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Abstract—Decoupling capacitors are used to provide adequate and
stable power for integrated circuits in printed circuit boards
(PCB). For complicated and large designs, it is difficult to select
capacitors to meet voltage ripple limits while also minimizing cost
because the search space is too large. In this work, a new genetic
algorithm (GA) is proposed for the selection and placement of
capacitors to meet a target impedance using as few capacitors as
possible. The GA is centered around controlling the number of
unused port locations in the GA population solutions, with the
result of smoothing out the GA convergence and speeding up the
convergence rate. A result comparison is made of the proposed GA
against other algorithms and found the GA competitive if not
better for the select test cases.

Keywords—genetic —algorithm, decoupling capacitor, power
distribution network, printed circuit board

I. INTRODUCTION

In power distribution networks (PDN) for printed circuit
boards (PCBs), at higher frequencies, the inductances associated
with the voltage regulator module (VRM) and current return
paths becomes an increasing source of impedance. This presents
significant power delivery issues on current switching events
which greatly impacts the performance of integrated circuits
(ICs). A common method to ensure reliable power delivery is
defining a target impedance, which is based on the maximum
allowable voltage ripple that can be tolerated by devices on the
power rail for continued functionality. With increasingly small,
dense, and fast designs, meeting the ripple voltage tolerances
becomes more difficult.

To reduce the power issues associated with high frequencies,
decoupling capacitors (decaps) are used to provide a local source
of charge while also providing a lower inductance/impedance
return path. The problem is, designs with large numbers of decap
ports contain too many placement possibilities. Of all decap
patterns, there exists an application-based ‘best solution(s).’
This may be the pattern that satisfies a target impedance using
the minimum number of capacitors or the pattern that minimizes
a bill of material cost. Very large search spaces make brute force
methods impractical for finding the best solution.

For this decap placement problem, different search methods
have been proposed and implemented. Among those is a
physics-based method for minimizing inductance [1], iterative
methods [2] and machine learning methods to quickly determine
the best solution for any input [3][4]. Different genetic
algorithms (GA) have also been implemented. [5][6]. Nearly all
search or iterative methods though, rely on specific objective
functions and/or made assumptions about how the best solution
is most easily found. As an example, adding decaps based on the
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distance to an IC would always use the same decap ports. While
these assumptions are based in physics and do make the search
efficient by narrowing the search space, the tradeoff is that there
is no way to verify that the reduced search space includes the
best solution.

In this work, we propose a new GA to find the decap
placement that minimizes the number of capacitors required to
meet a target impedance. To accomplish this, a new search
method of limiting the number of capacitors in GA solutions is
introduced. Contrary to traditional GAs, we also use very
general fitness functions to avoid directly narrowing the search
space. For disambiguation, the proposed GA will also be
referred to as the gene suppressed GA.

II. PROPOSED GENETIC ALGORITHM OVERVIEW

First introduced by Holland, genetic algorithms are a class
of optimization functions based on the principles of survival of
the fittest [7]. Mimicking the process of natural selection, a GA
population experiences the familiar pressures of survival fitness
(selection), reproduction, and mutation. Iteratively, a GA
population goes through cycles, called generations, where the
most fit individuals will reproduce. The overall most fit
individual, over all generations, is the best solution for the
optimization problem. For the proposed algorithm, the code
base for the GA is open-source, implemented in Python and
freely available from [8]. Full documentation and the full code
is available. The general structure for the proposed GA is
described in Figure 1. The code for the genetic operators is
unchanged.

Initialization
+

Adjust Decap Number
+

—
+
+

[ Crossover |
+

[ Mutation ]
+

Adjust Decap Number
l If Last Generation

'

End

If Not Last Generation

Fig. 1: Genetic Algorithm Flow Chart

A. Genetic Algorithm Structure

The first stage of the GA is initialization, where the initial
population of the GA is generated. Each member of the GA is
referred to as a chromosome made up of genes [7]. To fit the GA
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scheme, each decap placement pattern is encoded as a vector of
real, non-negative integers. A decap port location is represented
by the vector index, with the length of the vector equal to the
total number of ports. The specific capacitor placed at a port
location is represented by the value at the corresponding index.
An example solution is shown in Fig. 2. The mapping of integer
numbers to capacitor type is given in Table 1, with an integer
value of ‘0’ representing no decap. For initialization, the
population was filled by randomly generated solutions.

