m ,,m ,m m 3x3
um — [l v ul xujl e R
i ull ... ul'] e R3>*k

The matrix consisting of inertial vectors E and the matrix con-
taining the body frame vectors U™ are related by:

U™ =R'E+ &, (8)

where the columns of matrix & correspond to the measurement
errors oj. Let the true vectors in body frame be denoted by u; =
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RTe,-, then the matrix of the actual body vectors corresponding to
the inertial vectors e; is given by
U =RTE, (9)

in the absence of measurement errors.
The static attitude determination problem is formulated in the
next subsection.

3.2. Cost function for attitude determination

The objective is to obtain an estimate of the attitude denoted
by R € SO(3) from k known inertial vectors ey, ..., e, and
corresponding measured vectors uf', ..., u}'. The static attitude
estimation can be formulated as an optimization problem as
follows,

k
. 1 ~ ~
Minimizegld = 5 E wi(e; — RulT”)T(ei — Rul™), (10)
1

where w; > 0 are weight factors. This is referred to as Wahba’s

problem as in Wahba (1965). The cost function is re-expressed as,
1 ~ —~

u:5<E—RU’”,(E—RUm)W), (11)

where W = diag([wq, wy, ..., wg]) and E and U™ are given by
Eqgs. (6) and (7) respectively. The cost function can be generalized
such that W is a symmetric positive semi-definite matrix satisfy-
ing some special conditions. This is described in the next subsec-
tion. The structure of the generalized cost function in the absence
of measurement errors, is detailed in the following lemma.

Lemma 1. Define Q = RRT as the attitude estimation error. Let
E € R*>k be as defined as in (6) with rank(E) = 3. Let the gain
matrix W of the generalized Wahba cost function be given by,

w = ET(EeT) "'k (EET)'E, (12)

where K = diag([k1, ko, k3]) and ki > k, > k3 > 1. Then, in the
absence of measurement errors,

u:%(E—ﬁUm,(E—’ﬁum)W)= (K,1-Q), (13)

which is a Morse function on SO(3) whose critical points are given
by the set,

¢ = {I,diag([-1, —1, 1]), diag([1, —1, —1]),
diag([—1, 1, —1])}. (14)

In addition, U has a global minimum at Q = 1.

Proof. Utilizing the properties of the inner product we can arrive
at the following simplification:

U= %tr((ETE +UmTumw)

— %tr(((um)TiTE — ETﬁum)w). (15)
Substituting W as given by (12) and defining
L=EwumT, (16)
the expression (15) can be further simplified to:
U= %tr<1<+UmW(u'")T—§TL—LT®. (17)
In the absence of measurement noise in the vector measure-
ments, U" = U = R'E and L = KR. Substituting U™ = R'E
in Eq. (17) and tr(AB) = tr(BA), we get
U =te(K — LTR) = tr (K - ERTEWET)

= (K,I —Q), where Q = RR'. (18)
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The choice of W given in Eq. (12) ensures that K = EWET. Next
it is shown that (K, I — Q) is a Morse function with four isolated
non-degenerate critical points on SO(3) given in (14). A Morse
function is a function that has isolated non-degenerate critical
points, which can be classified as minimum, maximum or saddle
points by examining the Hessian of this function as in Milnor,
Spivak, and Wells (1969). The proof that (13) is a Morse function
is shown in Lemma 2.1 of 1zadi and Sanyal (2014), and is omitted
here for brevity.

A first variation of Q € SO(3) is given by,

§5Q =QX%, (19)

where ¥ e R3. The first variation of (K, I — Q) with respect to Q
is given by

(K, 1-Q)=

KQ can be written as sum of skew and symmetric matrices
i.e, KQ = sym(KQ) + skew(KQ). Exploiting the linearity of the
trace inner product and utilizing the identities given by Egs. (3)
and (4), the following expression is obtained.

dg (K, I — Q) = (skew(KQ), X')

= vex(KQ — QTK)T» = s¢(0)T 3, (21)
where sg(Q) is given by,

sk(Q) = vex(kQ — QK), (22)

and vex(.) is as defined in Section 2. The critical points of
(K,I — Q) on SO(3) are where the variation vanishes. Since X
is arbitrary, the critical points satisfy, sx(Q) = 0, which implies,

