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Single-stage or single-step high-order temporal discretizations of partial differential 
equations (PDEs) have shown great promise in delivering high-order accuracy in time 
with efficient use of computational resources. There has been much success in developing 
such methods for finite volume method (FVM) discretizations of PDEs. The Picard Integral 
formulation (PIF) has recently made such single-stage temporal methods accessible for 
finite difference method (FDM) discretizations. PIF methods rely on the so-called Lax-
Wendroff procedures to tightly couple spatial and temporal derivatives through the 
governing PDE system to construct high-order Taylor series expansions in time. Going to 
higher than third order in time requires the calculation of Jacobian-like derivative tensor-
vector contractions of an increasingly larger degree, greatly adding to the complexity of 
such schemes. To that end, we present in this paper a method for calculating these tensor 
contractions through a recursive application of a discrete Jacobian operator that readily 
and efficiently computes the needed contractions entirely agnostic of the system of partial 
differential equations (PDEs) being solved.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In past decades, high-order discrete methods for hyperbolic conservation laws have become one of the central themes in 
computational fluid dynamics (CFD) due to their potential in achieving highly accurate predictions in balance with trends 
in current high-performance computing (HPC) architectures. Using high-order methods allows better solution accuracy with 
a fixed memory profile at the cost of increased floating point operations; in line with next generation HPC systems that are 
seeing increased computing power with saturation in the memory per compute core.

Practitioners have focused on designing high-arithmetic-intensity data reconstruction and interpolation models in the 
context of finite volume methods (FVM) and finite difference methods (FDM). Under the dual computational need for accu-
racy and stability, the CFD community has developed high-order reconstruction and interpolation methods that can produce 
highly accurate solutions while avoiding unphysical oscillations near the discontinuities. Examples include the early suc-
cess of the piecewise parabolic method (PPM) by Colella and Woodward [1,2], which has been still actively adopted as a 
shock-capturing partial differential equation (PDE) solver by many CFD users after about four decades since its introduction. 
In 1987, Harten et al. [3] proposed an essentially non-oscillatory (ENO) scheme that chooses the appropriate stencil adap-
tively to prevent spurious oscillations near strong gradients. Liu et al. [4] improved this idea by introducing the weighted 
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essentially non-oscillatory (WENO) scheme, which takes a convex combination of all possible stencils, reducing the number 
of logical calculations needed for the original ENO scheme. The WENO scheme was further improved by Jiang and Shu [5]
and became one of the most popular high-order reconstruction and interpolation methods for solving shock-dominant CFD 
simulation. Several modifications of WENO methods have been proposed over decades, such as WENO-Z [6,7], central-
WENO [8,9], Hermite-WENO [10,11] WENO-AO [12], and polynomial-free GP-WENO [13,14], to name a few.

Common to all numerical PDE solvers is the solution lies on the spatio-temporal plane. Numerical errors arise from both 
the spatial and temporal axis; thereby, a high-order scheme requires a meticulously designed temporal discretization method 
that ensures the solution’s accuracy and stability. However, efforts to achieve a high-order of accuracy in the temporal 
axis have seen a renewed effort. For decades, the strong stability preserving Runge-Kutta (SSP-RK) time integrator has 
been considered as the standard temporal integration strategy for an extensive range of high-order numerical schemes for 
PDE solvers. The key idea of SSP-RK scheme is to maintain the strong stability property (SSP) at high-order accuracy by 
sequentially applying convex combinations of the first-order forward Euler method as a building-block at each sub-stage 
of the Runge-Kutta method. In this manner, the total variation diminishing (TVD) property is achieved in each sub-stages; 
therefore, it ensures the whole scheme’s stability.

Despite the high portability and fidelity of SSP-RK methods, the very nature of the SSP-RK method – being a multi-stage 
approach – increases computational resources in CFD simulations. In SSP-RK methods, the data reconstruction/interpolation 
and the boundary condition should be applied in each sub-stage, which increases the computational costs and the footprint 
of data communications in the parallel computational architecture. It makes the simulations using the adaptive mesh re-
finement (AMR) method less attractive, which progressively refines the grid resolutions and increases data communications 
around the simulations’ interesting features.

To alleviate such issues, many practitioners recently have proposed single-step, high-order time updating strategies based 
on the so-called Lax–Wendroff (Taylor) method. The core design principle of the Lax-Wendroff method is to convert time 
derivatives to spatial derivatives through the Lax-Wendroff or Cauchy-Kowalewski procedure (LW/CK hereafter). In this way, 
the spatial and temporal derivatives are coupled through Jacobians and Hessians; thus, the numerical solutions can be 
updated in a single step while maintaining the high-order accuracy. In 2001, Toro et al. [15] extended this idea by combining 
it with the generalized Riemann problems (GRPs) and introduced the Arbitrary high order derivative Riemann problem 
(ADER) method. Toro and his collaborators applied LW/CK procedures to get the coefficients of the power series expansion of 
the conservative variables and solved GRPs for each high-order term. ADER methods were further developed in [15–17], and 
it has grown its popularity over decades, leading to various further modifications. Some examples include ADER-DG [18,19]
and ADER-CG [20–22] in the context of discontinuous and continuous Galerkin schemes; other efforts of employing an 
implicit GRP solver to solve scalar equations with stiff source terms [23], its extensions to second-order schemes for non-
linear systems [24] and to general hyperbolic systems [25]. The use of an implicit time Taylor series expansion for GRP was 
further simplified in the study by Montecinos and Balsara [26]. Along the line of simplifying the standard ADER approach, 
the Differential Transform Method (DTM) [27] was also adopted to alleviate the cost of the ADER scheme, coined as ADER-
DT (or ADER-Taylor) in [28–30].

The Picard integral formulation (PIF) method, proposed by Christlieb et al. [31], is another Lax-Wendroff type time 
discretization method under the finite difference formulation, which evolves the pointwise conservative variables. Instead 
of taking temporally pointwise numerical fluxes as in the conventional FDM, the PIF method takes time-averaged numerical 
fluxes for updating the solutions in a single step. Christlieb and his collaborators demonstrated that LW/CK procedures 
could successfully be utilized for obtaining high-order terms of the numerical fluxes as in many Lax-Wendroff type works of 
literature, which results in faster CPU performance than the SSP-RK method with the same order of accuracy. Other studies 
also have shown that single-step temporal updates are more efficient in terms of CPU time to solution when compared to 
multi-stage/multi-step methods [21,32,33].

The primary advantage of LW/CK-based methods is the enhanced performance offered by being a single-step method, 
harnessing the tight coupling of temporal and spatial derivatives through LW/CK procedures to construct high-order time-
series Taylor expansions. This becomes hugely attractive in massively parallel computing, minimizing the computational 
frequency of data transfers between processors each time step, which would need to be repeated for each intermediate RK 
stage. On the other hand, the dependence of the strong coupling on analytic derivatives of the governing PDEs makes the 
LW/CK approach less flexible and less broadly applicable to all systems of PDEs.

