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We study the index of 4d N = 4 Yang-Mills theory with U(N) gauge group, focusing on the physics of
the dual Bogomolny-Prasad-Sommerfield black holes in AdSs x S°. Certain aspects of these black holes
can be studied from finite N indices with reasonably large N>. We make numerical studies of the index for
N < 6, by expanding it up to reasonably high orders in the fugacity. The entropy of the index agrees very
well with the Bekenstein-Hawking entropy of the dual black holes, say at N> = 25 or 36. Our data clarifies
and supports the recent ideas which allowed analytic studies of these black holes from the index, such as the
complex saddle points of the Legendre transformation and the oscillating signs in the index. In particular,

the complex saddle points naturally explain the %—subleading oscillating patterns of the index. We also

illustrate the universality of our ideas by studying a model given by the inverse of the MacMahon function.
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I. INTRODUCTION AND SUMMARY

The superconformal index of large N field theories [1-3]
has recently received some attention [4-21] as it successfully
accounts for the thermodynamic entropy of AdS black holes.
In this paper, we want to present our numerical study of the
4d N = 4 superconformal index, showing that some aspects
of the BPS (Bogomolny-Prasad-Sommerfield) black holes in
AdS;5 [22-25] can be investigated by numerically studying
the index at finite N. Our numerical data will also non-
trivially support certain recent ideas which enabled the
analytic studies of these AdS black holes.

We define the Witten index of 4d N/ = 4 superconformal
field theory on §3 x S' as [2]

Z(A @) = Trl(=1)7e™ 2 MO ] (L)
with the constraint A; + A; + A3 —@w; —», =0 on the
chemical potentials. Q; with I =1, 2, 3 denote the
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U(1)? c SO(6) R-charges of N =4 superalgebra, and
J; with i=1, 2 denote the U(1)> C SO(4) angular
momenta on S°. Only the BPS states with the energy E =
>3, Or+ Y%, J; can contribute to the index. Since the
supersymmetric index is invariant under the continuous
deformation of the gauge coupling, one can evaluate the
index from the weakly interacting QFT. It can be done in a
few steps. First, we obtain the following single-letter
index [2]

(1—e™)(1 —e™2)(1 —e™)
(1—e™®)(1 —e™)

Isingle(AhO’i) =1-
(1.2)

by counting all single-letter operators in the A = 4 vector
multiplet that satisfy the above mentioned BPS energy
condition. Next, we apply the Plethystic exponential to this
index /e multiplied by the adjoint character y4(z) of the
gauge algebra g, [2]

PE[Isingle(AI’ wi))(g(zu)]

zoo: Isingle(nAIv na)i))(g (ZZ)
n

= exp [ (1.3)

n=1

Finally, we project to the set of gauge invariant states by
integrating over z, with the Haar measure of the gauge
group. The index of the 4d N = 4 theory with a gauge
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group corresponding to the Lie algebra g reduces to a
matrix model calculation giving the following integral [2]:

Z = dug(o) PElng(Aroniy(). (14)

Here du,(z) is the Haar measure of g. Explicitly, it can be
written as

1 1
dug(z) = —————
% ﬂg(z) (2]Tl)r |W| '%:1:1
\% le...erH(l_Za)
ol=1 D1 g ’

where W is the Weyl group of g, r is the rank, z, is the
fugacity corresponding to its a-th Cartan generator and A is
the set of its roots. It turns out that for numerical purposes it
is more efficient to use a slightly modified definition of the
Haar measure given by restricting the product in (1.5) to
only the positive roots of g [26]:

(1.5)

1 le...er
du,(z) = —— _— 1 —2z%).
% Kal2) (2;[1')’7{]1 ]{rll 212y agL( !

(1.6)

This helps by removing the need to normalize the integral
by the order of the Weyl group. From (1.4) and (1.2),
Z(A;, w;) is invariant under 2zi shift of each of A;, w;.
So one can equivalently study the index at the surface
Y A=Y w; =2miZ. Below, we shall often choose the
right-hand side to be 27zi.

For our purposes it suffices to consider a special
unrefined case of the above integral by setting
A . If one
Legendre transforms to the microcanonical ensemble at
macroscopic charges, this amounts to taking equal charges
and equal angular momenta, Q; = 0, = O3 = Q and
Ji=Jy,=J. From 3A—-2w =27iZ, one can set
x> = e, x3 = e for certain x. The fugacity x is now
conjugate to the charge j = 6(Q + J). The expression in
(1.4) then becomes

Z,= fdﬂg(z)PEKl —%);{g(z)} (1.7)

The resulting index can be expanded as

=0

where j = 6(Q + J) and Q; are integers which count the
number of BPS states (with —1 factor for fermions). For
U(N) gauge group, we shall study this index at N = 2, 3, 4,

ed =78 = 78 = ¢~ eV =T =e™?

