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As an important type of dynamic data-driven application system, unmanned aerial vehicles (UAVs) are widely used
for civilian, commercial, and military applications across the globe. An increasing research effort has been devoted to
trajectory prediction for non-cooperative UAVs to facilitate their collision avoidance and trajectory planning.
Existing methods for UAV trajectory prediction typically suffer from two major drawbacks: inadequate
uncertainty quantification of the impact of external factors (e.g., wind) and inability to perform online detection of
abrupt flying pattern changes. This paper proposes a Gaussian process regression (GPR)-based trajectory prediction
framework for UA Vs featuring three novel components: 1) GPR with uniform confidence bounds for simultaneous
predictive uncertainty quantification, 2) online trajectory change-point detection, and 3) adaptive training data
pruning. The paper also demonstrates the superiority of the proposed framework to competing trajectory prediction
methods via numerical studies using both simulation and real-world datasets.

I. Introduction

HE advancement of technologies, increased access by the pub-

lic, and reduced cost have enabled fast-growing applications of
unmanned aerial vehicles (UAVs), in both commercial and civilian
uses, including wireless communication backup and parcel delivery
[1-4]. As the number of UAVs increases, concern has arisen regard-
ing their safe and efficient operation, e.g., the possibility of collisions
between UAVs and interference with manned aircraft. Furthermore, a
strong need for conflict detection and resolution (CD&R) technolo-
gies for UAVs emerged in order to support routine UAV beyond
visual line of sight operations [5]. The important role of CD&R
technologies in air traffic management, such as the Traffic Alert
and Collision Avoidance System, dates as far back as the early
1990s [6]. Supported by a large amount of aircraft performance
model data, CD&R technologies for manned aircraft have been
extensively studied. Recent years have witnessed an upsurge of
interest in developing CD&R technologies for non-cooperative
UAVs. Reliable CD&R technologies for UAVs hinge on accurate
and timely predictions of threat UAV trajectories, which require
efficient data transfer and processing given limited onboard computer
memory and battery capacity. While non-cooperative UAVs typically
do not share data voluntarily, information technologies (such as radar,
lightweight and low-power cameras, and computer vision-based
systems) enable UAVs to monitor and collect data from threat UAVs
actively [7]. Furthermore, an increasing research effort in building
cloud-based databases and flight information management systems
has made efficient and effective operational information exchange
and voluntary data sharing among non-cooperative UAVs closer to
reality [5,8].

There exists a rich class of trajectory prediction methods for
manned aerial vehicles (e.g., civil aircraft) in the literature. These
methods typically assume the availability of flight data on thrust,
mass, position, and other variables associated with point mass mod-
els. These variables play an essential role in kinematic particle
models for inferring future positions of manned aircraft [9-11].
The trajectory prediction methods developed for manned aircraft
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may be unsuitable or impractical to apply to a maneuvering UAV.
Accurate and timely UAV trajectory prediction is far more challeng-
ing to achieve, mainly because UAVs can maneuver more aggres-
sively with much shorter detection horizons. Moreover, the data
collected for UAVs are more susceptible to the impact of external
factors (such as wind force, precipitation, and temperature). Hence,
the data for UAVs can be less accurate than those for manned aircraft.
For instance, wind force can push a UAV off its path originally
planned [12], inducing extra uncertainty to its trajectory.

Innovations in UAV trajectory prediction methods have been gain-
ing momentum in recent years. Many recently developed model-based
approaches for UAV trajectory prediction use position data collected
via active sensing using radar and lidar; see, e.g. [13-16]. Specifically,
studies [13,14] adopted Kalman filter (KF) for predicting trajectories,
whereas studies [15,16] employed a particle filter. Model-free machine
learning techniques (e.g., neural networks) have also attracted a lot of
attention [17,18]. These methods do not rely on kinetic equations;
instead, they try to extract patterns from the historical position and
kinetics data for predicting the future positions of a target UAV. These
existing methods, although effective on many occasions, suffer from
several drawbacks. First and foremost, few previous studies focused on
addressing uncertainty quantification of predictions made for the
future trajectory of a target UAV. Indeed, there are prediction methods
such as KF that can effectively mitigate sensor errors. There also exist
research attempts that estimate external disturbances and counteract
their impact on trajectory predictions (e.g., [7]). A more thorough
solution—adequately quantifying the prediction uncertainty owing
to external factors (potentially unknown and of various types)—
however, remains elusive. Second, most existing trajectory prediction
methods lack the capability of identifying abrupt changes in UAV
flying patterns (e.g., a sharp turn). Thus, these methods may fail to
make prompt model parameter adjustments to adapt to a new flying
pattern and make accurate predictions. This can result in a substantial
loss in the predictive accuracy achieved by existing trajectory predic-
tion methods [19].

This paper proposes a robust online trajectory prediction frame-
work for non-cooperative UAVs and demonstrates its practical imple-
mentation efficiency and effectiveness. The proposed prediction
framework features the following three components:

1) A Gaussian process regression (GPR) model with uniform error
bounds is adopted for quantifying the uncertainty of predictions
induced by external factors.

2) A change-point detection technique based on sequential gener-
alized likelihood ratio test is applied to detect abrupt changes in the
flying pattern of a target UAV, enabling timely GPR model adjust-
ment to adapt to the changes to maintain a high predictive accuracy.

3) A dynamic training data pruning (TDP) technique based on
Hellinger distance is adopted for improving the computational
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efficiency of GPR, which maintains the size of the training dataset at a
desirable low level while data streams in, making GPR modeling and
prediction sufficiently fast for real-world implementation.

The rest of the paper is organized as follows. Section II provides a
review of relevant background knowledge. Section III elaborates on
the aforementioned three components of the proposed framework.
Section IV presents numerical studies of the proposed framework
based on simulation and real-world datasets. Finally, Sec. V con-
cludes the paper.

II. Background Review

In this section, we provide a brief review of relevant background
knowledge on GPR modeling, change-point detection, and approaches
for improving the computational efficiency of GPR.

A. Gaussian Process Regression

GPR is a popular machine learning method for regression tasks.
Compared with other machine learning models such as support
vector machine and neural networks, GPR enjoys favorable proper-
ties such as being highly flexible to capture various features exhibited
by the data at hand and providing an uncertainty measure for its
prediction [20]. We provide a brief review of GPR next and refer the
interested reader to [20,21] for more details.

