On the Naming of Methods:
A Survey of Professional Developers

Reem S. Alsuhaibani Christian D. Newman

Michael J. Decker

Michael L. Collard Jonathan I. Maletic

Computer Science Sofiware Engineering Computer Science Computer Science Computer Science
Kent State University Rochester Institute of Bowling Green State The University of Akron Kent State University
Prince Sultan University Technology University Ohio, USA Ohio, USA
Riyadh, Saudi Arabia New York, USA Ohio, USA collard@uakron.edu jmaletic@kent.edu
ralsuhai@kent.edu cnewman(@se.rit.edu mdecke@bgsu.edu

Abstract—This paper describes the results of a large (+1100
responses) survey of professional software developers concerning
standards for naming source code methods. The various
standards for source code method names are derived from and
supported in the software engineering literature. The goal of the
survey is to determine if there is a general consensus among
developers that the standards are accepted and used in practice.
Additionally, the paper examines factors such as years of
experience and programming language knowledge in the context
of survey responses. The survey results show that participants
very much agree about the importance of various standards and
how they apply to names and that years of experience and the
programming language has almost no effect on their responses.
The results imply that the given standards are both valid and to a
large degree complete. The work provides a foundation for
automated method name assessment during development and
code reviews.

Keywords—method names, coding standards, styling, naming
conventions

I. INTRODUCTION

“If you have a good name for a method, you do not need to
look at the body” - Fowler et al. [1]

The naming of source code identifiers (e.g., variables, types,
methods, functions, classes, etc.) is a critical issue for software
engineering. It is discussed from day one in introductory
programming courses, and it is argued about daily during code
reviews of commercial and open-source projects alike. Software
engineers make decisions about names constantly. Naming
impacts the readability and comprehension [2-6] of software.
Good names reduce the cost of software maintenance [7,8].
Careful selection of names can convey the high-level meaning
of the task to the developer [9].

While there are many implied and documented standards for
naming, there is no broad understanding of how these standards
are used or accepted by developers. Standards include, but are
not limited to, the allowable words in a name, the grammatical
structure of a name, the number of words in a name, and how
multi-word names are composed. The goal of this work is to
determine if the naming recommendations documented in
software engineering literature reflect actual practice and align
with developer opinion.

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Here, we focus specifically on the names given to methods
in object-oriented software systems. However, much of this also
applies to (free) functions in non-object-oriented systems (or
parts). We focus on methods for several reasons. First, we are
interested in method naming in the context of automatic method
summarization and documentation. Furthermore, different
programming language constructs have their own naming
guidelines. That is, local variables are named differently than
methods, which are named differently than classes [10,11]. Of
these, prior work has found that function names have the largest
number of unique name variants when analyzed at the level of
part-of-speech sequences [12], implying that method names are
more complicated on average than other types of identifiers. We
think that prioritizing a focused survey on method names will
best serve the research community and possibly motivate future
research on other types of identifiers. Lastly, focusing on just
method names makes the survey short enough to be completed
by a larger number of participants.

Our motivation for undertaking the articulation of method
naming standards is to construct automated tools to assess the
quality of method names. These tools will be clearly useful for
developers’ daily naming [13,14], renaming [15,16], and code
review [17] activities. Following standards for naming methods
has a large impact on the quality of software [18,19].
Furthermore, this quality information can be leverage in current
research for automated code summarization [20-23], part-of-
speech tagging [24,25], topic modeling [26], feature location
[27, 28], concept location [29], code search tools [30-32]
identifier splitting [33, 34] and other natural language analysis
tools such as [35].

There are a large number of naming practices which the
research community has derived and suggested to developers.
These recommendations, put together, form common
conventions for naming methods. Given these conventions
derived from the literature, we feel it is necessary to assess its
quality and practicality. As such, we developed a survey to rate
each aspect of the conventions as standards. Additionally, we
feel that professional developers must be the vast majority of the
participant pool in order to have valid and meaningful results.
Surveys are an appropriate empirical strategy to gather data from
a large population [36]. The participants in this survey are a large
sample of software engineering developers. The goal is to find

statistical outcomes about
disagreement participants have.

how much agreement and

Our premise is that the results of the survey will convey
method naming standards that are used in practice and widely
accepted by developers. The work aims to address the following
research questions:

RQ1: To what extent do software professionals support the
method naming standards conveyed in the survey? That is, do
developers agree with each part of the standard. Is the standard
complete?

RQ2: Do years of programming experience impact how
professionals respond to the survey questions? That is, do senior
developers have the same responses as junior developers. Or is
there some change in attitude that comes with experience?

RQ3: Does the programming language used impact how
professionals respond to the survey questions? That is, does the
programming language a developer normally uses impacts how
they name methods?

RQ4: What are professionals’ perceptions of each part of the
method naming standards in the survey? What are the
preferences and barriers concerning each part of the naming
standards?

The contributions of this work are as follows:

e The survey results show that professional developers are
very much in agreement with the method naming
standards. This agreement validates the standards to a
great extent.

e The results also show that the standards are complete to
a great extent. However, the results uncover a couple of
special cases that need to be articulated.

e We also find that years of experience and programming
language knowledge have no impact on how the
participants responded to the survey.

The paper is organized as follows. The next section
describes method naming standards and the related literature on
coding standards. Section III describes the design of the survey.
Section IV describes and discusses the results. Threats to
validity are given in Section V, and Section VI offers
conclusions.

II. STANDARDS FOR METHOD NAMES

We now define the method naming standards in detail. The
standards are developed by examining the related software
engineering literature and existing coding standards. There
exists a wealth of standards and discussions on the topic. We
conducted an in-depth survey of the literature on identifier
naming in general, which subsumes method naming. Some
studies covered multiple naming conventions, while others
focused on just one. We classified all this literature based on the
emergent themes to come up with each standard. We also
examined coding standards for various open-source projects and
organizations to identify any issues related to method naming.
From this body of knowledge, we identified the 10 standards.

Leading industrial professionals Martin [37], Beck [38], and
McConnell [39] insist on the importance of identifier naming
and discuss multiple tips for developers. Pavlutin [40] discusses
some practical function naming conventions and motivates their

importance to code readability. Devopedia [41] also discusses
the advantages of naming conventions and provides an overview
of common naming conventions used in programming. Tan [42]
explains general naming rules he established over the years, and
Piater [43] also provides guidelines on coding standards for
maintainable code.

While not specific to only method names Relf [44]
investigates 21 identifier naming style guidelines that focus on
the typography and length of identifiers with some real-world
examples from Java and Ada to illustrate compliance and non-
compliance. He also investigates the attitudes of industry
software engineers toward the acceptance of these guidelines.
Hilton [45] reviews these guidelines in his blog and provides
some perceptions.

In another general look at identifier naming styles, Butler et
al. [19] investigate 12 style guidelines. Butler [46] also studies
mining Java class identifier naming conventions. He
investigates the structure of Java class names and identifies
common naming patterns. Butler et al. [10] conduct a survey of
the forms of Java reference names and then use the study
outcome to investigate naming convention adherence in Java
references [47]. Armaoudova et al. [48, 49] define source code
Linguistic Antipatterns (LAs) that discuss poor practices in
naming and choosing identifiers and defined a catalog of 17
types of LAs related to inconsistencies.

From this work, we identified 10 core standards that apply
to method names. These standards cover the types of words
used, the grammatical structure, and the overall length of the
method name. Together, they form standards derived through
research. The standards represent a set of guidelines or
heuristics that can be used to assess the quality of a method
name. That is, names that adhere to the standards are, based on
prior research and naming guidelines, most likely reasonable.
Names that fall outside one or more aspects of the standards
need to be reviewed. Each is now defined individually, along
with supporting literature and examples.

A. Naming Style

This standard involves using a consistent naming style of
methods for the entire application. There are two main naming
styles regularly used by developers for names with two or more
words. The two popular styles are camelCase and under_score.
There are variants and other terms for both. The first is
camelCase, where the first letter of each word is capitalized,
starting with the second word. A variant of this is PascalCase,
where the first letter of every word is capitalized. The next is
under_score, which uses an underscore between words. Another
name for this style is snake case. A variant of this is kebab-case
(used in Lisp and Forth), which uses a dash instead of an
underscore.

While there is much discussion on which is the better style,
camelCase or under_score, an in-depth study [50] shows very
little difference between the two in terms of increased or
decreased cognitive load during comprehension. Any
differences appear to be mitigated by training in a particular
style. However, the study does show that camelCase appears to
have a slight advantage for the comprehension of shorter
identifier names. Binkley et al. [51] conducted a study on
recognizing source code identifier names in different naming

styles by programmers and non-programmers. Their results
show that camel casing leads to higher accuracy among all
subjects, but non-programmers stated that camel casing is harder
to visually process. Sharif and Maletic [52] replicated this study
through an eye-tracking experiment to determine if identifier-
naming styles affect code comprehension, as eye-tracking
information can give additional insights into how developers
comprehend different styles. The study results show no
differences in accuracy and time needed to read and detect
correct identifiers for the two styles. Also, this study verifies
[51] participants' claim on camelCase visual effort as eye
tracking captured that subjects are able to recognize identifiers
in the underscore style more quickly. The bottom line is that a
consistent naming style should be defined and used within a
given application.

