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Abstract

A displacement aggregation strategy is proposed for the curvature pairs stored in a
limited-memory BFGS (a.k.a. L-BFGS) method such that the resulting (inverse) Hes-
sian approximations are equal to those that would be derived from a full-memory
BFGS method. This means that, if a sufficiently large number of pairs are stored,
then an optimization algorithm employing the limited-memory method can achieve
the same theoretical convergence properties as when full-memory (inverse) Hessian
approximations are stored and employed, such as a local superlinear rate of conver-
gence under assumptions that are common for attaining such guarantees. To the best of
our knowledge, this is the first work in which a local superlinear convergence rate guar-
antee is offered by a quasi-Newton scheme that does not either store all curvature pairs
throughout the entire run of the optimization algorithm or store an explicit (inverse)
Hessian approximation. Numerical results are presented to show that displacement
aggregation within an adaptive L-BFGS scheme can lead to better performance than
standard L-BFGS.
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1 Introduction

Quasi-Newton methods—in which one computes search directions using (inverse) Hes-
sian approximations that are set using iterate and gradient displacement information
from one iteration to the next—represent some of the most effective algorithms for
minimizing nonlinear objective functions.! The main advantages of such methods
can be understood by contrasting their computational costs, storage requirements, and
convergence behavior with those of steepest descent and Newton methods. Steepest
descent methods require only first-order derivative (i.e., gradient) information, but
only achieve a local linear rate of convergence. Newton’s method can achieve a faster
(namely, quadratic) rate of local convergence, but at the added cost of forming and
factoring second-order derivative (i.e., Hessian) matrices, or at least at the cost of
numerous Hessian-vector products per iteration. Quasi-Newton methods lie between
the aforementioned methods; they only require gradient information, yet by updating
and employing Hessian approximations they are able to achieve a local superlinear
rate of convergence. For many applications, the balance between cost/storage require-
ments and convergence rate offered by quasi-Newton methods makes them the most
effective.

Davidon is credited as being the inventor of quasi-Newton methods [14]. For fur-
ther information on their theoretical properties, typically when coupled with line
searches to ensure convergence, see, e.g., [7,9,15,16,31-35]. Within the class of
quasi-Newton methods, algorithms that employ Broyden—Fletcher—Goldfarb—Shanno
(BFGS) approximations of Hessian matrices have enjoyed particular success; see [5,
18,20,38]. This is true when minimizing smooth objectives, as is the focus in the afore-
mentioned references, but also when minimizing nonsmooth [4,11,12,23,26,27,39] or
stochastic [1,2,6,10,22,24,28,37,40] functions.

For solving large-scale problems, i.e., minimizing objective functions involving
thousands or millions of variables, limited-memory variants of quasi-Newton methods,
such as the limited-memory variant of BFGS [30] (known as L-BFGS), have been
successful for various applications. The main benefit of a limited-memory scheme
is that one need not store nor compute matrix-vector products with the often-dense
Hessian approximation; rather, one need only store a few pairs of vectors, known as
curvature pairs, with dimension equal to the number of variables, and one can compute
matrix-vector products with the corresponding Hessian approximation with relatively
low computational cost. That said, one disadvantage of contemporary limited-memory
methods is that they do not enjoy the local superlinear convergence rate properties
achieved by full-memory schemes. Moreover, one does not know a priori what number
of pairs should be maintained to attain good performance when solving a particular
problem. Recent work [3] has attempted to develop an adaptive limited-memory BFGS
method in which the number of stored curvature pairs is updated dynamically within
the algorithm. However, while this approach has led to some improved empirical
performance, it has not been coupled with any strengthened theoretical guarantees.

' Quasi-Newton methods offer the ability to update Hessian and/or inverse Hessian approximations, which
is why we state inverse parenthetically here. For ease of exposition throughout the remainder of the paper,
we often drop mention of the inverse, although in many cases it is the approximation of the inverse, not the
Hessian approximation, that is used in practice.
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We are motivated by the following question: Is it possible to design an adaptive
limited-memory BFGS scheme that stores and employs only a moderate number of
curvature pairs, yet in certain situations can achieve the same theoretical convergence
rate guarantees as a full-memory BFGS scheme (such as a local superlinear rate of
convergence)? We have not yet answered this question to the fullest extent possible.
That said, in this paper, we do answer the following question, which we believe is a
significant first step: Is it possible to develop a limited-memory-type> BFGS scheme
that behaves exactly as a full-memory BFGS scheme—in the sense that the sequence of
Hessian approximations from the full-memory scheme is represented through stored
curvature pairs—while storing only a number of curvature pairs not exceeding the
dimension of the problem? We answer this question in the affirmative by showing
how one can use displacement aggregation such that curvature pairs computed by the
algorithm may be modified adaptively to capture the information that would be stored
in a full-memory BFGS approximation.

A straightforward application of the strategy proposed in this paper might not always
offer practical advantages over previously proposed full-memory or limited-memory
schemes in all settings. Indeed, to attain full theoretical benefits in some settings,
one might have to store a number of curvature pairs up to the number of variables in
the minimization problem, in which case the storage requirements and computational
costs of our strategy might exceed those of a full-memory BFGS method. That said,
our displacement aggregation strategy and corresponding theoretical results establish
a solid foundation upon which one may design practically efficient approaches. We
propose one such approach, leading to an adaptive L-BFGS scheme that we show to
outperform a standard L-BFGS approach on a set of test problems. For this and other
such adaptive schemes, we argue that displacement aggregation allows one to maintain
more history in the same number of curvature pairs than in previously proposed limited-
memory methods.

We conclude the paper with a discussion of how our approach can be extended
to Davidon—Fletcher—Powell (DFP) quasi-Newton updating [14], the challenges of
extending it to the entire Broyden class of updates [16], and further ways that dis-
placement aggregation can be employed in practically efficient algorithms.

1.1 Contributions

We propose and analyze a displacement aggregation strategy for modifying the dis-
placement pairs stored in an L-BFGS scheme such that the resulting method behaves
equivalently to full-memory BFGS. In particular, we show that if a stored iterate dis-
placement vector lies in the span of the other stored iterate displacement vectors, then
the gradient displacement vectors can be modified in such a manner that the same Hes-
sian approximation can be generated using the modified pairs with one pair (i.e, the
one corresponding to the iterate displacement vector that is in the span of the others)
being ignored. In this manner, one can iteratively throw out stored pairs and maintain
at most a number of pairs equal to the dimension of the problem while generating

2 By limited-memory-type BFGS algorithm, we mean one that stores and employs a finite set of curvature
pairs rather than an explicit Hessian approximation.
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the same sequence of Hessian approximations that would have been generated in a
full-memory BFGS scheme. Employed within a minimization algorithm, this leads to
an L-BFGS scheme that has the same convergence behavior as full-memory BFGS;
e.g., it can achieve a local superlinear rate of convergence. To the best of our knowl-
edge, this is the first work in which a local superlinear convergence rate guarantee
is provided for a limited-memory-type quasi-Newton algorithm. We also show how
our techniques can be employed within an adaptive L-BFGS algorithm—storing and
employing only a small number of pairs relative to the dimension of the problem—
that can outperform standard L-BFGS. We refer to our proposed “aggregated BFGS”
scheme as Agg-BFGS.

Our proposal of displacement aggregation should be contrasted with the idea of
merging information proposed in [25]. In this work, the authors prove—when min-
imizing convex quadratics only—that one can maintain an algorithm that converges
finitely if previous pairs are replaced by linear combinations of pairs. This fact moti-
vates a scheme proposed by the authors—when employing an L-BFGS-type scheme in
general—of replacing two previous displacement pairs by a single “sum” displacement
pair. In their experiments, the authors’ idea often leads to reduced linear algebra time,
since fewer pairs are stored, but admittedly worse performance compared to standard
L-BFGS in terms of function evaluations. By contrast, our approach does not use pre-
determined weights to merge two pairs into one. Our scheme aggregates information
stored in any number of pairs using a strategy to ensure that no information is lost,
even if the underlying function is not a convex quadratic. Our experiments show that
our approach can often result in reduced iteration and function evaluations compared
to standard L-BFGS.

1.2 Notation

Let R denote the set of real numbers (i.e., scalars), let R_, (resp., R_)) denote the set
of nonnegative (resp., positive) real numbers, let R” denote the set of n-dimensional
real vectors, and let R”*" denote the set of m-by-n-dimensional real matrices. Let
S™ denote the symmetric elements of R"*". Let N := {0, 1, 2, ...} denote the set of
natural numbers. Let || - || := || - ||».

We motivate our proposed scheme in the context of solving

min f(x), (1.1)

xeR"

where f : R" — R is continuously differentiable. Corresponding to derivatives of f,
we define the gradient function g : R” — R” and Hessian function H : R" — §".
In terms of an algorithm for solving (1.1), we append a natural number as a subscript
for a quantity to denote its value during an iteration of the algorithm; e.g., for each
iteration number k € N, we denote f; := f(xx). That said, when discussing BFGS
updating for the Hessian approximations employed within an algorithm, we often
simplify notation by referring to a generic set of curvature pairs that may or may not
come from consecutive iterations within the optimization algorithm. In such settings,
we clarify our notation at the start of each discussion.
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1.3 Organization

In Sect. 2, we provide background on BFGS updating. In Sect. 3, we motivate, present,
and analyze our displacement aggregation approach. The results of numerical exper-
iments with Agg-BFGS are provided in Sects. 4-5. Concluding remarks are given
in Sect. 6.

