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Spin relaxation and decoherence is at the heart of spintronics and spin-based quantum information science.
Currently, theoretical approaches that can accurately predict spin relaxation of general solids including necessary
scattering pathways and are capable of nanosecond to millisecond simulation time are urgently needed. We
present a first-principles real-time density-matrix approach based on Lindblad dynamics to simulate ultrafast
spin dynamics for general solid-state systems. Through the complete first-principles descriptions of pump,
probe, and scattering processes including electron-phonon, electron-impurity, and electron-electron scatterings
with self-consistent electronic spin-orbit couplings, our method can directly simulate the ultrafast pump-probe
measurements for coupled spin and electron dynamics over nanoseconds at any temperatures and doping levels.
We first apply this method to a prototypical system GaAs and obtain excellent agreement with experiments. We
found that the relative contributions of different scattering mechanisms and phonon modes differ considerably
between spin and carrier relaxation processes. In sharp contrast to previous work based on model Hamiltonians,
we point out that the electron-electron scattering is negligible at room temperature but becomes dominant
at low temperatures for spin relaxation in n-type GaAs. We further examine ultrafast dynamics in novel
spin-valleytronic materials: monolayer and bilayer WSe2 with realistic defects. We find that spin relaxation
is highly sensitive to local symmetry and chemical bonds around defects. For the bilayer WSe2, we identify
the scattering pathways in ultrafast dynamics and determine relevant dynamical properties, essential to its
utilization of unique spin-valley-layer locking effects. Our work provides a predictive computational platform
for spin dynamics in solids, which has potential for designing new materials ideal for spintronics and quantum
information technology.
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I. INTRODUCTION

Spin is a fundamental quantum mechanical property of
electrons and other particles. The spin states can be used as
the basis of quantum bits in quantum information science
(QIS) [1], in addition to being used in spintronics, analogous
to electrical charge in conventional electronics [2]. The key
property for spintronics and spin-based QIS is the lifetime of
spin states. Stable manipulations of spin states in practical
applications require lifetimes on the order of hundreds of
nanoseconds or even milliseconds. Determining the underly-
ing mechanisms and controlling spin relaxation are vital to
reach long spin lifetimes at room temperature. Experimentally
spin relaxation can be studied through ultrafast magneto-
optical pump-probe [3,4] and spin transport measurements
[5], allowing the direct observations of dynamical processes
and quantitative determination of spin relaxation time, τs.

Despite significant experimental progress and several pro-
posed systems in the past decades [2,6], materials with
properties required for practical QIS and spintronics appli-
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cations such as long τs at room temperature remain to be
found [1,5,7]. Theoretical predictions of materials properties
have been mostly focused on electronic excitations [8–10]
and electron-hole recombinations [11–13] of potential spin
defects for QIS applications. Reliable prediction of spin life-
time and dominant relaxation mechanisms will allow rational
design of materials in order to accelerate the identification
of ideal materials for quantum technologies, while forgoing
the need for experimental search over a large number of
materials.

Until recently, most state-of-the-art theoretical methods
to study spin dynamics of solid-state materials have been
limited to simplified and system-specific models that require
prior input parameters [2,14–16]. These methods laid an im-
portant theoretical foundation for spin dynamics, such as
the spin-Bloch kinetic equations developed from nonequi-
librium Green’s function theory (NEGFT) [17]. Reference
[18] derived a closed equation of motion for the electronic
single-particle density matrix, including different scatter-
ing matrices, which may be applicable to spin dynamics.
However, because of the simplified electronic structure and
electron-phonon coupling matrices, quantitative prediction of
spin relaxation remains out of reach. Occasionally, even trends
in τs predicted by such models may be incorrect as shown
recently for graphene [19]. Furthermore, these models are
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unable to provide predictive values for new materials where
prior inputs are not available.

Prior to our work, the existing first-principles methodology
for spin lifetime has been mostly based on spin-flip matrix
elements in a specialized Fermi’s Golden Rule [20–22], which
is only applicable to systems with Kramers’s degeneracy
or spatial inversion symmetry and not suitable for lots of
materials promising for quantum computing and spintronics
applications [2,5]. Other first-principles techniques like real-
time time-dependent density functional theory (TDDFT) [23]
are challenging for crystalline systems due to the high com-
putational cost for describing phonon relaxations that require
large supercells. More importantly, the long simulation time
over nanoseconds often required by spin relaxation is a major
difficulty for TDDFT, which is only practical for tens to a
few hundreds of femtoseconds. While spin dynamics based
on TDDFT has been recently performed for ultrafast demag-
netization of magnetic systems within tens of femtoseconds
[24–26], the intrinsic time scale and supercell limitations
mentioned above remain.

We recently derived a generalized rate equation [27] based
on a first-principles density matrix (DM) Lindblad dynamics
framework, which provides accurate spin relaxation time due
to spin-orbit and electron-phonon couplings for a broad range
of materials, with arbitrary symmetry. However, our previous
work requires that the system is already in a quasiequilibrium
state when the dynamics can be described by a single-
exponential decay, which cannot describe coupled spin and
carrier dynamics at an out-of-equilibrium state in ultrafast
pump-probe experiments. In this work, we develop a real-
time ab initio DM dynamics method based on this theoretical
framework, with complete descriptions of scattering pro-
cesses, including electron-phonon (e-ph), electron-impurity
(e-i), and electron-electron (e-e) scattering processes, being
adequate for over nanoseconds to milliseconds simulation
time. Specifically, compared to the generalized rate equation
in our previous work, DM dynamics with explicit real-time
evolutions allow coupled carrier and spin relaxation away
from quasiequilibrium with all decoherence pathways simul-
taneously. This will facilitate direct prediction of experimental
signatures in ultrafast magneto-optical spectroscopy to unam-
biguously interpret experimental probes of spin and electron
dynamics.

We will demonstrate the generality of our approach by
considering two prototypical and disparate systems, GaAs and
few-layer WSe2, which have very different spin relaxation
mechanisms.

We will first apply our DM dynamics methodology to
investigate the ultrafast spin dynamics of GaAs, which has
gained broad interest in spintronics over past decades [2,28–
31] and more recently [32–34], partly due to its long spin
lifetime especially in the n-doped material at relatively low
temperature [28]. Despite various experimental [28,29,35–37]
and theoretical [2,30,31,38–40] (mostly using a parametrized
model Hamiltonian) studies previously, the dominant spin re-
laxation mechanism of bulk GaAs under various temperatures
and doping levels remains unclear. For example, References
[30,39] claimed e-i and e-ph scatterings dominate spin relax-
ation at low and room temperatures, respectively; however,
Refs. [31,40] conclude that e-e scattering may be more

important at room temperature and even more at lower
temperatures. Moreover, electron-phonon scattering matrices,
which can be accurately obtained from first principles, are
very difficult to be precisely described in the parametrized
models used previously. Most importantly, the applicability of
the empirical Dyakonov-Perel (DP) relation, which is widely
used for describing inversion-asymmetric systems including
GaAs, needs to be carefully examined. Throughout this work,
we provide complete and unambiguous insights on the under-
lying mechanism of spin relaxation and applicability of the
DP relation for GaAs from first-principles DM dynamics.

Due to broken inversion symmetry and strong spin-orbit
coupling (SOC), monolayer transition metal dichalcogenides
(TMDs) exhibit exciting physical properties including valley-
specific optical excitation and spin-valley locking effects. In
Refs. [41,42], it was shown that by introducing doping in
monolayer TMDs, ultraslow decays of Kerr rotations, which
correspond to ultralong spin and valley lifetimes of resi-
dent carriers especially resident holes can be observed at
low temperatures. Those features make monolayer TMDs ad-
vantageous for spin-valleytronics and (quantum) information
processing.

Besides monolayers, bilayer TMDs recovering inversion
symmetry have also attracted significant interest because of
the new “layer” degree of freedom or layer pseudospin in ad-
dition to spin and valley pseudospin [43–45]. Previous studies
already concluded that electronic states at K/K ′ valleys of a
bilayer TMD are approximately a superposition of those of
two monolayers. This allows us to tune which layer carriers
and/or spins are localized by a perpendicular electric field
Ez, and make use of the spin-valley-layer locking effects for
spin-valleytronic applications.