To meet this end, in [33], we proposed a novel approach to bypass the analytic evaluations of Jacobian and Hessian 
terms, which are the major implementation hurdles for Lax-Wendroff type methods. This new approach, which we called 
the system-free (SF) method, adopts the Jacobian-free idea commonly used for iterative methods [34–37]. We implemented 
this new approach to the original third-order PIF method, called the third-order SF-PIF method (or SF-PIF3). The new SF-
PIF3 method shows the same performance results while maintaining the same order of accuracy and stability as the original 
PIF method. Also, by virtue of the system-independent approach for the Jacobian-like tensor contractions, SF-PIF3 can apply 
to a different hyperbolic system of equations with ease. The core design principle of our SF method is to alleviate the 
implementation difficulties of the LW/CK-based approaches in the standard PIF method. This idea is similar to a recent study 
by Montecinos and Balsara [26], where they proposed implicit Taylor series expansion to simplify the LW/CK procedures by 
considering space and time derivatives of the flux Jacobian in the context of the ADER schemes.

The original PIF method and SF-PIF3 are third-order in time, coupled with the fifth-order spatial reconstruction method 
(WENO-JS). Assuming that the temporal integration is discretized with a qth order scheme and the spatial with a pth order 
2



Y. Lee, D. Lee and A. Reyes Journal of Computational Physics: X 12 (2021) 100098
scheme (often with q ≤ p), the overall solution accuracy is determined by the leading errors of the two discretizations, 
namely, O

(
�tq,�sp

)
, where �t and �s represent the temporal and spatial length scales. Practically speaking, the spatial 

errors usually dominate the temporal errors; thus, the high-order methods with q ≤ p are justifiable. Nonetheless, we 
observe that the temporal errors gradually dominate the spatial errors as we increase the grid resolution progressively, 
which leads us to find a higher than a third-order temporal scheme for maintaining overall solution accuracy even in the 
finer grid resolutions.

In Lax-Wendroff type time discretization methods, like PIF and SF-PIF3 methods, rank-4 Jacobian-like tensors are needed 
for the fourth-order approximation. Although possible, the need for such analytical handling becomes prohibitive in the 
Lax-Wendroff type schemes when extending their accuracy beyond third-order due to the drastic growth in complexity.

In this regard, we propose a new fourth-order extension of the SF-PIF3 method. Since SF-PIF3 bypasses all the Jacobian-
like calculations, our SF approach is further rewarded in a fourth-order extension, which demands a leap in calculation 
counts for conventional Lax-Wendroff type schemes. Moreover, we present a new improved version of the previous SF 
approach [33], which applies a recursive strategy to obtain the higher-order derivative tensor-vector contractions, promising 
a more compact code structure and faster performance than the original SF method. With such modification, our fourth-
order SF-PIF4 method shows nearly twice faster performance than the optimal fourth-order five-stage SSP-RK method.

We organize the paper as follows. In Section 2 we briefly review the general discretization strategy of the original PIF 
method. We present the fourth-order extension of the original PIF method in Section 3, and we apply the original SF 
approach to the fourth-order PIF method in Section 4. The improved recursive SF approach will be introduced in Section 5, 
which ensures faster performance and a more straightforward code structure. The results of various 2D and 3D benchmark 
problems are presented in Section 7. We conclude our paper with a summary in Section 8.

2. Picard integral formulation

We are interested in solving the general conservation system of equations in 3D,

∂tU+ ∇ ·F(U) = ∂tU+ ∂xF(U) + ∂yG(U) + ∂zH(U) = 0, (1)

where U is the vector of conservative variables and F, G, and H are the flux functions in x-, y- and z-direction, respectively. 
In the Euler equations, the conservative variables and the flux functions are defined as,

U =

⎡
⎢⎢⎢⎣

ρ
ρu
ρv
ρw
E

⎤
⎥⎥⎥⎦ , F(U) =

⎡
⎢⎢⎢⎢⎣

ρu
ρu2 + p

ρuv
ρuw

u (E + p)

⎤
⎥⎥⎥⎥⎦ , G(U) =

⎡
⎢⎢⎢⎢⎣

ρv
ρuv

ρv2 + p
ρvw

v (E + p)

⎤
⎥⎥⎥⎥⎦ , H(U) =

⎡
⎢⎢⎢⎢⎣

ρw
ρuw
ρvw

ρw2 + p
w (E + p)

⎤
⎥⎥⎥⎥⎦ . (2)

Applying the Picard integral formulation (PIF) [38], we take a time average of Eq. (1) within a single time step �t over 
an interval [tn, tn + �t] = [tn, tn+1],

Un+1 = Un − �t
(
∂xF

avg + ∂yG
avg + ∂zH

avg) , (3)

where Favg, Gavg , and Havg are the time-averaged fluxes in each direction,

Favg(x) ≡ 1

�t

tn+1∫
tn

F(U(x, t))dt, Gavg(x) ≡ 1

�t

tn+1∫
tn

G(U(x, t))dt, Havg(x) ≡ 1

�t

tn+1∫
tn

H(U(x, t))dt, (4)

for x = (x, y, z) ∈R3.
We wish to express the spatial derivatives of the time-averaged fluxes in Eq. (3) using highly approximated numerical 

fluxes f̂, ̂g, and ĥ at cell interfaces. Taking x-directional flux F, for example, we aim to express

∂xF
avg

∣∣∣∣
x=xi jk

= 1

�x

(
f̂i+ 1

2 , j,k − f̂i− 1
2 , j,k

)
+O(�xp + �tq), xi jk = (xi, y j, zk). (5)

The y- and z-directional derivatives are approximated in a similar fashion.
Finding approximated solutions for the numerical fluxes in the PIF method is nearly identical to the conventional finite 

difference method (FDM). Following the standard convention in FDM, we treat pointwise x-directional flux F(x, y j, zk) as a 
1D cell average of an auxiliary function F̂ in 1D,

F(x, y j, zk) = 1

�x

x+ �x
2∫

x+ �x

F̂(ξ, y j, zk)dξ . (6)
2
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Then, by taking an analytical derivative of Eq. (6) with respect to x, we have

∂xF

∣∣∣∣
x=xi jk

= 1

�x

(
F̂(xi+ 1

2
, y j, zk) − F̂(xi− 1

2
, y j, zk)

)
. (7)

By comparing Eq. (5) and Eq. (7), we can identify the auxiliary function F̂ as a numerical flux f̂. We can follow similar 
procedures to identify the rest of numerical fluxes ĝ and ĥ.

Therefore, determining spatially approximated solutions for the numerical fluxes is the inverse problem of Eq. (6), viz. 
finding pointwise values at cell interfaces, given the volume-averaged quantities at cell centers, which is exactly the same 
way as the high-order reconstruction procedure used in 1D finite volume method (FVM). Namely, we can use the con-
ventional high-order reconstruction procedures used in FVM for approximating numerical fluxes f̂, ̂g and ĥ, at the desired 
spatially pth-order accuracy by using the cell-centered pointwise analytic fluxes, Fi jk, Gi jk , and Hi jk . One strategic difference 
in the PIF method is that we use the time-averaged fluxes, Favg , Gavg , and Havg , as the inputs of the high-order reconstruction 
method instead of the pointwise flux values in the conventional FDM in order to assure the anticipated qth-order temporal 
accuracy for the numerical fluxes f̂, ̂g, and ĥ at cell interfaces.

