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SEQUENTIAL QUADRATIC OPTIMIZATION FOR NONLINEAR
EQUALITY CONSTRAINED STOCHASTIC OPTIMIZATION\ast 
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Abstract. Sequential quadratic optimization algorithms are proposed for solving smooth non-
linear optimization problems with equality constraints. The main focus is an algorithm proposed
for the case when the constraint functions are deterministic, and constraint function and derivative
values can be computed explicitly, but the objective function is stochastic. It is assumed in this
setting that it is intractable to compute objective function and derivative values explicitly, although
one can compute stochastic function and gradient estimates. As a starting point for this stochastic
setting, an algorithm is proposed for the deterministic setting that is modeled after a state-of-the-
art line-search SQP algorithm but uses a stepsize selection scheme based on Lipschitz constants (or
adaptively estimated Lipschitz constants) in place of the line search. This sets the stage for the
proposed algorithm for the stochastic setting, for which it is assumed that line searches would be
intractable. Under reasonable assumptions, convergence (resp., convergence in expectation) from
remote starting points is proved for the proposed deterministic (resp., stochastic) algorithm. The
results of numerical experiments demonstrate the practical performance of our proposed techniques.
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1. Introduction. We consider the design of algorithms for solving smooth non-
linear optimization problems with equality constraints. Such problems arise in various
important applications throughout science and engineering, including optimal control,
PDE-constrained optimization, network flow, and resource allocation [1, 2, 20, 30].

Numerous algorithms have been proposed for solving deterministic equality con-
strained optimization problems. Penalty methods [11, 14], including augmented La-
grangian methods [10, 18, 26], attempt to solve such problems by penalizing con-
straint violation through an objective term---weighted by a penalty parameter---and
employing unconstrained optimization techniques for solving (approximately) a cor-
responding sequence of penalty subproblems. Such algorithms can behave poorly due
to ill-conditioning and/or nonsmoothness of the penalty subproblems, depending on
the type of penalty function employed. Their performance also often suffers due to
sensitivity to the scheme for updating the penalty parameter.

Algorithms that consistently outperform penalty methods are those based on
sequential quadratic optimization (commonly known as SQP), which in this setting
of equality constrained optimization is intimately connected to the idea of applying
Newton's method to stationarity conditions of the problem [35]. In particular, it is
commonly accepted that one of the state-of-the-art algorithms for solving equality
constrained optimization problems is such an SQP method that chooses stepsizes
based on a line search applied to an exact penalty function [15, 16, 27]. In such a
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method, the penalty function acts as a merit function only. It does not influence the
computed search direction; it only influences the computed stepsize.

Significantly fewer algorithms have been proposed for solving equality constrained
stochastic optimization problems. In particular, in this paper, we focus on such prob-
lems with constraint functions that are deterministic, but objective functions that
are stochastic, in the sense that the objective is an expectation of a function defined
with respect to a random variable with unknown distribution. (Various modeling
paradigms have been proposed for solving problems involving stochastic constraints.
These are out of our scope; we refer the reader to [31].) We assume that it is in-
tractable to compute objective function and gradient values, although one is able to
compute (unbiased) stochastic gradient estimates. A few algorithms have been pro-
posed that may be employed in this setting [9, 19, 23, 28], but these are based on
penalty methodologies, so do not benefit from advantages of SQP techniques. Let us
also mention various proposed stochastic Frank--Wolfe algorithms [17, 21, 22, 29, 36]
for (non)convex stochastic optimization with convex constraints. These are not ap-
plicable for our setting of having general nonlinear equality constraints.

1.1. Contributions. In this paper, we propose two algorithms modeled after the
aforementioned line-search SQP methodology. Our primary focus is an algorithm for
the aforementioned setting of a problem with deterministic constraint functions, but a
stochastic objective function. However, as a first step for considering this setting, we
begin by proposing an algorithm for the deterministic setting that employs an adaptive
stepsize selection scheme that makes use of Lipschitz constants (or adaptively updated
Lipschitz constant estimates) rather than a line search. Based on this algorithm for
the deterministic setting, we propose our algorithm for the stochastic setting that also
uses Lipschitz constants (or, in practice, estimates of them) for stepsize selection.

We prove under common assumptions that our deterministic algorithm has con-
vergence guarantees that match those of a state-of-the-art line-search SQP method.
In addition, we prove under loose assumptions that our stochastic algorithm of-
fers convergence guarantees that can match those of our deterministic algorithm
in expectation. In particular, the results that we prove for our stochastic algo-
rithm are of the type offered by stochastic gradient schemes for unconstrained op-
timization [4]. An additional challenge for constrained stochastic optimization is
potentially poor behavior of an adaptive merit function parameter that balances
emphasis between minimizing constraint violation and reducing the objective func-
tion. To address this, in addition to our aforementioned convergence analysis, which
considers the behavior of the algorithm under good behavior of this adaptive pa-
rameter, we prove under a pragmatic assumption that a certain type of poor be-
havior cannot occur, and another type of poor behavior occurs with probability
zero.

The results of numerical experiments show that our deterministic algorithm is as
reliable as a state-of-the-art line-search SQP method, although, as should be expected,
it is sometimes less efficient than such a method that performs line searches. Our
experiments with our stochastic algorithm show that it consistently and significantly
outperforms an approach that attempts to solve constrained problems by applying a
stochastic (sub)gradient scheme to minimize an exact penalty function.

1.2. Notation. Let \BbbR denote the set of real numbers (i.e., scalars), let \BbbR \geq r

(resp., \BbbR >r) denote the set of real numbers greater than or equal to (resp., greater
than) r \in \BbbR , let \BbbR n denote the set of n-dimensional real vectors, let \BbbR m\times n denote
the set of m-by-n-dimensional real matrices, and let \BbbS n denote the set of n-by-n-
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1354 BERAHAS, CURTIS, ROBINSON, AND ZHOU

dimensional symmetric matrices. The set of natural numbers is denoted as \BbbN :=
\{ 0, 1, 2, . . . \} . For any m \in \BbbN , let [m] denote the set of integers \{ 1, . . . ,m\} .

Each of our algorithms is iterative, generating a sequence of iterates \{ xk\} with
xk \in \BbbR n for all k \in \BbbN . The iteration number is also appended as a subscript to other
quantities corresponding to each iteration, e.g., fk := f(xk) for all k \in \BbbN .

1.3. Organization. Our algorithm for the deterministic setting is proposed and
analyzed in section 2. We present our analysis alongside that of a line-search SQP
method for ease of comparison with this state-of-the-art strategy. Our algorithm for
the stochastic setting is proposed and analyzed in section 3. The results of numerical
experiments are provided in section 4 and concluding remarks are offered in section 5.

2. Deterministic setting. Given an objective function f : \BbbR n \rightarrow \BbbR and a
constraint function c : \BbbR n \rightarrow \BbbR m, consider the optimization problem

(2.1) min
x\in \BbbR n

f(x) s.t. c(x) = 0.

We make the following assumption about the optimization problem (2.1) and the
algorithms that we propose, each of which generates an iterate sequence \{ xk\} \subset \BbbR n,
search direction sequence \{ dk\} \subset \BbbR n, and trial stepsize sequence \{ \alpha k,j\} \subset \BbbR >0.

Assumption 2.1. Let \scrX \subseteq \BbbR n be an open convex set containing the iterates \{ xk\} 
and trial points \{ xk + \alpha k,jdk\} . The objective function f : \BbbR n \rightarrow \BbbR is continuously
differentiable and bounded below over \scrX , and its gradient \nabla f : \BbbR n \rightarrow \BbbR n is Lipschitz
continuous with constant L and bounded over \scrX . The constraint function c : \BbbR n \rightarrow \BbbR m

(where m \leq n) and its Jacobian \nabla cT : \BbbR n \rightarrow \BbbR m\times n are bounded over \scrX , each gradient
\nabla ci : \BbbR n \rightarrow \BbbR n is Lipschitz continuous with constant \gamma i over \scrX for all i \in \{ 1, . . . ,m\} ,
and the singular values of \nabla cT are bounded away from zero over \scrX .

Most of the statements in Assumption 2.1 are standard smoothness assumptions;
see, e.g., [7, 33]. We do not assume that \scrX is bounded. The assumption that the
singular values of \nabla cT are bounded away from zero is equivalent to the linear in-
dependence constraint qualification (LICQ). This is a relatively strong assumption
in the literature on algorithms for solving constrained optimization problems, but it
holds for various real-world problems of interest [2], and in any case is reasonable in
our context due to the significant challenges that arise in the stochastic setting in
section 3.

Defining the Lagrangian \ell : \BbbR n \times \BbbR m \rightarrow \BbbR corresponding to (2.1) by \ell (x, y) =
f(x) + c(x)T y, first-order stationarity conditions for (2.1)---which are necessary due
to the inclusion of the LICQ in Assumption 2.1---are given by

(2.2) 0 =

\biggl[ 
\nabla x\ell (x, y)
\nabla y\ell (x, y)

\biggr] 
=

\biggl[ 
\nabla f(x) +\nabla c(x)y

c(x)

\biggr] 
.

A consequence of Lipschitz continuity of the constraint functions is the following.
Since this fact is well known and easily proved, we present it without proof.

Lemma 2.2. Under Assumption 2.1, it follows for any x \in \BbbR n, \alpha \in \BbbR >0, and
d \in \BbbR n such that (x, x+ \alpha d) \in \scrX \times \scrX that

| ci(x+ \alpha d)| \leq | ci(x) + \alpha \nabla ci(x)T d| + 1
2\gamma i\alpha 

2\| d\| 22 for all i \in [m]

and \| c(x+ \alpha d)\| 1 \leq \| c(x) + \alpha \nabla c(x)T d\| 1 + 1
2\Gamma \alpha 

2\| d\| 22 with \Gamma :=
\sum 

i\in [m] \gamma i.
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2.1. Merit function. As is common in SQP techniques, our algorithms use as
a merit function the \ell 1-norm penalty function \phi : \BbbR n \times \BbbR >0 \rightarrow \BbbR defined by

(2.3) \phi (x, \tau ) = \tau f(x) + \| c(x)\| 1.

Here, \tau \in \BbbR >0 is a merit parameter, the value of which is chosen in the algorithm
according to a positive sequence \{ \tau k\} that is set adaptively. We make use of a local
model of the merit function q : \BbbR n \times \BbbR >0 \times \BbbR n \times \BbbS n \times \BbbR n \rightarrow \BbbR defined by

q(x, \tau ,\nabla f(x), H, d) = \tau (f(x) +\nabla f(x)T d+ 1
2 max\{ dTHd, 0\} ) + \| c(x) +\nabla c(x)T d\| 1.

A critical quantity in our algorithms is the reduction in this model for a given d \in \BbbR n

with c(x) +\nabla c(x)T d = 0, i.e., \Delta q : \BbbR n \times \BbbR >0 \times \BbbR n \times \BbbS n \times \BbbR n \rightarrow \BbbR defined by

(2.4)
\Delta q(x, \tau ,\nabla f(x), H, d) := q(x, \tau ,\nabla f(x), H, 0) - q(x, \tau ,\nabla f(x), H, d)

=  - \tau (\nabla f(x)T d+ 1
2 max\{ dTHd, 0\} ) + \| c(x)\| 1.

The following lemma shows an important relationship between the directional deriv-
ative of the merit function and this model reduction function.

Lemma 2.3. Given (x, \tau ,H, d) \in \BbbR n \times \BbbR >0 \times \BbbS n \times \BbbR n with c(x) +\nabla c(x)T d = 0,

(2.5) \phi \prime (x, \tau , d) = \tau \nabla f(x)T d - \| c(x)\| 1 \leq  - \Delta q(x, \tau ,\nabla f(x), H, d),

where \phi \prime : \BbbR n \times \BbbR >0 \times \BbbR n \rightarrow \BbbR is the directional derivative of \phi at (x, \tau ) for d.

Proof. The first equation in (2.5) is well known; see, e.g., [25, Theorem 18.2].
On the other hand, from the definition (2.4) one finds that \Delta q(x, \tau ,\nabla f(x), H, d) =
 - \phi \prime (x, \tau , d) - 1

2\tau max\{ dTHd, 0\} \leq  - \phi \prime (x, \tau , d), which shows the inequality in (2.5).

2.2. Algorithm preliminaries. The algorithms that we discuss for solving
(2.1) are based on an SQP paradigm. Specifically, at xk for all k \in \BbbN , a search
direction dk \in \BbbR n is computed by solving a quadratic optimization subproblem based
on a local quadratic model of f and a local affine model of c about xk. Letting
fk := f(xk), gk := \nabla f(xk), ck := c(xk), and Jk := \nabla c(xk)

T for all k \in \BbbN and given a
sequence \{ Hk\} satisfying Assumption 2.4 below (a standard type of sufficiency con-
dition for equality constrained optimization), this subproblem is given by

min
d\in \BbbR n

fk + gTk d+
1
2d

THkd s.t. ck + Jkd = 0.

The optimal solution dk of this subproblem, and an associated Langrange multiplier
yk \in \BbbR m, can be obtained by solving the linear system of equations

(2.6)

\biggl[ 
Hk JT

k

Jk 0

\biggr] \biggl[ 
dk
yk

\biggr] 
=  - 

\biggl[ 
gk
ck

\biggr] 
.

Assumption 2.4. The sequence \{ Hk\} is bounded in norm by \kappa H \in \BbbR >0. In
addition, there exists a constant \zeta \in \BbbR >0 such that, for all k \in \BbbN , the matrix Hk has
the property that uTHku \geq \zeta \| u\| 22 for all u \in \BbbR n such that Jku = 0.

