IDEAL: An Open-Source Identifier Name Appraisal Tool

Anthony Peruma*, Venera Arnaoudovaf, Christian D. Newman*
*Rochester Institute of Technology, Rochester, NY, USA
TWashington State University, Pullman, WA, USA
axp6201 @rit.edu, venera.arnaoudova@wsu.edu, cnewman @se.rit.edu

Abstract—Developers must comprehend the code they will
maintain, meaning that the code must be legible and reasonably
self-descriptive. Unfortunately, there is still a lack of research and
tooling that supports developers in understanding their naming
practices; whether the names they choose make sense, whether
they are consistent, and whether they convey the information
required of them. In this paper, we present IDEAL, a tool that
will provide feedback to developers about their identifier naming
practices. Among its planned features, it will support linguistic
anti-pattern detection, which is what will be discussed in this
paper. IDEAL is designed to, and will, be extended to cover
further anti-patterns, naming structures, and practices in the
near future. IDEAL is open-source and publicly available, with
a demo video available at: https://youtu.be/fVoOYGe50zg

I. INTRODUCTION

Program comprehension is a precursor to all software main-
tenance task [1]; it is essential that a developer understands
the code they will be modifying. Therefore, maintaining the
internal quality of the code over its lifetime is of paramount
importance. As fundamental elements in the source code,
identifier names account, on average, for almost 70% of the
characters in a software system’s codebase [2] and play a
significant part in code comprehension [3], [4]. Low quality
identifiers can hinder developers’ ability to understand the
code [5], [6]; well-constructed names can improve compre-
hension activities by an estimated 19% [7].

However, there is still very little support for developers
in terms of helping them craft high-quality identifier names.
Research has examined the terms or structure of names [2],
[7]-[10] and produced readability metrics and models [11]—
[13] to try and address this problem. However, they still
fall short of providing tangible advice for improving naming
practices in developers’ day-to-day activities. The work we
present in this paper is designed to operate within an IDE,
or a CLI, setting and provide real-time advice to developers
about their naming practices.

A. Goal

Our work aims to provide the research and developer
community with an open-source tool, IDEAL, that detects and
reports violations in identifier names for multiple program-
ming languages using static analysis techniques. In addition
to identifying the identifier(s) exhibiting naming issues in the
source code, IDEAL also provides necessary information for
each reported violation so that appropriate action(s) can be
taken to correct the issue. We envision IDEAL utilized by
developers in crafting and maintaining high-quality identifier

names in their projects and also by the research community
to study the distribution and effect that various poor naming
practices have in the field.

B. Contribution

IDEAL is a multi-language platform for identifier name
analysis. It is context-aware; treating test and production
names differently since they have different characteristics [14],
[15]. It allows for project-specific configurations and is based
on srcML [16], allowing it to support multiple programming
languages (specifically, Java and C#). IDEAL is publicly
available [17] as an open-source tool to facilitate extension
and use within the researcher and developer communities.

II. LINGUISTIC ANTI-PATTERNS

While the idea behind IDEAL is to support a broad range
of identifier naming best practices based on research, we
needed a strong place to start fleshing the tool out. We
chose to implement the linguistic anti-patterns, which were
first conceptualized by Arnaoudova et al. [18]. The primary
reasons for this are that the anti-patterns are well-researched
and they represent real, tangible identifier naming problems.
Further, modern IDEs currently do not support the semantics-
aware naming problem detection embodied by the Linguistic
Anti-patterns and the current implementations of anti-patterns
are: Limited to singular languages, not open source, limited
to a single IDE environment, and/or do not provide enough
information to the developer to help ameliorate naming issues.
Thus, they are a good place for IDEAL to begin providing a
direct, positive influence.

Linguistic anti-patterns represent deviations from well-
established lexical naming practices in source code and act
as indicators of poor naming quality. This degradation in
quality results in inconsistencies in the source code, leading to
misinterpretations causing an increase in developer cognitive
load [19]. Detecting such naming violations in the source code
is typically a tedious and error-prone task for developers that
requires an understanding of the system and a manual analysis
of the complete source code. Thus, tool support is warranted.

