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Hossein Eslamiat *, Amit K. Sanyal  Clark Lindsay ¥

A discrete time, optimal trajectory planning scheme for position trajectory generation of a vehicle is
given here, considering the mission duration as a free variable. The vehicle is actuated in three rotational
degrees of freedom and one translational degree of freedom. This model is applicable to vehicles that
have a body-fixed thrust vector direction for translational motion control, including fixed-wing and
rotorcraft unmanned aerial vehicles (UAVs), unmanned underwater vehicles (UUVs) and spacecraft. The
lightweight scheme proposed here generates the trajectory in inertial coordinates, and is intended for real
time, on-the-go applications. The unspecified terminal time can be considered as an additional design
parameter. This is done by deriving the optimality conditions in a discrete time setting, which results in
the discrete transversality condition. The trajectory starts from an initial position and reaches a desired
final position in an unspecified final time that ensures the cost on state and control is optimized. The
trajectory generated by this scheme can be considered as the desired trajectory for a tracking control
scheme. Numerical simulation results validate the performance of this trajectory generation scheme used
in conjunction with a nonlinear tracking control scheme.

I. Introduction

This paper considers autonomous online trajectory planning for a specific class of maneuvering vehicles operating
in three-dimensional Euclidean space. It is especially vital to have on-board real-time trajectory planning in cases
where the autonomously operated vehicle must operate in beyond-visual-line-of-sight (BVLOS) conditions and for
operations in cluttered and dynamic environments that are either uncharted or poorly known to the vehicle a priori [1].
Indoor vehicle operations [2], package delivery in urban and suburban areas, monitoring of civilian infrastructures
like bridges and highways, autonomous landing on moving platforms [3], and tracking wildlife in forested areas all
represent applications where the model presented here can be used. In this paper we consider the problem of planning
and producing a time trajectory for a vehicle’s position in a three-dimensional Euclidean space, using a given initial
waypoint and a desired final waypoint in position, and operating over an unspecified time. The position trajectory is
then generated from the two given waypoints that are prescribed in terms of their position vectors. This trajectory
generation scheme is applied to a vehicle that is underactuated, with four independent control inputs for the six degrees
of freedom. The control inputs actuate three degrees of rotational motion and one degree of translational motion in a
vehicle body-fixed coordinate frame. Control of the translational motion is achieved using a single thrust force along a
body-fixed direction vector, while the direction of this body-fixed thrust vector is controlled by regulating the attitude
(orientation) of the vehicle. This actuation model covers a broad spectrum of unmanned vehicles and can be applied to
fixed-wing and quadcopter unmanned aerial vehicles (UAVs), unmanned underwater vehicles and spacecraft.

Past research on trajectory planning can be classified into four types. The first type either decouples time and
geometry, constructs a geometric trajectory, and then parameterizes it in time, e.g. [4, 5], or uses Bezier curves to
create trajectories [6]. The second type utilizes differential flatness of dynamics to generate a trajectory [7]. The third
type uses a high-level trajectory generator in conjunction with a motion primitive generator to choose an optimized
trajectory among different motion primitives [8]. The fourth and final type utilizes artificial neural networks to generate
a trajectory. Examples of this final type are [9, 10] in which we used reinforcement learning to model the relationship
between the local environment and the vehicle’s dynamics in order to plan obstacle-free and smooth trajectories. These
algorithms use preassigned flight times between adjacent waypoints, which means flight times are not considered design
parameters. We improve those algorithms in this paper by considering flight time as an unspecified parameter that
can be optimized to minimize a performance index. Another advantage of the proposed algorithm is its fast response
to changes in waypoint locations. As new waypoints are introduced mid-flight, a new trajectory can be generated
accordingly. Another recent work [11] plans a path that optimizes certain criteria such as fuel efficiency, and is able to
handle a wide range of optimal maneuvers given arbitrary initial and final states relative to a cost function. The method
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Fig. 1 Rigid body model considered for trajectory generation