Consider a stochastic system whose input point is denoted by
x = (x,%, ....x;)T €XCR? We can observe a noisy system
output at x, y(x) € R, which is described by the following model:

y(x) = g(x)B+M@x) +e
=f(x)+e ey

where f(x) = g(x)Tp + M(x) denotes the true system response free
of observation noise at x that we intend to estimate, g(x) isa p X 1
vector of known functions of x, and g is a vector of unknown
coefficients of compatible dimensions. The term ¢ denotes normally
distributed observation noise with mean zero and variance 6>. GPR
modeling further assumes that M is a realization of a mean zero
Gaussian process [21]. That is, one can think of M as being randomly
sampled from a space of functions mapping from R¢ to R. The
functions in this space exhibit spatial correlation; namely, the
values of M(x) and M(x") tend to be similar if x and x” are close to
one another in space. This is captured by the covariance function
K(-,-), where K(x,x’) = Cov(M(x), M(x")) = {?>R(x,x’) for any
x,x’ € R?, with % and R(-, -) denoting the process variance and the
correlation function, respectively. Commonly used correlation func-
tions include the squared exponential and Matérn kernels; for a more
detailed discussion, see, e.g., Chapter 4 of [20].

Given a training dataset of sample size N, D = {X, Y}, comprising
the N x 1 vector of observed input points X = (x;,X,,...,%y)"
and the N X1 vector of corresponding noisy outputs Y =
(y(x1), y(x3)....,y(xy))T, we are interested in predicting the true
system response f(x*) at any input point x* € X. GPR considers
linear predictors of the form f (x*) = e¢(x*)TY, where ¢(x*) is an
N x 1 vector of weights that depends on the test point x* and is
chosen to give desirable properties such as minimum mean-squared
error (MSE) for predicting f(x*) = g(x*)"p + M(x*). Specifically,
GPR obtains the best linear unbiased predictor (BLUP) by choosing
¢(x*) to minimize MSE[f(x*)] = E[(c(x*)TY — f(x*))?] subject to
the unbiasedness constraint: E[¢(x*)TY] = E[f(x*)]. Define the N x
p matrix G of full rank as G = (g(x)7, g(x,)7, ..., g(xy)™)T. For
ease of exposition, we abuse the notation slightly and denote K (X, X)
as the N X N matrix that contains the pairwise covariance between
each pair of training input points in X. Similarly, denote K(X, x*) as
the N X 1 vector that contains the pairwise covariance between each
of the N input points in X and x*. Following similar steps as given in
Sec. 1.5 of [22] and Appendix A.1 of [23], we introduce a p X 1

Lagrange multiplier vector A and obtain that f (x*) = c¢(x*)TY is the
BLUP for f(x*) if the following condition holds:

KX, X)+o*ly Gl[ecx*)]| _[KX. x*)
R S ey

where Iy denotes the N X N identity matrix and 0, represents the
p X p matrix of zeros. Solving the system of equations above, we
obtain that the optimal weight vector is given by ¢(x*) = (X! — =-!
G(G'Z'G)'GTET HK (X, x*) + Z'G(GTZ'G) 1 g(x*), where
for notational compactness we have used X = K(X, X) + 6%1.
Hence, the corresponding BLUP for f(x*) follows as

) = g B+ K(X.x*) (KX, X) + *1,)" (Y - Gp) (2)

whereﬁ = (GT(K(X,X) +*Iy)"'G)'GT(K(X, X) + 6*Iy)”'Y
is the generalized least-squares estimator of f. The variance of the
BLUP, which equals its MSE because the predictor is unbiased,
follows as

Var[f(x*)] = K(x*,x*) — K(X,x*)T(K(X. X) + 6*Iy)'K(X, x*)
+ 7" (GT(K(X.X) + o*Iy)"'G)™! 3)

where n = g(x*) —GT(K(X, X) + 6*Iy)"'K(X,x*). It is worth
noting that, from a Bayesian inference perspective, f(x*) in Eq. (2)
and Var[f(x*)] in Eq. (3) are regarded as the posterior mean and

variance of the true system response f(x*) conditional on the training
dataset D = {X, Y} [20].

In particular, f(x*) in Eq. (2) provides a point prediction for
f(x*) and Var[f(x*)]in Eq. (3) gives a natural uncertainty measure
for the point prediction of GPR. In cases where an interval pre-
diction of f(x*) for an arbitrary test point x* is needed, a standard
pointwise confidence interval with 100(1 — )% confidence level

(6 € (0, 1)) can be constructed with the upper and lower confi-
dence limits (UCL(f(x*)) and (LCL(f(x*)) respectively given by

f(x*) + zl,é/ﬂ/Var[f(x*)], where z,_s/, denotes the (1 —5/2)-
quantile of the standard normal distribution.

For control purposes, we are often interested in achieving a
prescribed high probability guarantee (say, at level 1 — §) that the
true system response values f(x*)’s at multiple input points in a test
set (say, X*) are simultaneously covered. In such cases, directly
obtaining the pointwise 100(1 — §)% confidence level at each x* is
problematic, as the resulting simultaneous coverage probability will
be much lower than the nominal value 1 — §. Toresolve this issue, one
can apply the Sidak correction to construct individual pointwise
confidence intervals [24]. The upper and lower confidence limits of
Sidak corrected pointwise confidence interval for f(x*) can be
respectively given by

UCL(f(x*)) = f(*) + 212y Varlf (x*)] )
LCL(f(x*)) = f(x*) = 21,2y Var[f (x*)] (5)

where = 1 — (1 —6)!/¥" and N* is the number of test points to
make predictions simultaneously.

B. Change-Point Detection

Change-point detection (CPD) is the problem of finding abrupt
changes in patterns exhibited by time series data [25]. One disadvant-
age of existing trajectory prediction methods is that they cannot
promptly adapt to abrupt changes (or change points) in the flying
patterns of the target UAVs. This usually results in a delay in updating
the model parameters, rendering the model’s trajectory predictions
inaccurate. Hence, having an adequate CPD capability is critical to
the success of UAV trajectory prediction methods.

Various approaches have been proposed for CPD in the literature,
and some are dedicated to the context of GPR modeling. For example,
a Bayesian online CPD algorithm was proposed in [26] to obtain a
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posterior distribution over change-point times. Another CPD algo-
rithm for GPR was proposed in [27], which incorporates the change-
point time as an input variable in the kernel function and estimates the
change-point time via optimization. However, these approaches typ-
ically require a high computational cost that scales with the number of
training points, rendering them infeasible for real-time trajectory
prediction.