To this extent, studies in linguistic anti-pattern detection
investigate the use of static analysis and artificial intelligence
(AD) as detection mechanisms. Two variants of LAPD (Lin-
guistic Anti-Pattern Detector) by Arnaoudova et al. [18], [20]
utilize static analysis to detect these anti-patterns in C++ and
Java source code. The C++ version of the tool is available as
a standalone command-line executable (but is not open source

https://youtu.be/fVoOYGe50zg

and not extendable), while the Java version is available as
an Eclipse Checkstyle plugin. The authors report an average
precision of 72% for the C++ variant of their tool. Fakhoury
et al. [21] construct and compare Al-based linguistic anti-
pattern detection models for Java source code. The authors
report F1-Scores of 88.77% for traditional machine learning
models and 74.53% for deep neural network models. However,
these models only report on the presence or absence of a
linguistic anti-pattern; details around the type of anti-pattern
present are not provided. In contrast, since IDEAL is built on
srcML, it supports multiple programming languages. IDEAL
also provides finer-grain feedback on the types of anti-patterns
present and how to fix them; making it easy to use for
developers and researchers. It is also made to be extended
with further anti-patterns not supported by prior tools, that
have been found through prior research [14], [15].

Table I summarizes the linguistic anti-patterns currently
detected by IDEAL. Anti-Patterns A.* to F.* are the set of
original anti-patterns defined by Arnaoudova et al. [18], while
the anti-patterns G.* are anti-patterns unique to IDEAL. Our
project website [17] provides code snippets from real-world
open-source systems that highlight examples of these anti-
patterns. We should also note that as an open-source tool
IDEAL provides the necessary infrastructure for the inclusion
of additional anti-patterns.

III. IDEAL ARCHITECTURE

Implemented as a command-line/console-based tool in
Python, IDEAL integrates with some well-known open-source
libraries and tools in analyzing source code to detect identifier
name violations. Depicted in Figure 1 is a view of the con-
ceptual architecture of IDEAL. Broadly, IDEAL is composed
of three layers— Platform, Modules, and Interface. It utilizes
well-known tools and libraries used for natural language and
static analysis, including Spiral [22], NLTK [23], Wordnet
[24], Stanford POS tagging [25], and srcML [16].

IV. APPLICABILITY

Practitioners. By integrating IDEAL into their development
toolset and workflow, developers are better equipped to
maintain identifiers in their source code. As a command-
line/console application, the current version of IDEAL sup-
ports integration with a build system. Hence, project teams
can analyze their entire project codebase, or just what was
changed, during their nightly build process and evaluate the
report to determine violations that need to be addressed.
Researchers. We envision the research community utiliz-
ing IDEAL in studies around program comprehension. With
the capability of batch-based analysis, IDEAL supports re-
searchers in conducting large-scale empirical studies. Further-
more, by supporting Java and C#, IDEAL provides researchers
to expand their research to multiple programming languages
and perform comparatison-based studies. Finally, as an open-
source tool, researchers are provided with the opportunity
to extend IDEAL by improving existing violation detection
strategies and introducing new anti-patterns.

iE

—O

@ Config fél
Build System c# Java Developer
IDEAL
Interface \
’ Console Application l
Modules
Linguistic Anti-Patterns
’ Anti-Pattern #1 l I Anti-Pattern #2 l ’ Anti-Pattern #n Logging,
Error
Handling
Project Customizations c &
Results °'f|f",‘°"
Reporting Utilities
srcML Parser
Platform
NLTK Open-Source
Spiral Python Stanford
WordNet Packages POS |srcML
Tagger
Python Runtime

Fig. 1: Conceptual architectural view of IDEAL.

Educators. IDEAL can be used in a classroom setting to
teach students the importance of constructing high-quality
identifier names and their impact on software maintenance
and evolution. Through this, students will be better prepared
to write high-quality code when moving into the industry.

V. EVALUATION

To understand the effectiveness of IDEAL in correctly
detecting identifier naming violations, we subjected IDEAL
to two types of evaluation activities. First, we analyzed four
popular open-source systems using IDEAL and manually vali-
dated the detection results of a statistically significant sample.
Our next evaluation strategy involved assessing IDEAL on
the sample dataset utilized to evaluate LAPD by comparing
the detection results. In the following subsections, we provide
details on these two evaluation activities, including numbers
around the correctness of IDEAL and qualitative findings
based on our manual analysis of source code.