Although spin-valley relaxation of resident carriers in
monolayer TMDs, which is most relevant to spin-valleytronic
applications, has been extensively examined [27,41,42,46],
the underlying dynamics especially the effects of different
types of impurities have not been investigated through predic-
tive ab initio simulations. Furthermore, for bilayer TMDs, the
study on spin-valley dynamics is still in its infancy with few
ultrafast measurements which however do not exhibit long
spin relaxation time and are lacking spin-valley-layer locking
properties [47–49]. There is a lack of knowledge of the role
of scattering processes and the scattering pathways for spin-
valley dynamics of free carriers in bilayers, which prevents
researchers from realizing and manipulating spin-valley-layer
locking effects for designing spin-valleytronic devices.

In this work, we will answer the above questions by
performing ab initio real-time dynamics simulations with a
circularly polarized pump pulse and relevant scattering mech-
anisms. We focus on WSe2 due to its larger valence band SOC
splitting and focus on dynamics of holes since τs of holes seem
longer than electrons.

In the following, we first introduce our theoretical for-
malism of the real-time density-matrix approach with various
scattering processes and pump-probe spectroscopy. In par-
ticular, we focus on spin-orbit-mediated spin relaxation and
decoherence processes under the existence of electron scatter-
ings, which are rather common in semiconductors and metals
[2,17]. We use this method to simulate pump-probe Kerr
rotation and real-time spin dynamics, by using GaAs as a
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prototypical example and comparing with experiments. Next,
we study spin lifetime dependence on the temperature and
doping level, where the dominant mechanisms can vary
significantly. We then discuss the roles of different scat-
tering mechanisms and phonon modes in carrier and spin
relaxations, respectively, in order to resolve related long-
standing controversies. We further simulate ultrafast dynamics
in monolayer and bilayer WSe2 and extract useful dynamical
properties. Our work provides predictive theory and a com-
putational platform for open quantum dynamics, and offers
critical insights for spin relaxation and decoherence in general
solid-state systems.

II. THEORY

A. Real-time density-matrix dynamics and spin relaxation time

To provide a general formulation of quantum dynamics in
solid-state materials, we start from the Liouville–von Neu-
mann equation in the interaction picture,

dρ(t )

dt
= −i[H ′(t ), ρ(t )], (1)

H ′(t ) = H (t ) − H0(t ), (2)

where H , H0, and H ′ are the total, unperturbed, and perturbed
Hamiltonian, respectively. In this work, the total Hamiltonian
is

H = H0 + Hpump + He-i + He-ph + He-e, (3)

H0 = He,0 + Hefield + Hz + Hph, (4)

where He,0 is electronic Hamiltonian under zero external field.
In this work, Hefield is the Hamiltonian induced by a perpen-
dicular electric field Ez along the vacuum direction. Hz is the
Zeeman Hamiltonian corresponding to an external magnetic
field B, Hz = gsμBB · s, where s = (sx, sy, sz ) and si is the
spin matrix in Bloch basis under zero field. gs is the g factor
and μB is the Bohr magneton. Hpump is the Hamiltonian of the
pump pulse and will be described below. Hph is the phonon
Hamiltonian, while He-i, He-ph, and He-e describe the electron-
impurity, electron-phonon, and electron-electron interactions,
respectively. The detailed forms of the interaction Hamiltoni-
ans are given in Appendix A.

In practice, the many-body density matrix master equation
in Eq. (1) is reduced to a single-particle one and the environ-
mental degrees of freedom are traced out [50]. The total rate
of change of the density matrix is separated into terms related
to different parts of Hamiltonian,

dρ

dt
=dρ

dt

∣∣∣∣
coh

+ dρ

dt

∣∣∣∣
scatt

, (5)

where ρ is the density matrix of electrons. Above, dρ

dt |coh

describes the coherent dynamics of electrons under potentials
or fields, e.g., the applied pump pulse, while dρ

dt |scatt captures
the scattering between electrons and other particles.

To obtain Eq. (5), which involves only the dynamics of
electrons or the electronic subsystem, we have assumed the
environmental subsystem is not perturbed by the change of
the electronic subsystem, which in this work means there is
no dynamics of phonons. This assumption is valid when the

system is not far from equilibrium, e.g., when excitation is
weak. In most spin dynamics experiments, it is desirable to
work in the low excitation density limit to avoid additional
complexities and focus on the physics of spin dynamics. In-
deed in many experiments, e.g., in Refs. [28,51], pump fluence
and excitation density are controlled to be low, e.g., excitation
density 2 × 1014 cm−2 for GaAs. Therefore, phonon dynamics
can be safely excluded in the current stage. The inclusion of
phonon degrees of freedom in the density-matrix dynamics
has been discussed in detail in Refs. [50,52] with a model
Hamiltonian, which can be our future work to implement from
first principles.

To define spin lifetime, we follow the time evolution of the
observable

Si = Tr(siρ), (6)

where si is the spin operator (i = x, y, z). This time evolution
must start at an initial state (at t = t0) with a net spin, i.e.,
δρ(t0) = ρ(t0) − ρeq �= 0 such that δSi(t0) = Si(t0) − Seq

i �=
0, where “eq” corresponds to the final equilibrium state. We
evolve the density matrix through Eq. (5) using an adaptive
Runge-Kutta fourth-order method for a long enough simu-
lation time, typically from tens of picoseconds to several
nanoseconds, until the evolution of Si(t ) can be reliably fitted
by

Si(t ) − Seq
i = [

Si(t0) − Seq
i

]
exp

[
− t − t0

τs,i

]
× cos[ωB(t − t0) + φ] (7)

to extract the relaxation time, τs,i. Above, ωB is the oscillation
frequency due to energy splitting in general, which under
an applied magnetic field B would include a contribution
≈0.5gsμB(B × Ŝi).

In order to examine whether the spin relaxation time de-
pends on how the spin imbalance is generated, we implement
two general ways to initialize δρ(t0). First, for simulating
pump-probe experiments, we choose δρ(t0) corresponding to
interaction with a pump pulse. Second, we use the technique
proposed previously in Ref. [27] by applying a test magnetic
field at t = −∞, allowing the system to equilibrate with a net
spin and then turning it off suddenly at t0.

B. Scattering terms

The scattering part of the master equation can be separated
into contributions from several scattering channels,

dρ

dt

∣∣∣∣
scatt

=
∑
c

dρ

dt

∣∣∣∣
c

, (8)

where c labels a scattering channel. Under the Born-Markov
approximation, in general we have [18]

dρ12

dt

∣∣∣∣
c

= 1

2

∑
345

[
(I − ρ)13P

c
32,45ρ45

−(I − ρ)45P
c,∗
45,13ρ32

]
+ H.c., (9)

where Pc is the generalized scattering-rate matrix and H.c. is
Hermitian conjugate. The subindex, e.g., “1”, is the combined
index of k-point and band. The weights of k points must be
considered when doing a sum over k points. Note that Pc
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in the interaction picture is related to its value PS,c in the
Schrodinger picture as

Pc
1234(t ) = PS,c

1234exp[i(ε1 − ε2 − ε3 + ε4)t], (10)

where εi are single-particle eigenvalues of H0. Below, we
consider three separate scattering mechanisms—electron-
impurity (e-i), electron-phonon (e-ph), and electron-electron
(e-e)—and describe the matrix elements for each.

For electron-phonon scattering, the scattering matrix is
given by [18]

PS,e-ph
1234 =

∑
qλ±

Aqλ±
13 Aqλ±,∗

24 , (11)

Aqλ±
13 =

√
2π

h̄
gqλ±

12

√
δGσ (ε1 − ε2 ± ωqλ)

√
n±
qλ, (12)

where q and λ are the phonon wave vector and mode, gqλ±
is the electron-phonon matrix element, resulting from the
absorption (−) or emission (+) of a phonon, computed with
self-consistent spin-orbit coupling from first principles [53],
n±
qλ = nqλ + 0.5 ± 0.5 in terms of phonon Bose factors nqλ,

and δGσ represents an energy-conserving δ function broadened
to a Gaussian of width σ .

Next, for electron-impurity scattering, the scattering matrix
is given by

PS,e-i
1234 = Ai

13A
i,∗
24 , (13)

Ai
13 =

√
2π

h̄
gi13

√
δGσ (ε1 − ε3)

√
niVcell, (14)

gi13 = 〈1|V i|3〉, (15)

where ni and Vcell are impurity density and unit cell vol-
ume, respectively, and V i is the impurity potential. In this
work, we deal with ionized and neutral impurities differently.
For ionized impurities, V i is proportional to the screened
Coulomb potential [54]; for neutral impurities, we compute
impurity potentials with supercell methods from DFT (see
Appendix A for further details).

