
Geometry Processing with
Intrinsic Triangulations
NICHOLAS SHARP, MARK GILLESPIE, KEENAN CRANE

Last updated: September 10, 2021

Talks, Tutorials, and Interactive Demos. This text accompanies a course presented at SIGGRAPH 2021. Course
videos, code examples, and interactive demos are available via http://geometry.cs.cmu.edu/intrinsic. Note that this
text is not in direct correspondence with the lecture videos. Instead, it is structured to serve as a reference text.

Prerequisites and Intended Audience. The document and the accompanying course are aimed at researchers in
computer graphics and geometry processing, as well as practitioners who need to work with three-dimensional mesh
data. It assumes only a basic background in mesh processing, as would be seen in an introductory computer graphics
course. Participants familiar with any kind of standard mesh data structure should have no trouble following the rest
of the course. An understanding of matrices and basic linear algebra is also helpful for the discussion of applications.

Related Material. Some of the text and figures in this document have been adapted from other publications by
the authors, namely [Crane et al. 2013a, 2020; Gillespie et al. 2021a,b; Sharp and Crane 2020a,b; Sharp et al. 2019b,c],
used with permission.

About the Authors.
Nicholas Sharp is a Fields Institute Postdoctoral Fellow at the University of Toronto and an affiliate at the
Vector Institute. He completed his PhD in Computer Science at Carnegie Mellon University where he was sup-
ported by an NSF Graduate Research Fellowship. His PhD thesis laid new foundations for geometry processing
with intrinsic triangulations. More broadly, his research designs new algorithms and data structures for 3D
data, with applications in computer graphics, vision, and 3D machine learning. https://nmwsharp.com

Mark Gillespie is a Computer Science PhD candidate at Carnegie Mellon University, supported by an NSF
Graduate Research Fellowship. His research interests are in computer graphics and physical simulation, includ-
ing variational integrators and the use of Discrete Exterior Calculus to discretize dynamical systems. Gillespie
brings expertise in connections between intrinsic triangulations and applications in geometry processing,
such as mesh parameterization, as well as development of educational web demos in geometry and computer
graphics. http://markjgillespie.com

Keenan Crane is an Associate Professor in the School of Computer Science at Carnegie Mellon University.
He teaches courses on intro graphics and applied geometry, including a SIGGRAPH 2013 Course on geometry
processing [Crane et al. 2013a], which is now a semester-long course at CMU—video lectures for this course can
be found here. Crane is a Packard Fellow, Google PhD Fellow, and NSF Postdoc Fellow; his work applies insights
from differential geometry to develop fundamental algorithms for practical geometry processing. This work
has been featured in SIGGRAPH, CACM, Notices of the AMS, and in popular press such asWIRED, Popular
Mechanics, National Public Radio, and Scientific American. http://www.cs.cmu.edu/~kmcrane/

2

http://geometry.cs.cmu.edu/intrinsic
https://nmwsharp.com
http://markjgillespie.com
https://www.youtube.com/playlist?list=PL9_jI1bdZmz0hIrNCMQW1YmZysAiIYSSS
https://www.youtube.com/playlist?list=PL9_jI1bdZmz0hIrNCMQW1YmZysAiIYSSS
http://www.cs.cmu.edu/~kmcrane/

Contents

Contents 3

Chapter 1: Introduction 5
1.1 Why This Approach? 7
1.1.1 What Are Intrinsic Triangulations Not? 8
1.2 Historical Roots 8

Chapter 2: Intrinsic Triangulations 11
2.1 Connectivity 12
2.2 Topological Data Structures 15
2.3 Geometry 15
2.3.1 Extrinsic Geometry 17
2.3.2 Barycentric Coordinates 17
2.3.3 Intrinsic Geometry 18
2.3.4 Edge Flips 18
2.3.5 Cone Metric 20
2.3.6 Length Based Formulas 21
2.3.7 Local Coordinates 22
2.4 Tangent Vectors 25
2.4.1 Geodesics 25
2.4.2 Exponential Map 27
2.5 The Laplace Matrix 28
2.5.1 The Mass Matrix 29

Chapter 3: Representing Correspondence 30
3.1 Intrinsic Triangulations of Embedded Surfaces 30
3.1.1 Common Subdivision 31
3.2 Correspondence Data Structures 31
3.3 Explicit Crossings 32
3.3.1 Edge Flips 33
3.4 Signposts 33
3.4.1 Tracing Through Triangulations 34
3.4.2 Local Mesh Operations 34
3.4.3 Queries 36
3.4.4 Robustness 36
3.5 Integer Coordinates 37
3.5.1 Normal Coordinates 37
3.5.2 Roundabouts 38
3.5.3 The Abstract Viewpoint 39
3.5.4 Local Mesh Operations 39
3.5.5 Robustness 40
3.6 Extracting the Common Subdivision 40

Chapter 4: Retriangulation 42
4.1 Intrinsic Delaunay Triangulations 42
4.1.1 Properties of Intrinsic Delaunay Triangulations 43
4.1.1.1 Empty Triangle Circumcircles & Edge Disks 44
4.1.1.2 Contains Nearest Neighbors 44
4.1.1.3 Maximizes Angles 44
4.1.1.4 Smoothest Piecewise-Linear Interpolation (Rippa’s Theorem) 45
4.1.1.5 Minimal Spectrum 45
4.1.1.6 Minimal Minimum Spanning Tree 45

3

4.1.1.7 Geometric Spanner 45
4.2 Delaunay Flipping 46
4.3 Delaunay Refinement 48
4.4 Constrained Triangulation 50
4.5 Optimal Delaunay Triangulation 52
4.6 Adaptive Mesh Refinement 52
4.7 Intrinsic Mollification 53
4.8 Metric Scaling 53
4.9 Comparison to Traditional Remeshing 54
4.9.1 Other Notions of Delaunay 54
4.9.2 Extrinsic Construction 54
4.10 Robustifying Applications with Intrinsic Triangulations 55
4.10.1 The Intrinsic Delaunay Laplacian 56
4.10.2 Examples 56
4.11 Transferring Solutions Between Triangulations 57
4.11.1 Optimal Attribute Transfer 57
4.11.2 Transferring Tangent Vectors 58

Chapter 5: Geodesics 59
5.1 Geodesics from Intrinsic Edge Flips 60
5.2 Geodesic Loops and Curve Networks 63
5.3 Geodesic Bézier Curves 63
5.4 Triangulated Geodesic Paths 64
5.5 Single-Source Geodesics 65

Chapter 6: Generalized Domains 66
6.1 Nonmanifold Intrinsic Triangulations 66
6.2 Point Clouds 69
6.3 Hyperbolic Triangulations 70

Chapter 7: Open Questions 71

References 73

Appendix A: Evaluating Geometric Quantities 78

4

Chapter 1

Introduction

Input Mesh
(low quality)

Black Box —hidden from the user

Intrinsic Mesh
(high quality)

solve

transfer
solution

intrinsic
retriangulation

many geometric
algorithms fail or
produce wildly
inaccurate results
when applied
directly to
low-quality
real-world data

geometry is
unchanged, yet
the mesh now
satis�es
preconditions of
existing,
well-established
algorithms

Fig. 1. There is a major gap between the kind of data expected by geometric algorithms, and the quality of data encountered

in real applications. The high-level goal of this course is to build a bridge that allow existing algorithms to be applied in much

more challenging scenarios. Here, a high-quality intrinsic triangulation is overlaid on top of a low-quality input mesh, enabling an

existing finite element solver to compute a more accurate solution. Since the underlying geometry is completely unchanged, this

solution can easily be transferred back to the original mesh for further processing—without the end user ever having to know that

a transformation was applied “under the hood.”

Geometric data plays an increasingly vital role in tasks ranging from computational fabrication to augmented
reality to autonomous driving. Triangle meshes are a basic representation for 3D geometry, playing the same central
role as pixel arrays in image processing. Hence, even seemingly small shifts in the way we think about triangle meshes
can have major consequences for a wide variety of applications. In this course, we will we explore what happens if
we replace the ordinary extrinsic encoding of mesh geometry, via vertex positions in Rn , with an alternative intrinsic
description, via lengths associated with edges. The resulting intrinsic triangulations are far more flexible than their
traditional extrinsic counterparts, yet still provide the geometric information needed to execute many fundamental
geometry processing tasks. This course introduces the theory and practice of intrinsic triangulations, from their basic
representation, to new data structures and algorithms, to applications in geometry processing.

Intrinsic triangulations bring several deep ideas from topology and differential geometry into a discrete, computa-
tional setting. In particular, the name “intrinsic” arises from a central concept in modern differential geometry: many
properties of a surface do not depend on how the surface is embedded in space, but only on local measurements of
quantities like angles and distances along the surface. For instance, the shortest path along the surface between two
points on a sheet of paper is unchanged if the paper is rolled up into a tube (intrinsic), whereas the surface normal at
a point may be very different (extrinsic). A very good mental model is to think about maps of the Earth: although
no individual map depicts the whole planet as a round ball floating in outer space, each map conveys very useful
information about some local neighborhood. Likewise, intrinsic triangulations enable one to inspect and manipulate
local pieces of a mesh, without needing to know how (or whether) it floats in space.

5

Euclidean
triangulations

geodesic triangulations

Euclidean geodesic intrinsic

intrinsic triangulations

Fig. 2. Traditionally, mesh edges are straight line segments in Euclidean space (far left). The much larger spaces of geodesic and
intrinsic triangulations provide tremendous additional flexibility by allowing edges to be straight paths along the surface (center

left), or by just considering an abstract collection of triangles identified along shared edges (center right).

In fact, the practical utility of intrinsic triangulations comes from the ability to work with a much larger space
of meshes than can be represented via the ordinary (extrinsic) approach (Figure 2). In this sense, they provide a
“relaxation” of the standard picture, which in turn provides new capabilities for geometry processing (Figure 3). Yet
since the final set of intrinsic mesh operations looks much like those available on an ordinary mesh, they can be
encapsulated in a “black box” interface that hides much of the complexity of working in the intrinsic setting. Hence,
algorithms written for intrinsic triangulations often end up looking very similar to ordinary (extrinsic) mesh code.

The framework of intrinsic triangulations is particularly useful for improving the robustness of existing algorithms.
Researchers and engineers have put tremendous effort into developing sophisticated geometric algorithms, yet these
algorithms often cannot be used in practice since preconditions on the input do not match up with the reality of
actual data (e.g., coarse or poorly-triangulated meshes from 3D printing or real-time visualization). In a perfect world,
geometric software would automatically build a triangulation “under the hood” that satisfies the preconditions of a
given algorithm, run the algorithm, then return the solution in a format usable within the original context. Modern
numerical linear algebra packages like MATLAB provide an excellent analogy: to solve a linear system Ax = b users
can just type x = A\b; the matrix A is then intelligently re-ordered and factorized to improve stability, accuracy, and
efficiency. As a result, non-expert users trivially benefit from sophisticated, performance-tuned solvers—which has
led to rapid growth of fields like image processing, computer vision, and machine learning. Geometric computing has
not yet achieved this same level of simplicity—but the intrinsic framework described in these notes provides some
important steps in that direction.

In particular, intrinsic triangulations provide a valuable bridge between low-quality data, and algorithms that
assume high-quality input (Figure 1), enabling:

• algorithms that were not originally designed to be numerically robust to be successfully run on extremely
low-quality meshes,
• algorithms that were originally formulated only for the flat Euclidean plane to be applied to curved, irregularly-
tessellated surfaces, and
• algorithms designed for manifold, orientable data to be applied directly to arbitrary triangle meshes.

The intrinsic approach also side-steps some fundamental, traditionally unavoidable challenges in geometric computing—
such as the need to juggle the quality of geometric approximation with the quality of individual mesh elements.

6

i

jk

i

j

k

Fig. 3. Conceptually, intrinsic triangles can “bend” across an underlying polyhedron, yet still flatten out into standard triangles

described by three ordinary edge lengths (left). This flexibility enables things that are impossible with standard, extrinsic

algorithms—here, a mesh with tiny input angles becomes a geometrically identical Delaunay triangulation with angles no smaller

than 30◦ (right). Since the output is described by conventional data (connectivity + edge lengths) it can still be used directly by

many standard simulation and mesh processing algorithms.

1.1 Why This Approach?

There are some good reasons for using intrinsic triangulations in practical algorithms:

• Many important problems are intrinsic. An increasingly large set of algorithms from geometric and scien-
tific computing are expressed in terms of surface differential operators that are inherently intrinsic. A chief
example is the discrete Laplace-Beltrami operator [Dziuk 1988; Pinkall and Polthier 1993; Wardetzky 2017],
which is the starting point for most PDE-based geometry processing, as well as sub-fields such as spectral
geometry processing [Levy and Zhang 2009], functional maps [Ovsjanikov et al. 2016], and so on [Solomon
et al. 2014]. Beyond the Laplacian, other fundamental geometric quantities (curvatures, geodesic distances, the
logarithmic map, and so on) can easily be computed from intrinsic data alone. For such problems, working in
the strictly larger space of intrinsic triangulations offers, e.g., better accuracy with fewer degrees of freedom.
• Intrinsic descriptions ignore features that don’t matter. In shape analysis (e.g., classification or pairwise
correspondence) extrinsic descriptions must somehow factor out features like rigid motions or isometric
deformations (e.g., bending of an arm)—often at great computational expense [Huang et al. 2008; Li et al. 2008].
Intrinsic representations are oblivious to such transformations by construction.
• Traditional trade-offs can be avoided.Mesh generation frequently encounters a “no free lunch” scenario
where one must compromise on either mesh quality, mesh size, or geometric approximation error. Intrinsic
triangulations bypass this classic trade-off by decoupling the triangulation used to encode shape from the one
used for computation.
• Volumetric data structures are not required. Techniques for surface meshing [Cheng et al. 2012, Chapter
13] and robust geometry processing [Barill et al. 2018; Jacobson et al. 2013] often depend on 3D volumetric
data structures which require significant storage, suffer from difficulties not encountered in 2D (e.g., “sliver”
tetrahedra), and/or have trouble handling surfaces with boundary or self-intersection. The intrinsic approach
provides some of the very first non-volumetric, surface-only versions of fundamental algorithms like Delaunay
refinement (Section 4.3) and adaptive mesh refinement (Section 4.5).
• Some important problems do not even have an extrinsic formulation.Many geometry processing tasks
are formulated by mapping a curved manifold into a flat space—e.g., surface parameterization [Springborn et al.
2008a], shape recovery [Bobenko and Izmestiev 2008; Isenburg et al. 2001], and structured meshing [Paillé et al.
2015], to name a few. Some of these problems have convex formulations only because they can pass through
the larger space of intrinsic triangulations [Luo 2004; Springborn 2019]; others simply have no meaningful
definition in the extrinsic context.

More broadly, building up general-purpose tools for working in the intrinsic setting not only improves solutions to
existing problems, but prompts one to ask entirely new questions, or take completely different approaches.

7

1.1.1 What Are Intrinsic Triangulations Not?

Intrinsic triangulations are not, of course, a remedy for all difficulties encountered in geometry processing:

• Intrinsic triangulations do not improve geometric approximation quality. As discussed in Chapter 2, a
basic assumption of the intrinsic triangulation framework is that the input mesh provides an exact description
of the geometry of interest. Atomic operations are designed to preserve the geometry exactly, and can neither
degrade nor improve the approximation quality of the input geometry—though they can significantly improve
the quality of individual triangular elements.
• Intrinsic triangulations do not repair topological defects. Likewise, the intrinsic framework will not fill
holes in the data, nor fix spurious topological features (like small handles) that result from “upstream” algorithms
like surface reconstruction. The working hypothesis is that the given topology is the correct topology. (Of
course, nothing prevents one from running standard mesh repair algorithms prior to intrinsic processing.)
• Intrinsic triangulations do not yet provide solutions for volumetric problems. Algorithms and data
structures for intrinsic processing of 2D (surface) data are at this point fairly mature; those for working with
3D (volumetric) meshes are largely unexplored—and hence offer significant opportunities for future work.
• An intrinsic triangulation is not a standard trianglemesh.Most importantly, the basic premise of intrinsic
geometry processing is to work with a larger space of triangle meshes that cannot be expressed via ordinary flat
triangles in 3D space (Figure 2). Of course, many “downstream” algorithms may still require an ordinary mesh
(or other standard data) as input. Section 4.11 explores the many ways computation on intrinsic meshes can
be used to facilitate improved computation downstream. The most basic observation is that one can typically
subdivide an intrinsic mesh into an ordinary extrinsic one (though many other options are available).

1.2 Historical Roots

Though combinatorial triangulations have long played a role in topology, graph theory, etc., the framework discussed
in these notes owes its greatest debt to work that considers polyhedral surfaces from the intrinsic geometric perspective
pioneered by Gauss [1825] and Riemann [1854]. One of the first major results about the intrinsic geometry of polyhedra
was Alexandrov’s uniqueness theorem for embeddings of convex polyhedra published in the 1940s. Subsequently,
Regge [1961] explored the use of intrinsic triangulations to approximate the equations of general relativity. Already
in these early works we find statements that strongly resemble the modern perspective on intrinsic triangulations.
For instance, Regge writes:

“It is interesting to notice that the intrinsic geometry ofM is completely fixed by the connection matrix and

the length of all edges. The connection matrix is essentially a list of all faces, edges, and vertices ofM and a

list of their mutual relationship, i.e., by reading it one can decide which vertices, edges, belong to a given face,

etc. The connection matrix supplies us with all the topological information needed in the construction ofM .”

The “connection matrix” described by Regge is what we call in these notes a topological data structure (Section 2.2),
which encodes the connectivity of the mesh; he also makes the critical observation that the edge lengths alone are
sufficient to describe some of the most basic geometric quantities:

“The metric tensor on the other hand is replaced by the lengths of the edges . . .the knowledge of the lengths of

all edges ofM implies the knowledge of all angles and therefore of the deficiencies.”

In other words, one can read off the curvature of the discrete surface from the edge lengths, as discussed in
Section 2.3.6. Most importantly, Regge recognizes that the triangulation itself is superficial, and merely serves as a
“scaffolding” to define the underlying space:

8

“Since we are chiefly interested in the intrinsic geometry of manyfolds, we are not particularly interested in

the edges of M and we regard them as a rather immaterial convention for dividing M into triangles, any

other convention being just as good.”

The fact that the initial triangulation is not “special” is what allows us to move through a much larger space of
meshes than we can in the extrinsic setting—this perspective is discussed further in Section 2.3.5.

In more recent years, work by Rivin [1994a] and others laid the foundation for algorithms by introducing the
notion of intrinsic Delaunay triangulations, which have many attractive features for geometry processing (Section 4.1);
work by Bobenko and Springborn [2007]; Indermitte et al. [2001] establishes that such triangulations can always
be found via a simple edge flip algorithm (Section 4.2). Intrinsic Delaunay triangulations in turn lead to a canonical
Laplacian for polyhedral surfaces [Bobenko and Springborn 2007]—the Laplacian plays a fundamental role throughout
geometry and physics, and in particular in geometry processing algorithms based on partial differential equations
(PDEs). The key benefit of the intrinsic Laplace operator is that it depends only on the shape of a polyhedral surface,
rather than the quality of the input triangulation. Gu et al. [2010] shows that in fact the discrete Laplace operator is
itself sufficient to describe the geometry of the polyhedron. Glickenstein [2005] and others generalize the Delaunay
property, edge flips, and several other concepts to a richer class of Euclidean triangulations which includes weighted,
Thurston [Thurston 1979], and duality triangulations, showing that many of the same properties still hold. These
triangulations have numerous applications in geometry processing [de Goes et al. 2014].

The machinery of intrinsic triangulations also has roots in conformal geometry processing [Kharevych et al. 2006;
Luo 2004]. In particular, a recent discrete uniformization theorem [Gu et al. 2018a,b; Springborn 2019] guarantees that
any triangle mesh (no matter how poorly triangulated) admits a high-quality conformal parameterization useful
for computer graphics and geometry processing [Gillespie et al. 2021b; Springborn et al. 2008b], but only if one is
allowed to change the intrinsic triangulation. Here, even though the initial and final meshes are embeddable in Rn ,
intermediate triangulations may not be—providing an excellent example of how working in a “relaxed” space provides
fundamentally new opportunities for mesh processing. These algorithms also build on an unexpected connection
between Euclidean polyhedra and ideal hyperbolic polyhedra [Bobenko et al. 2015], which is also explored in recent
work by Gillespie et al. [2021b].

Here, we always take the perspective of a fixed, discrete cone metric which is to be triangulated. The perspective
of triangulating a smooth manifold embedded in Rn via sampling has also been considered [Boissonnat et al. 2013;
Boissonnat and Ghosh 2010]; under sufficient sampling assumptions a Delaunay complex can always be constructed,
even in high dimension. One can also consider a more general set of triangulations on a surface which have geodesic
(locally-shortest) edges, but relax the requirement that the interior of each triangle be Euclidean (contain no vertices).
Such triangulations arise as the dual of geodesic Voronoi diagrams [Ye et al. 2019], and similar techniques have
been used for self-parameterization of meshes [Lee et al. 1998; Liu et al. 2020, 2021], though the properties of such
triangulations have yet to be deeply studied.

Despite the great potential of intrinsic triangulations, there are several reasons that intrinsic triangulations have
not yet seen broader use in practice. One is simply the scarcity of material aimed at a computational audience—which
these notes aim to address. The intrinsic perspective can be initially difficult to grasp for many students of geometry:
human beings are used to thinking about shape as something solid they can hold in their hands, rather than something
accessed through small local descriptions. Even in mathematics it took a very long time (until the 19th century) for the
intrinsic perspective to be developed and accepted. Yet development of the intrinsic point of view was a turning point
in modern mathematics and physics, leading for instance in the 20th century to Einstein and Hilbert’s development of
the theory of general relativity. We likewise believe that the intrinsic perspective has the potential for major impact
on geometry processing and scientific computing.

Another major deficit is that, until quite recently [Fisher et al. 2007; Gillespie et al. 2021a; Sharp et al. 2019b], there
has been very little work on practical data structures for intrinsic triangulations. Basic representations developed
in mathematics do not support many of the operations needed for digital geometry processing. For instance, when

9

studying problems in, say, geometric topology, one is often happy to consider the coarsest triangulation of a space—and
may have no need to insert vertices or split edges. In Chapter 3 we discuss several different data structures for intrinsic
triangulations that support a more complete set of operations, and examine their trade offs for practical computation.

Finally, given that general-purpose intrinsic data structures are quite new, it is not surprising that we are just
starting to see algorithms that fully take advantage of the intrinsic perspective. Chapter 4 explores how several
classic algorithms for Delaunay triangulation can be generalized to the intrinsic setting, which in turn improve
accuracy and robustness for a variety of PDE-based geometry processing tasks. Chapter 5 explores an especially
interesting example, where retriangulation unrelated to the Delaunay property is used to find geodesic curves and
curve networks on surfaces. Other algorithms consider the intrinsic perspective (e.g., [de Goes et al. 2014; Liu et al.
2021]), but do not yet take advantage of the full space of triangulations accessible via intrinsic edge flips and other
intrinsic operations. Beyond this recent work, a great deal remains to be done—Chapter 7 explores a variety of open
questions and directions for future work.

10

Chapter 2

Intrinsic Triangulations

The goal of this course is to see how we can expand the standard view of meshes to enable more flexible algorithms
in geometric computing. For this reason, we begin with some careful definitions. Though geometric computing often
considers both surface and volume meshes, we will focus primarily on surfaces. A surface mesh describes only the
boundary of a solid region—or more generally a thin “shell” which need not be the boundary of any solid. Such meshes
arise in a broad range of contexts. For instance, they might arise from scanning a real physical surface, they may be
the output of a physical simulation algorithm, or they might be designed by an artist or engineer (see Figure 4).

The most important idea is that we will often work with two triangulations of the same surface:

• The extrinsic mesh is what one might ordinarily think of as a “triangle mesh:” a collection of points in R3,
connected up into triangles using straight line segments in R3.
• The intrinsic mesh is most easily thought of as another triangulation that sits “on top of” the extrinsic mesh,
whose edges are straight paths along the extrinsic mesh, rather than straight line segments in R3. As time goes
on, we’ll see that there is a much broader view of intrinsic triangulations, which does not require them to sit on
top of an extrinsic surface.

Fig. 4. An intrinsic triangulation exactly preserves the input ge-

ometry, while changing the mesh connectivity. Hence, if the input

mesh gives an exact description of the geometry (as with the CAD

model at right), it will not be corrupted; if the input exhibits noise

or approximation error (as with the marching cubes approxima-

tion at left), these errors will get neither better nor worse.

The framework of intrinsic triangulations makes two
important assumptions. First, we imagine that the input
geometry is an exact description of the shape of interest.
One of the strengths of the intrinsic approach is that
(unlike conventional remeshing) it exactly preserves the
given shape, whichmeans that one need not worry about,
e.g., corrupting small features, sharp edges, or surface
detail while processing geometry. Of course, the intrinsic
approach still applies even if the input only approximates
the true geometry (as with, say, 3D scans)—we simply
use the “exact input” hypothesis to guide decisions about
data structures and algorithms. On the flip side, if there
are defects in the input (noise, topological errors, etc.),
these features will also be retained by the intrinsic mesh.
In short: intrinsic meshes help to improve the quality of
mesh elements, but do nothing to improve the quality
of the underlying geometry.

Second, we assume that the geometry is given as a
polyhedral surface with flat faces, and moreover, that
some initial triangulation has been chosen for non-
triangular faces. This assumption goes hand-in-hand with the first assumption: in order to exactly preserve the
geometry, we must have a clear definition of what this geometry looks like. Nonplanar polygons (i.e., polygons
where all vertices do not sit in a common plane) do not provide a canonical definition—though some opportunities
for processing nonplanar meshes are discussed in Chapter 7. In contrast, planar polygons provide a well-defined
geometry; assuming that such polygons have already been triangulated is merely a simplifying assumption that

11

leads to concise descriptions of data structures and algorithms. Moreover, in several important cases the choice
of triangulation will have no effect on the final result—such as when defining the intrinsic Delaunay Laplacian
(Section 4.1), or computing discrete conformal maps [Gillespie et al. 2021b].

The description of a polyhedral surface can be divided into two basic pieces:

• A topological complex describes how mesh elements (vertices, edges, and faces) are connected, without any
reference to the shape, size, or location of these elements. A good analogy would be an adjacency matrix for
a graph, which indicates which nodes are connected by edges (and nothing more). Working with intrinsic
triangulations will require us to expand our notion of connectivity beyond the usual “vertex-face” adjacency
matrix common to many mesh data structures, as discussed in Section 2.2.
• Associated geometric data provides complementary information about shape. In particular, the geometry of an
extrinsic mesh is given by ordinary vertex positions, whereas the geometry of an intrinsic mesh is described
primarily by edge lengths. Sections 2.3.1 and 2.3.3 provide further details.

This division between topology and geometry also reflects the standard treatment differential geometry, where a
surface is often thought of as an embedding of an abstract topological surface into Rn . (For an introduction to this
perspective, see Crane et al. [2013a, Chapter 3].)

2.1 Connectivity

pure simplicial
2-complex

not a simplicial
complex

not a pure
complex

Fig. 5. In a simplicial complex, an edge must

have two distinct endpoints, and a triangle

must have three distinct vertices.

A topological triangulationT describes how a collection of vertices, edges,
and faces should be connected up to form a mesh. Such triangulations
describe only the connectivity of the mesh, and make no assumptions
about geometry. For instance, triangles are not required to be flat, and
edges are not required to be straight.

Notation. We will refer to the vertices, edges, and faces of any topo-
logical triangulation T as V , E, and F , resp., so that T = (V ,E, F). We use
∂E ⊂ E to denote the set of boundary edges, i.e., edges contained in ex-
actly one triangle, and ∂V ⊂ V to denote boundary vertices, i.e., vertices
contained in some boundary edge. Individual vertices will be denoted
by indices i ∈ V . Likewise, edges and triangles will be written as pairs
ij ∈ E and triples ijk ∈ F of vertices. A quantity u at corner i of triangle
ijk will be denoted u jki . Sums and products appearing on the right-hand
side of an expression are implicitly restricted to simplices appearing on
the left-hand side—for instance, the expression ui =

∑
i jk vi jk means “to obtain u at vertex i , sum the quantity v over

all triangles ijk containing vertex i .” We will typically express a quantity as a map from mesh elements to some set of
values—for instance, edge lengths can be viewed as a map ℓ : E → R>0 assigning a positive number to each edge, and
triangle normals can be viewed as a map N : F → R3 assigning three coordinates to each face. If helpful, one can also
think of this data as being encoded by column vectors, e.g., ℓ ∈ R |E | .

We will also consider the set of halfedges Hext, directed edges associated with each edge: for
an edge ij the are two associated halfedges, one pointing from i → j and one from j → i .

We will often (but not always) assume thatT ismanifold and orientable, as defined below. These
assumptions simplify data structures and algorithms, and are often sufficient for working with real data—especially
since one can sometimes build a “bridge” between nonmanifold meshes and algorithms that operate only on manifold
data (see Section 6.1).

