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Asan important type of dynamic data-drivenapplication system, unmanned aerial vehicles (UAVs) arewidely used

for civilian, commercial, andmilitary applications across the globe. An increasing research effort has been devoted to

trajectory prediction for non-cooperative UAVs to facilitate their collision avoidance and trajectory planning.

Existing methods for UAV trajectory prediction typically suffer from two major drawbacks: inadequate

uncertainty quantification of the impact of external factors (e.g., wind) and inability to perform online detection of

abrupt flying pattern changes. This paper proposes aGaussian process regression (GPR)-based trajectory prediction

framework for UAVs featuring three novel components: 1) GPR with uniform confidence bounds for simultaneous

predictive uncertainty quantification, 2) online trajectory change-point detection, and 3) adaptive training data

pruning. The paper also demonstrates the superiority of the proposed framework to competing trajectory prediction

methods via numerical studies using both simulation and real-world datasets.

I. Introduction

T HE advancement of technologies, increased access by the pub-
lic, and reduced cost have enabled fast-growing applications of

unmanned aerial vehicles (UAVs), in both commercial and civilian
uses, including wireless communication backup and parcel delivery
[1–4]. As the number of UAVs increases, concern has arisen regard-
ing their safe and efficient operation, e.g., the possibility of collisions
betweenUAVs and interferencewithmanned aircraft. Furthermore, a
strong need for conflict detection and resolution (CD&R) technolo-
gies for UAVs emerged in order to support routine UAV beyond
visual line of sight operations [5]. The important role of CD&R
technologies in air traffic management, such as the Traffic Alert
and Collision Avoidance System, dates as far back as the early
1990s [6]. Supported by a large amount of aircraft performance
model data, CD&R technologies for manned aircraft have been
extensively studied. Recent years have witnessed an upsurge of
interest in developing CD&R technologies for non-cooperative
UAVs. Reliable CD&R technologies for UAVs hinge on accurate
and timely predictions of threat UAV trajectories, which require
efficient data transfer and processing given limited onboard computer
memory and battery capacity.While non-cooperativeUAVs typically
do not share data voluntarily, information technologies (such as radar,
lightweight and low-power cameras, and computer vision-based
systems) enable UAVs to monitor and collect data from threat UAVs
actively [7]. Furthermore, an increasing research effort in building
cloud-based databases and flight information management systems
has made efficient and effective operational information exchange
and voluntary data sharing among non-cooperative UAVs closer to
reality [5,8].
There exists a rich class of trajectory prediction methods for

manned aerial vehicles (e.g., civil aircraft) in the literature. These
methods typically assume the availability of flight data on thrust,
mass, position, and other variables associated with point mass mod-
els. These variables play an essential role in kinematic particle
models for inferring future positions of manned aircraft [9–11].
The trajectory prediction methods developed for manned aircraft

may be unsuitable or impractical to apply to a maneuvering UAV.
Accurate and timely UAV trajectory prediction is far more challeng-
ing to achieve, mainly because UAVs can maneuver more aggres-
sively with much shorter detection horizons. Moreover, the data
collected for UAVs are more susceptible to the impact of external
factors (such as wind force, precipitation, and temperature). Hence,
the data for UAVs can be less accurate than those for manned aircraft.
For instance, wind force can push a UAV off its path originally
planned [12], inducing extra uncertainty to its trajectory.
Innovations in UAV trajectory prediction methods have been gain-

ingmomentum in recent years.Many recently developedmodel-based
approaches for UAV trajectory prediction use position data collected
via active sensing using radar and lidar; see, e.g. [13–16]. Specifically,
studies [13,14] adopted Kalman filter (KF) for predicting trajectories,
whereas studies [15,16] employed a particle filter.Model-freemachine
learning techniques (e.g., neural networks) have also attracted a lot of
attention [17,18]. These methods do not rely on kinetic equations;
instead, they try to extract patterns from the historical position and
kinetics data for predicting the future positions of a target UAV. These
existing methods, although effective on many occasions, suffer from
several drawbacks. First and foremost, fewprevious studies focusedon
addressing uncertainty quantification of predictions made for the
future trajectory of a target UAV. Indeed, there are prediction methods
such as KF that can effectively mitigate sensor errors. There also exist
research attempts that estimate external disturbances and counteract
their impact on trajectory predictions (e.g., [7]). A more thorough
solution—adequately quantifying the prediction uncertainty owing
to external factors (potentially unknown and of various types)—
however, remains elusive. Second, most existing trajectory prediction
methods lack the capability of identifying abrupt changes in UAV
flying patterns (e.g., a sharp turn). Thus, these methods may fail to
make prompt model parameter adjustments to adapt to a new flying
pattern and make accurate predictions. This can result in a substantial
loss in the predictive accuracy achieved by existing trajectory predic-
tion methods [19].
This paper proposes a robust online trajectory prediction frame-

work for non-cooperativeUAVs and demonstrates its practical imple-
mentation efficiency and effectiveness. The proposed prediction
framework features the following three components:
1) AGaussian process regression (GPR) model with uniform error

bounds is adopted for quantifying the uncertainty of predictions
induced by external factors.
2) A change-point detection technique based on sequential gener-

alized likelihood ratio test is applied to detect abrupt changes in the
flying pattern of a target UAV, enabling timely GPR model adjust-
ment to adapt to the changes to maintain a high predictive accuracy.
3) A dynamic training data pruning (TDP) technique based on

Hellinger distance is adopted for improving the computational
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efficiency ofGPR,whichmaintains the size of the training dataset at a
desirable low level while data streams in, making GPRmodeling and
prediction sufficiently fast for real-world implementation.
The rest of the paper is organized as follows. Section II provides a

review of relevant background knowledge. Section III elaborates on
the aforementioned three components of the proposed framework.
Section IV presents numerical studies of the proposed framework
based on simulation and real-world datasets. Finally, Sec. V con-
cludes the paper.

II. Background Review

In this section, we provide a brief review of relevant background
knowledgeonGPRmodeling, change-point detection, and approaches
for improving the computational efficiency of GPR.