Ko = Q'k. (23)

(K, —8Q) = tr(—KQ X ). (20)

Due to the properties of K, the critical points of (K,I — Q) are
therefore given by,

Q €{I, diag([—1, —1, 1]), diag([1, —1, —1]),
diag([—1, 1, —1])}. (24)

By taking the second variation, it can be shown that (K,I — Q)
achieves a minimum at Q = I. Similar results are available in
prior literature, e.g., Bullo and Lewis (2004) and Izadi and Sanyal
(2014). m

The static estimation problem outlined here can be solved by
computing R that will minimize the ¢/ at any given instant. How-
ever, static methods often under perform when measurements
have noise and bias. The following section considers dynamic
attitude estimation under unknown attitude dynamics and with
biased angular velocity measurements.

4. Preliminary results for attitude state and angular velocity
bias estimation

4.1. Dynamic attitude estimation

The kinematics of rigid body rotation is given by Poisson’s
equation:
R =R2*, (25)

where £2 € R is the true angular velocity of the rigid body
represented in the body-fixed coordinate frame. Let the measured
angular velocity, denoted by 2™, be given by

QT=02+B+v, (26)

where 8 € R3 is a constant bias in angular velocity measurements
that also has to be estimated, and v € R3 is the vector of additive
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noise in angular velocity components. Let ('Ii, @) € S0(3) x R® be
the estimated attitude and angular velocity states provided by the
estimation scheme, satisfying the following kinematic relation:

A o~

R =R*. (27)
In addition, let

ﬁ:Qm—E—w, (28)

where B e R3 is the estimate of the bias in angular velocity
measurements, and w € R3 is the “excess" or error in estimating
the angular velocity and the bias.

The objective is_to obtain estimates of the attitude, angular
velocity, and bias (R 2 and /3) in real time, from the matrix of
known inertial vectors E, the corresponding vector measurements
made in the body-fixed frame U™, and the biased angular velocity
measurement £2™. The moment of inertia and other parameters
that occur in the dynamics of the rigid body are unknown. Note
that the (number of) measured vectors may be varying over time,
as long as at least two non-collinear vectors are measured at all
times. The observer design given in the following section is shown
to provide almost global finite-time stable (AGFTS) estimates R
2 and /3 where these estimates converge to the respective true
values R, 2 and g in finite time, in the absence of measurement
noise. Section 7 shows the robustness of this observer in the
presence of measurement noise. The following result, relating the
attitude estimation error to the angular velocity estimation error,
is used in the next section to prove the main result.

Lemma 2. Let K be as defined in Lemma 1. Then, in the ab-
sence of the measurement errors, the time derivative of U along the
trajectories satisfying the kinematic equations (25)-(27), is given by:

d d
—U=—(K,]—Q)= 2 2
U= g K = 5¢(Q) - (R2) (29)
d ~
= (K — LI'R) = —s,(R) - 2, (30)
where
2 =0-2, si(R) = vex(L'R —R™L). (31)

Proof. Since Q = RﬁT, we obtain from Eqgs. (25

)-(27):

. d o~ A
Q=4C +

= RQ"RT — RQ*R! (32)
=RRI(R(2 — 2))"
= Q(RD2)~.
Further, from the definition of L in Eq. (1 ) we see that in the
absence of measurement noise U™ = U = R'E and
L =ewi" = ewuT2* = L2*. (33)

From Eq. (32), we obtain

d Dy X
E(K’I —Q) = (K, —Q(R2)™).

From Eq. (33), we get
tr(K — L'R) = tr(2*L'R — LTR2>).

As in the proof of Lemma 1, (3) and (4) are utilized to obtain,
d 1 ~~
glKI-Q= —itr((KQ —QTK)(R2)")

= vex(KQ — QTK) - (R©2) (34)
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and

d o~ A ~

K = L'R) = —vex(ITR—R'L) - ©2. (35)

As (34) is identical to (29) and (35) is identical to (30), we
conclude the result. W

4.2. Some preliminary results

The following four lemmas are used to prove the main result
on finite time stable attitude, angular velocity and bias estimation
scheme given in Section 5.