2 Background on BFGS

The main idea of BFGS updating can be described as follows. Let the kth iterate
generated by an optimization algorithm be denoted as x. After an iterate displacement
(or step) sx has been computed, one sets the subsequent iterate as xgy; < xx + Sk.
Then, in order to determine the subsequent step sy, one uses the minimizer of the
quadratic model my1 : R" — R given by

dicyr < arg min miy1(d), where mig1(d) = fepr + gip1d + 3d" Mipid

and My, € R™" is a Hessian approximation. In a line search approach, for exam-
ple, one computes dj1 by minimizing myy1, then computes si41 < Ckt1di+1 =
—ak+1Mk_+11gk+1 for some ax41 > 0. With fi 11 and gx41 determined by x4, all
that remains toward specifying the model iy | is to choose My 1. In a quasi-Newton
method [14], one chooses M} such that it is symmetric—i.e., like the exact Hessian
Hj1, it is an element of S"—and satisfies the secant equation

Myy15 = 8k+1 — 8k = Yk- 2.1

Specifically in BFGS, one computes Wyt := M,_ +] | to solve
min [|[W — Wg|pm st. W= w7 and Wyr = sk,
weSn

where || - || o is a weighted Frobenius norm with weights defined by any matrix M
satisfying the secant equation (or, for concreteness, one can imagine the weight matrix
being the average Hessian between xj and xj1). If one chooses My > 0 and ensures
that skT yr > Oforall k € N, as is often done by employing a (weak) Wolfe line search,
then it follows that My > O for all k¥ € N; see [31].

Henceforth, let us focus on the sequence of inverse Hessian approximations { Wy }.
After all, this sequence, not { My}, is the one that is often computed in practice since,
forall k € N, the minimizer of my can be computed as dy <— — Wy gr. Moreover, all of
our discussions about the inverse Hessian approximations { Wy} have corresponding
meanings in terms of { My} since Wy, = M,:] for all k € N.
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2.1 Iterative and compact forms

As is well known, there are multiple ways to construct or merely compute a matrix-
vector product with a BFGS inverse Hessian approximation [31]. For our purposes,
it will be convenient to refer to two ways of constructing such approximations: an
iterative form and a compact form [8]. For convenience, let us temporarily drop from
our notation the dependence on the iteration number of the optimization algorithm and
instead talk generically about constructing an inverse Hessian approximation W > 0.
Regardless of whether one employs all displacements pairs since the start of the run
of the optimization algorithm (leading to a full-memory approximation) or only a few
recent pairs (leading to a limited-memory approximation), the approximation can be
thought of as being constructed from some initial approximation W > 0 and a set
of iterate and gradient displacements such that all iterate/gradient displacement inner
products are positive, i.e.,

S = [sl sm] e R™™ (2.2a)
and ¥ =[y1 - ym| € RT" (2.2b)
where
1 1 17 m
o=l ] Ry 23)

In the iterative form of BEGS updating, one computes a Hessian approximation W
from an initial matrix W > 0 and the displacement pairs in (2.2) by initializing
W <« W, then iteratively setting, for all j € {1, ..., m},

Uj < I—pjyjs. Vi< pjsjs;, and W< U WU; +V;. (24

In the context of an optimization algorithm using BFGS updating, the matrix W would
be set with a single update in each iteration rather than re-generated from scratch in
every iteration using historical iterate/gradient displacements. As a function of the
inputs, we denote the output as W= BFGS(W, S, 7Y).

The updates performed in (2.4) correspond to a set of projections and corresponding
corrections. In particular, for each j € {1, ..., m}, the update projects out curvature
information along the step/direction represented by s;, then applies a subsequent
correction based on the gradient displacement represented by y;; see 13, Appendix B].
In this manner, one can understand the well-known fact that each update in a BFGS
scheme involves a rank-two change of the matrix.

Rather than apply the updates iteratively, it has been shown that one can instead
construct the BEGS approximation from the initial approximation by combining all
low-rank changes directly. The scheme in Algorithm 1, which shows the compact form
of the updates, generates the same output as (2.4); see [8].

We note in passing that for computing a matrix-vector product with a BFGS (or
L-BFGS) approximation without constructing the approximation matrix itself, it is
well-known that one can use the so-called two-loop recursion [30].
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Algorithm 1 : BFGS Matrix Construction, Compact Form

Require: W > 0 and (S, Y) as in (2.2), with p as in (2.3).
1: Set (R, D) € R™M™XM x RMXM with R j < xiTyj for all (i, j) such that I < i < j < m and

D;; < siTyi foralli € {1, ..., m} (with all other elements being zero), i.e.,
sTyp - sTym sTyp
R « o and D < . 2.5)
S,Eym S,Eym
2: Set
= RTD+YTwy)R™! —R7T[ 8T
Y . .
Wewt[sw ][ o L (2.6)

3: return W = BEGS(W, S, Y)

2.2 Convergence and local rate guarantees

An optimization algorithm using a BFGS scheme for updating Hessian approximations
can be shown to converge and achieve a local superlinear rate of convergence under
assumptions that are common for attaining such guarantees. This theory for BFGS
relies heavily on so-called bounded deterioration of the updates or the self-correcting
behavior of the updates, and, for attaining a fast local rate of convergence, on the
ability of the updating scheme to satisfy the well-known Dennis-Moré condition for
superlinear convergence. See [15,16] for further information.

We show in the next section that our Agg-BFGS approach generates the same
sequence of matrices as full-memory BFGS. Hence, an optimization algorithm that
employs our updating scheme maintains all of the convergence and convergence rate
properties of full-memory BFGS. For concreteness, we state one such result as the
following theorem, which follows from Theorems 6.5 and 6.6 in [31]. We cite this
result later in the paper to support our claim that our Agg-BFGS scheme is a limited-
memory-type quasi-Newton approach that can be used to achieve local superlinear
convergence for an optimization algorithm.

Theorem 2.1 Suppose that f is twice continuously differentiable and that one employs
an algorithm that generates a sequence of iterates {xy} according to dy < — Wy gk
and xyy1 < xp + oy dy where {Wy} is generated using the BFGS updating scheme
and, for all k € N, the stepsize ay € R_, is computed from a line search (initialized
with a unit stepsize) to satisfy the Armijo-Wolfe conditions, see equation (3.6) in [31].
In addition, suppose that the algorithm converges to a point x, € R" at which the
Hessian is positive definite and Lipschitz continuous. Then, {xy} converges to x, at a
superlinear rate.

Such a result cannot be proved for L-BFGS [30]. Common theoretical results for
L-BFGS merely show that if the pairs employed have skT vk sufficiently positive and
bounded above for all k € N, then the Hessian approximations are sufficiently positive
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definite and bounded and one can achieve a local linear rate of convergence, i.e., no
better than the rate offered by a steepest descent method.

3 Displacement aggregation

We begin this section by proving a simple, yet noteworthy result about a consequence
that occurs when one makes consecutive BFGS updates with iterate displacements
that are linearly dependent. We use this result and other empirical observations to
motivate our proposed approach, which is stated in this section. We close this section
by proving that our approach is well defined, and we discuss how to implement it in
an efficient manner.

3.1 Motivation: parallel consecutive iterate displacements

The following theorem shows that if one finds in BFGS that an iterate displacement
is a multiple of the previous one, then one can skip the update corresponding to the
prior displacement and obtain the same inverse Hessian approximation.

Theorem 3.1 Let (S, Y) be defined as in (2.2), with p as in (2.3), and suppose that

sj=18j41 for some j € {1,..., m — 1} and some nonzero t € R. Then, with
S:= [S1 ce 81 Sj+1 "'Sm]
and Y := [y1 o Yi—1 Yj+1 "')’m],

Algorithm 1 yields BEGS(W, S, Y) = BEGS(W, S, Y) for any W > 0.

Proof Let W > 0 be chosen arbitrarily. For any j € {1,...,m — 1}, let Wy =
BFGS(W, Si.;, Y1.;) where S := [s1 -+ s;] and Yy.j == [y1 -+ yj]. By (2.4),

Wisj1 = UL U Wi UjUj + U ViU + Vi (3.D

Since s; = 7541, it follows that

UjUjsr = I = pjyis DU = pj41Yj+15]41)

1 T T
I =\ ——— | wyisip1 | = pjt1Yj+15j41)
TSi 1Y)

1 T T
I — <—r )ijjJrl T PjH1YjH+18 4

Sit1Yi

1 T NT
+| 7 Pj+1Yj(8j11Yj+1)S 41
Sj1Yi
T
=TI —=pjryjnsj=Ujn
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and that
- T T
ViUjt1 = (pjsjsj ) = pj+1Yj+15 1)

1

2 T T

= (m ToSj18 0 (L — pjy1Yj+18j41)
j+1Yi

(! T st T vinsT ) =0
“\i7 v TA\Sj+15j41 _:0]+151+1(Sj+1y1+1)5j+1 =0.
j+1Yi

Combining these facts with (3.1), one finds that
Wijs1 = U]'T+1W1:j—lUj+l + Vi,

meaning that one obtains the same matrix by applying the updates corresponding to
(sj,y;) and (sj11, yj+1) as when one skips the update for (s;, y;) and only applies
the one for (s;11, yj41). The result now follows by the fact that, if one starts with the
same initial matrix Wy.;1, then applying the updates defined by (2.4) with the same
pairs {(sj42, ¥j+2), - - -» (Sm, Ym)} yields the same result. O

Theorem 3.1 is a consequence of the over-writing process that signifies BFGS. That
is, with the update associated with each curvature pair, the BFGS update over-writes
curvature information along the direction corresponding to each iterate displacement.
The theorem shows that if two consecutive iterate displacement vectors are linearly
dependent, then the latter update completely over-writes the former—regardless of the
gradient displacement vectors—and as a result the same matrix is derived if the former
update is skipped.

What if a previous iterate displacement is not parallel with a subsequent displace-
ment, but is in the span of multiple subsequent displacements? One might suspect
that the information in the previous displacement might get over-written and can be
ignored. It is not so simple. We illustrate this in two ways.