A. Gaussian Process Regression

GPR is a popular machine learning method for regression tasks.
Compared with other machine learning models such as support
vector machine and neural networks, GPR enjoys favorable proper-
ties such as being highly flexible to capture various features exhibited
by the data at hand and providing an uncertainty measure for its
prediction [20]. We provide a brief review of GPR next and refer the
interested reader to [20,21] for more details.
Consider a stochastic system whose input point is denoted by

x � �x1; x2; : : : ; xd�⊤ ∈ X ⊂ Rd. We can observe a noisy system
output at x, y�x� ∈ R, which is described by the following model:

y�x� � g�x�⊤β�M�x� � ε

� f�x� � ε (1)

where f�x� � g�x�⊤β�M�x� denotes the true system response free
of observation noise at x that we intend to estimate, g�x� is a p × 1
vector of known functions of x, and β is a vector of unknown
coefficients of compatible dimensions. The term ε denotes normally

distributed observation noise with mean zero and variance σ2. GPR
modeling further assumes that M is a realization of a mean zero
Gaussian process [21]. That is, one can think ofM as being randomly

sampled from a space of functions mapping from Rd to R. The
functions in this space exhibit spatial correlation; namely, the
values of M�x� and M�x 0� tend to be similar if x and x 0 are close to
one another in space. This is captured by the covariance function

K�⋅; ⋅�, where K�x; x 0� � Cov�M�x�;M�x 0�� � ζ2R�x; x 0� for any
x; x 0 ∈ Rd, with ζ2 and R�⋅; ⋅� denoting the process variance and the
correlation function, respectively. Commonly used correlation func-
tions include the squared exponential andMatérn kernels; for a more
detailed discussion, see, e.g., Chapter 4 of [20].
Given a training dataset of sample sizeN,D � fX;Yg, comprising

the N × 1 vector of observed input points X � �x1; x2; : : : ; xN�⊤
and the N × 1 vector of corresponding noisy outputs Y �
�y�x1�; y�x2�; : : : ; y�xN��⊤, we are interested in predicting the true
system response f�x�� at any input point x� ∈ X. GPR considers

linear predictors of the form f̂�x�� � c�x��⊤Y, where c�x�� is an
N × 1 vector of weights that depends on the test point x� and is
chosen to give desirable properties such as minimum mean-squared

error (MSE) for predicting f�x�� � g�x��⊤β�M�x��. Specifically,
GPR obtains the best linear unbiased predictor (BLUP) by choosing

c�x�� to minimize MSE�f̂�x��� � E��c�x��⊤Y − f�x���2� subject to
the unbiasedness constraint: E�c�x��⊤Y� � E�f�x���. Define theN ×
pmatrix G of full rank as G � �g�x1�⊤; g�x2�⊤; : : : ; g�xN�⊤�⊤. For
ease of exposition,we abuse the notation slightly and denoteK�X;X�
as the N × N matrix that contains the pairwise covariance between
each pair of training input points inX. Similarly, denoteK�X; x�� as
the N × 1 vector that contains the pairwise covariance between each
of theN input points inX and x�. Following similar steps as given in
Sec. 1.5 of [22] and Appendix A.1 of [23], we introduce a p × 1

Lagrange multiplier vector λ and obtain that f̂�x�� � c�x��⊤Y is the
BLUP for f�x�� if the following condition holds:

�
K�X;X� � σ2IN G

G⊤ 0p

��
c�x��
λ

�
�

�
K�X; x��
g�x��

�
where IN denotes the N × N identity matrix and 0p represents the

p × p matrix of zeros. Solving the system of equations above, we

obtain that the optimal weight vector is given by c�x�� � �Σ−1 − Σ−1

G�G⊤Σ−1G�−1G⊤Σ−1�K�X; x�� � Σ−1G�G⊤Σ−1G�−1g�x��, where

for notational compactness we have used Σ � K�X;X� � σ2IN .
Hence, the corresponding BLUP for f�x�� follows as

f̂�x�� � g�x��⊤β̂� K�X; x��⊤�K�X;X� � σ2IN�−1�Y −Gβ̂� (2)

where β̂ � �G⊤�K�X;X� � σ2IN�−1G�−1G⊤�K�X;X� � σ2IN�−1Y
is the generalized least-squares estimator of β. The variance of the
BLUP, which equals its MSE because the predictor is unbiased,
follows as

Var�f̂�x��� � K�x�; x�� − K�X; x��⊤�K�X;X� � σ2IN�−1K�X; x��
� η⊤�G⊤�K�X;X� � σ2IN�−1G�−1 (3)

where η � g�x�� − G⊤�K�X;X� � σ2IN�−1K�X; x��. It is worth

noting that, from a Bayesian inference perspective, f̂�x�� in Eq. (2)

and Var�f̂�x��� in Eq. (3) are regarded as the posterior mean and
variance of the true system response f�x�� conditional on the training
dataset D � fX;Yg [20].

In particular, f̂�x�� in Eq. (2) provides a point prediction for

f�x�� andVar�f̂�x��� in Eq. (3) gives a natural uncertainty measure
for the point prediction of GPR. In cases where an interval pre-
diction of f�x�� for an arbitrary test point x� is needed, a standard
pointwise confidence interval with 100�1 − δ�% confidence level
�δ ∈ �0; 1�� can be constructed with the upper and lower confi-
dence limits �UCL�f�x��� and �LCL�f�x��� respectively given by
f̂�x�� 	 z1−δ∕2

����������������������
Var�f̂�x���

q
, where z1−δ∕2 denotes the �1 − δ∕2�-

quantile of the standard normal distribution.
For control purposes, we are often interested in achieving a

prescribed high probability guarantee (say, at level 1 − δ) that the
true system response values f�x��’s at multiple input points in a test
set (say, X�) are simultaneously covered. In such cases, directly
obtaining the pointwise 100�1 − δ�% confidence level at each x� is
problematic, as the resulting simultaneous coverage probability will
bemuch lower than the nominal value 1 − δ. To resolve this issue, one
can apply the Sidak correction to construct individual pointwise
confidence intervals [24]. The upper and lower confidence limits of
Sidak corrected pointwise confidence interval for f�x�� can be
respectively given by

UCL�f�x��� � f̂�x�� � z1−ψ∕2

����������������������
Var�f̂�x���

q
(4)

LCL�f�x��� � f̂�x�� − z1−ψ∕2

����������������������
Var�f̂�x���

q
(5)

where ψ � 1 − �1 − δ�1∕N�
and N� is the number of test points to

make predictions simultaneously.