Most of the remaining CPD methods were proposed for a more
general setting other than GPR modeling. These methods can be
classified into two classes: supervised and unsupervised learning
approaches. Supervised learning approaches treat CPD as a classi-
fication problem. Various machine learning models (e.g., decision
tree, support vector machine, neural network) in this category can
be employed to separate change points from the other data points.
However, these approaches are problematic if applied for online
trajectory prediction as they are typically computationally demand-
ing and require a large sample of labeled change points. On the other
hand, unsupervised learning approaches are more computationally
efficient and do not require labeled data. The most commonly used
methods of this type are based on generalized likelihood ratio
test (GRLT). The idea is to analyze the probability distributions of
data before and after a candidate change point, and declare the
candidate a change point if the difference between the two distri-
butions is detected to be statistically significant. The likelihood
ratio between two consecutive intervals in time series data is moni-
tored for detecting change points. The methods based on GLRT are
computationally efficient and provide a statistical guarantee for the
false-alarm rate; hence they are more suitable for UAV trajectory
prediction. The interested reader is referred to [28,29] for a detailed
survey of methods for CPD.

C. Approaches for Improving the Computational Efficiency of GPR

An impediment to online implementation of GPR is the computa-
tional complexity, which scales as O(N?), where N is the number of
training points used for constructing a standard GPR model [20]. As
data accumulate over time for a time-dependent system, the computa-
tional cost grows rapidly if all data collected are used for GPR
modeling.

The efforts to make the training of a GPR model on a large dataset
more computationally efficient have been focused on constructing
sparse GPR models. The idea behind sparse GPR modeling is to find
a set of inducing points from the full training dataset to construct a
GPR model and make inference as well as subsequent predictions
[30,31]. The resulting computational cost scales as O(M?), where M
denotes the number of inducing points. The size of the inducing-point
set M is much lower than that of the full training dataset N. However,
finding inducing points is a challenging optimization problem, which
is typically computationally expensive to solve.

Apart from sparse GPR modeling, many previous studies proposed
to construct a GPR model based on a moving window that only
contains a portion of data received most recently. The rationale
behind this idea is that data observations are typically more correlated
if they are close in time; hence, the most recently received data are
more relevant for prediction at the next time instant than data received
in the distant past. The size of the moving window can be dynami-
cally adjusted to achieve satisfactory predictive performance. Various
methods have been proposed for dynamically adjusting the training
window size; e.g., see [32-36]; however, most of these methods are
heuristics in nature and not tailored for GPR modeling. Hence, they
cannot provide any rigorous statistical guarantee on the predictive
performance of the resulting GPR model constructed on the truncated
dataset. A rigorous and efficient data truncation technique that works
well in conjunction with GPR modeling is required.

III. GPR-Based Online Trajectory Prediction
Framework

In this section, we propose a robust GPR-based online trajectory
prediction framework comprising three important components:
1) GPR with uniform confidence bounds to adequately quantify the
uncertainty induced by external factors, 2) a change-point detection

(CPD) method based on generalized likelihood ratio test to detect
abrupt changes in the target UAV’s flying pattern, and 3) a TDP
technique to improve the computational efficiency of GPR for online
implementation. We refer to the proposed framework as GUCT
hereinafter, where “GU,” “C,” and “T” respectively stand for the
three components.

We first elaborate on the three components of GUCT in Secs.
1II.A, I1I1.B, and III.C. Then in Sec. III.D, we discuss how the three
components are integrated into a unified framework.

A. GPR Modeling for Trajectory Prediction with Uniform Confi-
dence Bounds

In our problem setting, we aim to predict the future trajectory of a
target UAV at each time instant. The position of a UAV at the current
time instant #; is uniquely defined by a tuple using the Global
Positioning System (GPS): (latitude, longitude, altitude). GPS sen-
sors can provide accurate position data of the objects to which they
are attached, thanks to the satellites. Denote the latitude, longitude,
and altitude of a UAV at the current time instant ¢; by la, , o, ,and al,,
respectively.

To address the first drawback of existing trajectory prediction
methods, lack of uncertainty quantification of the impact of external
factors, we use GPR to model the impact of external factors directly.
Consider predicting the target UAV’s position at the next time instant
t;+1- Denote the time interval between time instants ¢; and ¢, | by A¢,
which is usually very small in the setting of UAV trajectory predic-
tion; the velocity of the UAV on each axis, v/%, v/°, and v¥, can be
regarded as constants in (¢;, ;1 ). In light of a simple kinetics rule and
the influence of external factors, we can model the UAV’s position at
tiy1 as follows:

la,, =la, + VAt + W =la, + vifAt+ wle + € (6)

lo,  =lo, + vﬁf’At + u?ﬂ”+I =lo, + vﬁ"At —+ w,+I +elo (7

i+1

al,, = al, +vi'At+wf =al, +vi'Ar+wi +e (8)

i+l

where W} = w4+ ' denotes the observed nonlinear change in

latitude at time instant ¢, ; w,’+1 and w,m are defined similarly with
respect to the longitude and altitude; and £/, ', and £’ respectively
denote the normally distributed mean zero observation noise with
respective variances o7,, 62, and 62,. The terms wﬁ"H Jwie L and wi!
denote the impact of external forces on each axis of the UAV’s
trajectory at time instant ;. While v}, v/, and v¥ can be easily
calculated from the real-time dataset given a sufficiently small At,
wﬁ‘i o wf"ﬂ, and w;”+ , are unknown and challenging to capture using
sensors. In our framework, we choose to model w'?, w'®, and w®
using GPR. Assuming that w*, w', and w* are independent of each
other and have zero mean, we can construct separate GPR models for
them by setting g(-) = 0in Eq. (1), which are respectively denoted by
GP,,, GP,,,and GP,.