Lemma 3. Let x and y be non-negative real numbers and let
p € (1,2). Then
x(1/p) +y(1/P) > (x +y)(1/P)_ (36)

Moreover the above inequality is a strict inequality if both x and y
are non-zero.

Proof. The proof of this result is given in Bohn and Sanyal (2014,
2016), and is omitted here for brevity. ®

Lemma 4. Let K be as defined in Lemma 1 and sx(Q) be as given
in Eq. (22). Let S C SO(3) be a closed subset containing the identity
in its interior, defined by

§={Q €50(3) : Qi > 0and Q;Q; <0

vi, je{1,2,3}), i #j}. (37)
Then for Q € S, we have
sk(Q)"sk(Q) = tr(K — KQ). (38)

Proof. The proof of this result is given in Bohn and Sanyal (2016),
and is omitted here for brevity. =

Lemma 5. Let sL(ﬁ) and sk (Q) be as defined earlier. Then following
holds:

si®R)Tsu(R) = s1(Q) sk (Q) (39)

o~

Proof. From the definition of L, it can be seen that L = KR. s;(R)
and sg(Q) can be rewritten as,

s1(R) = vex(RTKR — RTKR) =: vex(A;), (40)
sk(Q) = vex(KRRT — RRTK) := vex(Ay), (41)

where A1, A, are used to represent the skew symmetric matrices
inside the vex(.) operator. From the identity given in Eq. (4), it is
clear that Eq. (39) is equivalent to following expression,

tr(AsAr) = tr(AsAz). (42)
The RHS turns out to be,

tr(AiA1) = tr((RTKR — RTKR)(RTKR — RTKR)) (43)
The LHS is obtained as,

tr(AzA;) = tr((KRRT — RRTK)(KRRT — RRTK)) (44)

The identity in Eq. (42) can be obtained by expanding and sim-
plifying the above two expressions using the properties of trace
inner product. W

The design and stability result of the finite-time stable esti-
mator are given in the following section. Note that the attitude
estimation error Q = RRT is defined on the group of rigid body
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rotations, SO(3), which is not a vector space. The angular velocity
estimation error, §2, and bias estimation error, 8, are expressed
on the vector space R>. Therefore, for Lyapunov stability analysis
of the observer designed on SO(3) x R* x R?, a suitable Lyapunov
function is required. This comes in the form of a Morse-Lyapunov
function, as defined later in Theorem 1 in Section 5, where the
Morse function/ = (K, I — Q) on SO(3) is used as the component
of the Morse-Lyapunov function that depends on the attitude
component of the full state. The Morse-Lyapunov function is sub-
sequently shown to guarantee convergence of state estimation
errors (Q, £2, B8) to (I, 0, 0) in finite-time.

5. Finite-time stable attitude state and angular velocity bias
estimation

In this section we give the main result; a finite-time stable
observer for estimation of rigid body attitude, angular velocity,
and a constant bias in angular velocity measurements. A Holder-
continuous Morse-Lyapunov function is utilized to show the
finite-time stability of the resulting closed-loop system. For rigid
body attitude, we assume that at least two non-collinear but
known inertial vectors are measured in a body-fixed frame, as
described earlier in Section 3.

Theorem 1. Consider the attitude kinematics and angular velocity
measurements given by equations (25)-(28) in the absence of mea-
surement noise (ie., 0 = 0, v = 0). Let p € [1,2[ and k > 0 be
scalar observer gains, and define the following quantities:

B=pB-B. (45)
o~ SL(ﬁ)

R=—— 2 46

) (s ®Ts(R) '~ e

U(L R, ®)=w—kz(R), and (47)

—~ —~ d ~ i~ P
w(® 2.2" )= s®) = vex(LTR2* + 2*R'L)
—vex(RTL(@™ — B)* + (2™ — B)*LR). (48)

Let Assumption 1 be satisfied and let w, ky, k, be positive scalar
observer gains such that u < 1. Thereafter, consider the following
observer equations:

R= R2*, where 2 =02" — B —w, and (49)
k
75: 3 il sy, and (50)
. v K
puw = kpsp — ky — + — H(st)wi, (51)
P (lI/TII/)l 1/p (SLTSL)l 1/p

where the functional dependencies of s;, w; and ¥ have been
suppressed for notational convenience, and where H : R> — Sym(3),
the space of symmetric 3 x 3 real matrices, is defined by
2(1-1/p)
xTx

Then the attitude and angular velocity estimation errors (Q, w)
converge to (I,0) € SO(3) x R> and the bias estimation error j
converges to 0 € R in a finite time stable manner, from almost all
initial conditions except those in a set of measure zero.