B. Change-Point Detection

Change-point detection (CPD) is the problem of finding abrupt
changes in patterns exhibited by time series data [25]. One disadvant-
age of existing trajectory prediction methods is that they cannot
promptly adapt to abrupt changes (or change points) in the flying
patterns of the target UAVs. This usually results in a delay in updating
the model parameters, rendering the model’s trajectory predictions
inaccurate. Hence, having an adequate CPD capability is critical to
the success of UAV trajectory prediction methods.
Various approaches have been proposed for CPD in the literature,

and some are dedicated to the context ofGPRmodeling. For example,
a Bayesian online CPD algorithm was proposed in [26] to obtain a
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posterior distribution over change-point times. Another CPD algo-
rithm for GPR was proposed in [27], which incorporates the change-
point time as an input variable in the kernel function and estimates the
change-point time via optimization. However, these approaches typ-
ically require a high computational cost that scaleswith the number of
training points, rendering them infeasible for real-time trajectory
prediction.
Most of the remaining CPD methods were proposed for a more

general setting other than GPR modeling. These methods can be
classified into two classes: supervised and unsupervised learning
approaches. Supervised learning approaches treat CPD as a classi-
fication problem. Various machine learning models (e.g., decision
tree, support vector machine, neural network) in this category can
be employed to separate change points from the other data points.
However, these approaches are problematic if applied for online
trajectory prediction as they are typically computationally demand-
ing and require a large sample of labeled change points. On the other
hand, unsupervised learning approaches are more computationally
efficient and do not require labeled data. The most commonly used
methods of this type are based on generalized likelihood ratio
test (GRLT). The idea is to analyze the probability distributions of
data before and after a candidate change point, and declare the
candidate a change point if the difference between the two distri-
butions is detected to be statistically significant. The likelihood
ratio between two consecutive intervals in time series data is moni-
tored for detecting change points. The methods based on GLRTare
computationally efficient and provide a statistical guarantee for the
false-alarm rate; hence they are more suitable for UAV trajectory
prediction. The interested reader is referred to [28,29] for a detailed
survey of methods for CPD.

C. Approaches for Improving the Computational Efficiency of GPR

An impediment to online implementation of GPR is the computa-
tional complexity, which scales asO�N3�, where N is the number of
training points used for constructing a standard GPR model [20]. As
data accumulate over time for a time-dependent system, the computa-
tional cost grows rapidly if all data collected are used for GPR
modeling.
The efforts to make the training of a GPRmodel on a large dataset

more computationally efficient have been focused on constructing
sparse GPRmodels. The idea behind sparse GPRmodeling is to find
a set of inducing points from the full training dataset to construct a
GPR model and make inference as well as subsequent predictions
[30,31]. The resulting computational cost scales asO�M3�, whereM
denotes the number of inducing points. The size of the inducing-point
setM is much lower than that of the full training datasetN. However,
finding inducing points is a challenging optimization problem,which
is typically computationally expensive to solve.
Apart from sparseGPRmodeling,many previous studies proposed

to construct a GPR model based on a moving window that only
contains a portion of data received most recently. The rationale
behind this idea is that data observations are typicallymore correlated
if they are close in time; hence, the most recently received data are
more relevant for prediction at the next time instant than data received
in the distant past. The size of the moving window can be dynami-
cally adjusted to achieve satisfactory predictive performance.Various
methods have been proposed for dynamically adjusting the training
window size; e.g., see [32–36]; however, most of these methods are
heuristics in nature and not tailored for GPR modeling. Hence, they
cannot provide any rigorous statistical guarantee on the predictive
performance of the resultingGPRmodel constructed on the truncated
dataset. A rigorous and efficient data truncation technique that works
well in conjunction with GPR modeling is required.

III. GPR-Based Online Trajectory Prediction
Framework

In this section, we propose a robust GPR-based online trajectory
prediction framework comprising three important components:
1) GPR with uniform confidence bounds to adequately quantify the
uncertainty induced by external factors, 2) a change-point detection

(CPD) method based on generalized likelihood ratio test to detect
abrupt changes in the target UAV’s flying pattern, and 3) a TDP
technique to improve the computational efficiency of GPR for online
implementation. We refer to the proposed framework as GUCT
hereinafter, where “GU,” “C,” and “T” respectively stand for the
three components.
We first elaborate on the three components of GUCT in Secs.

III.A, III.B, and III.C. Then in Sec. III.D, we discuss how the three
components are integrated into a unified framework.

A. GPR Modeling for Trajectory Prediction with Uniform Confi-

dence Bounds

In our problem setting, we aim to predict the future trajectory of a
target UAVat each time instant. The position of a UAVat the current
time instant ti is uniquely defined by a tuple using the Global
Positioning System (GPS): (latitude, longitude, altitude). GPS sen-
sors can provide accurate position data of the objects to which they
are attached, thanks to the satellites. Denote the latitude, longitude,
and altitude of aUAVat the current time instant ti by lati, loti , andalti ,
respectively.
To address the first drawback of existing trajectory prediction

methods, lack of uncertainty quantification of the impact of external
factors, we use GPR to model the impact of external factors directly.
Consider predicting the target UAV’s position at the next time instant
ti�1. Denote the time interval between time instants ti and ti�1 byΔt,
which is usually very small in the setting of UAV trajectory predic-

tion; the velocity of the UAVon each axis, vlat , v
lo
t , and valt , can be

regarded as constants in �ti; ti�1�. In light of a simple kinetics rule and
the influence of external factors, we can model the UAV’s position at
ti�1 as follows:

lati�1
� lati � vlati Δt� ~wla

ti�1
� lati � vlati Δt� wla

ti�1
� εla (6)

loti�1
� loti � vloti Δt� ~wlo

ti�1
� loti � vloti Δt� wlo

ti�1
� εlo (7)

alti�1
� alti � valti Δt� ~wal

ti�1
� alti � valti Δt� wal

ti�1
� εal (8)

where ~wla
ti�1

� wla
ti�1

� εla denotes the observed nonlinear change in
latitude at time instant ti�1; ~wlo

ti�1
and ~wal

ti�1
are defined similarly with

respect to the longitude and altitude; and εla, εlo, and εal respectively
denote the normally distributed mean zero observation noise with

respective variances σ2la, σ
2
lo, and σ

2
al. The termswla

ti�1
,wlo

ti�1
, andwal

ti�1

denote the impact of external forces on each axis of the UAV’s

trajectory at time instant ti�1. While vlati , v
lo
ti , and valti can be easily

calculated from the real-time dataset given a sufficiently small Δt,
wla

ti�1
, wlo

ti�1
, and wal

ti�1
are unknown and challenging to capture using

sensors. In our framework, we choose to model wla, wlo, and wal

using GPR. Assuming thatwla,wlo, andwal are independent of each
other and have zero mean, we can construct separate GPRmodels for
themby settingg�⋅� � 0 in Eq. (1), which are respectively denoted by
GPla, GPlo, and GPal.