— Suppose that one accumulates curvature pairs {(s;, y j)}’;:O and compares the
corresponding BFGS approximations with those generated by an L-BFGS scheme
with a history length of n. (Hereafter, we refer to the latter scheme as L-BFGS(n).)
Suppose also that for k > n one finds that the latest n iterate displacements span
R”. If this fact meant that the updates corresponding to these pairs would over-write
all curvature information from previous pairs, then one would find no difference
between BFGS and L-BFGS(n) approximations for k > n. However, one does
not find this to be the case. In Fig. 1a, we plot the maximum absolute difference
between corresponding matrix entries of the BFGS and L-BFGS(2) inverse Hessian
approximations divided by the largest absolute value of an element of the BFGS
inverse Hessian approximation when an algorithm is employed to minimize the
Rosenbrock function [36]

Fxay. x@) = 100(x2) — xG))* + (1 — x1))*. (3.2)
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| 1 1 | 1 | \ | 1 1 1 | 1

—8—BFGS (k-1)
—8—BFGS (k-2) | [~
—8— BFGS (k-3)
—8—BFGS (k-5) | [~

BFGS (k-10)
—8—BFGS (k-15) | [
—8—BFGS (k-20)

—8—L-BFGS (2)
—6—aggBFGS

Relative Error
Relative Error

T T T T T 9 T T T T & T -1
Iterations Iterations

(a) L-BFGS(2) and Agg-BFGS vs. BFGS (b) BFGS(k — j) vs. BFGS

Fig. 1 Illustrations that the over-writing of curvature information in BFGS inverse Hessian approximation
updating is not absolute, even when previous iterate displacements lie in the span of subsequent iterate
displacements. Relative error is the maximum absolute difference between corresponding matrix entries
divided by the largest absolute value of an element of the BFGS inverse Hessian approximation

The pairs are generated by running an optimization algorithm using BFGS updating
with an Armijo-Wolfe line search; the different approximations were computed as
side computations. It was verified that for k > 2 the iterate displacements used
to generate the L-BFGS(2) matrices were linearly independent. One finds that
the differences between the approximations is large for k > n. For the purposes
of comparison, we also plot the differences between the BFGS inverse Hessian
approximations and those generated by our Agg-BFGS scheme described later;
these are close to machine precision.

— Another manner in which one can see that historical information contained in
a BFGS approximation is not always completely over-written once subsequent
iterate displacements span R” is to compare BFGS approximations with those
generated by a BFGS scheme that starts j iterations late. Let us refer to such a
scheme as BFGS(k — j). For example, for j = 1, BFGS(k — 1) approximations
employ all pairs since the beginning of the run of the algorithm except the first
one. By observing the magnitude of the differences in the approximations as k
increases, one can see how long the information from the first pair /ingers in
the BFGS approximation. In Fig. 1b, we plot the maximum absolute difference
between corresponding matrix entries of the BFGS and BFGS(k — j) inverse
Hessian approximations divided by the largest absolute value of an element of
the BFGS inverse Hessian approximation for various values of j using the same
pairs generated by the algorithm from the previous bullet. We only plot once
the corresponding matrices start to deviate, i.e., for the BFGS and BFGS(k — j)
approximations the matrices only start to differ at the j + 1st iteration. One finds,
e.g., that the information from the first pair lingers—in the sense that it influences
the BFGS approximation—for iteration numbers beyond », which in this example
is equal to 2.

On the other hand, one might expect that the information stored in a full-memory
BFGS matrix could be contained in a set of at most n curvature pairs, although not
necessarily a subset of the pairs that are generated by the optimization algorithm. For
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example, this might be expected by recalling the fact that if a BFGS method with an
exact line search is used to minimize a strongly convex quadratic function, then the
Hessian of the quadratic can be recovered exactly if n iterations are performed; see
[16,25,31]. Letting W represent a BFGS matrix—perhaps computed from more than n
pairs—this means that one could run an auxiliary BFGS method to minimize x” Wx to
re-generate W using at most n pairs. By noting the equivalence between the iterates
generated by this auxiliary BFGS scheme and the conjugate gradient (CG) method,
one finds that the modified iterate displacements would lie in a certain Krylov subspace
determined by the initial point and the matrix W [16,31].

Practically speaking, it would not be computationally efficient to run an entire
auxiliary BFGS scheme (for minimizing W) in order to capture W using a smaller
number of curvature pairs. Moreover, we are interested in a scheme that can be used
to reduce the number of curvature pairs that need to be stored even when an iterate
displacement lies in the span of, say, only m < n subsequent displacements. Our
Agg-BFGS scheme is one efficient approach for achieving this goal.

3.2 Basics of Agg-BFGS

The basic building block of our proposed scheme can be described as follows. Sup-
pose that, in addition to the iterate/gradient displacement information (S,Y) =
(st -+« sml, 1 -+ ym)) =: (St:m, Y1:m) as defined in (2.2) with inner products
yielding (2.3), one also has a previous curvature pair

(50, yo) € R" x R" with po = 1/s0 v >0 (3.3)
such that
50 = S1.uT for some T € R™. (3.4)

(As in the Proof of Theorem 3.1, we have introduced the subscript “1 : m” for S
and Y to indicate the dependence of these matrices on quantities indexed 1 through m.
We make use of similar notation throughout the rest of the paper.) Given the linear
dependence of the iterate displacement sp on the iterate displacements in Sy, our
goal is to determine aggregated gradient displacements

?lzm = [91 T ym] (3.5)
such that, for a given initial matrix W > 0, one finds
BFGS(W, SO:m’ YO:m) == BFGS(W» Sl:m9 ?lzm)~ (36)

That is, our goal is to determine Y1.n such that the matrix BEGS(W, So.m, Yo:m) 18
equivalently generated by ignoring (so, yo) and employing (S1.x, Y1.m)-

Remark 1 For simplicity, we are presenting the basics of Agg-BFGS using indices
for the iterate and gradient displacement vectors from O to m. However, these
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need not correspond exactly to the iterates of the outer optimization algorithm. In
other words, our strategy and corresponding theoretical results apply equally for
(S,Y) = sk, -+ Sk ls [k, -+ Yk, 1) where {ki, ..., k,} are some (not neces-
sarily consecutive) iteration numbers in the outer optimization algorithm. We remark
on this generality further when presenting the implementation of our scheme within a
complete optimization algorithm; see Sect. 3.4.

A basic view of our approach is stated as Algorithm 2, wherein we invoke the
compact form of BFGS updates (recall (2.6)). However, while Algorithm 2 provides an
understanding of the intent of our displacement aggregation scheme, it does not specify
the manner in which 171;," yielding (3.6) can be found. It also does not address the fact
that multiple such matrices might exist. Toward a specific scheme, one can expand the
compact forms of BEFEGS(W, So., Yo.m) and BEGS(W, S1., 171 -m), specify that the
aggregated displacements have the form

T
= _ b
Viow = WSt [A 0] + v M + Yim 3.7

forsome A € R™*m=D andp € R~ and compare like terms in order to derive three
key equations that ensure that (3.6) holds. The zero blocks in the variable matrices
in (3.7) are motivated by Theorem 3.1, since in the case of m = 1 one can set
)71;1 = Y1.1; otherwise, A and b need to be computed to satisfy (3.6).

Algorithm 2 : Displacement Aggregation, Basic View

Require: W > 0, (S1:m. Yiums p1:m) as in (2.2)~(2.3), and (sg, Yo, po) as in (3.3)-(3.4).
1: Set Y1.,, as in (3.5) such that, with

slTil slTim S{fl
Ry = o and Dy, = s (3.8)
Y%fm sz;f’m

one finds with

T T T
S sy Y1 K
Ro:m = [ 00 (}? 1"”:| and Dq.,, := [ 00 | ]
m

1:m
that
BFGS(W, So:m» Y0:m)

—-T T —1 —-T T
R (Do + YL WYo)RTL —R
=W + [Som WYo:m][ 0m (Do + O:ny 0 Rom 0:’”][ ; ”’"1,]

- R(;ﬂl O

5 T & ST wo o p—l _a—T
Ry Drim + Y~l:n}WY11m)R1:m _Rl:mi| |:~S

=W+ [Stun WY1m] { = 0

=BFGS(W, Si.m, Viim)-

2: return Y1.,.
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Following these steps, one obtains the more detailed view of our scheme that is
stated in Algorithm 3, where the three key equations are stated as (3.9). Algorithm 3
does not specify a precise scheme for computing (A, b) in order to satisfy (3.9). We
specify such a scheme in Sect. 3.4 after first showing in the following subsection that
real values for (A, b) always exist to satisfy (3.9).

Algorithm 3 : Displacement Aggregation, Detailed View

Require: W > 0, (Si:m, Yizm, p1:m) as in (2.2)~(2.3), and (so, yo, o) as in (3.3)-(3.4).
1: Set Y1.,, as in (3.7) such that, with xg :== 1 + POH}’OH%V, one finds

Rizn = Riam. (3.9a)
[g] = - PO(Slzzm Yim — Rl:m)TTs and (39b)
T
(yl:m - yl:m)TW()N/I:m —Yim) = % [g] [g] (390)

- [A O]T (SITZmYI:m - Rl:m)
- (SIYZmYI:m - R]:m)T [A O] .

2: return )71 m-

3.3 Existence of real solutions for Agg-BFGS
Our goal now is to prove the following theorem for our Agg-BFGS scheme.

Theorem 3.2 Suppose one has W > 0 along with:

— (Stum, Y1:m) as defined in (2.2) with the columns of Sy.;, being linearly independent
and the vector p1., as defined in (2.3), and
— (80, Yo, po) defined as in (3.3) such that (3.4) holds for some t € R™.