The time-averaged fluxes are obtained through the Taylor expansion of the pointwise flux around tn . In the qth-order 
PIF method, the time-averaged x-directional flux Favg is approximated as,

Favg(x) = 1

�t

tn+1∫
tn

F(x, t)dt

= F(x, tn) + �t

2! ∂
(1)
t F(x, t)

∣∣∣∣
t=tn

+ �t2

3! ∂
(2)
t F(x, t)

∣∣∣∣
t=tn

+ �t3

4! ∂
(3)
t F(x, t)

∣∣∣∣
t=tn

+ · · ·

=
q−1∑
i=0

�ti

(i + 1)!∂
(i)
t F(x, t)

∣∣∣∣∣
t=tn

+O(�tq)

= Fappx,q(x, tn) +O(�tq).

(8)

We will use the temporally qth-order approximated fluxes Fappx,q as the inputs of the pth-order reconstruction scheme R(·)
that is combined with a characteristic flux splitting method FS(·) to apply the pth-order spatial approximation to the 
numerical flux f̂ at cell interfaces,

f̂i+ 1
2 , j,k = R

(
FS

(
Fappx,qi−r, j , . . . ,Fappx,qi+r+1, j

))
+O(�xp), (9)

where r represents the stencil radius required for the pth-order reconstruction method, R(·). This study uses the conven-
tional fifth-order WENO-JS method [5] and the global Lax–Friedrichs flux splitting scheme taking the maximum wave speed 
over the entire domain and all characteristic fields. The choice of this global Lax-Friedrichs scheme is particularly more 
diffusive than other possible forms of splitting, although we have found that the added numerical dissipation becomes less 
significant for designing our fourth-order SF-PIF scheme without sacrificing accuracy.

Recall that the numerical flux in Eq. (9) is a high-order approximated solution both in time and space since we used tem-
porally approximated inputs, Fappx,q , instead of the temporally pointwise flux values. Therefore, the x-directional numerical 
flux derived from Eq. (8) and Eq. (9) allows us to update the solution in a single step while maintaining high order accu-
racy both in space and time. The y- and z-directional numerical fluxes, ĝ and ĥ, are obtained in similar fashions. The fully 
discretized form of the governing equation is given as,

Un+1
i, j,k = Un

i, j,k − �t

�x

(
f̂i+ 1

2 , j,k − f̂i− 1
2 , j,k

)
− �t

�y

(
ĝi, j+ 1

2 ,k − ĝi, j− 1
2 ,k

)
− �t

�z

(
ĥi, j,k+ 1

2
− ĥi, j,k− 1

2

)
. (10)

Lastly, it is worth pointing out one practical observation. The approaches in the standard PIF and our SF-PIF recon-
struct fluxes directly instead of conserved or primitive variables, where some desirable features such as positivity may be 
more directly controlled with conservative or primitive variables. One approach to address this issue in flux reconstruction 
FDM is the so-called “flux limiter” strategy, in which the high-order numerical flux is augmented with some amount of a 
positivity-preserving flux, such as that of the low-order Lax-Friedrichs method. A positivity-preserving PIF method has been 
reported in [39] based on the flux limiters and the parametrization studied in [40,41]. Although promising, we did not find 
it necessary to adopt such a strategy in this paper.

3. The fourth-order extension of the PIF method

The primary goal in this section is to extend the PIF method [38] to fourth-order in time. We consider a fourth-order 
approximated time-averaged flux in x-direction, Fappx,4, from the Taylor expansion of the pointwise flux around tn . As 
expressed in Eq. (8) we have,
4
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Fappx,4(x) = F(x, tn) + �t

2! ∂
(1)
t F(x, t)

∣∣∣∣
t=tn

+ �t2

3! ∂
(2)
t F(x, t)

∣∣∣∣
t=tn

+ �t3

4! ∂
(3)
t F(x, t)

∣∣∣∣
t=tn

. (11)

The other y- and z-directional approximated fluxes, Gappx,4 and Happx,4, are defined in similarly. Our main interest is trans-
forming all the time derivatives in Eq. (11) to the corresponding spatial derivatives; thereby we could express Eq. (11) in a 
fully explicit form.

For simplicity, we begin to adopt a compact subscript notation of partial derivatives and omit the temporal expression 
of t = tn . Thus, we rewrite Eq. (1) in a compact form as,

Ut + ∇ ·F(U) = Ut + Fx + Gy +Hz = 0. (12)

In [33], we introduced the so-called flux equation – an evolution equation of fluxes – by applying a chain rule to Eq. (12). 
For example, the flux equation of the x-flux is

Ft + FU · ∇ f = 0, where ∇ f = Fx + Gy +Hz. (13)

The above flux equation allows us to convert time derivatives of the fluxes to the spatial derivatives via the LW/CK proce-
dure. For instance, the first-order time derivative of F is easily converted to the spatial derivatives as,

Ft = −FU · ∇ f . (14)

The higher-order time derivatives could be achieved by taking partial derivatives to Eq. (14) recursively. As an example, the 
second-order term is written as

Ftt = FUU · ∇ f · ∇ f − FU · ∇ f
t , (15)

where

∇ f
t = −FUU ·Ux · ∇ f − FU · ∇ f

x − GUU ·Uy · ∇ f − GU · ∇ f
y −HUU ·Uz · ∇ f −HU · ∇ f

z . (16)

Following the same procedure, we are able to obtain an explicit form of the third-order time derivative of the flux as,

Fttt = −FUUU · ∇ f · ∇ f · ∇ f + 3FUU · ∇ f · ∇ f
t − FU · ∇ f

tt , (17)

where

∇ f
tt = FUUU · ∇ f ·Ux · ∇ f + 2FUU · ∇ f · ∇ f

x − FUU ·Ux · ∇ f
t − FU · ∇ f

tx

+GUUU · ∇ f ·Uy · ∇ f + 2GUU · ∇ f · ∇ f
y − GUU ·Uy · ∇ f

t − GU · ∇ f
ty

+HUUU · ∇ f ·Uz · ∇ f + 2HUU · ∇ f · ∇ f
z −HUU ·Uz · ∇ f

t −HU · ∇ f
tz,

(18)

and

∇ f
tx = FUUU ·Ux · ∇ f ·Ux − FUU ·Uxx · ∇ f − 2FUU · ∇ f

x ·Ux − FU · ∇ f
xx

−GUUU ·Ux · ∇ f · Uy − GUU ·Uxy · ∇ f − GUU · ∇ f
x · Uy − GUU ·Ux · ∇ f

y − GU · ∇ f
xy

−HUUU ·Ux · ∇ f ·Uz −HUU ·Uxz · ∇ f −HUU · ∇ f
x ·Uz −HUU ·Ux · ∇ f

z −HU · ∇ f
xz,

(19)

and similarly for ∇ f
ty and ∇ f

tz . Collecting Eqs. (14) to (19), we can express the fourth-order approximation of the time-

averaged flux Fappx,4 explicitly, as the spatial derivatives are readily approximated through the conventional central differ-
encing schemes.

We should note that we adopt the conventional five-points, fourth-order in space central differencing schemes to evaluate 
the spatial derivative terms, following the original PIF method in [38,31]. Moreover, for reducing the code complexity and 
improving the code performance, we reuse the divergence of the flux, ∇ f , for calculating high order spatial derivatives, e.g., 
∇ f

x , ∇ f
xx , and ∇ f

xy . This approach requires an additional guard cell layer (resulting in two more guard cells for the five-points 
derivatives). However, the overall code performance is better than evaluating high-order derivatives in each direction. Also, 
we have observed that it does not affect the accuracy and the stability of the PIF scheme.

