Using Grammar Patterns to Interpret Test Method Name Evolution

Anthony Peruma®*, Emily Huf, Jiajun Chen*, Eman Abdullah AlOmar*,
Mohamed Wiem Mkaouer*, Christian D. Newman™
*Rochester Institute of Technology, Rochester, NY, USA
tTufts University, Medford, MA, USA
iStony Brook University, Stony Brook, NY, USA
axp6201 @rit.edu, emily.hu@tufts.edu, jiajun.chen.2@stonybrook.edu, eman.alomar @mail.rit.edu,
mwmvse @rit.edu, cnewman @se.rit.edu

Abstract—It is good practice to name test methods such that
they are comprehensible to developers; they must be written
in such a way that their purpose and functionality are clear
to those who will maintain them. Unfortunately, there is little
automated support for writing or maintaining the names of
test methods. This can lead to inconsistent and low-quality test
names and increase the maintenance cost of supporting these
methods. Due to this risk, it is essential to help developers in
maintaining their test method names over time. In this paper,
we use grammar patterns, and how they relate to test method
behavior, to understand test naming practices. This data will be
used to support an automated tool for maintaining test names.

I. INTRODUCTION

In software, test methods names are constructed to describe
both the entity that is being tested as well as actions taken by
the test [1]. The name of a test is important for the same reason
production method names are important; they help developers
understand the purpose of the method. Further, these names
can be used by automated approaches to analyze/understand
test methods and automatically generate code for the test
methods. Prior research indicates that test method names have
a different structure than production method names [1], [2],
but understanding how they are similar or different is still
a problem that has not been sufficiently addressed. Prior
studies on method naming focus on detecting linguistic anti-
patterns [3], method naming bugs [4], and a multitude of
naming/renaming practices [5]-[10], but do not differentiate
between production and test method naming structures. For
this reason, the concepts discussed in these papers may not
fully generalize to test method names. This will hinder our
ability to improve and support test method name quality both
in the case where they are manually written by developers or
automatically generated by tools. It is important to consider
the unique structure of test method names to complement and
increase the impact of prior work by taking into account the
unique structure and purpose of test method names.

We begin addressing this problem by studying the evolution
of method name structure and semantics in test suites by,
primarily, analyzing the sequence of part-of-speech (POS)
tags, called grammar patterns [7], associated with the method’s
name. The purpose of this type of analysis is to understand
how the semantics behind the test method name changes
and how these semantics correlate with changes to the actual
testing behavior, as defined in the code. POS tags are obtained

by splitting an identifier name into its constituent words
and then annotating the split identifier manually. A grammar
pattern provides us with a template-like sequence of POS tags,
which are an abstract representation of an identifier’s meaning.

One problem with analyzing identifier names is that it is
difficult to automatically determine the meaning of words in
an identifier and how these words interact with one another.
It is even more challenging to take this meaning and use
it to understand how it influences, or is influenced by, the
behavior of the code. Grammar patterns allow us to perform
this analysis more efficiently by broadly categorizing words
into their corresponding POS; this allows us to relate words
together and, also, we can relate different POS tags with
certain types of code behavior [7]. The goal of this paper
is to understand how test method names are structured, how
they evolve in structure and meaning, and how the struc-
ture/meaning of these names relate to statically-verifiable code
behavior. The data obtained in this study will be used to
facilitate test name recommendation and appraisal. We answer
the following research questions:

RQ1: Based on the grammar patterns, how are test
methods typically structured, how does this structure
evolve, and how does it compare to previously-defined
naming patterns? This question helps us understand the
common grammar patterns latent in test method names, how
they change over time, and how they are related to the code’s
behavior. We use this data to 1) understand the relationship
between code behavior and grammar patterns, 2) compare our
findings with prior work that taxonomizes test names at a
coarser level; allowing us to determine whether our finer-grain
analysis creates more and/or different patterns, and 3) compare
against production name grammar patterns to help us pinpoint
the differences between test and production naming structures.

RQ2: How are changes to the grammar pattern related
to changes in the semantic meaning of the corresponding
method name? Grammar patterns provide a way for us to
learn the relationship between words, which is more granular
than prior approaches, without comparing their specific defi-
nitions. This question explores how changes to the grammar
pattern relate to changes in the meaning of a method name
using a taxonomy, first defined by Arnaoudova et al. [10].

RQ3: What are the most common term changes, and
what is the relationship between the added term and

removed term? In this research question, we look at the most
frequent, concrete changes to words when a test method is
renamed without using grammar patterns. The purpose of this
is to give us an understanding of how these concrete changes
are related to the changes we identify when using grammar
patterns and to provide us more information about how these
concrete names, and their evolution, relate to code behavior.

The contributions of this study are as follows: (1) a manually
annotated dataset of test method grammar patterns (available
on our website [11]), (2) new test name patterns and trends,
increasing our understanding of the relationship between test
name semantics and implementation, and (3) discussion of
how test names evolve structurally and semantically.

II. EXPERIMENT DESIGN

Depicted in Figure 1 is an overview of our experiment
design. We explain, in detail, each activity of our study in
the subsequent subsections. Furthermore, the dataset utilized in
this study is available on our project website [11] for extension
and replication purposes.

Projects: The projects in our study consist of 800 open-source
Java projects hosted on GitHub. These projects belong to a
curated dataset of engineered software projects, synthesized by
the Reaper tool [12]. The projects in this dataset utilize soft-
ware engineering practices such as documentation, testing, and
project management. Not only do we clone each repository, but
we also extract commit level metadata by enumerating over the
commit log of each project. The metadata we extract includes
the timestamp of the commit, the author of the commit, and
the files associated with each commit.

Refactorings: We utilize RefactoringMiner [13] for mining the
rename refactoring operations from each project in our dataset.
RefactoringMiner iterates over the entire commit history of
a project in chronological order and compares the changes
made to Java source code files in order to detect refactorings.
RefactoringMiner is a state-of-the-art tool with a precision of
98% and a recall of 87% [14], [15]. Furthermore, we conduct
our experiments on the entire commit history of the project
(and not on a release-by-release comparison).

Test Suites: To identify test suites in the projects, we follow an
approach similar to [16]. We first extract all Java source files
(i.e., files with extension ‘.java’) that underwent a refactoring.
In this study, we focus on projects utilizing the JUnit testing
framework [17]. Next, using JavaParser [18], we parse the Java
files by building an abstract syntax tree for each source file.
We mark a file as a unit test file if the file contains JUnit
import statements (i.e., org. junit.* or junit.«) and a
test method. For a file to contain a unit test method, the method
should have an annotation called @Test (JUnit 4), or the
method name should start with ‘test’ (JUnit 3). In total, we
detected 319,108 unit test files, out of which only 12,010 test
files had undergone a Rename Method refactoring.

Research Question Analysis: For our research questions,
we make use of the data mined/extracted by the prior ac-
tivities. The activities involved in answering each research

question involve a combination of manual analysis (including
data annotation) and quantitative analysis using custom-built
tools/scripts. We detail our activities when addressing each
research question in Section III, when reporting our results.

III. EXPERIMENT RESULTS

In this section, we report on the findings of our experiments.

RQ1: Based on the grammar patterns, how are test methods
typically structured, how does this structure evolve, and how
does it compare to previously-defined naming patterns?

In this RQ, we examine the POS associated with the old
and new names to identify grammar patterns that are specific
to test methods. We answer this research question with three
sub-RQs. The first sub-RQ looks at the frequently occurring
grammar patterns that occur in test method names, while the
second sub-RQ compares common grammar prefix patterns
reported by prior studies, on test (by Wu and Clause [2]) and
production (by Newman et al. [7]) method names, with find-
ings from our dataset. Finally, the third sub-RQ examines how
the POS changes when the method is renamed. The goal of this
RQ, and therefore the sub-RQs, is to identify patterns in the
way test method identifiers and their grammar patterns evolve
through renames to understand how we can take advantage of
this evolution in future research to provide developers with
useful feedback about their renaming practices.