We elaborate on the GPR modeling of wﬁl"ﬂ and the prediction for
the future latitude la,,, next. Consider a training dataset Df“ =
{(x,, d)ﬁ”)}” for GPy,, where x, is the training input point at #;,
w, is the correspondmg output at ¢;, and N denotes the number of
training data points accumulated by the current time instant ¢;. Notice
that the input pomtx, can incorporate any variables that are useful for
predicting w , such as position data, pose data, and environmental
data (e.g., w1nd, precipitation, and temperature) if avaﬂable The
training output u~)£l can be solved from Eq. (6) as w la,
la, , — vi“ Atfor j=1,2, ..., N. Upon training GP,, on Dt’, , we
can obtain a point predlctlon w for wﬁ“ﬂ via Eq. (2) and the
corresponding predictive variance Var[w, ] via Eq. (3) by setting
g(+) and G respectively to zeros. The one-step-ahead pomtpredlctlon
for la,ﬂ, denoted by la,ﬂ, can thus be given as la,+ la, +

ff‘At + w,,“. We are also interested in multistep-ahead predictions



Downloaded by VIRGINIA TECH on December 3, 2021 | http://arc.aiaa.org | DOI: 10.2514/1.1010997

4 XIE AND CHEN

within a prespecified prediction horizon H, as UAVs need to take
actions in advance to avoid collisions. For n-step ahead point pre-
diction (1 < n < H), assuming that the velocity v/ and the impact of
the external factors w' remain unchanged over (7;, t; + nAt), we can

obtain la,, = la, + vi*nAr + %/ forn =1,2, ... H.

Upon obtaining the point predictions, we can build interval pre-
dictions for the future latitude of the target UAV as needed. A natural
choice for constructing multistep-ahead interval predictions is the
Sidak corrected confidence interval as given by Egs. (4) and (5),
because it gives a statistical guarantee to cover all the test points
simultaneously in the prediction horizon. However, this correction is
theoretically valid with independent system outputs only [37], which
is not the case for GPR modeling of trajectory positions. Therefore, a
novel type of confidence interval that is uniformly valid across all test
points in an arbitrarily defined prediction horizon is required for
GPR-based trajectory prediction.

Inspired by [38], we construct uniform error bounds for GP,,,
GP,,,and GP to quantify predictive uncertainty simultaneously for
all prediction points (potentially infinitely many) in an arbitrarily
defined prediction horizon. Take GP,, for modeling the latitude as
an example. To bound the predictive error achieved by GP,,, the
idea is to use the Lipschitz continuity of the covariance kernel K (-, -)
and the underlying function w'(-) that GP,, aims to estimate.
Specifically, given a training dataset Dﬁf‘ = {X, W}, where X =
(. %, ....x, )T and W = (@0, 0, ..., wi4)T, the Lipschitz
constants of the covariance kernel, the posterior mean function,
and w'(-) can be respectively given as

Ly

max
x.x'eX
L, = LiVN|(K(X.X) + o2, Iy)"' W],

210g(§—d)max VK (x,x)

L) xeX

+12«/6dmax{ma}§c VK (x,x), ,/rLZ'}
X€E

)

oK (x,x") oK (x,x")|T
c)xl o 6xd

2 log(g—")max VK% (x,x)
L) xeX
od |7 0d
_+12«/6dmax{r£16a£‘/K (x,x), rLk}_

where L{ is the Lipschitz constant of the partial derivative kernel
K%(,)(i=1,2,...,d) on the input space X CR¢ (recall
Sec. ILA), r = max, ,cx|/x — x’|| denotes the maximal extension;
and 1 — g, is the probability for the Lipschitz constant L ; to hold. To
economize on space, we refer the reader to [38] for the detailed
derivation of the expressions for Ly, L,,, and L. Given a confidence
level 100(1 — 8)%, we have

P(|w"‘ (x) =™ (x)| < /() Var[w' (x)] + y(r)) >1-6, VxeX

&)

where

7, X
5 = 2108(MG2). ) = @, + Lyys+ V)

— 172
1) = (2eLi(1+ NI(KX.X) + 7,1y | max K (x.x') ) )

Here, 7 is the grid constant of a grid used in the derivation of Eq. (9),
and M(z, X) is the minimum number of points in a grid over X with
the grid constant z. Expression (9) indicates that uniform confidence
bounds can be constructed such that w'®(x) for all x € X are covered
simultaneously with probability 1 — §. Based on Eq. (9), the upper
and lower limits of the uniform confidence interval for wﬁi1 can be
respectively given by

UCL(wi) = Wi + /px)Var[wi®, ] + 7() (10)
LCL(wi ) = Wi | — \/p(@)Var[d(® ] - y(z) 1n

To obtain an interval prediction for the future latitude in the next n
time instants, la,, (1 < n < H), we first make an interval prediction
for wﬁi1 via Egs. (10) and (11). Denote the upper and lower con-
fidence limits for la,, by UCL(la,, )and LCL(la,,, ), respectively;
then they can be given as UCL(la,, ) = la, + v{*nAt + UCL
(wf,“H) and LCL(la,, ) = la, + vf,“nAt + LCL(wf’“H .

Analogously, the aforementioned GPR modeling with uniform
error bounds can be applied to obtain point and interval estimates
along the longitude and altitude axes. To economize on space, we
omit the details. Algorithm 1 summarizes the steps for making
predictions for future latitude, longitude, and altitude given the data-
set available at each time instant ¢;.

B. Change-Point Detection Based on Generalized Likelihood
Ratio Test

The second component of our framework aims to detect abrupt
changes in a target UAV’s flying pattern. Here, we adopt a change-
point detection (CPD) method based on generalized likelihood ratio
test (GLRT) [39]. The idea is to use a GLR-based hypothesis test to
monitor the prediction error obtained by the GPR model currently
adopted, in order to check if the model is adequate to capture the
trajectory of a target UAV based on the existing data at hand.

Assume that the prediction error ¢ obtained by an adequate pre-
diction model follows a normal distribution with mean 0 and variance
o2 (i.e.,e ~ N(0, 6%)). We conduct the following hypothesis test with
Hy:e ~N(0,6%) and H;: e ~ N (6, 6%), where 6 # 0. The test sta-
tistic G(e) can be given by

—-0)? 2
o0 w2 ool 5

= (mgin(e —0)? + ) /o* = % /o* (12)

where we have used 6 = argming(e — 6)> = e. It can be derived
that a = (6 + 6%)/6* = (6* + €%) /6 and b = (26* + 6%)/o* =
(26* + €?)/6* are the mean and variance of G(e), respectively.
Because the prediction error e is assumed to be normally distributed

Algorithm 1:  GPR training and prediction for future latitude, longitude, and altitude

1: Update the training datasets using new observations, D4 = Di¢ U {(x,, w/*)}, D}’ = D’ U {(x,. W)}, DY = D¢ U {(x,, W}
2: Maximize the respective log marginal likelihood functions of G,,, G,,, and G, to estimate their corresponding hyperparameters.

3: Using the GPR models with the updated hyperparameters to obtain the predicted future impact of external factors on latitude, longitude, and altitude incurred at

al

time instant ;. 1, Wi, Wi, and Wy’ ,

tiv1?