12

orientableconsistent

inconsistent

nonorientable

Fig. 6. Left: a pair of triangles is consistently oriented if they disagree on the orientation of the shared edge. A triangulation is

orientable if all triangles can be assigned consistent orientations (center) and nonorientable otherwise (right).

nonmanifold
edge

manifold
vertex

manifold
edge

nonmanifold
vertexi

i

i
j

i

j

Manifold Triangulations. A topological triangula-
tion T is manifold if we can find a small neighborhood
around every point that can be flattened out into the
plane. More concretely, an edge ij ∈ E \ ∂E is manifold
if it is contained in exactly one or two faces. A vertex
i ∈ V is manifold if (1) all edges incident on i are are
manifold and (2) the faces incident on i form a single
edge-connected component. A triangulation T is edge-
manifold if all its edges are manifold.

above intrinsic geometry
(unfolded)

intrinsic
connectivity

extrinsic
geometry

Fig. 7. Intrinsic triangles can “wrap around” ex-

trinsic polyhedra, allowing them to have unusual

connectivity. Here, for instance, the dark blue tri-

angle connects once to vertex i and twice to vertex

j—effectively gluing two of its sides to each other

along edge ij.

Orientation. Orientability is a basic property of a surface—
intuitively it says whether or not a surface has two distinct “sides.”. For
instance, a cylinder is orientable, but a Möbius strip is not (Figure 6).
An edge between two vertices i, j ∈ V can be given two different
orientations: from i to j, and from j to i , which we denote by ⇀ij and
⇀ji , resp.. Likewise, a triangle incident on three vertices i, j,k ∈ V can
be given a counter-clockwise orientation, denoted by −⇀ijk or any even
permutation thereof, or a clockwise orientation, denoted by any odd
permutation (e.g., −−⇀kji). Two oriented triangles that share an edge ij
are consistently oriented if they disagree on the orientation of the
shared edge, e.g., −⇀ijk and −⇀jil are consistently oriented. A topologi-
cal triangulation T is then orientable if all triangles can be given a
consistent orientation.

Simplicial Complex. A common way to describe a topological
triangulation is via a simplicial complex, which describes all elements
as subsets of the vertex set V . More abstractly, a simplicial complex
is any collection of sets closed under the operation of taking subsets.
The sets of size k are called k-simplices, corresponding to vertices
(k = 1), edges (k = 2), triangles (k = 3). The subset relationships
encode connectivity information—for instance, the edge {i, j} is an
edge of triangle {i, j,k}. A basic limitation of simplicial complexes is
that they cannot describe elements with repeated vertices, since sets

cannot have repeated elements. However, restricting our attention to the simplicial case will sometimes be useful for
reasoning about algorithms, since we can make the simplifying assumption that every edge ij ∈ E has two distinct
vertices i , j, and every triangle ijk ∈ F has three distinct vertices i , j, i , k , j , k . The simplicial complexes we

13

consider will all be pure 2-simplicial complexes, meaning that every vertex i ∈ V is contained in some triangle ijk ∈ F ,
and likewise, every edge ij ∈ E is contained in some triangle ijk ∈ F .

∆-Complex. When working with intrinsic triangulations we will inevitably need a more general ∆-complex1. The
basic reason is that intrinsic triangles can wrap around the extrinsic surface in “unusual” ways. For instance, if the
total angle around a vertex i of the extrinsic surface is less than π , then its neighborhood can be covered by a single
intrinsic triangle glued to itself along an edge (as shown in Figure 8).

Fig. 8. In a ∆-complex, the vertices of an edge

or triangle are not required to be distinct. For

instance, one can build a cone by gluing together

two edges of the same triangle (top), or a torus out

of two triangles and just a single vertex (bottom).

In general, a ∆-complex can be viewed as a collection of disjoint
triangles, alongwith information that describes how to glue the vertices
and edges together. In particular, suppose we index the vertices of the
disjoint triangles as i0j0k0, . . . i |F | j |F |k |F | .. A ∆-complex can then be
specified by giving a list of vertex gluings a ∼ b and edge gluings
(a,b) ∼ (c,d), where a,b, c,d are vertices from the disjoint triangles.
See Figure 8 for some examples. [Hatcher 2002, Section 2.1] gives a
more precise definition of ∆-complexes; further intuition is given in
Section 2.2, where we describe data structures for ∆-complexes. Note
that every simplicial complex is also a ∆-complex. As in the simplicial
case we will consider only pure, 2-dimensional ∆-complexes, i.e., every
vertex and edge is contained in some triangle (and triangles are the
cells of greatest dimension).

Notation becomes more challenging when working with a ∆-
complex, since edges and triangles are no longer uniquely determined
by their vertices (Figure 8). For instance, we may have a self edge where
the same vertex is found at both endpoints. One possibility might be
to write, say, vi (σ) to denote the ith vertex of a mesh element σ—for
instance, v1(e) and v2(e) would then give the two endpoints of edge
e . However, this notation quickly becomes tiresome.

Instead, we stick with the convention that a k-dimensional mesh element is specified by a juxtaposition of k + 1
vertices—but importantly, one should not assume that these vertices are distinct, nor that they uniquely determine
the identity of the mesh element. For instance, the symbol ijk simply denotes some triangle with vertices i , j , k , where
these indices need not refer to distinct vertices. The value of this notation is merely that it gives distinct names to
the three corners of the triangle, which can be referenced in subsequent statements. The ambiguous identity of the
element in question is typically not a problem, because we consider statements of the form “for each triangle ijk . . .”,
or sum a quantity over all triangles, etc.. Definitions, theorems, and algorithms will of course consider special cases
(e.g., elements with repeated vertices) as needed.

Defining the degree of a vertex in a ∆-complex also requires some care. In a simplicial complex the
degree of a vertex i is simply the number of edges incident on i , but in a ∆ complex the same edge may
be incident on a vertex more than once. We therefore define the degree deg(i) as the number of incident
edges counted with multiplicity, i.e., +2 for a self-edge from i back to i , and +1 for any other edge ij with
j , i . For instance, in the inset figure vertex i has degree four, even though it is contained in only three
distinct edges; vertices j and k both have degree one.

In general one must take care when attempting to translate results from the simplicial case to the
setting of ∆-complexes: this more general setting often demands new nontrivial proofs even for seemingly intuitive
properties (see for instance Bobenko and Springborn [2007]; Sharp and Crane [2020b]).

1pronounced “Delta complex”

14

2.2 Topological Data Structures

Topological cell complexes can be encoded by a variety of topological data structures. One basic data structure is the
vertex-face adjacency list, which simply describes each triangle as a list of three vertices. For instance, the mesh below
could be encoded as a table

3 4

1

2
v1 v2 v3

f1 1 2 3
f2 2 1 4

where each row describes a triangle, and the three columns give the indices of the three vertices. This representation
is popular due to its conceptual simplicity, and ease of implementation (e.g., it can be stored as just a |F | × 3 dense
array). However, it has one major shortcoming: a vertex-face adjacency list cannot, in general, be used to describe a
∆-complex. The basic reason is that it tells us only how to identify the vertices of different triangles in the adjacency
list—but does not unambiguously determine how edges should be glued together. For example, Figure 9 shows an
example of a vertex-face adjacency list where the edges can be glued together in many different ways. The reason
this representation works for ordinary extrinsic triangle meshes is that the geometry canonically defines the gluings:
the only way to connect two vertices in space is by the unique straight line segment between them. But when edges
become geodesics on a polyhedral surface, there are often many different ways they can be glued together.

It is essential, therefore, that a data structure used to encode the connectivity of an intrinsic triangulation must
describe how edges are glued together. Fortunately, many simple and standard mesh data structures represent general
∆-complexes without modification, such as edge-based winged-edge and halfedge structures [Baumgart 1975; Kettner
1999; Weiler 1985] which all support traversals and modifications in constant time; see Botsch et al. [2010] for an
introduction. We consider several possibilities and their trade-offs:

• Halfedge mesh — In a halfedge mesh, each edge is split into pairs of oppositely-oriented halfedges, which can
be used to infer the rest of the connectivity information. Halfedge meshes makes it easy to circulate around
vertices and faces in a consistent order—but as a consequence, they can only describe manifold, oriented
surfaces.
• Signed incidence matrices — Rather than a single vertex-face adjacency list, signed incidence matrices
separately encode vertex-edge and edge-face incidence relationships, via two sparse matrices. In contrast to
a halfedge mesh, signed incidence matrices can encode spaces that are neither manifold nor orientable—but
cannot easily circulate around vertices and faces.
• Gluing map — In addition to a standard vertex-face adjacency list, a gluing map explicitly specifies how the
three sides of each triangle get glued to sides of other triangles in the mesh. In other words, it provides exactly
the missing information about edge gluings. A gluing map is somewhere between a halfedge mesh and a signed
incidence matrices: it can encode nonorientable meshes that are still edge-manifold, and can easily circulate
around vertices and faces.

2.3 Geometry

A cell complex (or the data structure that encodes it) captures only the mesh connectivity. To describe the geometry, we
will assign additional information to mesh elements—such as lengths, areas, or positions in space. Clearly separating
a mesh into connectivity and geometry is essential to developing the intrinsic point of view. A tempting alternative
perspective is to imagine that, from the beginning, the mesh is just a subset of Rn , obtained by taking a union of
triangles (or other elements). However, this viewpoint leads to confusion and inflexibility. For instance, one common
conundrum is how to think about self-intersections—for instance, if two triangles intersect, is the mesh still “manifold?”

15

1

2

1

2

1 1

1 1

2

1

2

1 1

2

1 1

2

1 1

2

1 1

2
2

1

1

Fig. 9. A basic vertex-face adjacency list (top left) provides an ambiguous encoding of connectivity. Here, for instance, it specifies

that the mesh is comprised of four triangles and two distinct vertices. However, without additional information about how edges
are glued together, there are many possible ways to glue these triangles together—three are shown at bottom.

i

j
j

k
k

l l

i i

i

i

i

Fig. 10. Shapes that are difficult or impossible to embed in Rn are often much easier to describe intrinsically. For instance, the

flat torus (left) can be thought of intrinsically as a square with opposite edges identified—whereas finding a flat embedding into

R3 is a major challenge (image from [Borrelli et al. 2013]). Likewise intrinsic triangulations that describe a perfectly reasonable

metric space, such as the tetrahedron depicted in the right, may be impossible to embed into R3 while preserving lengths.

By separating connectivity and geometry, manifoldness becomes a clear-cut condition on the mesh connectivity alone
(given in Chapter 2); self-intersections are merely an artifact of the way this connectivity gets mapped into space 2.
Hence, one retains a valuable simplifying assumption even in the presence of intersections (contrast with volumetric
approaches, where self-intersections are often a major nuisance!). More importantly, separating out geometry and
connectivity is what enables us to consider the much larger space of intrinsic triangulations.

In general, extrinsic geometric quantities fundamentally depend on how a shape sits in space, whereas intrinsic
quantities do not. For instance, the length of a piece of string is intrinsic, whereas its bounding diameter is extrinsic.
Likewise, the unit normal of a triangle must be described with respect to some global coordinate system (extrinsic),
whereas the area of a triangle can be described without reference to any coordinates (intrinsic). In many cases, it
will be the interplay between intrinsic and extrinsic geometry that is most interesting—hence a mesh will store both
kinds of data, on two different triangulations.

Historically, the extrinsic perspective is much older than the intrinsic one. For instance, at the beginning of the
19th century a smooth surface was most typically described via a parameterization f : R2 → Rn , assigning explicit
Cartesian coordinates to each point. The intrinsic perspective later developed by Gauss, Riemann, and others, provided
a more flexible way of describing surfaces. For instance, a flat torus is a surface that has the connectivity of a donut,
2In the language of differential geometry: a surface with self-intersections is not an embedding, though it may still be an immersion.

16

but (unlike a donut) is not curved at any point. This space is very easy to think about intrinsically: just imagine a
square where walking off one side “wraps around” to the other side (Figure 10, left). But it is incredibly hard to find a
global embedding of the flat torus into R3 that preserves its flat geometry: such an embedding was not constructed
until the 21st century—and would be very awkward to work with directly (Figure 10).

In this section we carefully review both extrinsic and intrinsic encodings of mesh geometry, which will play a key
role in the development of data structures for intrinsic triangulations.

2.3.1 Extrinsic Geometry

A common way to describe the extrinsic geometry of a triangle mesh is by assigning coordinates to the vertices,
which are then interpolated over the rest of the mesh. In particular, suppose we have vertex coordinates f : V → R3.
The geometry associated with an edge ij ∈ E is then given by a straight line segment connecting the coordinates at
vertices i and j. We can express this segment as a linear combination

fi j :=
{
ti fi + tj fj ∈ R3

��ti + tj = 1, ti , tj ≥ 0
}

Similarly, the geometry associated with a triangle is then given by

fi jk :=
{
ti fi + tj fj + tk fj ∈ R3

��ti + tj + tk = 1, ti , tj , tk ≥ 0
}

2.3.2 Barycentric Coordinates

For any point p =
∑

i ti fi in an edge or triangle, the values t are called the barycentric coordinates3. Barycentric
coordinates are useful because they enable one to express points of a triangle without reference to how it is embedded
in space—for instance, in barycentric coordinates the corners of a triangle are always expressed as (1, 0, 0), (0, 1, 0),
and (0, 0, 1), and center of mass is always given by (13 ,

1
3 ,

1
3). For this reason, barycentric coordinates will be essential

for linking together the intrinsic and extrinsic geometry of our mesh.

A helpful mindset when reasoning about barycentric coordinates is to think of them
not as weights, but as actually defining a reference triangle (or edge) which gets mapped
to the triangle in the mesh. In particular, the set of all barycentric coordinates

σ :=
{
(ti , tj , tk) ∈ R

3 |ti + tj + tk = 1, ti , tj , tk ≥ 0
}

defines a copy of the standard triangle σ , which is an equilateral triangle sitting in the
positive octant of R3. One can then imagine that there is a disjoint copy σi jk of the
standard simplex σ for each triangle ijk ∈ F . Since neighboring triangles share vertex
coordinates, edges of these disjoint copies get mapped to the same segments in space,
effectively gluing them together.

Barycentric coordinates can also be used to describe vectors tangent to a triangle. Consider in particular any two
points p, q of the same triangle, given in barycentric coordinates (s1, s2, s3) and (t1, t2, t3), resp. Since the barycentric
coordinates of each point sum to one, the barycentric coordinates of their difference sums to zero:

3∑
i=1
(p − q)i =

3∑
i=1
(si − ti) =

3∑
i=1

si −
3∑
i=1

ti = 1 − 1 = 0.

3Note that since barycentric coordinates always sum to one, in the case of edges we will sometimes consider use just a single barycentric coordinate
s ; the other coordinate is then 1 − s .

17

extrinsic
edge flip

edge
flip

intrinsic
edge flip

Fig. 11. Left: an edge flip modifies the connectivity of a triangle mesh, replacing triangles ijk, jim with triangles kmi,mkj. Right:
whereas an ordinary extrinsic edge flip changes the mesh geometry, an intrinsic flip leaves the original geometry untouched.

Another way to see that the components of a vector must sum to zero is to consider the normal vector n = (1, 1, 1) of
the standard simplex σ . Any vector u ∈ R3 tangent to this simplex must be orthogonal to this normal, i.e.,

0 = ⟨n, u⟩ =
3∑
i=1

ui .

For example, in barycentric coordinates the three edge vectors can be expressed as (−1, 1, 0), (0,−1, 1), and (1, 0,−1).
Notice that the components of these vectors do not depend on the length of the edges.

2.3.3 Intrinsic Geometry

Perhaps the most fundamental difference between an intrinsic and extrinsic triangulation is that the geometry of an
intrinsic triangulation is encoded by edge lengths ℓi j ∈ R rather than vertex positions fi ∈ R3. Since edge lengths are
invariant to extrinsic motions such as rotations or isometric bending of the surface, they cannot be used to recover
extrinsic quantities such as normals, dihedral angles, or discrete mean curvature. They can however be used to extract
important intrinsic information, such as areas, interior angles of triangles, and discrete Gaussian curvature.

The initial values for these lengths will most often be obtained by measuring the distance between vertex positions,
i.e., by letting ℓi j := |fi − fj |. However, subsequent operations on the triangulation (such as intrinsic edge flips—see
Section 2.3.4) will then modify the initial lengths in ways that may not correspond to any operation on the extrinsic
mesh.

More explicitly, the geometry of an intrinsic triangulation is given by an assignment ℓ : E → R>0 of positive
lengths to edges4. These lengths must satisfy three triangle inequalities in each face ijk ∈ F , namely

ℓi j + ℓjk ≥ ℓki ,
ℓjk + ℓki ≥ ℓi j ,
ℓki + ℓi j ≥ ℓjk .

Any triple of lengths satisfying these inequalities determines a triangle in the plane—hence, one can derive other
geometric quantities (areas, angles, etc.) from just the three edge lengths (see Section 2.3.6 for further discussion).

2.3.4 Edge Flips

A basic operation in mesh processing is an edge flip, which provides the starting point for many of the algorithms
we will study in Sections 4 and 5. This operation is apparently so natural that it has been (re-)invented many times
over the years, and given many different names: an exchange [Lawson 1972], (edge) flip [Baillie et al. 1990, Figure 1],
diagonal switch [Leibon 1999, Figure 3.5], diagonal flip [Eiseman 1985], diagonal transformation [Negami et al. 1993],
Whitehead move [Rivin 1994b, Figure 2], stellar exchange [Pachner 1990, Definition 2], elementary move [Mosher 1988,
Figure 20], 2-2 Pachner move [Pachner 1990], 2-2 bistellar flip [Glickenstein 2005, Section 3.3], or just 2-2 flip [Moran
1996].
4In some cases it is fine to consider zero-length edges, though for simplicity we will generally assume that all lengths are positive.

18

To flip an edge ij ∈ E we replace the two triangles ijk, jim containing ij with two triangles kmi,mkj (Figure 11, left).
This description tells us how to update the connectivity, but how should we define the new geometry? Traditionally,
one just adopts the ordinary extrinsic geometry à la Section 2.3.1: the vertex positions fi , fj , fk , fl ∈ Rn are now
linearly interpolated over the new triangles kmi,mkj, rather than the original triangles ijk, jim. However, unless
the two triangles share a common plane, an extrinsic edge flip will change the geometry of the surface, as seen in
Figure 11, center. Hence, if we try to use an edge flip to, say, improve the shape of triangular elements, we do so at a
cost: we now have a lower-quality approximation of the original geometry. This situation highlights a fundamental
tension between element quality and approximation error that pervades ordinary extrinsic mesh processing.

An alternative is to perform an intrinsic edge flip (Figure 11, right). Intuitively, rather than connect vertices k andm
along a straight line segment through Euclidean space, we connect them by a straight path along the original surface
(formally, a geodesic—see Section 2.4.1). To do so, we update the edge lengths ℓ : E → R>0 that describe the intrinsic
geometry of our surface. In particular, we can imagine that we lay out the two original triangles ijk, jim in the plane;
the distance between fk and fm in this layout defines the new edge length ℓkm . Alternatively, one can compute ℓkm
directly from the known edge lengths—see Appendix A for further discussion.

Intrinsic Edge Flips Preserve Geometry. The key benefit of intrinsic edge flips is that they exactly preserve
the metric of the surface described by the triangulation. Hence, quantities like surface area, the shortest path between
any pair of points, and the angle sum around each vertex is exactly preserved. One may therefore freely flip edges
toward a more desirable triangulation, without “damaging” the geometric approximation of the underlying surface.
In turn, one side-steps some of the fundamental trade offs encountered in extrinsic mesh processing, opening the
door to new retriangulation strategies—as discussed in Chapter 4.

Flippable Edges. Importantly, not all edges can be flipped. Assuming the triangulation is represented by a ∆-
complex, an edge ij can be flipped if and only if it satisfies two conditions:

flippable not flippable

(1) triangles ijk and jil form a convex quad, and
(2) the endpoints i and j both have degree at least two.

If the first condition does not hold, then flipping the edge essentially
causes the mesh to fold over itself. See for instance the inset figure, where
flipping the edge ij yields a new triangle kl j covering the convex hull of
the original figure, and a smaller triangle lki sitting on top of it. In the
original configuration, both triangles have the same orientation relative
to the background domain, but in the new configuration the orientation of lki is reversed. Moreover, since the triangles
overlap, the total area of the original mesh is not preserved, nor is the total angle around vertices i , j, and k (for
instance, if we assume the original triangulation is planar then these vertices effectively acquire curvature—see
Equation 3).

flip
If the second condition does not hold, then flipping the edge would lead to a degree-zero

vertex, which cannot be represented by a triangulation (even a ∆-complex). Consider for
instance the inset figure, which is drawn both from the side and from above. On the left we
have a cone obtained by gluing a triangle to itself along one edge; edge ij hence has a degree-1
endpoint at vertex i . Attempting to flip this edge causes problems for both connectivity and
geometry. For one thing, in the flipped figure vertex i now has degree zero, and the initial
triangle has been transformed into two faces: a one-sided monogon (inside) and a two-sided
digon (outside). Geometrically, we now have a cone point on the interior of the monogon,
meaning that this face is no longer intrinsically flat. On the whole, it becomes impossible
to describe this space as a collection of flat Euclidean triangles encoded by edge lengths.

19

Note that one might also worry about flipping an edge with degree-two endpoints, since flipping a
self edge can actually decrease vertex degree by two. However, one cannot have a degree-two vertex
with a self-edge in a ∆-complex, as the neighboring faces cannot be triangles. For instance, the inset
figure shows a topological complex with a degree-2 self edge, but both faces in this complex are
monogons.

Flip Graph. The flip graph is a graph whose vertices correspond to intrinsic triangulations, and two triangulations
are connected if they are related by a single edge flip. Analyzing the correctness and complexity of many edge
flip-based algorithms amounts to proving various properties of the flip graph.

A basic property is connectivity of the flip graph, i.e., given two triangulations T1,T2 of the same vertex set, can T1
always be transformed into T2 by a sequence of edge flips? The answer depends on what kind of flips one considers,
e.g., whether one considers only the combinatorics of the edge graph, or also views the flips as transforming the
geometry of some domain. [Wagner 1936] showed that the flip graph is connected in the combinatorial case; [Lawson
1972] shows that it is connected for point sets in the Euclidean plane; and Mosher [1988, Connectivity Theorem for
Elementary Moves] gives an algorithm for flipping between hyperbolic triangulations5 using the normal coordinates
described in Section 3.5.1. The flip graph of Euclidean intrinsic triangulations is connected as a consequence of the
Delaunay triangulation (Section 4.1)—all triangulations can be flipped to a Delaunay configuration [Bobenko and
Springborn 2007], and these configurations are necessarily connected by flips between polygons inscribed in circles.

2.3.5 Cone Metric

Fig. 12. Left: intrinsically, a small neighborhood around any vertex of a polyhedral surface is indistinguishable from a round

circular cone. For instance, a vertex made from triangular pieces of paper can be easily smoothed out into a circular cone without

stretching or ripping. Center: a good mental “cartoon” of an intrinsic triangulation is hence a surface where the edges are

completely smooth, and only the vertices are visible. Right: from this perspective, no one triangulation is special—there are many

intrinsic triangulations that describe the exact same geometry.

Since neighboring triangles in an intrinsic triangulation have equal edge lengths, they can be “glued together” to
define the global geometry of the surface6. Unlike the extrinsic case, however, these triangles do not sit in R3, but
rather just define an abstract metric where one knows how to walk from one triangle into the next. There are two
very important observations to make about this metric:

(1) The geometry in a small neighborhood of any vertex i is indistinguishable from a smooth circular cone. Consider,
for instance, physically gluing together triangular pieces of paper around a common point—gluing the last edge
to the first forms a paper cone, and since the paper is flexible, this cone can be smoothed out into a circular
shape (without distorting lengths along the surface).

5 Mosher’s algorithm actually works on combinatorial triangulations as well, as all valid combinatorial flips are also possible in hyperbolic
triangulations. This is one way in which Euclidean triangulations are actually more complicated than ideal hyperbolic triangulations—the
conditions on a valid flip are more restrictive.
6A bit more formally, the Riemannian metric of the surface is defined by taking the quotient of the disjoint union of the individual triangles, where
two points are equivalent if they share barycentric coordinates along a common edge of the complex K .

20

(2) The edges are “invisible” from an intrinsic point of view: as one walks from one triangle to the next across an
edge, there is no geometric quantity that can be measured to determine the moment when the edge is crossed.
One way to make this observation is to consider an intrinsic edge flip (as described in Section 2.3.4). Whether we
lay out the original triangles ijk, jim or the new triangles kmi,mkj in the plane, they both describe an identical
quadrilateral piece of the surface ikjm.

For this reason, the space described by the complex T and the edge lengths ℓ is called a Euclidean cone metric: it
looks like a cone in the vicinity of each point, and otherwise just looks like the flat Euclidean plane everywhere else
(Figure 12). The edges initially used to define a cone metric are then completely superficial: there are many other
triangulations that could be used to describe the exact same geometry. In other words, the initial triangulation is
merely “scaffolding” used to get our hands on a definition of the shape. But we can freely change this triangulation
without changing the geometry of the underlying surface—just as retriangulating (say) a rectangular region of the
plane does not change its shape.

2.3.6 Length Based Formulas

In an ordinary extrinsic mesh, local geometric quantities such as areas, lengths, angles, etc., are expressed in terms
of the vertex coordinates fi . For instance, the area Ai jk of a triangle ijk ∈ F can be expressed by taking half the
magnitude of the cross product of two of the edge vectors:

Ai jk =
1
2 |(fi − fj) × (fi − fk)|.

Since these expressions use extrinsic operations on coordinates, we must seek other ways to express geometric
quantities in the intrinsic setting.

The three edge lengths of a triangle are sufficient to determine any intrinsic property of a triangle—in fact, a good
way to understand which quantities are intrinsic (versus extrinsic) is to ask whether they can be obtained from edge
lengths alone. For instance, the normal vector of a triangle cannot be determined from lengths, because there are
motions of a triangle (such as rotations) that change the normal but do not change the lengths. Likewise, the dihedral
angle at an edge must be an extrinsic property, since one can bend two triangles along a shared edge without changing
any of the edge lengths. On the other hand, the area Ai jk of any triangle ijk ∈ F is invariant to length-preserving
motions, and can be deduced via Heron’s formula

Ai jk =

√
s(s − ℓi j)(s − ℓjk)(s − ℓki), (1)

where here s = (ℓi j + ℓjk + ℓki)/2 is the semi-perimeter. The interior angle θ jki at corner i of triangle ijk is likewise
intrinsic, and can be obtained via the law of cosines:

ℓ2i j − ℓ
2
jk + ℓ

2
ki = 2ℓikℓki cosθ

jk
i . (2)

Hence, the interior angle itself can be expressed as

θ jki = arccos

(
ℓ2i j − ℓ

2
jk + ℓ

2
ki

2ℓikℓki

)
,

though quite often there are ways to avoid evaluating the arc cosine directly. Appendix A gives a more extensive list
of such formulas.

Using these local, per-element formulas one can deduce more global quantities by taking sums over mesh elements.
For instance, the total surface area is just

∑
i jk ∈F Ai jk . Another very important example of an intrinsic quantity is the

vertex angle deficit

Ωi := 2π −
∑
i jk

θ jki , (3)

21

Barycentric CoordinatesLocal Coordinates (2D) Local Coordinates (3D)

Fig. 13. Given the three edge lengths of a triangle ℓi j , ℓjk , ℓki , one can always find a corresponding set of vertex positions fi , fj , fk
in either 2D or 3D. If the vertices of the 3D embedding are placed along the principal axes, then they are related to the barycentric

coordinates by a simple diagonal scaling D.

which measures how much the sum of angles around a vertex deviates from the sum of 2π that one would find in the
plane. This quantity provides a notion of Gaussian curvature for polyhedral surfaces—since the angles θ jki can be
expressed in terms of edge lengths, this notion of curvature can, remarkably enough, be measured without embedding
the surface in space7.

2.3.7 Local Coordinates

2D Local Coordinates. In cases where an intrinsic quantity has no obvious expression in terms of edge lengths,
one can still construct local vertex coordinates for the triangle in Rn and take measurements of this triangle via
ordinary expressions from vector calculus. As depicted in Figure 13, left, we can construct a triangle with edge lengths
ℓi j , ℓjk , ℓki ∈ R>0 via three points in the plane:

fi := (0, 0),
fj := (ℓi j , 0),
fk := ℓki (cosθ

jk
i , sinθ

jk
i),

where θ jki is obtained from the law of cosines (Equation 2). In other words, we put the first vertex at the origin, and
the second at a distance ℓi j along the x-axis. The third vertex is likewise placed a distance ℓki from the origin, making
the appropriate angle θ jki with the first edge.

From 2D to Barycentric Coordinates. Often we will need to express a point
p ∈ R2 in a triangle in barycentric coordinates. There are several ways to express
these coordinates.