Approach: To understand the POS tags that constitute a
method name in a unit test file, two authors manually an-
notated a statistically significant sample of renamed methods.
In total, 632 test method rename instances (i.e., the old and
new names) were manually analyzed. The analyzed sample
represents the original set of 12,010 renamed methods, with a
99% confidence level and a 5% confidence interval. Similar to
prior research [7], our annotation process considered 10 En-
glish POS tags— noun (N), determiner (DT), conjunction (CJ),
preposition (P), noun plural (NPL), noun modifier/adjectives
(NM), verb (V), verb modifier/adverbs (VM), pronoun (PR),
and digit (D). Our annotation process consisted of three
stages— the annotation stage, the review stage, and the dis-
cussion stage. In the first stage, each annotator annotated a set
of 316 rename pairs of method names. The annotator would
first split the old and new method names into their individual
terms before annotating each term in the old and new names.
Following the annotation process, we conducted a review
stage. In this stage, the annotated datasets were exchanged
between the annotators for review. If the reviewer did not
agree with a specific annotation, the instance was marked for
discussion. Finally, in the discussion stage, the annotator and
reviewer discussed and looked at resolving conflicts. Instances
where there was no consensus were discarded. During the
entire process, the annotators had access to the source code
and commit diff of the file containing the renamed method to
refer. In total, we discarded 17 instances, leaving us with 615
annotated instances for our analysis.

S O
N
- -

800 engineered
open-source
Java projects

Clone

repositories operations

Mine refactoring

—p

Detect test
suites

Research Question
Analysis

Fig. 1: Overview of our experiment design.

TABLE I: Top five frequent grammar patterns for old and new names.

Grammar Pattern Count Percentage
Old name grammar pattern
V NM N 41 6.67%
VN 27 4.39%
V NM NM N 25 4.07%
V VNMN 22 3.58%
\% 20 3.25%
Others 480 78.05%
New name grammar pattern
V NM N 44 7.15%
VN 29 4.72%
V NM NM N 29 4.72%
v 17 2.76%
NM N 14 2.28%
Others 482 78.37%

RQ 1.1: What are the most common grammar patterns before
and after a rename?

For this sub-RQ, we look at the frequently occurring grammar
patterns for test methods in the annotated dataset (i.e., 615
method renames). These patterns are the complete/full gram-
mar patterns for the names of test methods. Table I shows the
top five patterns for old and new names, independent of one
another. Below, we elaborate on common grammar patterns.

V NM+ N is also known as a verb phrase pattern; a phrase
composed of a verb followed by a noun phrase. Typically, the
verb represents the action to be applied to a head-noun that
exists within the same phrase; typically the rightmost noun.
In test methods, we observe that the term ‘test’ frequently
represents the verb. Developers utilize the noun modifier (i.e.,
adjective) to specify characteristics or context around the entity
being tested (i.e., the entity under test). An example of this
pattern is the test method testStringEncryption [19].
The term ‘test’ represents the verb or action of the method.
The term ‘Encryption’ is the head-noun or the entity under
test, while the term ‘String’ represents the noun-modifier;
descriptive of the entity under test.

The next two patterns: VN and V'V NM N are both derivative
verb phrases, where V N is a verb phrase with no adjectives
and VV NM N is a verb phrase with an extra verb. Again,
the first V is typically the word ’test’ or a related term (e.g.,
can, should; we discuss this later). An example of the V N
pattern is testParser [20], the action is ‘test’, while the
term ‘Parser’ represents the object the action is applied to.

The last pattern is V: This pattern occurs more frequently in
test methods than production methods. In production code,
these methods have generic names (e.g., ‘sort’) [7] since they
tend to represent generic functionality. However, in test code,

the methods falling in this category are part of a test fixture!
(i.e., a setup or teardown method). For example, the setup
method is utilized by developers to initialize the environment
for the test methods in the test suite [21].

As part of our analysis, we also look for patterns be-
tween the terms in the method’s name and statements in
the method’s body. These observations we encounter can
be beneficial to static analyzer based code quality tools.
These include using the ‘Assert.fail’ method when the
method name contains the term ‘fail’ or ‘failure’ (e.g.,
failPrefixMissing in [22]). Further, the use of the
terms ‘true’ and ‘false’ in the method’s name is very
likely to be associated with using the methods ‘assertTrue’
and ‘assertFalse’ in the method’s body, respectively (e.g.
testUntilTrueDefinitionOnReducedPath in [23]).
Based on results by Newman et al. [7] and our study, verb
phrases (e.g., V NM+ N) are the most common grammar
pattern for method names regardless of whether they are test or
production names. Thus, in this sub-RQ, we find no significant
difference in the most frequent test and production method
grammar patterns. However, we also found that approximately
39.29% of test method grammar patterns are unique (i.e., they
only occur once); in contrast to 24.72% of unique production
method grammar patterns [7]. This difference implies that
there may be a more diverse population of patterns in test
methods. We address this in the next sub-RQ.

RQ 1.2: How do grammar patterns in test methods compare
to defined naming patterns for test and production methods?
While our findings from the first sub-RQ show us that there
are a small number of very frequent grammar pattern which
are common to both test and production methods, it also
indicates that there may be a difference in the diversity of
these patterns. Because we want to understand what grammar
patterns tell us about the similarity and differences in test and
production methods, we use this sub-RQ to explore common
grammar pattern prefixes for test methods; instead of only
looking at the full grammar pattern as we did in the prior
sub-RQ. By loosening the constraint to allow partial (i.e.,
prefix) grammar patterns, we aim to understand the diversity
of grammar patterns in test methods.

To this end, we compare the catalog of test method name pat-
terns formulated by Wu and Clause [2] against our annotated
dataset, and also examine the occurrence of these patterns in
production method names discussed by Newman et al. [7].

A test fixture is utilized by developers to eliminate duplicate code and
ensure a fixed environment for the tests.

TABLE II: Occurrence of test naming patterns in test and production code.

of Old & New

% of Test Method

of Production

9,
Wu and Clause’s Grammar Test Method Instances Preserved Method Example
Test Pattern Name Pattern
Instances After Rename Instances
Is and Past Principle Phrase V V+ 353 62% 6 E:esf:Get‘Act}ons [24]
test” and ‘Get’ are verbs
Dual Verb Phrase VV N+ 52 46% o CestFindResourceByName [25]
test’ and ‘Find’ are verbs, while ‘Resource’ is a noun
Verb Phrases o testFormUploadLargerFile [26]
With(out) Prepended Test VNV 29 67% 3 ‘test’ is a verb, while ‘Form’ is a noun and‘Upload’ is a verb
. -, testUidFetchBodyPeek [27]
Divided Duel Verb Phrase VNV N+ 2 0 0 ‘test’ and ‘Fetch’ are verbs, while ‘Uid’ and ‘Body’ are nouns
Noun Phrase N 5 0 3 r‘nalln, [28]
main’ is a noun
Verb With Multiple Nouns Phrase =~ VN N N - - 0 Not observed in our dataset of annotated test methods

While we compare to Wu and Clause’s work, their goals were
somewhat different. Their patterns are primarily prescriptive;
creating templates that developers should use to improve test
names. Our work is descriptive; attempting to examine the
structures latent in test names while not prescribing what
developers should use. Even so, the patterns Wu and Clause
create are based on testing patterns they observed, and so it
is appropriate to relate our patterns to theirs. The difference
between our patterns and theirs can be seen in Table II. The
leftmost column contains Wu and Clause’s pattern names. To
its right is another column showing the grammar pattern that
corresponds with Wu and Clause’s named patterns. Wu and
Clause abstract away some detail (i.e., the tail of our grammar
patterns) to necessarily and effectively discuss general naming
patterns and their semantics. In this paper, we keep these
details, which causes several of our patterns to fit into a single
one of Wu and Clause’s patterns due to being derivative of a
high-level pattern they already identified. However, this helps
us understand how some of the granular differences that do not
appear in Wu and Clause’s work affect test name semantics.

In Table II, we also show the frequency of Wu and Clause’s
patterns in our data, the number of production methods with
the corresponding pattern, and the percentage of these patterns,
which were conserved after a rename was applied. Where
applicable, the ‘+’ symbol, in Table II, indicates that other
POS tags precede and/or follow the pattern. One thing to
highlight about this table is that we did not find the ‘Verb With
Multiple Phrases’ pattern in our dataset, which corresponds to
a grammar pattern of V N N N. Part of the reason for this is
likely because we used a different tagset than Wu and Clause,
who do not appear to use noun modifiers (NM). However,
we did not want to assume their tagset and did not find a
definition for the tagset they used in their study. Based on
our understanding of their patterns, V N N N for them is the
same as V NM NM N for our grammar patterns. Also, though
we report the frequency at which our patterns match Wu and
Clause’s, it is important to remember that the tagsets in our
studies may not completely match up. This does not matter
for our study; we are not trying to determine the legitimacy
or frequency of their test patterns. Instead, our work is aiming
to find patterns which Wu and Clause may have overlooked
and to add further legitimacy to their findings.