Finally, for electron-electron scattering, the scattering ma-
trix is given by [18]

PS,e-e
12,34 = 2

∑
56,78

(I − ρ)65A15,37A
∗

26,48ρ78, (16)

A1234 = 1

2
(A1234 − A1243), (17)

A1234 = 1

2

√
2π

h̄

[
ge-e

1234(δGσ,1234)1/2 + ge-e
2143(δGσ,2143)1/2

]
, (18)

ge-e
1234 = 〈1(r)|〈2(r′)|V (r − r′)|3(r)〉|4(r′)〉, (19)

where V (r − r′) is the screened Coulomb potential and
δGσ,1234 = δGσ (ε1 + ε2 − ε3 − ε4) is a Gaussian-broadened en-
ergy conservation function. The screening is described by a
random-phase-approximation (RPA) dielectric function (de-
tails in Appendix A). Although the above equations describe
all possible scattering processes between electrons and holes,
we only consider those between conduction electrons here,
which are appropriate for n-type Group III–V semiconductors
[30,39]. The electron-hole scattering can be important for
intrinsic and p-type material [30,39]. We note that unlike the

e-ph and e-i channels, PS,e-e (as well as the dielectric screening
in V ) is a function of ρ and needs to be updated during time
evolution of ρ. This is a clear consequence of the two-particle
nature of e-e scattering. PS,e-e can be written as the difference
between a direct term and an exchange term,

PS,e-e = PS,e-e,d − PS,e-e,x, (20)

PS,e-e,d =
∑
56,78

(I − ρ)65A15,37A
∗
26,48ρ78, (21)

PS,e-e,x =
∑
56,78

(I − ρ)65A15,37A
∗
26,84ρ78. (22)

According to Ref. [50], the direct term is expected to dominate
the dynamical scattering processes between conduction or
valence electrons, allowing us to neglect the exchange term
here.

C. Pump-probe simulation

In the nonrelativistic limit, the light-matter interaction
Hamiltonian operator (Ĥe-p) reads [55]

Ĥe-p = e

me
A(t ) · p̂ + e

2me
A(t ) · A(t )

+ geμB̂s · (∇ × A(t )),

where A(t ) is the vector potential and A(t ) = A0(t )e−iωt +
A∗

0(t )eiωt with A0(t ) being the complex amplitude and ω

being photon frequency. p̂ is the momentum operator. ge ≈
2.0023192 is an anomalous gyromagnetic ratio. The sec-
ond quadratic term plays a role only when pump fluence
is higher by several orders of magnitude than that in usual
spin dynamics experiments and can be safely neglected. Since
∇ × A(t ) = −iqphoton × A(t ) [55] and the photon wavevector
qphoton is quite small (the photon wavelength is much longer
than the scale of unit cells), the third term is also negligible.
Therefore, we will only keep the first A(t ) · p̂ term.

The interaction with a pump pulse of frequency ωpump in
the interaction picture is given by

Hpump,k,mn(ωpump, t ) = e

me
A0(t ) · pk,mneit (εm−εn−ωpump ) + H.c.,

(23)

where m, n represent the band indices and k represents the
k-point sampling in the first Brillouin zone. For a Gaussian
pulse centered at time tcenter with width τpump,

A0(t ) = A0
1√√
πτpump

exp
[−(t − tcenter )

2/
(
2τ 2

pump

)]
. (24)

Note that the corresponding pump fluence is Ipump =
ω2

pump|A0|2/(8πα), where α is a fine structure constant. As a
part of the coherent portion of the time evolution, the dynam-
ics due to this term are captured directly in the Liouville form
[56,57]:

dρ

dt

∣∣∣∣
pump

= − i[Hpump, ρ]. (25)

The probe pulse interacts with the material similarly to the
pump pulse, and could be described in exactly the same way in
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principle. However, this would require repeating the simula-
tion for several values of the pump-probe delay. Instead, since
the probe is typically chosen to be of sufficiently low intensity,
we use second-order time-dependent perturbation theory to
capture its interaction with the system,

�ρprobe = 1

2

∑
345

{
[I − ρ(t )]13P

probe
32,45 ρ(t )45

−[I − ρ(t )]45P
probe,∗
45,13 ρ(t )32

}
+ H.c.,

(26)

where Pprobe is the generalized scattering-rate matrix for
the probe in the interaction picture. Its corresponding
Schrodinger-picture quantity is

PS,probe
1234 =

∑
±

Aprobe,±
13 Aprobe,±,∗

24 , (27)

Aprobe,±
13 =

√
2π

h̄

e

me

(
Aprobe

0 · p)√
δGσ (ε1 − ε3 ± ωprobe). (28)

The dielectric function change �ε between the excited-state
and ground-state absorption detected by the probe is then

Im�ε = 2π

(ωprobe)3
∣∣Aprobe

0

∣∣2 Tr
(
H0�ρprobe

)
. (29)

Note that �ρprobe contains |Aprobe
0 |2 so that Im�ε is inde-

pendent of Aprobe
0 . The above Im�ε is a functional of the

density matrix according to Eq. (26) and is an extension of the
usual independent-particle Imε depending on just occupation
numbers [58]. After computing Im�ε above, the real part
Re�ε can be obtained from the Kramers-Kronig relation.

By summing up the dielectric function change �ε com-
puted above with the dielectric function for ground-state
absorption, we can obtain the excited-state ε as inputs for
Kerr and Faraday rotation calculations [59]. These corre-
spond to the rotations of the polarization plane of a linearly
polarized light, reflected by (Kerr) and transmitted through
(Faraday) the material, after a pump excitation with a cir-
cularly polarized light. Time-resolved Kerr rotation (TRKR)
and time-resolved Faraday rotation (TRFR) have been widely
used to study spin dynamics of materials [28,36]. In a TRKR
experiment, a circularly polarized pump pulse is used to excite
valence electrons of the sample to conduction bands. The
transitions approximately satisfy the selection rule of �mj =
±1 for left and right circularly polarized pulses, respectively,
where mj is the secondary total angular momentum. TRKR
works by measuring the changes of polarization of reflected
light, which qualitatively is proportional to the small popula-
tion imbalance of electronic states with different mj .

Specifically, the Kerr rotation angle θK is computed with
dielectric functions by

θK = Im
√

ε+ − √
ε−

1 − √
ε+

√
ε−

, (30)

where ± denotes the left and right circular polarization,
respectively.

III. COMPUTATIONAL DETAILS

The ground-state electronic structure, phonon, and e-ph
matrix element calculations of GaAs and few-layer WSe2 are

first calculated using density functional theory (DFT) with
relatively coarse k and q meshes in the JDFTX plane-wave
DFT code [60]. For GaAs, we use the experimental lattice
constant of 5.653 Å [61], and select the SCAN exchange-
correlation functional [62] for an accurate description of the
electron effective mass (see Sec. II in the Supplemental Ma-
terial [63]; see also Refs. [64–66] therein). We also apply a
scissor operator to the DFT values to reach an experimental
band gap of 1.43 eV [67]. For WSe2, we used the Perdew-
Burke-Ernzerhof (PBE) exchange correlation functional along
with the DFT-D2 pair potential dispersion corrections [68].
The resulting lattice constant is 3.32 Åand the distance be-
tween two W-atom planes is 6.419 Å, close to experimental
values of bulk WSe2, 3.297 and 6.491 Å [69]. The phonon
calculations of GaAs and WSe2 employ a 4 × 4 × 4 and 6 × 6
supercell, respectively. We use optimized norm-conserving
Vanderbilt (ONCV) pseudopotentials [70] with self-consistent
spin-orbit coupling throughout, which we find converged at a
plane-wave kinetic energy cutoff of 34 and 62 Ry for GaAs
and WSe2, respectively. With these computational parameters,
we find the effective mass of conduction electrons of GaAs to
be 0.054me, close to the experimental value of 0.067me [67].
(More convergence tests can be found in the Supplemental
Material (SM) [63]).

We then transform all quantities from the plane-wave basis
to the maximally localized Wannier function basis [71], and
interpolate them [53,72–76] to substantially finer k and q
meshes. The Wannier interpolation approach fully accounts
for polar terms in the e-ph matrix elements and phonon dis-
persion relations, using the approach developed by Verdi and
Giustino [77] for three-dimensional (3D) and the methods in
Refs. [78,79] for two-dimensional (2D) systems. The Born
effective charges and dielectric constants are calculated from
the open-source code QUANTUM ESPRESSO [80].