21 Jw][s[3]4]o] 10 |
Fig. 2: Example solution with 8 decaps. Decap number 5 is placed in port 4.

Table 1: Decoupling Capacitor Library

Type i Decap Parameters

ype Capacitance (uF) ESL (nH) ESR (mQ)
1 0.1 0.19 34.7
2 0.47 0.18 183
3 1 022 152
4 22 020 72
5 47 028 7.1
6 10 026 52
7 b7} 027 40
8 47 0.15 29
9 220 041 19
10 330 0.46 12

The next stage of the GA is evaluation, where the fitness of
a solution is judged. In our case, the lower the fitness score given
by a fitness function, the higher its fitness. Two different fitness
functions are used for evaluating solutions; one for solutions
satisfying the target impedance and one for those that don’t. For
a solution satisfying the target impedance, the fitness function
used is given by (1):

Score = —(Total #of Ports — #Used Ports + 1) (1)

If the target impedance is not satisfied, the fitness score
given is proportional to the largest difference between points of
the target impedance, the target z, and the solution z, the
impedance seen looking into an IC on the power rail. For the test
cases in this paper, only the PDN AC impedance associated with
the vertical vias and plane capacitance is considered and
calculated using a BEM and node voltage method [9]; the
horizontal routing was not considered. The effect of the
thickness of the power and ground layers is assumed negligible
on the vertical AC impedance. The algorithm still applies with
inputs that consider DC resistance and horizontal routing. The
frequency range targeted is 10 kHz to 20 MHz. The fitness score
is given by the following fitness function (2):

To create the next generation, first, selection occurs to
choose the parents. A percentage of the current generation, set
at 30%, is selected through the roulette wheel method [10] to
join the next generation. Equivalently this means the crossover
rate, the number of solutions created by crossover, is 70%. These
solutions are the potential parents for new solutions. An elitism
component [7] is included where a percentage of the highestt

solution_z(f)—target_z(f)
target_z(f)

@

Score = max(
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fitness solutions are guaranteed to join the next generation. The
elitism percent is set at 1% with a minimum of 1 solution joining
the next generation. The remainder of the population is
generated through uniform crossover [11] of randomly selected
pairs of the potential parents. Finally, mutation occurs where
every gene has a chance of being changed. In our case, the decap
placed at a particular port may have its decap type changed or
be removed altogether. The mutation rate is set at 10%. After
mutation, one generation is completed. The entire process
repeats again with fitness evaluation, generation after
generation, until a defined number of generations have passed.

B. Solution Size and Size Variation

A change is proposed here to the traditional GA scheme. A
distinction is made between gene value 0 and genes 1 — 10; by
our fitness function, more expressions of gene 0 lead to a better
score. The frequency of gene 0 appearing will be controlled by
the GA to make the search more efficient.

The solution size is defined as the number of decaps used in
the current best-known solution. The proposed change is to limit
the number of decaps in all solutions around the solution size.
With a solution size of 20, there is no need to consider solutions
using > 20 decaps so solutions should be restricted to <= 20
decaps. Solutions with 20 decaps are still considered as they may
provide alternate search paths for the GA. This parameter is
dynamically updated and initially set as the total number of
decap locations.

While the upper limit is defined by the solution size, a lower
limit is defined by the size variation. Without a lower limit on
the number of decaps, the search space may be too large for
efficient search. If the size solution is 20 and the size variation
is 5, then all solutions in the population are allowed only 20 —
15 decaps inclusively. It is more probable to find solutions
nearer to the current solution size number than one with far
fewer decaps. The size variation parameter was set at a rounded
10% of the total number of decap ports.

Let S be the solution size and V the size variation. Fig. 3
describes the changes made to a solution with N decaps. For
adding and removing decaps, the decap ports are randomly
chosen from the solution. When adding, decaps are selected
from the those already present in the solution. A solution that
does not utilize decap number 8 will not have capacitor 8 as an
option for adding. This is to avoid changing the overall behavior
of the solution too much, such as by adding new resonances.
Adjustments to the decap number occur after initialization and
after mutation.