We stress that our algorithms and analysis do not assume that Hk is equal to the
Hessian of the Lagrangian at xk for some multiplier yk, although choosing \{ Hk\} in
this manner would be appropriate in order to ensure fast local convergence guarantees.
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1356 BERAHAS, CURTIS, ROBINSON, AND ZHOU

Since our focus is only on achieving convergence to stationarity from remote starting
points, we merely assume that \{ Hk\} satisfies Assumption 2.4.

Under Assumptions 2.1 and 2.4, the following results are well known in the liter-
ature.

Lemma 2.5. For all k \in \BbbN , the linear system (2.6) has a unique solution.

Lemma 2.6. For any k \in \BbbN , the solution (dk, yk) obtained by solving (2.6) has
dk = 0 if and only if the pair (xk, yk) satisfies (2.2).

2.3. Algorithms. In this section, we present two algorithms for solving prob-
lem (2.1). The first algorithm chooses stepsizes based on a rule using Lipschitz con-
stant estimates, which can be set adaptively. This algorithm is new to the literature
and establishes a foundation upon which our method for the stochastic setting will
be built. The second algorithm, by contrast, employs a standard type of backtrack-
ing line search. This algorithm is standard in the literature. We prove a convergence
theory for it alongside that for our newly proposed algorithm for illustrative purposes.

In both algorithms, after dk is computed, the merit parameter \tau k is set. This is
done by first setting, for some \sigma \in (0, 1), a trial value \tau trialk \in \BbbR >0 \cup \{ \infty \} by

(2.7) \tau trialk \leftarrow 

\Biggl\{ 
\infty if gTk dk +max\{ dTkHkdk, 0\} \leq 0,

(1 - \sigma )\| ck\| 1

gT
k dk+max\{ dT

k Hkdk,0\} 
otherwise.

(If ck = 0, then it follows from (2.6) and Assumption 2.4 that dTkHkdk \geq 0 and
gTk dk + dTkHkdk = 0, meaning \tau trialk \leftarrow \infty . Hence, \tau trialk < \infty requires \| ck\| 1 > 0, in
which case \tau trialk > 0.) Then, the merit parameter \tau k is set, for some \epsilon \in (0, 1), by

(2.8) \tau k \leftarrow 

\Biggl\{ 
\tau k - 1 if \tau k - 1 \leq \tau trialk ,

(1 - \epsilon )\tau trialk otherwise.

This ensures that \tau k \leq \tau trialk . Regardless of the case in (2.8), it follows that

(2.9) \Delta q(xk, \tau k, gk, Hk, dk) \geq 1
2\tau k max\{ dTkHkdk, 0\} + \sigma \| ck\| 1.

This inequality will be central in our analysis of both algorithms. In particular, it
will be useful when combined with the fact that each algorithm ensures that, for all
k \in \BbbN , the stepsize \alpha k \in \BbbR >0 is selected such that for \eta \in (0, 1) one finds

(2.10) \phi (xk + \alpha kdk, \tau k) \leq \phi (xk, \tau k) - \eta \alpha k\Delta q(xk, \tau k, gk, Hk, dk).

Remark 2.7. An alternative approach for setting the merit function parameter
is to set it based on the computed Lagrange multiplier estimate yk. For example,
in the context of our \ell 1-norm exact penalty function \phi (xk, \cdot ), one can ensure that
the computed search direction dk is a direction of descent for \phi (\cdot , \tau k) from xk if
\tau k < \| yk\|  - 1

\infty ; see, e.g., [25]. However, it is often better in practice to set it based on
ensuring sufficient reduction in a model of the merit function (see, e.g., [7, 8]).

Lemma 2.8. Under Assumption 2.1, the inner for loop in Algorithm 2.1 is well-
posed in that for any k \in \BbbN , it terminates finitely. In addition, for all k \in \BbbN ,

(2.11)
Lk \leq Lmax := max \{ L - 1, \rho L\} 

and \gamma k,i \leq \gamma max,i := max \{ \gamma  - 1,i, \rho \gamma i\} for all i \in [m].
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Algorithm 2.1 SQP Algorithm with Adaptive Lipschitz Constant Estimates.

Require: x0 \in \BbbR n; \tau  - 1 \in \BbbR >0; \epsilon \in (0, 1); \sigma \in (0, 1); \eta \in (0, 1); \rho \in \BbbR >1; L - 1 \in \BbbR >0;
\gamma  - 1,i \in \BbbR >0 for all i \in [m]

1: for all k \in \BbbN do
2: Compute (dk, yk) as the solution of (2.6)
3: if (xk, yk) satisfies (2.2) then return (xk, yk)
4: Set \tau trialk by (2.7) and \tau k by (2.8)
5: Initialize Lk,0 \in (0, Lk - 1] and \gamma k,i,0 \leftarrow (0, \gamma k - 1,i] for all i \in [m]
6: for all j \in \BbbN do
7: Set\left\{   \widehat \alpha k,j \leftarrow 2(1 - \eta )\Delta q(xk,\tau k,gk,Hk,dk)

(\tau kLk,j+
\sum 

i\in [m] \gamma k,i,j)\| dk\| 2
2\widetilde \alpha k,j \leftarrow \widehat \alpha k,j  - 4\| ck\| 1

(\tau kLk,j+
\sum 

i\in [m] \gamma k,i,j)\| dk\| 2
2

\right\}   ; \alpha k,j \leftarrow 

\left\{     
\widehat \alpha k,j if \widehat \alpha k,j < 1

1 if \widetilde \alpha k,j \leq 1 \leq \widehat \alpha k,j\widetilde \alpha k,j if \widetilde \alpha k,j > 1

8: if (2.10) or (2.12) holds then
9: Set Lk \leftarrow Lk,j and \gamma k,i \leftarrow \gamma k,i,j for all i \in [m]

10: Set \alpha k \leftarrow \alpha k,j and xk+1 \leftarrow xk + \alpha kdk and break (loop over j \in \BbbN )
11: else
12: if (2.12a) (resp., (2.12b) for some i \in [m]) is not satisfied
13: Set Lk,j+1 \leftarrow \rho Lk,j (resp., \gamma k,i,j+1 \leftarrow \rho \gamma k,i,j)
14: else
15: Set Lk,j+1 \leftarrow Lk,j (resp., \gamma k,i,j+1 \leftarrow \gamma k,i,j)

Proof. To derive a contradiction, suppose that for some k \in \BbbN the inner for
loop does not terminate. This means that for each iteration of the for loop at least
one inequality in (2.12) does not hold. In such a case, the for loop sets Lk,j+1

(resp., \gamma k,i,j+1 for some i \in [m]) as \rho > 1 times Lk,j (resp., \gamma k,i,j for some i \in [m]).
This leads to a contradiction to the fact that if Lk,j \geq L and \gamma k,i,j \geq \gamma i for all i \in 
[m], then (2.12) holds. Finally, (2.11) follows from the initialization of the Lipschitz
constant estimates; the fact that if any of these values is ever increased in the for loop,
then this occurs by the value being multiplied by \rho > 1; and the fact that for all k \in \BbbN 
the algorithm initializes Lk,0 \in (0, Lk - 1] and \gamma k,i,0 \in (0, \gamma k - 1,i] for all i \in [m].

Our first algorithm is stated as Algorithm 2.1. A signifying feature of it is the
manner in which it can adapt Lipschitz constant estimates, which are used in the
stepsize selection scheme. For any (k, j) \in \BbbN \times \BbbN , if the estimates Lk,j and \{ \gamma k,i,j\} mi=1

satisfy Lk,j \geq L and \gamma k,i,j \geq \gamma i for all i \in [m], then it follows (see [24] and Lemma 2.2)
that for \alpha k,j \in \BbbR >0 yielding xk + \alpha k,jdk \in \scrX (recall Assumption 2.1) one has

f(xk + \alpha k,jdk) \leq fk + \alpha k,jg
T
k dk + 1

2Lk,j\alpha 
2
k,j\| dk\| 22(2.12a)

and | ci(xk + \alpha k,jdk)| \leq | ci(xk) + \alpha k,j\nabla ci(xk)
T dk| + 1

2\gamma k,i,j\alpha 
2
k,j\| dk\| 22(2.12b)

for all i \in [m]. If one knows Lipschitz constants for \nabla f and \{ \nabla ci\} mi=1, then one could
simply set Lk,0 and \gamma k,i,0 for all i \in [m] to these values for all k \in \BbbN , in which case
the inner for loop would terminate in iteration j = 0 for all k \in \BbbN . However, if such
Lipschitz constants are unknown, as is often the case, then the adaptive procedure
in Algorithm 2.1 ensures that convergence can be guaranteed, as shown in the next
subsection. For now, we simply prove the following lemma showing that the inner loop

D
ow

nl
oa

de
d 

05
/2

5/
21

 to
 6

4.
12

1.
78

.6
1.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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of the algorithm is well-posed. (One could choose a different increase factor \rho \in \BbbR >1

for each Lipschitz constant estimate; we use a common value of \rho for simplicity.)
The intuition behind the stepsize selection scheme in Algorithm 2.1 is that the

stepsize is chosen to ensure a sufficient reduction in an upper bound on the change
in the merit function. This upper bound is revealed in Lemma 2.13 later on; in
particular, see (2.13). Due to the nonsmoothness of the merit function, which creates
a kink at a unit stepsize, there are three cases: the minimizer may occur before, at, or
after the kink. An illustration of these cases is shown in Figure 2.1. Certain situations
that lead to each of the three cases is as follows. (There are additional situations that
one may consider since the upper bounding function involves a combination of many
terms, but the following are a few example situations to provide some intuition.) If
the Lipschitz constant estimates are large enough, indicating high nonlinearity of the
problem functions, then the minimizer may be at a stepsize less than 1. On the other
hand, if the Lipschitz constant estimates are not too large and derivative information
of the objective suggests that the merit function improves beyond a unit stepsize,
then the minimizer is at a stepsize greater than 1. Otherwise, the minimizer occurs
at a unit stepsize since at least this corresponds to a step toward linearized feasibility.

Fig. 2.1. Illustration of three cases for an upper bounding function of the merit function (see
Lemma 2.13) motivating the three cases in the stepsize selection scheme in Algorithm 2.1. Each
graph shows the value of the upper bound on the change in the merit function as a function of \alpha k.

The second algorithm is stated as Algorithm 2.2. In each iteration, it employs a
traditional backtracking line search scheme until the reduction in the merit function is
sufficiently large compared to the reduction in the model of the merit function. This
is sufficient for showing a convergence result, as shown in the next subsection.

Algorithm 2.2 SQP Algorithm with Backtracking Line Search.

Require: x0 \in \BbbR n; \tau  - 1 \in \BbbR >0; \epsilon \in (0, 1); \sigma \in (0, 1); \eta \in (0, 1); \nu \in (0, 1); \alpha \in \BbbR >0

1: for all k \in \BbbN do
2: Compute (dk, yk) as the solution of (2.6)
3: if (xk, yk) satisfies (2.2) then return (xk, yk)
4: Set \tau trialk by (2.7) and \tau k by (2.8)
5: for all j \in \BbbN do
6: Set \alpha k,j \leftarrow \nu j\alpha 
7: if (2.10) holds then
8: Set \alpha k \leftarrow \alpha k,j and xk+1 \leftarrow xk + \alpha kdk and break (loop over j \in \BbbN )

2.4. Convergence analysis. We prove in this section that, from any initial
iterate, each of Algorithm 2.1 and Algorithm 2.2 generates a sequence of iterates over
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which a first-order measure of primal-dual stationarity for (2.1) (recall (2.2)) vanishes.
We assume throughout this section that both Assumptions 2.1 and 2.4 hold; for
brevity, we do not remind the reader of this fact within the statement of each result.
We also remark that if an algorithm terminates finitely, then it does so with (xk, yk)
satisfying (2.2), meaning primal-dual stationarity has been achieved. Hence, we may
assume without loss of generality in this section that neither algorithm terminates
finitely, meaning that \{ xk\} is infinite and dk \not = 0 for all k \in \BbbN (recall Lemma 2.6).

In all of the results of this section, the statements are proved to hold with respect
to both Algorithms 2.1 and 2.2. There are only a few differences in the results for
the two algorithms; when a result differs, we say so explicitly. Much of our analysis,
at least prior to Lemma 2.14, follows standard analysis for line-search SQP methods;
see, e.g., [5, 6]. Nonetheless, we provide proofs of the results for completeness.

Our analysis uses the orthogonal decomposition of the search directions given by
dk = uk + vk, where uk \in Null(Jk) and vk \in Range(JT

k ) for all k \in \BbbN . We emphasize
that the components uk and vk do not need to be computed explicitly for any k \in \BbbN .
They are merely tools for our analysis. As is common in the literature, we refer to uk

as the tangential component and vk as the normal component of dk.
We first show an upper bound on the normal components of the search directions.

Lemma 2.9. There exists \kappa v \in \BbbR >0 such that, for all k \in \BbbN , the normal compo-
nent vk satisfies max\{ \| vk\| 2, \| vk\| 22\} \leq \kappa v\| ck\| 2.

Proof. Let k \in \BbbN be arbitrary. From Jkdk = Jk(uk + vk) =  - ck, uk \in Null(Jk),
and vk \in Range(JT

k ), one has vk =  - JT
k (JkJ

T
k ) - 1ck; hence, by the definition of the

matrix norm induced by the \ell 2 vector norm, it follows that

\| vk\| 2 \leq \| JT
k (JkJ

T
k ) - 1\| 2\| ck\| 2

\Leftarrow \Rightarrow \| vk\| 22 \leq (\| JT
k (JkJ

T
k ) - 1\| 2\| ck\| 2)2 = (\| JT

k (JkJ
T
k ) - 1\| 22\| ck\| 2)\| ck\| 2.

Hence, the desired conclusion follows under Assumption 2.1.

Our next result reveals that there exists a critical threshold between the norms of
the tangential and normal components of the search directions, and in any iteration
k \in \BbbN in which the search direction dk is dominated by the tangential component uk,
the curvature of Hk along dk has a useful lower bound defined with uk.