The grammar pattern prefixes we find are mostly derivatives
of those found by Wu and Clause. However, there are several
grammar patterns in our dataset that differ in interesting ways.
We discuss these now.

V V N P+: This pattern is similar to Wu and Clause’s
‘Dual Verb Phrase’ pattern. The primary difference is
the presence of a preposition. For example, in the name
testReadFileFromClasspath, ‘test’ and ‘Read’ are
verbs, ‘File’ is a noun, and ‘From’ is a preposition [29].
Approximately 43% of the renames contained the prefix in the
old and new names. Some of the common prepositions utilized
by developers include ‘of’, ‘with’, and ‘to’. Prepositions show
a relationship between words, such as when and where things
are related to each other. The preposition in this pattern is
important because it identifies the relationship between the
noun phrases on either side of it. We can use the preposition
to assess the quality of a name based on which preposition is
used, and whether the behavior of the test supports the use of
the provided preposition. For the example above, using static
analysis, we can check for the use of a file read operation
that leverages the classpath. Normally, this might be difficult,
but there is a finite number of prepositions in English (i.e.,
developers do not create new prepositions on the fly), meaning
the behavior they describe is generally well-defined and finite.
N V+: This pattern consists of a noun followed by a verb
(e.g., in projectClosed, ‘project’ is a noun, and ‘Closed’
is a verb [30]). Looking at the set of production methods, we
observe ten instances of methods with this prefix pattern. From
our annotated dataset of test methods, we observe 22 rename
instances of this prefix. Additionally, approximately 64% of
the renames contained the prefix in the old and new names.
+VM+: While not strictly a prefix grammar pattern, we include
this observation in our findings since 1) verb modifiers have
not been discussed at length in prior literature, 2) we found
several patterns containing adverbs in our dataset, and 3)
it is possible to use some of our observations about nam-
ing and implementation practices based on the presence or
absence of certain adverbs. We start with an example: in
the name test_get_NotExisting, ‘Not’ is an adverb
[31]). We encounter 86 rename instances containing one
or more adverbs in the name. Furthermore, we notice that
developers utilize the same adverb from the old name in

TABLE III: Top five frequently occurring pairs of complete grammar
patterns for renamed unit test methods.

Rename Grammar Pattern

Old Pattern New Pattern Count Percentage
V NM N V NM N 14 2.28%
VNMNMN VNMNMN 9 1.46%
\" \" 7 1.14%
VN VN 7 1.14%
V NM N V NM NM N 7 1.14%

Other Patterns 486 92.85%

the new name when performing a rename of the method
78% of the time. Additionally, the top three terms associ-
ated with an adverb are ‘not’ (26 instances), ‘when’ (25
instances), and ‘exactly’ (5 instances). When combined with
static code analysis, our observation becomes useful as it
helps in appraising the name of an identifier. For instance,
when examining the source code, we observe that method
names containing the adverb ‘not’ are typically associated with
some form of null based checking (e.g. use of ‘assertNull’ in
the method test_get_NotExisting [31] and the use of
‘assertNotNull’ in the method deleteindexNotExists
[32]). Finally, looking at production methods, we encountered
seven instances of methods using this POS within its name.

+DT+ : Our rationale for the analysis of determiners is
similar to our analysis of the +VM+ pattern. Our dataset
contains 72 instances that contain determiners in either the
old or new name. From this set, there are 42 instances
where the developer uses the same determiner in the old
and new name (e.g., the term °‘All’ is preserved in the
rename findAllWithGivenIds — findAllWithIds
[33]). Regarding terms, the top three popular determiners
are ‘the’, ‘no’, and ‘all’. In terms of static code analysis,
we observe that the term ‘all’ frequently co-occurs with
collection-based data types in the method body (e.g., the use of
‘List<Long>’ in the method testExecuteAll [34]). The
static analysis accuracy can be further improved by incorpo-
rating Peruma et al. [35] findings, specifically the findings on
collection-based data types and singular/plural term changes.
Using grammar patterns, we have confirmed the existence of
several naming patterns introduced by Wu and Clause. In
addition, we identify patterns that were not identified in Wu
and Clause’s original set of patterns. The patterns we present
are not frequent in production method names based on prior
research, indicating that they are specific to test method names.

RQ 1.3: What are the most common grammar patterns before
and after a rename?

In this sub-RQ, we examine the evolution of grammar patterns
(i.e., the change in the grammar pattern when a method is
renamed). In summary, our annotated dataset of 615 rename
instances contained 168 (or approximately 27.32%) rename
instances that did not show a change in grammar (i.e., the old
and new grammar patterns were the same). Represented in
Table III are the top five frequently occurring complete gram-
mar pattern pairs. However, looking at the number of instances
associated with each pair, we observe a low count (the most
being 14 instances). Furthermore, our dataset contained 446

instances of grammar pattern pairs that occurred only once.
This phenomenon (i.e., a wide variety of grammar patterns)
highlights the diversity of our dataset and, therefore, impacts
our analysis of rename pairs. Therefore, for the same purpose
as RQ 1.2 we use prefix patterns to perform our analysis.
We extracted frequently occurring pairs of rename prefixes for
patterns where either the old or new name consists of prefixes
of length two, three, four, or five. From this data, we show the
top three frequently occurring pairs in Table IV; the complete
listing is available on our website [11].

From these tables, we make a couple of observations. The
first is that renames do not typically change the POS tag
of a word. Even when a word is changed, it is still the
same type (i.e., at the POS level). Further, these renames
follow the typical verb phrase method naming grammar pat-
tem V NM N — V NM N. For example, in commit [19],
when renaming the method testStringEncryption —
testStrongEncryption, the POS is preserved even
though terms in the name are changed; the terms ‘String’ and
‘Strong’ are considered as noun modifiers in this instance.
The second observation comes from Table IV. As the prefixes
in this table increase, the original set of grammar prefixes
remain the same. For instance, consider the two prefix pattern
V'V — V'V, when the prefix pattern increases to three, the new
pattern still retains the original prefix pattern: VVNM — V'V
NM. This observation remains consistent as prefixes increase
to five prefixes. This shows that grammar pattern prefixes for
test method names are consistent across renames. The primary
takeaway from this sub-RQ is that grammar patterns are stable.

Summary. Using prefix grammar patterns of method
renames, we obtained many interesting pattern changes
to analyze. We performed this analysis in the context of
prior work on test name templates. Our analysis confirms
a number of the test name templates and also shows the
existence of a few patterns that do not match up to any
template provided in prior work. Particularly, patterns
that include determiners, prepositions, and adverbs. We
find that they have special, oftentimes implementation-
oriented meaning in test method names. Finally, in RQ
1.3, we find that grammar pattern prefixes are stable; they
do not change very often during rename activities.

RQ2: How are changes to the grammar pattern related to
changes in the semantic meaning of the corresponding method
name?

Approach: To determine the semantic change a name under-
goes during a rename, we utilize a rename taxonomy defined
by Arnaoudova et al. [10] and utilized in prior identifier
rename studies [5], [6], [35] on our annotated dataset. This
taxonomy helps us categorize renames into two categories—
renaming form and semantic change. The renaming form looks
at the terms added and removed to determine the complexity
of the rename— simple, complex, reordering, and formatting.
A rename is simple if only one term is added or removed.

TABLE 1V: Top two frequently occurring pairs of two, three, four
and five prefix grammar patterns for renamed unit test methods.

Rename Prefix Grammar Pattern

Old Pattern New Pattern Count Percentage

Two Prefix Pattern
VvV VvV 142 23.51%
V NM V NM 103 17.05%
VN VN 39 6.46%
Other Patterns 320 52.98%

Three Prefix Pattern
V VNM V VNM 55 9.79%
V NM N V NM N 36 6.41%
V NM NM V NM NM 29 5.16%
Other Patterns 442 78.65%

Four Prefix Pattern
VVNMN V VNMN 24 4.96%
V NM NM N V NM NM N 19 3.93%
V V NM NM V VNM NM 14 2.89%
Other Patterns 427 88.22%

Five Prefix Pattern
VVNMNMN VVNMNMN 10 2.75%
VVNMNP VVNMNP 9 2.48%
VVNMNMN VNMNMN 4 1.10%
Other Patterns 340 93.66%

TABLE V: Top five frequently occurring rename semantic updates for
pairs of complete grammar patterns.