Some examples that follow one of these standards include:
getFullName(), getScriptState(), call_with_default(),
garbage_collection() and check_static_allocation_size().
Examples that do not follow the standard includes
getfullName(), getscriptstate().

B. Grammatical Structure

Method names with multiple words need to have a
grammatically correct sentence structure (see Fig. 1). For
example, in method names without a preposition, there is a
sequence of words to the left of a head-noun, one of which is a
verb (typically the first word) [12, 53, 54]. That is, the name
should be a grammatically meaningful phrase; the words from
left to right should somehow modify a head-noun. There is
research that discusses the grammatical structure of identifiers
and common grammar patterns, and how words are related.
Caprile & Tonella [55] focus on analyzing the grammar of
function identifiers. They find several patterns for function
identifiers and create a formal grammar of each pattern. While
not all patterns are verb phrases, many contain verb phrases. In
addition, there is a finite set of common, diverse grammatical
structures that convey different types of actions such as
conversion, predicate logic, etc. Thus, they find that there is a
set of specific grammatical structures to method names.

VP
2 N\
VP PP
NP v . S \NP \NP
AN A |]/
s X%

NM N v NM N v N P NM N
next area draw content border perform tests from zip file
nextArea() drawContentBorder() performTestsFromZipFile()

Fig. 1. An example of a noun phrase, a verb phrase, and a verb phrase with a
prepositional phrase for three method name identifiers.

Deisenbock and Pizka [56] discuss naming structure. In part,
they find that identifier names tend to be compound-words,
where the words to the left in the identifier specialize the
meaning of the word that comes to the right, referred to as the
head. They believe that these regularities reveal additional
meaning about the code. Newman et al. [12] explore the
grammatical structure of identifiers by manually annotating a

sample of 1,335 identifier names separated by where they appear
in the code (i.e., function name, class name, etc.). They then
discuss common naming structures for different types of
identifiers based on sequences of part-of-speech tags they refer
to as grammar patterns. Among their findings, they highlight the
ubiquity of noun-adjuncts (nouns used as adjectives) and their
usage in noun and verb phrases to modify the meaning of their
corresponding head-noun. They also highlight several distinct
grammar patterns and how the implementation of a method
influences the interpretation and construction of its name.

C. Verb Phrase

This standard requires that a given method name not only be
grammatically correct (per the previous standard) but also
contain a verb or be a verb phrase (see Fig. 1). Liblit et al. [57]
assert that methods are actions and mathematical functions that
passively compute a result, and therefore, names for such
methods should be a verb phrase. Abebe et al. [58] assert that
method identifiers should start with a verb. They believe that an
identifiers’ grammatical structure should be appropriate for the
specific type of entity it represents; thus, method names should
contain an action. According to Etzkorn et al. [59], a study of
identifiers in C++ code shows that member function names tend
to contain verbs and can often be put in sentence form,
containing a subject and a verb. Fry et al. [60] and Shepherd et
al. [61, 62] studied verb direct object pairs to locate action-
oriented concerns in method names. Shepherd et al. [63]
focused on creating techniques for extracting verbs from method
names, which they used in several natural language processing-
based tools. The Java Language Specification recommends that
method names should be verbs or verb phrases [64].

Some examples that follow this standard include
manage_caching_sizes(), computeProductBlockingSizes() and
get_cached_node(). An example that does not follow the
standard is x_cached_node(), where ‘cached’ is not a past-tense
verb but an adjective to modify the meaning of the head-noun
‘node’. It is not uncommon for some verbs to be used as
adjectives in identifiers [12, 65, 66].

D. Dictionary Terms

This standard requires that the words used in the method
name be actual dictionary terms. That is, the words should be
meaningful natural language terms rather than non-dictionary
terms; sequences of characters that are not in a standard English
or domain dictionary (e.g., using the number ‘2’ to mean ‘to’).
Deisenbock & Pizka [53] argue that poor naming in one part of
the code spoils comprehension in numerous other parts of the
code. Thus, the use of terms that are not defined in a dictionary
makes an otherwise high-quality identifier hard to understand or,
worse, incomprehensible.

An example following the standard includes FindLength(),
and examples that do not follow the standard include abcdefg(),
cccc(), and aa2020().

E. Full Words

This standard requires the use of full words as opposed to
single-letter identifier names. This standard disallows names
such as a, b, x1, x2 as method names. The reasoning for this
standard is that there is a body of research specifically on the
(mis)use of single-letter names. Hofmeister et al. [67] argue that
meaningful, full word identifier names activate context
semantics that allows developers to evaluate code against its
purpose. Lawrie et al. [4] show that better comprehension
occurs when full-word identifiers are used rather than single-
letter identifiers. Lawrie et al. [68] assert that it is important for
the identifier names to clearly communicate the concepts they
represent. Lawrie et al. [69] insist that informative identifiers
are composed of full (natural language) words. Also, they imply
identifier quality correlates to the use of dictionary words and
coherent abbreviations.

An example that follows the standard is dbConnection(). An
example that does not follow it is c() for the same method.

F. Idioms and Slang

The method name should not contain personal expressions,
idioms, or slang. This standard is a special case of both the
dictionary-term and full-word standards. We include it as these
slang terms can be dictionary terms or full words but have no
meaning in the context of the application problem. Using slang
and idioms in programming communities is sometimes referred
to as a cute practice [37]. Cuteness in code often appears in the
form of colloquialisms or slang [37]. Programmers typically use
it for humor and entertainment; however, Martin [37] insists on
choosing clarity over entertainment value.

Examples not following the standard are personal names,
fido(), idioms, cutting_corners(), and slang, CurveBall().

G. Abbreviations & Acronyms

If a method name contains words that are abbreviations or
acronyms, they should be well known or standard.
Abbreviations or acronyms used in method names should be
standard ones used by the organization or domain.

According to Lemire [70], he refers to unfamiliar
abbreviations as evil abbreviations because some abbreviations
are very hard to understand by programmers. In the book on
rules and recommendations for programming in C++, Henricson
[71] asserts that names should avoid abbreviations that are not
generally accepted. Hofmeister et al. [67] claim that shorter
identifier names take longer to comprehend. Schankin et al. [72]
assert that descriptive compound identifier names improve
source code comprehension. Newman et al. [73, 74] discuss
different types of abbreviations and study their distribution in
various software artifacts. They highlight the pervasiveness and
distribution of abbreviations and expansions in these artifacts
alongside discussing the shortcomings and effectiveness of
modern abbreviation expansion techniques. In response to the
negative effect of abbreviations on comprehension, researchers
have looked for ways to automatically expand and understand
the nature of abbreviations in software artifacts. Lawrie and
Binkley [75], Alatawi et al. [76], Corazza [77], and Fry [78] are
examples of such approaches.

Acronyms used in method names should be standard ones
used by the organization or domain. Hill et al. [79], Corazza et

al. [77], and Newman et al. [73] discuss acronyms in source code
and describe them as a name shorting made from the first letters
of each word in the name. Proper uses of acronyms include
standards or protocol names such as URL or SQL.

Examples that follow the abbreviation standard are:
getStr(), pyConnection(), get_algo(), db_connection() and
contain abbreviations for string, python, algorithm and database
respectively. Examples that do not follow the standard are:
repr(), as the programmer cannot be sure about the correct
expansion of this method name. Is it repair()? or
representation()? Another example is getProtoNameNode().
The abbreviation Proto can stand for Protocol or Prototype.
Examples that follow the acronym standard include
GUI_interface(), get URL(), get FIFO(), and DOM_tree().
Examples that do not follow the standard are get_Qwe() and
SendAAAA().

H. Prefix/Suffix

Method names should not contain a prefix or suffix that is a
system-specific term (e.g., subsystem name, library name) or
that represent the type, quantity, or scope (e.g., Hungarian
notation). These are sometimes referred to as preambles
[12]]65], which are a specific subset of prefixes. Since we are
not limiting ourselves to the preamble subset, we use
prefix/suffix.

In languages without namespaces, it is common to add a
prefix or suffix to differentiate subsystems. Thus, in languages
such as C, the use of a prefix/suffix is often unavoidable for this
reason. As such, the standard is not applicable to systems
written in those languages.