One way is to measure the distance from each edge, normalized by the corre-
sponding triangle height. More explicitly, if ui j := fj−fi is the vector along edge ij in
2D local coordinates, and J denotes a 90-degree rotation in the counter-clockwise
direction8, then we can write the inward unit normal along ij as

ni j = J
ui j
|ui j |

= Jui j/ℓi j .

7This fact is captured in the smooth setting by Gauss’ theorema egregium or “remarkable theorem.”
8A simple way to express this operation is to just exchange the two components and then negate the first one: J(x, y) = (−y, x).

22

The kth barycentric coordinate of p is then given by

bk =
1
hk
⟨ni j , p − fi ⟩,

where hk is the height of vertex k above edge ij, i.e., the barycentric coordinate is equal to the fraction of the height
covered by the point p (yielding a value between zero and one). We can simplify this expression by noting that
Ai jk =

1
2ℓi jhk , i.e., the area of a triangle is one-half its base length times its height (with respect to any edge). Hence,

bk =
1
ℓi jhk

⟨Jui j , p − fi ⟩ =
1

2Ai jk
⟨Jui j , p − fi ⟩ =

1
2Ai jk

⟨J(fj − fi), p − fi ⟩,

which involves only the point p, the vertex positions f , and the triangle area Ai jk . Note that these expressions are
linear in p, and yield barycentric coordinates (1, 0, 0), (0, 1, 0), (0, 0, 1) when p is placed at fi , fj , fk , respectively, i.e.,
they do indeed give the barycentric coordinates as defined in Section 2.3.2.

Taking this calculation further reveals that the barycentric coordinates can be
expressed as ratios of triangle areas. Consider that ⟨Ju, v⟩ = u × v, where here
u × v := u1v2 − u2v1 gives the nonzero component of the cross product of two
vectors in the plane, interpreted as vectors in 3D. Also recall that that the area of
a triangle is equal to half the cross product of two of its edge vectors. Hence,

bk =
1

2Ai jk
(fj − fi) × (p − fi) =

Ai jp

Ai jk
,

where Ai jp is the area of the triangle made by fi , fj and the point p.

For near-degenerate triangles (e.g., small/large angles, or lengths near zero) it can be more accurate to directly
solve a linear system for the barycentric coordinates. Consider in particular the matrix9

A :=

fxi fxj fxk
fyi fyj fyk
1 1 1

 .
If we let p := (px , py , 1), then solving the matrix equation

Ab = p

yields barycentric coordinates b = (bi ,bj ,bk) that describe the point p, and such that bi + bj + bk = 1. Likewise, given
a vector v := (vx , vy , 0), the corresponding vector in barycentric coordinates is found by solving Aw = v. We find
that solving this system with a (dense) QR solver with Householder pivoting works quite well in practice.

3D Local Coordinates. Alternatively, we can find 3D vertex coordinates along the
three axes that realize the given lengths (Figure 13, center)—which will also provide
a straightforward way to convert points and vectors on our triangle to barycentric
coordinates. In particular, suppose that u = (a,b, 0) and v = (a, 0, c) are two edge vectors
incident on a common vertex p = (a, 0, 0) a distance a along the x-axis (see inset). Then
we have

⟨u, v⟩ = a · a + b · 0 + 0 · c = a2.

Hence, the distance of p along the x-axis is just a =
√
⟨u, v⟩. If we are given just three

edge lengths then we do not yet know the edge vectors of the triangle in R3—but can
nonetheless compute their inner products, via the law of cosines. Recall that if two vectors

9Geometrically this matrix represents a linear map from barycentric coordinates to 2D homogeneous coordinates.

23

u and v make an angle θ , then ⟨u, v⟩ = |u| |v| cosθ . Hence, applying the law of cosines
(Equation 2) yields

a2 = ⟨u, v⟩ =
|u |2 + |v |2 − |w |2

2
,

wherew := u −v is the third edge of the triangle.

We can hence draw a triangle with edge lengths ℓi j , ℓjk , ℓki as three points

fi := (ai , 0, 0),
fj := (0,aj , 0),
fk := (0, 0,ak),

where

ai :=

√
ℓ2i j − ℓ

2
jk + ℓ

2
ki

2
,

and aj ,ak are obtained by permuting indices10.

From 3D to Barycentric Coordinates. The 3D local coordinates have a close relationship to barycentric coor-
dinates: by just sliding each point fi along its respective axis to a distance “1” from the origin, we transform this
triangle into the standard triangle σ . More explicitly, consider the diagonal matrix

D :=

ai 0 0
0 aj 0
0 0 ak

 .
Given a point b = (bi ,bj ,bk) in barycentric coordinates, p = Db gives the corresponding point on the triangle, and
likewise, b = D−1p (where D is easily inverted by just taking the reciprocal of the diagonal elements). Likewise, if
w = (wi ,w j ,wk) is a tangent vector in barycentric coordinates, then u = Dw is the corresponding vector in local 3D
coordinates and vice-versa.

Local Coordinates and Length-Based Formulas. The local embeddings provide a unified way to derive expres-
sions that depend only on edge lengths (like those given at the beginning of this section). Suppose, for instance, we
have a vector u expressed in barycentric coordinates (ui ,uj ,uk) and want to measure its length. Simply taking the
Euclidean norm

√
u2i + u

2
j + u

2
k will not give the correct length, since the standard triangle σi jk gets stretched out

when we map it to the true geometric triangle fi jk . Instead, we can account for this stretching by measuring the
length of the vector v = Du. In particular,

|v|2 = x2i u
2
i + x

2
ju

2
j + x

2
ku

2
k =

1
2

(
(ℓ2i j − ℓ

2
jk + ℓ

2
ki)ui + (ℓ

2
jk − ℓ

2
ki + ℓ

2
i j)uj + (ℓ

2
ki − ℓ

2
i j + ℓ

2
jk)uk

)
.

Noting that uk = −ui − uj and rearranging terms then yields an expression for the norm involving only the three
edge lengths11:

|v|2 = −
(
ℓ2i juiuj + ℓ

2
jkujuk + ℓ

2
kiukui

)
.

Other quantities can often be derived in a similar way, avoiding the need to construct an explicit local embedding.
Avoiding the local embedding saves some small amount of computation, but more importantly it can help to avoid
numerical operations that may be inaccurate in extreme situations, e.g., when edge lengths are close to zero, or
interior angles are close to zero or π .

10Since these values will be different for each corner of each triangle, it may be better to write them as a jki , akij and ai jk ; we stick to single indices
here for brevity.
11In spite of the negative sign, this expression really is positive for all vectors with coordinates satisfying ui + uj + uk = 0.

24

locally shortest globally shortest

geodesics

Fig. 15. A geodesic is often confused with a “shortest path” between points p and q, but in general a geodesic can be any path

that locally minimizes length, or equivalently, that exhibits no tangential acceleration.

2.4 Tangent Vectors

Fig. 14. Local coordinate system for

tangent vectors at vertices.

Vectors tangent to the surface play an important role in geometry processing.
In our correspondence data structures, they help to describe the direction of
intrinsic edges over the extrinsic mesh and vice versa. At points interior to
a face or edge, where the surface is intrinsically flat, tangent vectors have a
straightforward encoding, e.g., using Cartesian or barycentric coordinates as
discussed in Section 2.3.2. At vertices, however, where the surface locally looks
like a cone, we need a different description.

For an extrinsic mesh, one idea is to simply pick some tangent plane at each
vertex—however, the best choice of tangent plane is not always clear (much like
picking a vertex normal), and this approach will not work in the intrinsic setting.
A more canonical approach is to encode tangent vectors at a vertex i in local
polar coordinates (r ,φ) ∈ R≥0 × [0, 2π), i.e., as a radius r and angle φ relative
to some reference direction φ = 0. For instance, suppose we pick some arbitrary
(but fixed) edge ij0 to serve as the reference direction, and let

θ̃ jki :=
2π
Θi

θ jki ,

where Θi :=
∑

i jk θ
jk
i . Then the directions of all the outgoing edges with respect to this local coordinate system are

given by

φi ja =
2π
Θi

a−1∑
n=0

θ̃ jn, jn+1i ,

In other words, we take the cumulative angle sum up to edge ija , normalized by the total angle around the vertex.
Geometrically, these are the angles we would get by isometrically smoothing a polyhedral vertex neighborhood out
into a smooth cone (Figure 14, top). Alternatively, we can imagine that we cut the vertex open, flatten it into the plane,
and then stretch it12 into a closed figure (Figure 14, bottom), effectively normalizing all vectors to the range [0, 2π).

2.4.1 Geodesics

A geodesic is the generalization of the notion of a “straight line” to a curved surface. On a smooth surface, a geodesic
is a curve γ that is both straightest and locally shortest. Straightest essentially means that the curve experiences no

12In fact, stretching this figure out via the complex map z 7→ z2π /Θi effectively defines a Riemannian atlas that gives the polyhedral surface not
only a smooth structure, but also a conformal structure, as studied by Troyanov [1991].

25

Straightest Locally Shortest

Fig. 16. There are two distinct ways to define geodesics on polyhedra: as “straightest” curves, with equal angle on both sides (left),
or as “locally shortest” curves that cannot be pulled tighter (right). A curve through a positively-curved vertex (Ωi > 0) can always

be made shorter, whereas there are many ways to continue a path through a negatively-curved vertex (Ωi < 0) while remaining

locally shortest—for example, a path from p through i and then to either q1 or q2 is locally shortest. For intrinsic triangulations,

we need only consider locally shortest geodesics. (Leftmost figure adapted from [Polthier and Schmies 2006])

tangential acceleration—extrinsically, the direction of the curve changes purely in order to remain on the surface.
Locally shortest means that the restriction of γ to a sufficiently small neighborhood around each point p ∈ γ is the
shortest possible path between the endpoints of this smaller curve. Importantly, a geodesic need not be globally
shortest curve: for instance, a straightest curve that winds many times around a cylinder is still a geodesic. The
globally shortest geodesic between two points is called a minimal geodesic. Figure 15 shows some examples.

On a polyhedral surfaces, straightest paths are not always locally shortest (Figure 16). In particular, a straightest
geodesic through a vertex can be defined as a curve with equal angle on both sides [Polthier and Schmies 2006].
However, a path through a positively-curved vertex (Ωi > 0) can always be made shorter by going around the vertex.
Likewise, for any segment entering a negatively-curved vertex (Ωi < 0) there are many outgoing segments that
make a locally shortest path. For intrinsic triangulations, however, we need only consider locally shortest paths.
In particular, edges of an intrinsic triangulation will never pass through a cone point; geodesics computed by the
algorithm in Chapter 5 are locally shortest.

Algorithmically, there are several distinct types of problems where one might need to compute a geodesic. One is
an initial value problem where one must trace out a geodesic starting at a given point p in a given direction u—this
problem is easily solved by evaluating the discrete exponential map, as discussed in Section 2.4.2, and will be essential
for tracing out edges of one triangulation over another. One might also seek to compute a minimal geodesic between
two distinct points p, q (see [Crane et al. 2020] for a detailed survey), or to shorten an existing curve until it becomes
a locally shortest geodesic—Chapter 5 describes an algorithm for this final task that takes advantage of intrinsic
triangulations.

2.4.2 Exponential Map

Intuitively, the exponential map simply captures the idea of “walking straight along the surface” (Figure 17, left). More
precisely, for any surfaceM , expp(x) gives the point q ∈ M reached by starting at a point p ∈ M and traveling in a
straight or geodesic path for a distance L := |x|, starting in the direction u := x/|x| (see inset). On a polyhedral surface
the exponential map traces out straight line segments in a sequence of triangles—if these triangles are laid out in the
plane, it is simply a straight line. If the path reaches a vertex, it continues in the direction that maintains equal angles
on both sides [Polthier and Schmies 2006]—though as noted before when working with intrinsic triangulations all the
paths we consider will terminate at vertices (or at interior points).

To evaluate the map on a polyhedral surface (Figure 17, right), one can start in the triangle ijk containing the
point p and find the intersection of the ray r(t) = p + tu with the three edges, i.e., the smallest positive value of t for
which r (t) is on the boundary of ijk . The vector u is then transported to the neighboring triangle, and the process is
repeated until the total distance traveled is equal to L. Below we describe this procedure in greater detail, letting
f jki , f

ki
j , f

i j
k ∈ R

n be 2D or 3D local coordinates for any triangle ijk .

26

Fig. 17. Left: the exponential map simply walks along the surface in a given direction x, starting at a given point p. Right: on a

triangle mesh, the exponential map can be computed by tracing out a straight line through a strip of triangles. Each step amounts

to performing ray-edge intersections, then transporting the ray direction vector to the next triangle.

Ray-Edge Intersections. To compute the ray-edge intersections, assume
that the point p and the unit vector u are given in local coordinates, and let b,w
be the corresponding barycentric coordinates (as described in Section 2.3.7).
Finding an intersection with the three edges then amounts to finding the
smallest positive t values at which each of the three barycentric coordinates
vanishes—viewed from the perspective of the standard triangle, we are just
looking for the points where ray hits the planes x = 0, y = 0, and z = 0. Solving
the ray equation r(t) = 0 for these three planes then amounts to just evaluating

tn := −bn/wn , n ∈ {i, j,k}.

Letting t∗ be the smallest positive value from this set, the intersection with the
triangle boundary is then a := b+ t∗w. Suppose, without loss of generality, that
the ray intersects edge ij. Then the intersection will have barycentric coordinates (bi ,bj , 0), and the origin of the ray
in the next triangle (in local coordinates) is given by

p′ = bi f
mj
i + bj f

im
j .

Parallel Transport. To transport the ray direction vector from one
triangle to the next, consider an orthonormal basis for ijk aligned with
edge ij:

ei j :=
f ikj − f

jk
i

|f ikj − f
jk
i |

and ti j := n̂i jk × ei j .

Here n̂i jk is the unit vector in the normal direction

ni jk := (fkij − f
jk
i) × (f

i j
k − f

jk
i);

a cross product with this vector just represents a 90-degree rotation in the plane of the triangle13. Let eji , tji be the
corresponding basis for jim, aligned with edge ji . We can then transport the vector u ∈ Rn tangent to ijk to the
corresponding vector u′ ∈ Rn tangent to jim via

u′ = −
(
⟨u, ei j ⟩eji + ⟨u, ti j ⟩tji

)
,

i.e., by measuring its components in the basis for ijk , and re-expressing it in the basis for jim. The negative sign
accounts for the fact that the orientation of the shared edge is reversed.

13In 2D one can also just apply the transformation (x, y) 7→ (−y, x)

27

This process is then repeated in the next triangle jim for the ray r ′(t) := p′ + tu′, stopping when the sum of all t
values equals L.

2.5 The Laplace Matrix

The Laplace matrix for a triangle mesh is a fundamental quantity which appears widely in geometry processing
algorithms, ranging from smoothing operations to conformal parameterization to spectral methods. It is the discrete
equivalent of the continuous Laplacian ∆, or more formally the Laplace-Beltrami operator when defined on curved
surfaces. The Laplace matrix is a real sparse matrix L ∈ R |V |× |V | , where each row corresponds to a vertex, and there
is a nonzero entry Li j corresponding to each edge ij in a mesh. We will discretize this matrix as the cotan-Laplacian,
which can be derived in the context of electrical networks [Duffin 1959; MacNeal 1949], minimal surfaces [Pinkall
and Polthier 1993], finite elements, or discrete exterior calculus [Crane et al. 2013a], among others. The entries of the
cotan Laplacian are given by

wi j =
∑
i jk

1
2
cotθi j Li j = −wi j Lii =

∑
j ∈Ni

wi j (4)

wherewi j is the cotangent weight, the sum of cotθi j over all triangles in which an edge ij appears, with
θi j as the angle of the triangle opposite the edge ij (inset). The off-diagonal entries Li j are the negative
cotangent weights for the pair of vertices Li j , and the diagonal entries Lii are the sum over all cotangent
weights for vertex i . Note that any self-edges (where i = j) do not contribute to L. Past work varies
in the sign given to the Laplace matrix; in this document we will always use the positive (semi)-definite

Laplacian given above. Lastly, we note that the cotangent weights, and thus the Laplacian, can be constructed from
just the edge lengths of each triangle if desired (Equation 21), like the many other intrinsic properties in this section.

On “nice” triangulations (for instance, a triangulation with all acute angles), the cotangent weights will all be
nonnegative wi j ≥ 0. However, on low-quality triangulations some of these weights may be negative. In the nice
case where all weights are nonnegative, the Laplace matrix has a maximum principle—a desirable basic property
of the continuous Laplacian, which guarantees that solutions to Laplace equations will have extrema only on the
boundary. Edges with positive cotangent weights are Delaunay edges, corresponding to the widely-studied Delaunay
property is from planar geometry. A key benefit of intrinsic triangulations will be the ability to construct a special
high-quality Laplace matrix with all nonnegative cotangent weights called the intrinsic Delaunay Laplacian, which
not only guarantees the maximum principle but also generally improves accuracy across applications (Section 4.10).

Perfect Laplacians. Wardetzky et al. [2007] identify several properties that one would commonly desire in a
discrete Laplace matrix for a triangle mesh, including linear precision, a maximum principle, and locality, and
prove that there can be no Laplacian which simultaneously satisfies all of these properties. The intrinsic Delaunay
Laplacian [Bobenko and Springborn 2007], which we discuss at length beginning in Section 4.1 technically fails the
locality property as defined by Wardetzky et al. [2007]. We note, however, that the connectivity for the intrinsic
Delaunay Laplacian is actually geometrically more local than that of the original triangulation, in the sense that each
vertex is necessarily connected to its nearest neighbor (Section 4.1.1), and the matrix still has the same sparsity ratio as
the cotangent Laplacian of the original mesh. In some contexts, the geometric perspective may be a more meaningful
notion of locality, and in this sense the intrinsic Delaunay Laplacian is indeed a “perfect Laplacian”, reflecting its
overwhelming effectiveness in practice, as explored in Section 4.10. (See also Sharp and Crane [2020a, Section 3.3] for
further discussion.)

2.5.1 The Mass Matrix

The Laplace matrix L actually represents the weak Laplacian, which means that uTLv approximates the smooth
integral

∫
M u(x)∆v(x) dx . For technical reasons, this means that if we wish to approximate the solution u to an

28

equation of the form ∆u = f , we actually need to solve the discrete equation Lu = Mf , whereM is the mass matrix, a
sparse symmetric matrix depending only on the area of faces of the mesh. There are several common choices. The
vertex lumped mass matrix is a diagonal |V | × |V | matrix whose ith entry is one third of the areas of the triangles
incident on vertex i:

(Mvertex lumped)ii =
1
3

∑
i jk

Ai jk . (5)

This is easy to construct, and to invert, but is not always very accurate. For higher accuracy, one can instead use the
Galerkin mass matrix:

(MGalerkin)ii =
1
6

∑
i jk

Ai jk , (MGalerkin)i j =
1
12

∑
i jk

Ai jk . (6)

If we think of u and v as piecewise-linear functions on our domain, then uTMGalerkinv is precisely equal to the L2
inner product

∫
M u(x)v(x) dx [Strang and Fix 2008, Chapter 10, (32)].

29

Chapter 3

Representing Correspondence

To represent an abstract intrinsic triangulation, one needs only a mesh data structure that can encode a ∆-complex
(Section 2.1), and a list of edge lengths (Section 2.3.3). This representation completely encodes the intrinsic geometry
of the surface. However, in the common case where the intrinsic triangulation is defined on top of an extrinsic input
mesh, it may not be sufficient: it says nothing about how the intrinsic triangulation is situated relative to the extrinsic
mesh. The abstract representation alone does not specify the correspondence between the two meshes. For example,
one cannot use it to translate points between the extrinsic and intrinsic triangulations, or even to transfer tangent
data at shared vertices. In this section, we discuss concepts that arise from an intrinsic triangulation sitting on top of
an embedded mesh, and introduce several data structures encode the relationship between the two triangulations
while supporting essential queries and operations.

3.1 Intrinsic Triangulations of Embedded Surfaces

i
k

j

i
k

j

Usually, we obtain an intrinsic triangulation by starting
with an ordinary extrinsic mesh in R3, reading off the
edge lengths ℓi j = | fj − fi | from the vertex positions
to initialize an intrinsic triangulation, then transform-
ing this triangulation via local intrinsic operations (edge
flips, vertex insertions, etc., see Chapter 4). Because these
operations preserve the geometry of the extrinsic sur-
face, there is always a well-defined 1-to-1 map between
points on the extrinsic and extrinsic meshes. The intrin-
sic triangulation can hence be drawn “on top of” the
extrinsic mesh, where each intrinsic edge is drawn as a
geodesic curve14.

In some contexts, such as constructing operators like the intrinsic Delaunay Laplacian (Section 4.1), the abstract
intrinsic representation is entirely sufficient. However in other contexts, it will be important to directly represent and
evaluate this relationship between an intrinsic triangulation and the underlying extrinsic mesh. A basic example is
visualization, where we seek to draw the intrinsic triangulation sitting along the embedded surface in space. More
fundamentally, evaluating this relationship is necessary to translate data between the intrinsic triangulation and
extrinsic mesh: common operations will include interpolating data defined at the vertices the extrinsic mesh to the
vertices of a finer intrinsic triangulation, or mapping a point defined in barycentric coordinates along the intrinsic
triangulation to the corresponding point on the embedded mesh, or vice versa.

Whenever we are dealing with an extrinsic and intrinsic triangulation of the same surface, we will denote the
extrinsic triangulation by Text = (Vext,Eext, Fext) and the intrinsic triangulation by Tint = (Vint,Eint, Fint).

14 Note that in principle, there is no reason that the underlying carrier mesh needs to be extrinsic—we could just as easily define one intrinsic
triangulation on top of an initial intrinsic triangulation. All the machinery described here still applies, although we cannot construct and embedding
for visualization. Nevertheless, we will refer to the underlying mesh as the “extrinsic mesh” because that is the overwhelmingly common case in
practice.

30

3.1.1 Common Subdivision

An intrinsic triangulation Tint and the corresponding extrinsic mesh Text are
related via their common subdivision S. Intuitively, the common subdivision is the
intersection of Tint and Text, an extrinsic polygon mesh obtained by “cutting up”
Text along the edges ofTint. More formally, given two triangulations of a surfaceT1,
T2, the common subdivision S(T1,T2) is the coarsest polygonal decomposition15
such that every edge ofT1 andT2 can be expressed as a union of edges in S(T1,T2).
A consequence of this construction is that every vertex in T1 and T2 appears in
S(T1,T2), and every face of T1 and T2 can be expressed as as union of faces in
S(T1,T2). In this text wewill refer toS(Text,Tint) as simply the common subdivision
S. Any piecewise-linear function on Text or Tint can be represented exactly as a piecewise-linear function on S. We
can then interpolate the vertex positions fi from the extrinsic triangulation to obtain vertex positions on S, which
make each face planar and convex. The faces of S can then be triangulated arbitrarily if desired.

These properties make the common subdivision well-suited for interpolation and visualization of quantities
defined on Text and Tint. For example, in figures throughout this text, we visualize an intrinsic triangulation Tint of an
embedded surface Text by extracting the common subdivision and rendering it as an ordinary mesh in space, with
some appropriate shading policy (e.g. Figure 3, Figure 21). The common subdivision can also be used to rigorously
transfer data between the bases of Text and Tint, as described in Section 4.11. The rich data structures described below
will support explicitly constructing common subdivision from a representation of an intrinsic triangulation.

We emphasize that even if both Text and Tint consist of well-conditioned triangles, S may have low-quality or even
near-degenerate faces. As such, it is not a suitable domain for computation, e.g. solving PDEs. Instead, the common
subdivision serves a complementary role, for tasks like visualization and data transfer.

3.2 Correspondence Data Structures

To manipulate intrinsic triangulations in geometry processing, we will often require richer data structures to represent
the correspondence of an intrinsic triangulation with an extrinsic mesh, encoding not just intrinsic edge lengths, but
also the paths of these geodesic edge along the surface. These data structures support operations like constructing
the common subdivision, extracting the trajectory of geodesic intrinsic edges, or querying the bijection between a
point on the intrinsic triangulation and the equivalent point on the extrinsic mesh. The remainder of this section
we will introduce three data structures capable of representing the correspondence (Figure 18). Table 1 outlines the
capabilities of the different approaches.

15Formally, a 2-manifold CW complex, as defined in Hatcher [2002]

lengths & mesh
[Bobenko and Springborn 2007]

explicit crossings
[Fisher et al. 2007]

signposts

#10
#4

[Sharp, Soliman, Crane 2019b]
integer coordinates

3

1

12

0

[Gillespie, Sharp, Crane 2021a]

Fig. 18. The representations for intrinsic triangulations considered in this text.

31

Operation Meaning Representation Notes
Lengths Explicit Signpost Integer

edge flip replace ij with lm ✓ ✓ ✓ ✓

face split insert a new vertex in
intrinsic face ijk

✓ ✓ ✓

edge split insert a new vertex
along intrinsic edge
ij

✓ ✓ ✓

vertex reposition reposition vertex i
along the surface

✓ ✓ ✓ must be an inserted
vertex

remove vertex remove vertex i and
triangulate

✓ ✓ ✓ must be an inserted
vertex

correspondence map points between
intrinsic and extrin-
sic mesh

✓ ✓ ✓

transfer tangent data transfer tangent vec-
tor data between the
intrinsic and extrin-
sic mesh

✓

extract edge get the trajectory of
intrinsic edge along
the extrinsic mesh

✓ ✓ ✓

extract common sub-
division

get all faces of com-
mon subdivision

✓ ✓ ✓ signpost does not
guarantee valid
connectivity

Table 1. The operations supported by various representations of intrinsic triangulations. Only signposts and integer coordinates

support a full range of remeshing operations, while still encoding the trajectory of intrinsic edges along the surface. In principle

the explicit representation could support insertion and removal operations, though these have not been described and may be

prohibitively complex. Similarly, any data structure which can extract the common subdivision could in principle transfer tangent

data, but it is easiest with the signpost representation.

3.3 Explicit Crossings

The most direct approach to encoding correspondence is to maintain an explicit representation of the common
subdivision (Section 3.1.1), which is immediately updated as the intrinsic triangulation is modified—this strategy
was first explored by Fisher et al. [2007]. To encode the common subdivision S, this representation explicitly stores
all crossings, locations where an intrinsic edge crosses an edge of the underlying mesh, which become additional
vertices of S. Accordingly we will refer to this data structure as explicit crossings, or simply the explicit approach. An
annotated mesh data structure stores the connectivity of S; this mesh data structure must support general polygonal
faces, as well as fast insertion and removal operations to facilitate edge flips—Fisher et al. [2007] suggest a halfedge
mesh. The vertices of the common subdivision are labelled as actual triangulation vertices or as crossings; each edge
is likewise labelled as coming from Text (an “o” edge), Tint (a “c” edge), or both (an “oc” edge). In this context we refer
to the edges of S segments and reserve the word “edge” to mean the sequence of segments that make up an edge of
Text or Tint.

32

An advantage of the explicit crossing representation is that the common subdivision is always available, and can
be queried at any time without additional cost. Furthermore, the connectivity of the common subdivision is always
correct by construction, unlike e.g. the signpost representation in Section 3.4. The price for these properties is that
flipping an edge in the explicit crossing representation is a nontrivial operation which must traverse and update the
common subdivision, in contrast to the formulaic constant-time updates offered by other representations. Additionally,
explicit crossings as described by Fisher et al. [2007] support only edge flip operations, with a restriction that the
vertex sets of Text and Tint are identical. Other operations such as vertex insertions have not yet been defined, though
in principle the crossing data structure could be generalized to support such additional operations, at the expense of
additional complexity.

3.3.1 Edge Flips

Fig. 19. Flipping an edge in the ex-

plicit crossing representation [Fisher et al.

2007].

To perform an edge flip in the explicit representation, we begin by removing
the c edge, and merging the pairs of o segments that it split (Figure 19, top).
Then we insert the opposite diagonal c ′, splitting any o segments that it crosses.
Note that the necessary connectivity changes to not depend at all on the mesh
geometry: all information about which segments to merge is present in the
original common subdivision mesh, and we can tell if c ′ crosses an edge by
checking if it touches both the left and right boundary of the diamond. For this
reason, the explicit representation always encodes the correct connectivity of
the common subdivision. Once the connectivity is determined, we can measure
the location of crossings by laying the diamond out in the plane.

Some care is required when flipping a shared edge (Figure 19, bottom). In this
case, the edge is not removed, but simply relabeled from oc to o. Otherwise, the
procedure proceeds in the same way as before. Similar treatment is required
when flipping a c edge to lie along an o edge.

3.4 Signposts

#10
#4

Fig. 20. Signposts encode edges of an intrinsic by

storing the length and direction of each edge in the

tangent space each vertex.