For GaAs, the fine k and q meshes are 288 × 288 × 288 for
simulations at 300 K and are finer at lower temperature, e.g.,
792 × 792 × 792 for simulations at 30 K. This is necessary
to sample enough electronic states around band edges and for
spin lifetime convergence within 20%. The k and q conver-
gence are easier for WSe2 due to much larger effective masses,
and we used 168 × 168 and 600 × 600 meshes at 50 and
10 K, respectively. The computation of e-i and e-e matrix el-
ements and the real-time dynamics simulations are done with
a custom code interfaced to JDFTX. The energy-conservation
smearing parameter σ is chosen to be comparable to or
smaller than kBT for each calculation. Detailed convergence
tests of the number of k points and the energy window for
electronic states at various smearing parameters can be found
in the Supplemental Material [63].

IV. RESULTS AND DISCUSSIONS

A. Applications to n-doped GaAs

1. Spin dynamics and its relation to TRKR

In general, the time evolution of the Kerr rotation angle
θK [see Eq. (30)] is not equivalent to that of spin along the
direction of reflected light, and in fact, they can be quite
different in some cases [41]. There are few first-principles
studies of TRKR considering scattering processes in a form of
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semiclassical Boltzmann equation [58]. A full quantum de-
scription of scatterings with a nondiagonal density matrix
in TRKR has not been presented in previous first-principles
studies, to the best of our knowledge. And the relation be-
tween dynamics of θK and spin observable for general systems
including GaAs has not yet been well examined.

Using our density-matrix approach, we are able to directly
simulate the nonequilibrium ultrafast dynamics of optically
excited systems during which the dynamics of different elec-
tronic quantities such as spin and carriers can be strongly
coupled. We include all scattering terms in a full quantum
description as shown in the Sec. II B and Appendix A. We
perform the real-time dynamics simulations of n-type GaAs
for tens of picoseconds at room temperature and several
nanoseconds at low temperature until the fitted spin lifetime
does not change any more. Having temporal density matrix,
we can further analyze the dynamics of various observables,
including occupation, spin, and Kerr rotation angle easily.
We then examine the relation between θK and spin in the
dynamics.

Figure 1 shows the energy-resolved dynamics of
carriers �n(ε, t ) = n(ε, t ) − n(ε, 0) and spins Sz(ε, t ).
The energy-resolved observable O(ε) is defined as
Re[

∑
k,mn ok,mnρk,nmδ(ε − εkm)], where o is an operator

matrix. We can see that during the first picosecond (region I
in Fig. 1), both observables vary quickly due to the existence
of the pump processes and both have their maximum at an
energy slightly lower than the pump energy, 1.47 eV (slightly
larger than the band gap, 1.43 eV), at a time shortly after the
time center of the pump pulse, 0.5 ps. Interestingly, after the
pump being not active or after 0.8–1 ps, carriers and spins
simultaneously relax until 2–3 ps [region II in Figs. 1(a) and
1(b)]. Afterward [region III in Figs. 1(a) and 1(b)], carriers
stay unchanged but spins Sz(ε, t ) decay exponentially as
shown in the insets of Figs. 1(a) and 1(b).

We have further analyzed the dynamics of Kerr rotation
angle θK and compared it with spin dynamics. From Fig. 2(a),
we can see that during pump processes and shortly after them
(from 0 to 2 ps), θK (t ) has strong oscillations and is sensi-
tive to the probe energy ωprobe. The ωprobe sensitivity may
be partly attributed to the energy dependence of carrier and
spin dynamics. From Figs. 2(a) and 2(b), it can be seen that
after 3 ps (or in time region III defined in Fig. 1), θK with
different ωprobe decay exactly the same. We can also find that
with a pump pulse, the relaxation time of the Kerr rotation
is the same as that of Sz, i.e., τs,z. Moreover, it turns out that
τs,z does not depend on how spin imbalance is generated—by
a circularly polarized pump pulse or by turning off a test
magnetic field along the z direction (see Sec. II A). This may
indicate that if the system is not extremely far from equi-
librium, spin relaxation along direction i is not sensitive to
the way of generating spin imbalance, as long as the degrees
of freedom other than Si are not relevant or disappear in a
short time. According to these observations, hereinafter, we
will do real-time dynamics starting from a δρ generated by
turning off a test magnetic field and fit τs,z from time evolution
of Sz.

We have also studied the effects of ωpump and pump
fluence Ipump on spin relaxation of n-GaAs at 300 K. We
find that ωpump has very weak effects on spin relaxation

FIG. 1. The energy-resolved dynamics of carriers (a) �n(ε, t ) =
n(ε, t ) − n(ε, 0) and (b) spins Sz(ε, t ) of conduction electrons with a
circularly polarized pump pulse centered at 0.5 ps. The insets on the
top right of both panels show �n(ε, t ) and Sz(ε, t ) at ε = 1.45 eV.
The pump energy ωpump = 1.47 eV is chosen to be higher than the
band gap, 1.43 eV [67]. The width of the pump pulse τpump is 100 fs.
The pump fluence Ipump is low at 0.01 μJ cm−2. The dynamics can be
approximately divided into three regions: regions I, II, and III labeled
in this figure. In region I, the system is excited by a pump pulse. In
region II, pump processes are already finished, then both carriers and
spins relax simultaneously. In region III, the carrier distribution stays
unchanged while spins keep decaying.

but τs,z decreases with pump fluence. See more details in
Appendix C.

2. Temperature dependence of spin lifetime and its
dominant relaxation mechanism

As discussed earlier, long-standing controversies remain
for the dominant spin relaxation mechanism of GaAs at dif-
ferent temperature and doping level [30,31,39,40], which will
be resolved in the following sections. We start from study τs,z
of n-GaAs as a function of temperature at a moderate doping
level (2 × 1016 cm−3). For simplicity, we assume all impuri-
ties are fully ionized, so that the impurity density ni is equal to
the free carrier density nfree. We first compared our calculated
spin lifetime with experimental results in Fig. 3. Our results of
τs,z of n-GaAs give good agreement with experiments at var-
ious temperatures [28,36,37,81]. Different experiments have
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FIG. 2. (a) Compare the dynamics of Kerr rotation angle θK at
different probe energies ωprobe excited by a circularly polarized pump
pulse in the first few picoseconds. Fast oscillations in the first 2 ps
are due to the pump pulse and coupled spin and carrier relaxation.
(b) Compare relaxation of different observables: θK with different
ωprobe (denoted by black and red lines) and Sz with initial spin
imbalance generated by a pump pulse (Pump) or a test magnetic
field along the z direction λs,z ∼ 0.001–0.1 T (blue and green lines).
ωpump = 1.47 eV. The pump pulse is centered at 0.5 ps. The longer
time-scale dynamics (over 10 ps) for θK and Sz has similar relaxation
time independent of the generation method of spin imbalance and
specific probe energies.

slight variations between each other due to sample preparation
conditions and specific measurement techniques. The spin
lifetime increases from tens of picoseconds at room temper-
ature to tens of nanoseconds at low temperature. Note that e-e
scattering plays an essential role at low temperatures, i.e., by
comparing with (black solid square) and without (black open
square) in Fig. 3. The correct temperature dependence of τs,z
can be reproduced only if e-e scattering is included.

We further examine the contributions of different scat-
tering mechanisms to carrier and spin lifetime, respectively,
as a function of temperature. Different from spin lifetime

FIG. 3. Theoretical spin lifetime with (black solid square) and
without (black open square) the electron-electron scattering com-
pared with experimental data. A, B, C, and D are experimental data
from Refs. [36], [81], [37], and [28], respectively.