HX)=1— xxl. (52)

Proof. The purpose of this result is to obtain observer equations
to estimate the attitude, angular velocity, and bias in real time,
from the measured quantities U™ and 2™, assuming they do not
have any noise. Since the angular velocity measurement, 2™,
contains the effects of an unknown bias, 8, as well as the true
angular velocity, £2, one can conclude 2™ = 2+ 8 in the absence
of noise in angular velocity measurements. This justifies the use
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of 2™M —E in place of the true angular velocity £2 in the observer
equation (48).
Consider the following Morse-Lyapunov function:

VLR 2,9,8) = %wTw + ky U(R, U™ E)
e (53)
+ —ﬂ B,
where U(-, -, -) is as defined in Lemma 1. In the following analysis,
we suppress the functional dependencies of ¢/ and V for nota-
tional ease. Taking the time derivative of this Lyapunov function,
we get

~T)\
2—-wB B
where we used Eq. (30) to substitute for the time derivative of
U in the second term, and the fact that B is a constant bias

(therefore ,8 —ﬂ) in the third term on the rlght side of the

above expression. Substituting from Eq. (50) for ;‘5 into the third
term, we get

— kps, (2 + B). (54)
From Bohn and Sanyal (2014, 2016), we know that

a 1
dtZL - (SLTSL)FI/I]

V=pueld —kpsL.Q

V= wIIT

H(Sl_)wl_.

Now substituting for ¥ from Eq. (47) in to Eq. (54), using the time
derivative of z; as given by the above equation, and noting that
o = £2 + B in the absence of measurement noise, we obtain

K

VY= ulI/T (CL) - WH(SL)UJL> - kpSLTw~ (55)
L oL

Finally, substituting the observer equation (51) for @ into equa-
tion (55), we get

. v
T T
v=v ks —k——— ] — ks @
< ’ (lI/TlI/)1 1/p> ’

= ks, T(¥ — w) — k, (wTw)"?

= —kaSLTZL —ky (lI/TlII)l/p

= —kpic (s 7s1) P — ke, (@ Tw) 7. (56)
From Lemmas 4 and 5, in a neighborhood of I € SO(3), we have
—(K,I—Q). (57)

Therefore, for the expression (56), we get

—s.'s, < —U(R, U™ E) =

. 1/p
¥ <~k P (ku) VP — kv<tPTl1/)

< —ko((wTw)"" + (20)"™). (58)
where ko = min(k, ™"’ k,).

Finally, applying Lemma 3 to the above inequality, we have:

V< —ko(wTw 4 kpu)l/p. (59)
Considering Eq. (59), the set where V = 0 is:
V7(0)={(Q.w) : sx(Q)=0and ¥ =0}

={(Q,w) : Q ecandw =0} (60)

where C is as defined by Eq. (14). Using the invariance-like
theorem 8.4 in Khalil (2001), we can conclude that as t — oo,
(Q, w) converges to the set:

S={Q,w) : Qecandw=0¢cR?} (61)
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in finite time, which is equivalent to:
S = {(Q, 2, B) € SO(3) x R? x R
:Qec,2=0and B =0}, (62)

asw=02+ B and Q satisfies the kinematics equation (32).

This means that the resulting observer system has a set of
equilibria 8 € SO(3) x R?> x R?, to which all initial estimation
errors ultimately converge. Therefore, 2 and B are ultimately
bounded, and because w = 2 + ﬂ converges to the zero vector,
the ultimate bound on Hﬁ H reﬂects the ultimate bound on ”Q ”
In addition, since ¥ = w — /cz;g ) is also ultimately bounded, and
sk(Q), st(R), and therefore z;(R) are also ultimately bounded, we
can conclude that

avw <B"B<culy, (63)

for positive constants ¢; and ¢, as time increases. This in turn
allows us to conclude that

oty = —(1-c)vTw —¢, vTw
~(1—c)wTw - BB, (64)

on substituting Eq. (64) into Eq. (59) and applying Lemma 3 again,
we conclude that