(1.8)

5, 6, by computing the coefficients of the fugacity expan-
sion in x up to fairly high orders, till O(x'%) for N < 5, and
till O(x") for N = 6. Naively, finite N indices will be
irrelevant for studying emergent gravitational phenomena
expected in the large N limit. In particular, one would like
to study the large N limit of €2; when j is of order N2> 1.
In this limit, black hole like degeneracy will grow like
log |Q;| ~ N*> when j ~ N2. Our starting point is that, in
practice, taking N = 5 or 6 has already large enough N2, so
that we can hope to see the black hole like exponential
growth of Q; quite convincingly. In fact, plugging in N 2=
25 or 36 to the geometric Bekenstein-Hawking entropy
formula for the known AdSs black holes, we shall find very
good agreements with the field theory calculus of log |Q;|.
In non-Abelian gauge theories, how small % should be at
finite NV to exhibit large N behaviors depends on the type of
physics one is interested in. So not too surprisingly, our
finite N approach does not clearly see certain types of black
holes. For instance, we empirically find that the charge
range for the so-called “small black holes™ is not clearly
resolved in our finite N discretized analysis. (See Sec. II for
more explanations.) The detailed physics that can be
learned is outlined below, and will be elaborated more
in Sec. IIL

Our finite (but reasonably large) N calculus reveals
various interesting structures which shed more concrete
lights on the recent analytic studies of these black holes.
After computing the large N free energy log Z as a function
of chemical potentials A;, w;, one makes a Legendre
transformation to the microcanonical ensemble to compute
the entropy. Legendre transformation is a saddle point
approximation of the inverse Laplace transformation

1 dx .
Q=—— ¢ Ziiz
vl ()

(1.9)

at macroscopic charge j. (The formula can be generalized
to refined A;, w;, but we present the above unrefined
formula for simplicity.) The fact is that the dominant saddle
point values x, of x (or A;, m;) are complex, at real j (or Oy,
J;). The naively computed saddle point value of the
integral, Q;(x,) = ¢e5Y), at real positive j is therefore
complex. Somewhat surprisingly, this simple fact appa-
rently seems to have confused many people, leading to a
number of ad hoc prescriptions and interpretations on how
to extract the correct physics out of this result. We stick to
the natural interpretation of [5,6,10] and find extremely
nontrivial evidences supporting it from our numerical
studies. We think this will confirm our interpretation to
be the canonical picture, which goes as follows. From the
unitarity of the underlying QFT, it is always guaranteed that
one can find the complex conjugate saddle point x, for any
complex x,. The conjugate saddle point value is given by

Q;(x,) = 5V). Adding the two equally dominant contri-

butions, one obtains
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~exp [Re(S(j)) + - -] cos Im(S(j)) +---], (1.10)
where - - - denote possible subleading corrections at large
N? and large j. (Note that Re(S(j)) and Im(S(j)) scale
like N2.) As will be manifest from our data in the next
section, the integers €2; at macroscopic j grow exponen-
tially fast to account for the dual black holes, but come
with possible minus signs at certain j’s. Namely, Q; as a
function of (quantized) j oscillates between positive and
negative integers as j changes. However, the macroscopic
Legendre transformation calculus is not sensitive to the
precise quantized nature of j and ;. Therefore, the best
one can expect to see from this calculus is an exponentially
growing envelope function, which is provided by eRe(S(),
multiplied by a factor which oscillates between +1 and —1,
which is provided by cos [Im(S(j)) + ---] in the above
expression.

Our numerical calculus will justify this interpretation.
First, the computed entropy log |Q;| from the integers Q;
indeed takes the form of

Re(S(j)) + log [cos(Im(S(j) +---)],  (1.11)
where Re[S(j)] and Im[S(j)] are those computed recently
from the index using various analytic methods (in the
large N and/or large charge limit). Furthermore, more
importantly, investigating the overall signs in Q; from
our numerical calculus, the sign oscillating pattern is also
determined by the sign oscillation of cos (Im(S(j)) + - - ),
upon fitting a constant O(1) phase shift in “- - -”” that has not
yet been computed by any analytic methods. Therefore, a
precise interpretation is given to Im(S()), as containing the
overall sign information of Q;.

While comparing our numerically computed log [€;|
with (1.11), confirming the appearance of the second term
is nontrivial. This is because, while the first term is
proportional to N2, the second term is typically subleading
because the macroscopic quantity Im(S(j)) ~ N? is inside
the cosine function. To detect the second term, it is crucial
to make a precision computation of the index which sees
this % corrections.” Our finite N indices (say at N = 5, 6)
provide a perfect setup to confirm such structures, as these
values of N? are large enough to provide a large N
hierarchy to various contributions to the entropy, while
not being too large so that the subleading corrections are
visible. We think our numerical support to the for-
mula (1.11) is compelling. See Sec. III for the details.