‘ N<S -V ‘—.‘ Add § — N Caps ‘

‘ N Capacitor Solution ‘ §-V<N<S§ ‘ — ‘ No Changes ‘

Fig. 3: Modifications to be made to a solution of N capacitors, with solution
size S and size variation V.
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III. GA VERIFICATION

To verify the performance of the proposed GA, 3 test boards pa Board
were generated using code from [12]. The shapes and decap port 01750| o o
layouts are given in Fig. 4. The stackups are given in Tables 2 — + Top decaps
4. The dielectric relative permittivity is 4.4. The thickness of 0.q50] = Botomdesers (Top)
PWR and GND layers is again assumed to have negligible J6.11.41,21 LT
effects on the total via inductances and capacitances compared 0.125 230,40 ,28,34,20,35 .8

to dielectric layer thickness. As such, PWR and GND layers are

L14.3 .26 «23 L13

g
modeled as having Omm thickness. Through-vias connect the £,0.100 +36.39
appropriate layers and are used as decap ports. E -8 17

0.075 ,50.24,5 ,47.46.2 ,45.1
0.200 L12,18 .49.43 .4

0.050 44 29,27 .37
0.175

0.025
0.150

0.000

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

0.125 Length (m)

Fig. 4c: Board Shape and Decap Port Layout, Case 3

Length (m)
(=]
g

0.075 (Top) Table 2: Stack up for Case 1 Table 4: Stack up for Case 3
0.050 Boand Layer Type | Thickness Layer Type | Thickness
1C PWR Vias (Top Down) (mm) (Top Down) (mm)
5 IC GND Vias
0.02: Top decaps GND 0 GN.D 0
Bottom decaps Dielectric 0.3 . .
0.000 Dielectric 0.2
0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 PWR 0
Length (m) - - GND 0
Dielectric 1.7 Diclectri 02
Fig. 4a: Board Shape and Decap Port Layout, Case 1 GND 0 ielectric :
GND 0
Dielectric 0.7 - -
Dielectric 0.3
GND 0
PWR 0
0.200
Board Table 3: Stack up for Case 2 Dielectric 0.3
®  ICPWR Vias
0.1751 & 1€ GND Vias GND 0
*  Top decaps «9 VRM{(Top) * . R
+  Bottom decaps o155 §7.50. 82 Layer Type | Thickness Dielectric 0.3
0.150 +01.55.87,50,82 (Top Down) (mm)
£32,20,34,74,19,83 GND 5 GND 0
_ 0125 +39,71,4 ,065,56,10096 Dielectric 0.3
g L7 L78.58.72.10,31,46,45 Dielectric 0.4
< 0.100 .81,80,64,63,62,38,88,89,52 PWR 0 GND 0
%ﬁ L21,3 ,70,5 ,47,95,48,57,99,15 Dielectric 0.5
Dielectric 0.7
= 0,075 L68.,93,33,18,44,84,94,66,39,27 GND 0
L13,41,17,92,16,85,49.2 ,69,26,28,9 GND 0 . .
Dielectric 0.2
0.050 ,97.12,40,53,90,42,23,77,73,11,91,24,2 Dielectric 12
L76.14,36,6 ,79,37.30,1 L67.,75,29,54 : GND 0
0,025 ,22,35,8 .43 GND 0
0.000
0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

Length (m)

Fig. 4b: Board Shape and Decap Port Layout, Case 2
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Impedance Targets For Each Case

---- Casel, .01 Ohms into .02 Ohms
—— Case2, .011 Ohms into .021 Ohms
- Case 3, .01 Chms into .024 Ohms

2x1072

Impedance in Ohms

108
Freq in Hz

Fig. 5: Impedance Targets in Each Case. The Slope is +20dB/decade. The
frequency range is 10 kHz to 20 MHz

104 108

Test board 1 (Case 1) has 20 capacitors ports. Test board 2
(Case 2) has 100 decap ports and test board 3 (Case 3) has 50.
The decap port locations were randomly selected and placed on
both top and bottom layers. The VRM was modelled as a series
RL circuit with R =3 mOhms and L = 2.5 nH and placed at the
port farthest from the IC, but on the top layer. To set the target
impedances for each case, the gene suppressed GA was run
repeatedly, and the target impedance varied, until a reasonable
number of capacitors that could satify the target impedance was
found. The impedances are of RL type and are given in Fig. 5.
Results of the gene suppressed GA are compared against the
open-source GA without any modifications (same fitness
function), against the method described in [6] in the ideal case,
and against the reinforcement learning algorithm described in

[3].

The unmodified version of the open-source GA is near
identical to that of the gene suppressed GA, the only difference
is that the number of capacitors allowed is not enforced. To
check for search potential and consistency, both GAs’ were ran
5 times, for each test case, with the population size and the
number of generations = 50. They were rerun another 5 times,
for each test case, with population size and the number of
generations = 100.

