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Abstract—Decoupling capacitors are used to provide adequate and 
stable power for integrated circuits in printed circuit boards 
(PCB). For complicated and large designs, it is difficult to select 
capacitors to meet voltage ripple limits while also minimizing cost 
because the search space is too large. In this work, a new genetic 
algorithm (GA) is proposed for the selection and placement of 
capacitors to meet a target impedance using as few capacitors as 
possible. The GA is centered around controlling the number of 
unused port locations in the GA population solutions, with the 
result of smoothing out the GA convergence and speeding up the 
convergence rate. A result comparison is made of the proposed GA 
against other algorithms and found the GA competitive if not 
better for the select test cases. 

Keywords—genetic algorithm, decoupling capacitor, power 
distribution network, printed circuit board 

I. INTRODUCTION  
In power distribution networks (PDN) for printed circuit 

boards (PCBs), at higher frequencies, the inductances associated 
with the voltage regulator module (VRM) and current return 
paths becomes an increasing source of impedance. This presents 
significant power delivery issues on current switching events 
which greatly impacts the performance of integrated circuits 
(ICs). A common method to ensure reliable power delivery is 
defining a target impedance, which is based on the maximum 
allowable voltage ripple that can be tolerated by devices on the 
power rail for continued functionality. With increasingly small, 
dense, and fast designs, meeting the ripple voltage tolerances 
becomes more difficult.  

To reduce the power issues associated with high frequencies, 
decoupling capacitors (decaps) are used to provide a local source 
of charge while also providing a lower inductance/impedance 
return path. The problem is, designs with large numbers of decap 
ports contain too many placement possibilities. Of all decap 
patterns, there exists an application-based ‘best solution(s).’ 
This may be the pattern that satisfies a target impedance using 
the minimum number of capacitors or the pattern that minimizes 
a bill of material cost. Very large search spaces make brute force 
methods impractical for finding the best solution.  

For this decap placement problem, different search methods 
have been proposed and implemented. Among those is a 
physics-based method for minimizing inductance [1], iterative 
methods [2] and machine learning methods to quickly determine 
the best solution for any input [3][4]. Different genetic 
algorithms (GA) have also been implemented. [5][6]. Nearly all 
search or iterative methods though, rely on specific objective 
functions and/or made assumptions about how the best solution 
is most easily found. As an example, adding decaps based on the 

distance to an IC would always use the same decap ports.  While 
these assumptions are based in physics and do make the search 
efficient by narrowing the search space, the tradeoff is that there 
is no way to verify that the reduced search space includes the 
best solution.  

In this work, we propose a new GA to find the decap 
placement that minimizes the number of capacitors required to 
meet a target impedance. To accomplish this, a new search 
method of limiting the number of capacitors in GA solutions  is 
introduced. Contrary to traditional GAs, we also use very 
general fitness functions to avoid directly narrowing the search 
space. For disambiguation, the proposed GA will also be 
referred to as the gene suppressed GA.   

II. PROPOSED GENETIC ALGORITHM OVERVIEW 
First introduced by Holland, genetic algorithms are a class 

of optimization functions based on the principles of survival of 
the fittest [7]. Mimicking the process of natural selection, a GA 
population experiences the familiar pressures of survival fitness 
(selection), reproduction, and mutation. Iteratively, a GA 
population goes through cycles, called generations, where the 
most fit individuals will reproduce.  The overall most fit 
individual, over all generations, is the best solution for the 
optimization problem. For the proposed algorithm, the code 
base for the GA is open-source, implemented in Python and 
freely available from [8]. Full documentation and the full code 
is available. The general structure for the proposed GA is 
described in Figure 1. The code for the genetic operators is 
unchanged. 

 
 
 
 

A. Genetic Algorithm Structure 
 The first stage of the GA is initialization, where the initial 
population of the GA is generated. Each member of the GA is 
referred to as a chromosome made up of genes [7]. To fit the GA 
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Fig. 1: Genetic Algorithm Flow Chart 
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scheme, each decap placement pattern is encoded as a vector of 
real, non-negative integers. A decap port location is represented 
by the vector index, with the length of the vector equal to the 
total number of ports. The specific capacitor placed at a port 
location is represented by the value at the corresponding index. 
An example solution is shown in Fig. 2. The mapping of integer 
numbers to capacitor type is given in Table 1, with an integer 
value of ‘0’ representing no decap. For initialization, the 
population was filled by randomly generated solutions.  

2 1 10 5 3 4 0 10 
Fig. 2: Example solution with 8 decaps. Decap number 5 is placed in port 4. 