Lemma 2.10. There exists \kappa uv \in \BbbR >0 such that, for any k \in \BbbN , if \| uk\| 22 \geq 
\kappa uv\| vk\| 22, then 1

2d
T
kHkdk \geq 1

4\zeta \| uk\| 22, where \zeta \in \BbbR >0 is defined in Assumption 2.4.

Proof. Assumption 2.4 implies for any \kappa uv \in \BbbR >0 that \| uk\| 22 \geq \kappa uv\| vk\| 22 means

1
2d

T
kHkdk = 1

2u
T
kHkuk + uT

kHkvk + 1
2v

T
k Hkvk

\geq 1
2\zeta \| uk\| 22  - \| uk\| 2\| Hk\| 2\| vk\| 2  - 1

2\| Hk\| 2\| vk\| 22 \geq 
\Bigl( 

\zeta 
2  - 

\kappa H\surd 
\kappa uv
 - \kappa H

2\kappa uv

\Bigr) 
\| uk\| 22.

Thus, under Assumption 2.4, the result holds for \kappa uv \in \BbbR >0 with
\kappa H\surd 
\kappa uv

+ \kappa H

2\kappa uv
\leq \zeta 

4 .

For the constant \kappa uv \in \BbbR >0 defined in Lemma 2.10, let us define

\Psi k :=

\Biggl\{ 
\| uk\| 22 + \| ck\| 2 if \| uk\| 22 \geq \kappa uv\| vk\| 22,
\| ck\| 2 otherwise,

along with the corresponding index sets \scrK u := \{ k \in \BbbN : \| uk\| 22 \geq \kappa uv\| vk\| 22\} and
\scrK v := \{ k \in \BbbN : \| uk\| 22 < \kappa uv\| vk\| 22\} (that form a partition of \BbbN ). Our next result
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1360 BERAHAS, CURTIS, ROBINSON, AND ZHOU

shows that the squared norms of the search directions and the constraint violations
are bounded above by this critical quantity in all iterations.

Lemma 2.11. There exists \kappa \Psi \in \BbbR >0 such that, for all k \in \BbbN , the search direction
and constraint violation satisfy \| dk\| 22 \leq \kappa \Psi \Psi k and \| dk\| 22 + \| ck\| 2 \leq (\kappa \Psi + 1)\Psi k.

Proof. For all k \in \scrK u, it follows that

\| dk\| 22 = \| uk\| 22 + \| vk\| 22 \leq (1 + \kappa  - 1
uv )\| uk\| 22 \leq (1 + \kappa  - 1

uv )(\| uk\| 22 + \| ck\| 2).

For all k \in \scrK v, one finds from Lemma 2.9 that

\| dk\| 22 = \| uk\| 22 + \| vk\| 22 < (\kappa uv + 1)\| vk\| 22 \leq (\kappa uv + 1)\kappa v\| ck\| 2.

Combining the results from the two cases implies the first desired result. To establish
the second result, note that the definition of \Psi k yields \| ck\| 2 \leq \Psi k for all k \in \BbbN .

As revealed by our next lemma, the reduction in the model of the merit function
is bounded below with respect to the same critical quantity.

Lemma 2.12. There exists \kappa q \in \BbbR >0 such that, for all k \in \BbbN , the reduction in the
model of the merit function satisfies \Delta q(xk, \tau k, gk, Hk, dk) \geq \kappa q\tau k\Psi k.

Proof. Combining (2.9) and Lemma 2.10, it follows that \Delta q(xk, \tau k, gk, Hk, dk) \geq 
1
4\tau k\zeta \| uk\| 22 + \sigma \| ck\| 1 for k \in \scrK u. Similarly, (2.9) implies that \Delta q(xk, \tau k, gk, Hk, dk) \geq 
\sigma \| ck\| 1 for all k \in \scrK v. Combining the two cases, \| \cdot \| 1 \geq \| \cdot \| 2, and the fact that \{ \tau k\} 
is monotonically nonincreasing, the result holds for \kappa q := min\{ 14\zeta , \sigma /\tau  - 1\} \in \BbbR >0.

Our next lemma shows an upper bound on the change in the merit function when
the inner for loop of Algorithm 2.1 terminates with large Lipschitz constant estimates.

Lemma 2.13. For all k \in \BbbN , if the inner for loop of Algorithm 2.1 terminates
since (2.12) holds, then with \Gamma k :=

\sum 
i\in [m] \gamma k,i \in \BbbR >0 it follows that

(2.13)
\phi (xk + \alpha kdk, \tau k) - \phi (xk, \tau k)

\leq \alpha k\tau kg
T
k dk + | 1 - \alpha k| \| ck\| 1  - \| ck\| 1 + 1

2 (\tau kLk + \Gamma k)\alpha 
2
k\| dk\| 22.

Proof. For such k \in \BbbN , it follows from (2.12) and Lemma 2.2 that

\phi (xk + \alpha kdk, \tau k) - \phi (xk, \tau k)

\leq \alpha k\tau kg
T
k dk + \| ck + \alpha kJkdk\| 1  - \| ck\| 1 + 1

2 (\tau kLk + \Gamma k)\alpha 
2
k\| dk\| 22

= \alpha k\tau kg
T
k dk + | 1 - \alpha k| \| ck\| 1  - \| ck\| 1 + 1

2 (\tau kLk + \Gamma k)\alpha 
2
k\| dk\| 22,

as desired.

Next, we show lower bounds for the reduction in the merit function in each
iteration of each algorithm. For concision, let us define for all k \in \BbbN the values

\widehat \mu k := 2(1 - \eta )\Delta q(xk,\tau k,gk,Hk,dk)
(\tau kL+

\sum 
i\in [m] \gamma i)\| dk\| 2

2
and \widetilde \mu k := \widehat \mu k  - 4\| ck\| 1

(\tau kL+
\sum 

i\in [m] \gamma i)\| dk\| 2
2
.

For a given k \in \BbbN , one should notice the similarity between these values and the pair
(\widehat \alpha k,j , \widetilde \alpha k,j) defined for all j \in \BbbN in Algorithm 2.1, except that the pair (\widehat \mu k, \widetilde \mu k) are
defined with respect to L and \gamma i for all i \in [m] defined in Assumption 2.1.

Lemma 2.14. For all k \in \BbbN , the inequality (2.10) holds, where in the case of
Algorithm 2.2 this occurs with the stepsize satisfying \alpha k > \nu min\{ \widehat \mu k,max\{ 1, \widetilde \mu k\} \} > 0.
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Proof. Let k \in \BbbN be given. First, consider Algorithm 2.1. If the inner for loop
terminates since the stepsize yields (2.10), then there is nothing left to prove. Hence,
we may proceed by supposing that the loop terminates since (2.12) holds, which we
shall now proceed to show means that (2.10) holds as well. Consider three cases,
where as in Lemma 2.13 let us define \Gamma k :=

\sum 
i\in [m] \gamma k,i \in \BbbR >0.

Case 1: Suppose that in the last iteration of the inner for loop one finds \widehat \alpha k,j < 1,

in which case the algorithm yields \alpha k = 2(1 - \eta )\Delta q(xk,\tau k,gk,Hk,dk)
(\tau kLk+\Gamma k)\| dk\| 2

2
< 1. Combining this

fact with Lemmas 2.3 and 2.13, it follows that

\phi (xk + \alpha kdk, \tau k) - \phi (xk, \tau k)

\leq \alpha k(\tau kg
T
k dk  - \| ck\| 1) + 1

2 (\tau kLk + \Gamma k)\alpha 
2
k\| dk\| 22

\leq  - \alpha k\Delta q(xk, \tau k, gk, Hk, dk) +
1
2 (\tau kLk + \Gamma k)\alpha 

2
k\| dk\| 22

=  - \alpha k\Delta q(xk, \tau k, gk, Hk, dk) +
1
2\alpha k(\tau kLk + \Gamma k)

\Bigl( 
2(1 - \eta )\Delta q(xk,\tau k,gk,Hk,dk)

(\tau kLk+\Gamma k)\| dk\| 2
2

\Bigr) 
\| dk\| 22

=  - \eta \alpha k\Delta q(xk, \tau k, gk, Hk, dk).

Case 2: Suppose that in the last iteration of the inner for loop one finds \widehat \alpha k,j \geq 1
and \widetilde \alpha k,j \leq 1, in which case the algorithm yields \alpha k = 1. Combining this fact, the fact
that \widehat \alpha k,j \geq 1 in the last iteration of the loop, and Lemmas 2.3 and 2.13 yields the
same string of relationships as in Case 1, except that since \widehat \alpha k,j \geq 1 the first equation
holds not as an equation, but as an ``\leq "" inequality.

Case 3: Suppose that in the last iteration of the inner for loop one finds \widetilde \alpha k,j > 1,

in which case the algorithm yields \alpha k = 2(1 - \eta )\Delta q(xk,\tau k,gk,Hk,dk) - 4\| ck\| 1

(\tau kLk+\Gamma k)\| dk\| 2
2

> 1. Combin-

ing this fact with Lemmas 2.3 and 2.13, it follows that

\phi (xk + \alpha kdk, \tau k) - \phi (xk, \tau k)

\leq \alpha k\tau kg
T
k dk + (\alpha k  - 1)\| ck\| 1  - \| ck\| 1 + 1

2 (\tau kLk + \Gamma k)\alpha 
2
k\| dk\| 22

= \alpha k(\tau kg
T
k dk  - \| ck\| 1) + 2(\alpha k  - 1)\| ck\| 1 + 1

2 (\tau kLk + \Gamma k)\alpha 
2
k\| dk\| 22

\leq  - \alpha k\Delta q(xk, \tau k, gk, Hk, dk) + 2\alpha k\| ck\| 1 + 1
2 (\tau kLk + \Gamma k)\alpha 

2
k\| dk\| 22

=  - \alpha k\Delta q(xk, \tau k, gk, Hk, dk) + 2\alpha k\| ck\| 1

+ 1
2\alpha k(\tau kLk + \Gamma k)

\Bigl( 
2(1 - \eta )\Delta q(xk,\tau k,gk,Hk,dk) - 4\| ck\| 1

(\tau kLk+\Gamma k)\| dk\| 2
2

\Bigr) 
\| dk\| 22

=  - \eta \alpha k\Delta q(xk, \tau k, gk, Hk, dk).

Combining the three cases shows the desired result for Algorithm 2.1.
Now consider Algorithm 2.2. One finds that one of three cases occurs, which

mimic those for Algorithm 2.1. In particular, if \widehat \mu k < 1, then an analysis similar to
that for Case 1 above shows that for j \in \BbbN with \alpha k,j/\nu > \widehat \mu k and \alpha k,j \leq \widehat \mu k, the
backtracking line search will terminate by iteration j \in \BbbN , from which it follows that
\alpha k > \nu \widehat \mu k. If \widehat \mu k \geq 1 and \widetilde \mu k \leq 1, or if \widetilde \mu k > 1, then a similar argument combined
with Case 2 or Case 3, respectively, completes the proof.

Next, we show that the tangential components of the directions are bounded.

Lemma 2.15. The tangential component sequence \{ uk\} is bounded.

Proof. The first block of (2.6) yields uT
kHk(uk + vk) =  - uT

k gk. Hence, under
Assumption 2.4, one finds that \zeta \| uk\| 22 \leq uT

kHkuk =  - gTk uk  - vTk Hkuk \leq (\| gk\| 2 +
\kappa H\| vk\| 2)\| uk\| 2. Therefore, the result follows from Assumption 2.1 and Lemma 2.9.
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We now show that the merit parameter sequence is bounded and that it remains
fixed at a value for all sufficiently large k \in \BbbN .

Lemma 2.16. There exists k\tau \in \BbbN and \tau min \in \BbbR >0 such that \tau k = \tau min for k \geq k\tau .

Proof. Recall that \tau k < \tau k - 1 if and only if both gTk dk +max\{ dTkHkdk, 0\} > 0 and

(2.14) \tau k - 1(g
T
k dk +max\{ dTkHkdk, 0\} ) > (1 - \sigma )\| ck\| 1.

According to the first block equation of (2.6) (premultiplied by uT
k ) one has

gTk dk +max\{ dTkHkdk, 0\} =

\Biggl\{ 
gTk vk + vTk Hkuk + vTk Hkvk if dTkHkdk \geq 0,

gTk vk  - vTk Hkuk  - uT
kHkuk otherwise.

The result follows from our ability to bound the left-hand side of this expression with
respect to the constraint reduction. We consider two cases. First, if dTkHkdk \geq 0, then
under Assumptions 2.1 and 2.4 it follows with Lemmas 2.9 and 2.15 and \| \cdot \| 1 \geq \| \cdot \| 2
that there exists a constant \kappa \tau ,1 \in \BbbR >0 such that

gTk vk + vTk Hkuk + vTk Hkvk \leq (\| gk\| 2 + \kappa H\| uk\| 2)\| vk\| 2 + \kappa H\| vk\| 22 \leq \kappa \tau ,1\| ck\| 1.

Second, if dTkHkdk < 0, then under Assumptions 2.1 and 2.4 it follows from Lemmas
2.9 and 2.15 and \| \cdot \| 1 \geq \| \cdot \| 2 that there exists a constant \kappa \tau ,2 \in \BbbR >0 such that

gTk vk  - vTk Hkuk  - uT
kHkuk \leq (\| gk\| 2 + \kappa H\| uk\| 2)\| vk\| 2 \leq \kappa \tau ,2\| ck\| 1.