FIG. 4. Spin and carrier lifetimes of n-GaAs with ni = 2 ×
1016 cm−3 with different scattering mechanisms and different phonon
modes. (a), (b) “All” represents all the e-ph, e-i, and e-e scattering
mechanisms being considered. TA, LA, and LO represent transverse
acoustic, longitudinal acoustic, and longitudinal optical modes, re-
spectively. The carrier lifetimes τ p present are the inverse of averaged
carrier scattering rates 〈τ−1

p 〉. The method of carrier lifetime calcula-
tions is given in Appendix B. 〈 〉 means taking the average around the
chemical potential μ. For a state-resolved quantity Akn, its average is
defined as 〈A〉 = ∑

kn Akn[ f eq]′(εkn)/
∑

kn[ f
eq]′(εkn), where [ f eq]′ is

the derivative of the Fermi-Dirac function.

obtained from real-time DM dynamics including all scat-
tering processes simultaneously, the carrier lifetime (τ p) is
defined through the inverse of the averaged carrier scatter-
ing rate (τ−1

p ): τ p = 1/〈τ−1
p 〉. Various scattering processes

(e-e, e-i, and e-ph) contribute to the total carrier scatter-
ing rates through τ−1

p = (τ e-e
p )−1 + (τ e-i

p )−1 + (τ e-ph
p )−1. 〈 〉

means taking the average around the chemical potential μ.
For a state-resolved quantity Akn, its average is defined as
〈A〉 = ∑

kn Akn[ f eq]′(εkn)/
∑

kn[ f eq]′(εkn), where [ f eq]′ is the
derivative of the Fermi-Dirac function. For both carrier and
spin lifetime, the lifetime due to the most dominant scattering
channel is the closest to the one including all processes [black
squares in both Figs. 4(a) and 4(b)]. For spin relaxation in
Fig. 4(a), at low temperature below 50 K, e-e scattering is
the most dominant process as discussed above. However, the
e-ph process becomes more dominant above 100 K. On the
other hand, for carrier relaxation in Fig. 4(b), the e-i process
is dominant over a wide temperature range from low to right
below room temperature. At room temperature, for both spin
and carrier lifetimes, the e-ph scattering is the most impor-
tant process (closest to the total lifetime with all scattering
processes).

Our observations differ from those in Refs. [31,40], where
the authors also found that e-e scattering dominates spin
relaxation at lower temperatures, e.g., 77 K, but their re-
sults showed that at room temperature e-e scattering can be
more important than other scatterings and enhances τs,z of
n-GaAs by about 100% with moderate doping concentrations.
The overestimate of the effects of e-e scattering at room

184418-7



XU, HABIB, SUNDARARAMAN, AND PING PHYSICAL REVIEW B 104, 184418 (2021)

FIG. 5. (a) Spin and (b) carrier lifetimes of n-GaAs with different doping concentrations at 30 K with different scattering mechanisms.
“All” represents all the e-ph, e-i, and e-e scattering mechanisms being considered. (c) 〈�2〉 − 〈�2

i 〉 as a function of carrier density, where � is
the Larmor frequency due to the “internal” magnetic field computed from first principles, which describes the SOC term induced by inversion
asymmetry.

temperature is most likely a limitation of the semiclassical
method employed therein.

Similarly, we also find that different phonon modes can
play different roles in carrier and spin relaxations as shown
in Figs. 4(c) and 4(d). For example, at room temperature,
the longitudinal optical (LO) mode is most important for
carrier relaxation but seems less important than transverse
acoustic (TA) modes for spin relaxation. The situation is
the opposite at 100 K where TA (LO) is most important
for carrier (spin) relaxation. Our finding that TA modes are
slightly more important than LO modes in spin relaxation at
room temperature is different from what has been believed
in previous model studies [30,40], where they declared that
the electron-LO-phonon scattering dominates spin relaxation
at high temperatures especially at room temperature. This
disparity is most likely due to differences in the e-ph ma-
trix elements and electronic quantities, where we used fully
first-principles approaches instead of parametrized models in
previous work.

In addition, we find the total spin lifetime is the longest
when considering all scattering processes in Fig. 4(a); in con-
trast, the carrier lifetime is the shortest including all scattering
mechanisms in Fig. 4(b). This follows the inverse relation
between spin and carrier lifetime in the empirical DP mech-
anism [2,14] for systems without inversion symmetry, as will
be discussed in more detail in the next section.

3. Doping-level dependence of spin lifetime and its
dominant relaxation mechanism

Figure 5 shows the carrier and spin lifetimes with dif-
ferent doping density ni at 30 K with individual and total
scattering pathways, respectively. Similar to temperature de-
pendence and phonon contributions, it is also found that the
roles of different scattering mechanisms differ considerably
between spin and carrier relaxation processes. Specifically,
for the carrier relaxation in Fig. 5(b), except when ni is very
low (e.g., at 1014 cm−3), the electron-impurity (e-i) scattering
dominates, similar to the case of carrier lifetime over a large
range of temperature at a moderate doping in Fig. 4(b). On
the other hand, for the spin relaxation in Fig. 5(a), the e-e
scattering dominates except at very high concentration (above

1017 cm−3), while e-i scattering is only important in the very
high doping region (close to or above 1017 cm−3).

Figure 5 shows the calculated τs has a maximum at ni =
(1–2) × 1016 cm−3, and τs decreases quickly with ni going
away from its peak position. This is in good agreement with
the experimental finding in Ref. [28], which also reported τs
at ni = 1016 cm−3 is longer than τs at other lower and higher
ni at a low temperature (a few kelvin). The ni dependence of
τs may be qualitatively interpreted from the commonly used
empirical DP relation [2] for inversion-asymmetric systems,
τs,i ∼ τDP

s,i = 1/[τ p · (〈�2〉 − 〈�2
i 〉)], where τ p is the carrier

lifetime, and � is the Larmor frequency due to the “inter-
nal” magnetic field, which describes the SOC term induced
by inversion asymmetry. For spin-1/2 systems, the internal
magnetic field at k (�k) will induce an energy splitting �k
and polarize the spin along the direction of �k. Previously, �k
was mostly obtained with a model Hamiltonian with Dressel-
haus SOC field [82], which is rather qualitative. Instead, we
obtained a k-dependent internal magnetic field �k from first-
principles calculations, by using �k,i = 2�k · sexp

k,i /h̄, where
sexp
k,i is the spin expectation value.

From Fig. 5, we find that with ni from 1014cm−3 to
5 × 1015 cm−3, carrier lifetime τ p decreases rapidly [black
curve in Fig. 5(b)] and 〈�2〉 − 〈�2

i 〉 remains flat in Fig. 5(c),
which may explain why spin lifetime (τs) increases in Fig. 5(a)
based on the DP relation; however, when ni > 1016 cm−3, τ p

decreases with a similar speed but 〈�2〉 − 〈�2
i 〉 experiences

a sharp increase, which may explain why spin lifetime de-
creases in Fig. 5(b) and owns a maximum at 1016 cm−3.

Note that although the above empirical DP relation is in-
tuitive to understand the cause of doping-level dependence of
spin lifetime, it may break down when we evaluate individual
scattering processes. For example, when ni increases from
1014 to 1015 cm−3, both carrier lifetime τ p and spin lifetime
τs,z due to e-i scattering decrease while the internal magnetic
field remains unchanged. Moreover, the simple empirical re-
lation cannot possibly explain our first-principles results that
the e-e and e-i scatterings have largely different contributions
in carrier and spin relaxation. First-principles calculations are
critical to provide unbiased mechanistic insights to spin and
carrier relaxation of general systems.
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B. Applications to few-layer WSe2

1. Spin-valley relaxation of resident holes of monolayer WSe2

For holes of monolayer WSe2, spin-valley relaxation is
mostly determined by intervalley spin-flip scattering pro-
cesses between K and K ′ valleys because of the spin-valley
locking. Previously, we reported spin-valley lifetimes of res-
ident holes of monolayer TMDs at T � 50 K with e-ph
scattering [27]. At very low temperatures, e.g., 10 K, in-
tervalley e-ph scattering is, however, not activated as the
corresponding phonon occupation is negligible; therefore,
other scattering mechanisms are necessary to be included.
Note that e-e scattering should not play an important role
in spin relaxation of holes of TMDs. The reason is that
the e-e scattering is a two-particle process where a transi-
tion is accompanied by another transition with energy and
momentum being conserved. Considering the fact that only
the highest occupied band is involved (see band structure in
Fig. S5 [63]) in dynamics of TMD holes, for an e-e process, a
K → K ′ (K ′ → K) spin-flip transition must be accompanied
by an opposite K ′ → K (K → K ′) spin-flip transition. Over-
all, e-e scattering processes have negligible contributions to
spin relaxation of TMD semiconductors. As a result, we will
include only e-ph and e-i scatterings for WSe2. We use the
supercell method to compute e-i scattering matrix elements
for neutral defects with self-consistent SOC and more details
can be found in Appendix A.