 The next stage of the GA is evaluation, where the fitness of 
a solution is judged. In our case, the lower the fitness score given 
by a fitness function, the higher its fitness. Two different fitness 
functions are used for evaluating solutions; one for solutions 
satisfying the target impedance and one for those that don’t. For 
a solution satisfying the target impedance, the fitness function 
used is given  by (1): 

 

If the target impedance is not satisfied, the fitness score 
given is proportional to the largest difference between points of 
the target impedance, the target_z, and the solution_z, the 
impedance seen looking into an IC on the power rail. For the test 
cases in this paper, only the PDN AC impedance associated with 
the vertical vias and plane capacitance is considered and 
calculated using a BEM and node voltage method [9]; the 
horizontal routing was not considered. The effect of the 
thickness of the power and ground layers is assumed negligible 
on the vertical AC impedance. The algorithm still applies with 
inputs that consider DC resistance and horizontal routing.  The 
frequency range targeted is 10 kHz to 20 MHz.  The fitness score 
is given by the following fitness function (2): 

           (2) 

 To create the next generation, first, selection occurs to 
choose the parents. A percentage of the current generation, set 
at 30%, is selected through the roulette wheel method [10] to 
join the next generation. Equivalently this means the crossover 
rate, the number of solutions created by crossover, is 70%. These 
solutions are the potential parents for new solutions. An elitism 
component [7] is included where a percentage of the highestt 

fitness solutions are guaranteed to join the next generation. The 
elitism percent is set at 1% with a minimum of 1 solution joining 
the next generation. The remainder of the population is 
generated through uniform crossover [11] of randomly selected 
pairs of the potential parents. Finally, mutation occurs where 
every gene has a chance of being changed. In our case, the decap 
placed at a particular port may have its decap type changed or 
be removed altogether. The mutation rate is set at 10%. After 
mutation, one generation is completed. The entire process 
repeats again with fitness evaluation, generation after 
generation, until a defined number of generations have passed. 

B. Solution Size and Size Variation 
A change is proposed here to the traditional GA scheme. A 

distinction is made between gene value 0 and genes 1 – 10; by 
our fitness function, more expressions of gene 0 lead to a better 
score. The frequency of gene 0 appearing will be controlled by 
the GA to make the search more efficient. 

The solution size is defined as the number of decaps used in 
the current best-known solution. The proposed change is to limit 
the number of decaps in all solutions around the solution size. 
With a solution size of 20, there is no need to consider solutions 
using > 20 decaps so solutions should be restricted to <= 20 
decaps. Solutions with 20 decaps are still considered as they may 
provide alternate search paths for the GA. This parameter is 
dynamically updated and initially set as the total number of 
decap locations. 

While the upper limit is defined by the solution size, a lower 
limit is defined by the size variation. Without a lower limit on 
the number of decaps, the search space may be too large for 
efficient search. If the size solution is 20 and the size variation 
is 5, then all solutions in the population are allowed only 20 – 
15 decaps inclusively. It is more probable to find solutions 
nearer to the current solution size number than one with far 
fewer decaps. The size variation parameter was set at a rounded 
10% of the total number of decap ports.  

 Let S be the solution size and V the size variation. Fig. 3 
describes the changes made to a solution with N decaps. For 
adding and removing decaps, the decap ports are randomly 
chosen from the solution.  When adding, decaps are selected 
from the those already present in the solution. A solution that 
does not utilize decap number 8 will not have capacitor 8 as an 
option for adding. This is to avoid changing the overall behavior 
of the solution too much, such as by adding new resonances. 
Adjustments to the decap number occur after initialization and 
after mutation.  

Table 1: Decoupling Capacitor Library

 

Fig. 3: Modifications to be made to a solution of N capacitors, with solution 
size S and size variation V. 
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III. GA VERIFICATION 
To verify the performance of the proposed GA, 3 test boards 

were generated using code from [12].  The shapes and decap port 
layouts are given in Fig. 4. The stackups are given in Tables 2 – 
4. The dielectric relative permittivity is 4.4. The thickness of 
PWR and GND layers is again assumed to have negligible 
effects on the total via inductances and capacitances compared 
to dielectric layer thickness. As such, PWR and GND layers are 
modeled as having 0mm thickness. Through-vias connect the 
appropriate layers and are used as decap ports. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4a: Board Shape and Decap Port Layout, Case 1 

Fig. 4c: Board Shape and Decap Port Layout, Case 3 

Table 2: Stack up for Case 1 

Table 3: Stack up for Case 2 

Table 4: Stack up for Case 3 

Fig. 4b: Board Shape and Decap Port Layout, Case 2 
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Fig. 5: Impedance Targets in Each Case. The Slope is +20dB/decade. The 
frequency range is 10 kHz to 20 MHz 