Together, one has gTk dk +max\{ dTkHkdk, 0\} \leq max\{ \kappa \tau ,1, \kappa \tau ,2\} \| ck\| 1, meaning that to
have gTk dk+max\{ dTkHkdk, 0\} > 0 and (2.14) requires \tau k - 1 > (1 - \sigma )/max\{ \kappa \tau ,1, \kappa \tau ,2\} .
Thus, if this inequality is not satisfied for k = k\tau for some k\tau \in \BbbN , then it remains
unsatisfied for all k \geq k\tau . This, with the fact that when Algorithm 2.1 or 2.2 decreases
the merit parameter it does so by at least a constant factor, proves the result.

We now prove that there is a positive lower bound for the stepsizes.

Lemma 2.17. There exists \alpha min \in \BbbR >0 such that \alpha k \geq \alpha min for all k \in \BbbN .

Proof. Let k \in \BbbN be given. With respect to Algorithm 2.1, one has that \alpha k \geq 1
unless the inner for loop terminates in iteration j \in \BbbN with \widehat \alpha k,j < 1. In such cases,
it follows from the monotonicity of \{ \tau k\} and Lemmas 2.8, 2.16, 2.11, and 2.12 that

\alpha k = 2(1 - \eta )\Delta q(xk,\tau k,gk,Hk,dk)
(\tau kLk,j+

\sum 
i\in [m] \gamma k,i,j)\| dk\| 2

2
\geq 2(1 - \eta )\kappa q\tau min

(\tau  - 1Lmax+
\sum 

i\in [m] \gamma max,i)\kappa \Psi 
> 0.

Similarly, for Algorithm 2.2, Lemma 2.14 implies \alpha k \geq 1 unless \widehat \mu k < 1. In such cases,
it follows from the monotonicity of \{ \tau k\} and Lemmas 2.8, 2.16, 2.11, and 2.12 that

\alpha k > 2\nu (1 - \eta )\Delta q(xk,\tau k,gk,Hk,dk)
(\tau kL+

\sum 
i\in [m] \gamma i)\| dk\| 2

2
\geq 2\nu (1 - \eta )\kappa q\tau min

(\tau  - 1L+
\sum 

i\in [m] \gamma i)\kappa \Psi 
> 0.

Overall, a positive lower bound has been proved for both algorithms.

We now present our main convergence theorem for Algorithms 2.1 and 2.2.

Theorem 2.18. Algorithms 2.1 and 2.2 yield

lim
k\rightarrow \infty 

\| dk\| 2 = 0, lim
k\rightarrow \infty 

\| ck\| 2 = 0, and lim
k\rightarrow \infty 

\| gk + JT
k yk\| 2 = 0.
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Proof. For all k \in \BbbN , it follows from Lemmas 2.12, 2.14, and 2.17 that

\phi (xk, \tau k) - \phi (xk+1, \tau k) \geq \eta \alpha k\Delta q(xk, \tau k, gk, Hk, dk) \geq \eta \alpha min\kappa q\tau min\Psi k.

Combining this with Lemmas 2.11 and 2.16 shows for k \in \BbbN with k > k\tau that

\phi (xk\tau 
, \tau min) - \phi (xk, \tau min)

=

k - 1\sum 
j=k\tau 

(\phi (xj , \tau min) - \phi (xj+1, \tau min))

\geq \eta \alpha min\kappa q\tau min

k - 1\sum 
j=k\tau 

\Psi j \geq \eta \alpha min\kappa q\tau min

\kappa \Psi +1

k - 1\sum 
j=k\tau 

(\| dj\| 22 + \| cj\| 2).

Since, under Assumption 2.1, \phi (\cdot , \tau min) is bounded below over the iterates, the above
implies the first two desired limits. Note now that (2.6) implies

(2.15) \| gk + JT
k yk\| 2 = \| Hkdk\| 2 \leq \| Hk\| 2\| dk\| 2 \leq \kappa H\| dk\| 2.

Hence, by Assumption 2.4 and \{ dk\} \rightarrow 0, the result follows.

3. Stochastic setting. Now consider the optimization problem

(3.1) min
x\in \BbbR n

f(x) s.t. c(x) = 0 with f(x) = \BbbE [F (x, \omega )],

where f : \BbbR n \rightarrow \BbbR , c : \BbbR n \rightarrow \BbbR m, \omega is a random variable with associated probability
space (\Omega ,\scrF , P ), F : \BbbR n \times \Omega \rightarrow \BbbR , and \BbbE [\cdot ] represents expectation taken with respect
to P . We presume that one has access to values of the constraint function and its
derivatives, but that it is intractable to evaluate the objective and/or its derivatives.
That said, we presume that at a given iterate xk, one can evaluate a stochastic gradient
estimate gk \in \BbbR n satisfying the following assumption.

Assumption 3.1. For all k \in \BbbN , the stochastic gradient estimate gk \in \BbbR n is an
unbiased estimator of the gradient of f at xk, i.e., \BbbE k[gk] = gk, where \BbbE k[\cdot ] denotes
expectation taken with respect to the distribution of \omega conditioned on the event that
the algorithm has reached xk \in \BbbR n in iteration k \in \BbbN . In addition, there exists a
constant M \in \BbbR >0 such that, for all k \in \BbbN , one has \BbbE k[\| gk  - gk\| 22] \leq M .

3.1. Algorithm. Similar to the deterministic setting, in order to solve (3.1),
we consider a stochastic algorithm that computes a search direction dk \in \BbbR n and
Lagrange multiplier vector yk \in \BbbR m in iteration k \in \BbbN by solving the linear system

(3.2)

\biggl[ 
Hk JT

k

Jk 0

\biggr] \biggl[ 
dk
yk

\biggr] 
=  - 

\biggl[ 
gk
ck

\biggr] 
,

where \{ Hk\} satisfies Assumption 2.4. Generally, we use a ``bar"" over a quantity
whose value in iteration k \in \BbbN depends on gk. Hence, as they are independent of gk
conditioned on the event that the algorithm reaches xk as its kth iterate, we write
the constraint value, constraint Jacobian, and (1, 1)-block matrix as ck, Jk, and Hk,
respectively, but we write the solution of (3.2) as (dk, yk) due to its dependence on gk.

The algorithm that we propose is stated as Algorithm 3.1. Paralleling Algo-
rithm 2.1, the merit parameter is set based on the computation of a trial value

(3.3) \=\tau trialk \leftarrow 

\left\{   \infty if gTk dk +max\{ dTkHkdk, 0\} \leq 0,
(1 - \sigma )\| ck\| 1

gT
k dk+max\{ dT

k Hkdk,0\} 
otherwise,
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1364 BERAHAS, CURTIS, ROBINSON, AND ZHOU

Algorithm 3.1 Stochastic SQP Algorithm.

Require: x0 \in \BbbR n; \=\tau  - 1 \in \BbbR >0; \epsilon \in (0, 1); \sigma \in (0, 1); \=\xi  - 1 \in \BbbR >0; \{ \beta k\} \subset (0, 1];
\theta \in \BbbR \geq 0; \{ Lk\} \subset \BbbR >0; \{ \Gamma k\} \subset \BbbR >0

1: for all k \in \BbbN do
2: Compute (dk, yk) as the solution of (3.2)
3: if dk = 0 then
4: Set \=\tau trialk \leftarrow \infty , \=\tau k \leftarrow \=\tau k - 1, \=\xi 

trial
k \leftarrow \infty , and \=\xi k \leftarrow \=\xi k - 1

5: Set \=\widehat \alpha k,init \leftarrow 1, \=\widetilde \alpha k,init \leftarrow 1, and \=\alpha k \leftarrow 1
6: else (if dk \not = 0)
7: Set \=\tau trialk by (3.3) and \=\tau k by (3.4)
8: Set \=\xi trialk and \=\xi k by (3.6)
9: Set

\=\widehat \alpha k,init \leftarrow \beta k\Delta q(xk,\=\tau k,gk,Hk,dk)

(\=\tau kLk+\Gamma k)\| dk\| 2
2

and \=\widetilde \alpha k,init \leftarrow \=\widehat \alpha k,init  - 4\| ck\| 1

(\=\tau kLk+\Gamma k)\| dk\| 2
2

10: Set \=\widehat \alpha k \leftarrow Projk(
\=\widehat \alpha k,init) and \=\widetilde \alpha k \leftarrow Projk(

\=\widetilde \alpha k,init), then

\=\alpha k \leftarrow 

\left\{     
\=\widehat \alpha k if \=\widehat \alpha k < 1,

1 if \=\widetilde \alpha k \leq 1 \leq \=\widehat \alpha k,
\=\widetilde \alpha k if \=\widetilde \alpha k > 1

11: Set xk+1 \leftarrow xk + \=\alpha kdk

followed by the rule

(3.4) \=\tau k \leftarrow 

\Biggl\{ 
\=\tau k - 1 if \=\tau k - 1 \leq \=\tau trialk ,

(1 - \epsilon )\=\tau trialk otherwise,

which ensures \=\tau k \leq \=\tau trialk and, similarly as for our deterministic algorithm (see (2.9)),

(3.5) \Delta q(xk, \=\tau k, gk, Hk, dk) \geq 1
2 \=\tau k max\{ dTkHkdk, 0\} + \sigma \| ck\| 1.

A unique feature of our algorithm for this stochastic setting is that it adaptively
estimates a lower bound for the ratio between the reduction in the model of the merit
function and the merit parameter times the squared norm of a search direction. This
is used to determine an interval into which the stepsize will be projected; control of
this parameter is paramount to ensure convergence in expectation. We set

(3.6) \=\xi trialk \leftarrow \Delta q(xk,\=\tau k,gk,Hk,dk)

\=\tau k\| dk\| 2
2

then \=\xi k \leftarrow 

\Biggl\{ 
\=\xi k - 1 if \=\xi k - 1 \leq \=\xi trialk ,

(1 - \epsilon )\=\xi trialk otherwise,

which ensures \=\xi k \leq \=\xi trialk for all k \in \BbbN . It will be shown in our analysis that \{ \=\xi k\} is
bounded away from zero deterministically.

The sequences \{ \=\tau k\} and \{ \=\xi k\} are initialized with the input values \=\tau  - 1 \in \BbbR >0 and
\=\xi  - 1 \in \BbbR >0, respectively. These values may be set deterministically, but we use a
``bar"" over these initial values for consistency with the remainders of the sequences.

For generality, Algorithm 3.1 is stated with Lipschitz constant estimates \{ Lk\} 
and \{ \Gamma k\} given as inputs (with the idea that \Gamma k :=

\sum 
i\in [m] \gamma k,i for all k \in \BbbN ). Our
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analysis in the next subsection presumes that Lipschitz constants are known, although
in practice these can be estimated using standard techniques (see, e.g., [12]) in an at-
tempt to ensure that the same convergence results hold as for the case when the
constants are known. The sequence \{ \beta k\} is introduced to control the stepsizes. As
in standard analysis for stochastic (sub)gradient-type methods, our analysis in the
next subsection considers the case when \{ \beta k\} is constant asymptotically and when it
diminishes at an appropriate rate to ensure convergence in expectation. We define

Projk(\cdot ) \equiv Proj

\biggl( 
\cdot 
\bigm| \bigm| \bigm| \bigm| \Bigl[ \beta k

\=\xi k\=\tau k
\=\tau kLk+\Gamma k

, \beta k
\=\xi k\=\tau k

\=\tau kLk+\Gamma k
+ \theta \beta 2

k

\Bigr] \biggr) 
,

where Proj(\cdot | \scrI ) represents the projection operator onto the interval \scrI \subset \BbbR .

3.2. Convergence analysis. In this section, we prove that Algorithm 3.1 has
convergence properties that match those from the deterministic setting in expectation,
with some caveats that we explain and justify. Our algorithm uses only the stochastic
gradient estimates \{ gk\} , computes \{ (dk, yk)\} by (3.2), sets merit parameter-related se-
quences \{ \=\tau k\} and \{ \=\tau trialk \} , and also sets steplength-related sequences \{ \=\xi k\} and \{ \=\xi trialk \} ,
but our analysis also references the gradients \{ gk\} corresponding to \{ xk\} as well as
the corresponding sequence of solutions of (2.6), namely, \{ (dk, yk)\} , and trial merit
parameter values \{ \tau trialk \} . In other words, for all k \in \BbbN , conditioned on the event that
the algorithm reaches xk, we define (dk, yk) and \tau trialk as they would be computed if
the algorithm reached xk as the kth iterate in Algorithm 2.1.

We assume throughout this section that L and \Gamma :=
\sum 

i\in [m] \gamma i are known. In

addition, we assume that Assumptions 2.1, 2.4, and 3.1 hold---where \{ Hk\} is a deter-
ministic sequence chosen independently from \{ gk\} ---and for the sake of brevity we do
not state this fact within each result. Explicitly, in addition to Assumption 3.1, we
make the following assumption that subsumes Assumptions 2.1 and 2.4.

Assumption 3.2. There exist universal quantities (including \scrX , L, \{ \gamma i\} i\in [m],
\kappa H , and \zeta ) such that Assumptions 2.1 and 2.4 hold for any realization of Algo-
rithm 3.1.

Remark 3.3. Assumption 3.2 subsumes Assumption 2.1, which means that it as-
sumes that the iterates remain in an open convex set over which the objective and
constraint function and derivative values are bounded. This is admittedly not ideal
in a stochastic setting. For example, in the case of applying a stochastic gradient
method (SG) in an unconstrained stochastic setting, it is not ideal to assume that
the gradients at the iterates remain bounded in norm, since---as SG is not a descent
method---it is unreasonable to assume that the iterates remain in a sublevel set of
the objective function. However, we believe this assumption is more reasonable in a
constrained setting, since the iterates are being driven to the deterministic feasible
region. Further, we claim that Assumption 3.2 could be loosened if our algorithm
were to choose a predetermined stepsize sequence, rather than one that mimicks the
stepsize scheme from Algorithm 2.1. We discuss this issue further in section 5.