Experimentally several types of impurities or defects ex-
ist in TMD samples. Here we pick four types of impurities
with different symmetries and chemical bonds [see Fig. 6(a)]:
Se vacancy (VSe), two neighboring Se vacancies (V2Se-N),
W vacancy (VW), and two Se vacancies with the same in-
plane position (V2Se-S). As most point defects are relatively
deep with large ionization energies in semiconducting TMDs
[85], we mostly consider neutral defects here. According
to Refs. [86–88], the impurity concentration ni ranges from
8 × 1010 to 1014 cm−2 depending on samples. Considering
that VSe is often regarded as the most abundant impurity,
we choose a reasonable impurity density ni of VSe, 7 × 1011

cm−2, within the experimental range and for better compari-
son with experimental τs at T � 20 K shown in Fig. 6(b). ni
of V2Se-N is chosen as 8 × 109 cm−2, two orders of magnitude
lower than VSe because of its larger formation energy [88] and
better comparison with experimental τs. ni of VW and V2Se-S

are chosen arbitrarily as we find they have rather weak effects
on spin relaxation and are 7 × 1011 and 3.5 × 1011cm−2, re-
spectively.

From Fig. 6, we first find that at T > 20 K, spin relax-
ation is almost driven by e-ph scattering and impurities can
only affect spin relaxation at T � 20 K. For the effects of
different impurities on spin relaxation, we have V2Se-N 

VSe 
 VW ∼ V2Se-S. Such differences are directly re-
lated to the large differences among various impurities in
electron-impurity matrix elements for the intervalley pro-
cesses (scattering between K and K ′ valley), i.e., much larger
matrix elements |gi| for intervalley scattering at V2Se-N and
VSe compared to the ones at VW and V2Se-S as shown in
SM Fig. S9 [63]. Moreover, the temperature dependence of
τs with V2Se-N is much weaker and in better agreement with
experiments than that with VSe. Therefore, the observed weak

FIG. 6. (a) The schematics of four types of impurities in WSe2.
(b) Spin lifetimes of holes of monolayer WSe2 with a relatively low
hole density 1011 cm−2 with impurities compared with experimental
data. A, B, C, and D are experimental data from Refs. [42], [83],
[46], and [84], respectively. The choices of impurity concentration ni
of different impurities are given in the main text.

temperature dependence in some experiments is probably re-
lated to the existence of larger size impurities with lower
symmetries (e.g., V2Se-N). Our observations suggest that the
local symmetry and chemical bonds surrounding an impurity
have a large impact on spin relaxation.

Additionally, we have simulated spin lifetimes of mono-
layer WSe2 at 15 K with different hole densities and find a
strong hole density dependence. The related results are shown
in SM Fig. S12 [63].

2. Ultrafast dynamics of holes of bilayer WSe2

Understanding detailed dynamical processes and related
scattering mechanisms can help develop a strategy of control-
ling and manipulating spin-valley relaxation through tuning
external fields, materials composition, and strain. In the fol-
lowing, we will first identify the scattering pathways of
excited holes and spins in bilayer WSe2 [AB stacking as
shown in Fig. 7(a)]. Next, through real-time simulations, we
determine dynamical quantities like spin lifetimes and valley
polarization at different external fields and strain. Finally,
we show the carrier occupation on each layer is fully spin
polarized and can be switched by an external electric field.

According to previous studies [89,90] and our calculations,
for valence bands of unstrained bilayer WSe2, the � val-
ley is slightly higher than the K/K ′ valley, which is usually
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FIG. 7. (a) Schematic diagram of scattering pathways of excited
holes in 1% compressed bilayer WSe2 with a low equilibrium hole
density and 1.4 × 1012 cm−2 VSe (double the monolayer value in
Fig. 6) under finite Ez during and after a circularly polarized pump,
which initially excite holes (labeled as half circles) at both K and
K ′ valleys and two top valence bands (“A⇓” at K ′ and “B⇓” at K).
The lower-energy excited holes will decay to the band edge (most
to “A⇓” at K ′ and fewer to “A⇑” at K) through different scattering
pathways. A state being labeled by “A”(“B”) means the wavefunction
of this state is mostly localized in layer A (B) of the bilayer. ⇑ and
⇓ represent spin up and spin down, respectively. The color of the
electronic state represents spin polarization: red and blue mean spin
up and spin down, respectively. (b) Time evolutions of valley- and
band-resolved (excited or excess) hole densities at 50 K under two
Ez with a circularly polarized pump. The pump energy is selected
to excite electrons at two top valence bands. The pump center is at
0.5 ps. nV represents excess hole density at valley V . The insets of
(b) are the schematics of energies of two top valence bands at K , K ′

and � valleys under two Ez (see calculated band structures in SM
Fig. S7).

undesirable. The K/K ′ valley can be pushed higher than the �

valley by applying slight in-plane compressive strain (corre-
sponding band structures can be found in SM Fig. S6 [63]).
Moreover, under zero Ez, the bilayer WSe2 has inversion
symmetry, leading to carriers being equally populated at K
and K ′ valleys and at two layers, with spin-up and -down
degeneracy. A finite Ez can break inversion symmetry (thus
breaking Kramers degeneracy) and induce nonzero layer po-
larization or layer population difference. For example, two top
valence bands from layer A with ⇑ (up spin) and layer B with
⇓ (down spin) are degenerate at K without electric field but
split under electric field. Thus each band is associated with a
particular spin channel, valley, and layer, i.e., a spin-valley-
layer locking effect. Also by tuning the sign and magnitude
of Ez, we are able to control various physical quantities like
layer pseudospin, band splitting energy, etc. Therefore, to

ensure spin-valley-layer locking effects being observed, we
will study slightly compressed inversion-symmetric bilayer
WSe2 under finite Ez.

Figure 7(a) shows the scattering pathway schematics for
hole bands (half circles) during the first few picoseconds of
slightly compressed (1%) bilayer WSe2 excited by a circularly
polarized pump pulse under finite Ez at 50 K, before exciton
recombination processes happen typically at the tens of pi-
coseconds time scale at this temperature [91,92]. Similar to
the GaAs case (see Sec. IV A 1), the hole spins will undergo
the following processes: optical generation, decay to band
edges, and at the end slow relaxation. Initially, holes with the
same spin polarization are excited at both K and K ′ valleys
and two layers equally [e.g., down-spin holes generated at the
K valley and layer B and K ′ valley and layer A as shown
in Fig. 7(a)]. During and after the excitations, lower-energy
holes at the K (K ′) valley will decay to the band edge through
two possible scattering pathways: (i) a direct pathway through
interlayer spin-conserving scattering (solid blue line) or (ii) an
indirect pathway through �-valley-related scattering (dashed
lines for both spin-conserving and -flip processes). After all
holes decay to the band edge, most of their carried spins
are “locked” at a certain layer and valley (e.g., “A ⇓” at K ′
in Fig. 7) due to weak intervalley spin-flip scattering [green
arrow in Fig. 7(a)], which is the so-called spin-valley-layer
locking.

In Fig. 7(b), we show time evolutions of valley- and band-
resolved (excited or excess) hole densities under two Ez. It
can be seen that under a low Ez [0.5 V/nm, Fig. 7(b), left
panel], the main scattering pathway is the direct one men-
tioned above, i.e., the spin-down holes scattered from B ⇓ at
K in the dashed blue line with decreasing population to A ⇓
at K ′ in the solid blue line with increasing population. Under
a higher Ez [2 V/nm, right panel of Fig. 7(b)], although the
direct scattering pathway still exists, the indirect one through
the � valley also becomes important because the band energy
at � is pushed higher than the second valence band at K
and K ′ under this electric field [see inset of Fig. 7(b), right
panel]. Here occupation at B ⇓ at K in the dashed blue line
rapidly decreased while occupation at � with both up and
down spins in solid black temporarily increased through in-
direct scattering, and most importantly the A ⇑ at K in solid
red also increased due to the scattering through the � valley.
Increased population at A ⇑ at K represents weakening of the
spin-valley-locking effect. Therefore, the indirect scattering
pathway will lead to the reduction of spin density and valley
polarization.