Systems written in languages that do support namespaces
(e.g., C++) should not use any prefix or suffix for subsystem
differentiating. In [37], Martin asserts that people quickly learn
to ignore the prefix (or suffix) to see the meaningful part of the
name, and prefixes become unseen clutter and a marker of older
code. That is also true to project and subsystem encodings such
as vis_ (for visual imaging system), which Martin believes
distracts the developer and are redundant.

Hungarian notations prefix identifier names with single
letters that represent type, quantity, or scope. In this context,
Martin [37] believes that names should not include type or scope
information. He argues that prefixes such as m_ or f'are useless
in today’s development environments.

Another downside to using prefixes or suffixes in identifier
names is the difficulty for automated approaches to analyze and
determine which terms should be considered prefixes; simple
frequency count is not enough to identify all preambles (and,
therefore, prefixes) [12].

Examples of names with prefixes or suffixes are
gimpItemGetPath() and swift_stdlib_u_char(), where gimp and
swift are the names of the software in which the method appears.

1. Length

There has been a long debate about the most preferred
method length in programming. “Can we hope to reach a kind
of agreement about the ideal method length in OO software?”
[80]. We believe that there needs to be a fixed maximum
number of words in a method name. While there are exceptions
to this standard, it provides a guideline to developers for the

maximum length of a name. Several researchers discuss the
relationship of identifier length to the descriptiveness of a name.
Schankin et al. [72] perform an experimental study to compare
long and more detailed identifier names against short ones. They
confirm that longer, descriptive identifiers have a positive
impact on code comprehension. Knuth [81] observed that more
descriptive identifiers are a clear indicator of code quality and
comprehensibility. Liblit et al. [57] discuss several
characteristics of the syntax and structure of identifier names.
Among their findings, they discuss the length of identifiers; and
find a high standard deviation between the lengths of identifiers
in different systems, but that name length tends to sit between
~1 and ~5 words on a small sample of large systems. In
refactoring, long method names are a type of code smell [1].

Here is an example from the open-source framework
Mockito (site.mockito.org), written in Java, that contains 15
words:

returnfalseifnosetterwasfoundandifreportnosetterfoundisfalse().

III. SURVEY DESIGN & METHODOLOGY

To design and deploy the survey, we followed Kitchenham’s
[82] guidelines for personal opinion surveys in software
engineering. Thus, we start by identifying the high-level
objectives for our investigation as follows: 1) A general
consensus of what makes a good method name; 2) Developer’s
attitudes of each method naming standard based on years of
programming and programming language background.

A. Survey Design & Delivery

We use Qualtrics (www.qualtrics.com) in the design and
delivery of the survey. Qualtrics is a tool for building,
distributing, collecting, and analyzing participant responses.

The survey has three sections: 1) The introduction with a
brief overview of the survey and an estimated completion time
(10-15 minutes). 2) The ten survey questions (see Table I)
related to each method naming standard. 3) Demographic
questions that collect information about the participants.

B. Design of the Survey Questions

To investigate what professionals think about the standards,
we took each standard and created an initial set of closed and
open-ended survey questions. The aim of each question was to
get feedback from the professional about the applicability of the
standards and how much a participant agrees or disagrees.
These questions contain examples of method names that both
follow and do not follow the standard. They are also given a
Likert scale of strongly agree, agree, disagree, and strongly
disagree. Additionally, to gain more understanding about the
participant’s perceptions of each standard, each standard also
has an open-ended text box asking for comments, thoughts, or
opinions. The survey is anonymous as this increases response
rates [83] and leads to more candid responses. Also, participants
were allowed to skip the questions they do not want to answer.

In developing the questions, we first performed a small pilot
study to evaluate the survey questions. The study included five
expert developers who also provided feedback. The feedback
allowed us to fine-tune the wording of the questions and the
examples for each standard.

TABLE L. METHOD NAMING STANDARDS. EACH PART OF THE
STANDARDS AND THE ASSOCIATED SURVEY QUESTION.

Standard q
Name Survey Question

The method name should use a standard naming
style such as camelCase or underscore_case;
Camel case uses upper case letters for each word.
Underscore case uses " " to separate words.

1 | Naming Style

Grammatical
Structure

The method names with multiple words should be
in a grammatically correct sentence structure.

The method name should always contain a verb(s)
or verb phrase that refers to the behavior of the
method.

3 | Verb Phrase

Developers should use only natural language
dictionary words and/or familiar/domain-relevant
terms.

Dictionary
Terms

The method name should use full words rather
than a single letter to clearly indicate the task of
the method.

5 Full Words

Idioms and
Slang

The method name should not contain personal
expressions, idioms, or unknown slang.

The method name should contain only known or
standard (i.e., recognized by others within the
company) abbreviated terms. A poor abbreviation
is one that has multiple possible expansions,
interpretations or is not typically used within the
system domain.

7 | Abbreviations

The method name should contain only known or
standard (i.e., recognized by others in the
company) acronyms. A poor acronym is one that
has multiple possible expansions, interpretations
or is not typically used within the system domain.

8 | Acronyms

The method name should not contain a
prefix/suffix that is a term from the system. This
standard does not apply to languages such as C
that do not have namespaces.

9 Prefix/Suffix

10 | Length The maximum number of words in a name should

not be greater than (slider provided from 0-15)

C. Demographic Questions

The survey included demographics about the participants.
These questions ask how much they adhere to coding standards
at their workplaces, what languages they are familiar with, and
their years of programming experience. This information helps
us to discover more insights into how professionals from
different backgrounds perceive the standards.

TABLE IL SURVEY DEMOGRAPHIC QUESTIONS

Question Possible Responses

Very Strict, Strict,
No Standards,
Slightly Strict, Not
Strict.

At your place of work, are there strict naming
conventions in their coding standards?

Please give a short description of the naming

coding standards you use. Textbox

C++, Python, Java,
C, C#, JavaScript,
other language.

Which programming language are you familiar
with?

Less than a year, 1 -
2 years, 3 - 4 years,
5 -9 years, 10+
years, prefer not to
say.

How many years of programming experience do
you have?

D. Recruiting Participants

After finalizing the survey questions, we used multiple
means to recruit survey participants. As feedback from software
professionals is needed, we started with a systematic sampling
approach [36] in which we sent personalized email invitations
to software professionals working in large software companies
such as Google, IBM, Intel, and Microsoft. Next, we
individually invited software engineering researchers to
participate, stating the need for expert developers. The invitation
also includes using the snowball sampling technique in which
the invitation asked the professional to forward the invitation to
other professionals. Finally, we reached out to Stack Overflow
co-founder (i.e., Jeff Atwood) as he is interested in coding
standards and has a large social presence in the developer
community. This step is non-systematic [36]; however, it
resulted in sharing the survey with the Stack Overflow
community.

IV. DATA COLLECTION AND ANALYSIS

As stated previously, we use Qualtrics to deliver the survey
and collect the responses. We also use it to analyze and
manipulate the quantitative part of the survey, i.e., closed
questions.

For the open-ended questions (i.e., qualitative analysis), we
use MAXQDA (maxqda.com) for thematic coding. We adopt
an inductive approach for analyzing participants' attitudes in
which themes are emergent while reading and going through
participants' comments. Thematic analysis is a common
mechanism for identifying, analyzing, and reporting patterns
and themes within data [84].

We did an intensive qualitative analysis on the comments to
determine the different perspectives on the method standards.
Fig. 2 shows the steps we take for analyzing the participants'
comments. First, the comments are organized based on years of
experience and programming language knowledge. Then the
comments are scanned over to understand general trends. After
gaining some understanding of the comments, they are assigned
labels (e.g., camel case, readability, testing) of general topics
mentioned. After this process is complete, the list of all labels
is compiled. This label list is used to create a set of themes.
Related comments are all grouped based on labels. The process
also includes negotiating with other researchers about emerging
themes and fine-tuning the themes as necessary.

Yo Qe e Je 8- R

Sorting Scanning Labeling Code List Theming Negotiating

Fig. 2. Steps for analyzing participants’ comments on each standard

One of us was responsible for handling the coding process
between the others and checking for any conflicts or
disagreements. This individual came up with a coding list and
then shared the list and corresponding responses with the others
to ensure consensus. The process included walking through
examples to make sure everybody agreed with the process and
the emerging codes. The process became iterative and after each
coding phase, if conflicts occurred, we discussed alternatives
and came to an agreement about a specific code.

We found that participants often use metaphoric words for
expressing their attitudes; those are also included in our analysis.
Also, during the analysis, analytic memos are used as personal

notes for denoting ideas, interpretations, or unfamiliar
comments.
TABLE IIL PROGRAMMING LANGUAGE USED BY 1164 PARTICIPANTS.
I g Number of Percent_age of Participants
Responses Knowing the Language
C++ 472 40.6%
C 484 41.7%
C# 589 50.7%
Python 635 54.7%
Java 697 50.0%
JavaScript 838 72.1%
Other Language 479 41.2%
Total responses 4194
Avg # of Languages 4

V. RESULTS OF SURVEY

We received a total of 1604 responses to the final survey.
This represents an excellent response for a survey on software
engineering topics. As a comparison, two other recently
published survey results reported 820 responses [85], and
another that had 126 responses [86]. The large number of
responses for our survey, appears to demonstrate that the
developer community is quite interested in this topic.