A. Evaluation on open-source systems

IDEAL can analyze systems implemented in any language
supported by srcML. However, currently, it has only been eval-
uated using Java and C#. Thus, we selected two popular open-
source systems for each of these programming languages.
To this extent, Retrofit [26] and Jenkins [27] were the two
Java systems, while Shadowsocks [28] and PowerShell [29]
were the C# systems; Table Il summarizes the release of each
system that was part of our evaluation analysis. A breakdown
of our validation results is available at [17].

For each of the four systems, we manually analyzed a
random stratified statistically significant (i.e., confidence level
of 95% and confidence interval of 10%) set of detected

TABLE I: Summary of the linguistic anti-pattern detection rules IDEAL utilizes.

| 1d | Pattern | Detection Strategy
Al “Get” more than accessor Impacted Identifiers: Method Names (excludes test methods)
’ The name starts with ‘get’, the access specifier is public/protected, the name contains the name of an attribute, the return
type is the same as the attribute type, and the body contains conditional statements
A2 gs”lreturns more than a Impacted Identifiers: Method Names (excludes test methods)
oolean

The name starts with a predicate/affirmation related term and the return type is not boolean

A3 | “Set” method returns Impacted Identifiers: Method Names

The name starts with ‘set’ and the return type is not void

Expecting but not getting

Impacted Identifiers: Method Names (excludes test methods)

return

A4 . . . L . .
single instance The last term in the name is singular and the name does not contain terms that are a collection type and the return type
is a collection
B.1 Not i.n.lplemented Impacted Identifiers: Method Names
condition The name contains conditional related terms in the name or comment and body does not conditional statements
Bo | Validation method does Impacted Identifiers: Method Names (excludes test methods)
not confirm The name starts with a validation-related term, does not have a return type and does not throw an exception
B3 “Get” method does not Impacted Identifiers: Method Names (excludes test methods)

The name starts with a ‘get’ related term and the return type is void

B.4 | Not answered question

Impacted Identifiers: Method Names (excludes test methods)
The name starts with a predicate/affirmation related term and the return type is void

in method name The name starts with the term ‘test’

B.5 Transform method does Impacted Identifiers: Method Names (excludes test methods)
not return The name starts with or an inner term constains a transformation term and the return type is void
B6 Expecting but not getting Impacted Identifiers: Method Names (excludes test methods)
’ a collection The name starts with a ‘get’ related term, the name contains a term that is either plural or a collection type and the
return type is not a collection-based type
C1 Method name gnd return Impacted Identifiers: Method Names (excludes test methods)
type are opposite An antonym relationship exists between terms in an identifiers name and data type
Cca Method signature al}d Impacted Identifiers: Method Names (excludes test methods)
comment are opposite An antonym relationship exists between either terms in an identifiers name or data type and comments
D.1 Says one but contains Impacted Identifiers: Attributes, Method Variables and Parameters
many The last term in the name is singular and the data type is a collection
D2 Name suggests Boolean Impacted Identifiers: Attributes, Method Variables and Parameters
but type does not The starting term should be predicate/affirmation related and the data type is not boolean
E.l Says many but contains Impacted Identifiers: Attributes, Method Variables and Parameters
one The last term in the name is plural and the data type is not a collection
F1l Attribute nhame and type Impacted Identifiers: Attributes, Method Variables and Parameters
are opposite An antonym relationship exists between terms in an identifiers name and data type
E2 Attribute signature and Impacted Identifiers: Attributes, Method Variables and Parameters
comment are opposite An antonym relationship exists between either terms in an identifiers name or data type and comments
G.1 Nme contains only Impacted Identifiers: Attributes, Method, Method Variables and Parameters
special characters The name of the identifier is composed of only non-alphanumeric characters
G2 Redundant use of “test” Impacted Identifiers: Methods (excludes non-test methods)

violations for each category. In total, we manually verified
2,019 instances of naming violations spread across the four
systems. Table III provides a breakdown of the number of
violation instances for each category. As part of the man-
val analysis process and to mitigate bias, the authors dis-
cussed specific violation instances that were subjective and,
at times, referenced literature (grey and reviewed) to aid
in the decision-making process. IDEAL reports an average
precision of 75.27%, with 14 out of 19 violation types
reporting a precision of over 50%. Though LAPD reports
an average precision of 72%, we manually validate 1,267

more instances than LAPD. Furthermore, even though IDEAL
supports customization per project (e.g., specifying custom
collection data types and terms), our evaluation strategy did
not utilize this feature in order to maintain consistency in
violation detection across the four systems. From Table III, we
observe that while IDEAL performs notably well in detecting
all A*, D.* and E.* violations (precision score of over
80%). These are anti-patterns where the identifier either does
or contains more than what is required. In most instances,
IDEAL can accurately process the return/data type of the
identifier to determine violations. However, there are also

TABLE II: Summary of the systems in our evaluation process.