Rather than explicitly encoding the trajectory of each intrinsic edge,
we can instead implicitly represent the trajectory by storing not
just intrinsic edge lengths, but also the direction of each edge, as a
tangent vector at the incident vertices; this strategy was developed
by Sharp et al. [2019b]. The benefit of this approach is that it retains
the simplicity and efficiency of the lengths-only case, while any
additional data about how the intrinsic triangulation sits atop the
extrinsic triangulation can be lazily recovered from the signposts
when needed. Furthermore, signposts are straightforward to gen-
eralize to the case of inserting additional vertices, and facilitate the
manipulation of vector-valued quantities on a surface. A disadvan-
tage of this approach is that correspondence is stored only inexactly
in floating point coordinates, and thus accuracy may degrade for
numerically degenerate inputs.

More precisely, in addition to the connectivity and edge lengths always used to represent an intrinsic triangulation,
the signpost data structure stores a set of angles φ : Hint → [0, 2π). Each angle φi j stores the direction of the halfedge
from vertex i ∈ Vint to vertex j ∈ Vint, in the local polar coordinate system at vertex i . These polar coordinate systems
are chosen to coincide with tangent coordinates frames on Text, constructed as described in Section 2.4. Because the
tangent coordinate systems are in correspondence between Text and Tint, tangent vectors on one triangulation can

33

be directly interpreted as tangent vectors on the other surface—this is they key property which makes the signpost
representation work, and which we must carefully maintain as we modify the intrinsic triangulation. Additionally, as
new points are inserted in to the intrinsic triangulation, we will store the location of each intrinsic vertex on the
extrinsic mesh as barycentric coordinates in a face or edge.

3.4.1 Tracing Through Triangulations

The path of an intrinsic edge along the extrinsic mesh is recovered by “tracing” the edge
along the surface—in the signpost representation this amounts to evaluating the exponential
map (Section 2.4.2), where the direction and distance of each edge provide the initial
conditions. This is an easy and efficient local geometric operation, which essentially amounts
to evaluating many ray-line intersections while traversing the extrinsic mesh, to compute
where the path exits each triangle and enters the next (inset).

In fact, this basic tracing operation enables many queries on the signpost intrinsic triangu-
lation, such as evaluating the correspondence from some point on the intrinsic triangulation
to the same point on the extrinsic triangulation, or vice-versa [Sharp et al. 2019b, Section
3.4]. Tracing out all of the edges in the intrinsic triangulation provides the necessary data
to construct the common subdivision (Section 3.6).

3.4.2 Local Mesh Operations

Sharp et al. [2019b] define a wide variety of mesh-processing algorithms on the signpost representation of intrinsic
triangulations. For the most basic edge flip, signposts can be updated via a simple local formula, just as edge lengths are
updated [Sharp et al. 2019b, Section 3.3.1]. However, the key advance of the signpost data structure is that it supports
a wide variety of additional operations beyond flipping edges, such as inserting new vertices and repositioning
vertices, all while maintaining an encoding of correspondence for queries like extracting the common subdivision
or evaluating the bijection. These operations in turn enable higher-level retriangulation algorithms, like intrinsic
Delaunay refinement and optimal Delaunay relaxation, discussed at length in Chapter 4.

Signpost Update. While working with the signpost data structure, one often needs to
update the direction of a halfedge from known direction of adjacent halfedges. In partic-
ular, suppose we know the direction φi j and the three edge lengths ℓi j , ℓjk , ℓki . Then we
can evaluate the angle θ jkk as in Equation 20, and update the direction of halfedge ⇀ik as

φik = φi j +
2π
Θi
θ jki , (7)

where Θi is the angle sum at vertex i .

Edge Flip. An edge flip replaces an edge ij with its opposite diagonal kl .
As always, we must first compute the length of the flipped edge (Equation 22).
In addition, the signpost data structure requires the angles of the two new
halfedges ⇀kl and ⇀lk , computed via the signpost update above.

34

Face Split. Given barycentric coordinates for a point p inside triangle ijk ∈ Fint, a face
split replaces ijk with three new triangles: ijp, jkp,kip. The lengths of the new edges can
be computed via Equation 23, and the angles at incoming halfedges φip can be computed
via a signpost update.

The angles at outgoing halfedges are more complicated, because we must be sure to
construct a tangent basis for p which is aligned with basis for the face or edge of Text on
which the new vertex sits. To do so, we will trace one of the incoming halfedges ⇀ip along
Text to p. Not only does this operation give the location of p onText, but we can also use the
final incoming direction of this vector to construct an aligned tangent space. More precisely,
first we trace along any halfedge ⇀ip from i to p—recall that tracing just means means
evaluating the discrete exponential map (Section 2.4.2). This yields barycentric coordinates

for p within some extrinsic triangle xyz ∈ Fext. Furthermore, the direction vector at the conclusion of tracing gives us
the vector u pointing from i to p in the tangent basis of xyz. We then set φpi to be the angle between −u and the
reference direction of triangle xyz. This ensures that our signposts at p are expressed in the coordinate system of its
parent extrinsic triangle, which allows us to perform tracing queries from p in future. Now that we have determined
φpi , we can compute φpj and φpk via signpost updates.

Edge Split. Edge splits proceed in essentially the same manner as face splits, by first updating connectivity, lengths,
and angles for the incoming halfedges, then tracing out one of the incoming edges to the new vertex to determine its
location and construct angles for outgoing halfedges in an aligned tangent coordinate system. Splitting a boundary
edge of Eint is again essentially the same, but we create only three incoming edges to the new vertex, and ensure that
the new vertex location is along the corresponding boundary edge of Eext.

Vertex Removal. We can remove any inserted vertex simply by flipping any incident edges until it has degree
three and then removing the vertex and its 3 remaining edges, leaving behind a triangular face. Gillespie et al. [2021a]
argues for the correctness of this flipping strategy. We emphasize that vertices of the extrinsic mesh cannot be
removed in this manner, only vertices which were previously inserted. This is not merely a limitation of the signpost
data structure, but a more fundamental limitation of our formulation for Euclidean intrinsic triangulations of a
piecewise-flat domain—geometry can no longer be exactly preserved if extrinsic vertices were allowed to be removed.
A more general formulation will be needed to support removal of arbitrary vertices from the intrinsic triangulation.

Vertex Repositioning. Inserted vertices i ∈ Vint can also be moved to an-
other location p on the surface. One can always move vertices by first16 in-
serting p at the target position and then removing i . For smaller motions
within a local vertex neighborhood, we can instead perform an explicit up-
date. Let v be a vector pointing from i to p. The new edge lengths are given
by

ℓjp =
√
|v |2 + ℓ2i j − 2|v |ℓi j cosα , (8)

where α := φi j − φv is the angle between v and edge ij . Angles on halfedges incident on p can be computed just as in
a face split.

16It is important to insert p first, as removing i changes the triangulation, and could invalidate the barycentric coordinates which specify p .

35

3.4.3 Queries

The signpost representation encodes the correspondence between an intrinsic triangulation and an underlying surface,
so it can be queried for data like edge trajectories, or translating a location from one triangulation to the other.
Because this correspondence is stored implicitly via edge vectors, correspondence queries typically involve evaluating
the exponential map.

Point Query. One basic operation is a point query, evaluating the bijection between
Text and Tint. Given a point p described by barycentric coordinates on some element of
Text, we can find the corresponding point on Tint by constructing a vector pointing to p
from any adjacent vertex, then evaluating the exponential map to trace out that vector
on Tint. The same procedure can likewise be applied to map a location from Tint to Text.

Construct Edge Trajectory. Signposts can also be used to efficiently reconstruct the path of a single edge ⇀ij
along the surface. This simply requires tracing the edge by evaluating the exponential map from i in the direction
and distance of ⇀ij , resulting in a path represented as a polyline of barycentric points along the other triangulation.
Again, this procedure can be applied identically for an edge from Text along Tint, or an edge from Tint along Text. This
operation is as efficient as possible—the time complexity of the operation is equal to the number of edge crossings
in the generated trajectory. Because these trajectories are encoded only inexactly in floating point coordinates, the
traced edge will generally not terminate exactly at the target j, but rather at some very nearby location; Sharp et al.
[2019b, Appendix A] describe some simple policies for projecting to the expected termination point.

Construct the Common Subdivision. If the trajectories of all edges are extracted, they can be assembled to
form the common subdivision of Text and Tint (Section 3.1.1). This assembly is described in detail in Section 3.6.

Transfer Tangent Data. Signposts define a very particular choice of tangent coordinates at vertices of Tint which
is in correspondence with the tangent coordinates on Text. When these tangent coordinates are used for computation
on Tint (e.g., generating a tangent vector field at vertices), the resulting values can be directly transferred between
Tint and Text. In particular, any vertex which appears in both Tint and Text has matching tangent coordinates on both
triangulations, so tangent-valued quantities can be trivially copied at vertices. Newly inserted vertices on Tint have
tangent spaces in correspondence with the canonical tangent space on the face or edge of Text along which they sit.

3.4.4 Robustness

The implicit encoding of intrinsic edge trajectories in a signpost triangulation is discretely exact: in proper real
arithmetic, it would always perfectly reconstruct the paths and the corresponding crossing connectivity. Recall also
that in practice, it is not necessary that tracing the edge ij “exactly” hit the vertex j, merely arriving in the correct
vertex neighborhood is sufficient. However, even with this observation, recovering the trajectory of an edge in
inexact floating-point arithmetic may fail for nearly-degenerate inputs. Although this behavior is typical of geometry
processing algorithms, it is particularly worrisome for intrinsic triangulations, for which a key application is robust
computation on degenerate 3D models. The integer-based representation (Section 3.5) supports a similar set of
operations, while offering a guarantee of correctly recovering the connectivity of the common subdivision, at the cost
of some increased algorithmic complexity.

36

3.5 Integer Coordinates

Rather than encoding the correspondence with floating-point signposts, one can instead use integer coordinates in
the form of normal coordinates and roundabouts [Gillespie et al. 2021a]. Like the signpost representation, these integer
coordinates implicitly encode the correspondence: rather than maintaining an explicit representation of all crossings,
one instead maintains some simpler data and lazily determines correspondence data as needed. More explicitly, in
addition to the connectivity and edge lengths of the intrinsic mesh, this data structure stores normal coordinates
n : Eint → Z and roundabouts r : Hint → Z≥0 on the intrinsic mesh. As with signposts, when new vertices are
inserted into the intrinsic mesh one must also store the corresponding location on the extrinsic mesh as barycentric
coordinates in a face or edge.

3.5.1 Normal Coordinates

2

2

1
1

1

1

1111
1

1
1

1

2
2

Normal coordinates have a long history in computational geometry and
topology as a compressed representation of curves on a complex [Haken 1961;
Kneser 1929; Schaefer et al. 2002]. The basic idea is that one can represent a
curve on a triangulated surface simply by counting how many times it crosses
each edge (inset). These crossing counts uniquely determine the curve so long
as it normal, i.e. it never intersects itself and always enters and exits triangles
on different sides17. To see why, consider a single triangle. Given valid crossing
counts on its edges, there is always a unique way of connecting them up to
form segments which do not cross and do not loop back on themselves: you
simply pair up endpoints near corners. Connecting up the crossings like this
in each triangle determines the topology of the curve along the surface.

5

43

5

43

5

43

4

-22 3

???

2

In order to encode intrinsic triangulations, we will need to allow curves to begin and
end at vertices, and to run parallel to mesh edges between vertices. This only requires
a small change: we set the normal coordinate ni j to k for edges with k crossings, and
set it to −k for edges that have k parallel curves. Note that since our curves are not
allowed to cross each other, we cannot have any curves running parallel to an edge
which also intersects curves transversally, so these cases are mutually exclusive. It is often convenient to define
n+i j := max(ni j , 0) and n−i j := −min(ni j , 0) which count crossings and parallel curves respectively.

i

j

k

emanating from corner k crossing corner k

i

j

k

In this setting, there are two useful quantities that we can define at
each corner: the number of edges leaving the corner, and the number
of edges crossing the corner. These are given by simple functions of the
triangle’s normal coordinates [Gillespie et al. 2021a]:

ei jk = max(0,n+i j − n
+
jk − n

+
ki), (9)

ci jk =
1
2

(
max

(
0,n+jk + n

+
ki − n

+
i j

)
− e jki − e

ki
j

)
. (10)

17This condition that the curves never cross back on themselves is a combinatorial version of the geodesic property: normal curves are locally-shortest
in the sense that they cross as few edges as possible [Thurston and Yuan 2012].

37

We can also reconstruct the normal coordinates from these quantities, since each curve
crossing edge ij must have either crossed an adjacent corner or emanated from the opposite
vertex. Explicitly, the normal coordinate ni j is given by:

ni j = c
ik
j + e

i j
k + c

jk
i . (11)

In the classical setting of closed curves, these “corner coordinates” are themselves often used to
represent curves, e.g. [Erickson and Nayyeri 2013]. This should also be possible in the setting of intrinsic triangulations,
but has not yet appeared in the literature.

go le� terminate go right

Using the corner coordinates, we can easily trace out
the curve. A curve entering a triangle can either go left,
stop at the opposite vertex, or go right. The number of
curves which go left is precisely cikj , and the number of
curves which go right is ck ji , so we can determine which
way the curve goes from its index along edge ij.

This tracing procedure only determines the triangle strip that the curve
passes through. But when the curves are geodesic—as in the case of intrinsic
triangulations—this actually determine the geometry of the curve. Once we
know the triangle strip, we can simply lay the triangles out in the plane and
connect the endpoints with a straight line to obtain the exact geometry of the
curve. Although this final layout step may suffer from floating point error on near-degenerate meshes, everything up
until this point has depended only on integer data. In particular, the computed curve is guaranteed to pass through
the correct triangle strip.

1

32

3

43

1

11

And finally, rather than just using normal coordinates to represent
a single curve, we can use them to represent a whole collection of
curves. The key idea is that if you have two disjoint curves, their
union is represented by the sum of their normal coordinates. Hence,
we can represent an entire intrinsic triangulation simply by counting
how many times it intersects each extrinsic edge.

3.5.2 Roundabouts

i

j

k

While normal coordinates determine the geometry of curves along a triangulation, they fail to
fully encode the full correspondence between two triangulations, as they do not specify which
logical edge each curve corresponds to. Since the triangulations are ∆-complexes, the endpoints
of an edge may not uniquely identify it—see for example the inset, where a curve traced from i
to j could correspond to either of the edges between them. Roundabouts, introduced by Gillespie
et al. [2021b], resolve this issue by explicitly tracking the cyclic ordering of edges from both
triangulations around each vertex of the extrinsic triangulation Text.

halfedge (extrinsic)

halfedge (intrinsic)

halfedge (shared)

roundabout

i

0
03

1

4 4

0

0

12

3

4

Precisely, for each intrinsic halfedge ⇀aj starting at a shared ver-
tex a ∈ Vext ∩Vint, the roundabout stores the first extrinsic halfedge
ab ∈ Hext following ⇀aj . This is encoded as an index r⇀aj ∈ Z≥0, where
we enumerate the halfedges of Text about vertex a in counterclock-
wise order (inset). Note that we only need roundabouts at halfedges
pointing away from shared vertices a ∈ Vext ∩Vint since all edges of
the extrinsic triangulation must start and end at such vertices. Even
if such an edge has been split, the corresponding sequence of curves
starts and ends at such vertices.

38

3.5.3 The Abstract Viewpoint

embedded viewpoint

edge of T0

edge of T1

-1
0 0
0

2
3

1

1
1

abstract viewpoint

curve
edge of T1

1
3

21

0

0

0
-1-1

-1

-1 -1
-1

-1

In principle, normal coordinates could either be defined as
a value per edge of Text, counting the number of crossings
fromTint, or as a value per edge ofTint. The latter approach
(insert, left) works better for representing intrinsic trian-
gulations, as it remains fully-informative even when we
insert new vertices in to Tint. It is then natural to think of
Tint as the primary triangulation, with Text as a collection
of geodesic curves sitting along it (inset, right).

3.5.4 Local Mesh Operations

These integer coordinates support all of the local mesh operations that signposts do, enabling the same applications,
e.g. intrinsic Delaunay refinement, to be performed while maintaining provably correct correspondence.

Roundabout Update. Just as we can update signposts based on some known edge lengths
and angles, we can update roundabouts based on known roundabouts and normal coordinates

rik = ri j + e
jk
i + n

−
i j . (12)

The quantity e jkk counts how many extrinsic edges emanate strictly between ⇀ij and ⇀ik , while n−i j detects whether
an extrinsic edge lies exactly along ij. One can optionally reduce rik modulo the degree of vertex i in the extrinsic
triangulation, like taking an angle module 2π .

Edge Flip. Again, we consider replacing edge ij with its opposite diagonal kl . In addition to computing the length
of ℓkl , we compute new normal coordinates as

nkl = c
jk
l + c

i j
k +

1
2

���cilj − ckij ��� + 1
2

���cl ji − c jki ��� − 1
2e

ji
l −

1
2e

i j
k + e

l j
i + e

jk
i + e

il
j + e

ki
j + n

−
i j , (13)

and compute new roundabouts via a roundabout update.

p
2

1
1

Face Split. We take as input a point p within intrinsic triangle ijk , represented by barycentric
coordinates. We update the mesh connectivity and compute new edge lengths just as with signposts.
Updating the normal coordinates is more involved since unlike edge flips, where the new normal
coordinates depend only on the old ones, face splits are a fundamentally geometric operation. The
result depends essentially on the barycentric coordinates of p.

We begin by tracing curves over the extrinsic mesh to compute the barycentric coordinates of each
crossing along the edges of ijk . Once we have located the crossings, we use line side tests to determine
which region p lies in. This determines the new normal coordinates, as well as the location of p along the extrinsic
mesh [Gillespie et al. 2021a, Appendix B]. After the normal coordinates have been computed, the new roundabouts
can be obtained via roundabout updates. Note that we only have to compute roundabouts for halfedges pointing at p;
halfedges emanating from p start at an inserted vertex and thus are not assigned roundabouts.

face split edge flip
Edge Split. We take as input a point p along intrinsic edge ij, represented by

barycentric coordinates. If ij does not lie along an extrinsic edge (i.e. ni j ≥ 0),
then we simply perform a face split in one of the adjacent faces and then flip
edge ij. However, if ij lies along an extrinsic edge (i.e. ni j < 0), then we perform
a different edge split routine, which ensures that the new vertex is inserted along the extrinsic edge.

39

p

In this case, the new normal coordinate is simply nkp = max(nki ,nk j , 0), since edge pk intersects
every curve in the face. We can compute the length of edge pk using the same barycentric coordinate
formula that we use to perform face splits, and we can perform roundabout updates on any necessary
halfedges. All that remains is computing the barycentric coordinates of p on Text, which we do by
linearly interpolating the barycentric coordinates at intrinsic vertices i and j.

Vertex Removal. As in the signpost representation, inserted vertices can be removed by flipping to degree-three,
and then deleting the vertex and its three adjacent edges. Again, only previously-inserted vertices can be removed in
this manner; a more generally representation would be needed to allow the removal of extrinsic vertices.

Vertex Repositioning. Vertices can be moved by inserting a new vertex and then removing the old one. In
principle, a local update procedure similar to the signpost one should be possible, but no such procedure exists at the
moment.

Point Query. We can convert points from the intrinsic mesh to the extrinsic mesh as described in the face split
operation. However, converting points from the extrinsic mesh to the intrinsic mesh is more complicated. One
possibility is to use the common subdivison: given a point p on the extrinsic mesh one can identify the face of the
common subdivison containing p. This common subdivison face is itself contained within some face of the intrinsic
mesh, and by converting between barycentric coordinates within the different faces, we can locate p on the intrinsic
mesh.

3.5.5 Robustness

The key property of the integer coordinate representation is that topologically-correct connectivity of edge trajectories
and the common subdivision is always maintained through any sequence of operations. As always, geometric
accuracy may still degrade in floating point, but a guarantee of correct connectivity is an important building block for
robust systems. This property is shared with the explicit crossing representation, but is in contrast to the signpost
representation, where connectivity must be recovered from implicit floating point data. However, unlike explicit
crossings, integer coordinates offer a formulaic constant-time edge flip operation, as well as operations beyond edge
flips such as insertions.

3.6 Extracting the Common Subdivision

Both the signpost and integer coordinate representations do not explicitly store the
common subdivision S, but instead store other implicit data from which edge crossings
can be recovered.We can then construct a mesh encoding of the common subdivision from
these edge crossings using a procedure which applies identically to either representation.

This procedure operates independently in each face of the intrinsic triangulation
ijk ∈ Fint, cutting it along the edges of the extrinsic mesh Text. We first determine where
each edge of ijk is crossed by edges of Text by tracing edges, an operation supported by
our rich representations. These crossings are then gathered and ordered along each edge,
and will become vertices of the common subdivision. The choice to define this procedure
per-face of Fint rather than Fext is intentional—because our intrinsic triangulations support
inserting additional vertices, faces of Fext may contain arbitrary configurations of vertices
from Vint on their interior, which would greatly complicate extraction of the common
subdivision if we attempted to define it per-face of Fext. In contrast, the faces of Fint always
have empty interiors, and within each the connectivity of the common subdivision falls

40

in to just two cases (see inset). The first case is when there is some corner of the face from which edges of Eext
emanate, labelled here as the corner at vertex i without loss of generality; this can be detected when the number of
crossings along jk is greater than the sum of the crossings along ij and ki . Otherwise, in the second case there are no
edges of Eext emanating from any corner.

In Case 1, all extrinsic edges intersect edge jk . Let c1, . . . , cr denote these crossings. For each crossing along ji , we
emit a segment connecting ja to ca . Similarly, for each crossing along ki we emit a segment connecting ka to cr−a+1.
Finally, we simply connect the remaining crossings along jk to vertex i .

In Case 2, some extrinsic edges clip off each corner. At corner i , we emit segments between crossings jp and kp
until the number of remaining crossings is equal to the number of crossings along edge jk . Repeating this procedure
at the other two corners yields all of the necessary segments.

Repeating this procedure for each face of Fint yields the entire common subdivision. To assemble polygons, we then
emit faces corresponding to consecutive segments crossing the intrinsic triangle, as well as the final central polygon
in Case 2. Assigning unique indices to each crossing ensures that the output is a standard vertex-face adjacency list
representation of the common subdivision. If desired, the emitted vertices and faces of can be labelled according the
element of Text and Tint from which they originated, and geometry can be associated with the mesh as barycentric
coordinates on Text, Tint, or as an interpolated extrinsic embedding from Text. Note also that the generated faces are
planar polygons of degree ranging from 3 − 6, which can be optionally triangulated if desired.

41

Chapter 4

Retriangulation

input intrinsic flipping intrinsic refinement intrinsic ODT

0° 30° 60° 90° 180°
corner angle

co

rn
er

s

0° 30° 60° 90° 180°
corner angle

co

rn
er

s

0° 30° 60° 90° 180°
corner angle

co

rn
er

s

0° 30° 60° 90° 180°
corner angle

co

rn
er

s

Fig. 21. Intrinsic retriangulation schemes applied to a computed-aided design model with poor triangle quality. The black

wireframe denotes the extrinsic mesh, colored triangles give the intrinsic triangulation. Delaunay flips achieve the Delaunay

property for a fixed vertex set, while refinement and repositioning further improve triangle quality and vertex distribution.

The intrinsic representation offers a large space of possible triangulations of a surface, all of which exactly encode
the underlying intrinsic geometry. We traverse this space with retriangulation algorithms, performing edge flips,
vertex insertions, and other operations to construct triangulations with improved numerical conditioning and other
desirable properties.

4.1 Intrinsic Delaunay Triangulations

The Delaunay triangulation of a point set in the plane is a fundamental concept in computational geometry which
has a beautiful analogue on intrinsic triangulations. These triangulations are widely studied for the geometric and
algorithmic quantities; in many senses the Delaunay triangulation is the “best” triangulation of a point set, e.g. by
Rippa’s Theorem the Delaunay triangulation offers the smoothest linear interpolation of values at vertices [Rippa 1990].
In the plane, there are many equivalent characterizations of the Delaunay triangulation of a point set (Figure 22),
including:

(1) The Delaunay triangulation is the dual of the Voronoi diagram.
(2) The Delaunay triangulation is the set of all triangles with empty circumcircles.
(3) The Delaunay triangulation is the triangulation where all cotangent weights are nonnegative.
(4) The Delaunay triangulation is the triangulation where for each edge ij , the sum of the angles opposite ij in the

adjacent triangles is at most π .
(5) The connectivity of the Delaunay triangulation is that of the 3-dimensional lower convex hull of the point set,

after lifting to a parabola according to z := x2 + y2.

All but the last characterization can be easily generalized to intrinsic triangulations of curved surfaces. Amazingly
they still coincide, defining the intrinsic Delaunay triangulation. Formally we take (4) as our definition, since it is
concrete and was the definition that Rivin [1994a] originally proposed, but we could take any one since they are all
equivalent.

42

local conditionsglobal conditions

edge angle sums
nonnegative

cotan weightsempty circumcirclesdual to Voronoi diagram

Fig. 22. There are many equivalent characterizations of the Delaunay triangulation. Here we illustrate a few examples.

Concyclic Quads. For a generic polyhedron, these equivalent conditions uniquely deter-
mine the intrinsic Delaunay triangulation; any given polyhedron admits exactly one intrinsic
triangulation of its vertices which satisfies them. However, this may not be the case in non-
generic configurations; in particular, if the neighboring triangles around edge ij form an
intrinsic concylic quadrilateral, then both ij and the opposite diagonal km will have angle
sum π (and equivalently have cotan weight 0, etc.) Thus, there may be several triangulations
which satisfy all of the conditions, so in general one should speak of an intrinsic Delaunay
triangulation, rather than the intrinsic Delaunay triangulation18. Note that these edges with
cotangent weight 0 do not contribute anything to the Laplace matrix, and thus the intrinsic Delaunay Laplace matrix
really is unique for any polyhedron, even though the Delaunay triangulation is not—this is one of the core results of
Bobenko and Springborn [2007].

4.1.1 Properties of Intrinsic Delaunay Triangulations

Here, we gather a collection of useful properties of intrinsic Delaunay triangulations, along with their proof sketches.
Properties of planar Delaunay triangulations usually extend to the intrinsic surface case, when defined in an appropriate
manner. In particular, we carefully clarify these properties in non-generic configurations, where there may be multiple
Delaunay triangulations.

Generally, two main proof techniques are used to generalize results from the
planar setting. The first is to consider the change in the some quantity when a
non-Delaunay edge is flipped; if the quantity can be shown to decrease, then it
must be minimized on a Delaunay triangulation, though careful treatment of the
case where there are multiple Delaunay triangulations may be necessary. This
strategy is useful for establishing minimal geometric quantities, bounds, and conserved quantities on the Delaunay
triangulation. The second technique is to consider all possible triangle-strip unfoldings of a triangulation (inset).
All of these unfoldings are themselves planar Delaunay triangulations, so we can apply properties from planar
computational geometry to all possible unfoldings to generalize them to the intrinsic case.

Lastly, we note that when the notion of a circumcircle or disk arises in the intrinsic setting, it can be formalized as
an isometric immersion of a Euclidean disk into the surface. Such an immersion is only well-defined if the immersed
disk does not strictly contain any cone points; we will only need to consider such empty disks for our arguments. A
disk immersed in this manner may overlap itself along the surface.

18Some authors instead choose to define the Delaunay tessellation in such scenarios, which is still uniquely-defined, but takes the form of a polygon
mesh rather than a triangle mesh. However, in our applications we will always work with triangle meshes, and generally will not be concerned
with the existence of multiple Delaunay triangulations.

43

4.1.1.1 Empty Triangle Circumcircles & Edge Disks. If a triangle ijk appears in a Delaunay triangulation,
then it has a geodesic circumcircle with empty interior [Bobenko and Springborn 2007]. Conversely, if any triangle
ijk has a geodesic circumcircle with empty and interior and furthermore i ,j,k are the only vertices on the boundary
of the circle, then ijk necessarily appears in every Delaunay triangulation.

Similarly, each edge ij in a Delaunay triangulation has a geodesic disk with i ,j on its boundary and an empty
interior [Bobenko and Springborn 2007]. Conversely, if i and j are the only vertices on the boundary of the disk, then
the edge ij necessarily appears in every Delaunay triangulation. The disk need not be a diametral disk (that is, a
disk for which edge ij is a diameter). The edges for which an empty diametral disk does exist form the Gabriel graph
[Gabriel and Sokal 1969], which is a subgraph of every Delaunay triangulation.

Bobenko and Springborn [2007] actually define the Delaunay triangulation19 as a cell complex whose edges are
precisely the geodesic segments between vertices which have empty circumcircles, whose faces are disk-inscribed
geodesic polygons with empty circumcircles. In Proposition 10, they prove that this construction is equivalent to the
opposite angle sum characterization of the Delaunay property, which proves that intrinsic Delaunay triangulations
obey the empty circumcircle property for faces and edges.