4. The original non-recursive system-free (SF) approach

As firstly proposed in [33], the system-free (SF) method provides a capability to bypass all the analytical derivations of 
Jacobian-like terms (FU, FUU, · · · ) in the PIF method by considering a central differencing with a small perturbation ε for the 
input space of the flux function. For example, a dot product between the Jacobian matrix FU and an arbitrary vector V can 
be approximated as,
5
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FU · V = 1

2ε

[
F(U+ εV) − F(U− εV)

]
+O(ε2). (20)

We can extend the above idea to the Hessian tensor contraction with the two same vectors V,

FUU · V · V = 1

ε2

[
F(U+ εV) − 2F(U) − F(U− εV)

]
+O(ε2). (21)

The contraction with two different vectors of V and W is achieved by a linear combination of Eq. (21) by following the 
simple vector calculus,

FUU · V ·W = 1

2

[
FUU · (V+W) · (V+W) − (FUU · V · V + FUU ·W ·W)

]
. (22)

Theoretically speaking, the original system-free procedure in the above can be applied to any arbitrary order of deriva-
tives of the flux function F with respect to the conservative variable U. For instance, the fourth-order extension of the PIF 
method requires the third-order derivative of F, i.e., FUUU . Following the same mathematical basis of Eq. (20) and Eq. (21), 
we obtain

FUUU · V · V · V = 1

2ε3

[
− F(U− 2εV) + 2F(U− εV) − 2F(U+ εV) + F(U+ 2εV)

]
+O(ε2). (23)

We can further extend the procedure to compute the contraction with three different vectors, V, W, and X,

FUUU · V ·W · X = 1

6

[
FUUU · (V+W+ X) · (V+W+ X) · (V+W+ X)

− FUUU · (V+W) · (V+W) · (V+W)

− FUUU · (V+ X) · (V+ X) · (V+ X)

− FUUU · (W+ X) · (W+ X) · (W+ X)

+ FUUU · V · V · V+ FUUU ·W ·W ·W+ FUUU · X · X · X
]
,

(24)

and only to see that the number of terms to be computed rapidly increases in high-order tensor contraction terms.
As such, the original SF method in Eq. (24) becomes less attractive for any PIF method higher than third-order accuracy, 

as it demands increasing complexity in code implementation, which results in a significant loss in the overall performance 
of the code. For example, it requires 28 times flux function calls for just getting a single tensor contraction, FUUU · V ·W · X. 
We should note that the major bottleneck of the original system-free method stems from Eqs. (22) and (24) that require to 
perform the Jacobian-like approximations multiple times.

To mitigation the computational bottleneck, in the following section, we introduce a newly improved version of the 
system-free method, which does not require any further modifications, even for the case of the tensor contractions of 
different vectors.

5. A newly improved recursive system-free (SF) approach

In this section, we will improve the original system-free method [33] to be applied in a recursive manner for higher-
order derivatives of F, ensuing much simpler code complexity and faster performance. Primarily, we define a functional Du

that represents the Jacobian-free method denoted in Eq. (20),

FU · V ≈ Du(F ; V) := 1

2εv

[
F(U+ εvV) − F(U− εvV)

]
, (25)

where εv is the appropriately calculated ε corresponding to the vector V by following the original idea of the system-free 
method in [33],

εv = min (�t, ε̄v) , where ε̄v =
√

εop

‖V‖2
. (26)

The study in this paper uses εop = 4.8062 × 10−6 that is the optimal ε value for the second-order Jacobian-free approxima-
tion in the 64-bit machine. This choice is also justifiable for the recursive scheme considered below, where the functional 
Du itself is defined as the Jacobian-free method fundamentally. More detailed discussions about ε calculations could be 
found in [33,42] and [36].

We continue to apply Du in the following successive fashion to calculate the tensor contractions between higher-order 
derivatives for the flux function F and arbitrary vectors. Thus, the Hessian approximation is,
6
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FUU · V ·W ≈ Du

(
Du(F ; V) ; W

)
= 1

4εvεw

[
F(U+ εvV+ εwW) − F(U− εvV + εwW) − F(U+ εvV− εwW) + F(U− εvV− εwW)

]
.

(27)

Again, following Eq. (26), εv and εw are the optimal ε values normalized by its corresponding vectors V and W, respectively.
Note that the improved version of the Hessian-free method in Eq. (27) is applicable regardless the tensor contraction is 

with two identical vectors (e.g., FUU · V · V) or with two distinct vectors (e.g., FUU · V ·W), hence it does not require separate 
formulations as in Eqs. (22) and (24).

The simplicity gain from the improved version of the system-free method is further rewarded when we apply it to the 
higher-order derivatives of F. Following the equivalent strategy, the tensor contraction of the third-order derivative of the 
flux function, FUUU with three distinct vectors, V, W, and X is written compactly as,

FUUU · V ·W · X ≈ Du

(
Du

(
Du(F ; V) ; W

)
; X

)

= 1

8εvεwεx

[
F(U+ εvV+ εwW+ εxX) − F(U− εvV+ εwW+ εxX)

− F(U+ εvV− εwW+ εxX) + F(U− εvV− εwW+ εxX)

− F(U+ εvV+ εwW− εxX) + F(U− εvV+ εwW− εxX)

+ F(U+ εvV− εwW− εxX) − F(U− εvV− εwW− εxX)

]
.

(28)

Let us consider the number of flux function calls of SF approximations to compare the performance gain from the 
recursive SF method. Comparing Eq. (24) and (28), for example, the numerical flux function needed to be called 28 times 
in the original SF method. However, the recursive SF method only requires eight evaluations. This is a huge improvement in 
both performance and compactness.

With the modified SF method in Eqs. (25) to (28), we can approximate all the tensor contractions needed for calculating 
temporal flux derivatives in Eqs. (14) to (19) without analytical derivations for Jacobian-like terms, giving the system inde-
pendence of the high-order scheme. We should note that the recursive modifications of the SF method presented in this 
section do not affect the solution’s accuracy and stability compared to the original SF method.

6. Stepwise implementation of recursive SF-PIF method

In this section, we summarize the SF-PIF method proposed in this study in a stepwise fashion. We intend to provide those 
who want to implement SF-PIF in their codes with a bird-eye view of SF-PIF. Also provided in Appendix A are pseudo-codes 
describing Eqs. (25), (26), (27), and (28) with extra stepwise details. Below, we omit the discretization indices i, j, k and n
for simplicity in representing the conservative variables Un

i jk and the corresponding fluxes Fn
i jk = (Fni jk, G

n
i jk, H

n
i jk).