Rename Grammar Pattern

Old Pattern New Pattern Result Count Percentage
V NM N V NM N Change 10 2%
VDDD VDDD Preserve 6 1%
VNMNMN VNMNMN Change 6 1%
VN V NM N Narrow 5 1%
V NM N NM N Broaden 5 1%

Other Patterns 583 95%

A complex change occurs if more than one term is added
or removed. Reordering is when two or more terms switch
positions. Finally, a formatting change occurs if the developer
only makes a change in case or adds/removes a separator or
number. In terms of semantic change categories, a rename
can either preserve or modify the meaning of the name. A
modification to a name can change, narrow, broaden, add or
remove the meaning of the name.

From our set of 615 annotated instances, we observe 291 (or
approximately 47%) of the instances had a simple change,
while 261 instances (or approximately 42%) had a complex
change. From the semantic category, as depicted in Figure
2, we observe 255 (or approximately 41%) of instances had
a change in meaning, while the narrowing and broadening
category each had approximately 18%. These findings are in
contrast to prior research [5], [6], which shows that the ma-
jority of renames are of simple form and narrow in meaning.
The prior studies utilize datasets comprising of mined rename
refactoring operations of test and production source code files
in Java projects. Looking at the set of renames categorized
under preserve, we observe that the majority of these renames
are due to developers either adding or removing numbers or
underscore characters to/from the old name or performing a
change of case (e.g., test_13 — test13 [36]).

Change

Broaden
Remove

Add

Narrow Preserve

Fig. 2: Proportion of semantic updates to 615 annotated test methods.

TABLE VI: Frequently occurring rename pairs of prefix patterns for
different semantic categories.

Rename Grammar Pattern Semantic Count Percentage
Old Pattern New Pattern Type g
Two Prefix Pattern
VvV VvV Change 70 28.46%
V NM V NM Change 50 20.33%
VN VN Change 15 6.10%

Other Change Patterns 111 45.12%

\"AY% \"AY% Preserve 20 22.99%
VvV NM V NM Preserve 14 16.09%
VN VN Preserve 13 14.94%
Other Preserve Patterns 40 45.98%

VvV VvV Add 7 30.43%
vV NM V N\M Add 4 17.39%
NV NV Add 2 8.70%
Other Add Patterns 10 43.48%

\"AY% V NM Remove 7 23.33%
\"AY% \"AY% Remove 4 13.33%
VN VN Remove 2 6.67%
Other Remove Patterns 17 56.67%

VvV V NM Broaden 19 17.27%
VvV NM NM N Broaden 9 8.18%
vV NM V NM Broaden 9 8.18%
Other Broaden Patterns 73 66.36%

\'"AY% \"AY Narrow 32 29.63%
vV NM V NM Narrow 24 22.22%
VN V NM Narrow 8 7.41%
Other Narrow Patterns 44 40.74%

Three Prefix Pattern

V VNM V VNM Change 30 13.16%
V NM N V NM N Change 21 9.21%
V NM NM V NM NM Change 17 7.46%
Other Change Patterns 160 70.18%

V VNM V VNM Preserve 11 14.67%
V NM N V NM N Preserve 7 9.33%
VDD VDD Preserve 6 8.00%
Other Preserve Patterns 51 68.00%

V NM N VNM N Add 2 8.70%
V NM N V NM NM Add 2 8.70%
N NM N NM P Add 1 4.35%
Other Add Patterns 18 78.26%

V VNM V NM NPL Remove 3 10.00%
V VNM V NM N Remove 2 6.67%
DTNMNM NM NM N Remove 1 3.33%
Other Remove Patterns 24 80.00%

V NM NM V NM N Broaden 8 7.69%
V VNM V NM N Broaden 7 6.73%
VvV VNM V NM NM Broaden 7 6.73%
Other Broaden Patterns 82 78.85%

V VNM V VNM Narrow 11 10.78%
V NM N V NM NM Narrow 6 5.88%
VNV NM N Narrow 5 4.90%
Other Narrow Patterns 80 78.43%

Examining the change in meaning instances, 208 (or 33.82%)
of the instances show an unrelated relationship between the
old and new names. For example, in renaming testLog
— testEigenSingularValues [37], there is no se-
mantic relationship between the swapped terms. Approx-
imately 7.15% instances contained more than one type
of relationship between the old and new names. For ex-
ample, in renaming testDeserializeExpandCharge
— testDeserializeWithExpansions [38], we ob-
serve an addition and removal of terms as well as a
change in plurality. Finally, three (or 0.49%) instances
exhibited an antonym relationship as in case of re-
naming the method shouldAcceptRaxProtocols —
shouldRejectRaxProtocols [39]; here we see the term
‘Reject’ replacing ‘Accept’.

In Table V, we provide the top five rename forms and
semantic updates associated with a complete grammar pat-
tern pair. From this table, we observe that the most fre-
quent grammar pair, V NM N — V NM N is mostly
associated with a change in meaning. For example, in
the rename commit [19], testStringEncryption —
testStrongEncryption, a single term is replaced mak-
ing it a Simple form type change and since there is no semantic
relationship between the terms ‘String’ and ‘Strong’ it is
categorized as a general change in meaning. However, from
this table, we observe a low volume of instances of grammar
patterns associated with the semantic categories; this behavior
is similar to what is observed in RQ 1.3. Hence, similar to RQ
1.3, going forward, we look at the relationship between prefix
grammar patterns and name semantics. Presented in Table VI,
we provide the top three frequently occurring prefix patterns
for each semantic category. The complete listing is available
on our website [11].

From Table VI, we observe that the rename prefix pattern V
V — V V is associated with all semantic categories. However,
it is more prevalent with the change in meaning category.
This same prefix pattern is also the most common rename
pattern, as reported in RQ 1.3. From the table, we observe
that remove and broaden meaning shows a divergence in the
prefix pattern; the most frequently occurring prefix pattern
for these two categories is V V. — V NM. For the broaden-
ing pattern, we observed that in the majority of developers
tend to remove the term ‘test’ from the old name (e.g.,
testPinnedExternals — pinnedExternals [40]).
As the number of prefixes increases, the volume of these
instances being associated with a semantic category decreases.
Again, similar to RQ 1.3, this phenomenon will help determine
the quality of a test method’s name either when a developer
performs a rename or during static analysis of code. However,
as these are prefix patterns, it should be noted that terms
associated with the POS tags in the prefix might not always
be the terms contributing to the semantic transformation of
the method name. Hence, the findings from this RQ should
be used in conjunction with findings from other RQs and also
prior work, such as Peruma et al. study of identifier renaming
using data types and co-occurring refactorings [35].

Summary. Our analysis of test methods shows that devel-
opers frequently change the meaning of a test method’s
name when performing a rename. This contrasts with
prior research, which studied production and test names
together, finding that these tend to narrow in meaning.
One conclusion we may draw from this is that test meth-
ods more frequently change in meaning than the general
population of methods. Another potential explanation is
that it is more challenging to analyze the relationship
between words in test methods. If word relationships in
test methods are heavily domain-driven, then some of the
underlying technology, such as WordNet, used to analyze
these may not work well. More research is needed to
conclude which case is valid. However, whichever case
we are in, it is clear that the relationship between words in
test methods as they evolve is different from the general
population of methods. Thus, recommending test name
structure or words will potentially require specialized
approaches trained specifically on test naming structures.

RQ3: What are the most common term changes, and what is
the relationship between the added term and removed term?

Approach: In this RQ, we examine the frequent terms added
to and removed from test methods due to a rename. The
experiment in this RQ utilizes the complete dataset of test
method names. We first utilize the heuristic splitter algorithm
implemented in the Spiral package [41] to determine the terms
that form a name. Next, for each rename instance, we extract
only the terms that were added and removed. Finally, for
each added and removed pair of terms, we count the number
of times the pair exists in the dataset. For example, when
getEmployeeName is renamed to testEmployeeLastName, the
added terms are ‘test’ and ‘Last’, while the removed term
is ‘get’. We search our dataset for the occurrence of ‘test’ &
‘get’ and ‘Last’ & ‘get’. Additionally, as part of our qualitative
approach, two of the authors manually analyzed a statistically
significant sample that comprises of the top 646 frequently
occurring pairs. The sample represents a 99% confidence level
and a 5% confidence interval from our population of 21,615
pairs of added and removed terms. As part of this analysis,
the authors annotated the semantic relationships between the
added and removed terms. The semantic annotations include:
synonyms, antonyms, specializations, and generalizations.