4: Predict the future latitude, longitude, and altitude in the next n time instants via la, = la, + vf,“nAt + ﬁ)ff} . log
= al,,, + v,“,’ nAt + u?;‘i " for 1 < n < H, and their corresponding interval estimates.

al’ i+n

and their corresponding interval estimates.

= lo, + vi°nAt+ Wl ,and

i+n
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under Hy, the statistic G(e) follows a chi-squared distribution under
H,. The control limit G, can hence be given as

Gy =8ty 13)

where g = b/2a, h = 2a®/b, and 100(1 — a)% is the confidence
level of the hypothesis test. We reject Hy if G(e) > G,, and accept it
otherwise.

In our framework, we assume that the errors as a result of the three
GPR models, G,,, G,,, and G, are normally distributed with mean 0
and respective noise variances given by afa, 0%0, and ”31 (recall
Sec. II.LA). When any abrupt change appears in the target UAV’s
trajectory, e.g., the UAV makes a sharp turn, such a change should be
reflected by an unusually large predictive error of the current GPR
model, as it becomes inadequate to capture the new flying pattern.
Hence, the GLRT method can be applied to check the adequacy of the
current GPR model and identify change points in the target UAV’s
trajectory.

Take GP,, (i.e., the GPR model for modeling latitude) for an exam-
ple. At time instant ¢#;, the error can be given as eﬁf‘ =la, — la ;- Under
Hy, we have e/ ~ (0, 67,), where an estimate of 67, can be ob-
tained via maximum likelihood estimation while training the GPR
model GP,,. G(el*) and G at a prespecified confidence level 100
(1 — @)% can be obtained based on Egs. (12) and (13), respectively. If
G(eﬁl’l) < G4, we claim that GP,, can adequately describe the UAV
flying pattern along the latitude axis; otherwise, we must refit GP,,
using the newly arrived data due to the change in the data pattern.
Analogously, the same CPD routine can be applied to detect changes in
trajectory along the longitude and altitude axes. Algorithm 2 summa-
rizes the steps to implement the CPD routine at time instant ¢;.

The benefit of having the CPD component in our framework is
twofold. First, it gives a timely notification when the UAV’s flying
pattern changes abruptly, allowing a prompt update of the GPR
model. Second, this CPD component improves the computational
efficiency of the proposed GPR-based framework, as the GPR mod-
els do not need to be refitted at every time instant, but only when a
change point is detected. The CPD component, together with the third
component (to be detailed next), can help achieve significant com-
putational savings in practice and make GPR modeling suitable for
real-time implementation.

C. Training Data Pruning

As traditional approaches for improving the computational effi-
ciency of GPR (reviewed in Sec. I.C) are not suitable for online
implementation, we adopt a novel approach for training data pruning
(TDP) in the proposed framework. The idea of this particular TDP
method, destructive Hellinger matching pursuit, is to greedily prune
the data points in the current training dataset as new data stream in,
while ensuring that the discrepancy between the posterior distribu-
tion before and after pruning is below a prespecified threshold [40].

Algorithm 2: Implementing the CPD routine at a given
time instant ¢;

I: Calculate el = la, —la,, e’ = lo, —lo,, and ¢! = al, —al, .
2:  Obtain the estimates of 67,, 67,, and 6%, while training the GPR models
GP,,, GP,,, and GP,, respectively.
3: Calculate G(e/*) and G/ using e/ and 67, via Egs. (12) and (13).
Similarly, calculate G(e!?), G, G(e{'), and G¢.
if G(el*) > G then
Refit G,, using DL“ following steps 1 and 2 in Algorithm 1.
end if
if G(el?) > G than
Refit G, using Dﬁ” following steps 1 and 2 in Algorithm 1.
9: endif
10: if G(ef!) > G4/ then
11:  Refit G, using D‘,‘/ following steps 1 and 2 in Algorithm 1.
12: end if

A A

The discrepancy between the two posterior distributions is mea-
sured by Hellinger distance. Let v(x) and ¢(x) be the probability
density functions of two arbitrary distributions, where x € X c R%.
The Hellinger distance between these two distributions is defined as

dy(w.) = \/% | - vawyreas

In particular, when both v(x) and ¢(x) are multivariate normal dis-
tributions respectively with mean vector g; and variance-covariance
matrix ¥, i = 1,2, ie., v() ~N@;, =) and ¢() ~ Ny, %),
Eq. (14) can be written in the following form:

=) 1/415, |14 1
dy(v,§) = |1 ———=——exp| —cA
mW, d) \/ ] exp 3

where £ = (2, +%,)/2, A= (u; —p) "7 () —pp), and |A]
denotes the determinant of matrix A.

Considera training dataset D = {X, Y} withX = (x, ,x,,,... ,x,N)T
and Y = (y;,, ¥, - - ,y,N)T for constructing a GPR model to make
predictions at test input points in X*. The implementation of the TDP
component of the proposed framework is summarized in Algorithm 3.
Because Algorithm 3 only involves evaluations of closed-form
expressions, the computational cost of the TDP component is very
low, and it is suitable for real-time implementation.

D. Integration of the Three Components

A diagram of the proposed online trajectory prediction frame-
work with the three components integrated is provided in Fig. 1. At
the initial time instant #y,, we first make predictions following
Sec. III.A using the input point x, and the initial datasets Dﬁ(‘;,
’Dﬁ(‘)’, and D;’OZ, and set the time instant index i = 1. At time instant ¢;,
we first observe the newly arrived position data (i.e., la,,, lo;,, and
al;) and input point x,. We subsequently implement the CPD
routine as detailed in Algorithm 2, the model fitting and prediction
steps given in Algorithm 1 (step 2 is skipped if refitting is unnec-
essary), and the TDP routine as detailed in Algorithm 3. Finally, we
advance the time index by 1 and step into the next time instant. The
entire procedure proceeds continually, and the three components
work collectively to deliver accurate and robust trajectory predic-
tions in an online manner.

Algorithm 3: Implementing the TDP routine for GPR
training data pruning

1: Compute the predictive mean at test input points in X* conditional on D,
denoted by pup; compute the predictive covariance matrix for X*, denoted
by 27).
while D # @ do
fori=1,2,...,Ndo
D_; =D\ {xrp)’t,}
Compute the predictive mean at test input points in X* conditional on
D_;, denoted by pp_;; compute the predictive covariance matrix for
X*, denoted by Xy, .
6: Compute the Hellinger distance between distributions A (up, Zp)
and N (up_;, Zp_,), denoted by di;.
7:  end for _
8:  Find the index of the training point that has the lowest d};:
i* = argmin; ;<ydj.
9:  ifdj > hthen

10: Stop.