V< —ko ((1 — ) WYk + B’TB‘)W. (65)

Finally, applying Theorem 7.1 and 7.2 in Bhat and Bernstein
(2005), we conclude that the set of equilibria S given by Eq. (32)
is finite-time stable. The only stable equilibrium in S is (I, 0, 0)
while the other three are unstable equilibria. The resulting closed-
loop system with the estimation errors gives rise to a Holder-
continuous feedback with exponent less than one (% < 1), while

in the limiting case of % = 1 the feedback system is Lipschitz-
continuous. Proceeding with an analysis similar to that in Bohn
and Sanyal (2014), Sanyal, Bohn, and Bloch (2013) and Sanyal
et al. (2014), it can be concluded that the equilibria and the
corresponding regions of attraction of the Holder-continuous FTS
observer with p € |1, 2[ are identical to those of the correspond-
ing Lipschitz-continuous asymptotically stable observer with p =
1, and the region of attraction is almost global. m

5.1. Robustness analysis

The almost global finite-time stability property of the estima-
tor given by Theorem 1 results in a guaranteed convergence of
almost any bounded initial estimate errors to the true state, given
by the estimation errors (Q, 2, 8) = (I, 0, 0), in finite time in
the absence of any disturbances. In the presence of a bounded
measurement noise v in the measurement of angular velocity,
all estimate errors will converge to a bounded neighborhood
of (I, 0, 0). The following result gives a conservative statement
relating the bound of measurement noise that can be tolerated
and bounds on the neighborhood of (I, 0, 0).

Corollary 1. Consider the observer equations (49)-(51). Let the
measured angular velocity be given by
Q"= +B+v (66)

where v is the time-varying noise vector. Let N' C S x R3 x R3,
where S is as defined in Eq. (37), be a closed neighborhood of (I, 0, 0)
defined by

={(Q. 2,B): lIstll < Siee and ]| < Wpnax < 1}. (67)
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If the norm of the noise in angular velocity v satisfies following
inequality,

Lmax

k, (S(z/p n Wr(ni/xm)

()l <€ < ; (68)

Ko Stomax
then, the estimation errors (Q, £2, B ) converge to the neighborhood
N.

Proof. The proof of this statement is based on the Lyapunov
analysis used in the proof of Theorem 1. Substituting (26) in (28),
we find

Q+p=0w—v, (69)

where 2 and B are defined in (31) and (45), respectively. Substi-
tuting (69) into the time derivative of Lyapunov functions that is

obtained and simplified as in (54), we have
V= wI/T —kpst a)—i—kpsL , (70)

Then substituting for ¥ from (47) into (70) using the time deriva-
tive of z;, in the presence of measurement noise, we obtain

L OL

— kpsLTa) + kpsLTv

Finally, substituting the expression given in (51) for @ into (71),
we get

v
(WTW)I_UP
= lps. (¥ — ) — k, (wTw)"?
= —kpks; 'z — k, (II/T!II)W + kps, v
= _ka(SLTSL)l/p — kv(lIITlP)l/p +kpsLTv. (72)

which has an additional term due to the measurement noise,
when compared with expression (56) for V along the noise-free
observer. Considering upper bounds of the noise as defined in
(68) on this extra term, we find

p=yT (kpsL —k, ) — kpsLTa) + kpsLTv

+ kpsLTv

kst TV < [k | sl VI < KpSipgue (73)
Therefore, ¥ is upper bounded as
Yy < —kp/c(sLTsL)l/p - kv(lllTlI/)w + KpSLac € (74)
On the boundary of the neighborhood A defined by (67), the
upper bound on V is given by
V< —k, (S(Li/ai) + lI/r(nzaf{’)) + KpStymae€- (75)
Therefore, V is non-positive along the boundary of N if

—k (stn/a‘i) n w,;i/f)) + kpSpy < 0, (76)

which is a sufficient condition for all trajectories starting outside
this neighborhood of (I, 0, 0) to converge to it. Alternately, ex-
pression (76) also leads to the following expression for the ratio
of observer gains:
' (S(z/p n !I’mi/x"))
< -—.