Analyzing the list of 646 removed-added pairs, we observe
instances where the developer either adds or removes nu-
merical digits to or from the replacement term. An in-depth
look at these identifiers shows that a vast majority of such
names usually do not contain any other terms that describe
the behavior of the test method (e.g., testl5_6_5 —
testl16_9_5 [42]). Most likely, these are auto-generated
tests or tests utilized for debugging purposes. To facilitate the
use of English semantic rules to determine the relationship
between the term pairs, our analysis of term pairs will be
limited to only pairs that do not have numerical digits. Looking

at the top five frequently occurring term pairs, we observe
developers replace ‘has’ with ‘contains’ (94 instances), ‘test’
with ‘can’ (58 instances), ‘all of” with ‘at least’ (46 instances),
‘with> with ‘when’ (40 instances), and ‘test’ with ‘should’
(38 instances). Additionally, we also observe that developers
frequently replace the term ‘test’ with a term associated with
a Boolean return type (e.g., ‘can’, ‘is’, ‘should’).

Next, we look at the different types of semantic relation-
ships between the removed-added pairs. From our dataset,
we observe that 294 of the removed terms were replaced
with terms of the same POS. For example, in renaming
testFilterBaseNice — testSelectBaseNice [43]
the developer replaces the term ‘Select’” with ‘Filter’, both
of which are verbs. The majority of replacement terms
were added in the same position as the removed term in
the name. Looking at the types of semantic relationships
in the dataset, we observe 36 pairs of terms as synonyms
(e.g., boundingCube — boundingBox [44]) and 22 pairs
having an antonym relationship (e.g., genericExtension
— specificExtension [45]). We also identified 12 in-
stances each of specialization (e.g., testPredictions
— validatePredictions [46]) and generalization (e.g.,
listContains — collectionContains [47]).
Looking at the root (i.e., stem) of the removed-added
term pairs, we observe that 70 pair instances have
the same stem. For example, in the following rename
testTwippleUploader — testTwippleUpload
[46], the terms ‘Uploader’ and ‘Upload’ have the same stem—
‘upload’. We also observe 17 instances of tense change

(e.g., isOrderedFailure — 1sInOrderFailure
[48]) and nine instances of plurality changes (e.g.,
enqueuedJob — enqueueJobs [49]), and spelling

corrections (e.g., projectVisitorIsInkvoked —
projectVisitorIsInvoked [50]) each.

Our manual analysis shows that determining the relationship
between terms is a challenging task due to the diverse ways
in which developers rename identifiers. We made the follow-
ing observations during our qualitative analysis: (1) although
proper naming helps understand what the test verifies and how
the underlying system behaves, some terms are ambiguous,
which makes it challenging to determine the semantic relation-
ship between the pair due to the use of domain terminology
(e.g., ‘LBDevice’ is replaced with ‘Zeus’ [51]), (2) multiple
terms can replace a single term and vice versa; this type of
change is done due to specialization/generalization of behavior
or in situations where the names are synonyms (e.g., the terms
‘not started’ are replaced by ‘closed’ [52]), and (3) the terms
are unrelated (e.g., ‘Latency’ is replaced with ‘Metrics’ [53]).
Finally, when examining the code, we observe that specific
terms in a method’s name can indicate the presence of specific
statements in the body of the method. For instance, we observe
that the presence of the terms ‘at least’, ‘all of’ or ‘all’
acts as a sign that a method performs tests on collection
based objects such as List, Map, or custom collection types.
For example, the method findAl11WithGivenIds contains
a collection object that is subject to a series of tests (i.e.,

assertion statements). Similarly, the occurrence of the term
‘exception’ indicates that the purpose of such methods is to
verify that an exception occurs as part of the execution of the
test. In such instances, developers either utilize the ‘expected’
parameter as part of the Te st annotation or places an assertion
statement in the catch section of the try-catch block that
handles the exception that the developer expects to be thrown
(e.g., invokingStaticMethodQuietlyShouldWrap
IllegalArgumentException [54]). These observations
show how static analysis combined with NLP techniques can
support the automation of identifier name appraisal algorithms.

Summary. When replacing terms in a method’s name,
developers frequently preserve the overall meaning of the
method name by utilizing a synonym of the removed
term. In addition, there are some interesting common
word and phrase substitutions we observed in this set.
Including ‘has’ <— ‘contains’ and ‘all of’ <— ‘at
least’. Many of these can be linked with code semantics.
For example, ‘all of’ changing to ‘at least’ indicates
a shift in testing behavior; instead of testing for the
presence of all entities, they are testing for a subset. We
manually confirmed that some of this behavior can be
directly mapped to code changes, and thus we may be
able to provide some naming recommendations in the
future based on these trends. In addition, the term ‘test’
is frequently swapped with terms such as ‘can’, ‘is’, and
‘should’. The relationship between these terms and the
term ‘test’ range from synonyms to metonyms.

IV. RELATED WORK

We divided our reporting of related work into three areas—
studies that explored the naming of test methods, studies that
investigated grammar patterns in identifier names, and studies
around the renaming of identifiers in source code.

A. Test Method Names

Using natural language techniques, Zhang et al. [1], parse
test method names in order to generate templates for the test
methods automatically. In their approach, the authors utilize
the information contained within the name of a test method—
the action phrase and the predicate phrase. To perform the
parsing, the authors depend on English grammar constructs.
The authors achieve an accuracy of over 80% for their
template generation approach. In a subsequent study [55], the
authors present an approach and tool, NameAssist, to generate
descriptive names for test methods based on the body of
the test method. In their approach, the authors analyze the
statements within the test method to determine the action,
expected outcome, and scenario under test. Based on this
static analysis, the authors utilize natural language processing
techniques to generate a descriptive name for the test method.
Daka et al. [56], propose an approach to generate short
descriptive test method names based on API-level coverage
goals; the authors validate their approach by surveying 47

students. Lin et al. [57] investigate the quality of identifiers
in test suites and perform a comparison against production
identifiers. Results from the survey show that identifiers in
test suites are of poor quality, with automatically generated
test suites demonstrating even more quality concerns. Further,
a comparison of rename recommendation tools shows that they
perform poorly on test suites. Wu and Clause [2] provide an
approach to identify non-descriptive test method names and
provides developers with information for a more descriptive
name. Their approach depends on a set of test patterns. From
these patterns, their mechanism extracts the action, predicate,
and scenario from the current name of the test and body of
the test method. By comparing the extracted information, their
approach determines if the current test name is descriptive.

B. Identifier Grammar Patterns

In their study of grammar patterns in identifier names, New-
man et al. [7] observe a set of grammar patterns developers uti-
lize to describe program behavior. Some of their observations
include: noun phrases are one of the most common grammar
patterns, function identifiers are more likely to be represented
by a verb phrase, and collection type frequently utilize a plural
head-noun. Additionally, the authors indicate that the current
POS taggers are not effective on source code identifiers. In
an empirical study on 5,000 open-source projects, Zhang et
al. [58] observe that nouns, verbs, and adjectives are three of
the most common POS tags utilized by developers in crafting
identifier names. The authors utilize Standford Parser to parse
the POS tags from an identifier’s name automatically. Binkley
et al. [59] investigate the effectiveness of Stanford Log-linear
POS Tagger on field names. Through this study, the authors
propose four rules, based on POS tags, for improving field
names. A study of naming in multiple programming languages
by Liblit et al. [60] shows how natural language influences the
use of words in these languages. Hgst and @stvold [4] examine
unusual method names and propose a set of naming rules to
uncover issues in method names. The authors utilize POS tags
along with the return type, control flow, and parameters of the
method to detect naming violations based on a set of rules.

C. Identifier Renaming

In a study on identifier renames, Arnaoudova et al. [10] pro-
pose a semantic taxonomy for classifying identifier renames.
Additionally, through a developer survey, the authors observe
that developers confirm that identifier renaming is a challenge.
Studies around contextualizing identifier renaming by Peruma
et al. [5], [6], [35] show that the majority of identifier renames
are performed with the intent of narrowing the meaning of
the identifier name. The authors also observe that there is a
subset of refactorings that occur before a rename refactoring.
Additionally, when looking at data type changes, the authors
observe instances where developers change the plurality of a
name in response to its type changing to/from a collection.
Finally, the authors also discuss challenges around analyzing
rename refactorings and commit messages.

Work on identifying rename opportunities by Allamanis et al.
[61], [62] uses statistical language models to mine natural
source code naming conventions. The authors approach looks
for potential variable, method, and class renaming opportu-
nities. Research by Liu et al. [63] look at recommending
renames based on the prior rename activities performed by
developers on the source code. Additionally, by studying
the relationship between argument and parameter names, the
authors develop an approach to detect naming anomalies and
suggest renames to developers [64]. In their study, Jiang et
al. [65] observe that the effectiveness of code2vec, a machine
learning-based approach for method name recommendations,
fails in a realistic setting. The authors also propose a heuristic-
based approach that outperforms codeZvec.