TABLE III: Summary of the detection correctness of IDEAL.

Release Files Issues

Detected Validated True False

System Language Version Date Analyzed Detected ‘ ‘ Id. Instances Samples Positives Positives Precision
Retrofit Java 2.9.0 May-2020 282 192		Al 53 34 34 0 100.00%
Jenkins Java 2293 May-2021 1,688 4818		A2 45 37 37 0 100.00%
Shadowsocks — C# 4400 Dec-2020 88 275		A3 129 64 63 1 98.44%
PowerShell — C# 7.13 Mar-2021 1,290 8455		A4 341 127 102 25 80.31%
o) | B.I 912 171 73 98 42.69% |
violations '[h?t are challenging for IDEAL' 'to analyze and | B2 6 ” 165 ’ 99.40% |
hence result in a large volume of false positives (e.g., C.2).

. . | B3 260 101 101 0 100.00% |
Our manual analysis of these false-positive instances shows

. . B.4 18 16 5 11 31.25%
patterns that, in most cases, are causing IDEAL to report them | ¢ |
as issues. First, since developers utilize custom data/return | BS 271 107 46 61 4299% |
types for identifiers in their code, IDEAL fails in identifying | B6 827 159 128 31 8050% |
their intended purpose. For instance, ‘EnvVars’ is a custom | C1 139 74 54 20 72.97% |
type created by a developer to hold a collection of specific | c2 294 112 13 99 11.61% |
items. The developer returns this type in a method called | D.1 3.359 262 261 1 99.62% |
‘getEnvironmentVariables2’. Since IDEAL is unaware that | D2 3 53 53 0 10000% |
Eanars isa coll.ectlon—based type, it flags this as a Ylolathn | E1 5.506 268 253 5 94.40% |

since the method is supposed to return a collection (i.e., this

. iy , | El 38 32 19 13 59.38% |

get method name contains a plural term— ‘Variables’). We are = o ” > ” Py

. ! 0
confident that once developers configure IDEAL to handle | |

o . . . 1 1 1 1 100.

custom types, false positives, similar to this, will reduce. Our | 6 0 00.00% |
next observation is on how IDEAL analyzes lexical relation- | G2 853 144 144 0 100.00% |
ships between words; specifically, concerning antonyms (i.e., | Overall 13,740 2,019 1,567 452 75.27% |

C.* and F.*). While IDEAL correctly recognizes antonyms,
the context around how these terms are used, either in the
identifier’s name or comment, is not considered, resulting
in false positives. Additionally, we also observe that naming
habits/conventions also cause the emergence of antonyms. For
instance, consider the method ‘GetCompletionResult’ with a
return type called ‘CompletionResult’. IDEAL determines that
‘Get’ and ‘Result’ are antonyms, which are lexically valid, but
a false positive due to naming conventions. Similar to the last
challenge, context around the use of transformation terms (i.e.,
B.5) and conditional terms (i.e., B.1) cause the reporting of a
high volume of false positives. While IDEAL correctly detects
these terms in the source code, how the developer utilizes the
term in a name or comment is currently a challenge.

Finally, our manual review of the source code also allowed
us to observe other poor naming/coding practices, which can
be future linguistic anti-patterns. For example, the generic
terms ‘data’ and ‘result’ are subjective. When used as part of
an identifier’s name, it is unknown if the identifier handles a
single item or collection of items. Likewise, the use of the type
‘var’ (in C#) and ‘object’ also does not indicate the type of data
the identifier handles. Ideally, to convey the purpose/behavior
of the identifier correctly, developers need to be specific in
naming identifiers and data types when possible.