Then, there exist A € R™*"=D gnd b € R™~1 such that, with Yim € R1XM defined
as in (3.7), the equations (3.9) hold. Consequently, for this Y., one finds that

siri,- :siTy,- >0 forall i e{l,...,m} (3.10)
and BEGS(W, So;n, Yo.n) = BEGS(W, S, Yiom).
Proof First, observe that there are (m + 1)(m — 1) unknowns in the formula (3.7)
for Y1.,,; in particular, there are m (m — 1) unknowns in A and m — 1 unknowns in b,
yieldingm(m — 1) 4+ (m — 1) = (m + 1)(m — 1) unknowns in total. To see the number

of equations effectively imposed by (3.9), first notice that (3.7) imposes V,, = Y.
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Hence, by ignoring the last column of R;.,, to define the submatrix

s{yt -+ st ymei
p—=| 0 e RMx(m=1), (3.11)
Y S,Z,‘_lym—l
0o ... 0

and similarly defining P with size m x (m — 1) as a submatrix of Rj.,, the key
equations in (3.9) can be simplified to have the following form:

P= P, (3.12a)

b = —po(St,Yim—1— P, (3.12b)
and (Y-t — Yiou )" WP 1im—1 — Yizm—1)

= %bbT — AT Vi1 = P) — (S, Y11 — P)TA. (3.12¢)

Observing the number of nonzero entries in (3.12a) (recall (3.11)) and recognizing
the symmetry in (3.12c), one finds that the effective number of equations are:

mm —1)/2+ m—1) +m@m —1)/2=m+ Dm—1).
~————— ——
(in (3.12a)) (in (3.12b)) (in (3.12¢)) (in (3.12))

Hence, (3.12) (and so (3.9)) is a square system of linear and quadratic equations to be
solved for the unknowns in the matrix A and vector b.

Equation (3.12b) represents a formula for » € R™~!. Henceforth, let us assume
that b is equal to the right-hand side of this equation, meaning that all that remains is
to determine that a real solution for A exists. Let us write

A=ar -+ am—1] wherea; has length m forall i € {l,...,m —1}.
Using this notation, one finds from (3.7) that the jth column of (3.12a) requires

SLiyi=SL;5; < Si;yj=SL,(W ' Stma; +bjyo+ yj):

hence, (3.12a) reduces to the system of affine equations

SL W Simaj = —b; S yo forall je{l,....m—1}. (3.13)
Foreach j € {1,...,m — 1}, let us write
aj=07! [ZJ;] where Q := S W7'S)., > 0, (3.14)
J»
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with a; 1 having length j and a; > having length m — j. (Notice that Q is positive
definite under the conditions of the theorem, which requires that Sy.,, has full column
rank.) Then, in order for (3.13) to be satisfied, one must have

aj1=—b;S{ yo € R/ (3.15)

Moreover, with this value for a; 1, it follows that (3.13), and hence (3.12a), is satisfied
for any a; >. Going forward, our goal is to show the existence of a; » € R~/ for all
j €{l,...,m — 1} such that (3.12c) holds, completing the proof.

Observing (3.12c¢), one finds with (3.7) that it may be written as

ATOA+ Q2TA+ATQ — wo™ =0, (3.16)

where
2 :=SL yob" + ST Vi1 — P e R™*m=D (3.17a)
and w = % e R™ 1 (3.17b)

One may rewrite equation (3.16) as
QA+ 207 QA+ 2)=wo" + 2707 0. (3.18)

Let us now rewrite the equations in (3.18) in a particular form that will be useful for
the purposes of our proof going forward. Consider the matrix QA + 2 in (3.18). By
the definitions of a; 1, a; 2, Q, and §2 in (3.14)—=(3.17), as well as of P from (3.11),
the jth column of this matrix is given by

_}.QT .ol .
[QA+{2]]-=[ bil;l:,-yo}r[ bjSt;v0 ]+[s 0; ]

T r .
Jj:2 bJSj+]:my0 j+1:myj

0; 0; }
= + ,
[aj,z} [S,T+1:m(bjyo +yj)

where 0; is a vector of zeros of length j. Letting L € R™*™ be any matrix
such that LTL = Q! (whose existence follows since Q! > 0), defining Z :=
(21 -+ zm—1] € RO"=Dxn=D a5 any matrix such that Z7Z = ww’ + 270712
(whose existence follows since ww! + 270712 > 0), and defining, for all
je{l,...,m—1},

(@) = 0; 0,
¢jaj2) =L ([aﬂ} + |:Sl,'T+1:m(bj)’0 n YJ)D : (3.19)

it follows that the (i, j) € {1,...,m — 1} x {1, ..., m — 1} element of (3.18) is
$i(ain) i) =1z] 7). (3.20)
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Using the notation from the preceding paragraph, let us use an inductive argument
to prove the existence of a real solution of (3.18). This induction will follow the indices
{1,...,m — 1} in reverse order. As a base case, consider the index m — 1, in which
case one has the one-dimensional unknown a,,—1 2. One finds with

1= —sI (bn-1Y0 + ym—1) € R

that

Opm—1
—1(a) =L = 0y.
Pm-1( m—1,2) I:_Syz;(bm—ly() + ym—1) + S,z;(bm—ly() + ym—l)i| "

Hence, lettinga,,—12 = a,_, 2T Am—1, where Ay is one-dimensional, one finds that
the left-hand side of the (i, j) = (m—1, m—1) equationin (3.20) 1S ||¢pm—1(am—1,2) ||%.
This is a strongly convex quadratic in the unknown A, —1. Since ||¢,,—1 (‘1;:1—1,2) [ =0
and Zr{zflzm_l > 0, there exists A _; € R such that a,, 12 = a;“nfl’z +Aa_, €R
satisfies the (i, j) = (m — 1, m — 1) equation in (3.20).

Now suppose that there exists real {a¢+12, ..., am—1.2} such that (3.20) holds for
all (i, j)withi e {4+ 1,...,m —1}and j € {i,...,m — 1}. (By symmetry, these
values also satisfy the (j, i) elements of (3.20) for these same values of the indices
i and j.) To complete the inductive argument, we need to show that this implies the
existence of ap o € R~ satisfying (3.20) for all (i, j) withi € {j,...,m — 1} and
Jj = ¢, i.e., solving the following system for ag »:

Gm—1(@m—12)" dear2) = z}_ 1z (3.21a)
bor1(ar+12) delarr) = ZZT_HZZ (3.21b)
be(ar2) pearr) = z{ 2. (3.21¢)
Notice that (3.21a)—(3.21b) are affine equations in a; 2, whereas (3.21c) is a quadratic
equationinag. Forallt e {4+ 1,...,m — 1}, let
Ve, = Qe+ e Rm—(+D
' ar2 + S,T+1;m(bt)’0 + 1) ’

so that, by (3.19), one may write

¢i(arn) =1L |: Oc+1 i| forall ref{€+1,...,m—1}.
1/fZ+1,t

Our strategy is first to find aj , € R™~¢ satisfying (3.21a)—(3.21b) such that

0 0
e oS 3.2
ago + Se1m(beyo + ye) € span { |:W+1,e+1:| [W“’m_]“ o
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and (cf. (3.21¢))
delag )" e(aj,) <z 2. (3.23)

Once this is done, we will argue the existence of a nonzero vector ay 2 € R”=¢ such
that aZ"Z + Agag o satisfies (3.21a)—(3.21b) for arbitrary one-dimensional A;. From
here, it will follow by the fact that the left-hand side of (3.21c) is a strongly convex
quadratic in the unknown X, and the fact that (3.23) holds that we can claim that there
exists A; € R such thata; > = azz +Ajaen € R~ satisfies (3.21).

To achieve the goals of the previous paragraph, first let ¢ be the column rank of

[Vett1,641 -+ Yet1,m—1]so that there exists {t1, ..., .} S {£+1,...,m — 1} with
Cl | P Y P | | P et PN |
P Verin | (Ve ) P Yortert |7 [ Yertm—1 ]
(3.24)

For completeness, let us first consider the extreme case when ¢ = 0. In this case,
Yer1,r = Om—e+1) and ¢ (a;2) =0, forall te{€+1,...,m—1}. (3.25)
Hence, by our induction hypothesis, it follows from (3.20) and (3.25) that
2t =0p—q forall re{f+1,...,m— 1} (3.26)

Consequently from (3.25) and (3.26), the affine equations (3.21a)—(3.21b) are satisfied
by any a; , € R™=*_ In particular, one can choose

ajy=—=S[ 1mBeyo + o),

and find by (3.19) that

0¢
oe(a; / -0
K(ag’z) <|:az2 KT . (bgy() ye):|> = U, (327)

which shows that this choice satisfies (3.23).
Now consider the case when ¢ > 0. For azz to satisfy (3.22), it follows with (3.24)
that we must have

0 ... 0
S+ SL (b = : 3.28
ag o+ Sip1:m(beyo + ye) |:1///é+1.,t1 1/fe+1,zj Be (3.28)

where B, has length c. Choosing
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0 01 1" 0 0 ]
o+1 0 Oeg T i+1 0 Oyt . c
= L L . e R,
Pe ([Wﬂ,tl W+1,z6:| |:W+1,z1 I/fz+1,zj> ” “
Z,
(3.29)
it follows with (3.28) that, for any 7 € {#1, ..., t.}, one finds
T
0 0
T * +1 T 4
= L' L
Pilan2) Gela ) [WHJ [a;ﬁz ST, 1 B30 +yz)}
’ (3.30)
O¢+1 ! 7L Opr1 -+ Ogg1 B T
= = Z Z .
Yol Vot oo Yeary, |6 0
We shall now prove that, for any r € {£ + 1,...,m — 1}\{r1, ..., t.}, one similarly
finds that ¢, (a, 2)7 ¢¢ (a;,) = z!'z. Toward this end, first notice that for any such ¢
it follows from (3.24) that ¥oy1; = [Vet1,q -+ VYet1,.1ve,: for some yp, € RC.

Combining the relationship (3.24) along with the inductive hypothesis that, for any
pair (i, j) withi e {{ +1,...,m —1}and j € {i, ..., m — 1}, one has

T
|: Oc+1 } LTL |: O+t ] = ¢i(ain) ¢jaj2) =z 2. (3.3D)

Vet Vetl,j
it follows with the positive definiteness of Q~! = LT L that

rank ([ze+1 -+ zm—1]) = rank ([per1(@e11.2) - Pm—1(@m—12)])
= rank ([¢y, (ar, 2) -+ Pr.(ar,2)]) (3.32)
= rank ([Zn e ch]) =c.