in [12], similar to ours, uses waypoints to generate a flight trajectory, with focus on reducing computation time by using
algebraic methods to avoid poor local minima and achieve the lowest time consumption possible. Trajectory planning
can also be considered as a smoothing problem [13]; however, this problem is ill-posed [14] and in addition, requires
having all the waypoints at once to create a trajectory, whereas, with on-board applications, the vehicle might need
to generate segments of a trajectory one at a time. Trajectory planning schemes for quadrotor UAVs that satisfy the
body-fixed thrust vector actuation model previously discussed have been treated in the past, for example, in [15]. For
large and rapid maneuvers that go beyond hovering or level flight, control can be achieved using asymptotically stable or
finite-time stable attitude control schemes with a large domain of convergence, as in [16]. Large maneuvers may also
be necessary for obstacle and collision avoidance, as well as to recover from external disturbances that induce large
rotations in the vehicle. In such large maneuver situations, fast online trajectory planning schemes like the one outlined
here become necessary. An example of a previously researched method that allows for quickly re-planning trajectories
is [17]. The method presented here will similarly allow for rapid trajectory correction and will be able to effectively take
into account new waypoints.

In this paper trajectory generation between an initial state and a final state is approached as a discrete-time optimal
control problem where the final time is free. The two main contributions of this paper are: (1) deriving the transversality
condition in a discrete time setting that enables us to consider the final time as an additional design parameter; and (2)
generating an optimal, online trajectory between the initial and final states for a tracking controller to follow. To the best
of our knowledge, the trajectory planning scheme proposed here that derives and solves the transversality condition (for
unspecified flight time) in a discrete time setting, has not been carried out in the past. The contents of this paper are
organized as follows. Section II provides the dynamics model for the underactuated vehicle, with particular emphasis
on the translational dynamics controlled by a single thrust along a body-fixed direction. Both the continuous-time
dynamics and its discretization in time are presented in this section. In section III, the optimal position trajectory
planning problem is posed and solved in discrete time, and the optimality condition corresponding to free terminal
time step is presented. This condition is the well-known transversality condition [18], but derived here in discrete
time. Simulations are presented in Section IV, where we consider the full six degrees of freedom tracking control of
a quadcopter UAV, and show the application of the proposed scheme to trajectory generation followed by trajectory
tracking for this UAV. Finally, the research findings of this paper and possible future work are summarized in section V.

I1. Dynamics Model

A. Continuous Time Dynamics

The rigid body model considered in this paper has four control inputs for the six degrees of freedom. These control
inputs are three control inputs that generate a torque for the three degrees of freedom of rotational motion, and one
thrust along a body-fixed thrust vector as shown in the figure 1. This model is identical to that used in [16, 19]. This
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model can be applied to several unmanned vehicles, and the particular case of a quadrotor UAV is considered in section
IV for numerical results. Pose is the combination of position and orientation of a rigid body and can be represented as:

G = € SE(3), )]

0

where b € R is the rigid body’s position vector expressed in an inertial coordinate frame and R € SO(3) is the rigid
body’s attitude (orientation) expressed as the rotation matrix from inertial frame to body-fixed frame. Without loss of
generality, it is assumed that the thrust vector is along the third body-fixed coordinate frame axis. The translational
dynamics equation of motion is:

my = mges = frs, 2
where m is vehicle’s mass, g is the gravitational acceleration, v € R3 is the translational velocity in inertial frame,
e3 = [0, 0, 117, fry € R? is the control force vector of magnitude f acting on the body, and r3 is the unit vector along
the third axis of the body-fixed coordinate frame, expressed in the inertial frame. Note that r3 is also the third column of
the rotation matrix R, which varies as the rigid body rotates. Equation (2) can be rewritten as:

. 1
v=ge3——frs. 3)
m
The velocity kinematics for the translational motion expressed in inertial coordinate frame is simply:
b=v. 4)
In addition,
v=a and d=gz ®)

where a is acceleration and z is the derivative of acceleration (jerk). Equations (3), (4) and (5) can be considered as the
system equations. We are interested in a continuous snap (4 position derivative) because it is desired for torque level
control. By defining input u = fr3, state space representation of the system can be rewritten from the above equations in
the matrix form, as follows:

03x1
i=Ax+Bu+| 59 |, (6)
3x1
03><l
where
b3xi 03 Iz 03 O3 03
03 03 03 O -l
x=| P eR2 ueRd A=| 0 3 3 B eRr»2 po| W3 | gRI2S 7
a3x1 03 03 03 &3 03
3x1 03 03 03 03 I
subject to

x(Tpr) = xr,, (given) and Ty : free (unspecified),

where T}, is the unspecified terminal time. A trajectory has to be generated online and onboard the vehicle to go from
the given first waypoint at time # = O (without loss of generality), to the desired final waypoint during the free time
duration Ty;. In other words, Ty is an additional control parameter. The problem boils down to creating a C* trajectory,
that is continuous on R!2, for the system (6). The solution of this problem can be obtained with a similar treatment to
that of section 2.7 of [18]. The novelty of this paper is the discrete time approach to trajectory planning with free final
time, and introducing the discrete transversality condition. The discretization facilitates numerical simulation of the
system and possible onboard implementation. Hence, the dynamics expressed as the equation (6) will be discretized.
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B. Discretization of Dynamics

Considering state space system (6), note that ge3 term is a constant that can be neglected for discretization as it can
be compensated directly by the control thrust vector u. For discretization of the continuous time system x = Ax + Bu,
we have

h
A4 =M BT = ( / e’ do).B, (8)
0

and h = t;41 — t;. More details of the above discretization can be found in section 4.2.1 of [20]. Note that A* is zero, so
A4 and B? can be obtained in exact form. Then discretized system can be obtained as:

Xiv1 = A% + Blu;, 9

T

i’ ]T

where x; = [bT € R'? and u; € R3. The trajectory planning problem is explained in the next section.

T T
l'vv ai’Zi

II1. Optimal Trajectory Planning In Discrete Time Setting

The optimal trajectory generation problem consists of constructing a feasible discrete-time trajectory that starts
from the initial waypoint xo and goes to the final waypoint xy,, = xr,,, minimizing a quadratic cost on the states and
the control. Here N, marks the unspecified terminal step. Notice that Ny, in discrete setting is equivalent to T in
continuous setting. Therefore, Ny, the free final step, is the additional control parameter that needs to be selected to
optimize the position trajectory. Additionally, the value of final step N, that gives the optimal trajectory in terms of the
quadratic cost needs not be the minimum. The above problem can be solved to find the control parameter Ny, and
control law u; through the following steps: First, discrete time Lagrangian is defined as:

1
le = z(xiTQ,-xi + uiTRiu,-), (10)
where Q; > 0 and R; > 0 are square matrices of appropriate size. Performance index can be defined as:
Np-1 |
jd = Z le(xi’ ui)h + E(xNM — XTm )TS(XNM — Xy ) (11
i=0

where § is a matrix with appropriate dimensions. By adjusting S, we can tune how hard the constraint enforcing xy,, to
X1, 18.
Now to consider system equation (9), the augmented performance index can be written as:
Np—1 1
T T
%d = Z Lid(xi, ul)h + h/li+1 (Adxi + Bdui - xi+1) + E(XNM - )CTM) S(XNM — XTp, ), (12)
i=0

where 1; € R'? is a vector of co-states, considered as Lagrange multipliers in the following variational development.
As the next step, Hamiltonian can be defined as

HE = AT (A%x; + Bu;) + L2 (13)
Therefore 7, in terms of Hamiltonian is
Np-1 1
T = Y (hHE = hal, xi) + S (= 21, )T (v = ry)- (14)
i=0

One can set the first variation of 7, to zero, to obtain the necessary conditions for optimality. As a result,

dJg4 =0,
Null  ggd AHA AHA
d T T
= ; a G0 Lo+ M o s a0t = AL 0 = 520, i}
+ (xn,, — *1y, )" Sdxn,, =0, (15)
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where dNy, is the difference in Ny, in discrete settings. Note that the term hH ]‘f,Mfl dN)y is evaluated at final
Np-
step only. Total derivative of xy,,, can be written as sum of its partial derivative, dxy,,, and hvy,, dNps (see Fig.2).