Lm
2 < i (77)
k, € Siimax

. ok )
This relates the ratio -2 to the bound on the norm of the noise

k
v and bounds on the rvlejghporhood N, for which convergence
of estimation errors (Q, §2, B) to this neighborhood of (I, 0, 0) is
guaranteed. W
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6. Other state-of-the-art filters on SO(3)

Three estimation schemes are used in comparisons with the
finite-time stable variational estimator (FTS): The discrete-time
variational estimator (VAE), the geometric approximate
minimum-energy (GAME) estimator, and a constant gain observer
(CGO).

6.1. Discrete-time variational attitude estimator

This estimator appeared in Izadi, Viswanathan, Sanyal, Sil-
vestre, and Oliveira (2016b) and is obtained by applying the
(discrete) Lagrange—d’Alembert principle of variational mechan-
ics to a (discrete) Lagrangian constructed from residuals be-
tween measurements and state estimates with a dissipation term
that is linear in the angular velocity measurement residual. This
discrete-time estimator is based on the earlier (continuous-time)
variational attitude estimator (VAE) that appeared in Izadi and
Sanyal (2014). Here, we generalize the discrete-time VAE to in-
clude angular velocity measurements that have a constant bias in
addition to measurement noise. The filter equations in discrete-
time for a rigid body with the attitude kinematics (25) and with
measurements of vectors and angular velocity in a body-fixed
frame, are given by

Reyr =Re exp (h(2" — o — B)), (78)
Ber = B+ o' (U°(Re, UM)P~'s,, (R), (79)
2= — o — Br. (80)
Meis1 = exp(—h2y (M I3 — h D)oy (81)
+ e (U Ri 1, UL 1) St Ree)),

where h = tyq — tk is the time step size for k = 1,2,...,N,

st(ﬁ) = vex(L{'Ry — R! L) € R L is as defined in (16)
and evaluated at time ¢, m is a positive scalar, D is a positive
definite filter gain matrix, and #°(Ry, U") and @ (U°(R, U™)) are
as defined in Izadi et al. (2016b).

6.2. GAME filter

This estimator is a near-optimal filter proposed in Zamani et al.
(2011) by generalizing Mortensen’s maximum-likelihood filtering
scheme to SO(3). The geometric approximate minimum-energy
(GAME) filter in continuous form is as given below:

R=R(2™ — B +Pal)*, (82)
j
where [ = Z(QI(AI u)) x Ui
i=1
Py = Qq + 2Py (Po(2(2™ — B) — Pl)¥) (83)
+ Py(E — S)P, — P.T — P,
—(2™ — B — Pol)*P; + Po(E — S)P. — P, (84)
Py, = Qp + P(E — S)P, (85)
B=pT1 (86)
where
j
s =Y @)y, (87)
i=1
E = trace(C)l — C, (88)
J
C=) (2@ — w)i"). (89)

i=1
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Here u; is the true vector observed in body frame, ii; = Ere,-,
Q¢ = BBT where B € R**3 allows for different weights for the
components of the vector of additive noise in angular velocity
components, Qy = I3x3, P(X) = 2(X + XT) for X € R>S3,
% = (DDiY)"! where D; € R¥3 allows for different weights
for the vector measurement noise, R(0) = I3y3, P.(0) = 0343,
Py,(0) = ;1213X3 where ¢? is the variance of the principal angle

corresponding to the initial attitude estimate, and P,(0) = ﬁ]3x3
where 2 is the standard deviation of an initial bias.

6.3. The Constant Gain Observer

The Constant Gain Observer (CGO) presented in Mahony et al.
(2008) in continuous form is also represented as
% J
R=R(@"-B+Kl) . 1= (ux), (90)
R i=1
B=K L. (91)

o~

where Kp and K; are constant gains and R(0) = I343. Note that
the discrete-time versions of this filter and the GAME filter as
presented in Zamani (2013) use the unit quaternion represen-
tation, and are implemented as such in the following numerical
simulations.

7. Numerical simulation results

This section presents some numerical simulation results of
the proposed FTS estimation scheme as well as the results of a
comparison between this scheme and three other state-of-the-art
estimators. First, the simulation results of the proposed scheme
are presented in the following subsection.