The method proposed in [6] is an iterative GA, but rather
than risk a poor recreation, a full search was performed. Decaps
were selected one by one, by considering every decap type and
location, and fixing the one that best minimizes the cost
function. Decaps are placed until the target is met or until all
ports are filled. The solution found then, is the best possible
solution based on the cost function of [6].

The reinforcement learning method described in [3] involves
training a machine learning model to find the minimal number
of decaps needed to satisfy the target impedance. A port
sequence is first calculated by [1] to determine the order of ports
to be used. The good convergence of the model and its ability to
generalize was not considered, only the best solution the that
could be found. The algorithm was run three times, for each test
case, and the best solution found was recorded.
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A. Gene Suppressed and Open Source GA

The minimum number of decaps found by the GAs for each
case is given in Table 5, along with the average time for each
case. The GAs was run on a virtual Linux server with an Intel
Xeon Gold 5118 processor. Better solutions are generally found
with the gene suppressed GA, with large improvements as the
number of decap ports increases. However, the time consumed
increases considerably with the # of decap ports, population
size, and generation number, making this method currently
impractical for large industry design. It may take upwards of
hours or more for large number of decap ports designs,
depending also on GA parameters. One reason for improved
results may be that genetic drift [13] is reduced with the
introduction of the solution size and size variation parameters.
Genetic drift describes the change in the frequency of genes in
a population as the algorithm converges towards a local or
global extrema. As better solutions are found, the frequency of
gene 0 will increase in the population, especially with crossover
considered. Solutions with too many empty ports are less likely
to meet the target impedance and the number of such solutions
appearing in the population will only increase with crossover.
By controlling the number of decaps that can exist in a solution,
the effect of genetic drift is lessened and the convergence can
be improved. The convergence curve for the number of decaps
found for the gene suppressed GA and open-source is shown in
Fig 6 and for Case 2. Due to the elitism implementation, the
plot is non-increasing.

Table 5: Open-Source vs Gene Suppressed GA Results

Genetic Algorithm Case Numb;:szszecaps Case3
Gene Suppressed GA 16 41 28
Population and # Gen. = 50 ~1 min ~70 min ~11 mins

Oplen Source GA 16 7 35
Population and # Gen. = 50 ~1 min ~75 mins ~11 mins
Gen.e Suppressed GA 15 23 24
Population and # Gen. =100 ~5 mins ~4.3 hrs ~43 mins

OI.Jen Source GA 15 ) 66 32
Population and # Gen. =100 ~5 min -5 hrs 45 mins

Convergence Curve For 100 Capacitor Problem

Gene Suppressed GA (23 Capacitors)
— «— Open Source GA (66 Capacitors)

100
90
80 \
70

60 \

# Of Capacitors

50
40 ™

30

P——

20

0 20 40 60

Generation #

80 100

Fig. 6: Convergence of Gene Suppressed vs Open Source
GA. Case 2
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Table 6: Gene Suppressed vs Other Methods Results

Number of Decaps
Algorith
sorm Case 1 Case 2 Case 3
Gene Suppressed GA
Population and # Gen. =50 16 41 28
Gene Suppressed GA 15
Population and # Gen. = 100 23 24
. No
Ideal Solution of [6] Solution 23 33
Reinforcement Learning 17
Method 21 27

B. Gene Suppressed GA and Other Methods

The minimum number of decaps found by the proposed GA,
the ideal solution of [6], and the reinforcement learning method
are given in Table 6. The performance of the proposed GA
varies from finding a better or equivalent solution to at worst a
competitive one. The inherent randomness in the search of any
GA means that the best solution may not always be found
despite its potential performance. The performance of the gene
suppressed GA is as good if not better than the ideal solution of
[6]. The method in [6] is a GA though, and the randomness of
a GA search may still result in finding the global minimum
solution. Compared to the reinforcement learning method, the
proposed GA is competitive and sometimes better.

One possible reason for the sometimes-better results of the
proposed algorithm is because no assumptions are made by the
GA about how to find the best solution. In the method of [6],
one decap is added at a time, as best minimizes the cost
function. Per its cost function, bigger decaps should be added
first because a bigger decap can quickly bring down the
impedance in the low and medium frequency range.
Progressively, smaller decaps will be added. In addition, the
port locations are indirectly selected so that with a decap
connected, the inductance associated with that location is just
right to maximize the effect of that decap by shifting its
resonance point. As a result, searches by [6] should be
somewhat consistent in behavior and result.