4.1.1.2 Contains Nearest Neighbors. For vertex i , every Delaunay triangulation has an edge connecting to its
nearest geodesic neighbor j. In a non-generic configuration, if there are multiple other vertices at the same minimal
geodesic distance from i , then all of these edges must appear in every Delaunay triangulation. Another subtlety in
the intrinsic setting is that vertex i may be its own nearest neighbor: if there is a non-constant geodesic from i to
itself which is shorter than all paths to other vertices, we say that i is its own nearest neighbor, and it is this edge
which must appear in the Delaunay triangulation.

i

jThis follows from the empty edge disk property in a straightforward way. Suppose that i’s
nearest neighbor is j, and they are separated by a length of ℓi j . Now consider the geodesic disk
of radius ℓi j about i . Since j is the nearest neighbor, this disk must be empty. This empty disk
contains a smaller disk which goes through i and is tangent to the larger disk at j. Hence, the
curve connecting i to j has an empty disk about it, and must therefore be a Delaunay edge.

4.1.1.3 Maximizes Angles. ADelaunay triangulation maximizes the minimum corner angle
in the triangulation. A stronger statement also holds in general position, when there are no cocircular quadrilaterals:
the sequence of all corner angles sorted from smallest to largest is lexicographically maximized [Sibson 1978].

The proof of this property proceeds exactly like the planar case. In order to prove that
the planar Delaunay triangulation maximizes angles, Sibson observed that flipping a non-
Delaunay edge increases the lexicographic rank of the set of angles. In particular, Sibson
notes that in the inset diagram, each primed angle is strictly smaller than the corresponding
unprimed angle. This implies that only a Delaunay triangulation can maximize the lexico-
graphic ordering—for any non-Delaunay triangulation, we can flip some non-Delaunay edge
to increase its lexicographic rank.

Some difficulty arises in the case of non-unique Delaunay triangulations: not all Delaunay triangulations have
the same set of angles. However, they each have the same minimum angle20, so it is still true that all Delaunay
triangulations maximize the minimum angle.

19Technically the Delaunay tessellation: the polygon mesh of edges which strictly satisfy the Delaunay property. They then obtain Delaunay
triangulations by arbitrarily triangulating any non-triangular face immediately preceding their Definition 8.
20 Here the Delaunay tessellation perspective is quite useful. Recall that the Delaunay tessellation is a polygon mesh whose faces are all concyclic
polygons. All Delaunay triangulations arise by triangulating these polygonal faces in different ways. So to prove that all Delaunay triangulations
have the same minimum angle, it suffices to prove that all triangulations of a concyclic polygon have the same minimum angle. This follows from
elementary geometry, using the fact that the angles of an inscribed triangle are proportional to the length of the opposite arc.

44

4.1.1.4 Smoothest Piecewise-Linear Interpolation (Rippa’s Theorem). For any function defined at the
vertices, a Delaunay triangulation yields the smoothest piecewise-linear interpolation over the domain, in the sense
of Dirichlet energy [Bobenko and Springborn 2007; Chen et al. 2010; Rippa 1990].

Bobenko and Springborn [2007, Rippa’s Theorem 1] observe that Rippa’s proof holds without change in the intrinsic
setting. Much like the angle maximization property, the basic idea is to show that flipping a non-Delaunay edge always
makes any piecewise-linear interpolant smoother. This then implies that only a Delaunay triangulation can minimize
Dirichlet energy—for any non-Delaunay triangulation, flipping some non-Delaunay would decrease the Dirichlet
energy. Unlike the angle maximization case, however, there is no difficulty for surfaces with multiple Delaunay
triangulations: all Delaunay triangulations have equally-smooth piecewise-linear functions21.

4.1.1.5 Minimal Spectrum. The eigenvalues of the Laplace matrix are minimized on a Delaunay triangulation,
that is for the i’th eigenvalue λi , all other triangulations have λ′i ≥ λi [Chen et al. 2010].

Chen et al. prove this property by again observing that flipping a non-Delaunay edge can never increase the
eigenvalues of the Laplacian. Note that no special treatment of non-generic surfaces is needed as all Delaunay
triangulations have the same Laplace matrix.

4.1.1.6 Minimal Minimum Spanning Tree. A Delaunay triangulation has the shortest possible minimum
spanning tree among all triangulations of the vertex set [Toussaint 1980].

Toussaint originally proved this theorem in the planar case in relation to relative neighborhood graphs. We instead
follow the planar proof found in [O’Rourke 1998] which generalizes immediately to the intrinsic setting. We consider
spanning trees of the vertices of an intrinsic triangulation whose edges are geodesic paths. Let MST be the shortest
such spanning tree. We will show that the edges of MST must appear the Delaunay. Assume for contradiction that
an edge ij ∈ MST does not appear in the Delaunay triangulation. Thus, the disk which has ij as a diameter22 is not
empty. There must be some third vertex k in this disk (or on its boundary).

Now, we consider removing ij from MST splits the tree into two parts, which we will
call Ti and Tj . Without loss of generality, let k ∈ Ti . Now, we will show that there is
a geodesic connecting j to k with length strictly less than ℓi j . Replacing edge ij with
edge jk will thus yield a spanning tree of strictly less weight, contradicting our original
assumption that MST was minimal.

Suppose k is in the interior of the disk. Then the distance from k the midpoint of edge
ij is strictly less than ℓi j/2. Since the distance from this midpoint to j is ℓi j/2, we conclude that the distance from j to
k is strictly less than ℓi j as desired. On the other hand, suppose that there are no other vertices in the interior of the
disk and that k lies on the boundary. Then the disk is intrinsically flat. In a Euclidean disk, the distance from j to any
point on the boundary other than i is strictly less than the diameter ℓi j .

Hence, we can remove edge ij from the spanning tree and add a shorter edge jk instead. This contradiction implies
that every edge of the MST must lie in the Delaunay triangulation, as desired.

4.1.1.7 Geometric Spanner. Ageometric spanner is a graphwith the property that distance along edges between
any two vertices is at most some constant factor more than the actual geometric distance between those vertices—here,
the geodesic distance along the surface. Any intrinsic Delaunay triangulation is a 2-spanner: between any two vertices
the graph distance along edges is at most twice the geodesic distance [Xia 2013].

21 One way of seeing this is that the smoothness of a piecewise-linear function is measured by the cotan Laplacian. Because all Delaunay
triangulations induce the same cotan Laplacian, they all produce equally-smooth interpolations. .
22Formally, this disk can be defined as the geodesic ball of radius ℓi j /2 centered at the midpoint of edge i j

45

Xia considers only the case of planar Delaunay triangulations, but the analogous result for surfaces follows almost
immediately. Consider vertices i, j on an intrinsic triangulation, with shortest path γ between them. γ is contained in
some triangle strip in the Delaunay triangulation, or possibly a sequence of strips (due to saddle vertices). We can lay
each triangle strip out in the plane to obtain a planar Delaunay triangulation, preserving the distance between the
beginning and end of the strip. From the planar result, each strip is a geometric spanner, where the graph distance is
at most twice the straight-line distance. Applying this argument to each triangle strip composing γ implies that there
must be a path along the edges of the intrinsic Delaunay triangulation within the desired bound.

4.2 Delaunay Flipping

flip

A key result for intrinsic geometry processing is that any triangulation can be
transformed to be an intrinsic Delaunay triangulation by repeatedly flipping any
edge with α + β > π (inset) [Bobenko and Springborn 2007; Indermitte et al. 2001].
This mirrors Lawson’s edge flipping algorithm in the plane [Lawson 1977], though
significantly more sophisticated machinery is needed to prove correctness in the
intrinsic setting.

Theorem 1 (Bobenko and Springborn [2007]; Indermitte et al. [2001]). Repeatedly flipping

non-Delaunay edges yields an intrinsic Delaunay triangulation after a finite number of flips.

Proof. See Bobenko and Springborn [2007, Proposition 12]. Essentially, Delaunay edge flips
always decrease Musin’s harmonic index [Musin 1997], and there are a finite number of intrinsic
triangulations of a given domain with bounded harmonic index. □

An important fact is that every non-Delaunay edge is indeed flippable. Recall
that an edge is flippable if and only if its endpoints have degree greater than 1, and
its neighboring faces form a convex quadrilateral (Section 2.3.4). For an edge ij
incident on a degree-1 vertex (inset, left), both neighboring faces must actually be
the same isosceles triangle. Since 2α < 2α + 2β , the sum of opposite angles is less
than the sum of the angles at ij’s endpoints, and is hence less than π . So ij must

be Delaunay. Similarly, if ij’s neighbors form a nonconvex quadrilateral (inset, right), then the angle at one endpoint
must be strictly greater than π . Thus, the sum of opposite angles must be strictly less than π , so ij must be Delaunay.

10 100 104 10103 5 106
1

10

100

104
105

103

106

Fig. 23. An empirical study of the number of edge flips to produce an intrinsic Delaunay triangulation [Sharp

et al. 2019b]. Each point is a 3D model from the Thingi10k dataset [Zhou and Jacobson 2016]. The observed

complexity trend is linear, even on these difficult models.

46

Delaunay edge flipping is then the most basic and essential intrinsic retriangulation scheme. Given any standard
mesh with vertex positions, one can read off edge lengths to define an intrinsic triangulation, perform edge flips
to generate the IDT, and use the resulting mesh for subsequent computation. In terms of runtime, Delaunay edge
flipping typically takes just milliseconds in practice for typical inputs, and an empirical study in Sharp et al. [2019b]
(Figure 23) showed linear scaling on a challenging dataset of real-world models [Zhou and Jacobson 2016]. However,
there is a wide gap between this practical efficiency and asymptotic analysis: the only known runtime bound is
exponential [Bobenko and Springborn 2007; Indermitte et al. 2001], although the most difficult known counterexample
requires only O(n2) flips (consider triangulating points along the planar parabola y = x2).

To implement the flip algorithm, wemaintain a queue
of possibly non-Delaunay edges. For each edge in the
queue, we check the Delaunay condition, which is im-
plemented by checking the sign of the edge’s cotan
weight. In practice, we allow some epsilon tolerance
on this check due to floating point errors—a tolerance
of 10−5 is generally sufficient. If the cotan weight is
negative, then the edge is not Delaunay and we flip it.

After flipping, a non-Delaunay edge necessarily be-
comes Delaunay. However, any of the 4 neighboring
edges on the boundary of the diamond may be become
non-Delaunay due to the flip—these edges must then be
enqueued to be checked themselves. There is no reason
to keep multiple copies of an edge in the queue to be
checked, so as an efficiency optimization we can op-
tionally maintain an auxiliary boolean array indicating
which edges are currently in the queue, updating it as
necessary when edges are pushed or popped. The pro-
cess is summarized in Algorithm 1, with the notation
below.

Algorithm 1 FlipToDelaunay(Tint)

Input: An intrinsic triangulation Tint. This may be repre-
sented via any of the data structures from Chap-
ter 3.

Output: An updated intrinsic Delaunay triangulation Tint.
1: toCheck← E ▷Enqueue all edges
2: while toCheck is not empty do
3: ij ← PopFront(toCheck)

▷Check if ij violates the Delaunay condition

4: if CotanWeight(Tint, ij) < −ϵ then
5: Tint ← FlipEdge(Tint, ij)

▷Now push neighboring edges onto the queue

▷(the flip may have made them non Delaunay)

6: neighbors← {im,mj, jk,ki}
7: for edge e ∈ neighbors do
8: if e < toCheck then
9: toCheck← PushBack(toCheck, e)
10: end while
11: return Tint

Algorithm 2 EdgeCotanWeight(Tint, ij)

Input: An edge ij of an intrinsic triangulation Tint.
Output: The cotan weight of edge ij.
1: totalWeight← 0
2: for face ijk neighboring edge ij do

▷Compute face area with Heron’s formula

3: s ← (ℓi j + ℓjk + ℓki)/2
4: area←

√
s(s − ℓi j)(s − ℓjk)(s − ℓki)

5: angleCotan← (ℓ2jk + ℓ
2
ki − ℓ

2
i j)/(4 area)

6: totalWeight += angleCotan/2
7: return totalWeight

There are many ways to compute edge cotan weights. After
some trigonometry, we can compute edge cotan weights di-
rectly from edge lengths without using any inverse trigono-
metric functions. Consider a single triangle:

The area of the triangle is 1
2ℓkiℓjk sinθ

i j
k , and we can com-

pute 2ℓkiℓjk cosθ
i j
k via the law of cosines. By dividing

the two expressions, we obtain cotθ jkk (Equation 21, Al-
gorithm 2).

Alternative Strategies. Many other strategies have been developed to compute the Delaunay triangulation of
a point set in the plane. A direct method is to construct a parabolic lifting of the point set in to R3, then compute
convex hull of point set, however algorithms for constructing 3D convex hulls are nontrivial in and of themselves.
In modern planar geometry, the edge-flipping approach is often avoided in favor of spatial partitioning schemes

47

inputinput
intrinsic
Delaunay
refinement

intrinsic
Delaunay

Fig. 24. Left : Rich data structures enable intrinsic Delaunay refinement, generating triangulations with good angle bounds. The

black wireframe denotes the extrinsic mesh, while colored triangles give the intrinsic triangulation. Right : Signposts further enable
vector field processing; the Laplacian of the intrinsic Delaunay triangulation offers a maximum principle for tangent vector fields,

which here avoids unexpected flipped vectors when generating a smooth field.

which are asymptotically more efficient [Dwyer 1987; Guibas and Stolfi 1985]. However unlike flipping, spatial
decompositions do not generalize immediately to the setting of intrinsic triangulations. Furthermore, we observe
empirically that flipping exhibits essentially linear scaling on real data (Figure 23). On surfaces, an alternate approach
is to construct the geodesic Voronoi diagram and take its dual [Liu et al. 2017b]. This algorithm provably terminates
in O(n2 logn) time, though it requires the construction of shortest paths along the mesh as subroutine (e.g. via the
MMP algorithm [Mitchell et al. 1987]), which can be complex and difficult to implement robustly in practice.

4.3 Delaunay Refinement

In practice one often seeks triangulations which satisfy criteria beyond the Delaunay property, such as bounds on
angles or edge lengths. Delaunay refinement progressively inserts vertices to achieve a specified minimum-angle
bound, while maintaining the Delaunay property. Sharp et al. [2019b] describe intrinsic Delaunay refinement, making
use of the insertion operations offered by the signpost data structure. The same procedure can be applied on any
intrinsic triangulation which supports operations like insertion; Gillespie et al. [2021a] further the develop the
routine with a proof and treatment of surfaces with boundary. The method uses an intrinsic variant of Chew’s 2nd
algorithm [Chew 1993; Shewchuk 1997], which essentially amounts to the following steps:

Until a specified minimum angle bound is satisfied:
– Flip to Delaunay
– Find any intrinsic triangle ijk that violates the angle bound
– Insert the circumcenter p of ijk

The only remaining difficulty with implementing this algorithm in-
trinsically is locating the circumcenter of ijk . However, this is also fairly
straightforward because our triangulation necessarily satisfies the De-
launay property. Since the triangulation is Delaunay, ijk has an empty
circumcircle—in particular, this circumcircle bounds an intrinsically-
flat disk with a well-defined center which can be found tracing from
the barycenter of ijk [Gillespie et al. 2021a].

Robust Triangulation. In practice intrinsic Delaunay refinement is quite effective, reproducing the behavior of
the planar algorithm and consistently generating meshes with an interior angle bound of 30◦. This aligns with the
treatment of the planar case [Chew 1989], though formally extending the analysis to the intrinsic setting on general
meshes with boundary is an area of ongoing work. Gillespie et al. [2021a] prove that the algorithm succeeds on meshes

48

without boundaries or needle vertices, though a full proof of the most general case remains open. The practical utility
of this approach should not be understated: it automatically generates a surface triangulation with guaranteed quality
bounds, and furthermore it does not require the tuning of any numerical parameters. Such behavior is extremely
valuable for robust PDE-based geometry processing in practice, generating high-quality meshes for downstream
applications without any tradeoff of approximation error, and only modestly increasing element counts (Figure 29).

Algorithm 3 FlipQueueToDelaunay(Tint, edgesToCheck,θmin)

Input: A triangulation Tint, a queue edgesToCheck of possibly non-
Delaunay edges, and a minimum angle bound θmin.

Output: An updated Delaunay triangulation Tint, and a list
facesToCheck of all newly-created faces which violate
the minimum angle bound

1: facesToCheck← ∅
2: while edgesToCheck is not empty do
3: ij ← PopFront(edgesToCheck)
4: if ij is not Delaunay then
5: Tint ← FlipEdge(Tint, ij)
6: for neighboring edge ĩ j which is not in edgesToCheck do
7: edgesToCheck← PushBack(edgesToCheck, ĩ j)
8: for neighboring face ijk which is not in facesToCheck do
9: if ShouldRefine(Tint, ijk,θmin) then
10: facesToCheck← PushBack(facesToCheck, ijk)
11: end while
12: return Tint, facesToCheck

Now we can elaborate on the implemen-
tation of intrinsic Delaunay refinement. Sim-
ilar to the Delaunay flipping algorithm, we
maintain a queue of possibly-invalid faces to
check. We initialize the queue with all faces
of the mesh. Then, for each face in the queue,
we check whether it satisfies the minimum
angle bound. If it does not, we insert its cir-
cumcenter into the mesh, and push all of the
faces incident on the new vertex onto the
queue of faces to check. Finally, we flip to
Delaunay. Each time we flip an edge, the two
new faces are pushed onto the queue if they
violate the minimum angle bound.

We can accelerate this algorithm by inte-
grating the Delaunay flip algorithm. Using
Algorithm 1 each time would require check-
ing the Delaunay condition at every edge of
the mesh after inserting each vertex, which
quickly becomes expensive. Fortunately, the mesh was Delaunay before inserting the vertex, so the only edges which
could fail to satisfy the Delaunay condition are those neighboring to the newly-inserted vertex. Accordingly, we
define an alternative flipping procedure (Algorithm 3) which takes in the list of all possibly non-Delaunay edges, and
then runs the ordinary flipping algorithm. This flipping procedure also returns the set of all faces which were created
by flips and violate the minimum angle bound—we process these faces later in the outer loop of the algorithm.

In the presence of boundary, triangle circumcircles may not be contained in the mesh. In the
planar case, Chew’s 2nd algorithm splits boundary segments, then removes previously inserted
vertices within the diametral ball as a technical requirement to ensure the algorithm converges.
We employ an analogous geodesic procedure for the intrinsic case. To find vertices within a ball
around the edge without a complicated geodesic distance query, we instead remove vertices
within twice the graph distance; by the geometric spanner property of Delaunay triangulations
this includes all vertices within the desired geodesic ball (Section 4.1.1). Precisely, whenever
a circumcenter tracing query hits a boundary edge, we instead split that edge at its midpoint.
Then, we flip the triangulation to Delaunay, and remove all inserted vertices within a Dijkstra
ball 23 of radius ℓi j centered at the new vertex. We assume that the RemoveVertex routine returns the list of edges
that were modified due to the removal; these edges and their adjacent faces must be checked for the Delaunay property
and refinement criteria respectively.

23
i.e.the set of vertices within a certain distance along the edge graph.

49

Algorithm 4 ShouldRefine(Tint, ijk,θmin)

Input: A face ijk in triangulation Tint, and the angle bound
θmin.

Output: Whether or not the face should get refined
1: for vertexm in ijk do
2: if CornerAngle(ijk,m) < θmin then
3: if Degree(m) > 1 then
4: return true
5: return false

Finally, it can be impossible to achieve
a given minimum angle bound near ex-
tremely skinny needle-like vertices. At
best a single triangle wraps around the
vertex, making it a degree-1 vertex. For
this reason, we only refine triangles
which have a corner angle less that θmin
that are incident on a vertex with degree
greater than one (Algorithm 4). One can
also incorporate other conditions, e.g.
refining triangles whose circumradii exceed a given bound to impose triangle area constraints, but for
simplicity we consider only angle bounds here.

4.4 Constrained Triangulation

input graph constrained
Delaunay

Delaunay
re�nement

Fig. 25. Top. Planar constrained Delaunay triangulations are used

to produce high-quality triangulations which conform to a collec-

tion of specified lines. Bottom. Constrained intrinsic triangulations

play a similar role on surfaces, preserving a set of intrinsic edges

in the triangulation.

A constrained triangulation is a triangulation required to
contain some predefined collection of edges. For tradi-
tional mesh generation inR2 andR3, constrained Delau-
nay triangulations are a standard tool, yielding meshes
which align to specified boundary geometry [Cheng
et al. 2012; Chew 1989; Shewchuk 2002b]. With the
intrinsic approach, we can can likewise generate con-
strained intrinsic triangulations, which are guaranteed
contain specified intrinsic edges of interest. These edges
can then be used in applications e.g. to impose bound-
ary conditions along predefined regions (Figure 40), or
to preserve “feature edges” or creases in a mesh24. The
intrinsic FlipToDelaunay andDelaunayRefine proce-
dures (Algorithm 1 and Algorithm 5) are easily modified
to preserve constrained edges, by either declining to
flip such edges (allowing them to be non-Delaunay),
or by splitting a constrained edge instead of flipping it
(which will eventually yield a Delaunay edge).

However, if the desired edges are not already present
in the initial triangulation, then we face a significant
new challenge in the intrinsic setting: unlike in the planar case, we cannot simply draw a straight line between
distant vertices to obtain the specified edge. The FlipOut procedure, described in Chapter 5, fills this necessary role,
allowing us to introducing long geodesic edges between a specified pair of vertices into the triangulation. The long
red geodesic edges used as constraints in Figure 25, bottom are generated using this procedure.

24Crease edges characterized by by sharp dihedral angles are of course indistinguishable in the intrinsic geometry, but may nonetheless be useful
to preserve as constrained edges for applications, e.g. for directional alignment.

50

Algorithm 5 DelaunayRefine(Tint,θmin)

Input: A triangulation Tint = (Vint,Eint, Fint) and a desired minimum corner angle θmin ≤ 30◦.
Output: An updated triangulation Tint whose faces all have corner angles at least θmin.
1: Tint, _← FlipQueueToDelauany(Tint,Eint) ▷Initially flip to Delaunay, checking all edges

2: facesToCheck← Fint ▷Maintain an explicit queue of possibly-invalid faces to check

3: while facesToCheck is not empty do
4: edgesToCheck← ∅ ▷List of possibly non-Delaunay edges to check at the end of this iteration

5: ijk ← PopFront(facesToCheck) ▷Get next face. Skip faces which no longer exist.

6: if ShouldRefine(Tint, ijk,θmin) then ▷Check face for refinement

▷Compute the barycentric coordinates of the circumcenter

7: v̂i = ℓ
2
jk (ℓ

2
i j + ℓ

2
ki − ℓ

2
jk) ▷And similarly for v̂j , v̂k

8: (vi ,vj ,vk) = (v̂i , v̂j , v̂k)/(v̂i + v̂j + v̂k) ▷Normalize to obtain true barycentric coordinates

9: p ← Exp
(
Barycenter(ijk),v − (13 ,

1
3 ,

1
3)

)
▷Find the circumcenter by tracing from the barycenter

10: if p lies in the mesh interior then
11: Tint,q ← InsertVertex(Tint,p) ▷Insert circumcenter. The new vertex is named q
12: else

▷If the circumcenter lies outside the mesh, then we instead split the boundary edge separating ijk
▷from its circumcenter, and remove all vertices within a Dijkstra ball of the newly-inserted vertex

13: ĩ j ← the edge that p lies on
14: Tint,q ← SplitEdgeAtMidpoint(Tint, ĩ j)
15: for face f adjacent to inserted point q do
16: for edge e of face f which is not in edgesToCheck do
17: edgesToCheck← PushBack(edgesToCheck, e)

▷We need to flip to Delaunay before computing the Dijkstra ball centered at q, since
▷in a Delaunay triangulation the Dijkstra ball approximates a geodesic ball

18: Tint, newFacesToCheck← FlipQueueToDelaunay(Tint, edgesToCheck)
19: facesToCheck← AppendBack(facesToCheck, newFacesToCheck)
20: edgesToCheck← ∅

21: D ← DijkstraBall(Tint,q, ℓĩ j)
22: for inserted vertexm ∈ D which is not on the boundary do
23: Tint,modifiedEdges← RemoveVertex(m)

▷RemoveVertex modifies nearby edges. We put these on the queue to check the Delaunay condition

▷We also put their neighboring faces into the face queue as necessary.

24: for edge e ∈ modifiedEdges do
25: edgesToCheck← PushBack(edgesToCheck, e)
26: for face f adjacent to e which is not in facesToCheck do
27: if ShouldRefine(Tint, f ,θmin) then
28: facesToCheck← PushBack(facesToCheck, f)
29: for face f adjacent to q do ▷Add faces/edges incident on the inserted vertex to queues to be checked

30: if f < facesToCheck then
31: facesToCheck← PushBack(facesToCheck, f)
32: for edge e of face f which is not in edgesToCheck do
33: edgesToCheck← PushBack(edgesToCheck, e)

▷Flip to Delaunay after vertex insertion. Since the mesh was Delaunay at the beginning of this iteration,

▷the only possible non-Delaunay edges are edgesToCheck
34: Tint, newFacesToCheck← FlipQueueToDelaunay(Tint, edgesToCheck)
35: facesToCheck← AppendBack(facesToCheck, newFacesToCheck)
36: end while

51

harmonic Green’s function short time heat kernel

-0.5 0.0 0.5 1.0

0.002
0.004
0.006

Input
AMR
iDR
Reference

-0.5 0.0 0.5 1.0

0.2
0.4
0.6
0.8
1.0

0.0088.466 s817020.0065.611 s54916iDR
0.0070.898 s15510.0082.299 s3029AMR
0.6220.007 s2140.3410.006 s214input
errortimeerrortime

time heat kernelharmonic Green’s function short

Fig. 26. Intrinsic AMR allows one to efficiently compute standard geometric kernels to high accuracy. Performing ordinary

Delaunay refinement to the same accuracy requires 18x and 54x as many vertices on the harmonic Green’s function and short

time heat kernel resp. [Sharp et al. 2019b].

4.5 Optimal Delaunay Triangulation

An optimal Delaunay triangulation improves element quality not just by refining the triangulation, but also by
adjusting the placement of vertices [Chen and Xu 2004]. Sharp et al. [2019b] apply this idea in the intrinsic setting by
optimizing the location of inserted vertices—modifying the original vertices is of course undesirable, since it would
change the surface geometry as well as the triangulation. The basic strategy is to iteratively move all vertices toward
the triangle-area-weighted sum of the circumcenters of incident triangles, again performing edge flips after each
iteration to maintain the Delaunay property [Chen and Holst 2011, Equation 4.13]. In the intrinsic setting we can
locate circumcenters as in Delaunay refinement; rather than averaging these locations, we simply average the vectors
to these locations, then use this average as our update direction. We insert new vertices on each iteration by splitting
edges longer than a user-defined target length (à la Tournois et al. [2009]). In general we observe the same behavior
as in the Euclidean case: in contrast to Delaunay refinement, we get a better distribution of areas, at the cost of some
skinnier angles (Figure 21). Crucially, throughout this process we do not reposition the initial vertices, only those
which we previously inserted, and thus continue to exactly preserve the geometry.

4.6 Adaptive Mesh Refinement

Rather than globally improving an entire mesh, one could instead refine only in regions of interest. Since many PDEs
used in geometry processing display interesting behavior only in a localized region of the mesh, this can greatly
improve efficiency. Sharp et al. [2019b, Section 5.4 & Supplemental] perform adaptive mesh refiniement (AMR), using
a posteriori error estimates to guide Delaunay refinement to provide higher resolution near interesting features. They
find that such adaptive refinement can produce 2-10x speedups when compared against global refinement when
computing standard geometric kernels such as the harmonic Green’s function or short-time heat kernel (Figure 26). As
another application, Sharp et al. consider harmonic maps to the plane: intrinsic Delaunay triangulations guarantee
that such parameterizations are injective thanks to the maximum principle, but still result in significant distortion
near the boundary. AMR provides the resolution necessary to resolve the map in these boundary regions, while
leaving the triangulation sparse in the smoother interior regions (Figure 30).

52

4.7 Intrinsic Mollification

Meshes encountered “in the wild” may have near-degenerate geometry (e.g., near-zero angles or areas) that can impair
even basic floating point arithmetic [Zhou and Jacobson 2016]. Delaunay flips sometimes fix degenerate triangles, but
are not guaranteed to do so, and even evaluating these flips may be difficult on degenerate geometry. Extrinsically,
it is difficult to repair degeneracies with any kind of guarantee, because a perturbation that improves one element
might make another worse. However, in the intrinsic setting Sharp and Crane [2020a] describe a simple mollification

which provably resolves degeneracies, while making only a negligible change to the geometry.