From (3.32), it follows that for any t € {£ + 1,...,m — 1}\{71, ..., t.} there exists
ve,r € RC such that z; = [z; --- z;.]1Ye,- Combining the definitions of yy ; and y
along with (3.31), it follows for any such ¢ that

T
" Opy1 -+ Ogq1 7L O¢r1 -+ Opgg
Sl oy o Yot Vertn - Yerlore

T
_ | Ot |7 prp | Oevr oo Oes
Vet Verin - Vel

= Z[T [le e ZTC]

= 78 [en - Ztc]T [z - 2]

T
) Ogr1 -+ Opg1 7L O¢+1 -+ Ogqq
S Yt o Yo, Verty - Yerin |’
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from which it follows that y, ; = v, ;. Thus, with (3.30) and the definitions of y; ; and

Ve, itfollows forany r € (£ +1,...,m — 1}\{z1, ..., 1.} that
T
0 0
T % +1 T 0
= L' L
orlar2)” delag,) |:1/f£+1,t} I:azz + SZTH:,,, (beyo + YZ)i|

= WT[[ Oct1 0¢+1 T TL[ ) : 0 }
CLVe e Ve ago + Spi1mbeyo + ve)
= VZI ETREE ZIC]T 2
= 3752 [Zt. ce ZzC]T = thzg,
Combining this with (3.30), it follows that az2 from (3.28) with B, from (3.29) satisfies

(3.21a)—(3.21b), as desired. Let us show now that this azz also satisfies (3.23). Indeed,
by (3.28), (3.29), and (3.31), it follows that

pela; ) de(a; )

T
ol I ) T PR
aZQ + SZ+1:m (beyo + ye) aZQ + Sl?:i-]:m (beyo + ye)
T
ﬂg"|: O¢+1 -+ Ogg1 } LTL|: Ogr1 -+ Opg1 ],3(

Vet - Vel Vet = Vet
— 7T
ZZT1 T - -1 ZtTl
. Oct1 o Ocgr | prp | Oer oo Oesn .
¢ 'T Vetln - Vel | Ve+1 - Vet -
1 2y,
- C - C
- 17T T -1 - 77
4 4 4
| . . : T
=z | Sl [z 2] | ze <z zes
T T T
[ <1, | <, <.

where the last inequality comes from the fact that the eigenvalues of

Z,Tl ! Z,Tl
[le e ZIC] E [le . Zlc] :
A A

are all in {0, 1}. (As an aside, one finds that the inequality above is strict if z, ¢
span{z;,, . .., z;.}.) Hence, we have shown that a;zk,z from (3.28) satisfies (3.23).

As previously mentioned (in the text following (3.23)), our goal now is to show that
there exists a nonzero dy» € R™~¢ such that azz + Agay o satisfies (3.21a)—(3.21b)

for arbitrary A¢. From (3.21a)—(3.21b), such an ay» € R”~¢ must satisfy

T
Oy1 --- Oeqr 7, | O
L L|_ =0,_ . 3.33
|:1/f£+1,e+1 o Yl m—1 g2 (D (3-33)
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Since

T
[ Opr1 -+ Opyr } LTL e Rim—(+D)xm. (3.34)
Yer1,041 - Yetl,m—1

it follows that this matrix has a null space of dimension at least £ + 1, i.e., there
exist at least £ 4 1 linearly independent vectors in R™ belonging to the null space
of this matrix. Let Nyj; € R™> ¢+ be a matrix whose columns are £ + 1 linearly
independent vectors in R™ lying in the null space of (3.34). Since this null space
matrix has £ + 1 columns, there exists a nonzero vector {py| € R guch that the
first £ elements of Ny &4 are zero. Letting

[ac¢2lr := [New18evi1leys forall 1 €{l,...,m—1{¢},

one finds that a, satisfies (3.33), as desired. Consequently, as stated in the text
following (3.23), it follows by the fact that the left-hand side of (3.21c¢) is a strongly
convex quadratic in the unknown A, and the fact that (3.23) holds that we can claim
that there exists A} € R such that a;» = azz +Ajaes € R~ satisfies (3.21).
Combining all previous aspects of the proof, we have shown the existence of A €
R™>m=1) and b € R™~1 such that, with Y., € R"*™ defined as in (3.7), the
equations (3.9) hold. The remaining desired conclusions, namely, that (3.10) holds
and that BEGS(W, So...., Y0.m) = BFGS(W, S1., 171:,,,), follow from the existence of
Yi.n € R™¥™ (that we have proved), the fact that the equations in (3.10) are a subset
of the equations in (3.12a), and the fact that (3.9) was derived explicitly to ensure that,
with ¥ 1.m satisfying (3.7), one would find that (3.6) holds. O

3.4 Implementing Agg-BFGS

We now discuss how one may implement our Agg-BFGS scheme to iteratively aggre-
gate displacement information in the context of an optimization algorithm employing
BFGS approximations. We also discuss the dominant computational costs of applying
the scheme, and comment on certain numerical considerations that one should take
into account in a software implementation. The procedures presented in this section
are guided by our proof of Theorem 3.2.

As will become clear in our overall approach, in contrast to a traditional limited-
memory scheme in which one always maintains the most recent curvature pairs to
define a Hessian approximation, the pairs used in our approach might come from a
subset of the previous iterations, with the gradient displacements potentially having
been modified through our aggregation mechanism. For concreteness, suppose that
during the course of the run of an optimization algorithm for solving (1.1), one has
accumulated a set of curvature pairs, stored in the sets

S = {sky, -+ Sk} a0d YV = {Vigs -+ Y}

where {k,-};’;)‘ C N with k; < kjqq foralli € {0, ..., m — 2}, such that the vectors
in the former set (i.e., the iterate displacements) are linearly independent. (Here, the
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elements of Y are not necessarily the gradient displacements computed in iterations
{ko, ..., km—1}, but, for simplicity of notation, we denote them as )’ even though they
might have been modified during a previous application of our aggregation scheme.)
Then, suppose that a new curvature pair (s, , Yk, ) for k,, € N with k,,—1 < ky, is
available. Our goal in this section is to show how one may add and, if needed, aggregate
the information in these pairs in order to form new sets

SQSU{skm} and )

such that

(i) the sets S and 37 have the same cardinality, which is either m or m + 1,
(ii) the vectors in the set S are linearly independent, and
(iii) the BFGS inverse Hessian approximation generated from the datain (SU{sy,, }, YU
{k,, }) is the same as the approximation generated from S, ).

As in the previous section, we henceforth simplify the subscript notation and refer to
the “previously stored” displacement vectors as those in the sets {sg, ..., s»—1} and
{yo, ..., Ym—1}, and refer to the “newly computed” curvature pair as (S;;, Y )-

Once the newly computed pair (s;,, y;) is available, there are three cases.

Case 1. The set of vectors {sg, 51, ..., S} is linearly independent. In this case, one
simply adds the new curvature pair, which leads to the (m + 1)-element sets

S~ = {SO’ ~--7sm71»sm} and j) = {)’0, -~~,)’m717 ym}‘

Notice that if m = n, then this case is not possible.

Case 2. The new iterate displacement vector s,, is parallel to the most recently stored
iterate displacement vector, i.e., s,,—1 = TS, for some T € R. In this case,
one should discard the most recently stored pair and replace it with the newly
computed one, which leads to the m-element sets

S~: {507«~-,Sm72,sm} and j}: {y07"'aerL727 Ym}o

This choice is justified by Theorem 3.1.

Case 3. For some j € {0,...,m — 2}, an iterate displacement vector s; lies
in the span of the subsequent iterate displacements vectors, i.e., s; €
span{s;y1, ..., Sy} Inthis case, one should apply our aggregation scheme to
determine the vectors {y; 41, ..., Y}, then remove the pair (s;, y;), leading
to the m-element sets

S =150y s Sj—1s8j41s o> Sm) and Y =1{Y0, .o\ Yjol, Fjtls - o» Im)-

This choice is justified by Theorem 3.2.

Computationally, the first step is to determine which of the three cases occurs.
One way to do this efficiently is to maintain a Cholesky factorization of an inner
product matrix corresponding to the previously stored iterate displacement vectors,
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then attempt to add to it a new row/column corresponding to the newly computed
iterate displacement, checking whether the procedure breaks down. Specifically, before
considering the newly computed pair (s;,,, Y1), suppose that one has a lower triangular
matrix ® € R”*™ with positive diagonal elements such that

T
[sm—1--50]" [sm-1--- 5] =06, (3.35)
which exists due to the fact that the vectors in {sq, . . ., $;;,—1} are linearly independent.

A Cholesky factorization of an augmented inner product matrix would consist of a
scalar u € R>0’ vector § € R™, and lower triangular A € R™*™ with

T 0 sT
[Sm Sm—1 " SO] [Sm Sm—1 " SO] = |:l; Ai| |:lg AT1| . (3.36)
As is well known, equating terms in (3.35) and (3.36) one must have © = ||sul,
T = [s,gsm_l s,ﬁso]/u, and AAT = @67 — 587, meaning that A can be

obtained from @ through a rank-one downdate; e.g., see [19]. If this downdate does
not break down—meaning that all diagonal elements of A are computed to be positive—
then one is in Case 1 and the newly updated Cholesky factorization has been made
available when yet another curvature pair is considered (after a subsequent optimiza-
tion algorithm iteration). Otherwise, if the downdate does break down, then it is due
to a computed diagonal element being equal to zero. This means that, for some small-
esti € {1,...,m}, one has found a lower triangular matrix = € R with positive
diagonal elements and a vector & € R’ such that

g o][e?
[Sm Sm—1 """ Sm—i]T [Sm Sm—1 " sm—i] = |:§.T 0i| |: 0 gi| : (3.37)

Letting T € R’ be the unique vector satisfying Z7 ¢ = &, one finds that the vector
[z, —1]7 lies in the null space of (3.37), from which it follows that

[sm Sm—1 " Sm—i+l] T =3Sm—i,

where the first element of T must be nonzero since {s;,—1, . .., S;;—; } is a set of linearly
independent vectors. If the breakdown occurs for i = 1, then one is in Case 2. If the
breakdown occurs fori > 1, then one is in Case 3 with the vector t that one needs to
apply our aggregation scheme to remove the pair (s,,—;, Ym—i)-

Notice that if the breakdown occurs in the rank-one downdate as described in
the previous paragraph, then one can continue with standard Cholesky factorization
updating procedures in order to have the factorization of

[Sm o Sm—i+1 Sm—i—1 - 'SO]T [sm o Sm—i+l Sm—i—1 - 'S()]

available in subsequent iterations. For brevity and since it is outside of our main scope,
we do not discuss this in detail. Overall, the computational costs so far are O(mn)
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(for computing the inner products {s/ smu—1, ..., sl so}) plus O(m?) (for updating the
Cholesky factorization and, in Case 2 or Case 3, computing 7).