In the reinforcement learning case, the order in which the
ports are filled was fixed. The capacitor selection was not fixed.
Exploration was done in the search space so different placement
patterns could be tested. This exploration offers the benefit of
considering alternate search paths but all search paths are
restricted to the calculated port fill order. For Case 2, using the
calculated port sequence resulted in the best solution. In Case
3, the solution found by the proposed GA is better, but no full
search was done to check if an equal or better solution exists
using the port sequence.

Without a full search, there is no way of confirming that any
specific objective function, or any assumptions made about the
global minimum solution, is always true. No direct assumption
is made by the gene-suppressed GA about the best solution. The
fitness function for solutions that satisfy the target impedance
is proportional only to the number of unused ports. Solutions
using fewer decaps will be favored by the GA, but not directly
port locations or decap types. Characteristics of the same
solutions however, may still be passed on repeatedly, pushing
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the GA towards a local minimum. Regardless, the possibility
that better solutions can exist using decap ports and decaps that
is unique from the currently known best solution is not closed
off by the GA fitness functions. The downside though, is that
there is no basis to judge two solutions using the same number
of decaps, but using different locations and decap types,
because they’d be rated the same fitness. From the results,
limiting the expression of gene 0 help lead towards good
solutions despite a less focused search space. But in some cases,
like Case 2, it may not be sufficient.

The best decap placement pattern for Case 3, for each decap
optimization method, is depicted in Fig. 7. Their impedance
curves are given in Fig. 8. Although there is no guarantee that
the GA in [6] and the reinforcement learning method is unable
to find an equal or better solution for Case 3, the port locations
used by the proposed GA are ones that would not be considered
by the ideal case of [6] and the port sequence of the
reinforcement method. For instance, capacitor port 11 is unused
in the ideal solution of [6] and for the reinforcement learning
case, port 11 is not within the first 27 ports of the calculated
port sequence (Best solution found by reinforcement learning
method).

Gene Suppressed GA Layout, Case 3

—— Board )
® ICPWR Viss e \
0.1751 * I1COND Vias o \

L0

0.200

0.1501

Length (m)
=)
=5

=)
1=}
=1
A
.
— oo &

0.

=)
]
S
.

0.025{ [' o

0.000
0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

Leneth (m)

Fig. 7a: Gene Suppressed GA Capacitor Layout, Case 3
Ports Used: [4,5,7,8 10,11, 12, 14, 16, 17, 18, 19, 20, 24, 25, 26,
28, 29, 33, 36, 39, 46, 47, 50]

0.200 Ideal Solution of [6] Layout, Case 3
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Fig. 7b: Ideal Solution of [6] Capacitor Layout, Case 3.
Ports Used: [1, 2, 3,4,5,6,7,8, 10,12, 13, 14, 16, 17, 18, 19, 20, 21,
22,23, 24, 26, 27, 29, 34, 36, 38, 39, 43, 46, 47, 49, 50]
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0.200 Reinforcement Learning Layout, Case 3
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Fig. 7c: Reinforcement Learning Capacitor Layout, Case 3 Ports
Used: [1,2,3,4,5,6,8 10,12, 13, 14,16, 17, 18, 19, 20, 21, 23, 24,
26, 27, 36, 39, 43, 47, 49, 50]

Impedance Curve For Each Algorithm. Case 3

— Impedance Target
| == Proposed GA,
-- Recreation of [6]
AL Learning Result

Impedance in Ohms

Freq in Hz

Fig. 8: Resulting Impedance Curves of Best Solution for Each
Algorithm

IV. CONCLUSION

In this work, a new GA for the decoupling capacitor
problem in power distribution networks of PCBs was presented.
The gene suppressed GA can find the best known minimum
capacitor number, or at least a comparable solution, to satisfy a
user defined target impedance. This is verified by comparing
against two other algorithms. The convergence curve can also
be smoothed out and the search made more efficient by limiting
the number of capacitors in solutions. From our experimental
results, there is a relationship between the solution found and
the GA parameters. Larger population sizes and longer
iterations result in finding better solutions, especially for PDN
with large numbers of capacitor ports, but at the expense of
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much longer algorithm time due to increase in the number of
calculations.
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