The strategy is to increase the length of all edges by a small, constant amount until no triangle is degenerate. More
precisely, for each corner of each triangle we want

ℓi j + ℓjk > ℓki + δ , (14)

for some user-defined tolerance δ > 0, i.e., we want the triangle inequality to hold with significant inequality, so that
triangles are nondegenerate. Then

ε := max
i jk

max(0,δ − ℓki − ℓi j + ℓjk) (15)

is the smallest length we can add to all edge lengths to ensure that Equation 14 holds. Note that this strategy closely
preserves the given geometry: at worst, ε can be just slightly larger than δ (due to floating point error); when the
mesh is already nondegenerate, ε = 0. Applying intrinsic mollification as a pre-process allows us to apply intrinsic
retriangulation even on inputs which are so degenerate that basic floating point arithmetic would otherwise file.
We recommend δ = 1e−5h as a reasonable default value for double precision arithmetic, where h is the mean edge
length. Empirical studies [Gillespie et al. 2021a; Sharp and Crane 2020a] have demonstrated that mollification enables
intrinsic retriangulation of extremely poor quality meshes, successfully processing all models in the challenging
Thingi10k dataset [Zhou and Jacobson 2016].

4.8 Metric Scaling

Some problems in geometric computating make use of a customized, possibly-anisotropic metric along the domain,
such as a spatially-varying speed function affecting distances along a surface [Campen et al. 2013], or a preferrential
alignment for vector fields [Jiang et al. 2015]. The most direct approach to compute with such metrics is to modify
algorithms to incorporate a metric tensor or scaling factor when deriving relevant operators and expressions. However,
the intrinsic perspective offers an appealing alternative strategy: rescale the edge lengths ℓ according to the metric,
then simply use any ordinary isotropic algorithm. The intrinsic viewpoint is crucial here, because finding a new
extrinsic embedding which respescts a custom metric would be a difficult global problem which may not even admit
any solutions, whereas scaling intrinsic edge lengths is generally a simple, local operation.

As one concrete strategy, suppose anistropy is specified by a norm |v |д in each face ijk which measures the length
of a tangent vector v in local coordinates (Section 2.3.7). Scaled edge lengths can then be computed by measuring
each edge vector ui j as ℓ′i j = |ui j |д , averaged over all faces incident on the edge. Any subsequent computation is
performed on the intrinsic triangulation defined by these scaled edge lengths ℓ′. For large scalings, the resulting edge
lengths may violate the triangle inequality, invalidating the representation—this can be addressed by constraining the
edge lengths, or modifying the mesh. This approach, and related concerns, are discussed at length by Campen et al.
[2013]. It should be noted that applying transformations to edges lengths yields an abstract intrinsic triangulation
which does not necessarily have an isometric correspondence with the original underlying surface, and thus the data
structures from Chapter 3 cannot be directly applied as described.

53

4.9 Comparison to Traditional Remeshing

input same geometry same #elements

3k faces 330k faces 3k faces

Fig. 27. Traditional remeshing cannot improve element quality

without increasing mesh size or disturbing the geometry; intrinsic

triangulations escape this tradeoff.

Remeshing of surfaces meshes is widely studied in geom-
etry processing [Alliez et al. 2008; Chen and Holst 2011;
Cheng et al. 2012], but such methods must inevitably
trade off between element quality and geometric approx-
imation of the input surface. The intrinsic approach es-
capes this tradeoff, operating in a space of triangulations
which all exactly represent the underlying geometry.
In fact, intrinsic algorithms offer concrete algorithmic
guarantees about the quality of the resulting meshes,
which generally are not otherwise available for surface
remeshing routines.

Another important advantage of the intrinsic approach is efficiency. Whereas surface remeshing often amounts to
difficult optimization problems or long-running iterative schemes, intrinsic retriangulation is extremely efficient,
more akin to planar triangulation. The procedures described in this section generally have runtimes on the order of
milliseconds.

Of course, the price for this algorithmic power is that the output of intrinsic retriangulation is an intrinsic object
with only edge lengths, not a traditional mesh with vertex positions. Fortunately, it is straightforward to adapt
subsequent computations to this paradigm; generally one simply needs to evaluate geometric quantities from edge
lengths, rather than vertex positions. As one example, the geometry-central C++ library contains a growing
collection of routines which seamlessly support this paradigm [Sharp et al. 2019a].

4.9.1 Other Notions of Delaunay

restricted
Delaunay

optimal
Delaunay

There are many other seemingly-similar notions of Delaunay triangulation
which arise in surface mesh generation. One common strategy, referred to
as “restricted Delaunay” is to generate a Delaunay tetrahedralization25 of a
point set, and take a subset of the faces of the tetrahedralization as a surface
mesh[Cheng et al. 2012, Chapter 13]. Other methods define planar schemes,
then project on to surfaces [Chen and Holst 2011] In fact, the classic work
now known for describing Chew’s 2nd algorithm mainly concerns a notion of
circumspheres in 3D space for surface meshes [Chew 1993]. Recent work by
Khoury and Shewchuk [2021] defines a related construction of constrained
restricted Delaunay triangulations, though no concrete algorithms are yet
known. However, these alternate definitions come without any of the same
Delaunay properties, such as positive cotangent weights (inset image, edges
with negative cotan weights highlighted in black) or empty geodesic circumballs (Section 4.1.1). The intrinsic Delaunay
criterion is the only notion of Delaunay for surface meshes which extends all of these desirable properties of the
planar Delaunay triangulations to the surface case.

4.9.2 Extrinsic Construction

Instead of taking the intrinsic approach, it is also possible to construct traditional, extrinsic triangle meshes which
satisfy the intrinsic Delaunay criterion while also preserving the geometry. However, preserving the extrinsic geometry
is stricter requirement than preserving only the intrinsic geometry: the resulting meshes may require inserting a large
25A note on terminology: in some contexts, the term Delaunay triangulation may be used for a Delaunay complex of any dimension, such that a
“3D Delaunay triangulation” really refers to a set of Delaunay tetrahedra, not triangles.

54

intrinsic
Delaunay
re�nement[Liu et al. 2015] intrinsic �ips input

Fig. 28. Left : Extrinsic schemes may need to insert many vertices and create skinny triangles to produce a Delaunay triangulation

while preserving the shape, while the intrinsic approach preserves the vertex set and improves triangles quality. Right : Small

corner angles in an extrinsic triangulation must remain if extrinsic shape is to be preserved, but instead preserving only the

intrinsic shape allows these angles to be improved.

number of elements, whereas the intrinsic approach achieves the Delaunay property without changing the number of
elements (Figure 28, left). In particular, Shewchuk [2002b, Section 7.1] discusses extrinsic Delaunay refinement of
surface meshes, which essentially amounts to applying planar Delaunay refinement independently in each triangle.
The same can also be achieved using only edge splits and planar flips [Dyer et al. 2007; Liu et al. 2015], and in fact
Ye et al. [2020] show that interpolating scalar functions to such a mesh yields a Rippa-like smoothness guarantee.
However, beyond increasing element counts, a disadvantage of geometry-preserving extrinsic Delaunay remeshing is
that such schemes cannot possibly improve small triangle corner angles which appear in an input mesh (Figure 28,
right). In contrast, intrinsic remeshing has significant freedom to improve skinny corner angles while preserving
intrinsic geometry.

4.10 Robustifying Applications with Intrinsic Triangulations

A key application of intrinsic retriangulation is providing robustness as a subroutine: we can make classical algorithms
dramatically more robust to low-quality inputs simply by running them on a high-quality intrinsic triangulation
rather than directly on the extrinsic mesh. The basic pipeline is:

(1) intrinsically retriangulate the extrinsic mesh,
(2) solve the problem on the intrinsic triangulation,
(3) transfer the solution back to the extrinsic mesh.

Crucially, we can generally run existing geometric algorithms directly on an intrinsic triangulation: there is no need
reinvent or re-derive the algorithms. Intrinsic triangulations still offer a familiar mesh interface, and are equipped
with linear basis functions in triangles widely used in geometry processing (higher-order basis can of course likewise
be constructed if desired). The most common change is simply to evaluate geometric quantities directly from edge
lengths rather than vertex positions—see Appendix A for some useful expressions. Many algorithms involve only
intrinsic data and operators, but there are some in which extrinsic operations play a crucial role, such as bending
energies—it is not yet straightforward to apply intrinsic to these problems. However, a common setting is an intrinsic
operator (e.g. the Laplacian) applied to extrinsic data (e.g. vertex positions), such as the surface editing context in
Figure 41. In this case, intrinsic triangulations can be used to build a high-quality operator, which is then applied to
the extrinsic data, improving robustness.

55

originalhe
at

 m
et

ho
d

iDT iDR

exactID: 12506

mean error: 59.6% mean error: 20.4% mean error: 0.7%

Fig. 29. Intrinsic triangulations dramatically improve the qual-

ity of solutions from PDE-based geometry processing algorithms

such as the heat method when run on low-quality geome-

try. [Sharp et al. 2019b]

input iDT AMR

Fig. 30. Using an intrinsic Delaunay triangulation ensures that

a harmonic parameterization is flip-free, while adaptive mesh

refinement provides high-resolution in the interesting regions

of the mesh. [Sharp et al. 2019b]

4.10.1 The Intrinsic Delaunay Laplacian

The most widespread usage of intrinsic triangulations is to construct the intrinsic Delaunay triangulation for a
low-quality mesh, and then read off the corresponding Laplace matrix, the intrinsic Delaunay Laplacian [Bobenko and
Springborn 2007]. This Laplacian has a variety of desirable properties, including a guarantee of a maximum principle
(Section 2.5), and improved element quality (by maximizing minimal corner angles, Section 4.1.1, see [Shewchuk
2002a] for further discussion). The most basic usage of the intrinsic Delaunay Laplacian is to simply build a better
matrix, and substitute it in place of the ordinary cotan Laplacian. This is already remarkably effective in practice,
although further benefits may be had by evaluating an entire algorithm on a high-quality intrinsic triangulation, as
opposed to just building the Laplace matrix. The applications we explore will improve accuracy and robustness both
through the use the intrinsic Delaunay Laplacian, as well as other techniques such as evaluating other operators
beyond the Laplacian, and computing on an intrinsic Delaunay refinement with guaranteed element quality.

4.10.2 Examples

We will illustrate robustness with intrinsic triangulations through several examples.

TheHeatMethod for Geodesic Distance. PDE-based methods abound in geometry processing, as they generally
provide simple and inexpensive algorithms which benefit from decades of research into fast linear solvers. The heat
method is a representative example, computing approximate geodesic distance on a mesh by solving a short-time
diffusion equation [Crane et al. 2013b]. Evaluating the algorithm on an intrinsic retriangulation greatly improves
the accuracy of the solution to the diffusion equation, which in turn leads to much more accurate distances on low
quality meshes. (Figure 29)

56

input

|V|=9389

intrinsic
Delaunay

triangulation

|V|=9389

intrinsic
Delaunay

refinement

|V|=33963

ThingiID54674

Fig. 31. Here we visualize a local parameterization, the logarith-
mic map, computed via the vector heat method. Although the

vector heat method internally uses tangent vector diffusion, the

final logarithmic map is a scalar function, and can hence be vi-

sualized using the integer coordinate representation. [Gillespie

et al. 2021a]

input
ED=1200.2

iDT
ED=123.5

iDR
ED=47.0

Fig. 32. The signpost data structure also enables processing

tangent data. Here, smoothest vector fields computed on an

intrinsic triangulation have much lower Dirichlet energy than

one computed on a low-quality mesh. [Sharp et al. 2019b]

The Logarithmic Map. The logarithmic map, the inverse of the exponential map (Section 2.4.2), is useful as a
parameterization of a surface mesh [Schmidt et al. 2006] 26. This parameterization can be computed with the vector
heat method [Sharp et al. 2019c], which again amounts to solving a diffusion equation, but this time diffusing tangent
vectors rather than just scalar functions. Once again, we apply the method on an intrinsic triangulation without any
other modifications, and observe significantly more accurate results. Although this algorithm uses tangent vectors
during computation, the end result is simply a pair of functions, and thus the procedure could be evaluated on
the simple edge length-only data structure, with no additional correspondence tracking. However, in Figure 31 we
visualize the intrinsic logarithmic map represented in the bases of the intrinsic triangulation, which requires a more
sophisticated data structure to construct the common subdivision.

Globally-Optimal Direction Fields. We can also use intrinsic triangulations to compute tangent vector fields.
For instance, here we compute smooth vector fields by minimizing a vector Dirichlet energy [Knöppel et al. 2013]. In
this case, the solution is a vector field, rather than a scalar function, so even copying values at vertices requires some
sort of correpondence data structure. (Figure 32)

4.11 Transferring Solutions Between Triangulations

After computing the solution to a problem on the intrinsic triangulation, one often wants to obtain a solution on the
extrinsic mesh. The simplest strategy is to simply copy values at vertices back to the extrinsic mesh. Since intrinsic
retriangulation never removes extrinsic vertices, this operation is always well-defined, and can even be performed
when using only the abstract edge length representation. This approach is already quite effective in practice, but it is
not optimal in any sense, and does not apply to more general tangent vector data, so we will describe some alternative
notions of data transfer.

4.11.1 Optimal Attribute Transfer

Rather than simply copying values back at vertices, we can seek the function on the extrinsic mesh which is closest
to the intrinsic solution, in the L2 sense. As described by Gillespie et al. [2021a], this amounts to a sparse linear
system constructed over the common subdivision. Other notions of closeness, and other basis functions could easily
26Note that Schmidt et al. refer to the logarithmic map as the “exponential map”.

57

be treated similarly. Note that this operation is impossible using only intrinsic edge lengths; it requires the common
subdivision, as provided by rich mesh data structures (Chapter 3).

Formally, given a piecewise-linear function f on the intrinsic triangulation, we seek the piecewise-linear function
f̂ on the extrinsic mesh which minimizes the squared L2 distance:

∥ f − f̂ ∥2L2 :=
∫
M

���f (x) − f̂ (x)
���2 dx . (16)

If f and f̂ were defined over a single mesh, then we could evaluate this distance exactly using the Galerkin mass
matrixM (Section 2.5.1):

∥ f − f̂ ∥2L2 = (f − f̂)TM(f − f̂), (17)
where we implicitly identify the piecewise-linear functions f and f̂ with finite-dimensional vectors in R |V | given by
their values at mesh vertices. However, f and f̂ are defined on different triangulations: Tint and Text, respectively.
Nonetheless, f and f̂ are both piecewise-linear over the common subdivision S. Thus, we can evaluate the L2 distance
by interpolating both functions to S as

∥ f − f̂ ∥2L2 = (Pint f − Pext f̂)
T
MS(Pint f − Pext f̂), (18)

where MS is the Galerkin mass matrix of the common subdivision, and Pext, Pint are interpolation matrices mapping
functions on the extrinsic and intrinsic triangulations to S resp.. In particular, Pext is a |Vext | × |VS | matrix where each
row corresponds to a vertex of S and has that vertex’s barycentric coordinates on the extrinsic mesh as entries, and
likewise for Pint. We can now find the function f̂ which is L2-closest to the intrinsic function f simply by minimizing
Equation 18, which amounts to solving a linear system.

vertices

original
IDT - copy values
IDT - L210-4

26 27 28 29 210 211

10-3

10-2

10-1
solution error

25.0x12.5x

The inset example illustrates the benefits of this tech-
nique, improving the accuracy of solutions on near-
degenerate triangulations [Gillespie et al. 2021a]. We be-
gin by generating a low-quality mesh of the unit square
via random edge splits, and solve the Poisson equation
∆f = sin(πx) sin(πy) on this extrinsic mesh, then solve
the same problem on the intrinsic Delaunay triangula-
tion. We transfer the intrinsic solution back to the ex-
trinsic mesh by copying values at vertices, as well as via
the L2 projection described above, yielding two more
solutions on the extrinsic mesh. Finally, we compute the error of each solution as represented in the basis of the
original extrinsic mesh against an analytic ground truth, and plot the average error after 100 trials on randomly
generated meshes of the domain. Copying back intrinsic solution values at vertices provides already improves accuracy
by 12.5× compared to solving directly on the extrinsic mesh, and picking the L2-closest function results in even better
solution, decreasing error by a factor of 25× (inset figure).

4.11.2 Transferring Tangent Vectors

Sometimes, the quantity to be transferred is a tangent vector field (Section 2.4) rather than a scalar function. In
this case, even copying the solution back at vertices becomes complicated, as tangent vectors on the intrinsic and
extrinsic meshes are represented in different coordinate systems. Copying tangent vectors is easiest to do using the
signpost data structure, since signposts directly encode the mapping between these coordinate systems, as discussed
in Section 3.4.3. In other representations, a change of basis can be computed by comparing the angle between edges
in Tint and Text on the common subdivision.

58

Chapter 5

Geodesics

Geodesic curves generalize the notion of a straight line to curved surfaces; they can be defined formally as locally-
shortest paths, or curves of zero tangential acceleration (Section 2.4.1). Fast and accurate computation of geodesics
enables a multitude of algorithms throughout science and engineering [Bose et al. 2011], and the ability to construct
“straight lines” on polyhedral surfaces allows us to run classic algorithms from 2D computational geometry on curved
surfaces. Here, we consider exact, polyhedral geodesics, which are exactly geodesic along the piecewise-flat geometry
of a mesh, as opposed to some approximate or smoothed notion of geodesic.

Computationally, geodesics are most widely studied in the context of finding globally shortest geodesics from a
source point; such paths are useful for defining distance along a surface—the geodesic distance between two points
is the length of the shortest path along the surface between. Algorithms in this vein have roots in the strategy of
Mitchell et al. [1987]: they start at the source, and propagate “windows” of geodesic paths sharing a common history
in a traversal similar to Dijkstra’s algorithm. Many improvements, generalizations, and approximations have since
been developed along this line of research [Adikusuma et al. 2020; Bommes and Kobbelt 2007; Cao et al. 2020; Crane
et al. 2013b; Kimmel and Sethian 1998; Qin et al. 2016; Surazhsky et al. 2005; Wang et al. 2017; Xin and Wang 2009; Xu
et al. 2015; Ying et al. 2019, 2013, 2014].

However, in geometry processing we will often also need to consider geodesic paths which are not necessarily
globally-shortest geodesics. For instance, every edge of an intrinsic triangulation is a geodesic path, but not necessarily
the shortest geodesic path between the endpoints. Though less widely-studied than the geodesic distance problem,
there is also a wide variety of existing algorithms for constructing and manipulating these more general general
geodesic curves. One important approach is to shorten a given curve to be a geodesic, akin to a curve shortening
flow on the surface [Gage 1990]. Such procedures can construct a larger space of geodesics beyond merely shortest
geodesics including even closed loops, and can preserve the topological class of curves—both of which are critical for
tasks like modeling and fabrication. Lagrangian approaches to curve shortening represent curves as a lists of vertices
which move along the surface or in R3 [Appleboim et al. 2009; Han et al. 2017; Hass and Scott 1994; Liu et al. 2017a;
Martínez et al. 2005; Remešíková et al. 2019; Xin et al. 2011; Xin and Wang 2007]. On the other hand, Eulerianmethods
encode curves as the level sets of real-valued functions on the surface [Sethian 1989; Wu and Tai 2009; Zhang et al.
2010].

input curve geodesic curve
Given the variety of complicated algorithms which have been devel-

oped to construct geodesic curves, it is somewhat remarkable that they
emerge automatically as the edges of an intrinsic triangulation, and can
be manipulated by simple edge flips. In fact, Sharp and Crane [2020b]
shows that a greedy edge flipping strategy can be used to intentionally
introduce particular edges in an intrinsic triangulation; providing a simple
and efficient scheme for constructing geodesic paths (see inset). The re-
sulting strategy is quite simple, and more interestingly represents a totally
different approach to finding geodesics, compared to the window-based
and unfolding-based approaches prevalent in past work. By building a method for computing geodesics within the
framework of intrinsic triangulations, we benefit from all of the machinery in the preceding sections, such as the
highly robust integer-based representation (Section 3.5.1). The remainder of this section will outline the intrinsic
flip-based geodesic algorithm of Sharp and Crane [2020b], and show how it can be applied to problems in geometry
processing.

59

5.1 Geodesics from Intrinsic Edge Flips

The edges in an intrinsic triangulation are always geodesics along the surface (Section 2.3.4); the basic strategy is
then to construct desired geodesic paths with a simple greedy edge flipping policy which intentionally introduce
edges of interest in an intrinsic triangulation. In particular, we will take as input some path γ along the edges of an
intrinsic triangulationTint (or more generally a loop or even a network of paths and loops). As output we will produce
a geodesic path γ ′ which is isotopic to the input, along the edges of an updated intrinsic triangulation T ′int. As the
algorithm proceeds, the curve will always be represented as a sequence of edges in an intrinsic triangulation, akin to
a path in the graph theory sense. Finally, these paths can be extracted as explicit polylines along the surface as a
post-process, using the data structures described in Chapter 3.

Lagrangian straightening
(regions not well-defined)

input regions flip-based straightening
(regions are preserved)

Noncrossing Curves. This algorithm will op-
erate in the space of noncrossing curves: the input
curves must not cross transversely, and it is guar-
anteed that the output will not contain any new
crossings. Noncrossing curves arise frequently in
geometry processing algorithms, such as cuts or
seams made to parameterize a shape with low dis-
tortion [Callens and Zadpoor 2018; Lucquin et al.
2017; Sharp and Crane 2018], and as the bound-
aries of regions or segmentations along a shape
(see e.g. [Chen et al. 2009]). Straightening such curves is important in computational fabrication, or satisfy smoothness
objectives in optimization. Flip-based geodesics are particularly suited for straighting such curves precisely because
they will guarantee to preserve the noncrossing property—otherwise, unintentional crossings would render the curves
useless for the corresponding applications (inset). In our algorithms, a flexible joint is a local region of the path which
can be straightened without introducing a crossing. In the notation of Figure 34, the joint is flexible if there are no
other path segments in the region swept by the angle labelled αabc . Sharp and Crane [2020b, Section 3.2] describe a
data structure for tracking flexible joints, efficiently handling arbitrary path configurations.

Constructing Geodesics with Edge Flips. The key algorithmic building block is the FlipOut subroutine, so-
named because it flips edges out of a neighborhood to provably introduce a shorter path (see inset diagram for
notation). At a vertex i where the path is not yet a geodesic, FlipOut simply repeatedly flips any edge outgoing from
i which can be flipped (see Section 2.3.4, essentially any edge contained in a convex diamond). In Sharp and Crane
[2020b, Theorem 4.1], this subroutine is proven to always terminate with a shorter path along the perimeter. The
essence of the proof is that each flip removes an edge from the neighborhood of i , until the only edges left form a
convex curve along the perimeter. The convex perimeter curve is guaranteed to be shorter than the initial path as
a corollary of Crofton’s formula [Crofton 1868]: for two nested convex curves sharing endpoints, the inner one is
shorter. The formal proof for the general case of ∆-complex (Sharp and Crane [2020b, Appendix A]) is nontrivial, but
necessary because the triangulation may be reduced to a ∆-complex at intermediate stages of the algorithm.

Fig. 33. FlipOut shortens the curve γ by repeatedly flipping edges to introduce a shorter path.

60

Algorithm 6 FlipOut(Tint,γabc)

Input: A triangulation Tint, and a flexible joint γabc where αabc < π and
segments ab, bc are distinct.

Output: A shorter edge path γshorter connecting a to c in an updated triangu-
lation Tint.

1: while any βi < π do
2: j ← min i s.t. βi < π ▷choose the first edge with βi < π
3: FlipEdge(Tint,bnj)
4: end while
5: γshorter ← (a,n1, . . . ,nk−1, c) ▷path along the outer arc

6: return Tint,γshorter Fig. 34. Notation for FlipOut.

This procedure is easiest to conceptualize in a planar triangulation (as shown in Figure 33). However, the algorithm
(as well as its proof of correctness) depends only on measuring triangle corner angles and flipping edges—both of
which are perfectly well-defined on intrinsic triangulations. Thus we can use this procedure to shorten paths, and
ultimately construct geodesics, along curved surfaces.

Theorem 2 (Sharp and Crane [2020b]). When FlipOut terminates, |γshorter | < γabc , i.e. the new
path is shorter than the input path.

Proof. Upon termination the angles βi are all greater than or equal to π . Hence, in the planar
layout, γshorter is a convex curve contained in the initial curve γabc . A corollary of Crofton’s for-
mula [Crofton 1868] is that for two nested convex curves sharing endpoints, the inner one is shorter.
Since the planar layout is isometric, the lengths of curves in this planar diagram exactly match the
lengths of edge paths on the surface, and thus |γshorter | < |γabc |. □

For a full proof that FlipOut terminates, even in the case where Tint may be a general ∆-complex,
see Sharp and Crane [2020b, Appendix A].

initial
geodesic

12ms <1ms 5ms

Fig. 35. Basic results shortening an initial path to a geodesic by

flipping edges. Inset values give the runtimes. All of the resulting

curves shown are exact polyhedral geodesics.

input geodesic

x5

Fig. 36. Careful treatment of noncrossing curves enables finding

geodesics that overlap many times (top), or those that get pulled
tight around endpoints of the path itself (bottom).

61

Geodesic Paths. Starting from an arbitrary edge path γx↔y between vertices x and y, we can compute an exact
polyhedral geodesic in a finite number of steps by simply applying FlipOut repeatedly (Figure 35). Each iteration
shortens the path until we obtain a locally shortest, i.e. geodesic, path. Algorithm 7 describes the procedure, while
Theorem 3 argues that it must terminate after a finite number of steps. In practice we suggest always processing the
flexible joint with smallest curve corner angle, by maintaining a priority queue of flexible joints sorted by corner
angle.

Algorithm 7MakePathGeodesic(Tint,γx↔y)

Input: A triangulation Tint and an edge path γx↔y , connecting vertices x and y.
Output: A geodesic edge path γx↔y in an updated triangulation Tint.
1: while γx↔y is not geodesic do
2: γabc ← flexible joint in γx↔y with smallest angle αabc
3: Tint,γshorter ← FlipOut(Tint,γabc) ▷locally shorten

4: γx↔y ← UpdatePath(γx↔y ,γabc ,γshorter) ▷Replace old subpath γabc with new subpath γshorter
5: end while
6: return Tint,γx↔y

By definition, if Algorithm 7 terminates then the result is an exact polyhedral geodesic along the surface, so to
understand its correctness we need only argue that it must terminate. Note that much like the termination proof
for the Delaunay flipping algorithm (Section 4.2), we merely argue that this procedure passes through a collection
of states which is finite, albeit exponentially large. Giving any meaningful bound on the time complexity of the
procedure is still an open question, though it is very efficient in practice.

Theorem 3 (Sharp and Crane [2020b]). MakePathGeodesic terminates in finitely many iterations.

Proof. The path γt at iteration t is a collection of segments which are geodesic curves between
vertices. We have |γt+1 | < |γt |, and will denote the initial (maximum) length by L = |γ0 |. To show
termination, we will argue that the set of possible paths γt is finite. Consider GL , the set of all geodesic
curves which connect pairs of vertices and have length ≤ L; this set is finite [Indermitte et al. 2001,
Prop. 1]. Let lmin be the shortest curve in GL , and observe that all γt have at most nmax := ⌊L/lmin⌋

segments. Thus every possible path γt is a collection of at most nmax geodesics from the finite set GL ,
and there are finitely many such collections. □

Instead of runningMakePathGeodesic until convergence, one can also stop when the length has decreased by
a sufficient amount. This generates curves which are shorter and straighter but not fully geodesic, similar to the
intermediate results of a curve-shortening flow (Figure 37).

The only other tool needed for this algorithm is a data structure to encode paths along the edges of a mesh. For
simple curve between two points, it is generally sufficient to mark edges which make up the path, but to support any
more complicated configurations which may arise (Figure 36), one may employ a data structure which encodes an
ordered stack of path segments along each edge of a mesh as in Sharp and Crane [2020b, Section 3.2]

62

input fully shortened
(contracts to point)

with stopping threshold

Fig. 37. Algorithm 7 acts as discrete curve-shortening flow;

stopping the procedure early via a length or angle threshold

generates straighter curves, without drifting too far from the

initialization or contracting to a point.

initial
geodesic

3ms<1ms5ms

Fig. 38. Geodesic loops generated by with edge flips in an

intrinsic triangulations. Inset values give the runtimes.

input cut geodesic cut
< 1ms

Fig. 39. Curve networks arise when cutting and flattening a

shape for computational fabrication. Our method is perfectly

suited to straighten an initial cut network along edges (left)
to a geodesic network (right), yielding a much more natural

pattern for fabrication (bottom).

5.2 Geodesic Loops and Curve Networks

The iterative shortening procedure in Algorithm 7 can also be applied to closed loops, or even networks of paths and
loops along the surface. For the closed loops, a small extra step of the algorithm is needed for cases where the loop
consists of a single edge, and segments ab and bc in Algorithm 6 are in fact the same segment. In this case, one should
replace the single segment of the triangle with the two opposite of the containing triangle 27. Constructing geodesic
loops (Figure 38) is particularly interesting, because algorithms for finding shortest geodesics are fundamentally
unable to construct them, as no initial point the loop is known a priori. Loops and more general curve networks
arise frequently in geometry processing, e.g. as cut graphs for parameterization and fabrication (Figure 39), or as the
boundaries of regions on a surface.