B. Comparison with LAPD

In this part of our evaluation we compare the correctness of
IDEAL with LAPD. To this extent, we analyze a sample of the
source files that were utilized to evaluate the effectiveness of
LAPD and compare the results. Since IDEAL implements the
anti-patterns available in LAPD, it is essential to understand

the areas where IDEAL under- and overperforms. In total, we
analyzed 209 Java files and detected 294 violations. From this,
both IDEAL and LAPD matched 199 true positive instances
and 19 false positive instances. Furthermore, 47 instances
identified as LAPD false positives were not detected by
IDEAL, highlighting where IDEAL outperforms LAPD. Most
of these instances were associated with C.2, D.1, and E.1.
Finally, we also encounter instances where IDEAL does not
detect LAPD true positives. While some of these issues are due
to custom data types, we also encounter subjective instances,
most of which (10 instances) fall under D.2.

VI. CONCLUSION AND FUTURE WORK

This paper introduced IDEAL, an open-source configurable
tool that detects 19 types of identifier naming violations in
Java and C# code. A comprehensive evaluation of IDEAL
reports an average precision of 75.27%. Our future work
involves increasing support of additional anti-patterns and
naming structures (including naming structures derived in
other research [14], [15]), utilizing a source code specialized
part-of-speech-tagger [30], and IDE integration. A summary
of the naming practices IDEAL will support is available in
the Identifier Name Structure Catalogue [31].

VII. ACKNOWLEDGEMENTS

This material is based upon work supported by the National
Science Foundation under Grant No. 1850412.

[1]

[2]
[3]
[4]
[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
(18]

[19]

[20]

[21]

REFERENCES

V. Rajlich and N. Wilde, “The role of concepts in program com-
prehension,” in Proceedings 10th International Workshop on Program
Comprehension, pp. 271-278, 2002.

F. Deissenboeck and M. Pizka, “Concise and consistent naming,” Soft-
ware Quality Journal, vol. 14, pp. 261-282, Sep 2006.

T. A. Corbi, “Program understanding: Challenge for the 1990s,” IBM
Systems Journal, vol. 28, no. 2, pp. 294-306, 1989.

R. C. Martin, Clean Code: A Handbook of Agile Software Craftsman-
ship. Upper Saddle River, NJ, USA: Prentice Hall PTR, 1 ed., 2008.
A. Schankin, A. Berger, D. V. Holt, J. C. Hofmeister, T. Riedel, and
M. Beigl, “Descriptive compound identifier names improve source code
comprehension,” in 2018 IEEE/ACM 26th International Conference on
Program Comprehension (ICPC), pp. 31-3109, 2018.

D. Lawrie, C. Morrell, H. Feild, and D. Binkley, “What’s in a name? a
study of identifiers,” in /4th IEEE International Conference on Program
Comprehension (ICPC’06), pp. 3-12, 2006.

J. Hofmeister, J. Siegmund, and D. V. Holt, “Shorter identifier names
take longer to comprehend,” in 2017 IEEE 24th International Conference
on Software Analysis, Evolution and Reengineering (SANER), pp. 217—
227, 2017.

B. Sharif and J. I. Maletic, “An eye tracking study on camelcase
and under_score identifier styles,” in 2010 IEEE 18th International
Conference on Program Comprehension, pp. 196-205, 2010.

A. Peruma, M. W. Mkaouer, M. J. Decker, and C. D. Newman, “An
empirical investigation of how and why developers rename identifiers,”
in Proceedings of the 2nd International Workshop on Refactoring, IWoR
2018, (New York, NY, USA), p. 26-33, Association for Computing
Machinery, 2018.

S. L. Abebe, S. Haiduc, P. Tonella, and A. Marcus, “Lexicon bad smells
in software,” in 2009 16th Working Conference on Reverse Engineering,
pp- 95-99, 2009.

R. P. L. Buse and W. R. Weimer, “Learning a metric for code read-
ability,” IEEE Transactions on Software Engineering, vol. 36, no. 4,
pp. 546558, 2010.

S. Scalabrino, M. Linares-Véasquez, R. Oliveto, and D. Poshyvanyk,
“A comprehensive model for code readability,” Journal of Software:
Evolution and Process, vol. 30, no. 6, p. 1958, 2018. €1958 smr.1958.
S. Fakhoury, D. Roy, A. Hassan, and V. Arnaoudova, “Improving
source code readability: Theory and practice,” in 2019 IEEE/ACM 27th
International Conference on Program Comprehension (ICPC), pp. 2-12,
2019.