For the analysis, we filter out incomplete responses and only
consider answers from practitioners with three years of
experience and more. Incomplete responses are the ones in
which the participants did not complete the full survey to the
final question. Additionally, we filter out practitioners with less
than 3 years of experience to exclude responses from non-
professionals (students). There were only a small number (31)
of responses in this category. Thus, the total responses
considered in this work is 1162. The survey was available from
March 13, 2020, until June 2, 2020. With the majority of
responses coming in April. The average mean time to complete
the survey is 15.94 minutes, close to our goal of 15 minutes. Fig.
3 shows the participant counts based on years of experience.

=

M Count

Fig. 3. Total participants according to years of experience

The majority, 70% (804), of the survey participants have
more than 10 years of programming experience. 21% (247)
have five to nine years of experience, and about 9% (111) have
three to four years. Hence, we definitely met our objective to
survey experienced developers.

A survey question instructed the participants to indicate all
programming languages with which they have experience.
Table III shows the programming language background of all
the participants. There is a nice diversity in language

background with between 40% and 50% of the participants
knowing C++, C, Java, C#, and Python. A slightly larger group
(72%) of the participants know JavaScript. Around 40% of
participants responded that they have experience with other
languages not on the list. Of these, PHP, Ruby, and Go are each
known by around 100 participants. Another 35 languages are
mentioned, but none by more than 50 participants (most by less

than 15). On average, participants are familiar with 4
programming languages.
TABLE IV. SURVEY RESULTS
Response Type
. Strongly . Strongly
Question Agree Agree Disagree Disagree
Naming Style 87.20% 11.51% 0.87% 0.43%
Grammatical 3521% 43.51% 19.29% 1.99%
Structure
Verb Phrase 41.50% 43.14% 12.68% 2.67%
Dictionary 73.89% 23.33% 2.52% 0.26%
Terms
Full Words 74.20% 22.69% 2.85% 0.26%
Abbreviations 58.33% 35.16% 5.30% 1.22%
Acronyms 66.03% 29.79% 3.83% 0.35%
Idioms and 51.99% 37.09% 9.79% 1.13%
Slang
Prefix/Suffix 49.34% 39.98% 9.89% 0.79%

The responses to the ten survey questions on each standard
appear in Table IV. Overall, the vast majority of the responses
are in agreement (i.e., Strongly Agree or Agree) for all of the
standards. All are at 80% or more agreement, with many at 90%
or more. Only two standards (i.e., Verb Phrase and Grammatical
Structure) have a notable disagreement. Fig. 5 illustrates the
participants' agreement level in a diverging stacked bar chart.
As the answers to the length question are not on a Likert scale,
the results for this standard appear in a later subsection.

We now discuss the results for each of the standards
separately. The results are also analyzed based on years of
experience and programming language knowledge.
Additionally, we give a qualitative assessment of participant
responses for each standard.

A. Naming Style

This question aims to investigate participants' opinions about
using a naming style such as camelCase or underscore in naming
methods. The participants are very much in agreement (99%) on
using a consistent naming style for methods (TABLE IV. They
support their agreement with the fact that a naming style
promotes readability. There are 105 comments for this standard.
Developers insist that using a consistent naming style is a key
factor when naming methods across a project. Additionally,
developers believe that using a specific naming style is
programming-language dependent, e.g., PascalCase for C#
methods. Those who disagree with this standard argue about

their preferences towards using a specific naming style.
Otherwise, they agree with the standard.

“The naming style should follow language recommended naming
style.” (Participant with 5-9 years of experience)

Several participants mention cases where they prefer using a
particular naming style over another. For example, some
participants state that they like using the underscore naming
style with constants, and some mention that they often see
underscores in test classes containing multiple tests, but not
method names.

“I dislike underscores in method names. Save them for constants”
(Participant with 10+ years of experience)

Naming Style I
Grammatical Structure| B
Verb Phrase i
Dictionary Terms
Full Words I
Idioms and Slang 1
Abbreviations |
Acronyms [
Prefix and Suffix I
20 0 20 40 60 80 100

Percentage

T T T

Strongly Disagree M Disagree No response Agree Strongly Agree Bl

Fig. 4. Participants answers in a diverging stacked bar chart

B. Grammatical Structure

The question for this standard checks professionals’
attitudes towards having a grammatically correct sentence
structure in method names that contain multiple words.
Seventy-nine percent of developers agree that method names
containing multiple words should be in a grammatically correct
sentence structure. Participants who strongly agree on this
standard support their opinion with their belief that grammar
structures motivate readability and comprehension. There are
93 comments concerning this standard. Participants insist that
clarity is the key to constructing method names.

Others generally prefer grammatically correct structures,
but they may break it if the name does not deliver the exact
intent of the task. Some also believe that grouping by a feature
or an entity instead of verbs makes more sense in some cases.
Additionally, participants against this standard argue that not
everybody knows English, so flexibility in this standard is
needed.

“Generally true, except where unusual syntax clears up ambiguity."
(Participant with 10+ years of experience)

C. Verb Phrase

The question for this standard aims to explore developers'
views about requiring a verb(s) or a verb phrase in the method
name, which refers to the behavior of the method. The
participants have an agreement of 85% concerning this standard.
They believe that adopting such a naming practice enhances
understandability.

“The verb gives an idea about the task to be performed by that
method. Help with the semantic.” (Participant with 10+ years of
experience)

When we examined the participants' agreement according to
their years of experience, we find that among programmers with
10 or more years of experience, 84% agreed, and 16% disagreed.
Similarly, for the other two experience groups, there is a 12-14%
disagreement. There are 122 comments for this question.

A number of the comments mention a specific naming case:
how accessor and mutator methods (e.g., getter, setter, property,
predicate) are named. The question is if they need to be a verb
phrase, as many documented standards encourage. In this
regard, Tan [42] feels naming predicates by adding the prefix
check or get is one appropriate way to name Boolean functions.
Piater [43] also share the same view and believe that appending
is or has to predicates is more suitable.

However, several comments from developers who disagree
with this form feel that adding the verb get_, set_, or is_ is no
longer necessary or useful. Thus, they advocate for instead of
getLength() that length() is better, likewise isEmpty () should
be just empty(). As programming languages evolve and change,
so do naming standards. We see this as such a case. The naming
standards are evolving along with how developers interpret
different types of methods. When object-oriented programming
started to become widely used in the 1990s, it was the practice
to use such leading verbs (some languages automatically
generate these types of accessors/mutators with such names).
Clearly, there is a change in perception of how these should now
be named. This perception change most likely reflects the
ubiquitous nature of the accessor/mutator concept.

“I prefer naming a getter without the "get" prefix.” (Participant with
10+ years of experience)

Some participants also mention that the inclusion of verb
phrases depends on the method goal, e.g., command, query,
predicts, etc. Others mention that it is more useful to name the
method after what it returns, not necessarily including an action
verb, so they feel including a verb in the method name is a task-
based practice.

D. Dictionary Terms

This question seeks developers’ opinions about using only
natural language dictionary words and familiar/domain-relevant
terms while naming method names. Dictionary terms are the
clearest way to communicate, and non-dictionary words
negatively impact developers' comprehension. Results on this
question show that 97% of participants agree with this standard.
Participants agree that using dictionary terms supports the
meaningfulness of a method name as well as readability and
comprehension. We received 71 comments concerning this
standard. The majority of comments assure that words chosen in
method names should always be meaningful and descriptive,
and this applies to the project-specific terms as well.

“Not just a known word - it should be a perfect word(s) both by
meaning - I can spend even hours searching through dictionary and
synonym lists for the perfect name.” (Participant with 5-9 years of
experience)

A theme that emerged among participant opinions on using
dictionary terms is to consider common abbreviations and
project-specific terms. Participants who disagree with this
standard only argue about some common abbreviations that can
enhance the searchability across the code base, otherwise they
agree with the standard.

E. Full Words

This question aims at professionals’ attitudes towards using
full words and no single letters in method names. Participants
are in 97% agreement that the name should contain full words
to clearly indicate the task of the method rather than a single
letter. They believe that having full words is a key to supporting
readability, and using single letters in a method name leads to
unreadable code. Developers provided a total of 47 comments
on this question. They believe that single letter method names
do not give a clear indication even for the actual programmer
when he gets back to code after a long time.