Step 1: Calculate ∇ f = Fx + Gy + Hz via the standard fourth-order accurate, five-point central differencing scheme on 
every grid point and save them. These saved flux divergences will be used as inputs for the central differencing formulae 
in the following steps to get higher-order spatial derivatives.
Step 2: Apply the Jacobian approximation in Eq. (25) in preparation for Ft as expressed in Eq. (14), and construct 
the second-order temporally averaged flux Fappx,2 = F + �tFt/2. Apply the similar procedures to y− and z-directional 
fluxes to obtain Gappx,2 and Happx,2. This finalizes the second-order temporal approximations of pointwise fluxes in all 
directions.
Step 3: Given the pointwise conservative variables U and the divergence of fluxes ∇ f from Step 1, calculate 
Ux, Uy, Uz, ∇ f

x , ∇ f
y , and ∇ f

z via the same five-point central differencing operator in Step 1. They will be used as building 
blocks for constructing Ftt , Gtt and Htt in the following steps.
Step 4: Apply the Jacobian and Hessian approximations in Eqs. (25) and (27) to the spatially approximated derivative 
quantities in Step 3 in order to compute ∇ f

t by following the explicit expression in Eq. (16).
Step 5: Apply the Jacobian approximation in (25) to ∇ f

t from Step 4 and the Hessian approximation in (27) to ∇ f from
Step 1 in order to get Ftt using Eq. (15); add the computed Ftt to the results of Step 2 to update the second-order 
temporal fluxes in Step 2 to the third-order temporally averaged flux, Fappx,3 = Fappx,2 + �t2Ftt/6. Perform the similar 
procedures in y− and z-directions to obtain Gappx,3 and Happx,3. This finalizes the third-order temporal approximations 
of pointwise fluxes in all directions.
Step 6: Using the five-point central differencing, compute the fourth-order accurate approximations of the sec-
ond derivatives and the mixed-derivatives of the conservative variables and the divergence of fluxes to obtain 
Uxx, Uxy, Uyy, . . . etc. and ∇ f

xx, ∇ f
xy, ∇ f

yy, . . . etc.
7
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Step 7: Apply the tensor contractions of the first, second, and third-order flux derivatives in Eqs. (25), (27), and (28) to 
the quantities computed and stored from the previous steps in order to calculate ∇ f

tt and ∇ f
tx by following the explicit 

relations in Eqs. (18) and (19) respectively. Also calculate ∇ f
ty and ∇ f

tz similarly.
Step 8: Next, perform the last set of tensor contractions in Eqs. (25), (27), and (28) to construct Fttt as expressed in 
Eq. (17). Add the resulting Fttt to the result of Step 5 to obtain the fourth-order temporally averaged flux, Fappx,4 =
Fappx,3 + �t3Fttt/24. Perform the similar procedures in y− and z-directions to obtain Gappx,4 and Happx,4. This finalizes 
the fourth-order temporal approximations of pointwise fluxes in all directions.
Step 9: Proceed with the conventional FDM procedures for high-order spatial accuracy, viz., apply a high-order recon-
struction method with a characteristic flux-splitting strategy in Eq. (9) to the results, Fappx,4, Gappx,4, and Happx,4, from
Step 8. For example, taking WENO-JS as a reconstruction method using Fappx,4 ensures a temporally fourth-order and 
spatially fifth-order accurate approximation to the numerical flux, f̂ = WENO-JS

(
Fappx,4

) + O(�x5, �t4). Perform the 
similar procedures in y− and z-directions to obtain ĝ and ĥ.
Step 10: Lastly, update the solution following Eq. (10).

7. Numerical test results

This section presents numerical results of well-known test problems for benchmarking the modified SF-PIF methods’ 
capabilities. We mainly compare the results from the third-order and the fourth-order temporal methods of SSP-RK and 
SF-PIF. We used the well-known three-stages, third-order SSP-RK method [43] and the five-stages, fourth-order SSP-RK 
method [44] (RK3 and RK4 hereafter) for the comparisons of the third-order and fourth-order SF-PIF methods (SF-PIF3 and 
SF-PIF4 hereafter), respectively.

The main purpose of this section is to demonstrate that the proposed recursive SF-PIF methods produce the same quality 
of solutions, with less CPU time in the light of the single-stage time update, as compared to RK3 and RK4 methods applied 
to FDM discretizations. We use the conventional fifth-order WENO-JS [5] spatial reconstruction method for all simulations; 
thus, we expect fifth-order spatial accuracy O(�x5) combined with third O(�t3) or fourth-order O(�t4) temporal accuracy 
for all numerical results. The fixed Courant numbers, Ccfl = 0.4 and Ccfl = 0.3, are used for all 2D and 3D simulations, 
respectively.

The SF-PIF source code described and used for producing the results in this paper is available at

https://github.com/ylee88/SlugCode2.

The source code and the contents available in GitHub are licensed under the MIT License.

7.1. 2D Euler equations

7.1.1. The Sod’s shock tube test (rotated 45◦)
We start with the classical shock tube problem of Sod [45], testing a numerical scheme’s ability to capture the three 

wave families of the 1D Riemann problem: a shock, contact discontinuity, and rarefaction fan. Although Sod’s problem is a 
1D shock tube problem originally, we implement the test in a 2D domain by tilting the shock wave direction by the angle of 
θ = 45◦ . We adopt the idea of Kawai [46], where the initial conditions are repeated multiple times along the direction of the 
wave propagation so that the problem may be executed with periodic boundary conditions. Explicitly, the initial condition 
is given as,

(ρ,u, v, p) =
{

(1,0,0,1) for x‖ ≤ 0.5, 1.5 < x‖ ≤ 2.5, 3.5 < x‖ ≤ 4,

(0.125,0,0,0.1) for 0.5 < x‖ ≤ 1.5, 2.5 < x‖ ≤ 3.5,
(29)

where x‖ = x cos θ + y sin θ is the direction parallel to the wave propagation. The simulation domain is a periodic box of 
[0, 2/ cos θ] × [0, 2/ sin θ]. For the final result profiles, we take only the bottom-left quarter of the diagonal axis, 0 ≤ x‖ ≤ 1; 
thus, the number of data points of the result profiles would be a quarter of the grid resolution in x and y, N‖ = Nx/4 =
Ny/4.

The 45◦-angled Sod’s shock tube test results at t = 0.2 are depicted in Fig. 1. We used the grid resolution of Nx = Ny =
1024; thus, the figure shows an N‖ = 256 number of data points along with the diagonal axis, x‖ . As shown in Fig. 1, SF-PIF 
methods produce fairly comparable results to those of RK3 and RK4, except for the small oscillation in the shock front of 
x-velocity. This issue was already discussed in our previous study [33], where the oscillations are originated from the central 
differencing formulae that we used for getting spatial derivatives. We can minimize the oscillation by applying WENO-like
differencing introduced in the appendix of [33]. However, we choose to use the conventional central differencing formulae 
for this study as we did not observe any unphysical oscillations for the rest of the test problems.

7.1.2. The Shu-Osher problem (rotated 45◦)
Our next choice of test problem is the Shu-Osher problem [47] that describes the interactions between a Mach 3 shock 

and a smooth density profile. Initially, a Mach 3 shock wave travels to the right through a sinusoidally perturbed density 
8
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Fig. 1. One-dimensional profiles of the inclined Sod’s shock tube problem along the x‖ direction, displaying the fluid density ρ , the x-velocity u, and the 
thermal pressure p, illustrated at t = 0.2. All simulations performed in a 2D simulation box of [1024 ×1024] grid resolution, but the number of data points 
on each panel is N‖ = 256, as we only take the first quarter of the diagonal axis for the shown profiles. (left column) The profiles solved by RK3 (top) and 
SF-PIF3 (bottom). (right column) The profiles solved by RK4 (top) and SF-PIF4 (bottom).

profile. As the shock wave propagates along the perturbed region, the profile gets compressed, resulting in a frequency-
doubled region behind the shock. As the shock wave moves further to the right, the doubled-frequency region returns 
to its original frequency, at which point it becomes a sequence of sharp profile instead of smooth sine wave due to the 
shock-steepening.