As in the deterministic setting, our analysis makes use of the orthogonal decompo-
sition of the (stochastic) search directions given by dk = \=uk+vk, where \=uk \in Null(Jk)
and vk \in Range(JT

k ) for all k \in \BbbN . Let us emphasize that, conditioned on the event
that the algorithm reaches xk as its kth iterate, the normal component is determin-
istic, depending only on the constraint value ck and Jacobian Jk; hence, we write vk
rather than vk in the expression above. For all k \in \BbbN , let Zk be an orthogonal basis for
the null space of Jk, which under Assumption 3.2 is a matrix in \BbbR n\times (n - m). It follows
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1366 BERAHAS, CURTIS, ROBINSON, AND ZHOU

that, for all k \in \BbbN , uk = Zkwk and uk = Zkwk for some (wk, wk) \in \BbbR n - m \times \BbbR n - m.
Under Assumption 3.2, the reduced Hessian satisfies ZT

k HkZk \succeq \zeta I.
For our first lemma, we carry over properties of algorithmic quantities that hold

in the same manner as in the deterministic case, conditioned on the event that the
algorithm has reached xk as the kth iterate. As in our analysis in the deterministic
setting, for the constant \kappa uv \in \BbbR >0 defined in the lemma, we define

\Psi k :=

\Biggl\{ 
\| uk\| 22 + \| ck\| 2 if \| uk\| 22 \geq \kappa uv\| vk\| 22,
\| ck\| 2 otherwise.

Lemma 3.4. For all k \in \BbbN , (3.2) has a unique solution. In addition, due to the
universality of the algorithmic conditions as described in Assumption 3.2, for the same
constants (\kappa v, \kappa uv, \kappa \Psi , \kappa q) \in \BbbR >0\times \BbbR >0\times \BbbR >0\times \BbbR >0 that appear in Lemmas 2.9, 2.10,
2.11, and 2.12, the following statements hold true for all k \in \BbbN .

(a) The normal component satisfies max\{ \| vk\| 2, \| vk\| 22\} \leq \kappa v\| ck\| 2.
(b) If \| uk\| 22 \geq \kappa uv\| vk\| 22, then 1

2d
T

kHkdk \geq 1
4\zeta \| uk\| 22.

(c) The search direction satisfies \| dk\| 22 \leq \kappa \Psi \Psi k and \| dk\| 22+\| ck\| 2 \leq (\kappa \Psi +1)\Psi k.
(d) The model reduction satisfies \Delta q(xk, \=\tau k, gk, Hk, dk) \geq \kappa q\=\tau k\Psi k.

Finally, for all k \in \BbbN , it follows that

\phi (xk+ \=\alpha kdk, \=\tau k) - \phi (xk, \=\tau k) \leq \=\alpha k\=\tau kg
T
k dk+ | 1 - \=\alpha k| \| ck\| 1 - \| ck\| 1+ 1

2 (\=\tau kL+\Gamma )\=\alpha 2
k\| dk\| 22.

Proof. That (3.2) has a unique solution for all k \in \BbbN follows for the same reason
that Lemma 2.5 holds. The proofs of parts (a)--(d) follow in the same manner as the
proofs of Lemmas 2.9, 2.10, 2.11, and 2.12, respectively, with the stochastic quantities
\{ gk, dk, uk, \=\tau k\} in place of the deterministic quantities \{ gk, dk, uk, \tau k\} , where it is
important to recognize that the conclusions follow with the same constants, namely,
(\kappa v, \kappa uv, \kappa \Psi , \kappa q), as in the deterministic setting. The proof of the last conclusion
follows in the same manner as that of Lemma 2.13.

In the next lemma, we prove that the sequence \{ \=\xi k\} is bounded deterministically.

Lemma 3.5. In any run of the algorithm, there exist k\xi \in \BbbN and \=\xi min \in \BbbR >0 such
that \=\xi k = \=\xi min for all k \geq k\xi , where \=\xi min \in [\xi min, \=\xi  - 1] with \xi min := (1 - \epsilon )\kappa q/\kappa \Psi .

Proof. If line 8 of the algorithm ever sets \=\xi k < \=\xi k - 1, then it ensures that \=\xi k \leq 
(1  - \epsilon )\=\xi k - 1. This means that \{ \=\xi k\} is constant for sufficiently large k or it vanishes.

On the other hand, by Lemma 3.4(c) and (d), it follows that \Delta q(xk,\=\tau k,gk,Hk,dk)

\=\tau k\| dk\| 2
2

\geq 
\kappa q\=\tau k\Psi k

\kappa \Psi \=\tau k\Psi k
=

\kappa q

\kappa \Psi 
, meaning that line 8 will never set \=\xi k less than (1  - \epsilon )\kappa q/\kappa \Psi for any

k \in \BbbN . Therefore, \{ \=\xi k\} is constant for sufficiently large k in the manner stated.

Next, we present the following obvious, but important, consequence of our stepsize
selection scheme. In particular, the result shows that, even though the algorithm
sets the stepsize adaptively, the difference between the largest and smallest possible
stepsizes in a given iteration is \scrO (\beta 2

k), so this difference is controlled by the algorithm.

Lemma 3.6. For all k \in \BbbN , \=\alpha k \in [\=\alpha k,min, \=\alpha k,max] :=
\Bigl[ 
\beta k

\=\xi k\=\tau k
\=\tau kL+\Gamma ,

\beta k
\=\xi k\=\tau k

\=\tau kL+\Gamma + \theta \beta 2
k

\Bigr] 
.

Proof. The proof follows directly from the formula for \=\alpha k in line 10.

Our next result is a cornerstone of our analysis. It builds on the last conclusion
in Lemma 3.4 to specify a useful upper bound for the merit function value after a
step. Central to the proof is our specific stepsize selection strategy.
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Lemma 3.7. Suppose that \{ \beta k\} is chosen such that \beta k
\=\xi k\=\tau k/(\=\tau kL+ \Gamma ) \in (0, 1] for

all k \in \BbbN . Then, for all k \in \BbbN , it follows that

\phi (xk + \=\alpha kdk, \=\tau k) - \phi (xk, \=\tau k)

\leq  - \=\alpha k\Delta q(xk, \=\tau k, gk, Hk, dk) +
1
2 \=\alpha k\beta k\Delta q(xk, \=\tau k, gk, Hk, dk) + \=\alpha k\=\tau kg

T
k (dk  - dk),

where dk and dk are, respectively, defined by (3.2) and (2.6).

Proof. Let k \in \BbbN be arbitrary. If dk = 0, then it follows from (3.2) that ck = 0.
Hence, along with (2.4), it follows that

 - \=\alpha k\Delta q(xk, \=\tau k, gk, Hk, dk) - \=\alpha k\=\tau kg
T
k dk = 1

2 \=\alpha k\=\tau k max\{ dTkHkdk, 0\} \geq 0.

Along with the fact that dk = 0 implies that

\phi (xk + \=\alpha kdk, \=\tau k) - \phi (xk, \=\tau k) = 0 = 1
2 \=\alpha k\beta k\Delta q(xk, \=\tau k, gk, Hk, dk) + \=\alpha k\=\tau kg

T
k dk,

the desired conclusion follows. On the other hand, if dk \not = 0, we consider three cases,
with a few subcases, depending on how the stepsize is set in line 10 of the algorithm.

Case 1: Suppose in line 10 that \=\widehat \alpha k < 1, meaning that \=\alpha k \leftarrow \=\widehat \alpha k. From Lemmas 3.4
and 2.3, it follows that

\phi (xk + \=\alpha kdk, \=\tau k) - \phi (xk, \=\tau k)

\leq \=\alpha k(\=\tau kg
T
k dk  - \| ck\| 1) + 1

2 (\=\tau kL+ \Gamma )\=\alpha 2
k\| dk\| 22

= \=\alpha k(\=\tau kg
T
k dk  - \| ck\| 1) + 1

2 (\=\tau kL+ \Gamma )\=\alpha 2
k\| dk\| 22 + \=\alpha k\=\tau kg

T
k (dk  - dk)

\leq  - \=\alpha k\Delta q(xk, \=\tau k, gk, Hk, dk) +
1
2 (\=\tau kL+ \Gamma )\=\alpha 2

k\| dk\| 22 + \=\alpha k\=\tau kg
T
k (dk  - dk).

Using this inequality, let us now consider two subcases. (For all k \in \BbbN , since (3.6)

ensures \=\xi k \leq \=\xi trialk = \Delta q(xk,\=\tau k,gk,Hk,dk)

\=\tau k\| dk\| 2
2

, it follows that \beta k\Delta q(xk,\=\tau ,gk,Hk,dk)

(\=\tau kL+\Gamma )\| dk\| 2
2

\geq \beta k
\=\xi k\=\tau k

\=\tau kL+\Gamma .)

Case 1a: If \=\alpha k = \beta k\Delta q(xk,\=\tau k,gk,Hk,dk)

(\=\tau kL+\Gamma )\| dk\| 2
2

, then

\phi (xk + \=\alpha kdk, \=\tau k) - \phi (xk, \=\tau k)

\leq  - \=\alpha k\Delta q(xk, \=\tau k, gk, Hk, dk)

+ 1
2 \=\alpha k(\=\tau kL+ \Gamma )

\Bigl( 
\beta k\Delta q(xk,\=\tau k,gk,Hk,dk)

(\=\tau kL+\Gamma )\| dk\| 2
2

\Bigr) 
\| dk\| 22 + \=\alpha k\=\tau kg

T
k (dk  - dk)

=  - \=\alpha k\Delta q(xk, \=\tau k, gk, Hk, dk) +
1
2 \=\alpha k\beta k\Delta q(xk, \=\tau k, gk, Hk, dk) + \=\alpha k\=\tau kg

T
k (dk  - dk).

Case 1b: If \=\alpha k = \beta k
\=\xi k\=\tau k

\=\tau kL+\Gamma + \theta \beta 2
k, then the same argument applies as in Case 1a by

plugging in for \=\alpha k and using the fact that \=\alpha k \leq \beta k\Delta q(xk,\=\tau k,gk,Hk,dk)

(\=\tau kL+\Gamma )\| dk\| 2
2

.

Case 2: Suppose in line 10 that \=\widetilde \alpha k \leq 1 \leq \=\widehat \alpha k, meaning that \=\alpha k \leftarrow 1. From

Lemmas 3.4 and 2.3 and since \beta k\Delta q(xk,\=\tau k,gk,Hk,dk)

(\=\tau kL+\Gamma )\| dk\| 2
2

\geq 1 = \=\alpha k, it follows that

\phi (xk + \=\alpha kdk, \=\tau k) - \phi (xk, \=\tau k)

\leq \=\alpha k(\=\tau kg
T
k dk  - \| ck\| 1) + 1

2 (\=\tau kL+ \Gamma )\=\alpha 2
k\| dk\| 22

= \=\alpha k(\=\tau kg
T
k dk  - \| ck\| 1) + 1

2 (\=\tau kL+ \Gamma )\=\alpha 2
k\| dk\| 22 + \=\alpha k\=\tau kg

T
k (dk  - dk)

\leq  - \=\alpha k\Delta q(xk, \=\tau k, gk, Hk, dk) +
1
2 (\=\tau kL+ \Gamma )\=\alpha 2

k\| dk\| 22 + \=\alpha k\=\tau kg
T
k (dk  - dk)

\leq  - \=\alpha k\Delta q(xk, \=\tau k, gk, Hk, dk) +
1
2 \=\alpha k\beta k\Delta q(xk, \=\tau k, gk, Hk, dk) + \=\alpha k\=\tau kg

T
k (dk  - dk).
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1368 BERAHAS, CURTIS, ROBINSON, AND ZHOU

Case 3: Suppose in line 10 that \=\widetilde \alpha k > 1, meaning that \=\alpha k \leftarrow \=\widetilde \alpha k. From Lemmas 3.4
and 2.3, it follows that

\phi (xk + \=\alpha kdk, \=\tau k) - \phi (xk, \=\tau k)

\leq \=\alpha k\=\tau kg
T
k dk + (\=\alpha k  - 1)\| ck\| 1  - \| ck\| 1 + 1

2 (\=\tau kL+ \Gamma )\=\alpha 2
k\| dk\| 22

= \=\alpha k(\=\tau kg
T
k dk  - \| ck\| 1) + 2(\=\alpha k  - 1)\| ck\| 1 + 1

2 (\=\tau kL+ \Gamma )\=\alpha 2
k\| dk\| 22

\leq \=\alpha k(\=\tau kg
T
k dk  - \| ck\| 1) + 2\=\alpha k\| ck\| 1 + 1

2 (\=\tau kL+ \Gamma )\=\alpha 2
k\| dk\| 22 + \=\alpha k\=\tau kg

T
k (dk  - dk)

\leq  - \=\alpha k\Delta q(xk, \=\tau k, gk, Hk, dk) + 2\=\alpha k\| ck\| 1 + 1
2 (\=\tau kL+ \Gamma )\=\alpha 2

k\| dk\| 22 + \=\alpha k\=\tau kg
T
k (dk  - dk).

Using this inequality, let us now consider two subcases. (Since the lemma requires

1 \geq \beta k
\=\xi k\=\tau k

\=\tau kL+\Gamma for all k \in \BbbN , it is not possible that \=\alpha k = \beta k
\=\xi k\=\tau k

\=\tau kL+\Gamma in this case.)

Case 3a: If \=\alpha k = \beta k\Delta q(xk,\=\tau k,gk,Hk,dk) - 4\| ck\| 1

(\=\tau kL+\Gamma )\| dk\| 2
2

, then

\phi (xk + \=\alpha kdk, \=\tau k) - \phi (xk, \=\tau k)

\leq  - \=\alpha k\Delta q(xk, \=\tau k, gk, Hk, dk) + 2\=\alpha k\| ck\| 1

+ 1
2 \=\alpha k(\=\tau kL+ \Gamma )

\Bigl( 
\beta k\Delta q(xk,\=\tau k,gk,Hk,dk) - 4\| ck\| 1

(\=\tau kL+\Gamma )\| dk\| 2
2

\Bigr) 
\| dk\| 22 + \=\alpha k\=\tau kg

T
k (dk  - dk)

=  - \=\alpha k\Delta q(xk, \=\tau k, gk, Hk, dk) +
1
2 \=\alpha k\beta k\Delta q(xk, \=\tau k, gk, Hk, dk) + \=\alpha k\=\tau kg

T
k (dk  - dk).