 Test board 1 (Case 1) has 20 capacitors ports. Test board 2 
(Case 2) has 100 decap ports and test board 3 (Case 3) has 50. 
The decap port locations were randomly selected and placed on 
both top and bottom layers. The VRM was modelled as a series 
RL circuit with R = 3 mOhms and L = 2.5 nH and placed  at the 
port farthest from the IC, but on the top layer. To set the target 
impedances for each case, the gene suppressed GA was run 
repeatedly, and the target impedance varied, until a reasonable 
number of capacitors that could satify the target impedance was 
found. The impedances are of RL type and are given in Fig. 5. 
Results of the gene suppressed GA are compared against the 
open-source GA without any modifications (same fitness 
function), against the method described in [6] in the ideal case, 
and against the reinforcement learning algorithm described in 
[3]. 

 The unmodified version of the open-source GA is near 
identical to that of the gene suppressed GA, the only difference 
is that the number of capacitors allowed is not enforced. To 
check for search potential and consistency, both GAs’ were ran 
5 times, for each test case, with the population size and the 
number of generations = 50. They were rerun another 5 times, 
for each test case, with population size and the number of 
generations = 100.  

The method proposed in [6] is an iterative GA, but rather 
than risk a poor recreation, a full search was performed. Decaps 
were selected one by one, by considering every decap type and 
location, and fixing the one that best minimizes the cost 
function. Decaps are placed until the target is met or until all 
ports are filled. The solution found then, is the best possible 
solution based on the cost function of [6]. 

The reinforcement learning method described in [3] involves 
training a machine learning model to find the minimal number 
of decaps needed to satisfy the target impedance. A port 
sequence is first calculated by [1] to determine the order of ports 
to be used. The good convergence of the model and its ability to 
generalize was not considered, only the best solution the that 
could be found. The algorithm was run three times, for each test 
case, and the best solution found was recorded. 

A. Gene Suppressed and Open Source GA 
 The minimum number of decaps found by the GAs for each 

case is given in Table 5, along with the average time for each 
case. The GAs was run on a virtual Linux server with an Intel 
Xeon Gold 5118 processor. Better solutions are generally found 
with the gene suppressed GA, with large improvements as the 
number of decap ports increases. However, the time consumed 
increases considerably with the # of decap ports, population 
size, and generation number, making this method currently 
impractical for large industry design. It may take upwards of 
hours or more for large number of decap ports designs, 
depending also on GA parameters. One reason for improved 
results may be that genetic drift [13] is reduced with the 
introduction of the solution size and size variation parameters. 
Genetic drift describes the change in the frequency of genes in 
a population as the algorithm converges towards a local or 
global extrema. As better solutions are found, the frequency of 
gene 0 will increase in the population, especially with crossover 
considered. Solutions with too many empty ports are less likely 
to meet the target impedance and the number of such solutions 
appearing in the population will only increase with crossover. 
By controlling the number of decaps that can exist in a solution, 
the effect of genetic drift is lessened and the convergence can 
be improved. The convergence curve for the number of decaps 
found for the gene suppressed GA and open-source is shown in 
Fig 6 and for Case 2. Due to the elitism implementation, the 
plot is non-increasing. 

 
Table 5: Open-Source vs Gene Suppressed GA Results 

 

Genetic Algorithm Number of Decaps 
Case 1 Case 2 Case 3 

Gene Suppressed GA 
Population and # Gen. = 50 

16 
~1 min 

41 
~70 min 

28 
~11 mins 

Open Source GA 
Population and # Gen. = 50 

16 
~1 min 

 
71 

~75 mins 

 
35 

~11 mins 

Gene Suppressed GA 
Population and # Gen. = 100 

15 
~5 mins 

 
23 

~4.3 hrs 

 
24 

~43 mins 

Open Source GA 
Population and # Gen. = 100 

15 
~5 min 

 
66 

~5 hrs 

 
32 

~45 mins 

Fig. 6: Convergence of Gene Suppressed vs Open Source 
GA, Case 2 
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Table 6: Gene Suppressed vs Other Methods Results 

 

B. Gene Suppressed GA and Other Methods 
The minimum number of decaps found by the proposed GA, 

the ideal solution of [6], and the reinforcement learning method 
are given in Table 6. The performance of the proposed GA 
varies from finding a better or equivalent solution to at worst a 
competitive one. The inherent randomness in the search of any 
GA means that the best solution may not always be found 
despite its potential performance. The performance of the gene 
suppressed GA is as good if not better than the ideal solution of 
[6]. The method in [6] is a GA though, and the randomness of 
a GA search may still result in finding the global minimum 
solution.  Compared to the reinforcement learning method, the 
proposed GA is competitive and sometimes better.  