“Single letters can easily be misinterpreted.” (Participant with 10+
vears of experience)

F. Abbreviations & Acronyms

Both questions on abbreviation and acronyms target
developers’ beliefs about using unfamiliar shortenings. The
participants are in 94% of agreement that the method name
should contain only known or standard abbreviated terms. 96%
of the survey participants were in agreement that the method
name should only contain known or standard acronyms as long
as they are related to the project and can be interpreted from the
context or explained in a comment. Their rationale is to always
think about other later programmers or newcomers who do not
know much about the project. A total of 109 comments on
abbreviations, 53 comments on acronyms are received.

“Too open for misunderstanding, abbreviation meaning within
business/domain change over time”. (Participant with 10+ years of
experience)

A respondent mention that the auto-complete feature in
editors made this easy, and there is no need for abbreviations.

“No need to abbreviate, all editors have autocomplete.” (Participant
with 10+ years of experience)
Disagreeing responses only insist that the context could play
some role in applying these two standards. Otherwise, they
agree.

“Sometimes there are context-local acronyms that make sense to
exist in a team's codebase” so there is no issue using these acronyms.”
(Participant with 10+ years of experience)

G. Idioms and Slang

This question concerns developers’ beliefs about using
idioms and slang in method names. 89% of participants agree
that the method name should not contain personal expressions,
idioms, or unknown slang. Their main concern is to consider
fellow programmers’ as the use of idiom and slang can
negatively impact their comprehension and understandability
of the code. A total of 71 comments were on idioms and slang.
A few participants who disagree argue that it is a personal
preference practice; unless it is a team project.

“This is personal preference unless the team is distributed and
consists of diverse cultural backgrounds.” (Participant with 10+ years
of experience)

A few comments argue for using unfamiliar and clever
names if it fits the task very well.

“I only slightly disagree, especially in cases where something
clever fits very well”. (Participant with 5-9 years of experience)

In this regard, Martin [37], asserts that if names are too
clever, they are only memorable to people who share the
author’s sense of humor, and only as long as these people
remember the joke.

H. Prefix/Suffix

This question addresses developers’ opinions about using a
prefix or suffix in method names. 89% of participants agreed
that a method name should not contain a prefix or suffix that is
a term from the system. They support their agreement with the
notion of not being repetitive over source code. There is a total
of 62 comments on this standard. Participants generally believe
that not adding a class or namespace name is sensible except for
some cases in which the developer wants to differentiate
between various package embeddings as prefix and suffix help
identify the component the developer is referring to.

"In some cases it helps to identify the component the developer is
referring to." (Participant with 10+ years of experience)

I Length

The purpose of this question is to find out professionals’
preferences on the maximum length of a method name. The
distribution of the responses for this standard is in Fig. 5. The
median and mode are both 5 words. 81% of the responses are 5
+ 2 words. Hence there is very strong agreement among the
participants that method names should be relativity short,
between 3 and 7 words in length.

This result aligns well with research on human short-term
memory. The work of Miller [87] on chunking gives the typical
maximum of human short-term memory at 7 + 2 chunks, where
a chunk is an easy to remember aggregate, in this case a word.
As the number of words in a method name increases, it becomes
harder to remember or differentiate between similar names.

However, it is interesting to note that most IDE’s have
variable name auto-completion tools. As a developer types a
name, a drop-down menu gives a list of possible options for
completion. Therefore, one can surmise that length should
matter less, or at least allow lengths (well) beyond human short-
term memory. Alas, the results contradict this hypothesis to a
large degree. The participants are pretty clear that they prefer
fairly short names even in the presents of auto-completion tools.

We did not collect information about the use of IDEs or auto-
complete by the participants. Thus, no claims can be made about
how name completion impacts standards on the length of
method names. But we can assume that a good number of the
participant have access to such tools and regularly use them to
some extent. Only three participants mention auto-complete in
the context of method name length. All basically state that they
feel the auto-complete allows them to have long names.
However, based on the results, we can only hypothesize that
auto-complete tools may not have as large of an impact on
circumventing the effects of short-term memory. An additional
study(s) is necessary to better understand the impact of auto-
complete.

“Method names should be short but descriptive. They should convey
what it does and nothing more.” (Participant with 10+ years of
experience)

Beyond 8 words, there are few responses until the maximum
number allowed as a response in the survey question. Also,
there are almost no responses below 3 words. There are 159
comments on this standard. Upon inspecting these comments,
we found that people who choose 15 words as the maximum
length argue that test drivers often need long names. That is, the
method that runs a test (or set of tests) of the application needs
to fully describe the test scenario/case.

“Usually ok for tests to break this rule and have long names that
explain what the test does.” (Participant with 10+ years of
experience)

These comments point to a separate naming standard to deal
specifically with test cases. Tests are not a part of a software
application. That is, they are not part of an observable feature of
the system. Rather they are part of the build management
system of the application. Additionally, various unit testing
frameworks have their own naming conventions for each test
case. Hence, we feel that a separate naming standard for
methods that implement testing is clearly warranted and should
be articulated for a project (or organization). The standard for
such methods will be different from methods that implement the
functionality of the application and may need to be quite
descriptive and lengthy [88].

“Test methods have more rules such that they should contain the thing
under test, the key condition being set up, and the expected result.”
(participant with 10+ years of experience)

Given the survey results, it appears that developers do not
want method names to ever exceed 8 words, and more typically
should be no longer than 5 words.

326

350 28.15%

300
246
21.24%
250
195
16.84%
200
150 104
8.98% s 90
7.77%
100 56 648
4.84%
24
3 4 10 g07% 7 Mo,
0.26% 0.35% 0.86% 0.60% 1-21% 0.17% 0.17%
0 - - | I - B _

1 2 3 45 6 7 8 9 10 11 12 13 14 15
Number of Words

Number of Respondents

(O]
o

Fig. 5. Maximum method length preferred by professionals

J. Additional Developer Feedback

In order to cover all the method naming aspects, we asked
the professionals to contribute any other standards they felt
important. We received 247 comments on this topic. After
handling the analysis procedure, we found some interesting
emerging themes that are now discussed.

A number of respondents indicate the importance of
considering the scope of methods while naming, i.e., public
methods and private methods, and, more specifically, when
choosing a naming style.

“Differentiation between public and private with lower uppercase or
underscore.” (Participant with 10+ years of experience)

Another opinion suggests that developers should not repeat
the argument names in the method name, e.g.,
saveFirstName(firstName). Other supportive comments insisted
that programmers should not use Hungarian notation while
naming methods.

“you should never use Hungarian notation, like boolIsValid() or
stringGetName().” (Participant with 10+ years of experience)

Other comments suggest that programmers should not use
the return type in the method name.

“no type hint in method name (example: make_string_hello_world
vs. make_hello_world)” (Participant with 10+ years of experience)
Many comments insist that method names should not be
prefixed by the class name when used in a class. They also
recommend avoiding methods with names that can be confused
with each other (e.g., find() and search() in the same class.

VL

Let us now address each research question in the context of
the findings and survey results.

A. ROI

To what extent do software professionals support the method
naming standards conveyed in the survey?

DISCUSSION

Based on Fig. 4, we see that there is broad support of the
presented method naming standard. The only standards with
substantial disagreement deal with the grammatical structure
and verb phrase. Much of the disagreement has to do with
special cases (e.g., accessor/mutators). Even then, the
agreement on these two standards is near 80%.

Given the diversity of the developer’s background
knowledge of programming language, it also appears that this
result generalizes to most programming languages.

100,

Agreement in Percentage
22288 EL S
E&EZE S £ X2

82, }
80,
l
3-4 Years

5-9 Years 10+ Years

Years of Experience

Fig. 6. Participants agreement across all the standards by experience level

B. RQ2

Do years of programming experience
professionals respond to the survey questions?

impact how

We examine the responses to determine if years of
programming experience impact how professionals respond to
the survey questions. We found that years of experience does
not have any impact on the response to the survey questions
concerning each standard. Fig. 6 shows a box plot on the
agreement percentages across all the standards by experience
level. It is noticeable that the mean and the median of all the
group participants are consistent.

10

We ran a chi-square test on each individual question and
found no significant difference in all but one of the questions.
There is a significant difference (0.04 p-value) in how more
experience developers responded to the abbreviation standard.
They are more comfortable with using abbreviations and
disagreed with the standard a bit more than less experienced
developers. As developers gain experience, we hypothesize that
they become familiar with an increasing set of abbreviations and
grow to prefer these abbreviations over their expansions. The
question of when an abbreviation should be expanded is open,
but this result implies that developer experience should be taken
into account in future research on the topic.