Case 3b: If \=\alpha k = \beta k
\=\xi k\=\tau k

\=\tau kL+\Gamma + \theta \beta 2
k, then the same argument applies as in Case 3a by

plugging in for \=\alpha k and using the fact that \=\alpha k \leq \beta k\Delta q(xk,\=\tau k,gk,Hk,dk) - 4\| ck\| 1

(\=\tau kL+\Gamma )\| dk\| 2
2

.

The result follows by combining the conclusions of all cases and subcases.

Our next two lemmas provide useful relationships between deterministic (i.e.,
dependent on gk) and stochastic (i.e., dependent on gk) quantities.

Lemma 3.8. For all k \in \BbbN , \BbbE k[dk] = dk, \BbbE k[uk] = uk, and \BbbE k[yk] = yk. More-
over, there exists \kappa d \in \BbbR >0, independent of k, such that \BbbE k[\| dk  - dk\| 2] \leq \kappa d

\surd 
M .

Proof. The first statement follows from the fact that, conditioned on the kth
iterate being xk, the matrix on the left-hand side of (3.2) is deterministic and, un-
der Assumption 3.2, it is invertible, along with the fact that expectation is a linear
operator. For the second statement, notice that for any realization of gk, it follows
that \biggl[ 

dk  - dk
yk  - yk

\biggr] 
=  - 

\biggl[ 
Hk JT

k

Jk 0

\biggr]  - 1 \biggl[ 
gk  - gk

0

\biggr] 
=\Rightarrow \| dk  - dk\| 2 \leq \kappa d\| gk  - gk\| 2,

where (under Assumption 3.2) \kappa d \in \BbbR >0 is an upper bound on the norm of the matrix
shown above. It also follows from Jensen's inequality, concavity of the square root,
and Assumption 3.1 that \BbbE k[\| gk  - gk\| 2] \leq 

\sqrt{} 
\BbbE k[\| gk  - gk\| 22] \leq 

\surd 
M . Combined with

the displayed inequality above, the desired conclusion follows.

Relationships between inner products involving deterministic and stochastic quan-
tities are the subject of the next lemma.

Lemma 3.9. For all k \in \BbbN , it follows that

gTk dk \geq \BbbE k[g
T
k dk] \geq gTk dk  - \zeta  - 1M and dTkHkdk \leq \BbbE k[d

T

kHkdk].
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Proof. From the first block equation in (3.2), it follows that

Hk(Zkwk + vk) + JT
k yk =  - gk \Leftarrow \Rightarrow Zkwk =  - Zk(Z

T
k HkZk)

 - 1ZT
k (gk +Hkvk),

from which it follows that

(3.7) gTk uk = gTk Zkwk =  - gTk Zk(Z
T
k HkZk)

 - 1ZT
k (gk +Hkvk).

Following the same line of argument for (2.6), it follows that

(3.8) gTk uk =  - gTk Zk(Z
T
k HkZk)

 - 1ZT
k (gk +Hkvk).

At the same time, under Assumptions 3.2 and 3.1, one finds that

(3.9) \zeta  - 1M \geq \BbbE k[\| ZT
k (gk  - gk)\| 2(ZT

k HkZk) - 1 ] \geq 0.

One finds that the middle term in this expression can be written as

\BbbE k[\| ZT
k (gk  - gk)\| 2(ZT

k HkZk) - 1 ]

= \BbbE k[\| ZT
k gk\| 2(ZT

k HkZk) - 1 ] - 2\BbbE k[g
T
k Zk(Z

T
k HkZk)

 - 1ZT
k gk] + \| ZT

k gk\| 2(ZT
k HkZk) - 1

= \BbbE k[\| ZT
k gk\| 2(ZT

k HkZk) - 1 ] - \| ZT
k gk\| 2(ZT

k HkZk) - 1 .

Hence, combining (3.7), (3.8), (3.9), and the fact that \BbbE k[gk] = gk one finds

gTk uk  - \BbbE k[g
T
k uk] =  - gTk Zk(Z

T
k HkZk)

 - 1ZT
k (gk +Hkvk)

+ \BbbE k[g
T
k Zk(Z

T
k HkZk)

 - 1ZT
k (gk +Hkvk)]

=  - \| ZT
k gk\| 2(ZT

k HkZk) - 1 + \BbbE k[\| ZT
k gk\| 2(ZT

k HkZk) - 1 ] \in [0, \zeta  - 1M ].

The first desired result follows from this fact, \BbbE k[g
T
k vk] = gTk vk, and

gTk dk  - \BbbE k[g
T
k dk] = gTk uk + gTk vk  - \BbbE k[g

T
k uk + gTk vk] = gTk uk  - \BbbE k[g

T
k uk].

Now let us prove the second desired conclusion. From (3.2), it follows that

Hk(uk + vk) =  - gk  - JT
k yk \Leftarrow \Rightarrow (uk + vk)

THk(uk + vk) =  - gTk (uk + vk) + yTk ck.

Following the same argument for (2.6), it follows that

(uk + vk)
THk(uk + vk) =  - gTk (uk + vk) + yTk ck.

Combining these facts, it follows that

uT
kHkuk +2(uk - uk)

THkvk - uT
kHkuk =  - gTk (uk + vk)+ gTk (uk + vk)+ (yk - yk)

T ck,

which after taking conditional expectation and using Lemma 3.8 yields

\BbbE k[u
T
kHkuk] - uT

kHkuk =  - \BbbE k[g
T
k uk] + gTk uk.

The desired conclusion now follows since

\BbbE k[d
T

kHkdk] - dTkHkdk = \BbbE k[(uk + vk)
THk(uk + vk)] - (uk + vk)

THk(uk + vk)

= \BbbE k[u
T
kHkuk] - uT

kHkuk,

where again we have used the result of Lemma 3.8.
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In the remainder of our convergence analysis, we consider three cases depending
on the behavior of the sequence \{ \=\tau k\} in a run of the algorithm. In the deterministic
setting, it was proved that the merit parameter sequence eventually remains constant
at a value that is sufficiently small to ensure that a primal-dual stationarity measure
vanishes (see Lemma 2.16). However, under only Assumption 3.1, it is not possible
to prove that such behavior is guaranteed for any possible run of Algorithm 3.1.
Our analysis considers three mutually exclusive and exhaustive events: event E\tau ,low

that the merit parameter sequence eventually remains constant at a sufficiently small
positive value; event E\tau \searrow 0 that the merit parameter sequence vanishes; and event
E\tau \gg 0 that the merit parameter sequence eventually remains constant, but at a value
that is not sufficiently small. Under modest assumptions, we prove that E\tau \gg 0 occurs
with probability zero, and under a stronger, yet pragmatic assumption, we prove that
event E\tau \searrow 0 does not occur. This leaves event E\tau ,low, which we consider first and show
that, conditioned on this event, convergence comparable to the deterministic setting
is achieved in expectation.

3.2.1. Constant, sufficiently small merit parameter. For our purposes in
this subsection, let us make the following assumption.

Assumption 3.10. Event E\tau ,low occurs in the sense that there exists an iteration
number k\tau ,\xi \in \BbbN and a merit parameter value \=\tau min \in \BbbR >0 such that

(3.10) \=\tau k = \=\tau min \leq \tau trialk and \=\xi k = \=\xi min for all k \geq k\tau ,\xi .

In addition, the stochastic gradient sequence \{ gk\} k\geq k\tau ,\xi 
satisfies

\BbbE k,\tau ,low[gk] = gk and \BbbE k,\tau ,low[\| gk  - gk\| 22] \leq M,

where \BbbE k,\tau ,low denotes expectation with respect to the distribution of \omega conditioned on
the event that E\tau ,low occurs and the algorithm has reached xk in iteration k \in \BbbN .

The inequality \=\tau k \leq \tau trialk in (3.10) is critical since it ensures that the model
reduction value \Delta q(xk, \=\tau min, gk, Hk, dk) satisfies the result of Lemma 2.12 for all k \geq 
k\tau ,\xi with \=\tau min in place of \tau k. In other words, it means that the merit parameter
has become small enough such that, if one were to compute the deterministic search
direction dk using the true gradient gk at xk, then one would find that it is a direction
of sufficient descent for the merit function \phi (\cdot , \=\tau min) at xk. The importance of this
becomes clear in our final results at the end of this part of our analysis. The latter part
of the assumption reaffirms the properties of the stochastic gradient estimates stated in
Assumption 3.1, now conditioned on the occurrence of E\tau ,low. With this assumption,
the results of Lemmas 3.8 and 3.9 continue to hold. For the sake of brevity, for the
rest of this part of our analysis (section 3.2.1), let us redefine \BbbE k[ \cdot ] \equiv \BbbE k,\tau ,low[ \cdot ].

To derive our main result for this case, our goal is to prove upper bounds in expec-
tation for the positive terms on the right-hand side of the conclusion of Lemma 3.7.
Let us first consider the last term, which is addressed in our next lemma.

Lemma 3.11. Suppose that Assumption 3.10 holds. Let \kappa g \in \BbbR >0 be an upper
bound for \{ \| gk\| 2\} , the existence of which follows under Assumption 3.2. It follows,
with \kappa d \in \BbbR >0 from Lemma 3.8 and any k \geq k\tau ,\xi , that \BbbE k[\=\alpha k\=\tau kg

T
k (dk  - dk)] \leq 

\beta 2
k\theta \=\tau min\kappa g\kappa d

\surd 
M .

Proof. For all k \geq k\tau ,\xi , let Ek be the event that gTk (dk  - dk) \geq 0 and let Ec
k be

the event that gTk (dk - dk) < 0. Let \BbbP k[\cdot ] denote probability conditioned on the event
that E\tau ,low occurs and the algorithm has reached xk in iteration k. By the law of
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total expectation, (3.10), and Lemma 3.6, it follows for k \geq k\tau ,\xi that

\BbbE k[\=\alpha k\=\tau kg
T
k (dk  - dk)]

= \BbbE k[\=\alpha k\=\tau ming
T
k (dk  - dk)| Ek]\BbbP k[Ek] + \BbbE k[\=\alpha k\=\tau ming

T
k (dk  - dk)| Ec

k]\BbbP k[E
c
k]

\leq \=\alpha k,max\=\tau min\BbbE k[g
T
k (dk  - dk)| Ek]\BbbP k[Ek] + \=\alpha k,min\=\tau min\BbbE k[g

T
k (dk  - dk)| Ec

k]\BbbP k[E
c
k].

Hence, since dk is an unbiased estimator of dk (by Lemma 3.8), it follows from the
inequality above and the law of total expectation that

\BbbE k[\=\alpha k\=\tau kg
T
k (dk  - dk)]

\leq \=\alpha k,min\=\tau min\BbbE k[g
T
k (dk  - dk)| Ek]\BbbP k[Ek] + \=\alpha k,min\=\tau min\BbbE k[g

T
k (dk  - dk)| Ec

k]\BbbP k[E
c
k]

+ (\=\alpha k,max  - \=\alpha k,min)\=\tau min\BbbE k[g
T
k (dk  - dk)| Ek]\BbbP k[Ek]

= (\=\alpha k,max  - \=\alpha k,min)\=\tau min\BbbE k[g
T
k (dk  - dk)| Ek]\BbbP k[Ek].

Now observe, by Cauchy--Schwarz and the law of total expectation, that

\BbbE k[g
T
k (dk  - dk)| Ek]\BbbP k[Ek] \leq \BbbE k[\| gk\| 2\| dk  - dk\| 2| Ek]\BbbP k[Ek]

= \BbbE k[\| gk\| 2\| dk  - dk\| 2] - \BbbE k[\| gk\| 2\| dk  - dk\| 2| Ec
k]\BbbP k[E

c
k]

\leq \| gk\| 2\BbbE k[\| dk  - dk\| 2].

Combining these results with Lemmas 3.6 and 3.8 yields the result.

Our next result addresses the middle term on the right-hand side of Lemma 3.7.

Lemma 3.12. Suppose Assumption 3.10 holds. Then, for all k \geq k\tau ,\xi , it follows
that \BbbE k[\Delta q(xk, \=\tau k, gk, Hk, dk)] \leq \Delta q(xk, \=\tau min, gk, Hk, dk) + \=\tau min\zeta 

 - 1M .

Proof. Consider arbitrary k \geq k\tau ,\xi . From (2.4), (3.10), Lemma 3.9, Jensen's
inequality, and the convexity of max\{ \cdot , 0\} , it follows that

\BbbE k[\Delta q(xk, \=\tau k, gk, Hk, dk)] = \BbbE k[ - \=\tau min(g
T
k dk + 1

2 max\{ dTkHkdk, 0\} ) + \| ck\| 1]
\leq  - \=\tau min(g

T
k dk + 1

2 max\{ dTkHkdk, 0\} ) + \=\tau min\zeta 
 - 1M + \| ck\| 1

= \Delta q(xk, \=\tau min, gk, Hk, dk) + \=\tau min\zeta 
 - 1M,

as desired.

We now prove our main theorem for this part of our analysis, where we define

\BbbE \tau ,low[ \cdot ] = \BbbE [ \cdot | Assumption 3.10 holds ].

Theorem 3.13. Suppose that Assumption 3.10 holds and the sequence \{ \beta k\} is
chosen such that \beta k

\=\xi k\=\tau k/(\=\tau kL+ \Gamma ) \in (0, 1] for all k \geq k\tau ,\xi . Define

A :=
\=\xi min\=\tau min

\=\tau minL+\Gamma and M := \=\tau min

\bigl( 
1
2 (A+ \theta )\zeta  - 1M + \theta \kappa g\kappa d

\surd 
M
\bigr) 
.