We elaborate on the GPR modeling ofwla
ti�1

and the prediction for

the future latitude lati�1
next. Consider a training dataset Dla

ti �
f�xtj ; ~wla

tj �gNj�1
for GPla, where xtj is the training input point at tj,

~wla
tj is the corresponding output at tj, and N denotes the number of

training data points accumulated by the current time instant ti. Notice
that the input point xtj can incorporate any variables that are useful for

predicting wla
tj , such as position data, pose data, and environmental

data (e.g., wind, precipitation, and temperature) if available. The

training output ~wla
tj can be solved from Eq. (6) as ~wla

tj � latj−
latj−1 − vlatj−1Δt for j � 1; 2; : : : ; N. Upon training GPla on Dla

ti , we

can obtain a point prediction bwla
ti�1

for wla
ti�1

via Eq. (2) and the

corresponding predictive variance Var�wla
ti�1

� via Eq. (3) by setting

g�⋅� andG respectively to zeros. The one-step-ahead point prediction

for lati�1
, denoted by blati�1

, can thus be given as blati�1
� lati�

vlati Δt� bwla
ti�1

. We are also interested in multistep-ahead predictions
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within a prespecified prediction horizon H, as UAVs need to take

actions in advance to avoid collisions. For n-step ahead point pre-

diction (1 ≤ n ≤ H), assuming that the velocity vla and the impact of

the external factorswla remain unchanged over �ti; ti � nΔt�, we can
obtain l̂ati�n

� lati � vlati nΔt� ŵla
ti�1

for n � 1; 2; : : : ; H.
Upon obtaining the point predictions, we can build interval pre-

dictions for the future latitude of the target UAVas needed. A natural

choice for constructing multistep-ahead interval predictions is the

Sidak corrected confidence interval as given by Eqs. (4) and (5),

because it gives a statistical guarantee to cover all the test points

simultaneously in the prediction horizon. However, this correction is

theoretically valid with independent system outputs only [37], which

is not the case for GPRmodeling of trajectory positions. Therefore, a

novel type of confidence interval that is uniformly valid across all test

points in an arbitrarily defined prediction horizon is required for

GPR-based trajectory prediction.
Inspired by [38], we construct uniform error bounds for GPla,

GPlo, andGPal to quantify predictive uncertainty simultaneously for

all prediction points (potentially infinitely many) in an arbitrarily

defined prediction horizon. Take GPla for modeling the latitude as

an example. To bound the predictive error achieved by GPla, the

idea is to use the Lipschitz continuity of the covariance kernelK�⋅; ⋅�
and the underlying function wla�⋅� that GPla aims to estimate.

Specifically, given a training dataset Dla
ti � fX;Wg, where X �

�xt1 ; xt2 ; : : : ; xtN �⊤ and W � � ~wla
t1 ; ~w

la
t2 ; : : : ; ~w

la
tN �⊤, the Lipschitz

constants of the covariance kernel, the posterior mean function,

and wla�⋅� can be respectively given as

Lk � max
x;x 0∈X

�����∂K�x; x 0�
∂x1

: : :
∂K�x; x 0�

∂xd

�⊤����;
Lμ � Lk

����
N

p
k�K�X;X� � σ2laIN�−1Wk;

Lf �

����������������������

266666666666666664

��������������������
2 log

�
2d
δL

�r
max
x∈X

�������������������
K∂1�x; x�

p
�12

������
6d

p
max

�
max
x∈X

�������������������
K∂1�x; x�

p
;

����������
rL∂1

k

q 	
..
.��������������������

2 log
�
2d
δL

�r
max
x∈X

�������������������
K∂d�x; x�

p
�12

������
6d

p
max

�
max
x∈X

�������������������
K∂d�x; x�

p
;

����������
rL∂d

k

q 	

377777777777777775

����������������������
where L∂i

k is the Lipschitz constant of the partial derivative kernel

K∂i�⋅; ⋅��i � 1; 2; : : : ; d� on the input space X ⊂ Rd (recall

Sec. II.A), r � maxx;x 0∈Xkx − x 0k denotes the maximal extension;

and 1 − δL is the probability for the Lipschitz constantLf to hold. To

economize on space, we refer the reader to [38] for the detailed

derivation of the expressions for Lk, Lμ, and Lf. Given a confidence

level 100�1 − δ�%, we have

P



jwla�x�− ŵla�x�j≤

���������������������������������
β�τ�Var�ŵla�x��

q
� γ�τ�

�
≥ 1− δ; ∀ x∈X

(9)

where

β�τ� � 2 log



M�τ;X�

δ

�
; γ�τ� � �Lμ � Lf�τ�

���������
β�τ�

p
η�τ�;

η�τ� �
�
2τLk

�
1� Nk�K�X;X� � σ2laIN�−1kmax

x;x 0∈X
K�x; x 0�

��
1∕2

Here, τ is the grid constant of a grid used in the derivation of Eq. (9),
andM�τ;X� is the minimum number of points in a grid over X with
the grid constant τ. Expression (9) indicates that uniform confidence

bounds can be constructed such thatwla�x� for all x ∈ X are covered
simultaneously with probability 1 − δ. Based on Eq. (9), the upper

and lower limits of the uniform confidence interval for wla
ti�1

can be

respectively given by

UCL�wla
ti�1

� � ŵla
ti�1

�
�����������������������������
β�τ�Var�bwla

ti�1
�

q
� γ�τ� (10)

LCL�wla
ti�1

� � ŵla
ti�1

−
�����������������������������
β�τ�Var�ŵla

ti�1
�

q
− γ�τ� (11)

To obtain an interval prediction for the future latitude in the next n
time instants, lati�n

�1 ≤ n ≤ H�, we first make an interval prediction

for wla
ti�1

via Eqs. (10) and (11). Denote the upper and lower con-

fidence limits for lati�n
byUCL�lati�n

� andLCL�lati�n
�, respectively;

then they can be given as UCL�lati�n
� � lati � vlati nΔt� UCL

�wla
ti�1

� and LCL�lati�n
� � lati � vlati nΔt� LCL�wla

ti�1
�.

Analogously, the aforementioned GPR modeling with uniform
error bounds can be applied to obtain point and interval estimates
along the longitude and altitude axes. To economize on space, we
omit the details. Algorithm 1 summarizes the steps for making
predictions for future latitude, longitude, and altitude given the data-
set available at each time instant ti.