C. RO3

Does the programming language used
professionals respond to the survey questions?

impact how

Fig. 7 gives a boxplot of the agreement percentages for each
question across programming language experience. This shows
that there are very few outliers from the standard deviation for
each question. That is, everyone answers in a very similar
manner no matter their language experience. There are outliers
for three standards. Developers with Java and C# experience are
outliers (small amount) for naming style. C programmers are
outliers (small amount) for dictionary terms. Lastly, there is an
outlier for verb phrases, which is from the other languages’
category.

100 -
-

9% o - &
& 94 E
)
£ 92
£ % T
& gg =]
8
= 86
£ 84
2 !
&8 R
Z
80
78 -
76
74 . .
Naming Grammatical Verb Dictionary Full Abbreviations Acronyms Idioms Prefix
Style Stucture Phrase Terms Words and Slang or Suffix
The Method Naming Standards
Fig. 7. Agreement percentages across programming languages per standard.

What are professionals’ perceptions of each part of the
method naming standard in the survey?

Professionals generally seem to accept the standards based
on the comments and responses. We received at least 45
comments for each of the standards in the survey. These
comments went through an in-depth qualitative analysis to draw
our final conclusions. Upon finishing the survey, developers
mention that they learned new method naming guidelines and
welcomed such guidelines as they believe that is a positive step
towards clarity and simplicity. They insist that consistency is a
key factor in method naming.

The survey also includes a demographic question asking
how strict naming conventions are in the participant’s
workplace. This question is to determine the general prevalence
of naming standards in organizations and how strict they are
adhered to. The results show that approximately 60% of the
participants either do not have strict naming standards or do not
have any standards at all. Based on the provided comments, we

found that a number of developers rely on code reviews to keep
track of their naming and flag poor and inconsistent naming
choices. There were no particular preferences or barriers
concerning the standards except the fact that some standards
need a little flexibility, as we have discussed.

Additionally, these results show that about half of the
organizations the participants work for do not strictly enforce a
method naming standard. However, from responses, many have
an informal standard that they mostly adhere. We surmise that
this lack of enforcement may, in part, be because of the costs of
manual checking. An automated tool will reduce the cost of
conformance checking.

VIL

As our primary instrument is a survey, we carefully
formulated the questions considering the guidelines provided in
[89]. To address construct validity [90], we performed a set of
discussions with a focus group of experts in the field to
determine the quality of the questions and the survey objectives.
Several question drafts were examined and fine-tuned before
publishing the final survey to ensure that the questions were
clear. The standards in the survey are obtained from the
software engineering literature and published coding standards.
We address the internal consistency of the survey by only taking
into consideration questions that examine method naming
quality. Internal validity is another concern we addressed by
considering experts' evaluation for each provided question and
taking into account any feedback that helps achieve the main
objective of the study. Since the results convincingly show a
lack of correlation, internal validity is high.

THREATS TO VALIDITY

With regards to external validity, we did not directly collect
geolocation data. However, we did collect IP addresses, which
gave us country information. From this we determined that
participants came from 72 different countries, mainly from
Europe and North America. Thus, we feel that the results are
generalizable to a broad population. Group discussion is also
used during the qualitative analysis for the comments to support
the credibility of the results.

VIIL

The results of a survey to assess professional developer's
opinions on method naming standards is presented. The survey
data is publicly available for replication studies on GitHub at
[91]. The dataset is also available on Mendeley Data Archive
Repository at [92].

https://github.com/KSU-SDML/Method-Naming-Standards-Artifact

Overall, developers are very much in agreement with the
given standards. From the written responses, we gleaned that

developers support clearly articulating method naming
standards and feel it positively impacts code comprehension.

CONCLUSIONS

The results of the survey provide valuable implications. The
first is that the method naming standards are valid or at least
widely accepted by developers. The second is that the standards
are complete (with the addition of guidelines for access/mutators
and test drivers). Both are important in that we can use these
standards to construct automated tools that assess the quality of
method names with a high degree of accuracy. With the use of
natural language processing tools and dictionaries, all aspects of
the standard can be implemented in such a tool to a large degree.

11

Such a tool would be invaluable for developers and during code
reviews. Such a tool could also lead to a recommendation
system for method names.

ACKNOWLEDGMENT

We thank all the participants for their responses. We also
thank all who forwarded our request to others at their
organization. Our acknowledgments also extend to the
reviewers of this work for their valuable feedback. This work
was support in part by a grant from the US National Science
Foundation (CRII 18-50412).

REFERENCES

M. Fowler, K. Beck, J. Brant, W. Opdyke, D. Roberts, and E. Gamma,
Refactoring: Improving the Design of Existing Code, 1 edition.
Reading, MA: Addison-Wesley Professional, 1999.

A. A. Takang, P. A. Grubb, and R. D. Macredie, “The effects of
comments and identifier names on program comprehensibility: an
experimental investigation,” J Prog Lang, vol. 4, no. 3, pp. 143-167,
1996.

T. A. Corbi, “Program understanding: Challenge for the 1990s,” /IBM
Syst. J., vol. 28, no. 2, pp. 294-306, 1989.

D. Lawrie, C. Morrell, H. Feild, and D. Binkley, “What’s in a Name?
A Study of Identifiers,” in /4th IEEE International Conference on
Program Comprehension (ICPC’06), 2006, pp. 3—12.

D. Lawrie, C. Morrell, H. Feild, and D. Binkley, “Effective identifier
names for comprehension and memory,” Innov. Syst. Softw. Eng., vol.
3, no. 4, pp. 303-318, 2007.

S. Fakhoury, Y. Ma, V. Arnaoudova, and O. Adesope, “The effect of
poor source code lexicon and readability on developers’ cognitive
load,” in Proceedings of the 26th Conference on Program
Comprehension - ICPC ’18, Gothenburg, Sweden, 2018, pp. 286-296.
B. W. Boehm, Software Engineering Economics, vol. 197. Prentice
Hall PTR, 1981.

L. Erlikh, “Leveraging Legacy System Dollars for E-Business,” IT
Prof., vol. 2, no. 3, pp. 17-23, May 2000.

J. 1. Maletic and A. Marcus, “Supporting program comprehension
using semantic and structural information,” in Proceedings of the 23rd
International Conference on Software Engineering. ICSE 2001, 2001,
pp. 103—-112.

S. Butler, M. Wermelinger, and Y. Yu, “A Survey of the Forms of
Java Reference Names,” in 2015 IEEE 23rd International Conference
on Program Comprehension, Florence, Italy, 2015, pp. 196-206.

E. W. Host and B. M. @stvold, “The Java Programmer’s Phrase
Book,” in Software Language Engineering, vol. 5452, D. Gasevic, R.
Lammel, and E. Van Wyk, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009, pp. 322-341.

C. D. Newman ef al., “On the generation, structure, and semantics of
grammar patterns in source code identifiers,” J. Syst. Softw., vol. 170,
p. 110740, Dec. 2020.

S. Nguyen, H. Phan, T. Le, and T. N. Nguyen, “Suggesting natural
method names to check name consistencies,” in Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering,
Seoul South Korea, 2020, pp. 1372-1384.

K. Liu et al., “Learning to Spot and Refactor Inconsistent Method
Names,” in 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE), Montreal, QC, Canada, 2019, pp. 1-12.
V. Arnaoudova, L. M. Eshkevari, M. D. Penta, R. Oliveto, G.
Antoniol, and Y.-G. Gueheneuc, “REPENT: Analyzing the Nature of
Identifier Renamings,” IEEE Trans. Sofiw. Eng., vol. 40, no. 5, pp.
502-532, May 2014.

A. Peruma, M. W. Mkaouer, M. J. Decker, and C. D. Newman,
“Contextualizing rename decisions using refactorings, commit
messages, and data types,” J. Syst. Sofiw., vol. 169, p. 110704, Nov.
2020.

M. Chouchen, A. Ouni, M. W. Mkaouer, R. G. Kula, and K. Inoue,
“WhoReview: A multi-objective search-based approach for code
reviewers recommendation in modern code review,” Appl. Soft
Comput., vol. 100, p. 106908, Mar. 2021.

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

https://github.com/KSU-SDML/Method-Naming-Standards-Artifact

[18]

[19]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

S. Butler, M. Wermelinger, Yijun Yu, and H. Sharp, “Exploring the
Influence of Identifier Names on Code Quality: An Empirical Study,”
in 2010 14th European Conference on Software Maintenance and
Reengineering, Madrid, 2010, pp. 156-165.

S. Butler, M. Wermelinger, Y. Yu, and H. Sharp, “Relating Identifier
Naming Flaws and Code Quality: An Empirical Study,” in 2009 16th
Working Conference on Reverse Engineering, Lille, France, 2009, pp.
31-35.

D. Binkley ef al., “Task-Driven Software Summarization,” in 2073
IEEE International Conference on Software Maintenance, Eindhoven,
Netherlands, 2013, pp. 432-435.