C. D. Newman, R. S. AlSuhaibani, M. J. Decker, A. Peruma, D. Kaushik,
M. W. Mkaouer, and E. Hill, “On the generation, structure, and semantics
of grammar patterns in source code identifiers,” Journal of Systems and
Software, vol. 170, p. 110740, 2020.

A. Peruma, E. Hu, J. Chen, E. A. Alomar, M. W. Mkaouer, and
C. D. Newman, “Using grammar patterns to interpret test method name
evolution,” in Proceedings of the 29th International Conference on
Program Comprehension, ICPC *21, (New York, NY, USA), Association
for Computing Machinery, 2021.

M. L. Collard, M. J. Decker, and J. I. Maletic, “Srcml: An infrastructure
for the exploration, analysis, and manipulation of source code: A
tool demonstration,” in Proceedings of the 2013 IEEE International
Conference on Software Maintenance, ICSM ’13, (USA), p. 516-519,
IEEE Computer Society, 2013.

https://www.scanl.org/artifacts/tools/.

V. Arnaoudova, M. Di Penta, G. Antoniol, and Y.-G. Guéhéneuc, “A
new family of software anti-patterns: Linguistic anti-patterns,” in 2013
17th European Conference on Software Maintenance and Reengineering,
pp. 187-196, 2013.

S. Fakhoury, Y. Ma, V. Arnaoudova, and O. Adesope, “The effect
of poor source code lexicon and readability on developers’ cognitive
load,” in 2018 IEEE/ACM 26th International Conference on Program
Comprehension (ICPC), pp. 286-28610, 2018.

V. Arnaoudova, M. Di Penta, and G. Antoniol, “Linguistic antipatterns:
what they are and how developers perceive them,” Empirical Software
Engineering, vol. 21, pp. 104-158, Feb 2016.

S. Fakhoury, V. Arnaoudova, C. Noiseux, F. Khomh, and G. Antoniol,
“Keep it simple: Is deep learning good for linguistic smell detection?,”
in 2018 IEEE 25th International Conference on Software Analysis,
Evolution and Reengineering (SANER), pp. 602-611, 2018.

[22]

(23]

[24]

[25]

[26]
[27]
(28]
[29]
(30]

[31]

M. Hucka, “Spiral: splitters for identifiers in source code files,” Journal
of Open Source Software, vol. 3, no. 24, p. 653, 2018.

S. Bird, E. Klein, and E. Loper, Natural Language Processing with
Python: Analyzing Text with the Natural Language Toolkit. O’Reilly
Media, 2009.

G. A. Miller, “Wordnet: A lexical database for english,” Commun. ACM,
vol. 38, p. 3941, Nov. 1995.

K. Toutanova, D. Klein, C. D. Manning, and Y. Singer, “Feature-
rich part-of-speech tagging with a cyclic dependency network,” in
Proceedings of the 2003 Human Language Technology Conference of
the North American Chapter of the Association for Computational
Linguistics, pp. 252-259, 2003.

https://github.com/square/retrofit.

https://github.com/jenkinsci/jenkins.
https://github.com/shadowsocks/shadowsocks-windows.
https://github.com/PowerShell/PowerShell.

C. D. Newman, M. J. Decker, R. Alsuhaibani, A. Peruma, M. Mkaouer,
S. Mohapatra, T. Vishoi, M. Zampieri, T. Sheldon, and E. Hill, “An
ensemble approach for annotating source code identifiers with part-of-
speech tags,” IEEE Transactions on Software Engineering, 2021.
https://github.com/SCANL/identifier_name_structure_catalogue.

https://www.scanl.org/artifacts/tools/
https://github.com/square/retrofit
https://github.com/jenkinsci/jenkins
https://github.com/shadowsocks/shadowsocks-windows
https://github.com/PowerShell/PowerShell
https://github.com/SCANL/identifier_name_structure_catalogue

	I Introduction
	I-A Goal
	I-B Contribution

	II Linguistic Anti-Patterns
	III IDEAL Architecture
	IV Applicability
	V Evaluation
	V-A Evaluation on open-source systems
	V-B Comparison with LAPD

	VI Conclusion and Future Work
	VII Acknowledgements
	References