We performed the Shu-Osher problem in 2D by inclining the shock wave direction by an angle of θ = 45◦ , similar 
to what we did in the Section 7.1.1. We use periodic boundary conditions in both directions of the simulation domain 
[0, 20/ cos θ] × [0, 20/ sin θ]. The grid resolution is Nx = Ny = 1024; thus, the effective resolution N‖ is 256 as we take only 
the bottom-left quarter of x‖ to report the 1D profiles.

The density profiles along the x‖ direction are given in Fig. 2. The four different temporal method choices (RK3, RK4, 
SF-PIF3, and SF-PIF4) produce reasonably acceptable solution profiles capturing the high-frequency amplitudes fairly well in 
the frequency-doubled region. We see that the results of RK3 and RK4 are nearly identical, while SF-PIF3 and SF-PIF4 show 
slight differences near the highest amplitudes. Generally, RK methods capture the amplitudes marginally better, but in the 
left-most part of the double-frequency region, x ≈ 5.8, SF-PIF methods capture the highest peak of the amplitude better 
than the RK methods near the transition between the frequency doubling and the shock steepened perturbations.

7.1.3. Isentropic vortex advection
The isentropic vortex advection problem [48] is one of the most popular test choices to measure the simulation code’s 

accuracy and performance. Although the problem is fully nonlinear, the exact solution is always existent in the form of its 
initial condition, from which an isentropic vortex is advected through periodic boundaries. We can evaluate the accuracy 
of a method on nonlinear problems by comparing the final result with its initial condition. Here, we adopt the idea from 
Spiegel [49], where the simulation domain size is doubled up as [0, 20] × [0, 20] to prevent vortex-vortex couplings near 
the periodic boundaries.
9
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Fig. 2. One dimensional density profiles along the x‖ direction of the inclined Shu-Osher problem at t = 1.8. The solid line represents the reference solution, 
solved by RK4 with 1024 data points in the diagonal axis, i.e., N‖ = 1024. All other solutions, represented by the symbols, are resolved on an N‖ = 256
grid resolution in the diagonal axis. The detailed view of the high-frequency region is shown on the right panel.

Fig. 3. The L1 errors of the isentropic vortex advection test problem with respect to the grid resolutions (left); with respect to the computation time (right).

The results of L1 errors on six different grid resolutions, Nx = Ny = 120, 200, 400, 800, 1600, and 3200, are plotted in 
the left panel of Fig. 3. As expected, all temporal methods follow the convergence line of order ∼ O(�x4.6), which is nearly 
the same as WENO’s fifth-order spatial accuracy. However, at the critical grid resolution, Nx = Ny = 1600, the third-order 
temporal methods of RK3 and SF-PIF3 start to degrade the whole solution accuracy. This behavior can be explained that the 
errors from the fifth-order spatial WENO solver are dominant on the grid resolutions up to Nx = Ny = 1600, after which 
the truncation errors associated with the third-order temporal integrators become dominant over the error of the fifth-
order spatial solver. This result tells us the significance of high-order temporal updates in fine grid resolutions: a high-order 
spatial method does require a comparably high-order temporal method to retain the overall quality of the solutions, partic-
ularly when we are motivated to add more grid resolutions to resolve finer scales more accurately. Otherwise, the temporal 
solver’s lower order accuracy can potentially degrade the solution accuracy, contradicting the intended motivation. A di-
rect consequence of this observation applies to CFD simulations on an adaptive mesh refinement (AMR) configuration. For 
example, consider a mediocre low-order temporal method is integrated with a high-order spatial solver. This combination 
of such two solvers creates a computational dilemma of not making any further enhancement in solution accuracy as the 
computational grids are progressively refined to improve the quality of the AMR solutions. Instead, the solution accuracy is 
to be bounded by the lower temporal accuracy.

To compare the computational performance over the four different temporal integrators, we present L1 errors as a 
function of CPU time data on the right panel of Fig. 3. The drop of the convergence rates is again observed in the two third-
order solutions of RK3 and SF-PIF3 at the critical resolution Nx = Ny = 1600. On the contrary, the two fourth-order solutions 
of RK4 and SF-PIF4 continue at fourth-order without any change. Up to this resolution, SF-PIF3 is the fastest in reaching any 
given target L1 error threshold in CPU time. However, on any grid resolutions finer than the critical resolution, SF-PIF3’s L1
10
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Table 1
The L1 errors, the rates of convergence, and the computation times for the vortex advection test solved using RK3 and SF-PIF3 
methods (top); using RK4 and SF-PIF4 methods (bottom). All simulation runs are performed on the four 20-cores Cascade Lake 
Intel Xeon processors, utilized 64 parallel threads. CPU times are measured in seconds, averaged over 10 individual runs.
Nx = Ny RK3 SF-PIF3

L1 error L1 order CPU Time Speedup L1 error L1 order CPU Time Speedup

120 6.31× 10−2 – 1.50 s 1.0 6.16× 10−2 – 0.71 s 0.48
200 8.20× 10−3 4.00 6.17 s 1.0 7.96× 10−3 4.00 2.77 s 0.45
400 4.02× 10−4 4.35 45.44 s 1.0 3.86× 10−4 4.37 19.89 s 0.44
800 1.57× 10−5 4.68 372.47 s 1.0 1.51× 10−5 4.68 153.92 s 0.41
1600 7.18× 10−7 4.45 2957.26 s 1.0 6.95× 10−7 4.44 1203.10 s 0.41
3200 5.72× 10−8 3.65 23274.37 s 1.0 5.60 × 10−8 3.63 9494.65 s 0.41

Nx = Ny RK4 SF-PIF4

L1 error L1 order CPU Time Speedup L1 error L1 order CPU Time Speedup

120 6.30× 10−2 – 2.50 s 1.0 6.14× 10−2 – 1.47 s 0.59
200 8.15× 10−3 4.00 10.42 s 1.0 7.91× 10−3 4.01 5.33 s 0.51
400 4.01× 10−4 4.35 78.47 s 1.0 3.85× 10−4 4.36 35.89 s 0.46
800 1.51× 10−5 4.73 641.50 s 1.0 1.46× 10−5 4.72 270.94 s 0.42
1600 5.33× 10−7 4.82 5115.47 s 1.0 5.21× 10−7 4.81 2091.20 s 0.41
3200 2.17× 10−8 4.62 40195.034 s 1.0 2.15× 10−8 4.60 16377.73 s 0.41

error drops to the third-order convergence, which ultimately crosses the SF-PIF4’s fourth-order straight convergence line at 
Nx = Ny = 104, beyond which its error will remain larger than the ones from the fourth-order temporal schemes as long as 
the convergence rate follows the pattern at the high-resolution tail.

On the other hand, it is distinctively superior to see that SF-PIF4’s solution reaches any fixed target error in a faster CPU 
time than the third-order RK3’s solution while keeping the numerical errors as low as RK4 results at each grid resolution. 
The detailed simulation data from the vortex advection tests are presented in Table 1. All performance results are measured 
in second, averaged over 10 simulation runs conducted on two nodes of the UC Santa Cruz’s high-performance computer, 
lux. Each node has two 20-core Cascade Lake Intel Xeon processors, and we utilized 64 parallel threads for each simulation 
run.