B. Change-Point Detection Based on Generalized Likelihood
Ratio Test

The second component of our framework aims to detect abrupt
changes in a target UAV’s flying pattern. Here, we adopt a change-
point detection (CPD) method based on generalized likelihood ratio
test (GLRT) [39]. The idea is to use a GLR-based hypothesis test to
monitor the prediction error obtained by the GPR model currently
adopted, in order to check if the model is adequate to capture the
trajectory of a target UAV based on the existing data at hand.
Assume that the prediction error e obtained by an adequate pre-

dictionmodel follows a normal distributionwithmean 0 and variance

σ2 (i.e., e ∼N �0; σ2�).We conduct the following hypothesis testwith

H0: e ∼N �0; σ2� and H1: e ∼N �θ; σ2�, where θ ≠ 0. The test sta-
tistic G�e� can be given by

G�e� � 2 log



sup
θ

exp



−
�e − θ�2
2σ2

�
∕ exp



−

e2

2σ2

��
� �min

θ
�e − θ�2 � e2�∕σ2 � e2∕σ2 (12)

where we have used θ̂ � argminθ�e − θ�2 � e. It can be derived

that a � �σ2 � θ̂2�∕σ2 � �σ2 � e2�∕σ2 and b � �2σ4 � θ̂2�∕σ4 �
�2σ4 � e2�∕σ4 are the mean and variance of G�e�, respectively.
Because the prediction error e is assumed to be normally distributed

Algorithm 1: GPR training and prediction for future latitude, longitude, and altitude

1: Update the training datasets using new observations, Dla
ti � Dla

ti−1 ∪ f�xti ; ~wla
ti �g, Dlo

ti � Dlo
ti−1 ∪ f�xti ; ~wlo

ti �g, Dal
ti � Dal

ti−1 ∪ f�xti ; ~wal
ti �g.

2: Maximize the respective log marginal likelihood functions of Gla, Glo, and Gal to estimate their corresponding hyperparameters.

3: Using the GPRmodels with the updated hyperparameters to obtain the predicted future impact of external factors on latitude, longitude, and altitude incurred at
time instant ti�1, ŵ

la
ti�1

, ŵlo
ti�1

, and ŵal
ti�1

, and their corresponding interval estimates.

4: Predict the future latitude, longitude, and altitude in the next n time instants via blati�n
� lati � vlati nΔt� ŵla

ti�1
, bloti�n

� loti � vloti nΔt� ŵlo
ti�1

, andbalti�n
� alti � valti nΔt� ŵal

ti�1
, for 1 ≤ n ≤ H, and their corresponding interval estimates.
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under H0, the statistic G�e� follows a chi-squared distribution under
H0. The control limit Gα can hence be given as

Gα � gχ2h;α (13)

where g � b∕2a, h � 2a2∕b, and 100�1 − α�% is the confidence
level of the hypothesis test. We reject H0 ifG�e� > Gα, and accept it
otherwise.
In our framework, we assume that the errors as a result of the three

GPRmodels,Gla,Glo, andGal, are normally distributedwithmean 0

and respective noise variances given by σ2la, σ
2
lo, and σ2al (recall

Sec. II.A). When any abrupt change appears in the target UAV’s
trajectory, e.g., the UAVmakes a sharp turn, such a change should be
reflected by an unusually large predictive error of the current GPR
model, as it becomes inadequate to capture the new flying pattern.
Hence, theGLRTmethod can be applied to check the adequacy of the
current GPR model and identify change points in the target UAV’s
trajectory.
TakeGPla (i.e., the GPR model for modeling latitude) for an exam-

ple. At time instant ti, the error can be given as e
la
ti � lati − blati . Under

H0, we have elati ∼N �0; σ2la�, where an estimate of σ2la can be ob-

tained via maximum likelihood estimation while training the GPR

model GPla. G�elati � and Gla
α at a prespecified confidence level 100

�1 − α�% can be obtained based on Eqs. (12) and (13), respectively. If

G�elati � ≤ Gla
α , we claim that GPla can adequately describe the UAV

flying pattern along the latitude axis; otherwise, we must refit GPla

using the newly arrived data due to the change in the data pattern.
Analogously, the same CPD routine can be applied to detect changes in
trajectory along the longitude and altitude axes. Algorithm 2 summa-
rizes the steps to implement the CPD routine at time instant ti.
The benefit of having the CPD component in our framework is

twofold. First, it gives a timely notification when the UAV’s flying
pattern changes abruptly, allowing a prompt update of the GPR
model. Second, this CPD component improves the computational
efficiency of the proposed GPR-based framework, as the GPR mod-
els do not need to be refitted at every time instant, but only when a
change point is detected. TheCPDcomponent, togetherwith the third
component (to be detailed next), can help achieve significant com-
putational savings in practice and make GPR modeling suitable for
real-time implementation.

C. Training Data Pruning

As traditional approaches for improving the computational effi-
ciency of GPR (reviewed in Sec. II.C) are not suitable for online
implementation, we adopt a novel approach for training data pruning
(TDP) in the proposed framework. The idea of this particular TDP
method, destructive Hellinger matching pursuit, is to greedily prune
the data points in the current training dataset as new data stream in,
while ensuring that the discrepancy between the posterior distribu-
tion before and after pruning is below a prespecified threshold [40].

The discrepancy between the two posterior distributions is mea-

sured by Hellinger distance. Let ν�x� and ϕ�x� be the probability

density functions of two arbitrary distributions, where x ∈ X ⊂ Rd.

The Hellinger distance between these two distributions is defined as

dH�ν;ϕ� �
������������������������������������������������������������
1

2

Z
x∈X

�
���������
ν�x�

p
−

����������
ϕ�x�

p
�2 dx

s
(14)

In particular, when both ν�x� and ϕ�x� are multivariate normal dis-

tributions respectively with mean vector μi and variance-covariance

matrix Σi, i � 1; 2, i.e., ν�⋅� ∼N �μ1;Σ1� and ϕ�⋅� ∼N �μ2;Σ2�,
Eq. (14) can be written in the following form:

dH�ν;ϕ� �
��������������������������������������������������������������
1 −

jΣ1j1∕4jΣ2j1∕4
j �Σj exp



−
1

8
Λ
�s

where �Σ � �Σ1 � Σ2�∕2, Λ � �μ1 − μ2�⊤ �Σ−1�μ1 − μ2�, and jAj
denotes the determinant of matrixA.
Considera trainingdatasetD � fX;YgwithX � �xt1 ; xt2 ; : : : ; xtN �⊤

and Y � �yt1 ; yt2 ; : : : ; ytN �⊤ for constructing a GPR model to make

predictions at test input points inX�. The implementation of the TDP

component of the proposed framework is summarized inAlgorithm3.

Because Algorithm 3 only involves evaluations of closed-form

expressions, the computational cost of the TDP component is very

low, and it is suitable for real-time implementation.