11:  else

12: Prune the training point: D<=D_;«.

13: Update the training sample size: N<—N — 1.
14:  endif

15: end while
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Make predictions l?ztom , [bto+n and ’ﬂtom using X,
following procedures in Algorithm 1 , and set time

instantindexi =1
T

!

Observe lay;, log; and aly;, and obtain Xy,

|

Update D{%, D{? and D& using lay,, lo,, al;, and X,

Advance the
clock by At:
i«i+1

Run the CPD routine as detailed in Algorithm 2

Make predictions lﬁtim , E’tim and c?ltim using X¢;
following procedures in Algorithm 1

Run the TDP routine as detailed in Algorithm 3 on
D{%, D{ and D' with test input X,

Fig.1 A diagram of the GPR-based online trajectory prediction frame-
work for UAVs.

IV. Numerical Experiments

In this section, we numerically evaluate the performance of the
proposed GPR-based online trajectory prediction framework using a
simulation dataset and a real-world dataset. Section IV.A elaborates
on the experiment setup. Sections IV.B and IV.C respectively provide
the corresponding results obtained from studies based on the simu-
lation and real-world datasets.

A. Experiment Setup
1.  Competing Methods

We aim to examine the effects of the three components (i.e., GPR
with uniform confidence bounds, CPD, TDP) on the predictive
performance and the computational efficiency achieved by the pro-
posed framework via the numerical experiments.

For point prediction, three methods are compared: i) the proposed
framework with three components: GPR with uniform confidence
bounds, CPD and TDP (referred to as GUCT); ii) GPR with uniform
confidence bounds only (referred to as GU), and iii) a benchmarking
KF-based method for position tracking (referred to as KF). The
comparison between GUCT and KF helps reveal whether the pro-
posed framework outperforms the state-of-the-art trajectory predic-
tion method. The comparison between GUCT and GU helps manifest
whether CPD and TDP improve the computational efficiency without
compromising the predictive accuracy.

For interval prediction, four methods are considered: i) GUCT;
ii) GU; iii) GPR with Sidak corrected pointwise confidence bounds,
CPD, and TDP (referred to as GPCT); and (iv) KF. Similar to point
prediction, the comparison between GUCT and KF investigates
whether the proposed framework outperforms the state-of-the-art
trajectory prediction method in terms of interval prediction. The
comparison between GUCT and GU helps examine the effects
achieved by CPD and TDP. Moreover, the comparison between
GUCT and GPCT helps compare the effects of the uniform confi-
dence bound and the Sidak corrected pointwise confidence interval.

2. Evaluation Metrics

‘We focus on evaluating the predictive performance of the proposed
framework GUCT in comparison with competing methods. The
predictive performance is evaluated with respect to both point pre-
dictive accuracy and coverage ability of the interval estimate. Spe-
cifically, to measure the pointwise predictive accuracy achieved at
time instant 7, we calculate the root-mean-squared error (RMSE)
defined as follows:

t+H

D118 = sall? (15)

h=t+1

RMSE, = L
H
where ||§;, — s, || represents the Euclidean distance between §;, and s,
with s, = (lay, loy,, al,)T denoting the true position at time / and §,,
denoting its estimate given by a candidate method. H denotes the
prediction horizon, i.e., the number of future time instants to predict
at time instant ¢. In the studies based on simulation and real-world
datasets, two types of RMSEs are calculated, namely, RMSE for
multistep-ahead prediction and one-step-ahead prediction, respec-
tively corresponding to H > 1 and H = 1 in Eq. (15).
To evaluate the performance of the interval estimate given by a
candidate method, we use the multistep coverage probability defined as

t+H

1
CP, = Eh;‘l 1{A,} (16)

where A;, denotes the event that the true trajectory position at time 4 is
covered by the 100(1 — §)% confidence interval, and 1{A, } is 1 if A, is
true and O otherwise. The confidence level 1 — § is set to 0.95, and
multistep coverage probability is calculated [i.e., H > 1 in Eq. (16) is
adopted] in all experiments conducted. Furthermore, to evaluate the
computational efficiency of a given candidate method, we record its
computational time taken to make one multistep-ahead prediction.

3. Model Configurations

Recall that each component of GUCT (i.e., GPR with the uni-
form confidence interval, CPD, and TDP) involves specific param-
eters that affect its performance: the correlation function of GPR,
the confidence level 1 — a of CPD, and the distance threshold % of
TDP. Regarding GPR modeling, we adopt the commonly used
squared exponential correlation function. Specifically, R(x,x’) =
exp{—|lx —x'||?/(21?)}, where [ denotes the length-scale param-
eter. The confidence level of CPD is set to 0.95, a common choice
for hypothesis testing. The Hellinger distance between two arbi-
trary distributions ranges from 0 to 1, with 0 indicating most similar
and 1 otherwise; we set 4 = 0.2 to ensure that the pruning does not
lead to excessive loss in accuracy while improving the computa-
tional efficiency of the proposed framework.

4. Summary of Test Scenarios

We provide a summary of test scenarios considered in the two
numerical studies in Table 1 to facilitate the reader’s understanding.
This table shows the detailed information about the respective candi-
date aircraft considered in the simulation and real-world studies, the
characteristics of the datasets, the major settings for trajectory model-
ing and prediction, and the respective numerical results obtained.

B. Study Based on Simulation Data

The dataset used in this study is generated by a simulation model
for a 3DR IRIS+ quadcopter unmanned aircraft with wingspan

Tablel Summary of test scenarios in numerical studies

Parameter Simulation study Real-world study
UAV type 3DR Fixed-wing Hobby
IRIS + quadcopter King Bixler

Wingspan, m 0.55 1.55

Length, m 0.55 0.95

Mass, kg 1.28 1.2

Time lag, s 2 1

Input variables Latitude, longitude, Latitude, longitude, altitude
altitude & pitch, roll, and yaw rates

Initial sample size 45 15

No. of prediction 202 174

time instants
Results

Figs. 4-6, Table 2

Figs. 9-11, Table 3
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0.55 m, length 0.55 m, and mass 1.28 kg [41], which is illustrated
in Fig. 2.