If \beta k = \beta \in (0, 2A/(A+ \theta )) for all k \geq k\tau ,\xi , then

(3.11)

\BbbE \tau ,low

\left[  1
k+1

k\tau ,\xi +k\sum 
j=k\tau ,\xi 

\Delta q(xj , \=\tau min, gj , Hj , dj)

\right]  
\leq \beta M

A - 1
2 (A+\theta )\beta 

+
\BbbE \tau ,low[\phi (xk\tau ,\xi 

,\=\tau min)] - \phi min

(k+1)\beta (A - 1
2 (A+\theta )\beta )

k\rightarrow \infty  -  -  -  - \rightarrow \beta M

A - 1
2 (A+\theta )\beta 

,
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where \phi min \in \BbbR is a lower bound for \phi (\cdot , \=\tau min) over \scrX , the existence of which follows
by Assumption 3.2. On the other hand, if

\sum \infty 
k=k\tau ,\xi 

\beta k =\infty and
\sum \infty 

k=k\tau ,\xi 
\beta 2
k <\infty , then

(3.12) lim
k\rightarrow \infty 

\BbbE \tau ,low

\left[  1\biggl( \sum k\tau ,\xi +k

j=k\tau ,\xi 
\beta j

\biggr) k\tau ,\xi +k\sum 
j=k\tau ,\xi 

\beta j\Delta q(xj , \=\tau min, gj , Hj , dj)

\right]  = 0.

Proof. Consider arbitrary k \geq k\tau ,\xi . It follows from the definition ofA, Lemma 3.6,
and the fact that \beta k \in (0, 1] that A\beta k \leq \=\alpha k \leq (A + \theta )\beta k. Hence, it follows from
Lemmas 3.4(d), 3.7, 3.11, and 3.12 that, under the conditions of the theorem,

\BbbE k[\phi (xk + \=\alpha kdk, \=\tau k)] - \BbbE k[\phi (xk, \=\tau k)]

\leq \BbbE k[ - \=\alpha k\Delta q(xk, \=\tau k, gk, Hk, dk) +
1
2 \=\alpha k\beta k\Delta q(xk, \=\tau k, gk, Hk, dk) + \=\alpha k\=\tau kg

T
k (dk  - dk)]

\leq  - \beta k

\bigl( 
A - 1

2 (A+ \theta )\beta k

\bigr) 
\Delta q(xk, \=\tau min, gk, Hk, dk) + \beta 2

kM.

For the scenario of \{ \beta k\} being a constant sequence for k \geq k\tau ,\xi , one finds from above,
taking total expectation conditioned on (3.10), that, for all k \geq k\tau ,\xi ,

\BbbE \tau ,low[\phi (xk + \=\alpha kdk, \=\tau min)] - \BbbE \tau ,low[\phi (xk, \=\tau min)]

\leq  - \beta (A - 1
2 (A+ \theta )\beta )\BbbE \tau ,low[\Delta q(xk, \=\tau min, gk, Hk, dk)] + \beta 2M.

Summing this inequality for j \in \{ k\tau ,\xi , . . . , k\tau ,\xi +k\} , one finds by Assumption 3.2 that

\phi min  - \BbbE \tau ,low[\phi (xk\tau ,\xi 
, \=\tau min)]

\leq \BbbE \tau ,low[\phi (xk\tau ,\xi +k+1, \=\tau min)] - \BbbE \tau ,low[\phi (xk\tau ,\xi 
, \=\tau min)]

\leq  - \beta (A - 1
2 (A+ \theta )\beta )\BbbE \tau ,low

\left[  k\tau ,\xi +k\sum 
j=k\tau ,\xi 

\Delta q(xj , \=\tau min, gj , Hj , dj)

\right]  + (k + 1)\beta 2M,

from which (3.11) follows. Now consider the scenario of \{ \beta k\} diminishing as described.
It follows that for sufficiently large k \geq k\tau ,\xi one finds \beta k \leq A/(A + \theta ); hence, let us
assume without loss of generality that, for all k \geq k\tau ,\xi , one has \beta k \leq A/(A+\theta ), which
implies A - 1

2 (A+ \theta )\beta k \geq 1
2A. Similar to above, it follows for all k \geq k\tau ,\xi that

\BbbE \tau ,low[\phi (xk + \=\alpha kdk, \=\tau min)] - \BbbE \tau ,low[\phi (xk, \=\tau min)]

\leq  - 1
2A\beta k\BbbE \tau ,low[\Delta q(xk, \=\tau min, gk, Hk, dk)] + \beta 2

kM.

Summing this inequality for j \in \{ k\tau ,\xi , . . . , k\tau ,\xi +k\} , one finds by Assumption 3.2 that

\phi min  - \BbbE \tau ,low[\phi (xk\tau ,\xi 
, \=\tau min)]

\leq \BbbE \tau ,low[\phi (xk\tau ,\xi +k+1, \=\tau min)] - \BbbE \tau ,low[\phi (xk\tau ,\xi 
, \=\tau min)]

\leq  - 1
2A\BbbE \tau ,low

\left[  k\tau ,\xi +k\sum 
j=k\tau ,\xi 

\beta j\Delta q(xj , \=\tau min, gj , Hj , dj)

\right]  +M

k\tau ,\xi +k\sum 
j=k\tau ,\xi 

\beta 2
j .

Rearranging this inequality yields

\BbbE \tau ,low

\left[  k\tau ,\xi +k\sum 
j=k\tau ,\xi 

\beta j\Delta q(xj , \=\tau min, gj , Hj , dj)

\right]  \leq 2(\BbbE \tau ,low[\phi (xk\tau ,\xi 
,\=\tau min)] - \phi min)

A
+ 2M

A

k\tau ,\xi +k\sum 
j=k\tau ,\xi 

\beta 2
j ,

from which (3.12) follows.
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The following corollary carries the result of Theorem 3.13 to a statement about
the expected properties of the sequences \{ \| gk + JT

k yk\| 2\} and \{ \| ck\| 2\} , where the
multiplier yk is defined by (2.6) for all k \in \BbbN . In particular, the corollary shows that
the primal iterate sequence \{ xk\} generated by the algorithm offers stationarity and
feasibility in expectation. We close the corollary with the observation that at any
iterate sufficiently close to a stationary point, the error of the Lagrange multiplier
estimate is directly proportional to the error in the stochastic gradient estimate.

Corollary 3.14. Under the conditions of Theorem 3.13, the following hold true.
(a) If \beta k = \beta \in (0, 2A/(A+ \theta )) for all k \geq k\tau ,\xi , then

\BbbE \tau ,low

\left[  1
k+1

k\tau ,\xi +k\sum 
j=k\tau ,\xi 

\biggl( 
\| gj+JT

j yj\| 2
2

\kappa 2
H

+ \| cj\| 2
\biggr) \right]  k\rightarrow \infty  -  -  -  - \rightarrow (\kappa \Psi +1)\beta M

\kappa q\=\tau min(A - 1
2 (A+\theta )\beta )

.

(b) If
\sum \infty 

k=k\tau ,\xi 
\beta k =\infty and

\sum \infty 
k=k\tau ,\xi 

\beta 2
k <\infty , then

lim
k\rightarrow \infty 

\BbbE \tau ,low

\left[  1\biggl( \sum k\tau ,\xi +k

j=k\tau ,\xi 
\beta j

\biggr) k\tau ,\xi +k\sum 
j=k\tau ,\xi 

\beta j

\biggl( 
\| gj+JT

j yj\| 2
2

\kappa 2
H

+ \| cj\| 2
\biggr) \right]  = 0,

from which it follows that

lim inf
k\rightarrow \infty 

\BbbE \tau ,low[\kappa 
 - 2
H \| gk + JT

k yk\| 22 + \| ck\| 2] = 0.

In addition, in either case, there exists \delta x \in \BbbR >0 such that if \| xk  - x\ast \| 2 \leq \delta x for
some stationary point (x\ast , y\ast ) \in \BbbR n \times \BbbR m for (3.1), then for any \delta g \in \BbbR >0 one finds\bigm\| \bigm\| \bigm\| \bigm\| \biggl[ gk  - \nabla f(x\ast )

ck

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| 
2

\leq \delta g =\Rightarrow \| yk  - y\ast \| 2 \leq 2\kappa \ast \delta g,

where, under Assumption 3.2, \kappa \ast \in \BbbR >0 is an upper bound for

\bigm\| \bigm\| \bigm\| \bigm\| \biggl[ Hk JT
\ast 

J\ast 0

\biggr] \bigm\| \bigm\| \bigm\| \bigm\|  - 1

.

Proof. Parts (a) and (b) follow by combining the results of Lemmas 2.11 and 2.12,
the relation (2.15), and Theorem 3.13. The remainder follows with Lemma 2.6 since
for xk sufficiently close to x\ast , one obtains with g\ast := \nabla f(x\ast ) and c\ast := c(x\ast ) = 0 that

\| yk  - y\ast \| 2 \leq 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\biggl[ 
Hk JT

k

Jk 0

\biggr]  - 1 \biggl[ 
gk
ck

\biggr] 
 - 
\biggl[ 
Hk JT

\ast 
J\ast 0

\biggr]  - 1 \biggl[ 
g\ast 
c\ast 

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

=

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\biggl[ 
Hk JT

k

Jk 0

\biggr]  - 1 \biggl[ 
gk  - g\ast 

ck

\biggr] 
+

\Biggl( \biggl[ 
Hk JT

k

Jk 0

\biggr]  - 1

 - 
\biggl[ 
Hk JT

\ast 
J\ast 0

\biggr]  - 1
\Biggr) \biggl[ 

g\ast 
0

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

\leq 3
2\kappa \ast 

\bigm\| \bigm\| \bigm\| \bigm\| \biggl[ gk  - g\ast 
ck

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| 
2

+ 1
2\kappa \ast \delta g,

from which the desired conclusion follows.

We close our analysis of this case with the following remark.

Remark 3.15. Consideration of the conclusion of Corollary 3.14(a) reveals the
close relationship between our result and a conclusion that one reaches for a stochastic
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(sub)gradient method in an unconstrained setting. Notice that

2\kappa \Psi \beta M

\kappa q\=\tau min(A - 1
2 (A+\theta )\beta )

=
2\kappa \Psi \beta \=\tau min

\biggl( 
1
2

\biggl( 
\=\xi min\=\tau min

\=\tau minL+\Gamma +\theta 

\biggr) 
\zeta  - 1M+\theta \kappa g\kappa d

\surd 
M

\biggr) 
\kappa q\=\tau min

\biggl( 
\=\xi min\=\tau min

\=\tau minL+\Gamma  - 1
2

\biggl( 
\=\xi min\=\tau min

\=\tau minL+\Gamma +\theta 

\biggr) 
\beta 

\biggr) .

Our first observation is a common one for the unconstrained setting: The value above
is directly proportional to \beta . To reduce this value, one should choose smaller \beta , but
the downside of choosing smaller \beta is that the algorithm takes shorter steps, meaning
that it takes longer for this limiting value to be approached (recall (3.11)). On the
other hand, while larger \beta means that the algorithm takes larger steps, this comes at
the cost of a larger limiting value. A second observation, unique for our algorithm, is
the influence of \theta . The quantity above is directly proportional to \theta , meaning that the
optimal choice in terms of reducing this value is \theta = 0, in which case one obtains

2\kappa \Psi \beta M

\kappa q\=\tau min(A - 1
2 (A+\theta )\beta )

\theta \rightarrow 0 -  -  - \rightarrow \kappa \Psi \beta \zeta  - 1M

\kappa q(1 - 
1
2\beta )

.

However, this results in a nonadaptive algorithm with \=\alpha k = \beta k
\=\xi k\=\tau k/(\=\tau kL+ \Gamma ) for all

k \in \BbbN . This choice has some theoretical benefits (see also our discussion in section 5),
but we have found this conservative choice to be detrimental in practice.

3.2.2. Poor merit parameter behavior. Theorem 3.13 and Corollary 3.14
show desirable convergence properties in expectation of Algorithm 3.1 in the event
that the merit parameter sequence eventually remains constant at a value that is
sufficiently small. This captures behavior similar to that of Algorithm 2.1 in the
deterministic setting, in which the merit parameter is guaranteed to behave in this
manner. However, for the stochastic Algorithm 3.1, one of two other events are
possible, which we now define mathematically as follows:

\bullet Event E\tau \gg 0: there exists infinite \scrK \tau \subseteq \BbbN and \=\tau big \in \BbbR >0 such that \=\tau k =
\=\tau big > \tau trialk and \=\xi k = \=\xi min for all k \in \scrK \tau . Since \=\tau trialk \geq \=\tau k for all k \in \BbbN ,
this means \=\tau trialk > \tau trialk for all k \in \scrK \tau .

\bullet Event E\tau \searrow 0: \{ \=\tau k\} \searrow 0.
Our goal in this part of our analysis is to argue that these events, exhibiting what we
refer to as poor behavior of the merit parameter sequence, are either impossible or
only occur with probability zero. For these considerations, let us return to assuming
that Assumptions 3.1 and 3.2 hold (and not Assumption 3.10).

Let us first consider event E\tau \gg 0. As shown above in the definition of E\tau \gg 0, the
merit parameter remaining too large requires that the stochastic trial value \=\tau trialk con-
sistently overestimates the deterministic trial value \tau trialk . The following proposition
shows that under a modest assumption about the behavior of the stochastic gradients
and corresponding search directions, this behavior occurs with probability zero.