5.3 Geodesic Bézier Curves

input
control points

midpoint subdivision
(1 round)

Bézier curve
(4 rounds)

12ms

Bézier curves are an indispensable tool in geo-
metric modeling. Classically defined in the plane,
Bézier curves were extended to polygonal surfaces
by Morera et al. [2008] via a geodesic version of de
Casteljau’s algorithm. The basic idea is that given
an ordered list of control points (connected by Dijk-
stra paths), one can transform the control polygon
into a smooth Bézier curve by repeatedly applying
the following steps:

27The proof of termination does not handle this case, but termination has always been observed in practice. For details see Sharp and Crane [2020b,
Appendix B].

63

(1) Shorten all curves between control points to geodesics
(2) Insert a new control point vertex at the midpoint between each pair of old control points
(3) Un-mark all old control points except the first and last
(4) If there are >2 points left, return to (1), and shrink the working set to exclude the first and last control points.

By using MakePathGeodesic for the first step (inset), we can construct intrinsic triangulations which contain
approximate Bézier curves. Incorporating this Bézier curve construction into our retriangulation pipeline has numerous
benefits, in particular because we also generate triangulations which conform to these paths.

5.4 Triangulated Geodesic Paths

When constructing geodesics by applying the FlipOut procedure to an intrinsic triangulation, we not only construct
the geodesic path itself, but also a triangulation which contains that path among its edges. This triangulation may
have many extremely poor quality triangles in it (e.g., with very skinny corner angles), but it can easily be improved
as a post-process by applying the retriangulation schemes discussed in Chapter 4 while preserving the path edges. In
fact, Section 4.4 discusses how this FlipOut procedure fills a very important role for generating constrained intrinsic
triangulations which align to desired curves. In applications, these constrained edges can then be used as boundary
conditions or guiding features for geometry processing algorithms; Figure 40 shows two such examples.

Fig. 40. PDEs taking boundary conditions from constrained intrinsic triangulations. Top, a cross field conforming to curves on a

3D scan of a pelvis [Knöppel et al. 2013], and bottom, a Poisson equation with boundary conditions defined along a Bézier curve

on a mechanical part.

64

5.5 Single-Source Geodesics

The methods described above are a kind of curve-shortening flow: they take
some particular curve along the edges of an intrinsic triangulation as a input, and
shorten it to be a geodesic. It is natural to wonder whether the same techniques
can be applied to the widely-studied single source all destination problem, where
one seeks a geodesic path to all other vertices in a mesh.

Sharp and Crane [2020b] also present a simple algorithm for this task based on
the FlipOut subroutine. The basic idea of which is to run a Dijkstra search out-
ward from the source vertex, while constantly applying the FlipOut procedure
at the frontier to ensure all accepted paths are geodesic. Of course, this procedure
is only guaranteed to yield geodesics, not necessarily globally-shortest geodesics,
but in practice it is quite efficient and very often does find shortest geodesics
(see inset). Perhaps the most interesting consequence of this algorithm is that it
constructively implies the existence of a single triangulation of a surface, which
contains among its edge set geodesics from a particular source vertex to every
other vertex in the mesh—it is remarkable that such a triangulation exists at all.

65

Chapter 6

Generalized Domains

The standard definition an intrinsic triangulation relies on strong assumptions about the domain: it must be a manifold,
oriented triangle mesh, equipped with Euclidean geometry in each face. In this section we relax these assumptions,
generalizing intrinsic triangulations to nonmanifold meshes, point clouds, and ideal hyperbolic polyhedra.

6.1 Nonmanifold Intrinsic Triangulations

i

j

i

nonmanifold
edge

nonmanifold
vertex

Recall that manifold connectivity requires that any neighborhood of the surface
looks like the plane (Section 2.1). Manifold connectivity endows a mesh with
numerous useful mathematical properties and is essential for many of the con-
structions in these notes. However, nonmanifold features (see inset) often arise
in the geometric data that one encounters in practice, either intentionally or due
to noise. Moreover, a lot of data is stored in point clouds which have even less
structure: they lack any connectivity information at all. Handling such inputs is
crucial to leverage intrinsic triangulations for robust geometry processing. This
section introduces a simple technique introduced by Sharp and Crane [2020a],

which enables the construction of an intrinsic Delaunay triangulation all triangle meshes, even those which may
be nonmanifold and nonorientable, via a covering space. With this same technique, we can also generate intrinsic
Delaunay triangulations of point clouds which have no connectivity information whatsoever (Section 6.2).

nonmanifold
mesh tu�ed cover

Laplacian

intrinsic Delaunay
triangulation

The Tufted Cover. To construct intrinsic triangulations of
nonmanifold meshes, we use a special covering of the mesh called
the tufted cover. It has the same vertex set as the nonmanifold
mesh but twice as many faces, which we glue together along
their edges according to a simple strategy. Then, we can con-
struct the intrinsic Delaunay triangulation of the tufted cover,
and e.g. use its Laplace matrix as a high-quality Laplacian for the
original mesh. The key observation behind this strategy is that
only nonmanifold edges obstruct the usage of intrinsic triangula-
tions, because there is no notion of an edge flip at a nonmanifold
edge; nonmanifold vertices are a non-issue. By construction the
tufted cover is edge-manifold, so we can perform edge flips on it,
allowing us to e.g. obtain an intrinsic Delaunay triangulation.

We build the tufted cover is defined by splitting each face f in to
two copies σF (f) and σB (f), then cyclically gluing together consec-
utive faces around each original edge (see inset). By construction,
the tufted cover is always an edge manifold, closed, and oriented tri-
angulation. The resulting triangulation has twice as many faces, but
the exact same vertex set as the original mesh, which makes it trivial
to transfer functions and operators defined at vertices between the
tufted cover and the original mesh.

66

The name “tufted cover” arises because the nonmanifold vertices are reminiscent of the buttons on tufted upholstery.
Note that, purely for visualization, we “inflate” the cover outward to clearly distinguish front and back faces, but the
actual geometry of each triangle remains flat.

More precisely, the tufted cover of an extrinsic meshText = (Vext,Eext, Fext) is a triangle mesh T̃ = (Ṽ , Ẽ, F̃) with the
same vertices (Ṽ = Vext), together with a gluing map G̃. Recall from Section 2.2 that a simple face-vertex list is often
not sufficient to specify the connectivity of a triangulation; in this section we will additionally make use of the gluing
map G̃ to precisely specify connectivity while building the tufted cover. The gluing map specifies, for each side of
each triangle, the side of some other triangle to which it is glued. A side is encoded as a pair (f , s) of a face f and a
side within that face s .

For each face f ∈ Fext, T̃ has two oppositely oriented copies σF (f),σB (f) ∈ F̃ which one can think of as the “front”
and the “back” of f , respectively. Nonmanifold edges are resolved by the way we define the gluing map G̃ . We first list
the faces around each edge e ∈ Eext in a circular order ρe := (f1, . . . , fk); this ordering can be chosen as the angular
order of the faces around the edge, though any choice of ordering will suffice ([Sharp and Crane 2020a, Section 5.4]). If
we imagine that these faces are consistently orientated relative to e , then we just glue them “front to back” along the
shared edge, i.e., we glue σF (fi) to σB (fi+1modk) for i = 1, . . . ,k (the inset figure gives an example). A more precise
description of the gluing procedure which takes orientation into account is given in Algorithm 8; here Side(e, f) just
gives the side index of e within face f (1, 2, or 3).

Algorithm 8 ConstructTuftedCover(Text, ρ)

Input: A (possibly nonmanifold) triangle meshMext and an ordering ρ of faces around each edge.
Output: The tufted cover mesh T̃ and edge glue map G̃
1: F̃ ←

⋃
i jk ∈Fext {ijk, jik} ▷two copies of each face

2: G̃ ← {} ▷assemble an edge glue map

3: for each edge e ∈ Eext do
4: if e and σF (ρe1) have the same orientation then
5: f ← σF (ρ

e
1)

6: else f ← σB (ρ
e
1)

7: for i = 1, . . . ,k do ▷letting k := |ρe |
8: д1 ← σF (ρ

e
i+1modk)

9: д2 ← σB (ρ
e
i+1modk)

10: if f and д1 have different orientation along e then
11: Swap(д1,д2)
12: G̃(f , Side(e, f)) ← (д1, Side(e,д1))
13: G̃(д1, Side(e,д1)) ← (f , Side(e, f))
14: f ← д2

15: return T̃ , G̃

It should be emphasized that the tufted cover is not globally vertex-manifold; in fact the it is nonmanifold at nearly
every vertex. We have constructed a triangulation that has exactly the right structure to apply intrinsic edge flips, but
we have not otherwise rectified the nonmanifoldness.

We construct the intrinsic Delaunay Laplacian on the tufted cover exactly as described in Section 4.2, dividing the
matrix by a factor of 2, because the tufted cover is a double cover of the original mesh. This construction offers a
high-quality cotan-Laplace matrix for nonmanifold meshes for the first time, extending the benefits to all triangle
meshes without restrictions on connectivity. Substituting this operator in to existing algorithms immediately improves
there performance and robustness on low-quality input meshes (Figure 41).

67

input naive cotan-Laplacian
nonmanifold IDT

Laplacian

control handle

nonmanifold edge

Fig. 41. Robustness in the context of differential surface editing [Lipman et al. 2004; Sorkine et al. 2004; Yu et al. 2004], where a

system of equations involving a Laplacian is solved to deform a 3D model. Applying these techniques naively in the extrinsic

mesh, which is nonmanifold and has many low-quality triangles, yields only numerical noise. Substituting the nonmanifold IDT

Laplacian constructed on the tufted cover generates the expected smooth deformation.

Beyond Intrinsic Delaunay Laplacians.. The work of Sharp and Crane [2020a] focuses entirely on building the
nonmanifold intrinsic Delaunay Laplace matrix, which is the most basic use of intrinsic triangulations; for instance it
does not demand any of the higher-order data structures like signposts and normal coordinates described in Chapter 4.
It is reasonable to wonder whether the other techniques in this text can be likewise generalized to the nonmanifold
intrinsic setting. The answer is generally yes, though care must be taken about their meaning on the tufted cover,
which is not vertex manifold and furthermore is a double cover of the original surface.

For instance, the explicit crossing representation (Section 3.3) works on the tufted cover without modification28.
However, the signpost data structure (Section 3.4) requires vertex tangent spaces, which are not well-defined without
vertex manifoldness—a remedy is to split each vertex of the tufted cover in to multiple copies, corresponding to
each tangent neighborhood. The integer coordinates representation (Section 3.5) requires similar treatment for its
roundabouts. Intrinsic Delaunay refinement (Section 4.3) is well-defined on the tufted cover, with the caveat that
new vertices should be inserted as new “tufted” vertices, rather than separately on each sheet of the cover. Edge flip
geodesics (Chapter 5) can likewise be applied to paths along a sheet of the tufted cover, though as the algorithm
progresses the path will stay along the sheet of the cover where it was initially constructed, which may or may not be
the expected result.

intrinsic
Laplacian

standard
cotan-Laplace

interpolation

tu�ed Laplacian
(ours)

Domains with boundary.. The tufted intrinsic De-
launay Laplacian has useful properties not only for non-
manifold meshes, but for any mesh with boundary. Both
the extrinsic cotan-Laplacian and the intrinsic Delaunay
Laplacian will have negative edge weights for a boundary
edge ij opposite an obtuse angle θ i jk . Delaunay flips are no
help here, since boundary edges cannot be flipped. These
weights pose no problem when Dirichlet boundary con-
ditions are enforced along the entire domain boundary,
since boundary weights do not enter into the equation,
but can be problematic for interpolating other sets of
pinned values. However, since the tufted cover is always
closed it has no boundary edges, and therefore all weights

28 As long as the mesh data structure supports nonmanifold meshes.

68

of its intrinsic Delaunay Laplacian will be nonnegative—even for edges on the boundary of the original nonmanifold
mesh. For this reason, harmonically interpolating any set of pinned values will yield a function bounded within the
range of these values, whereas for standard intrinsic Delaunay triangulations this property does not hold along the
boundary. In the inset figure we show an example where two known values at vertices are harmonically interpolated
across a shape; only the tufted intrinsic Delaunay Laplacian gives a guarantee that the interpolated values stay within
the range of the inputs29. This property provides additional robustness for algorithms built on top of interpolated
weights, Green’s functions, etc.

6.2 Point Clouds

Point clouds, i.e. sets of points p ∈ R3, are a another common surface representation in geometry processing; however,
the total absence of connectivity information makes many computations more difficult on point clouds than on
meshes. We can use the tufted cover to construct a high-quality Laplace matrix for points clouds, which inherits all of
the benefits of intrinsic triangulations. The basic idea is to take the union of many local triangulations, obtaining
connectivity which represents the surface well but creates many nonmanifold edges, repeated triangles, etc. We
can then build the tufted intrinsic Delaunay triangulation, since the tufted cover frees us of any constraints on the
connectivity of our mesh.

More precisely, a common strategy for building a Laplacian on a point cloud P = {p1, . . . ,pn} ⊂ R3 is to

(i) identify the k nearest neighbors of each point p,
(ii) project these neighbors onto an estimated tangent plane, and
(iii) construct the planar Delaunay triangulation Tp of the projected points.

These local triangulations can then be used to build a Laplacian in a variety of ways. For instance, both Belkin et

al. [Belkin et al. 2008] and Liu et al. [Liu et al. 2012] use the triangulations to determine the mass matrix M , and
determine edge weights via a Gaussian function of the distance in R3. Such schemes are accurate and have nice
theoretical properties, such as pointwise convergence for fairly uniform point distributions, but involve numerical
parameters which are difficult to estimate and produce matrices that are far more dense than the cotan Laplacian of a
mesh. Alternate schemes use the local triangulations only to determine connectivity; the original point locations are
still used to accumulate cotan weights [Cao et al. 2010; Clarenz et al. 2004]. A significant benefit of this latter approach
is that (like mesh-based Laplacians) it accurately handles nonuniform point distributions, while still retaining a high
degree of sparsity. However, since edges may not satisfy the local Delaunay property, the resulting Laplacian can
have negative edge weights.

p p

boundaryinterior boundaryinterior
Sharp and Crane [2020a] observe that nonmanifold intrinsic Delaunay

triangulations can be directly applied in this setting. Like past approaches,
the point cloud Laplacian is constructed from from local triangulations,
but rather than accumulating weights independently, we take the union
T =

⋃
p∈P Tp of all local triangulations Tp ; points contained in a noncompact

cell of the local Voronoi diagram can be tagged as boundary vertices (see
inset). The resulting global triangulation T has highly irregular connectivity,
is nonmanifold almost everywhere, and has duplicate copies of many faces.
However, we can simply proceed as before: build the tufted cover, flip to an
intrinsic Delaunay triangulation, and read off the corresponding Laplace matrix L—which can then be used directly on
the original point cloud P . (We also multiply L by 1/3, since the triangles triply-cover the local neighborhoods.) This
Laplacian exhibits all the desired properties (symmetry, positive-definiteness, nonnegative edge weights, etc.) while
remaining very sparse. And unlike schemes based on Gaussian weights, there are no parameters to estimate or tune.

29 We note that harmonic interpolation by pinned values at vertices is not a well-posed convergent discretization, but nonetheless it is common
and pragmatic.

69

tu�ed IDT

local
triangulations

conformal
parameterizationnoisy point cloud

Fig. 42. The tufted intrinsic Delaunay point cloud Laplacian,

demonstrated here for spectral conformal parameterization of

a point cloud [Mullen et al. 2008].

source

Fig. 43. Angular parameterizations of point clouds, computed

with the tufted intrinsic Delaunay point cloud Laplacian via

the vector heat method [Sharp et al. 2019c].

Equipped with a high-quality point cloud Laplacian, we can easily translate many algorithms designed for meshes
to the point cloud setting. In Figure 42 we use this Laplacian to generate a conformal parameterization of a noisy
point cloud, adapting the mesh-based method of [Mullen et al. 2008], and in Figure 43 we show a more sophisticated
algorithm run directly on point clouds: parameterization by the logarithmic map, computed via the vector heat

method [Sharp et al. 2019c, Section 8.2].

6.3 Hyperbolic Triangulations

Euclidean polyhedron Euclidean triangle

ideal polyhedron ideal triangle

Intrinsic triangulation can also be used beyond the realm of Eu-
clidean geometry. For example, one can use intrinsic triangulations
to represent ideal hyperbolic polyhedra. The basic idea is that rather
than considering ordinary meshes made up of triangles, you instead
consider instead hyperbolic polyhedra which are composed of ideal
triangles in the hyperbolic plane. Although ideal polyhedra differ in
many ways from ordinary Euclidean polyhedra, their connectivity
can be stored in a standard mesh data structure and their geometry
can be encoded by a length per edge, so they fit naturally into this
framework of intrinsic triangulations. Indeed, much of the work on
intrinsic triangulations is closely tied to the study of ideal polyhedra:
in the paper where Rivin [1994a] introduced the intrinsic Delaunay
triangulation (Section 4.1), he immediately used it to parameterize
the shape of star-shaped ideal polyhedra and study their volumes.

Ideal polyhedra can also be a useful tool for working with ordinary
Euclidean triangulations. For example, they play a crucial role in the
discrete uniformization theorem, which guarantees the existence of
discrete conformal parameterizations of meshes [Gu et al. 2018a,b;
Springborn 2019]. Recent work by Gillespie et al. [2021b] developed new data structures for tracking the correspon-
dence between ideal polyhedra and used them to perform discrete uniformization on near-degenerate real-world
meshes.

70

Chapter 7

Open Questions

There are many open questions.

Embedding problem. Suppose you’re given only the connectivity of a triangulation and its edge lengths.
(Decision problem:) Can this metric be embedded as a Euclidean polyhedron in R3, or Rn? If so, which
triangulation is needed to construct a piecewise linear embedding? How do you construct this embedding? Can
you determine the embeddable triangulation without actually constructing the embedding (and in particular, is
the former problem any easier than the latter?). This problem was solved in the convex case by Bobenko and
Izmestiev [2008], who provide an algorithm based on convex optimization and intrinsic edge flips; Kane et al.
[2009] give a pseudopolynomial time algorithm to actually compute the solution to a given numerical precision.
The problem remains open for the general nonconvex case.

Lifting definitions of Delaunay. Can you generalize the parabolic lifting definition of Delaunay to surfaces
(Section 4.1)? There is also a similar lifting definition for the sphere: the connectivity of the Delaunay triangula-
tion of a set of points in R2 is the convex hull of the stereographic projection of those points onto the sphere.
Does this generalize somehow to intrinsic Delaunay triangulations of surfaces?

Nonplanar faces.Many polygonal meshes encountered in practice have nonplanar faces, i.e., polygons whose
vertices do not all lie in a common plane. A basic question is how to interpret such polygons geometrically—for
instance, should one fit a smooth interpolating patch? How do you assign an area to such faces? How do you
define (discrete) curvature on such meshes? Etc.. Several techniques in geometry processing and architectural
geometry seek to planarize such meshes before processing [Cutler and Whiting 2007; Glymph et al. 2004;
Liu et al. 2006], whereas others define operators that do not require the geometry to be planar [Bunge et al.
2020]. Planarization is especially tricky, since one must find vertex positions f : V → R3 that simultaneously

make all faces planar—a constraint that is often quite rigid, and can push the vertices far from their original
positions [Vaxman and Ben-Chen 2015]. The intrinsic point of view offers a potentially interesting alternative:
for each face, find the planar polygon with the same side lengths, and whose angles are as close as possible (in
some sense) to the original angles. These planar polygons endow the input surface with a new Euclidean cone
metric that can be treated in exactly the same way as the intrinsic triangulations discussed so far. Moreover,
unlike searching for compatible vertex positions inR3 (which typically entails global optimization), the geometry
of each polygon can be constructed independently, in a straightforward fashion. However, a variety of challenges
remain, such as defining and tracking correspondence between the extrinsic and intrinsic polygonal mesh.

Asymptotic complexity of Delaunay flipping. In practice, Delaunay flipping seems to run significantly
faster than known runtime bounds suggest (Figure 23). Are there special classes of triangulations on which the
algorithm is guaranteed to be fast, or better general asymptotic bounds on the runtime of the algorithm?

Hybrid data structures. Can you augment the signpost data structure with normal coordinates to obtain a
data structure which provably encodes the correct correspondence while being faster than the full integer
coordinate data structure?

71

Exact predicates. The Delaunay flipping algorithm is only guaranteed to terminate in real arithmetic. In
floating point, one often uses various epsilon tolerances to make the algorithm terminate on difficult inputs.
Exact predicates have been successfully applied to similar problems [Devillers and Pion 2003], but have proved
difficult to apply in the setting of intrinsic triangulations, as the necessary predicates are not functions of a
fixed amount of input data. For example, the length of an intrinsic edge can depend on the lengths of arbitrarily
many original edges. Can exact predicates, or similar ideas, help to compute the exact Delaunay triangulation
in floating point?

Truly integer-only intrinsic triangulations. The integer coordinate correspondence data structure (Sec-
tion 3.5.1) does not depend purely on integers—it also stores edge lengths and barycentric coordinates in
floating point. However this is, in some sense, merely a performance optimization. In theory, these edge lengths
and positions could be computed from the normal coordinates, roundabouts, and the geometry of the input
mesh, leading to a true integer-only correspondence data structure. In practice, a naive implementation of
this integer-only data structure is prohibitively slow, taking hours to compute Delaunay triangulations on
even the simplest of models. But this notion still seems appealing theoretically, and perhaps a more efficient
implementation could make it a viable option in practice.

Intrinsic tetrahedra. The same intrinsic formulation can be likewise applied to higher dimensional complexes,
in particular tetrahedral meshes. In the most basic sense, one can certainly discard the vertex positions of
a tetrahedral mesh and retrain only edge lengths, and this representation may already have benefits e.g. for
anisotropic problems. However, more advanced operations such as producing Delaunay meshes will require
deeper thought. There is no direct analogue of the basic Delaunay flipping algorithm (Theorem 1) in higher
dimensions, even edge flips must be generalized to more complex bistellar flips. One appealing viewpoint is to
generalize flipping operations as projections of a higher-order simplex [Bern et al. 2002]. More general local
cavity operations may also be a promising alternative [Loseille and Menier 2014]. Additionally, the notion of
curvature on tetrahedral meshes differs from the surface case: input meshes generally have no curvature on
their interior, but a general intrinsic metric might induce curvature concentrated along edges.

72

References

Yohanes Yudhi Adikusuma, Zheng Fang, and Ying He. 2020. Fast Construction of Discrete Geodesic Graphs. ACM Transactions on Graphics (TOG)

39, 2 (2020).
Pierre Alliez, Giuliana Ucelli, Craig Gotsman, and Marco Attene. 2008. Recent Advances in Remeshing of Surfaces. Shape analysis and structuring

(2008).
Eli Appleboim, Emil Saucan, and Jonathan Stern. 2009. Normal Approximations of Geodesics on Smooth Triangulated Surfaces. Technical Report.

CCIT Report.
Clive F Baillie, Desmond A Johnston, and Roy D Williams. 1990. Crumpling in dynamically triangulated random surfaces with extrinsic curvature.

Nuclear Physics B 335, 2 (1990), 469–501.
Gavin Barill, Neil G Dickson, Ryan Schmidt, David IW Levin, and Alec Jacobson. 2018. Fast Winding Numbers for Soups and Clouds. ACM

Transactions on Graphics (TOG) 37, 4 (2018).
Bruce G Baumgart. 1975. A Polyhedron Representation for Computer Vision. In Proceedings of the May 19-22, 1975, National Computer Conference

and Exposition.
Mikhail Belkin, Jian Sun, and Yusu Wang. 2008. Discrete Laplace Operator on Meshed Surfaces. In Proceedings of the Twenty-Fourth Annual

Symposium on Computational Geometry.
Marshall Bern, David Eppstein, and Jeff Erickson. 2002. Flipping cubical meshes. Engineering with Computers 18, 3 (2002), 173–187.
Alexander Bobenko and Boris Springborn. 2007. A Discrete Laplace–Beltrami Operator for Simplicial Surfaces. Discrete & Computational Geometry

38, 4 (2007).
Alexander I Bobenko and Ivan Izmestiev. 2008. Alexandrov’s Theorem, Weighted Delaunay Triangulations, and Mixed Volumes. In Annales de

l’institut Fourier, Vol. 58.
Alexander I Bobenko, Ulrich Pinkall, and Boris A Springborn. 2015. Discrete conformal maps and ideal hyperbolic polyhedra. Geometry & Topology

19, 4 (2015), 2155–2215.
Jean-Daniel Boissonnat, Ramsay Dyer, and Arijit Ghosh. 2013. Constructing intrinsic Delaunay triangulations of submanifolds. arXiv preprint

arXiv:1303.6493 (2013).
Jean-Daniel Boissonnat and Arijit Ghosh. 2010. Triangulating smooth submanifolds with light scaffolding. Mathematics in Computer Science 4, 4

(2010), 431–461.
David Bommes and Leif Kobbelt. 2007. Accurate Computation of Geodesic Distance Fields for Polygonal Curves on Triangle Meshes. In VMV,

Vol. 7.
Vincent Borrelli, Saıd Jabrane, Francis Lazarus, and Boris Thibert. 2013. Isometric embeddings of the square flat torus in ambient space. Ensaios

Matemáticos 24 (2013), 1–91.
Prosenjit Bose, Anil Maheshwari, Chang Shu, and Stefanie Wuhrer. 2011. A Survey of Geodesic Paths on 3D Surfaces. Computational Geometry 44,

9 (2011).
Mario Botsch, Leif Kobbelt, Mark Pauly, Pierre Alliez, and Bruno Lévy. 2010. Polygon Mesh Processing.
Astrid Bunge, Philipp Herholz, Misha Kazhdan, and Mario Botsch. 2020. Polygon laplacian made simple. In Computer Graphics Forum, Vol. 39.

Wiley Online Library, 303–313.
Sebastien J. P. Callens and Amir A. Zadpoor. 2018. From Flat Sheets to Curved Geometries: Origami and Kirigami Approaches. Materials Today 21,

3 (2018).
Marcel Campen, Martin Heistermann, and Leif Kobbelt. 2013. Practical anisotropic geodesy. In Computer Graphics Forum, Vol. 32. Wiley Online

Library, 63–71.
Junjie Cao, Andrea Tagliasacchi, Matt Olson, Hao Zhang, and Zhinxun Su. 2010. Point Cloud Skeletons via Laplacian Based Contraction. In Shape

Modeling International Conference.
Luming Cao, Junhao Zhao, Jian Xu, Shuangmin Chen, Guozhu Liu, Shiqing Xin, Yuanfeng Zhou, and Ying He. 2020. Computing Smooth

Quasi-Geodesic Distance Field (QGDF) with Quadratic Programming. Computer-Aided Design 127 (2020).
Long Chen and Michael Holst. 2011. Efficient Mesh Optimization Schemes Based on Optimal Delaunay Triangulations. Computer Methods in

Applied Mechanics and Engineering 200, 9-12 (2011).
Long Chen and Jin-chao Xu. 2004. Optimal Delaunay Triangulations. Journal of Computational Mathematics (2004).
Renjie Chen, Yin Xu, Craig Gotsman, and Ligang Liu. 2010. A Spectral Characterization of the Delaunay Triangulation. Computer aided geometric

design 27, 4 (2010).
Xiaobai Chen, Aleksey Golovinskiy, and Thomas Funkhouser. 2009. A Benchmark for 3D Mesh Segmentation. ACM Transactions on Graphics

(TOG) 28, 3 (2009).
Siu-Wing Cheng, Tamal K Dey, and Jonathan Shewchuk. 2012. Delaunay Mesh Generation.
Chew Chew, L. Paul. 1993. Guaranteed-Quality Mesh Generation for Curved Surfaces. In Proceedings of the Ninth Annual Symposium on

Computational Geometry (SCG ’93).
L. Paul Chew. 1989. Constrained Delaunay Triangulations. Algorithmica 4, 1-4 (1989).
Ulrich Clarenz, Martin Rumpf, and Alexandru Telea. 2004. Finite Elements on Point Based Surfaces. In SPBG.
Keenan Crane, Fernando de Goes, Mathieu Desbrun, and Peter Schröder. 2013a. Digital Geometry Processing with Discrete Exterior Calculus. In

ACM SIGGRAPH 2013 Courses (SIGGRAPH ’13). New York, NY, USA.

73

Keenan Crane, Marco Livesu, Enrico Puppo, and Yipeng Qin. 2020. A Survey of Algorithms for Geodesic Paths and Distances. arXiv preprint
arXiv:2007.10430 (2020).

Krane Crane, Clarisse Weischedel, and Max Wardetzky. 2013b. Geodesics in Heat: A New Approach to Computing Distance Based on Heat Flow.
ACM Transactions on Graphics (TOG) 32, 5 (2013).