7.1. Numerical results of the finite-time stable (FIS) estimator in the
absence of noise

In this subsection, simulation results of the proposed finite-
time stable (FTS) estimator without any measurement noise are
presented to show the finite-time convergence of all estimation
errors to zero. Attitude estimation with the FTS estimator as well
as the discrete VAE introduced in Section 6.1 are numerically
implemented using a geometric scheme. Unlike commonly used
numerical integration methods like Runge-Kutta, geometric inte-
gration schemes preserve the geometry of the state space without
any projection or parameterization. Let ® = x where yx is the
right-hand side of (51) divided by u. Let h = t;4q — t; be the
time step size. Discretized equations that are used to numerically
implement the proposed FTS estimation scheme are as follows:

Rip1 = Riexp(h(2]" — Bi — 1)), (92)
wit1 = i + hy;, (93)
. hky A~
Biv1=Bi+ s (Ri). (94)
2—pu
where
_ k, ¥ urH(sp )wy,
1 vl i 1
xi=n" (ks - . ) (95)
(IIII'T‘III') " (S’-iTS’-i)] i

The matrix exponential map in (92) guarantees that each attitude
estimate belongs to SO(3).

The estimator is simulated with a time step size of h = 0.01
s for a time duration of T = 30 s. The rigid body is assumed to
have the following initial attitude and angular velocity:

Ry = exp(n([l, 0, O]T)X), 20 = [10.5 0] rad/s.
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Fig. 1. Simulation results.
The initial estimated states are selected to be Ry = I, 29 =

[0, O, l]Trad/s, and Eo = [0, 0, O.I]T. Three inertial vectors
are considered to be measured at a constant rate by body-fixed
sensors. There is no measurement noise in the direction vector
measurements or angular velocity vector measurement. The an-
gular velocity measurement is only assumed to have a constant
bias of 8 = [-0.1, —1, 0.2]T rad/s. The observer gains are k, =
2, k, = 1, « = 0.1, and © = 0.35. The fractional exponent is
takenasp = 1.1.

The simulation results are illustrated in Fig. 1. The attitude
error, Q, error in estimation of angular velocity and bias, w, and
bias estimation error itself, 8, are shown to converge in finite time
in the absence of measurement noise, which implies the finite
time stability of the estimation scheme.

7.2. Comparison results of the FIS attitude estimator with other
attitude estimators in the presence of noise

In this subsection, the performance of the finite-time stable
estimator in the presence of vector measurement noise, o;, and
angular velocity noise, v;, and unknown bias in angular velocity mea-
surements is compared to that of the three estimators presented
in Section 6, under identical conditions. To do so, all the estima-
tion schemes are applied to the same rigid-body dynamics, with
the same initial estimate errors, equal time steps, and identical
measurement noise. The sampling period and the total simulation
time are h = 0.01 s and T = 30 s, respectively. Three known
inertial directions are measured by the sensors in body frame,
and these measurements include known levels of noise, and rate
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Fig. 2. Attitude estimation error for noise levels similar to that in Zamani (2013).

gyro sensors for angular velocity measurement are assumed to
be biased with a constant bias of § = [—0.01, —0.005, 0.02]T
rad/s for all schemes. The initial estimate of the bias is set to
be By = [0, O, 0.1]T, the initial estimated rotation matrix is set
equal to identity, and the initial rotation matrix is selected such
that its principal angle has zero mean and a standard deviation of
60°. The rigid body simulated has the following angular velocity
profile:

. 27 . 27 b4 2 T

2(t) [sm ]5t sin ]8(t+ 20) cos( 5 t)] (96)
The initial angular velocity estimates are also set to be identical,
as follows. According to (82), the initial angular velocity estima-
tion error is given by P,(0)I(0) for the GAME filter. For the FTS
and discrete-time VAE estimators, choosing wg = P,(0)I(0) and
for the CGO, choosing Kp = P,(0) satisfies this condition. For this
comparison in simulations, the scalar “inertia-like” gain for the
VAE estimator is selected as m = 0.5, the constant gain K; of
CGO filter is set equal to 0.3, and the positive definite dissipation
matrix as

D= diag<[2.4 2.6 2.8] T). (97)

As in Zamani (2013), the GAME and CGO estimators utilize unit
quaternions for attitude representation when implemented nu-
merically. We compare the performance of these two estimators
as well as the discrete VAE scheme with the FTS attitude esti-
mator for two different cases, as described in the rest of this
section.