Proposition 3.16. If there exists p \in (0, 1] such that, for all k \in \BbbN ,

\BbbP k[g
T
k dk +max\{ dTkHkdk, 0\} \geq gTk dk +max\{ dTkHkdk, 0\} ] \geq p,

then E\tau \gg 0 occurs with probability zero.

Proof. If, in any run of the algorithm, gTk dk + max\{ dTkHkdk, 0\} \leq 0 for all suf-
ficiently large k \in \BbbN , then \tau trialk = \infty for all sufficiently large k \in \BbbN and event
E\tau \gg 0 does not occur. Hence, let us define \scrK gd \subseteq \BbbN as the set of indices such that
k \in \scrK gd if and only if gTk dk + max\{ dTkHkdk, 0\} > 0, and let us restrict attention
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to runs in which \scrK gd is infinite. For any k \in \scrK gd, it follows that the inequality

gTk dk +max\{ dTkHkdk, 0\} \geq gTk dk +max\{ dTkHkdk, 0\} holds if and only if

\=\tau trialk = (1 - \sigma )\| ck\| 1

gT
k dk+max\{ dT

k Hkdk,0\} 
\leq (1 - \sigma )\| ck\| 1

gT
k dk+max\{ dT

k Hkdk,0\} 
= \tau trialk .

Hence, it follows from the conditions of the proposition, the fact that \=\tau k \leq \=\tau trialk for
all k \in \BbbN , and the fact that \scrK gd is infinite, that for any k \in \BbbN the probability is one

that for a subsequent iteration number \^k \geq k one finds \=\tau \^k \leq \=\tau trial\^k
\leq \tau trial\^k

. This, the

fact that Lemma 2.16 implies that \{ \tau trialk \} is bounded away from zero, and the fact
that if the merit parameter is ever decreased, then it is done so by a constant factor,
shows that one has \=\tau k \leq \tau trialk for all sufficiently large k \in \BbbN with probability one.

As a concrete example of a setting that offers the minimum probability required
in Proposition 3.16, we offer the following. This is clearly only one of many example
situations that one could consider to mimic real-world scenarios.

Example 3.17. If, for all k \in \BbbN , one has Hk \succ 0 and gk \sim \scrN (gk,\Sigma k) for some
\Sigma k \in \BbbS n with \Sigma k \succ 0, then the condition in Proposition 3.16 holds with p = 1

2 .

Proof. Let k \in \BbbN be arbitrary. The tangential component of the search di-
rection is uk = Zkwk, where, under Assumption 3.2 and the stated conditions,
wk =  - (ZT

k HkZk)
 - 1ZT

k (gk +Hkvk). Plugging in this solution and simplifying yields

gTk dk + d
T

kHkdk = vTk H
1/2
k (I  - H

1/2
k Zk(Z

T
k HkZk)

 - 1ZT
k H

1/2
k )(H

 - 1/2
k gk +H

1/2
k vk).

Since gk is normally distributed with mean gk, it follows that this value is normally
distributed with a mean of the same form, but with gk in place of gk (see, e.g., [32]).
Since a normally distributed random variable takes values greater than or equal to its
expected value with probability 1

2 , the conclusion follows.

Let us now consider the event E\tau \searrow 0. One can learn from Lemmas 2.15 and 2.16
from the deterministic setting that the following holds true.

Proposition 3.18. Consider an arbitrary constant gmax \in \BbbR >0. If, for a run
of Algorithm 3.1, the stochastic gradient estimates satisfy \| gk  - gk\| 2 \leq gmax for all
k \in \BbbN , then the sequence of tangential step components \{ uk\} is bounded, and there
exist k\tau \in \BbbN and \=\tau min \in \BbbR >0 such that \=\tau k = \=\tau min for all k \geq k\tau .

Proof. Boundedness in norm of the tangential step components follows in the
same manner as in Lemma 2.15 with (gk, uk) in place of (gk, uk). Further, the claimed
behavior of the merit parameter sequence follows in the same manner as in the proof of
Lemma 2.16 using (gk, dk, uk) in place of (gk, dk, uk), where in place of the constants
(\kappa \tau ,1, \kappa \tau ,2) one derives constants (\=\kappa \tau ,1, \=\kappa \tau ,2) whose value depends on gmax as well as
the upper bound on the sequence \{ \| gk\| 2\} (under Assumption 3.2).

By Proposition 3.18, if the differences \{ gk  - gk\} are bounded, then the merit pa-
rameter sequence will not vanish, i.e., event E\tau \searrow 0 will not occur. This is guaranteed
if the distributions defining the stochastic gradients \{ gk\} ensure uniform bounded-

ness or, e.g., if f(x) = 1
N

\sum N
i=1 fi(x) and gk := \nabla fik(xk) for all k \in \BbbN , where the

component functions \{ fi\} have bounded derivatives over a set containing the iterates
and in each iteration ik is randomly sampled uniformly from \{ 1, . . . , N\} .

4. Numerical results. In this section, we demonstrate the empirical perfor-
mance of our proposed Algorithm 2.1 (for the deterministic setting) and Algorithm 3.1
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(for the stochastic setting) using MATLAB implementations. We consider their per-
formance on a subset of the equality constrained problems from the CUTE collection
[3]. Specifically, of the 123 such problems in the set, we selected those for which (i) f
is not a constant function, (ii) n+m \leq 1000, and (iii) the LICQ held at all iterates in
all runs of all algorithms that we ran. This selection resulted in a total of 49 problems.
Each problem comes with an initial point, which we used in our experiments.

4.1. Deterministic setting. Our goal in this setting is to demonstrate that,
in practice, our proposed Algorithm 2.1 (``SQP Adaptive"") is as reliable a method
as the state-of-the-art Algorithm 2.2 (``SQP Backtracking""). We do not claim that
SQP Adaptive is always as efficient as SQP Backtracking since, as has been verified
by others in the literature, the line search scheme is typically very effective across a
broad range of problems. That said, since our algorithm for the stochastic setting is
based on SQP Adaptive, it is at least of interest to demonstrate that this approach is
as reliable as SQP Backtracking. For these experiments, we chose each Hk to be the
Hessian of the Lagrangian at (xk, yk - 1). For both algorithms, for any k such that the
inertia of the matrix in (2.6) is not correct with this choice, a multiple of the identity
is added in an iterative manner until the correct inertia is attained. This is a common
strategy in state-of-the-art constrained optimization software; see, e.g., [34].

For these experiments, the parameters were set as \tau  - 1 = 1, \epsilon = 10 - 6, \sigma = 1/2,
\eta = 10 - 4, \rho = 3, L - 1 = 1, \gamma  - 1,i = 1, \nu = 1/2, and \alpha = 1. In line 5 of Algorithm 2.1,
all Lipschitz constant estimates were set as 1/2 times the estimates from the previous
iteration. A run terminated with a message of success if iteration k \leq 104 yielded

\| gk + JT
k yk\| \infty \leq 10 - 6 max\{ 1, \| g0 + JT

0 y0\| \infty \} and \| ck\| \infty \leq 10 - 6 max\{ 1, \| c0\| \infty \} ;

otherwise, the run was considered a failure. Figure 4.1 provides Dolan--Mor\'e per-
formance profiles [13] for iterations and function evaluations required by the two
methods. (The profiles are capped at t = 20.) As expected, the performance of SQP
Backtracking was typically better than that of SQP Adaptive. That said, SQP Adap-
tive was as reliable as this state-of-the-art approach. Over all iterations of all runs of
SQP Adaptive, the stepsize \alpha k was chosen less than one 40.9\% of the time, equal to
one 41.8\% of the time, and greater than one 17.3\% percent of the time.

We speculate that there may be situations in which SQP Adaptive can outperform
SQP Backtracking in the deterministic regime. For example, we also ran the same
set of experiments as above, but with Hk = I for all k \in \BbbN for both algorithms, and

Fig. 4.1. Performance profiles for SQP Adaptive and SQP Backtracking for problems from the
CUTE test set in terms of iterations (left) and function evaluations (right).
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found that SQP Adaptive often outperforms SQP Backtracking, especially in terms
of requiring fewer function evaluations. This appears to be due to SQP Backtracking
requiring more function evaluations per iteration---during the line searches---when
second-order derivatives are not employed.

4.2. Stochastic setting. Our goal in this setting is to compare the performance
of our proposed Algorithm 3.1 (``Stochastic SQP"") against that of a stochastic sub-
gradient method (``Stochastic Subgradient"") applied to minimize the exact penalty
function (2.3) (which represents the current state-of-the-art for constrained stochastic
optimization). For these experiments, we used our test set of 49 CUTE problems but
considered multiple runs for different levels of noise. In particular, for a given run
of an algorithm, we fixed \epsilon N \in \{ 10 - 8, 10 - 4, 10 - 2, 10 - 1\} and then for each iteration
set the stochastic gradient estimate as gk = \scrN (gk, \epsilon NI). For each problem and noise
level, we ran 10 instances. This led to a total of 490 problem instances for each
algorithm and noise level. Each run of Stochastic SQP was given a budget of 1000
iterations while each run of Stochastic Subgradient was given a budget of 10000 iter-
ations. We tuned the value of \tau individually for each problem instance for Stochastic
Subgradient. In particular, for each problem instance, we ran the algorithm for the
11 values \tau \in \{ 10 - 10, 10 - 9, . . . , 10 - 1, 100\} and selected the value for that instance
that led to the best results in terms of feasibility and optimality errors (see below).
Overall, this means that for each problem, Stochastic Subgradient was given 110 times
the number of iterations that were allowed for Stochastic SQP. (This broad range of
\tau was needed by Stochastic Subgradient to obtain its best results. The selected \tau 
values were roughly evenly distributed over the set from 10 - 10 to 100.)

For both methods, the Lipschitz constants L and \Gamma =
\sum m

i=1 \gamma i were estimated
using differences of gradients near the initial point and kept fixed for all subsequent
iterations. (This process was done so that L and \Gamma were the same for both methods for
each problem.) For Stochastic SQP, we set Hk = I for all k for fairness of comparison
with the (first-order) subgradient method. The other inputs for Stochastic SQP were
set as \=\tau  - 1 = 1, \epsilon = 10 - 6, \sigma = 1/2, \=\xi  - 1 = 1, \theta = 10, and \beta k = 1 for all k. Stochastic
Subgradient was run with a constant stepsize \tau 

\tau L+\Gamma for all k.
For each algorithm and each problem instance, we computed a resulting feasibility

error and optimality error as follows. If a run produced an iterate that was sufficiently
feasible in the sense that \| ck\| \infty \leq 10 - 6 max\{ 1, \| c0\| \infty \} for some k, then, with the
largest k corresponding to such a feasible iterate, the feasibility error was reported
as \| ck\| \infty and the optimality error was reported as \| gk + JT

k yk\| \infty , where yk was
computed as a least-squares multiplier using the true gradient gk and Jk. (In this
manner, the optimality error is not based on a stochastic gradient; rather, it is a
true measure of optimality corresponding to the iterate xk.) On the other hand, if a
run produced no sufficiently feasible iterate, then the feasibility error and optimality
error were computed in this manner at the least infeasible iterate during the run. The
results are reported in the form of box plots in Figure 4.2.

Finally, let us comment on the occurrence of the event (3.10). In all runs of
Stochastic SQP, we found that \=\tau k \leq \tau trialk held 100\% of the time in the last 100
iterations. In fact, for the noise levels 10 - 8, 10 - 4, 10 - 2, and 10 - 1, this inequality held
in 99.92\%, 99.10\%, 99.22\%, and 99.65\%, respectively, of all iterations. This provides
evidence that the theory offered under the event E\tau ,low is relevant in practice.

5. Conclusion. We have proposed SQP algorithms for solving smooth nonlinear
optimization problems with equality constraints. Our first algorithm is based on
a state-of-the-art line-search SQP method but employs a stepsize scheme based on

D
ow

nl
oa

de
d 

05
/2

5/
21

 to
 6

4.
12

1.
78

.6
1.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1378 BERAHAS, CURTIS, ROBINSON, AND ZHOU

Fig. 4.2. Box plots for feasibility errors (left) and optimality errors (right).

(adaptively estimated) Lipschitz constants in place of the line search. We have shown
that this method has convergence guarantees that match those of the state-of-the-art
line-search SQP method, and our numerical experiments show that the algorithm is
as reliable. Based on our first algorithm, our second algorithm is designed to solve
problems involving deterministic constraint functions, but a stochastic objective. We
have proved that under good behavior of the merit function parameter, the algorithm
possesses convergence guarantees that match those of our deterministic algorithm
in expectation. We have also argued that a certain type of poor behavior of this
parameter only occurs with probability zero, and another type cannot occur under
pragmatic assumptions. Our numerical experiments show that our algorithm for the
stochastic setting consistently and significantly outperforms a (sub)gradient method
employed to minimize a penalty function, which is an algorithm that represents the
current state-of-the-art in the context of stochastic constrained optimization.

One assumption we have used is that the iterates remain in an open convex set
over which the problem functions and their derivatives are bounded. One could loosen
this assumption if one were to use our algorithm with \theta = 0. Indeed, notice that in our
analysis in section 3.2.1, boundedness of \{ \| gk\| 2\} is required in Lemma 3.11, but with

\theta = 0 one has, for k \geq k\tau ,\xi , \BbbE k[\=\alpha k\=\tau kg
T
k (dk - dk)] =

\Bigl( 
\beta k

\=\xi min\=\tau min

\=\tau minLk+\Gamma k

\Bigr) 
\=\tau min\BbbE k[g

T
k (dk - dk)] =

0. Hence, our assumption about the boundedness of \{ \| gk\| 2\} is only needed when
\theta > 0. We have proposed our algorithm for this setting since it is the context of
\theta > 0 that allows the stepsize scheme in our algorithm to be adaptive, which has a
significant benefit in terms of practical performance of the method.

Acknowledgments. The authors are grateful to the Associate Editor and two
anonymous referees for their valuable comments and suggestions.
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