S. Haiduc, J. Aponte, and A. Marcus, “Supporting program
comprehension with source code summarization,” in Proceedings of
the 32nd ACM/IEEE International Conference on Software
Engineering-Volume 2, 2010, pp. 223-226.

S. Haiduc, J. Aponte, L. Moreno, and A. Marcus, “On the use of
automated text summarization techniques for summarizing source
code,” in Reverse Engineering (WCRE), 2010 17th Working
Conference on, 2010, pp. 35-44.

P. Rodeghero, C. Liu, P. W. McBurney, and C. McMillan, “An Eye-
Tracking Study of Java Programmers and Application to Source Code
Summarization,” IEEE Trans. Softw. Eng., vol. 41, no. 11, pp. 1038—
1054, Nov. 2015.

W. Olney, E. Hill, C. Thurber, and B. Lemma, “Part of Speech
Tagging Java Method Names,” in 2016 IEEE International
Conference on Software Maintenance and Evolution (ICSME), 2016,
pp. 483-487.

C. D. Newman, A. Preuma, and R. AlSuhaibani, “Modeling the
Relationship Between Identifier Name and Behavior,” in 2019 IEEE
International Conference on Software Maintenance and Evolution
(ICSME), Cleveland, OH, USA, 2019, pp. 376-378.

R. Rehurek and P. Sojka, “Software framework for topic modelling
with large corpora,” in Proceedings of the LREC 2010 Workshop on
New Challenges for NLP Frameworks, 2010.

E. Hill, A. Bacchelli, D. Binkley, B. Dit, D. Lawrie, and R. Oliveto,
“Which Feature Location Technique is Better?,” in 2013 IEEE
International Conference on Software Maintenance, 2013, pp. 408—
411.

B. Dit, L. Guerrouj, D. Poshyvanyk, and G. Antoniol, “Can better
identifier splitting techniques help feature location?,” in Program
Comprehension (ICPC), 2011 IEEE 19th International Conference
on, 2011, pp. 11-20.

S. L. Abebe and P. Tonella, “Natural Language Parsing of Program
Element Names for Concept Extraction,” in 2010 IEEE 18th
International Conference on Program Comprehension, Braga,
Portugal, 2010, pp. 156-159.

E. Hill, M. Roldan-Vega, J. A. Fails, and G. Mallet, “NL-based query
refinement and contextualized code search results: A user study,” in
2014 Software Evolution Week - IEEE Conference on Software
Maintenance, Reengineering, and Reverse Engineering (CSMR-
WCRE), Antwerp, Belgium, 2014, pp. 34-43.

M. Roldan-Vega, G. Mallet, E. Hill, and J. A. Fails, “CONQUER: A
Tool for NL-Based Query Refinement and Contextualizing Code
Search Results,” in 2013 IEEE International Conference on Software
Maintenance, Eindhoven, Netherlands, 2013, pp. 512-515.

E. Hill, L. Pollock, and K. Vijay-Shanker, “Improving source code
search with natural language phrasal representations of method
signatures,” in 2011 26th IEEE/ACM International Conference on
Automated Software Engineering (ASE 2011), Lawrence, KS, USA,
2011, pp. 524-527.

E. Enslen, E. Hill, L. Pollock, and K. Vijay-Shanker, “Mining source
code to automatically split identifiers for software analysis,” in 2009
6th IEEE International Working Conference on Mining Software
Repositories, 2009, pp. 71-80.

E. Hill, D. Binkley, D. Lawrie, L. Pollock, and K. Vijay-Shanker, “An
empirical study of identifier splitting techniques,” Empir. Softw. Eng.,
vol. 19, no. 6, pp. 1754-1780, 2014.

M. Allamanis, E. T. Barr, C. Bird, and C. Sutton, “Suggesting
accurate method and class names,” in Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering - ESEC/FSE
2015, Bergamo, Italy, 2015, pp. 38—49.

12

[36]

[37]
[38]
[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

T. Punter, M. Ciolkowski, B. Freimut, and I. John, “Conducting on-
line surveys in software engineering,” in 2003 International
Symposium on Empirical Software Engineering, 2003. ISESE 2003.
Proceedings., Rome, Italy, 2003, pp. 80-88.

R. C. Martin, Ed., Clean code: a handbook of agile sofiware
craftsmanship. Upper Saddle River, NJ: Prentice Hall, 2009.

K. Beck, Implementation patterns. Upper Saddle River, NJ: Addison-
Wesley, 2008.

S. McConnell, Code Complete, 2nd ed. Redmond, Wash: Microsoft
Press, 2004.

D. Pavlutin, “Coding like Shakespeare: Practical Function Naming
Conventions,” Thoughts on Frontend development. [Online].
Available: https://dmitripavlutin.com/coding-like-shakespeare-
practical-function-naming-conventions/#comments. [Accessed: 14-
Aug-2020].

mohanjo and arvindpdmn, Devopedia for developers by developers.,
06-Jan-2020. [Online]. Available: https://devopedia.org/naming-
conventions. [Accessed: 15-Aug-2020].

R. Tan, “The art of naming variables,” Hacker Noon, 30-Jul-2018.
[Online]. Available: https://hackernoon.com/the-art-of-naming-
variables-52f44de00aad. [Accessed: 15-Aug-2020].

J. Piater, “A Guide to Coding Style.” 14-Jan-2005.

P. Relf, “Achieving Software Quality through Source Code
Readability.” 01-Jan-2004.

P. Hilton, “Paper review: Achieving Software Quality through Source
Code Readability,” 2006. [Online]. Available:
https://hilton.org.uk/blog/relf-2004-source-code-readability.
[Accessed: 17-Feb-20201].

S. Butler, “Mining Java class identifier naming conventions,” in 2012
34th International Conference on Software Engineering (ICSE),
Zurich, 2012, pp. 1641-1643.

S. Butler, M. Wermelinger, and Y. Yu, “Investigating naming
convention adherence in Java references,” in 2015 IEEE International
Conference on Software Maintenance and Evolution (ICSME),
Bremen, Germany, 2015, pp. 41-50.

V. Arnaoudova, M. Di Penta, G. Antoniol, and Y.-G. Gueheneuc, “A
New Family of Software Anti-patterns: Linguistic Anti-patterns,” in
2013 17th European Conference on Sofitware Maintenance and
Reengineering, Genova, 2013, pp. 187-196.

V. Arnaoudova, M. Di Penta, and G. Antoniol, “Linguistic
antipatterns: what they are and how developers perceive them,”
Empir. Sofiw. Eng., vol. 21, no. 1, pp. 104-158, Feb. 2016.

D. Binkley, M. Davis, D. Lawrie, J. I. Maletic, C. Morrell, and B.
Sharif, “The Impact of Identifier Style on Effort and Comprehension,”
Empir. Softw. Eng., vol. 18, no. 2, pp. 219-276, Apr. 2013.

D. Binkley, M. Davis, D. Lawrie, and C. Morrell, “To camelcase or
under_score,” in 2009 IEEE 17th International Conference on
Program Comprehension, 2009, pp. 158-167.

B. Sharif and J. I. Maletic, “An Eye Tracking Study on camelCase and
under_score Identifier Styles,” in 2010 IEEE 18th International
Conference on Program Comprehension, Braga, Portugal, 2010, pp.
196-205.

F. Deisenbock and M. Pizka, “Concise and Consistent Naming,” in
13th International Workshop on Program Comprehension (IWPC’05),
St. Louis, MO, USA, 2005, pp. 97-106.

E. W. Hoest and B. M. @stvold, “Debugging Method Names,” in 23rd
European Conference on ECOOP 2009 — Object-Oriented
Programming, Genoa, Italy, 2009, pp. 294-317.

C. Caprile and P. Tonella, “Nomen est omen: analyzing the language
of function identifiers,” in Sixth Working Conference on Reverse
Engineering (Cat. No.PR00303), 1999, pp. 112—-122.

F. Deissenboeck and M. Pizka, “Concise and consistent naming,”
Softw. Qual. J., vol. 14, no. 3, pp. 261-282, Sep. 2006.

B. Liblit, A. Begel, and E. Sweetser, “Cognitive Perspectives on the
Role of Naming in Computer Programs,” presented at the 18th
Workshop of the Psychology of Programming Interest Group, 2006.
S. L. Abebe, S. Haiduc, P. Tonella, and A. Marcus, “Lexicon Bad
Smells in Software,” in 2009 16th Working Conference on Reverse
Engineering, 2009, pp. 95-99.

L. H. Etzkorn, L. L. Bowen, and C. G. Davis, “An Approach to
Program Understanding by Natural Language Understanding,” Nat.
Lang. Eng., vol. 5, pp. 1-18, 1999.