7.2.1. CASE I: High noise levels

In this case, both direction vector measurement noise vectors
o; and angular velocity measurement noise vector v are random
zero mean signals whose probability distributions are normalized
bump functions. It is assumed that the standard deviation of the
direction measurement noise and angular velocity measurement
noise are 30° and 25° /s, respectively. In order to have a fair com-
parison between the different estimation schemes that may have
different gains (and gain update scheme in the case of the GAME
filter), the (initial) gains are selected such that all estimators have
the same initial attitude and initial angular velocity estimates.
Moreover, all estimators simulated here are provided the same
set of measurements with the same (constant) bias added to the
angular velocity measurements. The time profiles of the attitude
estimate error for each estimator are plotted and compared in
Fig. 2.

Fig. 2 shows some transient behavior in the attitude estima-
tion error with the FTS estimator. However, there are no remark-
able differences in the steady state behavior of all four schemes
compared, and in fact the constant gain observer performs some-
what better than the other schemes. The FTS estimator shows
finite-time convergence of attitude estimate error to zero, and the
settling time for this estimator is comparable to that of the other
filters.
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Fig. 3. Attitude estimation error for low noise levels, with estimator gains
unchanged.
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Fig. 4. Zoomed-in view of the initial transient response of the attitude
estimation error as plotted in Fig. 3.

7.2.2. CASE II: Low noise levels, with estimator gains as before

In this case, the noise signals are considered to be of the same
type as in the previous case (random zero mean bump functions),
but with much smaller amplitudes. The standard deviations in the
attitude measurement noise and angular velocity measurement
noise signals are 0.95° and 2.5°/s, respectively. This corresponds
to having more accurate sensor measurements than in case I. In
order to compare the estimator performances when the estimator
gains are not designed for known sensor noise properties, all the
gains are kept the same as in case 1. The attitude estimation errors
from all estimators are plotted in Fig. 3.

A magnified view of the initial transient behavior of these
observers is depicted in Fig. 4. In this case, as is shown in Fig. 4,
the GAME filter becomes singular after a few time steps, and
the CGO is not able to converge and filter out noise from the
measurements. On the other hand, the FTS and VAE estimators
are stable and very effective at filtering out noise. Moreover,
the FTS estimator guarantees convergence of estimation errors to
small bounds in finite-time. The settling times are also sufficiently
small. Looking at these two cases, one can conclude that although
the GAME and CGO filters perform nicely in the presence of
measurement noise with known noise level, they may not be
stable and their initial gains need to be reset when the noise
signal changes. Therefore, one major downside to these filters is
their dependence on the knowledge of the measurement noise
level. On the contrary, the variational estimators (FTS and VAE)
are robust with guaranteed stability, regardless of the statistics
and level of the noise. Moreover, because of the almost global
finite-time stable property of the FTS estimator, it is robust to
bounded measurement noise in attitude states, as shown in this

paper.
8. Conclusion and future work

This paper presents a nonlinear finite-time stable state es-
timator for rigid body rotational motion. The proposed scheme
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estimates the attitude and constant angular velocity bias vector
from a minimum of two known linearly independent vectors
for attitude, and biased angular velocity measurements made
in the body-fixed frame. The estimation errors including the
bias estimation error are analytically proven to stabilize to zero
from almost all initial conditions in the absence of measurement
errors. The scheme is numerically implemented by a geometric
integrator for a realistic scenario involving measurement errors.
Numerical results validate the theoretical results and show the
robustness of the proposed estimation scheme. The behavior
of this estimation scheme is compared with three state-of-the-
art filters for attitude estimation. Using a realistic set of data
for a rigid body, numerical simulations show that the FTS and
variational attitude estimator (VAE), unlike the GAME filter and
CGO, are always stable and their convergence is not depen-
dent on the type and level of measurement noise. Moreover,
finite-time stability guarantees a faster convergence of estima-
tion errors (Q, §2, 8) to (I, 0,0) in finite-time, and robustness
to measurement noise. Future research shall look into the prob-
lem of discrete-time stable attitude estimation from intermittent
measurements.
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