V. THREATS TO VALIDITY

The projects in our dataset are limited to open-source Java
systems, and the results may not generalize to systems written
in other languages. However, these projects are from a set
of engineered Java systems [12] and have been utilized in
prior refactoring related studies [35]. Furthermore, since the
test files in our dataset belong to a variety of projects, our
analysis is based on test methods implemented by different
developers and thereby representative. While there are other
tools available to mine refactoring operations, Refactoring-
Miner outperforms the other tools [66] and is frequently
utilized in refactoring studies [67]-[70]. Our analysis of test
files is limited to projects utilizing the JUnit testing framework,
and hence the results might not generalize to other testing
frameworks. However, prior unit testing based research has
frequently focused on JUnit, such as in the case of test smells
[71]. The findings of our research questions are based on a
sample set of annotated data. To ensure unbiased representa-
tiveness, our sample size is a statistically significant random
sample, and our annotation process included a review phase.

VI. DISCUSSION & CONCLUSION

In this paper, we examine how developers craft method names
in test suites. We made it our goal to understand how test
method names are structured, how they evolve in structure and
meaning, and how the structure/meaning of these names relate
to statically-verifiable code behavior. Our findings show the
effectiveness of using grammar patterns to understand naming
practices, and how those practices translate to statically-
verifiable code behavior. In this section, we discuss how the
findings from our RQ’s and observations align with the study’s
goals, along with the challenges and future research directions.

A. Takeaways

Takeaway 1: Test names have a structure that differs from
production names. Some of this structure can be leveraged to
provide test-specific recommendations

From RQI1, we observe that test method names vary in the
number of terms making up the name and the POS tags
associated with these terms. During our manual annotation,
we observe that test method names are highly specific to their

intended behavior. This occurrence is not surprising as the
purpose of test methods is to test/exercise the atomic units of
the production code [72]; test suites can have more than one
test method to test the behavior of a single production method.
Hence, developers craft test names to be as descriptive as
possible, going as far as even to describe conditions that appear
within the method using adverbs (e.g., not) and prepositions
(e.g., after) in the test name. The use of these specific adverbs
and prepositions is interesting because the appearance of these
words correlates with the appearance of specific structures
within the code; the words and code structure are semantically
related in ways that can be statically detected. This correlation
allows for recommendations to be made to developers based
on either the presence of certain words in the identifier name or
the presence of code structures in the function. The descriptive
naming we observe aligns with the action phrase and the
predicate phrase naming pattern [1]. This phenomenon is
highlighted by our findings that show how common prefix
grammar patterns for test method names are not common
patterns for production methods.

Takeaway 2: Some of the prefixes detected in our dataset
indicate the existence of additional test name patterns

While our findings from RQI1 confirm the grammar patterns
identified by Wu and Clause, we also observed test naming
patterns for test method names. These grammar patterns are:
V VN P+ and N V+. Of these two, V V N P+ is the only
one whose behavior is not sufficiently described by patterns
present in prior work, which does not mention prepositions. As
stated earlier, prepositions correlate with specific types of test
behavior. Thus, we feel that this pattern is both legitimate and
new amongst the naming patterns presented in prior research;
differentiating this pattern from Wu and Clause’s V V N
is important because it implies different behavior, which a
recommendation system should be aware of. In addition, like
with prepositions, we find that that the existence of adverbs
(VM) and determiners (DT) in test method names correlate
with specific code behaviors. This has not been explored in
prior work and is novel to our investigation. The evidence
we empirically find suggests that the relationship between
these POS tags and code behavior can be used to detect and
recommend the removal of linguistic anti-patterns.

Takeaway 3: Test method name refactorings tend to change
the meaning of terms in the name

By mining rename refactoring operations in projects, we
extract renames performed by developers on test methods. This
data provides us with the opportunity to study the evolution
of method names. From RQ2, we observe that unlike prior
research on all types of method names, not focusing exclu-
sively on test suites [5], [6], our study shows that developers
frequently change the meaning of test names more often than
narrowing the meaning. This indicates one of two situations:
either test method names evolve by significantly altering the
meaning of words within the name, or it is more challenging
to analyze the relationship between words in test methods
using approaches such as WordNet than it is to analyze word

relationships on other types of methods as was done in prior
work [5], [6], [8]. Whichever case we are in, it is clear that
the relationship between words in test methods as they evolve
is different from the general population of methods. Thus,
recommending test name structure or words will potentially
require specialized approaches trained specifically on test
naming structures. More research is needed in this area to
understand this phenomenon.

Takeaway 4: There are common words and phrases which are
synonymous or metonymous in test method renames

RQ3 highlights the five most frequently swapped terms in
method names during rename operation— with ‘has’ and ‘con-
tains’ being the most common term pair. These terms/phrases
are synonymous, or metonymous, with one another. Further,
like the adverb and preposition examples from RQ1, they can
be directly linked to specific behaviors that appear within the
test code. Thus, it is possible to use these patterns to appraise
test names and their contents to provide recommendations. We
were only able to identify a handful of these patterns, but they
represent a strong start to potential future recommendations
and a path toward finding other similar patterns. One clear
future step for these terms is to begin taking advantage of
the synonym/metonym relationship between them to increase
naming consistency in test methods or recommend changes
to the test body based on the wording in the test name. This
direction is similar to the idea of method name debugging [4]
and linguistic anti-patterns [3].

Summary. Given the goal of our paper, we have confirmed the
usefulness of grammar patterns in understanding test method
name structure, how this structure evolves, and how it relates
to code behavior. The results from our work help confirm
the need for test-specific naming support and provide several
recommendations in terms of what kind of support can be
readily provided. Specifically, we show that certain types of
words are frequently used in the context of statically-verifiable
code behaviors. While further research into this phenomenon
is required, our work is a strong starting point; providing both
the evidence for the existence of these patterns and the means
through which these patterns can be further explored, detected,
and leveraged for recommendation.

B. Challenges

Key challenges in utilizing standard NLP techniques in studies
like ours include parsing of misspellings (e.g., ‘get’ is misspelt
as ‘het’ in het Input [73]), contractions (e.g., expand ‘dont’
to ‘do not’ [74]), domain/technology terms (i.e., terms not part
of general purpose ontologies), and preamble terms or terms
at the start of the name to indicate a specific action/purpose
(e.g., use of ‘Ignore’ in IGNOREtestHttpsCheckOut to
exclude the test [75]). Additionally, analyzing the code and
comments surrounding a method will help decide the correct
POS tag for terms in its name.

VII. ACKNOWLEDGEMENTS

This material is based upon work supported by the National
Science Foundation under Grant No. 1850412.

[1]

[4]

[5]

[6]

[8]

[9]

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]
(18]
[19]
[20]
[21]
[22]

[23]

REFERENCES

B. Zhang, E. Hill, and J. Clause, “Automatically generating test tem-
plates from test names (n),” in 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE), pp. 506-511,
2015.

J. Wu and J. Clause, “A pattern-based approach to detect and improve
non-descriptive test names,” Journal of Systems and Software, vol. 168,
p. 110639, 2020.

V. Arnaoudova, M. Di Penta, and G. Antoniol, “Linguistic antipatterns:
what they are and how developers perceive them,” Empirical Software
Engineering, vol. 21, 01 2015.

E. W. Hgst and B. M. @stvold, “Debugging method names,” in
Proceedings of the 23rd European Conference on ECOOP 2009 —
Object-Oriented Programming, Genoa, (Berlin, Heidelberg), pp. 294—
317, Springer-Verlag, 2009.

A. Peruma, M. W. Mkaouer, M. J. Decker, and C. D. Newman, “An
empirical investigation of how and why developers rename identifiers,”
in Proceedings of the 2Nd International Workshop on Refactoring, IWoR
2018, (New York, NY, USA), pp. 26-33, ACM, Sept. 2018.

A. Peruma, M. W. Mkaouer, M. J. Decker, and C. D. Newman, “Contex-
tualizing rename decisions using refactorings and commit messages,” in
2019 19th International Working Conference on Source Code Analysis
and Manipulation (SCAM), pp. 74-85, Sep. 2019.

C. D. Newman, R. S. AlSuhaibani, M. J. Decker, A. Peruma, D. Kaushik,
M. W. Mkaouer, and E. Hill, “On the generation, structure, and semantics
of grammar patterns in source code identifiers,” Journal of Systems and
Software, vol. 170, p. 110740, 2020.