We then show two key dynamical quantities: spin life-
time τs in Fig. 8(a) and maximum valley polarization of
bilayer WSe2 in Fig. 8(b) as a function of Ez with different
percentages of strain. Valley polarization is defined as PV =
|nK − nK ′ |/ntot , where nK (K ′ ) is excess hole density at the
K (K ′) valley and ntot is total excess hole density. A high
maximum of PV is necessary to ensure a high PV for extended
time. This is because when PV reaches its maximum, since
most carriers and/or spins have already decayed to the band
edge at the same time, PV will decay very slowly through in-
tervalley spin-flip scattering. Obviously, an unstrained system
is not suitable to utilize spin-valley-layer locking considering
its short spin lifetimes and low maximum PV under a relatively
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FIG. 8. Spin lifetime and maximum valley polarization PV =
|nK − nK ′ |/ntot of bilayer WSe2 at 50 K, where nK (K ′ ) is excess hole
density at the K (K ′) valley and ntot is total excess hole density.
Negative strain means compressive strain. PV will be 90% of its
maximum shortly after the pump and reach the maximum at a time
from 1 to 20 ps depending on Ez and the strain. After reaching its
maximum, since most carriers and/or spins have already decayed
to the band edge, PV can relax only very slowly through intervalley
spin-flip scattering. This implies that having a high maximum of PV
is important to ensure a high PV during a long time.

low electric field. As we discussed above, a slight strain is
helpful to ensure K or K ′ valleys are sufficiently higher than
the � valley. Moreover, from Fig. 8, an optimized range of Ez

is from ∼0.2 to ∼2 V/nm, where the system shows long τs and
high maximum PV , consistent with the fact mentioned above:
the indirect scattering pathway, which becomes important un-
der high Ez, will cause loss of spin and valley polarization.

Finally, in a bilayer, the percentage of carriers and/or spins
localized in the top or bottom layer at equilibrium can be
controlled by a static Ez. For device applications, it may be de-
sirable to dynamically and spatially tune the locations of holes
and/or spins by controlling Ez. For this purpose, a knowledge
of the speed of carriers and spins transferring between two
layers can be useful.

To extract the time scale of such a transfer, we first generate
holes and/or spins by applying a circularly polarized pump
pulse centered at −9.5 ps and let the system evolves until
t = 0 under Ez = 0.5 V/nm to ensure almost all holes and/or
spins are localized in the bottom layer, then by switching Ez

suddenly to −0.5 V/nm at t = 0, holes and/or spins will start
to transfer to the top layer.

In Fig. 9, we show the time evolution of top-layer
hole occupation f top

h and spin stop
z (see their definitions in

Appendix D) normalized by corresponding total quantities of
2% compressed bilayer after the sign of Ez is switched. From
Fig. 9, at 50 K, 90% switching of f top

h and stop
z takes ∼6 ps.

This time constant is much shorter than τs, which means such
tuning is fast enough to use an electric field as a “switch” in
spintronic devices.

V. CONCLUSIONS

In this article, we present a first-principles real-time
density-matrix approach to simulate ultrafast spin-orbit-
mediated spin dynamics in solids with arbitrary crystal
symmetry. The complete ab initio descriptions of pump,
probe, and three scattering processes—the electron-phonon,

FIG. 9. Time evolution of top layer hole occupation f top
h and spin

stop
z (see their definitions in Appendix D) normalized by correspond-

ing total quantities of compressed bilayer WSe2 at 50 K after the sign
of Ez is switched at t = 0. At t = −10 ps, a pump pulse centered at
t = −9.5 ps with τpump = 100 fs is started to be applied and real-time
density matrix dynamics is run under Ez = 0.5 V/nm until t = 0 to
allow holes and spins to decay to the band edge where states are
localized in bottom layer. When the sign of Ez is suddenly switched,
holes and spins are still localized in the same bottom layer but the
new eigenstates around the band edge are localized in the top layer;
thus holes and spins will transfer from the bottom to the top layer.

electron-impurity, and electron-electron scattering in the
density-matrix master equation—allow us to directly simulate
the nonequilibrium ultrafast pump-probe measurements and
make our method applicable to any temperatures and doping
levels. This method has been applied to simulate spin relax-
ation of n-GaAs. We confirm that the relaxation time of Kerr
rotation and that of spin observables are almost identical and
find that the relaxation time of spin polarization is relatively
robust, i.e., insensitive to how spin imbalance is initialized.
Furthermore, we have studied the temperature and doping-
level dependencies of spin lifetime and examined the roles of
various scattering mechanisms. Overall our theoretical results
are in good agreement with experiments. Importantly, our
first-principles simulations provide rich mechanistic insights
of spin relaxation of n-GaAs: we point out that although
at low temperatures and moderate doping concentrations e-i
scattering dominates carrier relaxation, e-e scattering is the
most dominant process in spin relaxation. The relative con-
tributions of phonon modes also vary considerably between
spin and carrier relaxation. We have further examined ultrafast
dynamics in few-layer WSe2 with realistic impurities. We find
that spin relaxation can highly depend on local symmetry and
chemical bonds surrounding impurities. For the bilayer, we
identify the scattering pathways of holes in ultrafast dynam-
ics and determine relevant dynamical properties, including
τs, maximum valley polarization, and layer population and
spin switch time, which are essential to utilize its unique
spin-valley-layer locking effects. Our method opens up the
pathway to predict spin relaxation and decoherence for gen-
eral materials and provides unbiased insights and guidelines
to experimental materials design, which have the potential to
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revolutionize the field of spintronics and quantum information
technologies.
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APPENDIX A: INTERACTION HAMILTONIAN TERMS
AND MATRIX ELEMENTS

Three interaction Hamiltonian terms in Eq. (3) read

He-ph =
∑
12qλ

c†
1c2

(
gqλ−

12 bqλ + gqλ+
12 b†

qλ

)
, (A1)

He-i = niVcell

∑
12

c†
1c2g

i
12, (A2)

He-e =
∑
1234

c†
1c

†
2c3c4g

e-e
1234. (A3)

The e-ph matrix gqλ± is computed with self-consistent
spin-orbit coupling and Wannier interpolation by the supercell
method.

Here we assume impurity density is sufficiently low and
the average distance between neighboring impurities is suf-
ficiently long so that the interactions between impurities are
negligible. The e-i matrix gi is

gi13 = 〈1|�V i|3〉, (A4)

�V i = V i −V 0, (A5)

where V i is the potential of the impurity system and V 0 is the
potential of the pristine system. In this work, gi for neutral and
ionized impurities are computed differently as follows.

For neutral impurities, V i is computed using a large super-
cell including an impurity with self-consistent SOC at DFT.
This is important for including the detailed potential profile
and chemical bonding environment for different impurities.
To speed up the supercell convergence, we used the potential
alignment method developed in Ref. [94]. We checked the
supercell size convergence of gi for neutral VSe in monolayer

WSe2 and found that the corresponding spin lifetime with
6 × 6 and 8 × 8 supercells differs by only a few percent. Thus
the 6 × 6 supercell is enough for gi of neutral impurities in
monolayer WSe2.

For ionized impurities, we use approximate impurity po-
tentials as detailed below. In general, �V i may be separated
into two terms �V i = �V i

ns + �V i
soc, where �V i

ns is the spin-
independent part and �V i

soc = [h̄/(4m2c2)]∇(�V i
ns) × p · σ is

the SOC correction. For ionized impurities, we approximate
�V i

ns as the potential of point charge which is simply the
product of the impurity charge Z and the screened Coulomb
potential [54], i.e., �V i

ns = ZV scr. Such an approximation de-
scribes the long-range part of the spin-independent differential
impurity potential �V i

ns accurately, which is often the most
important contribution from ionized impurities. Considering
that �V i

soc is commonly neglected in previous theoretical stud-
ies on spin relaxation [30,95] whenever the screened Coulomb
potential V scr is used, we will not include �V i

soc for ionized
impurities either. Note that such potential for ionized impuri-
ties still relaxes spin through spin mixing and spin precession.

The e-e matrix ge-e is

ge-e
1234 = 〈1(r)|〈2(r′)|V (r − r′)|3(r)〉|4(r′)〉, (A6)

where V (r − r′) is the screened electron-electron interaction.
The SOC corrections on V (r − r′) [96,97] will not be in-
cluded, similar to the ionized impurity case. Thus, V (r − r′)
is simply the screened Coulomb potential V scr . Therefore,
in both calculations of gi and ge-e, the computation of the
screened Coulomb potential V scr is of key importance.