Note that vy,, is the discrete equivalent of x, which is in continues setting. Hence, for dxy,,, one can write:

dXNM = 6XNM + thM dNM,

and that leads to
6)CNM = deM — hVNMdNM. (16)
T
) hvn,, AN
’ A f drn,,
TNy, s
NUI A —
"
Nominal path S he
\ o
....... . - —»{ |e—dNu
“' .......... : \
,""" Neighboring path
» N

Nar Nar + dNpy

Fig. 2 x(state) vs N(step)

Figure 2 is the discrete equivalent of Fig 2.7.1 of [18] that depicts the free final time case for continuous time optimal
control. Note that dNj, is an integer, because the index set is a subset of the set of integers. Using equation (16), the

term /liTJrléxm in (15) when i = Nj; — 1 can be written as:
A, 0Ny = AN, dxny, — Ay, hviny, dNyp. (17)
Now, (15) can be rewritten:
Nut ( gHd OH OH?
D0 hS S ox + ——Sup + o84 — AL 61 — 6% xis1
i=0 0x; du; 9 i1 i#Np -1
+ {(xNM - xr,)' S - A4, }deM + h{?f;\’,M_l + AN, YNk }dNM =0. (18)
Np—1

Setting the coeflicient of dN,, to zero gives the condition for finding optimum N, as following:

Ay VN + Hiy = 0. (19)

Na-1

The above equation is "Discrete Transversality Condition", and along with the following optimal trajectory generation
scheme, is the main contribution of this work. Also note that equation (19) is a general result, and can be applied to
discrete control systems represented by equation (9) and subjected to the cost function (11) with free terminal time.
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The necessary conditions for optimality, also found from (18), are as follows:

d
L =0 forall i
aui orall 1
OH; 0 OH; 0, fori#N
- i = YU, Yy [ =Y, ;t >
8%, i X Xi+1 or 1 M

S()CNM - )CTM) = /lNM for i= NM.
The above conditions lead to:
u; = —Ri_l(Bd)T/l,-H (control input), A; = (ADT Nis1 + hOix;  (co-states), xi41 = A%x; + B%u;  (states).

For ease of implementation, in the following paragraph we show how transversality condition can be written in terms of
xn,, and vy,,. Equation (19) can be rewritten in terms of xy,,

1
T T d d T T
/lNMVNM + /]'NM (A XNpog T B MNM_]) + E{XNMleNM-lxNM-l + MNM,IRNM—IMNM—I} =0. (20)

Knowing u; = —=R;'(B9)T A;.1, above equation is rewritten as:

Ay, (VN + Xy, ) + %{xIT\,M_IQNquNMq +(- R;VL_I(B")T@NM)TRNM,] (=R, (BH Ay, )} =0.  (2D)
Using u; = —Ri‘l(Bd)T/lHl again, xy,, , can be written in terms of xp;,, :
XNy = ANy, + Blun,, = Alxy,, - BIRY (B A,
replacing Ayn,, with S(xn,, — x1,,), then we have

xny = A%y, - BYRY. (B S(xn,, — x1y,),

XNy = (A an,, + BIRG, (B S(xny, — x1,,)}- (22)
Substituting x,, , from above and Ay,, by S(xn,, — x7,,), equation (21) can be simplified as:
(xNM - XTwm )TST(VNM + xNM)+

%{{XNM + BdR;]L_l (Bd)TS(xNM - xTM)}T((Ad)il)TQNmfl (Ad)il {xNM + BdR}:IL_I (Bd)TS(xNM - 'xTM)}}+