J. Pantiuchina, F. Zampetti, S. Scalabrino, V. Piantadosi, R. Oliveto,
G. Bavota, and M. D. Penta, “Why developers refactor source code: A
mining-based study,” ACM Trans. Softw. Eng. Methodol., vol. 29, Sept.
2020.

K. Liu, D. Kim, T. FE. Bissyandé, T. Kim, K. Kim, A. Koyuncu, S. Kim,
and Y. Le Traon, “Learning to spot and refactor inconsistent method
names,” in 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE), pp. 1-12, 2019.

V. Arnaoudova, L. M. Eshkevari, M. D. Penta, R. Oliveto, G. Anto-
niol, and Y. Guéhéneuc, “Repent: Analyzing the nature of identifier
renamings,” IEEE Transactions on Software Engineering, vol. 40, no. 5,
pp. 502-532, 2014.

https://scanl.org/.

N. Munaiah, S. Kroh, C. Cabrey, and M. Nagappan, “Curating github for
engineered software projects,” Empirical Software Engineering, vol. 22,
pp- 3219-3253, Dec 2017.

N. Tsantalis, M. Mansouri, L. M. Eshkevari, D. Mazinanian, and D. Dig,
“Accurate and efficient refactoring detection in commit history,” in
Proceedings of the 40th International Conference on Software Engi-
neering, ICSE ’18, (New York, NY, USA), p. 483-494, Association for
Computing Machinery, 2018.

D. Silva, N. Tsantalis, and M. T. Valente, “Why we refactor? confessions
of github contributors,” in Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, FSE
2016, Association for Computing Machinery, 2016.

C. Vassallo, G. Grano, F. Palomba, H. C. Gall, and A. Bacchelli, “A
large-scale empirical exploration on refactoring activities in open source
software projects,” Science of Computer Programming, vol. 180, 2019.
A. Peruma, K. Almalki, C. D. Newman, M. W. Mkaouer, A. Ouni,
and F. Palomba, “On the distribution of test smells in open source
android applications: An exploratory study,” in Proceedings of the 29th
Annual International Conference on Computer Science and Software
Engineering, CASCON °19, (USA), p. 193-202, IBM Corp., 2019.
“Junit.” https://junit.org/.

“Javaparser.” http://javaparser.org/.
“apache/commons/compress/archivers/zip/generalpurposebittest.java.”
https://github.com/apache/commons-compress/commit/fa2e5bd.
“src/test/java/org/scribble/projection/protocolprojectiontest.java.” https:/
github.com/scribble/scribble-java/commit/62d9cdb.
“src/test/java/com/github/koraktor/mavanagaiata/abstractgitmojotest.java.”
https://github.com/koraktor/mavanagaiata/commit/27f52ab.

“domain/dependence/checkmethodtest.java.” https://github.com/
socialsoftware/blended- workflow/commit/92a9539.
“unittests/counterexampleuntilunittest.java.” https://github.com/

hhu-stups/prob-rodinplugin/commit/c3f554b.

[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
(32]
(33]
[34]

[35]

[36]
(371
[38]
[39]
[40]
[41]
[42]
[43]
[44]
[45]
[46]
[47]
[48]
[49]
[50]
[51]
[52]
(53]
[54]

[55]

[56]

“/src/com/eclipsesource/tabris/internal/ui/remotepagetest.java.”
https://github.com/eclipsesource/tabris/commit/df56d08.
“src/test/java/org/resthub/web/controller/testresourcecontroller.java.”
https://github.com/resthub/resthub- spring-stack/commit/c55d122.
“src/test/java/io/vertx/core/http/httptest.java.” https://github.com/
eclipse-vertx/vert.x/commit/cdc8172.
“test/org/freenetproject/freemail/imap/imapuidfetchtest.java.”
https://github.com/freenet/plugin-freemail/commit/778a842.

“/src/test/java/org/apache/hama/bsp/message/testavromessagemanager.java.”

https://github.com/apache/hama/commit/a5483d1.
“src/test/java/io/vertx/test/core/fileresolvertest.java.” https://github.com/
eclipse-vertx/vert.x/commit/f5bfd8c.
“core/internal/proportions/projectchangenotificationspdetest.java.” https:
//github.com/usus/usus-plugins/commit/0a66ccd.
“src/test/java/javax/cache/cachetest.java.” https://github.com/jsr107/
jsr107tck/commit/27149d0.

“io/searchbox/indices/deleteindexintegrationtest.java.” https:
//github.com/searchbox-io/jest/commit/Oc5346a.
“Simplegemfirerepositoryintegrationtests.java.” https://github.com/

spring-projects/spring-data- gemfire/commit/15aae69.
“Getmetricstreamscopeidsdbmappertest.java.” https://github.com/lmco/
eurekastreams/commit/9d456b6.

A. Peruma, M. W. Mkaouer, M. J. Decker, and C. D. Newman,
“Contextualizing rename decisions using refactorings, commit messages,
and data types,” Journal of Systems and Software, vol. 169, p. 110704,
2020.
“src/test/java/net/sourceforge/pmd/lang/java/dfa/acceptancetest.java.”
https://github.com/adangel/pmd/commit/e280151.
“src/test/org/apache/hama/matrix/testsingularvaluedecomposition.java.”
https://github.com/apache/hama/commit/6ba4dc3.
“src/test/java/com/stripe/model/issuerfraudrecordtest.java.”
https://github.com/stripe/stripe-java/commit/42e8cec.
“atlas/rax/api/validation/validator/raxloadbalancervalidatortest.java.”
https://github.com/openstack- atlas/atlas-1b/commit/3bc6 1 ec.
“src/test/java/hudson/scm/subversionscmtest.java.” https://github.com/
jenkinsci/subversion-plugin/commit/179fec8.

M. Hucka, “Spiral: splitters for identifiers in source code files,” Journal
of Open Source Software, vol. 3, no. 24, p. 653, 2018.
“src/test/java/org/neodj/cypherdsl/cypherreferencetest.java.”
https://github.com/neo4j-contrib/cypher-dsl/commit/4ae0202.
“src/test/java/org/lings/psl/model/rule/groundruletest.java.”
https://github.com/lings/psl/commit/bab277d.
“test/georegression/geometry/testutilpoint3d_f64.java.”
//github.com/lessthanoptimal/georegression/commit/ed24838.
“test-src/net/douggh/jak/jvm/assembler/api/genericstest.java.”
https://github.com/douggh/jak/commit/7d4cba0.
“test/de/jungblut/classification/nn/multilayerperceptrontest.java.” https://
github.com/thomasjungblut/thomasjungblut-common/commit/2bce452.
“src/test/java/org/junit/contrib/truth/collectiontest.java.” https:
//github.com/google/truth/commit/2b57a43.
“src/test/java/com/google/common/truth/iterablesubjecttest.java.” https://
github.com/google/truth/commit/5de3d21.
“src/test/java/net/greghaines/jesque/integrationtest.java.”
//github.com/gresrun/jesque/commit/3f6a680.
“java/org/pitest/pitclipse/pitrunner/config/pitexecutionmodetest.java.”
https://github.com/pitest/pitclipse/commit/751b3d7.
“atlas/api/validation/validators/networkitemvalidatortest.java.”
https://github.com/openstack- atlas/atlas-1b/commit/d7d7{87.
“src/test/java/org/jsr107/tck/cachetest.java.” https://github.com/jsr107/
jsr107tck/commit/c2d9369.
“src/test/java/stormpot/configtest.java.”
stormpot/commit/b4eeba8.
“src/test/java/joptsimple/internal/reflectiontest.java.” https://github.com/
jopt-simple/jopt-simple/commit/cf6d097.

B. Zhang, E. Hill, and J. Clause, “Towards automatically generating
descriptive names for unit tests,” in Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering, ASE
2016, (New York, NY, USA), p. 625-636, Association for Computing
Machinery, 2016.