If Case 1 occurs, then no additional computation is necessary; one simply adds the
new curvature pair as previously described. Similarly, if Case 2 occurs, then again
no additional computation is necessary; one simply replaces the most recent stored
pair with the newly computed one. Therefore, we may assume for the remainder of
this section that Case 3 occurs, we have identified an index j (= m — i using the
notation above) such that s; € span{s;i1,..., sy}, and we have T € R™~J such that
sj = Sj4+1.m 7. Our goal then is to apply our aggregation scheme to modify the gradient
displacement vectors {y;+1, ..., ¥} to compute

T
= _ b
Yj+1:m = WO:}_lstrl:m [A O] +yj |:0] + Yj+1:m, (3.38)

where Wy.;_1 represents the BFGS inverse Hessian approximation defined by some

initial positive definite matrix W > 0 and the curvature pairs {s;, y; }{:_01 , and where
A € ROT=Dxm=j=1) and b € R™~/~! are the unknowns to be determined.

For simplicity in the remainder of this section, let us suppose that j = 0 so that
the pair (sp, yo) is to be removed as in the notation of Sect. 3.2 and Sect. 3.3. As one
might expect, this is the value of j for which the computational costs of computing
A € R™*(m=Dandp € R™~! are the highest. For all other values of j, there is a cost for
computing W, ;_1 Sj+1:m as needed in (3.38). This matrix can be computed without

forming the BFGS Hessian approximation W, ;_1; it can be constructed, say, by
computing matrix-vector products with a compact representation of this approximation
for a total cost of O(j(m — j)n) < O(m>n); see Sect. 7.2 in [31].

Let us now describe how one may implement our aggregation scheme such that,
given Si., with full column rank, Yi.,, p1.n > 0, T € R™ satisfying so = Si. 7,
0, and pp > 0, one may compute A € R"*~=D and b € R”~! in order to obtain
Yim as in (3.7). By Theorem 3.2, it follows that real values for A and b exist to
satisfy (3.9). The computation of the vector b is straightforward; it can be computed
by the formula (3.12b). Assuming that the products in § 1T;m Y1.m—1 have already been
computed (which, using previously computed inner products and recomputing any
as needed if/when gradient displacements have been modified by aggregation, costs
O((m — j)*n)), the cost of computing b is O(m?).

For computing A, let us first establish some notation since the elements of this
matrix will be computed with a specific order. As in the proof of Theorem 3.2, let
A=la; -+ ap_1] whereay € R" forall £ € {1,...,m — 1}, and, as in (3.14), let

_1la _ _
ar= Q! [aﬁ’;]’ where a1 € R, agp € R™ ¢ and Q := SIT:mW 1S1m = 0.

Here and going forward, our computations require products with Q~!. Rather than
form this matrix explicitly, one may maintain a Cholesky factorization of Q and
add/delete rows/columns—as described previously for the inner product matrix cor-
responding to the iterate displacements—as the iterate displacement set is updated
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throughout the run of the (outer) optimization algorithm. With such a factorization,
products with Q! are obtained by triangular solves in a standard fashion. If W > 0
is diagonal or defined by a limited memory approximation, then the cost of updating
this factorization in each instance is O (mn) (for computing W lsm) plus O(m?) for
updating the factorization. Each backsolve costs O(m?).

An approach for computing A is now summarized as Algorithm 4. As explained
in the proof of Theorem 3.2, the values of {Cl/é,l}’;;ll are set to ensure that (3.12a) is
satisfied. Assuming that § le Yo has been computed at cost O(mn), the cost of comput-

ing {ae 1 }2’:11 is O(m?). The values for {ag,z}z’:ll are then computed in reverse order
to solve the system of linear and quadratic equations comprising (3.12c). Assuming
(as has been mentioned) that a factorization of Q is available, and assuming that the
elements of the right-hand side of (3.18) have been pre-computed (at cost Om?3)),
the cost of computing a,,—1,2 is O(1). As for computing the remaining vectors, the
presented scheme follows the proof of Theorem 3.2. The most expensive operation
in each iteration of this scheme is the QR factorization of the matrix in (3.34), which
for each ¢ is of size (m — (£ + 1)) x m. Summing the cost of these for £ = m — 2 to
¢ = 1, the total cost is found to be O(m*).

Algorithm 4 : Displacement Aggregation, Computation of A

1: Foreach ¢ € {1, ..., m — 1}, compute the £-element vector ay 1 by (3.15).

2: Compute a,, 1,2 by solving the quadratic equation (3.21¢).

3:for{=m—2,..., 1do

Compute B¢ by (3.29).

Compute azz by (3.28).

Compute nonzero vector ag 5 to satisfy (3.33).

Compute 1} € R such that ag s = ‘122 + A} a3 solves the quadratic equation (3.21c).
8: end for

9: return A = [a; -+ a,—1 ] with {a; }’}:11 defined by (3.14).

Rk

This completes our description of a manner in which our Agg-BFGS scheme can be
implemented. Observing the computational costs that have been cited, one finds that a
conservative estimate of the total cost is O (m2n)+O(m*). Upon closer inspection, one
finds that for j & 0 the cost is dominated by the cost of computing/updating Sszm Yiom
after aggregation has been performed, whereas for j ~ m the cost is dominated by
the cost of computing W, ;71 Si+1.m before aggregation is performed. In either case,
if m < n (say with 3 < m < 10, as is typical in practice), then the overall cost is not
too dissimilar from O(4mn) per iteration, which is the cost of other limited-memory
schemes such as L-BFGS [8].

We end this section by stating the following result, for closure.

Theorem 3.3 Ifone applies Agg-BFGS as described in this section, then one need only
store atmostm < n curvature pairs such that the corresponding BFGS inverse Hessian
approximations are equivalent to those in a full-memory BFGS scheme. Consequently,
under the same conditions as in Theorem 2.1, the resulting optimization algorithm
produces {xi} that converges to x, at a superlinear rate.
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4 Numerical accuracy of aggregation

Our goals in this and the next section are to provide additional numerical demon-
strations of applications of Agg-BFGS. (Recall that a preview demonstration has
been provided in Fig. la.) Our goal in this section is to show empirically that
limited-memory-type BFGS inverse Hessian approximations provided by Agg-BFGS
accurately represent the approximations provided by full-memory BFGS. We show that
while numerical errors might accumulate to some degree as Agg-BFGS is applied over
a sequence of iterations, the inverse Hessian approximations provided by Agg-BFGS
are not necessarily poor after multiple iterations.

We implemented Agg-BFGS in MATLAB and ran two sets of experiments. First,
for (n,m) € {4, 8, 16, 32, 64, 128}2 with m < n, we generated data to show the error
of applying Agg-BFGS to aggregate a single curvature pair. For each (n, m), we
generated 100 datasets using the following randomized procedure. First, MATLAB’s
built-in sprandsym function was used to generate a random positive definite matrix
with condition number approximately 10*. This matrix defined a quadratic function.
Second, a random fixed point was determined using MATLAB’s built-in randn rou-
tine. From this point, a mock optimization procedure for minimizing the generated
quadratic was run to generate {(sg, yx)};; in particular, for k € {1, ..., m}, starting
with the fixed point, a descent direction was chosen as the negative gradient plus noise
(specifically, the norm of the gradient divided by 10 times a random vector generated
with randn) and a stepsize was chosen by an exact line search to compute the sub-
sequent iterate and gradient displacement pair. Third, a vector r € R™ was generated
randomly using randn in order to define so = [s1 --- s;,]7. The corresponding
gradient displacement yy was determined by stepping backward from the fixed point
along sp. In this manner, we obtained {(s, yk)}Z’:O from a mock optimization proce-
dure from some initial point in such a way that sy was guaranteed to lie the span of
the subsequent iterate displacements.

For each dataset starting from Wy = I, we computed the BFGS inverse Hessian
approximation from {(s, yk)}znzo and constructed the inverse Hessian approximation
corresponding to the set of pairs when Agg-BFGS was used to aggregate the infor-
mation into {(s, yx)};_ . Fig. 2 shows box plots for relative errors between each pair
of inverse Hessian approximations, where error is measured in terms of the maximum
component-wise absolute difference between matrix entries divided by the largest
absolute value of an element of the BFGS inverse Hessian approximation. The results
show that while the errors are larger as n increases and as m is closer to n, they remain
accurate relative to machine precision for all (n, m).

As a second experiment, for (n, m) € {(8, 8), (32, 32), (128, 128)}, we aimed to
investigate how errors might accumulate as Agg-BFGS is applied over a sequence of
iterations. For these experiments, we generated data using a similar mock optimization
procedure as in the previous experiment. Specifically, from some randomly generated
starting point, we computed a random step as in the aforementioned procedure, con-
tinuing until n + 8 iterations were performed. Fig. 3 shows the errors for each iteration
beyond k = n. As in Fig. 1a, these results show that the errors do not accumulate too
poorly as k increases. We conjecture that part of the reason for this is that errors that
result from each application of Agg-BFGS can be over-written eventually, at least
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difference between corresponding matrix entries divided by the largest absolute value of an element of the
BFGS inverse Hessian approximation
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Fig.3 Accumulation of relative errors of the differences between BFGS inverse Hessian approximations and
the corresponding inverse Hessian approximations after applying Agg-BFGS to aggregate the information.
For each (n, m), the box plots show the results for 100 randomly generated instances. Relative error is the
maximum absolute difference between corresponding matrix entries divided by the largest absolute value
of an element of the BFGS inverse Hessian approximation

to some extent, similar to the manner in which curvature information is ultimately
over-written in full-memory BFGS.