D. Integration of the Three Components

A diagram of the proposed online trajectory prediction frame-

work with the three components integrated is provided in Fig. 1. At

the initial time instant t0, we first make predictions following

Sec. III.A using the input point xt0 and the initial datasets Dla
t0 ,

Dlo
t0 , andD

al
t0 , and set the time instant index i � 1. At time instant ti,

we first observe the newly arrived position data (i.e., lati , loti , and
alti ) and input point xti . We subsequently implement the CPD

routine as detailed in Algorithm 2, the model fitting and prediction

steps given in Algorithm 1 (step 2 is skipped if refitting is unnec-

essary), and the TDP routine as detailed in Algorithm 3. Finally, we

advance the time index by 1 and step into the next time instant. The

entire procedure proceeds continually, and the three components

work collectively to deliver accurate and robust trajectory predic-

tions in an online manner.

Algorithm 2: Implementing the CPD routine at a given
time instant ti

1: Calculate elati � lati − blati , eloti � loti − bloti , and ealti � alti − balti .
2: Obtain the estimates of σ2la, σ

2
lo, and σ

2
al while training the GPR models

GPla, GPlo, and GPal, respectively.

3: Calculate G�elati � and Gla
α using elati and σ2la via Eqs. (12) and (13).

Similarly, calculate G�eloti �, Glo
α , G�ealti �, and Gal

α .

4: if G�elati � > Gla
α then

5: Refit Gla using Dla
ti following steps 1 and 2 in Algorithm 1.

6: end if
7: if G�eloti � > Glo

α than

8: Refit Glo using Dlo
ti following steps 1 and 2 in Algorithm 1.

9: end if
10: if G�ealti � > Gal

α then

11: Refit Gal using Dal
ti following steps 1 and 2 in Algorithm 1.

12: end if

Algorithm 3: Implementing the TDP routine for GPR
training data pruning

1: Compute the predictive mean at test input points in X� conditional on D,
denoted by μD; compute the predictive covariance matrix forX�, denoted
by ΣD.

2: while D ≠ ∅ do

3: for i � 1; 2; : : : ; N do

4: D−i � D \ fxti ; yti g.
5: Compute the predictivemean at test input points inX� conditional on

D−i, denoted by μD−i; compute the predictive covariance matrix for
X�, denoted by ΣD−i

.

6: Compute the Hellinger distance between distributions N �μD;ΣD�
and N �μD−i;ΣD−i

�, denoted by diH.
7: end for

8: Find the index of the training point that has the lowest diH:
i� � argmin1≤i≤Nd

i
H .

9: if di
�
H > h then

10: Stop.
11: else
12: Prune the training point: D←D−i� .

13: Update the training sample size: N←N − 1.

14: end if
15: end while
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IV. Numerical Experiments

In this section, we numerically evaluate the performance of the
proposed GPR-based online trajectory prediction framework using a
simulation dataset and a real-world dataset. Section IV.A elaborates
on the experiment setup. Sections IV.B and IV.C respectively provide
the corresponding results obtained from studies based on the simu-
lation and real-world datasets.

A. Experiment Setup

1. Competing Methods

We aim to examine the effects of the three components (i.e., GPR
with uniform confidence bounds, CPD, TDP) on the predictive
performance and the computational efficiency achieved by the pro-
posed framework via the numerical experiments.
For point prediction, three methods are compared: i) the proposed

framework with three components: GPR with uniform confidence
bounds, CPD and TDP (referred to as GUCT); ii) GPR with uniform
confidence bounds only (referred to as GU), and iii) a benchmarking
KF-based method for position tracking (referred to as KF). The
comparison between GUCT and KF helps reveal whether the pro-
posed framework outperforms the state-of-the-art trajectory predic-
tionmethod. The comparison betweenGUCTandGUhelps manifest
whetherCPD andTDP improve the computational efficiencywithout
compromising the predictive accuracy.
For interval prediction, four methods are considered: i) GUCT;

ii) GU; iii) GPR with Sidak corrected pointwise confidence bounds,
CPD, and TDP (referred to as GPCT); and (iv) KF. Similar to point
prediction, the comparison between GUCT and KF investigates
whether the proposed framework outperforms the state-of-the-art
trajectory prediction method in terms of interval prediction. The
comparison between GUCT and GU helps examine the effects
achieved by CPD and TDP. Moreover, the comparison between
GUCT and GPCT helps compare the effects of the uniform confi-
dence bound and the Sidak corrected pointwise confidence interval.

2. Evaluation Metrics

We focus on evaluating the predictive performance of the proposed
framework GUCT in comparison with competing methods. The
predictive performance is evaluated with respect to both point pre-
dictive accuracy and coverage ability of the interval estimate. Spe-
cifically, to measure the pointwise predictive accuracy achieved at
time instant t, we calculate the root-mean-squared error (RMSE)
defined as follows:

RMSEt �
���������������������������������������
1

H

Xt�H

h�t�1

kŝh − shk2
vuut (15)

where kŝh − shk represents the Euclidean distance between ŝh and sh,
with sh � �lah; loh; alh�⊤ denoting the true position at time h and ŝh
denoting its estimate given by a candidate method. H denotes the
prediction horizon, i.e., the number of future time instants to predict
at time instant t. In the studies based on simulation and real-world
datasets, two types of RMSEs are calculated, namely, RMSE for
multistep-ahead prediction and one-step-ahead prediction, respec-
tively corresponding to H > 1 and H � 1 in Eq. (15).
To evaluate the performance of the interval estimate given by a

candidatemethod,weuse themultistep coverageprobability definedas

CPt �
1

H

Xt�H

h�t�1

1fAhg (16)

whereAh denotes the event that the true trajectory position at time h is
covered by the100�1 − δ�% confidence interval, and1fAhg is 1 ifAh is
true and 0 otherwise. The confidence level 1 − δ is set to 0.95, and
multistep coverage probability is calculated [i.e.,H > 1 in Eq. (16) is
adopted] in all experiments conducted. Furthermore, to evaluate the
computational efficiency of a given candidate method, we record its
computational time taken to make one multistep-ahead prediction.

3. Model Configurations

Recall that each component of GUCT (i.e., GPR with the uni-
form confidence interval, CPD, and TDP) involves specific param-
eters that affect its performance: the correlation function of GPR,
the confidence level 1 − α of CPD, and the distance threshold h of
TDP. Regarding GPR modeling, we adopt the commonly used
squared exponential correlation function. Specifically, R�x; x 0� �
expf−kx − x 0k2∕�2l2�g, where l denotes the length-scale param-
eter. The confidence level of CPD is set to 0.95, a common choice
for hypothesis testing. The Hellinger distance between two arbi-
trary distributions ranges from 0 to 1, with 0 indicatingmost similar
and 1 otherwise; we set h � 0.2 to ensure that the pruning does not
lead to excessive loss in accuracy while improving the computa-
tional efficiency of the proposed framework.