SRR, (BT SCeny, =, W (B SCainy, = w1, )} = (3)

Equation (23) shows discrete transversality condition in terms of x,, and vy,, and is used to find the final step Ny.
‘We now can continue to find the control law ;. Assuming that the optimal control is in the form u; = k;x; + 7;, the
co-state can be expressed as A; = h(P;x; + n;). Therefore, the optimal control input is:

u; = — R BN (Piixisn +1is1) = —Ri_l(Bd)T(PHl (Adxi + BYu;) + mis1)s
=[R; + (B Pir1 B u; = =B (Piv1A%x; + i),

and that leads to

u; = —[Ri + (B Py BN (BN (Piv1 A% x; + i) (24)

By substituting the expressions for A; = h(P;x; + 7;) into the co-states equation, one obtains:

Pixi + 1 = (AT (Pirixinn +mie1) + Qixi = (AN (P (A9x; + BYu) + mivr) + Qixi, (25)
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then substituting u; from equation (24) leads to
Pix; + ;i = (A {Piy1(A%x; = BY[R; + (B Piyy BT (B (Prv1 A%x; + iet) + it } + Qi (26)
The above equation is true for arbitrary x;, hence
Pi = (AN Py AT+ Qr = (AN Pyt B[R + (B iy BY] ™ (B Pivy AY, 27)

that is true for i # Njs and needs to be solved backwards in time. The remainder of equation (25) gives the expression
for solving 7; as following:

i = AT {Pi1 (=B [R; + (B Piv1 BT (B nist) + mis1} = (ADT{I = Pyt B[R + (BN Pyt BT (B i1,

(28)
that is true for i # Nys and also needs to be solved backwards in time. Finally, for the final waypoint we have:
1 -1
PNM = ZS’ TINy = TSXTM- (29)

After solving P; and 1;, and having them for all instances, system states can be determined by solving system equation
(9) forwards in time. To avoid large transient controls, we use a "forgetting factor", in which Q; and R; can be selected as

Qi=a;Q0 and R; =(k-a)R

where Q > 0 and R > 0 are constant, a; = a(t;), k > 1 is a constant and a(¢) € [0, 1] is monotonically increasing, with
a(tg) = 0 and a(t;) = 1. A choice for a(t) can be non-dimensionalized time:

=1

t) = , 30
@)= = (30)
which satisfies the conditions mentioned above. This helps Llfl to go to zero smoothly.
Noting the ges term in equation (6), thrust force can now be calculated at each step by:
Ji = mlla; - ges]|. (3D

This generated trajectory can be used in conjunction with nonlinear tracking algorithms to create a complete integrated
guidance and control scheme. In following simulations, we show how this is done.

IV. Application to a Quadcoptor UAV tracking
For simulation purposes, we consider a quadrotor UAV model, generate a free-final-time trajectory for it, and then
track the trajectory with position and attitude controllers, as following.

A. Six Degrees of Freedom Tracking Control Simulation

The complete control of a quadrotor UAV has two loops: the outer loop position control (for translational motion)
and the inner loop attitude control (for rotational motion). The attitude should change such that the desired thrust
direction required to follow the position trajectory is achieved. In this work for the inner loop of attitude control, we use
the following controller in equation (32) of [21]:

kH(sx(Q))

=J QT -
’ T T @sr@) "

w(@Q )| + (@1 I (QT Q4 - kzx(Q)) + T (2x(Q) X QT Q)

LQ“P(Q, (,4))

+xkJ( + QT Q) X 25 (Q) — kpsk(Q) — , (32)
K ((U d) ZK( ) psk( ) (\P(Q, w)TLQlP(Q, w))l_l/p
where
Y(Q,w) = w+ kzg(Q),and H(x) = I — wxxr (33)
xtx
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Here 7 is the control torque, J denotes inertia matrix, Q is the attitude tracking error, Q is angular velocity, Q is desired
angular velocity and w is the angular velocity tracking error. The cross product operator matrix: (-)* : R? — so(3) is
given by [22]:

X1 0 —-x3 x
)CX = | X2 =1 X3 0 —X1
X3 —X2 X 0

For the outer loop we utilize a position controller that enables us to generate the desired attitude trajectory for the
attitude tracking controller. For this purpose, we use the following position controller in equation (18) of [21] for the
outer loop:

f= e;FRT(mgeg + Pb+ Ly(Rv = vg) — mg). (34)
Here P, L, € R¥3 are positive definite matrices, b € R? is the UAVs inertial position vector, b = b— by, and by, vg € R3
are the desired inertial position and velocity vectors, respectively.
B. Generating the Desired Trajectory and Its Application in Conjunction with Quadcopter Tracking
To obtain numerical results, the system is simulated using sample values of:
m=4.2 kg, h=001s k=10, g=9.81 ms~2.

This trajectory generation scheme can plan a path through multiple waypoints, even waypoints that are introduced
on-the-flight. Here in simulations, we only show its application to two waypoints in order to better present the details
and the performance of the scheme. The method can be easily repeated between any two adjacent waypoints, in order to
connect multiple waypoints to create a smooth path (since it is minimizing snap). The two position waypoints for the
simulation here are arbitrarily chosen as:

T T
bro=[3 2 1| b =]4 3 3],
Matrices Q and R are tuning parameters and chosen as:
0=55%10"% I}, and R =0.0010 .
Simulating the above sample system in Matlab yields the following value for the optimal number of steps:
Ny = 572.

Considering the step size to be 2 = 0.01s, the above value of Njs corresponds to Ty = h.Npy = 5.72s for the value of
final time. In the following, graphical results of this simulation are presented.

\
\
v, [m
o
kS
»

Time [3] Time [s

Fig. 3 Position vs time Fig. 4 Velocity vs time

Figure 3 shows position of the vehicle as it starts from initial waypoint and comes to the desired final waypoint in 5.72
seconds. Figure 4 shows associated translational velocity components of the vehicle over time.
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Time (s) Tun?‘ (s)
Fig.5 Thrust components vs time Fig. 6 Thrust force vs time

Figure 5 shows the thrust vector components. Note that the third component is larger than the other two due to gravity.
Figure 6 shows reasonable magnitude of thrust needed for the vehicle to realize the generated trajectory in 5.72 seconds.
The proposed generated trajectory can be used in conjunction with a nonlinear tracking scheme, such as the one detailed
in Section IV.A. This leads to an integrated trajectory generation and tracking scheme with simulation results shown in
the following figures, where the vehicle tracks the optimal generated trajectory:

by desired trajectory e by desired trajectory
—--—--b achieved trajectory .| - b achieved trajectory

Z (m)

Fig.7 Tracking the desired trajectoryFig.8 Tracking the desired trajectory

Figures 7 and 8 show the integrated trajectory generation and tracking scheme in the work from different views. The
figures show a scenario where a vehicle takes off and converges to an optimal trajectory obtained by the scheme proposed
in this paper.

Fig. 9 Components of tracking error Fig. 10 Norm of the tracking errors

Figure 9 shows components of position tracking error for the integrated trajectory generation and tracking scheme.
Figure 10 presents the norm of position tracking error and how it converges to zero.

V. Conclusions

A novel real-time and onboard-implementable position trajectory planning scheme for an underactuated vehicle,
with one thrust control input and three torque control inputs, is proposed. This scheme can generate a trajectory from
an initial waypoint to a desired final waypoint in discrete time, while considering the unspecified time duration as an
additional control parameter. The unspecified final time is found by using the proposed discrete transversality condition.
Numerical simulation results show how the trajectory planning scheme works for a given pair of initial and final position
waypoints. This scheme is also numerically simulated in conjunction with a trajectory tracking control scheme for
maneuverable unmanned vehicles, like quadrotor UAVs, for integrated onboard trajectory planning and tracking control.
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