5 A practical adaptive L-BFGS method using Agg-BFGS

Our goal now is to provide the results of numerical experiments with an adaptive
L-BFGS method that uses our Agg-BFGS scheme and show that over a diverse test
set it can outperform a standard L-BFGS approach. These experiments are run in the
practical regime when the number of pairs used is small relative to n.

To demonstrate the use of Agg-BFGS in a minimization algorithm, we compare
the results of three algorithms using quasi-Newton inverse Hessian approximations
for computing the search directions, where for each algorithm the same weak Wolfe
line search was used for computing stepsizes. The first algorithm employed L-BFGS
approximations. The second algorithm also employed L-BFGS approximations, but
with Agg-BFGS used to aggregate information when deemed appropriate in the man-
ner described below. Since this second algorithm does not always aggregate the oldest
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pair, but rather uses a particular scheme for choosing which historical pair to use in
the aggregation approach (as explained later on), we also considered a third algorithm.
This algorithm uses the same scheme as the second to determine which pair to consider,
but simply removes this pair rather than perform aggregation with it. Consequently, the
comparison between the second and third algorithms shows the effect of aggregation
itself, rather than only the difference between removing the oldest versus some other
historical pair in an L-BFGS scheme.

We performed experiments with problems from the CUTEst collection [21]. We
chose all problems from the collection for which the number of variables could be
chosen in the interval [10, 3000]. For most problems, n > m, meaning that the
costs of performing aggregation was negligible compared to the costs of computing
search directions, which were the same for all algorithms using the standard two-
loop recursion for L-BFGS. (See Tables 1 and 2 for n for all test problems used.)
All algorithms were run until an iteration, call it k € N, was reached with || gx|lc0 <
10~% max {1, [ golloo}, Or until an iteration limit of 10° was surpassed.

For the second algorithm, Agg-BFGS was employed in the following manner.
Suppose in iteration k € N that the algorithm had in storage the displacement pairs
{(skj, &kj)};ﬁ:l for some indices {ki, ..., kiz} € {1,...,k — 1} with m < m and the
new pair (s, yr) has been computed. Using techniques described in Sect. 3.4, starting
with j = m and iterating down to j = 1, we determined if s;; lay approximately
in span{sg,,,, ..., Sk, Sk} (see next paragraph). If so, then we applied Agg-BFGS
to aggregate the information in the pair with index k;; otherwise, if no such iterate
displacement was determined, then either the pair (s, yx) was simply added to the set
of pairs in storage (if m < m) or the pair with index k| was dropped (if m = m, as in
standard L-BFGS). In this manner, the number of pairs stored and employed remained
less than or equal to m, as usual for L-BFGS.

To determine if s, lay approximately in span{sk;,,, ..., Sk;, sk}, we first com-
puted the orthogonal projection of s;; onto this subspace, call it §;;. Computing this
projection is inexpensive given a Cholesky factorization of the inner product matrix
[Sk_/+1 ce Sk sk]T[skj+l -+ Sk Sk], which can be updated with only O(mn) cost in
each outer iteration as described in Sect. 3.4. If the condition

sk, — §i;ll2 < tol - 1§, I (5.1)

held for some tol € (0, 1), then it was determined that s;; lay approximately in
the subspace, since in this case the norm of the projection §kj was sufficiently large
compared to the orthogonal component si; — §k_,- For j = {m,...,2}, we used
tol = 1078, while for Jj = 1 we loosened the tolerance to tol = 107% to pro-
mote aggregation of the oldest pair. If (5.1) held for some index &, then aggregation
was performed with the pair (§k_ ;» Yk;)- Notice that this ensures that the aggregation is
performed with an iterate displacement vector (namely, the projected vector S ;) that
lies in the subspace defined by subsequent displacements, as required in our algorithms
and theoretical results in Sect. 3. (We remark in passing that, using this scheme, it is
possible that aggregation could be triggered multiple times in a single iteration. Our
software allows for this, but it did not occur in our experiments.)
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One might expect that, under these conditions, Agg-BFGS might not perform
aggregation often. However, on the contrary, our results show that aggregation was
performed quite often.> Tables 1 and 2 show detailed results for the first two algorithms
in our experiments for m = 5. (We do not include the third algorithm since, as shown
below, it was inferior to the first and second algorithms.) For conciseness, we refer
to the algorithm that employed a standard LBFGS(5) strategy as LBFGS (5) , and we
refer to the strategy that employed Agg-BFGS as AggBFGS (5) . For AggBFGS (5),
the table reports the number of aggregations performed, which in many cases was
significant compared to the number of iterations.

One finds in our results that, generally speaking, AggBFGS(m) outperforms
LBFGS(m). By contrast, the third algorithm in our experiments, which we refer to
as LBFGS-Alt(m), if anything often performs worse than even LBFGS(m). This
can be seen more clearly in performance profiles. In Figs. 4 and 5, we present the
results in the form of two types of profiles: Dolan and Moré performance profiles
[17] and Morales outperforming factor profiles [29]. The former type of profile has
a graph for each algorithm, where if a graph for an algorithm passes through the
point («, 0.8), where B is a two-digit integer, then on f% of the problems the mea-
sure required by the algorithm was less than 2¢ times the measure required by the
best algorithm in terms of the measure. In this manner, an algorithm has performed
better than the other if its graph is above and to the left of the graph of the other
algorithm. The second type of profile shows a bar plot of logarithmic outperforming
factors, with a bar for each problem in the test set. In our case, ignoring the perfor-
mance of the third algorithm (LBFGS-A1t(m)), the bar for each problem takes on
the value — log, (measaggeras(n)/measyercsm)), where measaggeresn) is the per-
formance measure for AggBFGS(m) and measygres(m) 18 the performance measure
for LBFGS(m). An upward-pointing bar shows by how much AggBFGS(m) outper-
formed LBFGS(m) on a particular problem, and vice versa for the downward-pointing
bars. We sort the bars by value for ease of visualization. Figure 4 shows profiles using
the number of iterations as the performance measure, and Fig. 5 shows profiles using
the number of function evaluations required as the performance measure. One may
conclude from the profiles that Agg-BFGS helps performance more often than not,
with the benefits being even more significant for smaller values of m.

Much remains to be investigated in terms of the practical use of Agg-BFGS, includ-
ing perhaps more sophisticated techniques for implementing the scheme, handling
numerical errors, and tuning parameters so that the results may be even better on a
wider variety of problems. Our preliminary experiments in this section motivate such
further investigations into the practical use of Agg-BFGS.

6 Conclusion

We have presented a technique for aggregating the curvature pair information in
a limited-memory-type BFGS approach such that the corresponding Hessian (and

3 This provides evidence for the belief, held by some optimization researchers, that when solving cer-
tain large-scale problems one often observes that consecutive steps lie approximately in low-dimensional
subspaces.
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Table 1 Numbers of iterations, function evaluations, and aggregations when algorithms are applied to solve
problems from the CUTEst set with n € [10, 3000]

AggBFGS(5) LBFGS(5)
Name n Iters. Funcs. Aggs. Iters. Funcs.
ARGLINA 200 3 12 1 3 12
ARGLINB 200 3 3 1 3 3
ARGLINC 200 3 3 1 3 3
ARGTRIGLS 200 1494 10220 0 1494 10220
ARWHEAD 1000 2 2 0 2 2
BA-LILS 57 60 218 0 60 218
BA-L1SPLS 57 62 248 0 62 248
BDQRTIC 1000 160 734 28 399 2051
BOX 1000 16 76 6 - -
BOXPOWER 1000 20 86 11 12 29
BROWNAL 200 3 4 0 3 4
BROYDN3DLS 1000 39 45 0 39 45
BROYDN7D 1000 1444 2996 0 1444 2996
BROYDNBDLS 1000 71 151 0 71 151
BRYBND 1000 71 151 0 71 151
CHAINWOO 1000 563 2791 11 506 2577
CHNROSNB 50 186 355 0 186 355
CHNRSNBM 50 533 1593 0 533 1593
COSINE 1000 112 467 0 112 467
CRAGGLVY 1000 247 1189 10 241 1153
CURLY10 1000 - - - - -
CURLY20 1000 - - - - -
CURLY30 1000 - - - - -
DIXMAANA 300 16 48 10 20 60
DIXMAANB 300 22 78 6 24 97
DIXMAANC 300 20 106 5 18 78
DIXMAAND 300 25 93 6 35 135
DIXMAANE 300 400 1865 5 378 1798
DIXMAANF 300 383 1906 6 332 1728
DIXMAANG 300 264 1428 8 319 1526
DIXMAANH 300 425 2148 34 526 2668
DIXMAANI 300 1763 9092 33 2054 10878
DIXMAANIJ 300 307 1380 6 406 2006
DIXMAANK 300 333 1589 15 331 1618
DIXMAANL 300 302 1553 29 363 1860
DIXMAANM 300 2901 14233 22 5220 6061
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Table 1 continued