The dataset comprises two sub-datasets. The first sub-dataset
describes flight mission 1 for the target UAV that involves takeoff,
cruising (flying at a fixed altitude), hovering (flying at a fixed latitude,
longitude, and altitude), and landing; Fig. 3 illustrates the trajectory
for flight mission 1. For ease of visualization, the trajectories of UAVs
are shown in the XY Z coordinate system, where X denotes the north
direction, Y denotes the east direction, and Z denotes the up direction.
The second sub-dataset corresponds to flight mission 2 for the target
UAV, which is similar to flight mission 1. The only difference is that
flight mission 1 involves a hovering period of approximately 60 s,
which is absent in flight mission 2. Hence, predicting the trajectory
for flight mission 1 is arguably more challenging. The average
cruising speed of the UAV in flight mission 1 and flight mission 2
is 2.73 m/s. In both sub-datasets, the input vectors used by the GPR
models are in the form of x, = (la, , lo,, al,). Both sub-datasets
contain data collected at 146 consecutive time instants, with the time
lag between adjacent time instants At = 2 s. Prediction takes place
at the 46th time instant and onward in each sub-dataset, and the size
of the initial training datasets D¢, Dj°, and DY is 45. In total,
predictions at 202 future time instants are conducted in this study.
The prediction horizon for each multistep-ahead prediction is set
to H = 15.

Figure 4 shows the boxplots of the multistep (H = 15) and one-
step (H = 1) RMSE:s for the 202 point predictions made by GUCT,
GU, and KF; recall the definitions of the three competing methods
from Sec. IV.A.1. We have the following observations:

1) GUCT and GU outperform KF with respect to both multistep-
ahead and one-step-ahead predictions. This can be explained by the
robustness of GUCT and GU to the impact of external forces on the
target UAV’s trajectory, which is absent in KF.

2) GUCT has similar multistep RMSEs and slightly higher one-
step RMSEs than GU. This indicates that, if implemented correctly,
incorporating CPD and TDP components into the GPR-based frame-
work does not lead to deteriorated predictive performance.

Fig.2 The 3DR IRIS+ quadcopter.

100

80 T

60
Z(m)

40

20

2200

1100
-444
550

Y(m) 0 -888 X(m)
Fig. 3 An illustration of the trajectory for flight mission 1 in the study

based on a simulation dataset. The solid dot indicates the position of the
target UAV during the hovering period.
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Multi-step-ahead prediction | |
One-step-ahead prediction
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I

|
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GUCT GU KF GUCT GU KF

Fig. 4 Boxplots of RMSEs (unit: m) obtained respectively by GUCT,
GU, and KF in the study based on the simulation dataset.

Table 2 summarizes the average multistep coverage probabilities
(CPs) obtained by GUCT, GU, GPCT, and KF for making the 202
predictions; recall the definitions of the four competing methods from
Sec. IV.A.1. We have the following observations. First and foremost,
KF has the highest coverage ability while GPCT has the lowest one;
the performance of GUCT and GU is similar and comparable to that
of KF but with a slightly higher variability. This implies that the
uniform confidence interval adopted by GUCT and GU is superior to
the Sidak corrected pointwise confidence interval adopted by GPCT.
Second, the similar performance of GUCT and GU implies that, if
implemented correctly, incorporating CPD and TDP into the GPR-
based framework does not lead to deteriorated interval predictions.
Last but not least, we closely examine the confidence intervals given
by GUCT and KF. Itis observed that the confidence intervals given by
KF are often unnecessarily wide, which explains their high coverage
probabilities shown in Table 2. To economize on space, we only show
Fig. 5 that presents the confidence intervals given by GUCT and
KF associated with one-step-ahead predictions along the Z axis
for flight mission 1; similar observations are made along the X and
Y axes. Notice that the wide confidence intervals given by KF are
much less informative than those given by GUCT and can cause
problems in practice. Such wide confidence intervals given by KF
may provide a false sense of security when adopted for trajectory
planning purposes.

Moreover, we evaluate the effectiveness of the CPD component of
the proposed framework GUCT for detecting abrupt changes in the
flying pattern of the target UAV. Figure 6 illustrates the change points
detected in the UAV trajectory for flight mission 1 along the Z axis.
Figures obtained for the X and Y axes are similar and hence are
omitted for the sake of brevity. In summary, the CPD component
helps the proposed framework identify the changes taken place along
each axis promptly and facilitate adaptive model refitting.

Finally, we compare the computational efficiencies of the competing
methods. Specifically, the average computational times taken for
making the 202 multistep-ahead predictions (with standard errors
given in parentheses) by GUCT, GU, and KF are respectively
0.07(3.08 X 10™) s, 1.34 (0.01) s, and 3.35 x 1074(1.35 x 107%) s.
Thanks to the CPD and TDP components, GUCT achieves significant
computational savings as compared with GU and becomes sufficiently

Table2 Summary of the average multistep CPs with
corresponding standard errors (in parentheses) obtained
by GUCT, GU, GPCT, and KF in the study based on the

simulation dataset

GUCT GU GPCT  KF
1.000(3.30 x 10™#)  1.000(3.30 x 10™#)  0.9(0.01)  1(0)
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300 ————— KF confidence interval —
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Fig. 5 Confidence intervals respectively given by GUCT and KF asso-
ciated with one-step-ahead predictions along the Z axis for flight mission
1 in the study based on the simulation dataset.
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1st change point: G(e) = /

= 2.6615 > 6.47 X 1072 = G,

60 [
Z(m)

40

20 . . . L . . . . . .
10 20 30 40 50 60 70 80 90 100

Time Instant (s)
Fig. 6 Change points in the target UAV’s trajectory along the Z axis
identified by the CPD component of GUCT for flight mission 1 in the
study based on the simulation dataset.

fast for real-world implementation. KF is the most computationally
efficient, nevertheless at the cost of predictive performance as evi-
denced by Figs. 4 and 5.

C. Study Based on Real-World Data

The real-world dataset used in this study contains position data
sampled by GPS sensors and pose data sampled by inertial measure-
ment units (IMU) [42]. The dataset contains 14 individual sub-
datasets; the data in each sub-dataset were collected for a host UAV
and a target UAV during the course of a flight mission. Both UAVs are
fixed-wing HobbyKing Bixler unmanned aircraft with wingspan
1.55 m, length 0.95 m, and mass 1.2 kg, which are illustrated in Fig. 7.