7.1.4. 2D Riemann problem: Configuration 3
To test the methods’ ability to capture the complex fluid structures in 2D, we performed a two-dimensional Riemann 

problem called Configuration 3. This specific setup and other types of configurations have been extensively studied in [50–
52] and have been adopted as popular benchmark test problems. To set up Configuration 3, we follow the initial condition 
from [53,32,33]. We conducted numerical experiments on a 1600 × 1600 grid resolution, which is generally considered as 
a very high resolution in 2D. This grid resolution choice is made based on our observation in Section 7.1.3 to make sure 
that the temporal errors are comparable to or dominant over the spatial errors; thereby, we can anticipate temporal error 
dominant results that allow us to focus on the effects of the four different temporal solvers.

The results at t = 0.8 are shown in Fig. 4. The pseudo-colors represent the density map ranging between [0.1, 1.8], and 
40 contour lines within the same range are over-plotted as solid black lines. We see that all four different temporal schemes 
produce well-known, acceptable results, keeping the assumed diagonal symmetry exceptionally well on this high resolution. 
This problem is highly nonlinear, involving formations of the upward-moving jet, the downward-moving mushroom-jet, 
secondary Kelvin-Helmholtz instabilities exhibited as the small-scale vortical rollups along the slip lines and along the stems 
of the two jets. As such, it is a non-trivial task to address if a method under consideration is better or worse based on the 
number of such rollups in the simulations (see our discussion in [33]). At best, such quantification can only provide proof 
of intrinsic information about the amount of numerical dissipation of each method. From this perspective, we conclude that 
the two SF-PIF solutions produce the equivalent amount of vortical rollups compared with the corresponding RK solutions, 
confirming the SF-PIF methods’ validity.

7.1.5. Double Mach reflection
Our final 2D test case is the double Mach reflection test that launches a strong Mach 10 shock with 60◦ of an incident 

angle between the shock plane and the bottom reflecting wedge. The initial condition is the same as the original setup 
introduced by Woodward and Colella [2], except that we doubled the y-domain size following [54] to prevent numerical 
artifacts from the top boundary interaction with the secondary shock wave and the slip line.

The density results are presented in Fig. 5. The density color map ranges between [1.3, 22.6], and the solid black lines 
represent 40 levels of the density contour lines with the same range. The figures are zoomed-in near the vicinity of the jet 
and the primary triple point, which is widely considered the main area of interest in the Double Mach Reflection test. All 
simulation runs are performed on a 4096 × 2048 grid resolution.

The results from the third- and fourth-order SF-PIF methods produce well-acceptable results compared to the corre-
sponding RK methods. Except that there are minor differences in the shape of Kelvin-Helmholtz instabilities along the 
11



Fig. 4. The density maps of Configuration 3 at t = 0.8. (left column) The solutions using RK3 (top) and SF-PIF3 (bottom). (right column) The solutions using 
RK4 (top) and SF-PIF4 (bottom). Forty levels of black contour lines are over-plotted in each figure with the same range of the color map. All simulations 
are performed on a 1600 × 1600 grid resolution.

primary slip line and the bottom jet, the overall dynamics of the two SF-PIF solutions match well with the RK solutions, 
validating the fidelity of the proposed SF-PIF methods in the presence of a strong shock.

7.2. 3D Euler equations

7.2.1. 3D Sedov test
To test the code’s ability to maintain the spherical symmetry in all spatial directions, we consider the Sedov blast 

test [55] in 3D. Initially, a point-source of a highly pressurized perturbation is given at the domain center, which leads 
to a strong spherical shock wave propagating outward from the source. The simulation domain is a 3D square box of 
[−1.2, 1.2] × [−1.2, 1.2] × [−1.2, 1.2] resolved on a 128 × 128 × 128 grid resolution. Outflow boundary conditions are 
imposed in all directions. The initial conditions are based on the setup found in [56], but we choose the deposited energy, 
Etot = 0.851072, according to the setup in [57].

Fig. 6 shows the density profiles at t = 1 along the diagonal (x = y = z) and the x-axis (y = z = 0). The results on the 
left panel are solved with the RK4 method and the right panel with SF-PIF4. The exact self-similar solution is plotted as a 
reference solution in solid black curves on both figures. As shown, both the RK4 and SF-PIF4 methods show nearly identical 
results. Despite the visible differences between the diagonal and the x-axis profiles, especially at the highest peak and the 
shock front location, both fourth-order temporal solvers show well-maintained reflectional symmetry along the normal axis 
at the origin.
Y. Lee, D. Lee and A. Reyes Journal of Computational Physics: X 12 (2021) 100098
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Fig. 5. The density map of the double Mach reflection test at t = 0.25 zoomed-in near the jet. Forty levels of contour lines are over-plotted in solid black 
curves with the same range of the color map. All simulation results are performed on a 4096 × 2048 grid resolution. (left column) The solutions using RK3 
(top) and SF-PIF3 (bottom). (right column) The solutions using RK4 (top) and SF-PIF4 (bottom).

Fig. 6. The density profiles of the 3D Sedov explosion test at t = 1. The red triangles represent the density profiles along the x-axis from the origin, while 
the blue circles represent the density profiles along the diagonal axis. The solid black line is the well-known exact self-similar solution. All simulations are 
performed on a 128 × 128 × 128 grid resolution, solved with RK4 (left) and SF-PIF4 (right) temporal solvers.
13
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Fig. 7. The density profiles of the 3D Sod’s blast test at t = 0.25. The red triangles represent the density profiles along the x-axis from the origin, and the 
blue circles represent the density profiles along the diagonal axis. The solid black curve is the reference solution calculated with the 1D Euler equations 
with the geometric source term. Simulations are performed on a 256 × 256 × 256 grid resolution, solved with RK4 (left) and SF-PIF4 (right) temporal 
solvers.

Table 2
Performance results for the 3DRP test problem. All performance results (measured in seconds) are averaged over five simulation runs 
conducted on 16 nodes of lux cluster. Each node has 2 × 20-core Intel Xeon Gold 6248 (Cascade Lake) CPUs, and we utilized 512 
parallel threads for each run.
Grid Resolution RK3 SF-PIF3 RK4 SF-PIF4

CPU Time Speedup CPU Time Speedup CPU Time Speedup CPU Time Speedup

64× 64 1.79 s 1.0 1.09 s 0.61 2.95 s 1.64 2.67 s 1.49
128× 128 15.62 s 1.0 7.63 s 0.49 25.88 s 1.66 18.97 s 1.21
256× 256 191.00 s 1.0 82.02 s 0.43 321.34 s 1.68 201.40 s 1.05
512× 512 2679.85 s 1.0 1173.54 s 0.44 4507.88 s 1.68 2817.78 s 1.05

7.2.2. 3D Sod’s blast explosion test
Next, we consider the 3D explosion test problem found in [57]. This test is a three-dimensional extension of the 1D Sod’s 

shock tube problem [45], which we already solved in a rotated 2D shock-tube configuration in Section 7.1.1. The calculations 
are performed on a [−1, 1] × [−1, 1] × [−1, 1] domain with outflow boundary conditions using a 256 × 256 × 256 grid 
resolution.