4. Summary of Test Scenarios

We provide a summary of test scenarios considered in the two
numerical studies in Table 1 to facilitate the reader’s understanding.
This table shows the detailed information about the respective candi-
date aircraft considered in the simulation and real-world studies, the
characteristics of the datasets, the major settings for trajectory model-
ing and prediction, and the respective numerical results obtained.

B. Study Based on Simulation Data

The dataset used in this study is generated by a simulation model
for a 3DR IRIS+ quadcopter unmanned aircraft with wingspan

Fig. 1 A diagram of the GPR-based online trajectory prediction frame-

work for UAVs.

Table 1 Summary of test scenarios in numerical studies

Parameter Simulation study Real-world study

UAV type 3DR
IRIS� quadcopter

Fixed-wing Hobby
King Bixler

Wingspan, m 0.55 1.55
Length, m 0.55 0.95
Mass, kg 1.28 1.2
Time lag, s 2 1
Input variables Latitude, longitude,

altitude
Latitude, longitude, altitude
& pitch, roll, and yaw rates

Initial sample size 45 15
No. of prediction
time instants

202 174

Results Figs. 4–6, Table 2 Figs. 9–11, Table 3
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0.55 m, length 0.55 m, and mass 1.28 kg [41], which is illustrated
in Fig. 2.
The dataset comprises two sub-datasets. The first sub-dataset

describes flight mission 1 for the target UAV that involves takeoff,
cruising (flying at a fixed altitude), hovering (flying at a fixed latitude,
longitude, and altitude), and landing; Fig. 3 illustrates the trajectory
for flightmission 1. For ease of visualization, the trajectories ofUAVs
are shown in the XYZ coordinate system, where X denotes the north
direction,Y denotes the east direction, andZ denotes the up direction.
The second sub-dataset corresponds to flight mission 2 for the target
UAV, which is similar to flight mission 1. The only difference is that
flight mission 1 involves a hovering period of approximately 60 s,
which is absent in flight mission 2. Hence, predicting the trajectory
for flight mission 1 is arguably more challenging. The average
cruising speed of the UAV in flight mission 1 and flight mission 2
is 2.73 m/s. In both sub-datasets, the input vectors used by the GPR
models are in the form of xti � �lati ; loti ; alti�. Both sub-datasets

contain data collected at 146 consecutive time instants, with the time
lag between adjacent time instants Δt � 2 s. Prediction takes place
at the 46th time instant and onward in each sub-dataset, and the size

of the initial training datasets Dla
t0 , D

lo
t0 , and Dal

t0 is 45. In total,

predictions at 202 future time instants are conducted in this study.
The prediction horizon for each multistep-ahead prediction is set
to H � 15.
Figure 4 shows the boxplots of the multistep (H � 15) and one-

step (H � 1) RMSEs for the 202 point predictions made by GUCT,
GU, and KF; recall the definitions of the three competing methods
from Sec. IV.A.1. We have the following observations:
1) GUCT and GU outperform KF with respect to both multistep-

ahead and one-step-ahead predictions. This can be explained by the
robustness of GUCT and GU to the impact of external forces on the
target UAV’s trajectory, which is absent in KF.
2) GUCT has similar multistep RMSEs and slightly higher one-

step RMSEs than GU. This indicates that, if implemented correctly,
incorporating CPD and TDP components into the GPR-based frame-
work does not lead to deteriorated predictive performance.

Table 2 summarizes the average multistep coverage probabilities

(CPs) obtained by GUCT, GU, GPCT, and KF for making the 202

predictions; recall the definitions of the four competingmethods from

Sec. IV.A.1. We have the following observations. First and foremost,

KF has the highest coverage ability while GPCT has the lowest one;

the performance of GUCTand GU is similar and comparable to that

of KF but with a slightly higher variability. This implies that the

uniform confidence interval adopted by GUCTand GU is superior to

the Sidak corrected pointwise confidence interval adopted by GPCT.

Second, the similar performance of GUCT and GU implies that, if

implemented correctly, incorporating CPD and TDP into the GPR-

based framework does not lead to deteriorated interval predictions.

Last but not least, we closely examine the confidence intervals given

byGUCTandKF. It is observed that the confidence intervals given by

KF are often unnecessarily wide, which explains their high coverage

probabilities shown in Table 2. To economize on space, we only show

Fig. 5 that presents the confidence intervals given by GUCT and

KF associated with one-step-ahead predictions along the Z axis

for flight mission 1; similar observations are made along the X and

Y axes. Notice that the wide confidence intervals given by KF are

much less informative than those given by GUCT and can cause

problems in practice. Such wide confidence intervals given by KF

may provide a false sense of security when adopted for trajectory

planning purposes.

Moreover, we evaluate the effectiveness of the CPD component of

the proposed framework GUCT for detecting abrupt changes in the

flying pattern of the target UAV. Figure 6 illustrates the change points

detected in the UAV trajectory for flight mission 1 along the Z axis.

Figures obtained for the X and Y axes are similar and hence are

omitted for the sake of brevity. In summary, the CPD component

helps the proposed framework identify the changes taken place along

each axis promptly and facilitate adaptive model refitting.

Finally, we compare the computational efficiencies of the competing

methods. Specifically, the average computational times taken for

making the 202 multistep-ahead predictions (with standard errors

given in parentheses) by GUCT, GU, and KF are respectively

0.07�3.08 × 10−4� s, 1.34 �0.01� s, and 3.35 × 10−4�1.35 × 10−4� s.
Thanks to the CPD and TDP components, GUCTachieves significant

computational savings as compared with GU and becomes sufficiently

Fig. 2 The 3DR IRIS+ quadcopter.

Fig. 3 An illustration of the trajectory for flight mission 1 in the study
based on a simulation dataset. The solid dot indicates the position of the
target UAV during the hovering period.

GUCT GU KF GUCT GU KF

0

2

4

6

8

10

12

14

16

18

R
M

S
E

Multi-step-ahead prediction
One-step-ahead prediction

Fig. 4 Boxplots of RMSEs (unit: m) obtained respectively by GUCT,
GU, and KF in the study based on the simulation dataset.