In the real-world environment, the UAVs fly under the wind
disturbances. The actual wind speed in the north direction is 1.68
m/s and that in the east direction is —1.49 m/s. The average cruising
speed of the UAVs is 10 m/s. Because the logging frequencies of the
GPS and IMU sensors are different, to synchronize the data, we only
retain the position data and pose data (i.e., pitch rate, roll rate, and
yaw rate) at the common time instants for evaluation purposes. As a
result, each sub-dataset contains observations at approximately 30
time instants, with At = 1 s between adjacent time instants. Predic-
tion takes place for the target UAV at the 16th time instant and onward

Fig.7 Fixed-wing HobbyKing Bixler.

in each sub-dataset, and the size of the initial training datasets ng,
Dﬁ(‘)’, and D;g’ is 15. In total, predictions at 174 future time instants are
to be made for the target UAV. The prediction horizon for multistep-
ahead prediction is set to H = 5. In all sub-datasets, the input vectors
are in the formof x, = (la,, lo, , al,, p,.,71..,y,), where p, , r,.,and
i, denote the pitch rate, the roll rate, and the yaw rate at time ¢;,
respectively. Figure 8 shows the target UAV’s trajectory in one
arbitrarily chosen flight mission (referred to as flight mission 1
hereinafter) in the XYZ coordinate system. We note that compared
with the simulation dataset considered in Sec. IV.B, the trajectories
studied here show highly complex flying patterns, which involve
more abrupt changes.

Figure 9 shows the boxplots of the multistep (H = 5) and one-step
(H = 1) RMSE:s obtained by GUCT, GU, and KF for 174 prediction
time instants. We have similar observations as those made in
Sec. IV.B: 1) GUCT and GU outperform KF with respect to both
multistep-ahead and one-step-ahead predictive accuracies achieved;
2) GUCT has comparable multistep and one-step RMSEs as those of
GU. This indicates that, if implemented correctly, the CPD and TDP
components do not compromise the point predictive accuracy
achieved by the proposed framework.

Table 3 summarizes the average multistep coverage probabilities
obtained by GUCT, GU, GPCT, and KF for making the 174 predictions.
We have the following observations. First, KF has the highest coverage
ability followed by GUCT and GU, whereas GPCT has the lowest
coverage ability. This implies that the uniform confidence interval
adopted by GUCT and GU is superior to the Sidak corrected pointwise

640

635

630
Z(m)

625

620 |
144

0
-55

-110
X(m)

0 22

Fig. 8 An illustration of the trajectory of the target UAV for flight
mission 1 in the study based on a real-world dataset. The solid dot shows
the starting position, and the star shows the ending position of the
trajectory.
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Fig. 9 Boxplots of RMSEs (unit: m) obtained respectively by GUCT,
GU, and KF in the study based on the real-world dataset.

confidence interval adopted by GPCT. Second, GUCT has similar
coverage probabilities as GU. This indicates that, if implemented cor-
rectly, CPD and TDP do not lead to deteriorated interval predictions.
Lastly, we compare the performance of GUCT and KF in terms of their
respective confidence intervals associated with one-step-ahead predic-
tions along the X, Y, and Z axes for flight mission 1. We find again that
the confidence intervals given by KF are often much wider and hence
less informative than those given by GUCT, despite the high coverage
probabilities achieved by the former. Such wide confidence intervals
may cause problems in practice as noted in Sec. IV.B. For the sake of
brevity, we only show Fig. 10 that presents the confidence intervals
given by GUCT and KF along the Y axis for flight mission 1; similar
observations are made regarding confidence intervals obtained along the
X and Z axes.

We examine the effectiveness of the CPD component of GUCT
in detecting abrupt changes in the target UAV’s flying patterns. Fig-
ure 11 shows the trajectory of the target UAV along the Y axis and the
change points detected in flight mission 1. Figures obtained for the X
and Z axes are similar and hence are omitted for the sake of brevity.
Once again, we see that the CPD component can accurately identify the
change points that occurred in the target UAV’s trajectory.

We make some final comments regarding the computational effi-
cienciesofthecompetingmethods. Theaveragecomputationaltimes
takenformakingthe 174 multistep-ahead predictions (withstandard
errors given in parentheses) by GUCT, GU, and KF are respectively
0.08(0.03) 5,0.92(0.01) s,and 3.94 x 10~4(1.16 x 10~*) s. We ob-
serveagainthatGUCTachievessignificantcomputationalsavingsas
comparedwithGUthankstoitsCPDandTDPcomponents.KFisthemost
computationally efficient,however, attheexpense of predictive per-
formanceasevidencedbyFigs.9and10.

V. Conclusions

This paper proposed a GPR-based trajectory prediction framework
for online implementation, i.e., GUCT. GUCT features three novel
components, respectively: uniform confidence bounds for simulta-
neous predictive uncertainty quantification, change-point detection
for monitoring abrupt changes in flying patterns, and TDP for

Table3 Summary of the average
multistep CPs with corresponding standard
errors (in parentheses) obtained by GUCT,

GU, GPCT, and KF in the study based on
the real-world dataset

GUCT GU GPCT  KF
1.00(107%)  1.00(107%) 0.16(0.012) 1(0)

180
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N e = = = +GUCT confidence interval
144 Poy ememm— '~ 4 :
L e, KF confidence interval
- .

108 | R i

Y(m)

5 10 15 20 25
Time instant (s)

Fig. 10 Confidence intervals respectively given by GUCT and KF
associated with one-step-ahead predictions along the Y axis for flight
mission 1 in the study based on the real-world dataset.

1st change point: G(e) =
0.0023 > 3.86 x 1073 = G,

Y(m)

36

288 2nd change point: G(e) =

2.0452 > 6.96 x 107* = G,

21.6 L

5 10 15 20 25
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Fig. 11 Change points in the target UAV’s trajectory along the Y axis
identified by the CPD component of GUCT for flight mission 1 in the
study based on the real-world dataset.

enhancing the computational efficiency of GPR. Interested in the
challenging setting of trajectory prediction for non-cooperative
UAVs, the authors tested the performance of GUCT with both sim-
ulation and real-world datasets. The proposed framework was found
to not only outperform competing methods in terms of point and
interval prediction performance but also achieve a desirable computa-
tional efficiency in practice. Moreover, GUCT can effectively iden-
tify abrupt changes in the flight trajectory of the target UAV and adapt
to new flying patterns promptly. The proposed framework GUCT is
expected to be useful for online analysis and control of other types of
dynamic data-driven application systems where robust and fast pre-
dictions are critical.
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