One possible reason for the sometimes-better results of the 
proposed algorithm is because no assumptions are made by the 
GA about how to find the best solution. In the method of [6], 
one decap is added at a time, as best minimizes the cost 
function. Per its cost function, bigger decaps should be added 
first because a bigger decap can quickly bring down the 
impedance in the low and medium frequency range. 
Progressively, smaller decaps will be added. In addition, the 
port locations are indirectly selected so that with a decap 
connected, the inductance associated with that location is just 
right to maximize the effect of that decap by shifting its 
resonance point. As a result, searches by [6] should be 
somewhat consistent in behavior and result. 

In the reinforcement learning case, the order in which the 
ports are filled was fixed. The capacitor selection was not fixed. 
Exploration was done in the search space so different placement 
patterns could be tested. This exploration offers the benefit of 
considering alternate search paths but all search paths are 
restricted to the calculated port fill order. For Case 2, using the 
calculated port sequence resulted in the best solution. In Case 
3, the solution found by the proposed GA is better, but no full 
search was done to check if an equal or better solution exists 
using the port sequence. 

Without a full search, there is no way of confirming that any 
specific objective function, or any assumptions made about the 
global minimum solution, is always true. No direct assumption 
is made by the gene-suppressed GA about the best solution. The 
fitness function for solutions that satisfy the target impedance 
is proportional only to the number of unused ports. Solutions 
using fewer decaps will be favored by the GA, but not directly 
port locations or decap types. Characteristics of the same 
solutions however, may still be passed on repeatedly, pushing 

the GA towards a local minimum. Regardless, the possibility 
that better solutions can exist using decap ports and decaps that 
is unique from the currently known best solution is not closed 
off by the GA fitness functions. The downside though, is that 
there is no basis to judge two solutions using the same number 
of decaps, but using different locations and decap types, 
because they’d be rated the same fitness. From the results, 
limiting the expression of gene 0 help lead towards good 
solutions despite a less focused search space. But in some cases, 
like Case 2, it may not be sufficient. 

The best decap placement pattern for Case 3, for each decap 
optimization method, is depicted in Fig. 7. Their impedance 
curves are given in Fig. 8. Although there is no guarantee that 
the GA in [6] and the reinforcement learning method is unable 
to find an equal or better solution for Case 3, the port locations 
used by the proposed GA are ones that would not be considered 
by the ideal case of [6] and the port sequence of the 
reinforcement method. For instance, capacitor port 11 is unused 
in the ideal solution of [6] and for the reinforcement learning 
case, port 11 is not within the first 27 ports of the calculated 
port sequence (Best solution found by reinforcement learning 
method). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Algorithm Number of Decaps 
Case 1 Case 2 Case 3 

Gene Suppressed GA 
Population and # Gen. = 50 16 

 
41 

 
28 

Gene Suppressed GA 
Population and # Gen. = 100 15  

23 
 

24 

Ideal Solution of [6] No 
Solution  

 
23 

 
33 

Reinforcement Learning 
Method 17  

21 
 

27 

Fig. 7a: Gene Suppressed GA Capacitor Layout, Case 3            
Ports Used: [ 4, 5, 7, 8, 10, 11, 12, 14, 16, 17, 18, 19, 20, 24, 25, 26, 

28, 29, 33, 36, 39, 46, 47, 50] 

Fig. 7b: Ideal Solution of [6] Capacitor Layout, Case 3.            
Ports Used: [1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 13, 14, 16, 17, 18, 19, 20, 21, 

22, 23, 24, 26, 27, 29, 34, 36, 38, 39, 43, 46, 47, 49, 50] 
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IV. CONCLUSION 
In this work, a new GA for the decoupling capacitor 

problem in power distribution networks of PCBs was presented. 
The gene suppressed GA can find the best known minimum 
capacitor number, or at least a comparable solution, to satisfy a 
user defined target impedance. This is verified by comparing 
against two other algorithms. The convergence curve can also 
be smoothed out and the search made more efficient by limiting 
the number of capacitors in solutions. From our experimental 
results, there is a relationship between the solution found and 
the GA parameters. Larger population sizes and longer 
iterations result in finding better solutions, especially for PDN 
with large numbers of capacitor ports, but at the expense of 

much longer algorithm time due to increase in the number of 
calculations. 
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Algorithm 

717

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on January 11,2022 at 21:39:25 UTC from IEEE Xplore.  Restrictions apply. 


		2021-10-17T06:01:17-0400
	Preflight Ticket Signature