Morgan William Crofton. 1868. On the Theory of Local Probability, Applied to Straight Lines Drawn at Random in a Plane; the Methods Used
Being Also Extended to the Proof of Certain New Theorems in the Integral Calculus. Philosophical Transactions of the Royal Society of London

158 (1868).
Barbara Cutler and Emily Whiting. 2007. Constrained Planar Remeshing for Architecture. In Graphics Interface. ACM, 11–18.
Fernando de Goes, PooranMemari, Patrick Mullen, andMathieu Desbrun. 2014. Weighted triangulations for geometry processing. ACM Transactions

on Graphics (TOG) 33, 3 (2014), 1–13.
Olivier Devillers and Sylvain Pion. 2003. Efficient Exact Geometric Predicates for Delauny Triangulations.. In Proceedings of the 5th Workshop on

Algorithm Engineering and Experiments.
Richard J Duffin. 1959. Distributed and Lumped Networks. J. Math. Mech. (1959).
Rex A Dwyer. 1987. A faster divide-and-conquer algorithm for constructing Delaunay triangulations. Algorithmica 2, 1 (1987), 137–151.
Ramsay Dyer, Hao Zhang, and Torsten Möller. 2007. Delaunay Mesh Construction. In Proceedings of the 5th Eurographics Symposium on Geometry

Processing.
Gerhard Dziuk. 1988. Finite Elements for the Beltrami Operator on Arbitrary Surfaces. In Partial Differential Equations and Calculus of Variations.
Peter R. Eiseman. 1985. Solution adaptivity using a triangular mesh. In The Free-Lagrange Method, Martin J. Fritts, W. Patrick Crowley, and Harold

Trease (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 205–235.
Jeff Erickson and Amir Nayyeri. 2013. Tracing compressed curves in triangulated surfaces. Discrete & Computational Geometry 49, 4 (2013),

823–863.
Matthew Fisher, Boris Springborn, Peter Schröder, and Alexander Bobenko. 2007. An Algorithm for the Construction of Intrinsic Delaunay

Triangulations with Applications to Digital Geometry Processing. Computing 81, 2 (2007).
K Ruben Gabriel and Robert R Sokal. 1969. A New Statistical Approach to Geographic Variation Analysis. Systematic zoology 18, 3 (1969).
Michael E Gage. 1990. Curve Shortening on Surfaces. Annales scientifiques de l’École Normale Supérieure Ser. 4, 23, 2 (1990).
Carl Friedrich Gauss. 1825. General Investigations of Curved Surfaces.
Mark Gillespie, Nicholas Sharp, and Keenan Crane. 2021a. Integer Coordinates for Intrinsic Geometry Processing. arXiv preprint arXiv:2106.00220

(2021). arXiv:2106.00220
Mark Gillespie, Boris Springborn, and Keenan Crane. 2021b. Discrete Conformal Equivalence of Polyhedral Surfaces. ACM Transactions on Graphics

(TOG) 40, 4 (2021).
David Glickenstein. 2005. Geometric triangulations and discrete Laplacians on manifolds. arXiv preprint math/0508188 (2005).
James Glymph, Dennis Shelden, Cristiano Ceccato, Judith Mussel, and Hans Schober. 2004. A parametric strategy for free-form glass structures

using quadrilateral planar facets. Automation in construction 13, 2 (2004), 187–202.
Xianfeng David Gu, Ren Guo, Feng Luo, Jian Sun, and Tianqi Wu. 2018a. A Discrete Uniformization Theorem for Polyhedral Surfaces II. Journal of

Differential Geometry 109, 3 (2018).
Xianfeng David Gu, Ren Guo, Feng Luo, and Wei Zeng. 2010. Discrete Laplace-Beltrami operator determines discrete Riemannian metric. arXiv

preprint arXiv:1010.4070 (2010).
Xianfeng David Gu, Feng Luo, Jian Sun, and Tianqi Wu. 2018b. A Discrete Uniformization Theorem for Polyhedral Surfaces. Journal of Differential

Geometry 109, 2 (2018).
Leonidas Guibas and Jorge Stolfi. 1985. Primitives for the manipulation of general subdivisions and the computation of Voronoi. ACM transactions

on graphics (TOG) 4, 2 (1985), 74–123.
Wolfgang Haken. 1961. Theorie Der Normalflächen. Acta Mathematica 105, 3-4 (1961).
Xiaoguang Han, Hongchuan Yu, Yizhou Yu, and Jianjun Zhang. 2017. A Fast Propagation Scheme for Approximate Geodesic Paths. Graphical

Models 91 (2017).
Joel Hass and Peter Scott. 1994. Shortening Curves on Surfaces. Topology 33, 1 (1994).
Allen Hatcher. 2002. Algebraic Topology.
Qi-Xing Huang, Bart Adams, Martin Wicke, and Leonidas J Guibas. 2008. Non-Rigid Registration under Isometric Deformations. In Computer

Graphics Forum, Vol. 27.
Claude Indermitte, Thomas M. Liebling, Marc Troyanov, and Heinz Clémençon. 2001. Voronoi Diagrams on Piecewise Flat Surfaces and an

Application to Biological Growth. Theoretical Computer Science 263 (2001).
Martin Isenburg, Stefan Gumhold, and Craig Gotsman. 2001. Connectivity Shapes. In Proceedings Visualization, 2001. VIS’01.

Alec Jacobson, Ladislav Kavan, and Olga Sorkine-Hornung. 2013. Robust Inside-Outside Segmentation Using Generalized Winding Numbers. ACM
Transactions on Graphics (TOG) 32, 4 (2013).

Tengfei Jiang, Xianzhong Fang, Jin Huang, Hujun Bao, Yiying Tong, and Mathieu Desbrun. 2015. Frame field generation through metric
customization. ACM Transactions on Graphics (TOG) 34, 4 (2015), 1–11.

Daniel Kane, Gregory N Price, and Erik D Demaine. 2009. A pseudopolynomial algorithm for Alexandrov’s Theorem. In Workshop on Algorithms

and Data Structures. Springer, 435–446.
Lutz Kettner. 1999. Using Generic Programming for Designing a Data Structure for Polyhedral Surfaces. Computational Geometry 13, 1 (1999).
Liliya Kharevych, Boris Springborn, and Peter Schröder. 2006. Discrete Conformal Mappings via Circle Patterns. ACM Transactions on Graphics

(TOG) 25, 2 (2006).
Marc Khoury and Jonathan Richard Shewchuk. 2021. Restricted Constrained Delaunay Triangulations. In 37th International Symposium on

Computational Geometry (SoCG 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

74

http://arxiv.org/abs/2106.00220

Ron Kimmel and James A Sethian. 1998. Fast Marching Methods on Triangulated Domains. Proceedings of the National Academy of Sciences 95
(1998).

Hellmuth Kneser. 1929. Geschlossene Flächen in Dreidimensionalen Mannigfaltigkeiten. Jahresbericht der Deutschen Mathematiker-Vereinigung 38
(1929).

Felix Knöppel, Keenan Crane, Ulrich Pinkall, and Peter Schröder. 2013. Globally Optimal Direction Fields. ACM Transactions on Graphics (TOG) 32,
4 (2013).

Charles L Lawson. 1972. Transforming Triangulations. Discrete mathematics 3, 4 (1972).
Charles L Lawson. 1977. Software for C1 Surface Interpolation. In Mathematical Software.
Aaron WF Lee, Wim Sweldens, Peter Schröder, Lawrence Cowsar, and David Dobkin. 1998. MAPS: Multiresolution adaptive parameterization of

surfaces. In Proceedings of the 25th annual conference on Computer graphics and interactive techniques. 95–104.
Gregory Leibon. 1999. Random Delaunay triangulations, the Thurston-Andreev theorem, and metric uniformization. University of California, San

Diego.
Bruno Levy and Richard Hao Zhang. 2009. Spectral Geometry Processing. (2009).
Hao Li, Robert W Sumner, and Mark Pauly. 2008. Global Correspondence Optimization for Non-Rigid Registration of Depth Scans. In Computer

Graphics Forum, Vol. 27.
Yaron Lipman, Olga Sorkine, Daniel Cohen-Or, David Levin, Christian Rossi, and Hans-Peter Seidel. 2004. Differential Coordinates for Interactive

Mesh Editing. In Proceedings Shape Modeling Applications.
Bangquan Liu, Shuangmin Chen, Shi-Qing Xin, Ying He, Zhen Liu, and Jieyu Zhao. 2017a. An Optimization-Driven Approach for Computing

Geodesic Paths on Triangle Meshes. Computer-Aided Design 90 (2017).
Hsueh-Ti Derek Liu, Vladimir G Kim, Siddhartha Chaudhuri, Noam Aigerman, and Alec Jacobson. 2020. Neural subdivision. ACM Transactions on

Graphics (TOG) 39, 4 (2020), 124–1.
Hsueh-Ti Derek Liu, Jiayi Eris Zhang, Mirela Ben-Chen, and Alec Jacobson. 2021. Surface Multigrid via Intrinsic Prolongation. arXiv preprint

arXiv:2104.13755 (2021).
Yang Liu, Helmut Pottmann, Johannes Wallner, Yong-Liang Yang, and Wenping Wang. 2006. Geometric modeling with conical meshes and

developable surfaces. In ACM SIGGRAPH 2006 Papers. 681–689.
Yang Liu, Balakrishnan Prabhakaran, and Xiaohu Guo. 2012. Point-Based Manifold Harmonics. IEEE Transactions on Visualization and Computer

Graphics 18, 10 (2012).
Yong-Jin Liu, Dian Fan, Chun-Xu Xu, and Ying He. 2017b. Constructing Intrinsic Delaunay Triangulations from the Dual of Geodesic Voronoi

Diagrams. ACM Transactions on Graphics (TOG) 36, 2 (2017).
Yong-Jin Liu, Chun-Xu Xu, Dian Fan, and Ying He. 2015. Efficient Construction and Simplification of Delaunay Meshes. ACM Transactions on

Graphics (TOG) 34, 6 (2015).
Adrien Loseille and Victorien Menier. 2014. Serial and parallel mesh modification through a unique cavity-based primitive. In Proceedings of the

22nd International Meshing Roundtable. Springer, 541–558.
Victor Lucquin, Sébastien Deguy, and Tamy Boubekeur. 2017. SeamCut: Interactive Mesh Segmentation for Parameterization. In ACM SIGGRAPH

2017 Technical Briefs.
Feng Luo. 2004. Combinatorial Yamabe Flow on Surfaces. Communications in Contemporary Mathematics 6, 05 (2004).
Richard MacNeal. 1949. The Solution of Partial Differential Equations by Means of Electrical Networks. PhD Thesis. Caltech.
Dimas Martínez, Luiz Velho, and Paulo C Carvalho. 2005. Computing Geodesics on Triangular Meshes. Computers & Graphics 29, 5 (2005).
Joseph SB Mitchell, David M. Mount, and Christos H. Papadimitriou. 1987. The Discrete Geodesic Problem. SIAMComp 16, 4 (1987).
Patrick Joseph Moran. 1996. Visualization and modeling with shape. University of Illinois at Urbana-Champaign.
Dimas Martínez Morera, Paulo Cezar Carvalho, and Luiz Velho. 2008. Modeling on Triangulations with Geodesic Curves. The Visual Computer 24,

12 (2008).
Lee Mosher. 1988. Tiling the projective foliation space of a punctured surface. Trans. Amer. Math. Soc. (1988), 1–70.
Patrick Mullen, Yiying Tong, Pierre Alliez, and Mathieu Desbrun. 2008. Spectral Conformal Parameterization. In Computer Graphics Forum, Vol. 27.
Oleg R Musin. 1997. Properties of the Delaunay triangulation. In Proceedings of the thirteenth annual symposium on Computational geometry.

424–426.
Seiya Negami, Atsuhiro Nakamoto, et al. 1993. Diagonal transformations of graphs on closed surfaces. (1993).
Joseph O’Rourke. 1998. Computational Geometry in C. Cambridge University Press.
Maks Ovsjanikov, Etienne Corman, Michael Bronstein, Emanuele Rodolà, Mirela Ben-Chen, Leonidas Guibas, Frederic Chazal, and Alex Bronstein.

2016. Computing and Processing Correspondences with Functional Maps. In SIGGRAPH ASIA 2016 Courses.
Udo Pachner. 1990. Shellings of simplicial balls and pl manifolds with boundary. Discrete mathematics 81, 1 (1990), 37–47.
Gilles-Philippe Paillé, Nicolas Ray, Pierre Poulin, Alla Sheffer, and Bruno Lévy. 2015. Dihedral Angle-Based Maps of Tetrahedral Meshes. ACM

Transactions on Graphics (TOG) 34, 4 (2015).
Ulrich Pinkall and Konrad Polthier. 1993. Computing Discrete Minimal Surfaces and Their Conjugates. Experimental mathematics 2, 1 (1993).
Konrad Polthier and Markus Schmies. 2006. Straightest Geodesics on Polyhedral Surfaces. In ACM SIGGRAPH 2006 Courses.
Yipeng Qin, Xiaoguang Han, Hongchuan Yu, Yizhou Yu, and Jianjun Zhang. 2016. Fast and Exact Discrete Geodesic Computation Based on

Triangle-Oriented Wavefront Propagation. ACM Transactions on Graphics (TOG) 35, 4 (2016).
Tullio Regge. 1961. General Relativity without Coordinates. Il Nuovo Cimento (1955-1965) 19, 3 (1961).
Mariana Remešíková, Marián Šagát, and Peter Novysedlák. 2019. Discrete Lagrangian Algorithm for Finding Geodesics on Triangular Meshes.

Applied Mathematical Modelling 76 (2019).
Bernhard Riemann. 1854. On the Hypotheses which lie at the Bases of Geometry.
Samuel Rippa. 1990. Minimal Roughness Property of the Delaunay Triangulation. Computer Aided Geometric Design 7, 6 (1990).

75

Igor Rivin. 1994a. Euclidean Structures on Simplicial Surfaces and Hyperbolic Volume. Annals of mathematics 139, 3 (1994).
Igor Rivin. 1994b. Intrinsic geometry of convex ideal polyhedra in hyperbolic 3-space. Lecture Notes in Pure and Applied Mathematics (1994),

275–275.
Marcus Schaefer, Eric Sedgwick, and Daniel Štefankovič. 2002. Algorithms for Normal Curves and Surfaces. In International Computing and

Combinatorics Conference.
Max Schindler and Evan Chen. 2012. Barycentric Coordinates in Olympiad Geometry. Olympiad Articles (2012).
Ryan Schmidt, Cindy Grimm, and Brian Wyvill. 2006. Interactive Decal Compositing with Discrete Exponential Maps. In ACM SIGGRAPH 2006

Papers.
James A Sethian. 1989. A Review of Recent Numerical Algorithms for Hypersurfaces Moving with Curvature Dependent Speed. Journal of

Differential Geometry 31 (1989).
Nicholas Sharp and Keenan Crane. 2018. Variational Surface Cutting. ACM Transactions on Graphics (TOG) 37, 4 (2018).
Nicholas Sharp and Keenan Crane. 2020a. A Laplacian for Nonmanifold Triangle Meshes. In Computer Graphics Forum, Vol. 39.
Nicholas Sharp and Keenan Crane. 2020b. You Can Find Geodesic Paths in Triangle Meshes by Just Flipping Edges. ACM Transactions on Graphics

(TOG) 39, 6 (2020).
Nicholas Sharp, Keenan Crane, et al. 2019a. Geometry-Central.
Nicholas Sharp, Yousuf Soliman, and Keenan Crane. 2019b. Navigating Intrinsic Triangulations. ACM Transactions on Graphics (TOG) 38, 4 (2019).
Nicholas Sharp, Yousuf Soliman, and Keenan Crane. 2019c. The Vector Heat Method. ACM Transactions on Graphics (TOG) 38, 3 (2019).
Jonathan Shewchuk. 2002a. What is a good linear finite element? interpolation, conditioning, anisotropy, and quality measures (preprint). University

of California at Berkeley 73 (2002), 137.
Jonathan Richard Shewchuk. 1997. Delaunay Refinement Mesh Generation. PhD Thesis. Carnegie Mellon University.
Jonathan Richard Shewchuk. 2002b. Delaunay refinement algorithms for triangular mesh generation. Computational geometry 22, 1-3 (2002),

21–74.
Robin Sibson. 1978. Locally Equiangular Triangulations. The computer journal 21, 3 (1978).
Justin Solomon, Keegan Crane, and Etienne Vouga. 2014. Laplace-Beltrami: The Swiss Army Knife of Geometry Processing. In Symposium on

Geometry Processing Graduate School (Cardiff, UK, 2014), Vol. 2.
Olga Sorkine, Daniel Cohen-Or, Yaron Lipman, Marc Alexa, Christian Rössl, and H-P Seidel. 2004. Laplacian Surface Editing. In Symposium on

Geometry Processing.
Boris Springborn. 2019. Ideal Hyperbolic Polyhedra and Discrete Uniformization. Discrete & Computational Geometry (2019).
Boris Springborn, Peter Schröder, and Ulrich Pinkall. 2008a. Conformal Equivalence of Triangle Meshes. ACM Transactions on Graphics (TOG) 27, 3

(2008).
Boris Springborn, Peter Schröder, and Ulrich Pinkall. 2008b. Conformal equivalence of triangle meshes. In ACM SIGGRAPH 2008 papers. 1–11.
Gilbert Strang and George J Fix. 2008. An Analysis of the Finite Element Method (2 Ed.). 212 (2008).
Vitaly Surazhsky, Tatiana Surazhsky, Danil Kirsanov, Steven J Gortler, and Hugues Hoppe. 2005. Fast Exact and Approximate Geodesics on Meshes.

ACM transactions on graphics (TOG) 24, 3 (2005).
Dylan Thurston and Qiaochu Yuan. 2012. Notes on Curves on Surfaces. (2012).
William P Thurston. 1979. The geometry and topology of three-manifolds. Princeton University Princeton, NJ.
Jane Tournois, Camille Wormser, Pierre Alliez, and Mathieu Desbrun. 2009. Interleaving Delaunay Refinement and Optimization for Practical

Isotropic Tetrahedron Mesh Generation. ACM Transactions on Graphics (TOG) 28, 3 (2009).
Godfried T Toussaint. 1980. The relative neighbourhood graph of a finite planar set. Pattern recognition 12, 4 (1980), 261–268.
Marc Troyanov. 1991. Prescribing curvature on compact surfaces with conical singularities. Trans. Amer. Math. Soc. 324, 2 (1991), 793–821.
Amir Vaxman and Mirela Ben-Chen. 2015. Dupin Meshing: A Parameterization Approach to Planar Hex-Dominant Meshing. Technion IIT CS

Technical Report (2015).
Klaus Wagner. 1936. Bemerkungen zum vierfarbenproblem. Jahresbericht der Deutschen Mathematiker-Vereinigung 46 (1936), 26–32.
Xiaoning Wang, Zheng Fang, Jiajun Wu, Shi-Qing Xin, and Ying He. 2017. Discrete Geodesic Graph (DGG) for Computing Geodesic Distances on

Polyhedral Surfaces. Computer Aided Geometric Design 52 (2017).
Max Wardetzky. 2017. A Primer on Laplacians. (2017).
Max Wardetzky, Saurabh Mathur, Felix Kälberer, and Eitan Grinspun. 2007. Discrete Laplace operators: no free lunch. In Symposium on Geometry

processing. Aire-la-Ville, Switzerland, 33–37.
Kevin Weiler. 1985. Edge-Based Data Structures for Solid Modeling in Curved-Surface Environments. IEEE Computer graphics and applications 5, 1

(1985).
Chunlin Wu and Xuecheng Tai. 2009. A Level Set Formulation of Geodesic Curvature Flow on Simplicial Surfaces. IEEE Transactions on Visualization

and Computer Graphics 16, 4 (2009).
Ge Xia. 2013. The Stretch Factor of the Delaunay Triangulation Is Less than 1.998. SIAM J. Comput. 42, 4 (2013).
Shi-Qing Xin, Ying He, and Chi-Wing Fu. 2011. Efficiently Computing Exact Geodesic Loops within Finite Steps. IEEE transactions on visualization

and computer graphics 18, 6 (2011).
Shi-Qing Xin and Guo-Jin Wang. 2007. Efficiently Determining a Locally Exact Shortest Path on Polyhedral Surfaces. Computer-Aided Design 39,

12 (2007).
Shi-Qing Xin and Guo-Jin Wang. 2009. Improving Chen and Han’s Algorithm on the Discrete Geodesic Problem. ACM Transactions on Graphics

(TOG) 28, 4 (2009).
Chunxu Xu, Tuanfeng Y Wang, Yong-Jin Liu, Ligang Liu, and Ying He. 2015. Fast Wavefront Propagation (FWP) for Computing Exact Geodesic

Distances on Meshes. IEEE transactions on visualization and computer graphics 21, 7 (2015).

76

Zipeng Ye, Ran Yi, Wenyong Gong, Ying He, and Yong-Jin Liu. 2020. Dirichlet energy of Delaunay meshes and intrinsic Delaunay triangulations.
Computer-Aided Design 126 (2020), 102851.

Zipeng Ye, Ran Yi, Minjing Yu, Yong-Jin Liu, and Ying He. 2019. Geodesic Centroidal Voronoi Tessellations: Theories, Algorithms and Applications.
arXiv preprint arXiv:1907.00523 (2019).

Xiang Ying, Caibao Huang, Xuzhou Fu, Ying He, Ruiguo Yu, Jianrong Wang, and Mei Yu. 2019. Parallelizing Discrete Geodesic Algorithms with
Perfect Efficiency. Computer-Aided Design 115 (2019).

Xiang Ying, Xiaoning Wang, and Ying He. 2013. Saddle Vertex Graph: A Novel Solution to the Discrete Geodesic Problem. ACM Transactions on

Graphics (TOG) 32, 6 (2013).
Xiang Ying, Shi-Qing Xin, and Ying He. 2014. Parallel Chen-Han (PCH) Algorithm for Discrete Geodesics. ACM Transactions on Graphics (TOG) 33,

1 (2014).
Yizhou Yu, Kun Zhou, Dong Xu, Xiaohan Shi, Hujun Bao, Baining Guo, and Heung-Yeung Shum. 2004. Mesh Editing with Poisson-Based Gradient

Field Manipulation. In SIGGRAPH.
Juyong Zhang, Chunlin Wu, Jianfei Cai, Jianmin Zheng, and Xue-cheng Tai. 2010. Mesh Snapping: Robust Interactive Mesh Cutting Using Fast

Geodesic Curvature Flow. In Computer Graphics Forum, Vol. 29.
Qingnan Zhou and Alec Jacobson. 2016. Thingi10K: A Dataset of 10,000 3D-Printing Models. arXiv:1605.04797 (2016). arXiv:1605.04797

77

http://arxiv.org/abs/1605.04797

Appendix A

Evaluating Geometric Quantities

Here we express several basic geometric quantities in terms of the intrinsic edge lengths. See also Schindler and Chen
[2012] for useful perspectives on such quantities via barycentric coordinates.

Triangle Area. One can compute the area of triangle ijk via Heron’s formula:

Ai jk =

√
s(s − ℓi j)(s − ℓjk)(s − ℓki),

where s := ℓi j+ℓjk+ℓki
2 .

(19)

Corner Angles. One can compute the corner angles of triangle ijk via the law of cosines:

θ i jk = arccos

(
ℓ2jk + ℓ

2
ki − ℓ

2
i j

2ℓjkℓki

)
. (20)

Cotan Weights. It’s possible to compute the cotangent of a corner angle by taking the cotangent of the angle
defined above. However, one can avoid inverse trigonometric functions by recalling that the area of a triangle is
proportional to the sine of its corner angle. Thus,

cotθ i jk :=
cosθ i jk
sinθ i jk

=
ℓ2jk + ℓ

2
ki − ℓ

2
i j

4Ai jk
. (21)

Opposite Diagonal. To flip an edge ij contained in a pair of triangles ijk, jim we need
to compute the length of the opposite diagonalkm. Recall that an edge flip can be performed
only if the two triangles form a convex quadrilateral. In this case, the opposite diagonal
length is given by the relationship

ℓ2km =
1
2

(
ℓ2im + ℓ

2
jk + ℓ

2
jm + ℓ

2
ki − ℓ

2
i j +
(ℓ2im − ℓ

2
jm)(ℓ

2
jk − ℓ

2
ki))

ℓ2i j

)
+
8Ai jkAjim

ℓ2i j
, (22)

where the triangle areasAi jk andAjim are computed as above. Take care when implementing, that the edge lengths
in this diagram are labelled relative to the diamond connectivity before the flip is performed. Also note that this
expression gives the square of the diagonal length—for an edge flip one must then take the square root to recover the
new length.

Though this expression is easy to write down and implement, there are many other possible numerical expressions
for the same quantity, which may be more accurate or efficient—see especially the discussion in Sharp et al. [2019b,
Appendix A].

78

Distance in Barycentric Coordinates. Given two points in triangle ijk encoded as barycentric coordinates p
and q, we can compute the distance between them as a function of the edge lengths, and their barycentric difference
u := p − q:

|u | =
√
−ℓ2i juiuj − ℓ

2
jkujuk − ℓ

2
kiukui . (23)

For a derivation, see Section 2.3.6, or Schindler and Chen [2012, Section 3.2].

Planar Layout. The 2D layout from Section 2.3.7 can be computed as follows. Given a
triangle ijk , we can place vertices i and j at positions

qi := (0, 0) q j := (ℓi j , 0). (24)

We can compute the height of the triangle (or equivalently the y-coordinate of qk) as

qky = h =
2Ai jk

ℓi j
, (25)

and we can use the Pythagorean theorem to solve for the x position of qk :

qkx = ±
√
ℓ2ki − h

2, (26)

taking the positive solution if θ jki < 90◦ and the negative solution otherwise. Note that we can check this condition
by checking the sign of cosθ jki . Using the law of cosines, one can show that θ jki < 90◦ if and only if ℓ2jk < ℓ

2
jk + ℓ

2
ki .

79

	Contents
	1 Introduction
	1.1 Why This Approach?
	1.1.1 What Are Intrinsic Triangulations Not?

	1.2 Historical Roots

	2 Intrinsic Triangulations
	2.1 Connectivity
	2.2 Topological Data Structures
	2.3 Geometry
	2.3.1 Extrinsic Geometry
	2.3.2 Barycentric Coordinates
	2.3.3 Intrinsic Geometry
	2.3.4 Edge Flips
	2.3.5 Cone Metric
	2.3.6 Length Based Formulas
	2.3.7 Local Coordinates

	2.4 Tangent Vectors
	2.4.1 Geodesics
	2.4.2 Exponential Map

	2.5 The Laplace Matrix
	2.5.1 The Mass Matrix

	3 Representing Correspondence
	3.1 Intrinsic Triangulations of Embedded Surfaces
	3.1.1 Common Subdivision

	3.2 Correspondence Data Structures
	3.3 Explicit Crossings
	3.3.1 Edge Flips

	3.4 Signposts
	3.4.1 Tracing Through Triangulations
	3.4.2 Local Mesh Operations
	3.4.3 Queries
	3.4.4 Robustness

	3.5 Integer Coordinates
	3.5.1 Normal Coordinates
	3.5.2 Roundabouts
	3.5.3 The Abstract Viewpoint
	3.5.4 Local Mesh Operations
	3.5.5 Robustness

	3.6 Extracting the Common Subdivision

	4 Retriangulation
	4.1 Intrinsic Delaunay Triangulations
	4.1.1 Properties of Intrinsic Delaunay Triangulations
	4.1.1.1 Empty Triangle Circumcircles & Edge Disks
	4.1.1.2 Contains Nearest Neighbors
	4.1.1.3 Maximizes Angles
	4.1.1.4 Smoothest Piecewise-Linear Interpolation (Rippa's Theorem)
	4.1.1.5 Minimal Spectrum
	4.1.1.6 Minimal Minimum Spanning Tree
	4.1.1.7 Geometric Spanner

	4.2 Delaunay Flipping
	4.3 Delaunay Refinement
	4.4 Constrained Triangulation
	4.5 Optimal Delaunay Triangulation
	4.6 Adaptive Mesh Refinement
	4.7 Intrinsic Mollification
	4.8 Metric Scaling
	4.9 Comparison to Traditional Remeshing
	4.9.1 Other Notions of Delaunay
	4.9.2 Extrinsic Construction

	4.10 Robustifying Applications with Intrinsic Triangulations
	4.10.1 The Intrinsic Delaunay Laplacian
	4.10.2 Examples

	4.11 Transferring Solutions Between Triangulations
	4.11.1 Optimal Attribute Transfer
	4.11.2 Transferring Tangent Vectors

	5 Geodesics
	5.1 Geodesics from Intrinsic Edge Flips
	5.2 Geodesic Loops and Curve Networks
	5.3 Geodesic Bézier Curves
	5.4 Triangulated Geodesic Paths
	5.5 Single-Source Geodesics

	6 Generalized Domains
	6.1 Nonmanifold Intrinsic Triangulations
	6.2 Point Clouds
	6.3 Hyperbolic Triangulations

	7 Open Questions
	References
	A Evaluating Geometric Quantities