Currently, we use the static RPA dielectric function for
the screening and neglect local-field effects. We then show
that the e-e self-energy (Im�) obtained with such a dielectric
function well reproduces the one obtained with dynamically
screened Coulomb interaction with full RPA dielectric matrix
in the relevant energy range as shown in Fig. 10. The dielectric
function has the form

ε(q) = εsε
intra (q), (A7)

where εs is the static background dielectric constant and
can be calculated by density functional perturbation theory
(DFPT) [98]. εintra (q) is the intraband contribution which
involves only states with free carriers and is critical for doped
semiconductors. It is computed using RPA,

εintra (q) = 1 −V bare(q)
∑
kmn

×
(

fk−q,m − fkn
εk−q,m − εk,n

× |〈uk−q,m|ukn〉|2
)

, (A8)

where the sum runs over only states having free carriers,
e.g., for a n-doped semiconductor, m and n are conduction-
band indices. In the above formula, f is time-dependent
nonequilibrium occupation instead of the equilibrium one,
f eq. Therefore, if the pump is activated or the optical field
A0(t ) of the pump pulse is not negligible, εintra (q) will be
updated in every time step, as f will differ from f eq and the
magnitude of difference depends on the excitation density.
V bare(q) = e2/(Vcellε0|q|2) is the bare Coulomb potential with
Vcell the unit cell volume and ε0 vacuum permittivity. ukn is the
periodic part of the Bloch wave function.
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FIG. 10. Im� due to e-e scattering of valence electrons of p-type
silicon computed by Eq. (B5) (density-matrix) compared with those
calculated by the finite-temperature GW method (FT-GW), where G
is Green’s function and W is the screened Coulomb potential [100].
μ is set to 0.05 eV lower than the valence-band maximum (VBM).
For simplicity, SOC is not considered in this test.

We then have the matrix elements in reciprocal space,

gi13 = ZV scr (q13)〈u1|u3〉, (A9)

ge-e
1234 = V scr (q13)δk1+k2,k3+k4〈u1|u3〉〈u2|u4〉, (A10)

V scr (q13) = V bare(q13)/ε(q13), (A11)

where V scr (q) is the screened Coulomb potential and q13 =
k1 − k3. δk1+k2,k3+k4 is the Kronecker delta function and
means k1 + k2 = k3 + k4. 〈u1|u3〉 is the overlap matrix ele-
ment between two periodic parts of the Bloch wave functions.

APPENDIX B: CARRIER SCATTERING RATE AND Im�

FROM THE DENSITY-MATRIX APPROACH

At the semiclassical limit, density matrix ρ is replaced
by (nonequilibrium) occupation f ; then the scattering term
originally with a full quantum description in Eq. (9) required
by DM dynamics becomes

df1
dt

∣∣∣∣
c

=
∑
2 �=1

[
(1 − f1)Pc

11,22 f2 − (1 − f2)Pc
22,11 f1

]
, (B1)

using the facts that P11,22 is real and the “2 = 1” term is zero.
“c” represent a scattering channel. Note that the weights of k
points must be considered when doing a sum over k points.

Suppose f is perturbed from its equilibrium value by δ f ,
i.e., f = f eq + δ f ; then we insert f after perturbation into
Eq. (B1) and linearize it,

df1
dt

∣∣∣∣
c

= −
∑
2 �=1

[
Pc

11,22 f
eq
2 + (1 − f eq

2 )Pc
22,11

]
δ f1, (B2)

using the fact that δP11,22 is always zero, even for the e-e
scattering.

Defining the carrier relaxation time of state “1,” τ c
p,1, by

df1
dt |c = − δ f1

τ c
p,1

, we have

1

τ c
p,1

=
∑
2 �=1

[
Pc

11,22 f
eq
2 + (1 − f eq

2 )Pc
22,11

]
. (B3)

The linewidth or the imaginary part of the self-energy for the
scattering channel c is related to the carrier relaxation time by
Im�c

1 = h̄/(2τ c
p,1).

Using Eq. (B3), we have calculated the e-ph scattering
rates and they are in good agreement with previous theoret-
ical results [99]. For e-ph scattering, Eq. (B3) will reproduce
the imaginary part of the well-known Fan-Migdal self-energy
[53].

For e-i scattering, we have

1

τ e-i
p,1

= 2π

h̄
niVcell

∑
2

∣∣gi12

∣∣2
δGσ (ε1 − ε2). (B4)

The above equation [Eq. (B4)] is consistent with Ref. [54].
For e-e scattering, neglecting the exchange contribution,

which is a commonly used approximation [50,100],

1

τ e-e
p,1

= 2π

h̄

∑
2 �=1,34

|A1324|2
[

f eq
2 f eq

4

(
1 − f eq

3

)+(
1 − f eq

2

)
f eq
3

(
1 − f eq

4

)]. (B5)

To verify our implementation of the e-e scattering term, we
calculate Im� due to e-e scattering of valence electrons of
p-type silicon based on the above equation and compare it
with those calculated by the finite-temperature GW method
from first principles [100], as implemented in JDFTX [60].
The JDFTX implementation, in turn, has been benchmarked
to reproduce the expected dependence with temperature and
carrier energy, Im�e-e ∝ (ε − εF )2 + (πkBT )2, as expected
for metals [76].

From Fig. 10, we can see the results by two methods agree
well for the energy range close to the Fermi level which is
relevant to e-e scatterings due to energy conservation. This
verifies our implementation of the e-e scattering part.

APPENDIX C: THE EFFECTS OF ωpump AND PUMP
FLUENCE ON SPIN RELAXATION OF GaAs AT 300 K

In Fig. 11, we study the Sz relaxation dependence on
pump-pulse energy changes with several kBT . We can see that
variation of ωpump has very weak effects on the spin dynamics
of n-GaAs at 300 K.

In Fig. 12(a), we study the effects of the pump flu-
ence Ipump on spin relaxation. First, we can see that in the
low-pump-fluence region or when Ipump < 1 μJ/cm−2, the
excitation density increases linearly with Ipump, but when
Ipump > 1 μJ/cm−2, the excitation density increases more
slowly. This is because in high-fluence cases, during the ex-
citation by a pump pulse, a significant number of conduction
states have been already filled, which reduces the probability
of the transitions from valence bands to conduction bands.
From Fig. 12(b), we find that the spin lifetime of n-GaAs
decreases with the excitation density. This dependence may
be explained based on the empirical DP relation [2] τs,i ∼
τDP
s,i = 1/[τ p · (〈�2〉 − 〈�2

i 〉)] as we discussed in Sec. IV A 2.
At 300 K, generally 〈�2〉 − 〈�2

i 〉 will increase with increasing
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FIG. 11. Sz(t ) of n-GaAs with ni = 2 × 1016 cm−3 at 300 K with
different pump-pulse energies (ωpump) varying with several kBT .

free carrier density (through an increase of excitation density
here), similar to what we find at 30 K shown in Fig. 5(c).
On the other hand, τ p due to the electron-phonon scattering,
which dominates carrier relaxation at 300 K, is less sensitive
to the variation of excitation density. Therefore, it is the in-
crease of 〈�2〉 − 〈�2

i 〉 causing the decrease of spin lifetime
when increasing excitation density.

APPENDIX D: LAYER-RESOLVED QUANTITIES
OF BILAYERWSe2

For a bilayer with one layer above z = 0 and another below,
the operator l̂ top projecting any local quantity A(r) to the top
layer can be defined through the relation

l̂ topA(r) = H (z)A(r), (D1)

where z is the third component of r and H (z) is Heaviside step
function:

H (z) =
{

1, z > 0

0, z � 0.
(D2)

FIG. 12. (a) The excitation density as a function of the pump
fluence (left panel) and (b) the spin lifetime as a function of the
excitation density generated by a circularly polarized pump pulse for
n-GaAs with ni = 1014 cm−3 at 300 K. ωpump = 1.47 eV.

Therefore, top layer hole occupation f top
h is

f top
h = Tr(l̂ top(1 − f )) (D3)

=
∑
kn

l top
k,nn(1 − fkn), (D4)

where f is occupation and l top
k,mn = 〈km|l̂ top|kn〉 =

〈km|H (z)|kn〉, Tr means taking trace, k is a k-point index, and
n and m are band indices.

Moreover, the top layer spin stop
z can be defined using the

operator l̂ topŝz,

stop
z = Tr

(
l̂ topŝzρ̂

)
(D5)

=
∑
k,lmn

l top
k,lmsz,k,mnρk,nl . (D6)

Note that the commutator [l top, sz] is found numerically
close to zero for bilayer WSe2. This indicates that we can
safely define stop

z as an observable using the above equations.
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