The results of the density profiles along the diagonal (x = y = z) and x-axis (y = z = 0) at t = 0.25 are presented in Fig. 7. 
The solid black curve represents the reference solution using the 1D Euler equations with the appropriate geometric source 
term according to [57]. The results show that the SF-PIF4 solver captures the shock profile and the spherical symmetry 
exceedingly well compared to the RK4 result and the reference 1D solution. There is no noticeable difference between the 
two fourth-order temporal solvers.

7.2.3. 3D Riemann problem
Finally, we performed the 3D Riemann problem presented in [58]. We follow the same initial conditions, consisting of 

eight constant initial conditions in each octant of the computational domain, [−1, 1] × [−1, 1] × [−1, 1], resolved on a 
256 ×256 ×256 grid resolution. The setup imposes outflow boundary conditions at all boundaries. The initial condition will 
carry out 2D Riemann problems at each octant interface, including the diagonal plane of the 3D computational cubic.

The resulting density profiles at t = 0.53 are given in Fig. 8. The pseudo-color map ranges between [0.5, 2.65], and we 
over-plot 40 levels of contour lines using the same range. We observe three different 2D Riemann problems on the left, 
top, and the diagonal planes in the left panel. The diagonal planes are separately shown in the right panel. SF-PIF4 method 
is able to capture all the important features as much as the RK4 result, confirming the validity of the SF-PIF4 method in 
comparison.

Table 2 shows the performance results for the 3D Riemann problem test on four grid resolutions. As shown in the table, 
the SF-PIF4 method demonstrates nearly the same performance as the third-order RK method, especially in high-resolution 
cases. We should note that the performance gains from the SF-PIF methods are more compensated on the high-resolution 
grids, which are indispensable for high fidelity physical simulation studies.

8. Conclusion

In this study, we have extended the original third-order (non-recursive) SF-PIF method [33] to a fourth-order temporal 
scheme with the improved recursive version of the system-free (SF) approach. The newly proposed recursive SF approach 
14
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Fig. 8. The density maps of the 3D Riemann problem test at t = 0.53. Forty contour lines are over-plotted. The left panels show each face’s geometrical 
views, while the right panels show the detailed picture of the diagonal planes. All simulations are performed on a 256 × 256 × 256 grid resolution, solved 
with RK4 (top) and SF-PIF4 (bottom) solvers.

enables the fourth-order extension of the SF-PIF method (SF-PIF4), increasing computational performance gain with a sim-
plistic code structure.

The original SF approach’s critical design purpose [33] is to bypass all the analytical derivations of Jacobians, Hessians, 
and even higher-order derivatives tensor terms. With the SF approach, approximating the tensor contractions of Jacobian-like
terms in the Lax-Wendroff type time discretization becomes simplified.

In this paper, the SF method’s advantage is further enhanced by introducing a new recursive procedure. The recursive 
SF method requires only a small amount of calculations for approximating the tensor contractions, thereby empowering the 
fourth-order extension of the SF-PIF method to ease and faster performance.

We have tested our fourth-order and third-order SF-PIF methods with a wide range of test problems in two and 
three spatial dimensions. The results show the SF-PIF methods have significantly faster computational time perfor-
mance than the corresponding SSP-RK methods at the same temporal order while maintaining the equivalent solu-
tion accuracy. In two-dimensional cases, SF-PIF methods show more than two times faster performance results than 
the SSP-RK counterparts. Moreover, we demonstrate that the fourth-order SF-PIF’s performance results are nearly the 
same as the third-order SSP-RK method. This enhanced performance gain in our SF-PIF solvers can provide a big leap 
in large-scale parallel computing to save computational costs and reach highly accurate numerical predictions in prac-
tice.
15
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We believe the recursive SF method has a broad potential to be relevant in various fields of study. It is neither designed 
particularly for the PIF method nor any specific numerical methods in computational fluid dynamics. Instead, it is solely 
intended for approximating the Jacobian-like tensor contractions. We presume that our recursive SF schemes are applicable 
in other numerical algorithms to enhance the calculation speed and ease the code implementations wherever the Jacobians, 
Hessians, or higher derivative tensors are required.

A further extension is to design the SF-PIF method in arbitrary order. As reported in Section 7.1.3, the temporal er-
rors dominate the spatial errors in high-resolution simulations; thus, it is noteworthy to use the same accuracy in both 
the spatial and temporal solvers. We realize that a naive extension of the SF-PIF method to the fifth or higher-order 
could potentially be less attractive due to the drastic increase of complexity in Taylor expansion. We aim to reduce such 
complexity and make the SF-PIF method an arbitrary order of accuracy, which will be further investigated in our future 
studies.
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Appendix A. Pseudocodes for recursive system-free approach

We present four pseudocodes of functions, each of which implements Eqs. (25), (26), (27), and (28), respectively. We 
assume that the ConsToFlux function is defined externally, which takes conservative variables as inputs and return the 
corresponding flux functions, which vary with the system of equations. For instance, in the case with the Euler’s equations,
ConsToFlux returns the flux functions as prescribed in Eq. (2).

Algorithm 1: A pseudocode for Eq. (26).
1 Function GetEpsilon(V):

Input : V is an arbitrary vector with the same dimension of U
Output : εv is an optimal ε value normalized with V

2 return min

(
�t,

√
4.8062 × 10−6

‖V‖2

)

3 end

Algorithm 2: A pseudocode for Eq. (25).
1 Function GetFuV(U, V):

Input : U is a vector of conservative variables;
V is an arbitrary vector with the same dimension of U

Output : FU · V
2 εv ← GetEpsilon(V)
3 F1 ← ConsToFlux(U + εvV)
4 F2 ← ConsToFlux(U − εvV)

5 return
F1 − F2
2εv

6 end
16
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Algorithm 3: A pseudocode for Eq. (27).
1 Function GetFuuVW(U, V, W):

Input : U is a vector of conservative variables;
V and W are arbitrary vectors with the same dimension of U

Output : FUU · V · W
2 εv ← GetEpsilon(V)
3 εw ← GetEpsilon(W)
4 C1 ← εvV + εwW
5 C2 ← εvV − εwW
6 F1 ← ConsToFlux(U + C1)
7 F2 ← ConsToFlux(U + C2)
8 F3 ← ConsToFlux(U − C2)
9 F4 ← ConsToFlux(U − C1)

10 return
F1 − F2 − F3 + F4

4εvεw
11 end

Algorithm 4: A pseudocode for Eq. (28).
1 Function GetFuuuVWX(U, V, W, X):

Input : U is a vector of conservative variables;
V, W, and X are arbitrary vectors with the same dimension of U

Output : FUUU · V · W · X
2 εv ← GetEpsilon(V)
3 εw ← GetEpsilon(W)
4 εx ← GetEpsilon(X)
5 C1 ← εvV + εwW + εxX
6 C2 ← εvV − εwW − εxX
7 C3 ← εvV − εwW + εxX
8 C4 ← εvV + εwW − εxX
9 F1 ← ConsToFlux(U + C1)

10 F2 ← ConsToFlux(U − C2)
11 F3 ← ConsToFlux(U + C3)
12 F4 ← ConsToFlux(U − C4)
13 F5 ← ConsToFlux(U + C4)
14 F6 ← ConsToFlux(U − C3)
15 F7 ← ConsToFlux(U + C2)
16 F8 ← ConsToFlux(U − C1)

17 return
F1 − F2 − F3 + F4 − F5 + F6 + F7 − F8

8εvεwεx
18 end
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