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

(73]

[74]

Z.P. Fry, D. Shepherd, E. Hill, L. Pollock, and K. Vijay-Shanker,
“Analysing source code: looking for useful verb-direct object pairs in
all the right places,” IET Softw., vol. 2, no. 1, pp. 27-36, Feb. 2008.
D. Shepherd, L. Pollock, and K. Vijay-Shanker, “Case Study:
Supplementing Program Analysis with Natural Language Analysis to
Improve a Reverse Engineering Task,” in Proceedings of the 7th ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for Software
Tools and Engineering, New York, NY, USA, 2007, pp. 49-54.
David Shepherd, Zachary P. Fry, Emily Hill, Lori Pollock, and K.
Vijay-Shanker, “Using natural language program analysis to locate
and understand action-oriented concerns,” presented at the 6th
international conference on Aspect-oriented software development,
2007, pp. 212-224.

D. Shepherd, L. Pollock, and K. Vijay-Shanker, “Towards supporting
on-demand virtual remodularization using program graphs,” in
Proceedings of the Sth international conference on Aspect-oriented
software development - AOSD ’06, Bonn, Germany, 2006, p. 3.

J. Gosling, B. Joy, G. L. Jr. Steele, G. Bracha, A. Buckley, and G. L.
S. Jr, The Java Language Specification, Java SE 8 Edition, 1 edition.
Addison-Wesley Professional, 2014.

E. Hill, “Integrating Natural Language and Program Structure
Information to Improve Software Search and Exploration,” Ph.D.
Thesis, University of Delaware, Newark, Delaware, USA, 2010.

S. Gupta, S. Malik, L. Pollock, and K. Vijay-Shanker, “Part-of-speech
tagging of program identifiers for improved text-based software
engineering tools,” in Program Comprehension (ICPC), 2013 IEEE
21st International Conference on, 2013, pp. 3—12.

J. C. Hofmeister, J. Siegmund, and D. V. Holt, “Shorter identifier
names take longer to comprehend,” Empir. Softw. Eng., vol. 24, no. 1,
pp. 417-443, Feb. 2019.

D. Lawrie, H. Feild, and D. Binkley, “Syntactic Identifier Conciseness
and Consistency,” in 2006 Sixth IEEE International Workshop on
Source Code Analysis and Manipulation, Philadelphia, PA, USA,
2006, pp. 139-148.

D. Lawrie, H. Feild, and D. Binkley, “Extracting meaning from
abbreviated identifiers,” in Source Code Analysis and Manipulation,
2007. SCAM 2007. Seventh IEEE International Working Conference
on, 2007, pp. 213-222.

D. Lemire, “Evil abbreviations in programming languages,” Daniel
Lemire’s blog, 2015. [Online]. Available:
https://lemire.me/blog/2015/04/06/evil-abbreviations-in-
programming-languages/. [Accessed: 05-Feb-2020].

M. Henricson, Programming in C++: Rules and Recommendations.
Ellemtel Telecommunication Systems Laboratories, 1990.

A. Schankin, A. Berger, D. V. Holt, J. C. Hofmeister, T. Riedel, and
M. Beigl, “Descriptive compound identifier names improve source
code comprehension,” in Proceedings of the 26th Conference on
Program Comprehension - ICPC ’18, Gothenburg, Sweden, 2018,
pp- 31-40.

C. D. Newman, M. J. Decker, R. S. Alsuhaibani, A. Peruma, D.
Kaushik, and E. Hill, “An Empirical Study of Abbreviations and
Expansions in Software Artifacts,” in 2019 IEEE International
Conference on Software Maintenance and Evolution (ICSME),
Cleveland,OH.

C. Newman, M. J. Decker, R. S. AlSuhaibani, A. Peruma, D. Kaushik,
and E. Hill, “An Open Dataset of Abbreviations and Expansions,” in
2019 IEEE International Conference on Software Maintenance and
Evolution (ICSME), Cleveland, OH, USA, 2019, pp. 280-280.

13

[75]

(76l

[77]

[78]

[79]

(80]

(81]

(82]

[83]

(84]

(85]

(86]

(87]

(88]

(89]
[90]

[91]

[92]

D. Lawrie and D. Binkley, “Expanding identifiers to normalize source
code vocabulary,” in Software Maintenance (ICSM), 2011 27th IEEE
International Conference on, 2011, pp. 113-122.

A. Alatawi, W. Xu, and J. Yan, “The Expansion of Source Code
Abbreviations Using a Language Model,” in 2018 IEEE 42nd Annual
Computer Software and Applications Conference (COMPSAC), 2018,
vol. 02, pp. 370-375.

A. Corazza, S. Di Martino, and V. Maggio, “LINSEN: An efficient
approach to split identifiers and expand abbreviations,” in Software
Maintenance (ICSM), 2012 28th IEEE International Conference on,
2012, pp. 233-242.

Z. Fry, “Improving Automatic Abbreviation Expansion within Source
Code to Aid Program Search Tools,” 2008.

E. Hill et al., “AMAP: automatically mining abbreviation expansions
in programs to enhance software maintenance tools,” in Proceedings
of the 2008 International Working Conference on Mining sofiware
Repositories, 2008, pp. 79-88.

W. Cunningham, “Extract Method,” 21-Nov-2011. [Online].
Available: http://wiki.c2.com/?ExtractMethod. [Accessed: 28-Aug-
2020].

D. Knuth, “Selected Papers on Computer Languages,” Stanford,
California: Center for the Study of Language and Information (CSLI
Lecture Notes, no. 139), 2003.

B. A. Kitchenham and S. L. Pfleeger, “Personal Opinion Surveys,” in
Guide to Advanced Empirical Software Engineering, F. Shull, J.
Singer, and D. 1. K. Sjeberg, Eds. London: Springer London, 2008,
pp. 63-92.

P. K. Tyagi, “The effects of appeals, anonymity, and feedback on mail
survey response patterns from salespeople,” J. Acad. Mark. Sci., vol.
17, no. 3, pp. 235-241, Jun. 1989.

V. Braun, V. Clarke, and G. Terry, “Thematic Analysis,” in
Qualitative Research in Clinical and Health Psychology, P. Rohleder
and A. C. Lyons, Eds. London: Macmillan Education UK, 2015, pp.
95-113.

C. Brindescu, M. Codoban, S. Shmarkatiuk, and D. Dig, “How do
centralized and distributed version control systems impact software
changes?,” in Proceedings of the 36th International Conference on
Software Engineering, Hyderabad India, 2014, pp. 322-333.

S. McKee, N. Nelson, A. Sarma, and D. Dig, “Software Practitioner
Perspectives on Merge Conflicts and Resolutions,” in 2017 IEEE
International Conference on Software Maintenance and Evolution
(ICSME), Shanghai, 2017, pp. 467-478.

G. A. Miller, “The magical number seven, plus or minus two: Some
limits on our capacity for processing information,” Psychol. Rev., vol.
63, no. 2, pp. 81-97, 1956.

J. Wu and J. Clause, “A pattern-based approach to detect and improve
non-descriptive test names,” J. Syst. Sofiw., vol. 168, p. 110639, Oct.
2020.

F. J. Fowler, Survey research methods, 4th ed. Thousand Oaks: Sage
Publications, 2009.

M. S. Litwin and A. Fink, The survey kit. 7: How to measure survey
reliability and validity, 4. print. Thousand Oaks, Calif.: Sage, 1997.
R. S. AlSuhaibani, C. D. Newman, M. J. Decker, M. L. Collard, and J.
1. Maletic, “Method Naming Standards Artifact,” GitHub Repos.,
2021. https://github.com/KSU-SDML/Method-Naming-Standards-
Artifact

R. S. AlSuhaibani, C. D. Newman, M. J. Decker, M. L. Collard, and J.
1. Maletic, “Method-Naming-Standards-Survey-Dataset,” Mendeley
Data, vol. 1,2021. http://dx.doi.org/10.17632/5d7vx88sph.1

	I. Introduction
	II. Standards for Method Names
	A. Naming Style
	B. Grammatical Structure
	C. Verb Phrase
	D. Dictionary Terms
	E. Full Words
	F. Idioms and Slang
	G. Abbreviations & Acronyms
	H. Prefix/Suffix
	I. Length

	III. Survey Design & Methodology
	A. Survey Design & Delivery
	B. Design of the Survey Questions
	C. Demographic Questions
	D. Recruiting Participants

	IV. Data Collection and Analysis
	V. Results of Survey
	A. Naming Style
	B. Grammatical Structure
	C. Verb Phrase
	D. Dictionary Terms
	E. Full Words
	F. Abbreviations & Acronyms
	G. Idioms and Slang
	H. Prefix/Suffix
	I. Length
	J. Additional Developer Feedback

	VI. Discussion
	A. RQ1
	B. RQ2
	C. RQ3
	D. RQ4

	VII. Threats to Validity
	VIII. Conclusions
	Acknowledgment
	References