E. Daka, J. M. Rojas, and G. Fraser, “Generating unit tests with de-
scriptive names or: Would you name your children thingl and thing2?,”
in Proceedings of the 26th ACM SIGSOFT International Symposium on
Software Testing and Analysis, ISSTA 2017, (New York, NY, USA),
p. 57-67, Association for Computing Machinery, 2017.

https:

https:

https://github.com/chrisvest/

https://scanl.org/
https://junit.org/
http://javaparser.org/
https://github.com/apache/commons-compress/commit/fa2e5bd
https://github.com/scribble/scribble-java/commit/62d9cdb
https://github.com/scribble/scribble-java/commit/62d9cdb
https://github.com/koraktor/mavanagaiata/commit/27f52ab
https://github.com/socialsoftware/blended-workflow/commit/92a9539
https://github.com/socialsoftware/blended-workflow/commit/92a9539
https://github.com/hhu-stups/prob-rodinplugin/commit/c3f554b
https://github.com/hhu-stups/prob-rodinplugin/commit/c3f554b
https://github.com/eclipsesource/tabris/commit/df56d08
https://github.com/resthub/resthub-spring-stack/commit/c55d122
https://github.com/eclipse-vertx/vert.x/commit/cdc8172
https://github.com/eclipse-vertx/vert.x/commit/cdc8172
https://github.com/freenet/plugin-freemail/commit/778a842
https://github.com/apache/hama/commit/a5483d1
https://github.com/eclipse-vertx/vert.x/commit/f5bfd8c
https://github.com/eclipse-vertx/vert.x/commit/f5bfd8c
https://github.com/usus/usus-plugins/commit/0a66ccd
https://github.com/usus/usus-plugins/commit/0a66ccd
https://github.com/jsr107/jsr107tck/commit/27149d0
https://github.com/jsr107/jsr107tck/commit/27149d0
https://github.com/searchbox-io/jest/commit/0c5346a
https://github.com/searchbox-io/jest/commit/0c5346a
https://github.com/spring-projects/spring-data-gemfire/commit/15aae69
https://github.com/spring-projects/spring-data-gemfire/commit/15aae69
https://github.com/lmco/eurekastreams/commit/9d456b6
https://github.com/lmco/eurekastreams/commit/9d456b6
https://github.com/adangel/pmd/commit/e280151
https://github.com/apache/hama/commit/6ba4dc3
https://github.com/stripe/stripe-java/commit/42e8cec
https://github.com/openstack-atlas/atlas-lb/commit/3bc61ec
https://github.com/jenkinsci/subversion-plugin/commit/179fec8
https://github.com/jenkinsci/subversion-plugin/commit/179fec8
https://github.com/neo4j-contrib/cypher-dsl/commit/4ae0202
https://github.com/linqs/psl/commit/bab277d
https://github.com/lessthanoptimal/georegression/commit/ed24838
https://github.com/lessthanoptimal/georegression/commit/ed24838
https://github.com/dougqh/jak/commit/7d4cba0
https://github.com/thomasjungblut/thomasjungblut-common/commit/2bce452
https://github.com/thomasjungblut/thomasjungblut-common/commit/2bce452
https://github.com/google/truth/commit/2b57a43
https://github.com/google/truth/commit/2b57a43
https://github.com/google/truth/commit/5de3d21
https://github.com/google/truth/commit/5de3d21
https://github.com/gresrun/jesque/commit/3f6a680
https://github.com/gresrun/jesque/commit/3f6a680
https://github.com/pitest/pitclipse/commit/751b3d7
https://github.com/openstack-atlas/atlas-lb/commit/d7d7f87
https://github.com/jsr107/jsr107tck/commit/c2d9369
https://github.com/jsr107/jsr107tck/commit/c2d9369
https://github.com/chrisvest/stormpot/commit/b4eeba8
https://github.com/chrisvest/stormpot/commit/b4eeba8
https://github.com/jopt-simple/jopt-simple/commit/cf6d097
https://github.com/jopt-simple/jopt-simple/commit/cf6d097

(571

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73

[74]

[75]

B. Lin, C. Nagy, G. Bavota, A. Marcus, and M. Lanza, “On the quality of
identifiers in test code,” in 2019 19th International Working Conference
on Source Code Analysis and Manipulation (SCAM), pp. 204-215, 2019.
J. Zhang, S. Liu, J. Luo, J. Liang, and Z. Huang, “Exploring the
characteristics of identifiers: A large-scale empirical study on 5,000 open
source projects,” IEEE Access, vol. 8, pp. 140607-140620, 2020.

D. Binkley, M. Hearn, and D. Lawrie, “Improving identifier informa-
tiveness using part of speech information,” in Proceedings of the Sth
Working Conference on Mining Software Repositories, MSR 11, (New
York, NY, USA), p. 203-206, Association for Computing Machinery,
2011.

B. Liblit, A. Begel, and E. Sweetser, “Cognitive perspectives on the
role of naming in computer programs,” in In Proc. of the 18th Annual
Psychology of Programming Workshop, 2006.

M. Allamanis, E. T. Barr, C. Bird, and C. Sutton, “Learning natural
coding conventions,” in Proceedings of the 22nd ACM SIGSOFT In-
ternational Symposium on Foundations of Software Engineering, FSE
2014, (New York, NY, USA), p. 281-293, Association for Computing
Machinery, 2014.

M. Allamanis, E. T. Barr, C. Bird, and C. Sutton, “Suggesting accurate
method and class names,” in Proceedings of the 2015 10th Joint Meeting
on Foundations of Software Engineering, ESEC/FSE 2015, (New York,
NY, USA), p. 38-49, Association for Computing Machinery, 2015.

H. Liu, Q. Liu, Y. Liu, and Z. Wang, “Identifying renaming opportunities
by expanding conducted rename refactorings,” IEEE Transactions on
Software Engineering, vol. 41, no. 9, pp. 887-900, 2015.

H. Liu, Q. Liu, C.-A. Staicu, M. Pradel, and Y. Luo, “Nomen est omen:
Exploring and exploiting similarities between argument and parameter
names,” in Proceedings of the 38th International Conference on Soft-
ware Engineering, ICSE ’16, (New York, NY, USA), p. 1063-1073,
Association for Computing Machinery, 2016.

L. Jiang, H. Liu, and H. Jiang, “Machine learning based recommen-
dation of method names: How far are we,” in 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE),
pp. 602-614, 2019.

L. Tan and C. Bockisch, “A survey of refactoring detection tools,” in
Software Engineering, 2019.

A. Peruma, “A preliminary study of android refactorings,” in 2079
IEEE/ACM 6th International Conference on Mobile Software Engineer-
ing and Systems (MOBILESoft), pp. 148-149, 2019.

E. A. AlOmar, A. Peruma, C. D. Newman, M. W. Mkaouer, and A. Ouni,
“On the relationship between developer experience and refactoring:
An exploratory study and preliminary results,” in Proceedings of the
IEEE/ACM 42nd International Conference on Software Engineering
Workshops, ICSEW’20, (New York, NY, USA), p. 342-349, Association
for Computing Machinery, 2020.

A. Peruma, C. D. Newman, M. W. Mkaouer, A. Ouni, and F. Palomba,
“An exploratory study on the refactoring of unit test files in android
applications,” in Proceedings of the IEEE/ACM 42nd International
Conference on Software Engineering Workshops, ICSEW’20, (New
York, NY, USA), p. 350-357, Association for Computing Machinery,
2020.

E. A. AlOmar, A. Peruma, M. W. Mkaouer, C. Newman, A. Ouni, and
M. Kessentini, “How we refactor and how we document it? on the
use of supervised machine learning algorithms to classify refactoring
documentation,” Expert Systems with Applications, p. 114176, 2020.
V. Garousi and B. Kiigiik, “Smells in software test code: A survey of
knowledge in industry and academia,” Journal of Systems and Software,
vol. 138, pp. 52 — 81, 2018.

R. Pressman and D. Bruce R. Maxim, Software Engineering: A Practi-
tioner’s Approach. McGraw-Hill Education, 2014.
“src/test/java/org/richfaces/component/ajaxvalidationtest.java.”
https://github.com/richfaces4/components/commit/235d8e9.
“packetprocessor/ig/namespace/register/unregistersettest.java.”
https://github.com/buddycloud/buddycloud-server-java/commit/39ec30f.
“src/test/java/hudson/scm/subversionscmtest.java.” https://github.com/
jenkinsci/subversion-plugin/commit/179fec8.

https://github.com/richfaces4/components/commit/235d8e9
https://github.com/buddycloud/buddycloud-server-java/commit/39ec30f
https://github.com/jenkinsci/subversion-plugin/commit/179fec8
https://github.com/jenkinsci/subversion-plugin/commit/179fec8

	I Introduction
	II Experiment Design
	III Experiment Results
	IV Related Work
	IV-A Test Method Names
	IV-B Identifier Grammar Patterns
	IV-C Identifier Renaming

	V Threats To Validity
	VI Discussion & Conclusion
	VI-A Takeaways
	VI-B Challenges

	VII Acknowledgements
	References