AggBFGS(5) LBFGS(5)
Name n Iters. Funcs. Aggs. Iters. Funcs.
DIXMAANN 300 701 3749 15 1623 8508
DIXMAANO 300 694 3423 48 720 3642
DIXMAANP 300 555 2662 52 677 3421
DIXON3DQ 1000 5247 5978 0 5247 5978
DMNI15102LS 66 206 962 44 1835 13002
DMNI15103LS 99 853 4535 111 1696 9250
DMNI15332LS 66 1253 6574 194 978 5241
DMNI15333LS 99 11244 39107 26 4339 16755
DMN37142LS 66 639 3314 105 710 3744
DMN37143LS 99 12 128 0 12 128
DQDRTIC 1000 40 191 21 23 75
DQRTIC 1000 311 1838 6 511 2973
EDENSCH 36 110 547 11 138 673
EG2 1000 5 5 3 5 5
EIGENALS 110 661 1898 0 661 1898
EIGENBLS 110 1239 3765 0 1239 3765
EIGENCLS 462 1898 5431 0 1898 5431
ENGVALI 1000 50 74 1 50 74
ERRINROS 50 900 4597 92 3648 16633
ERRINRSM 50 662 3225 60 - -
EXTROSNB 1000 301 1231 1 307 1350
FLETBV3M 1000 92 451 3 114 518
FLETCBV2 1000 1014 1022 0 1014 1022
FLETCBV3 1000 - - - - -
FLETCHBV 1000 - - - - -
FLETCHCR 1000 176 1625 0 176 1625
FMINSRF2 961 374 429 0 374 429
FMINSURF 961 245 309 0 245 309
FREUROTH 1000 23 64 0 23 64
GENHUMPS 1000 3368 9766 0 3368 9766
GENROSE 500 2299 13271 0 2299 13271
HILBERTA 10 31 145 9 55 240

inverse Hessian) approximations are the same as those that would be computed in a
full-memory BFGS approach. The key idea is that if one finds that a stored iterate
displacement vector lies in the span of subsequent iterate displacements, then the gra-
dient displacement vectors can be modified in such a way that the pair involving the
linearly dependent iterate displacement can be removed with no information being
lost. To the best of our knowledge, this is the first limited-memory-type approach
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Table2 Numbers of iterations, function evaluations, and aggregations when algorithms are applied to solve
problems from the CUTEst set with n € [10, 3000]

AggBFGS(5) LBFGS(5)
Name n Iters. Funcs. Aggs. Iters. Funcs.
HILBERTB 50 14 38 14 38
HYDC20LS 99 1802 4128 1802 4128
INDEF 1000 - - - - -
INDEFM 1000 - - - - -
INTEQNELS 102 12 13 0 12 13
JIMACK 81 1584 3833 0 1584 3833
LIARWHD 1000 21 96 18 19 78
LUKSANIILS 100 1332 5926 0 1332 5926
LUKSANI2LS 98 290 639 0 290 639
LUKSANI3LS 98 73 147 0 73 147
LUKSANI4LS 98 224 1041 0 224 1041
LUKSANISLS 100 40 116 0 40 116
LUKSANI6LS 100 44 88 0 44 88
LUKSANI7LS 100 402 1917 0 402 1917
LUKSAN2ILS 100 702 1964 0 702 1964
LUKSAN22LS 100 224 852 0 224 852
MANCINO 100 44 182 11 58 257
MNISTSOLS 494 2 0 2 2
MNISTS5LS 494 2 0 2 2
MODBEALE 200 - - - - -
MOREBV 1000 333 1211 0 333 1211
MSQRTALS 529 3855 7337 0 3855 7337
MSQRTBLS 529 2671 5099 0 2671 5099
NCB20 1010 929 4353 0 929 4353
NCB20B 1000 - - - - -
NONCVXU2 1000 4819 24493 714 5246 27413
NONCVXUN 1000 4014 20743 516 5863 30231
NONDIA 1000 5 5 2 5 5
NONDQUAR 1000 638 3400 108 741 3936
NONMSQRT 529 - - - - -
OSBORNEB 11 232 420 0 232 420
OSCIGRAD 1000 60 97 0 60 97
OSCIPATH 100 - - - - -
PARKCH 15 1205 3844 0 1205 3844
PENALTY1 1000 6 25 4 6 25
PENALTY2 200 - - - - -
PENALTY3 200 75 190 1 75 163
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Table 2 continued

AggBFGS(5) LBFGS(5)
Name n Iters. Funcs. Aggs. Iters. Funcs.
POWELLSG 1000 30 70 24 33 122
POWER 1000 159 806 34 586 4460
QUARTC 1000 311 1838 6 511 2973
SBRYBND 1000 - - - - -
SCHMVETT 1000 219 1121 0 219 1121
SCOSINE 1000 - - - - -
SCURLY10 1000 124 675 13 544 3986
SCURLY20 1000 122 720 17 800 6386
SCURLY30 1000 49 306 7 154 1088
SENSORS 100 62 151 0 62 151
SINQUAD 1000 - - - 23 78
SPARSINE 1000 474 474 0 474 474
SPARSQUR 1000 67 294 4 111 580
SPMSRTLS 1000 167 369 0 167 369
SROSENBR 1000 12 35 9 12 35
SSBRYBND 1000 4932 28846 0 4932 28846
SSCOSINE 1000 - - - - -
STRATEC 10 - - - - -
TESTQUAD 1000 2499 12256 12 1725 7207
TOINTGOR 50 237 254 0 237 254
TOINTGSS 1000 17 52 1 17 52
TOINTPSP 50 108 186 0 108 186
TOINTQOR 50 73 100 0 73 100
TQUARTIC 1000 14 53 10 15 56
TRIDIA 1000 344 354 0 344 354
VARDIM 200 2 2 0 2 2
VAREIGVL 100 34 52 0 34 52
WATSON 31 594 2447 0 594 2447
WOODS 1000 20 58 1 20 58
YATPILS 120 47 203 43 38 188
YATP2LS 120 10 19 7 11 20

that can behave equivalently to a full-memory method, meaning that it can offer all
theoretical properties of a full-memory scheme, such as local superlinear guarantees
for the (outer) optimization method. We have also shown that the application of our
aggregation scheme within an L-BFGS method can lead to performance gains over
standard L-BFGS.

Our methodology could be extended to other quasi-Newton schemes. In particular,
by the well-known symmetry between the BFGS and DFP updating, it is straightfor-

@ Springer



Limited-memory BFGS with displacement aggregation

°
>

°
&

pllog(ratio) < 7)
°
2

0 05 1 15 2 25 3 35 4 45

(a) Dolan and Moré Profile, m = 3

>
>
I

pllog(ratio) < 7)
o o
2 &

°
>

°
o

plog(ratio) < 1)
°
2

[ 05 1 15 2 25 3

°
&

pllog(ratio) < )
° <
=

(g) Dolan and Moré Profile, m =9

Fig.4 Performance profiles for iterations

-log2(ratio)
°

1 AQgBFGS(3)

-1 LBFGS(3)

0 20 40 60 80 100 120

(b) Morales Outperformance Profile, m = 3

1 AQGgBFGS(5)

-log2(ratio)

LBFGS(5)

“o 20 40 60 80 100 120

(d) Morales Outperformance Profile, m = 5

o

AggBFGS(7)

°
o

-log2(ratio)
°

05

A1 LBFGS(7)

[} 20 40 60 80 100 120

(f) Morales Outperformance Profile, m = 7

15
1 AggBFGS(9)
= 05
2
g
5 0
)
8
o5
1 LBFGS(9)
15
2
0 20 40 60 80 100 120

(h) Morales Outperformance Profile, m = 9

@ Springer



A.S.Berahas et al.

AggBFGS(3)

LBFGS(3)

pllog(ratio) <
o MEELn o e
88585588 -
1‘3
'1
l‘l
17
-log2(ratio)
P - o =
I - R - -

AggBFGS(5)

LBFGS(5)

pllog(ratio) <
oo o o
S 2 &5 5
I
-log2(ratio)
R e =
o L & o & -

AggBFGS(7)

pllog(ratio) <
o o o o o o
2 R828 8 &
-log2(ratio)
R e =
o L & o & - o

LBFGS(7)
o 2
0 0.5 1 15 2 25 o 20 40 60 80 100 120
(e) Dolan and Moré Profile, m =7 (f) Morales Outperformance Profile, m = 7
1 2
0.9 15
08
#5 1 AggBFGS(9)
0.7
- __ 05
V106 2
2os £
5 g
iﬂﬁ 0.5
03
1 LBFGS(9)
0.2
1.5
0.1
) 2
o 0.5 1 o 20 40 60 80 100 120
(g) Dolan and Moré Profile, m = 9 (h) Morales Outperformance Profile, m = 9

Fig.5 Performance profiles for function evaluations

@ Springer



Limited-memory BFGS with displacement aggregation

ward to extend our approach for DFP. In particular, with DFP, rather than looking for
linear dependence between iterate displacements, one should look for linear depen-
dence between gradient displacements. If linear dependence is observed, then one can
aggregate the iterate displacements to obtain

T
s _ b
Stim =M lY]:m [A O]+SO |:Oi| + Stum (6.1)

(cf. (3.7)) such that DFP(M, So.m, Yo.:n) = DFP(M, Si., Y1.m) for M > 0. There
might also be opportunities for extending our approach for the other members of
the Broyden class of updates, although such extensions are not as straightforward.
Indeed, for members of the class besides BFGS and DFP, one likely needs to modify
both iterate and gradient displacements to aggregate curvature information.

There are also other opportunities for designing practical adaptations of our scheme.
Perhaps the most straightforward idea is the following: Suppose that one is employing
an L-BFGS(m) approach, one has m curvature pairs already stored, and one performs
a new optimization algorithm iteration to yield a new curvature pair. Rather than
simply discard the oldest stored curvature pair if a previous iterate displacement does
not lie in the span of subsequent displacements, one could project this pair’s iterate
displacement onto the span of the subsequent displacements (and possibly project the
pair’s gradient displacement onto a subspace), then apply our aggregation scheme.
This offers the opportunity to maintain more historical curvature information while
still only storing/employing at most m pairs of vectors. One might also imagine other
approaches for projecting information into smaller-dimensional subspaces in order to
employ our scheme, rather than simply discarding old information. Such techniques
might not attain the theoretical properties of a full-memory approach, but could lead
to practical benefits.

One could employ our aggregation scheme with no modifications necessary if one
employs an optimization algorithm that intentionally computes sequences of steps
in low-dimensional subspaces, such as in block-coordinate descent. Another setting
of interest is large-scale constrained optimization where the number of degrees of
freedom (i.e., number of variables minus the number of active constraints) is small
relative to n. For such a problem, various algorithms compute search directions that
lie in subspaces that are low-dimensional relative to n.
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