Table 2 Summary of the average multistep CPs with
corresponding standard errors (in parentheses) obtained
by GUCT, GU, GPCT, and KF in the study based on the

simulation dataset

GUCT GU GPCT KF

1.000�3.30 × 10−4� 1.000�3.30 × 10−4� 0.9�0.01� 1�0�
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fast for real-world implementation. KF is the most computationally

efficient, nevertheless at the cost of predictive performance as evi-

denced by Figs. 4 and 5.

C. Study Based on Real-World Data

The real-world dataset used in this study contains position data

sampled by GPS sensors and pose data sampled by inertial measure-

ment units (IMU) [42]. The dataset contains 14 individual sub-

datasets; the data in each sub-dataset were collected for a host UAV

and a targetUAVduring the course of a flightmission. BothUAVs are

fixed-wing HobbyKing Bixler unmanned aircraft with wingspan

1.55m, length 0.95m, andmass 1.2 kg,which are illustrated in Fig. 7.
In the real-world environment, the UAVs fly under the wind

disturbances. The actual wind speed in the north direction is 1.68

m/s and that in the east direction is −1.49 m∕s. The average cruising
speed of the UAVs is 10 m/s. Because the logging frequencies of the

GPS and IMU sensors are different, to synchronize the data, we only

retain the position data and pose data (i.e., pitch rate, roll rate, and

yaw rate) at the common time instants for evaluation purposes. As a

result, each sub-dataset contains observations at approximately 30

time instants, with Δt � 1 s between adjacent time instants. Predic-

tion takes place for the target UAVat the 16th time instant and onward

in each sub-dataset, and the size of the initial training datasets Dla
t0 ,

Dlo
t0 , andD

al
t0 is 15. In total, predictions at 174 future time instants are

to be made for the target UAV. The prediction horizon for multistep-
ahead prediction is set toH � 5. In all sub-datasets, the input vectors
are in the form of xti � �lati ; loti ; alti ; pti ; rti ; yti�, wherepti , rti , and
yti denote the pitch rate, the roll rate, and the yaw rate at time ti,
respectively. Figure 8 shows the target UAV’s trajectory in one
arbitrarily chosen flight mission (referred to as flight mission 1
hereinafter) in the XYZ coordinate system. We note that compared
with the simulation dataset considered in Sec. IV.B, the trajectories
studied here show highly complex flying patterns, which involve
more abrupt changes.
Figure 9 shows the boxplots of themultistep (H � 5) and one-step

(H � 1) RMSEs obtained by GUCT, GU, and KF for 174 prediction
time instants. We have similar observations as those made in
Sec. IV.B: 1) GUCT and GU outperform KF with respect to both
multistep-ahead and one-step-ahead predictive accuracies achieved;
2) GUCT has comparable multistep and one-step RMSEs as those of
GU. This indicates that, if implemented correctly, the CPD and TDP
components do not compromise the point predictive accuracy
achieved by the proposed framework.
Table 3 summarizes the average multistep coverage probabilities

obtained byGUCT,GU,GPCT, andKF formaking the 174 predictions.
We have the following observations. First, KF has the highest coverage
ability followed by GUCT and GU, whereas GPCT has the lowest
coverage ability. This implies that the uniform confidence interval
adopted by GUCTand GU is superior to the Sidak corrected pointwise

Fig. 5 Confidence intervals respectively given by GUCT and KF asso-
ciated with one-step-ahead predictions along the Z axis for flight mission
1 in the study based on the simulation dataset.

Fig. 6 Change points in the target UAV’s trajectory along the Z axis
identified by the CPD component of GUCT for flight mission 1 in the
study based on the simulation dataset.

Fig. 8 An illustration of the trajectory of the target UAV for flight

mission 1 in the study based on a real-world dataset. The solid dot shows
the starting position, and the star shows the ending position of the
trajectory.

Fig. 7 Fixed-wing HobbyKing Bixler.
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confidence interval adopted by GPCT. Second, GUCT has similar
coverage probabilities as GU. This indicates that, if implemented cor-
rectly, CPD and TDP do not lead to deteriorated interval predictions.
Lastly, we compare the performance of GUCTand KF in terms of their
respective confidence intervals associated with one-step-ahead predic-
tions along theX, Y, and Z axes for flight mission 1.We find again that
the confidence intervals given by KF are often much wider and hence
less informative than those given by GUCT, despite the high coverage
probabilities achieved by the former. Such wide confidence intervals
may cause problems in practice as noted in Sec. IV.B. For the sake of
brevity, we only show Fig. 10 that presents the confidence intervals
given by GUCT and KF along the Y axis for flight mission 1; similar
observations aremade regarding confidence intervals obtained along the
X and Z axes.
We examine the effectiveness of the CPD component of GUCT

in detecting abrupt changes in the target UAV’s flying patterns. Fig-
ure 11 shows the trajectory of the target UAValong the Y axis and the
change points detected in flight mission 1. Figures obtained for the X
and Z axes are similar and hence are omitted for the sake of brevity.
Once again,we see that theCPDcomponent can accurately identify the
change points that occurred in the target UAV’s trajectory.
Wemake some final comments regarding the computational effi-

cienciesofthecompetingmethods.Theaveragecomputationaltimes
takenformakingthe174multistep-aheadpredictions(withstandard
errors given in parentheses) byGUCT,GU, andKFare respectively

0.08�0.03� s, 0.92 �0.01� s, and3.94 × 10−4�1.16 × 10−4� s.Weob-
serveagainthatGUCTachievessignificantcomputationalsavingsas
comparedwithGUthankstoitsCPDandTDPcomponents.KFisthemost
computationallyefficient,however,at theexpenseofpredictiveper-
formanceasevidencedbyFigs.9and10.

V. Conclusions

This paper proposed aGPR-based trajectory prediction framework
for online implementation, i.e., GUCT. GUCT features three novel
components, respectively: uniform confidence bounds for simulta-
neous predictive uncertainty quantification, change-point detection
for monitoring abrupt changes in flying patterns, and TDP for

enhancing the computational efficiency of GPR. Interested in the
challenging setting of trajectory prediction for non-cooperative
UAVs, the authors tested the performance of GUCT with both sim-
ulation and real-world datasets. The proposed framework was found
to not only outperform competing methods in terms of point and
interval prediction performance but also achieve a desirable computa-
tional efficiency in practice. Moreover, GUCT can effectively iden-
tify abrupt changes in the flight trajectory of the target UAVand adapt
to new flying patterns promptly. The proposed framework GUCT is
expected to be useful for online analysis and control of other types of
dynamic data-driven application systems where robust and fast pre-
dictions are critical.
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