The interpretations outlined above appear to be univer-
sal, which may appear in any indexlike generating func-
tions that have negative integer coefficients at various
orders. We illustrate that this is actually the case, by
studying in detail the inverse of the MacMahon function

f(x)EH(l—x”)”: Qux/=1-x-2x"-x
n=1 Jj=0
+0x* + 4x° 4+ 4x° + Tx7 4 3x% = 2x°
—Ox10 —17x! — ... (1.12)

At large j, one can analytically compute the macroscopic
entropy given by log |Q;| ~2[2£(3)/%] + - - -, where -
denotes small 5 corrections which can be concretely

>

computed to any desired accuracy. On the other hand,
€2; exhibits a characteristic oscillation between positive and
negative integers. We shall illustrate that this is precisely
realized in the Legendre transformation as the complex
saddle points, where a formula like (1.11) will provide a
perfect match. As we can explicitly compute the 5 correc-

tions to high orders, including the finite phase shifts in the
second term of (1.11), our interpretation can be tested to
very high accuracy in this model.

The remaining part of this paper is organized as follows.
Section Il summarizes our numerical results for the integers
;. We also explain some salient structures of the series €2,
and also provide a comparison with the Bekenstein-
Hawking entropy of black holes. In Sec. III, we take a
closer look at the structures of Q; and the ]ﬁ correction, and
provide various interpretations and discussions.

II. NUMERICAL STUDY OF THE N =4 INDEX

We now specialize to the case of 4d N = 4 theories with
a U(N) gauge group. We would like to probe the regime

0r, Ji~N?>1. (2.1)

However, the last inequality will be reasonably met by
trying to take N2 and charges to be as large as possible
within our computational capability. We expand the index
in x (as introduced in Sec. I), perform the integral over N
variables on computer, to obtain various coefficients of

j=0

This is a straightforward exercise, with the main impedi-
ment coming from the availability of sufficient computing
power. The computational-complexity of the integral grows
extremely quickly as the rank of the gauge group increases.
We were able to explicitly evaluate the above integral for
2 <N < 5upto O(x'?), as given in (A1)—(A4). For U(6)
we evaluated it up to O(x"°). The explicit expression of the
U(6) index is given by:
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Zye =1+ 3x% —2x% + 9x*
+200x'? — 198x'3 + 345x'4
+ 189x%° + 636x%! —
— 794x%7 + 8757x%

— 340x" 4 540x'°
1026x>2 4 2262x%
—20460x% + 40398x*° —
—99388x33 + 80856x3* + 4680x3 — 184576x¢ + 494910x7
+ 13923605 — 1690101x* + 1451568x*! — 114147x*

—6x° +21x° — 18x7 + 48x® — 42x% + 99x'0 — 96x!!
—426x"7 + 564x'8 — 23417
— 2583x%* + 3438x> — 1851x2°
63054x3" 4- 88401x32
—920943x38

—2931498x* + 8129358x*

— 15183836x* + 22398435x% — 25748382x*7 + 18439724x* + 8645112x*

— 64166661x° 4 150570130

—254339973x°% + 334069536x> — 310532838x3

+ 68770386x>° + 514459605x0 — 1501534768x7 + 2775637323x% — 3887229606x>°

+3923925613x%0 — 1520426502x5!
—30282658596x% + 42802285428x%

It was pointed out in [6] that the alternation of + signs
of Q; demands special care when one attempts to extract it
out at large j using Legendre transformation. These sign
alternations are generic: they also happen at lower N’s.
See the results in the Appendix A. We shall later observe
more organized patterns of the sign alternations, as will
be explained in Sec. III. Here, we simply note that the
absolute degeneracy |€2;| indeed grows very fast at large ;.
For instance, one finds [Q;| ~3.3 x 10! at N = 6, and
|Qi00| ~ 1.4 % 10'¢ at N = 5. We will see shortly that Q;
grows quantitatively like the black hole entropy even at
N =5, 6. See Fig. 1 for log |Q;| and the signs of Q; at
N=35,6.

We want to compare our indices at reasonably large N
with the spectra in the gravitational dual. At low energies,
the BPS spectrum can be computed from the gas of
gravitons [2]. A BPS graviton particle corresponds to a
particular single trace BPS operator in the QFT dual. It is a
valid approach when the energy E satisfies E << N. In this
limit, the BPS multigraviton states correspond to multitrace
operators obtained by multiplying the above mentioned
single trace operators, where one does not have to consider
trace relations. As the energy grows, the finite N effects of
these graviton states have been studied in some detail in the
BPS sector. The trace relations will start to enter from an
energy of order N, reducing the number of independent
operators than the naive multiparticle spectrum beyond this
threshold. To see how this picture is reflected in our €;’s,
we first consider the index over BPS gravitons given by [2]

o B 00 1_x3n)2
; = H 1 _x2n)3

n:l

(2.4)

Comparing our Q; and Q, one finds that Q; = Q7 holds
for j<2N+1. This can be seen exactly for all

— 4814089191x52 + 15863550944x%3
— 42817602705x% + 14831924490x57
+57170104014x%8 — 179436305580x% + 331894244529x70 + O(x"").

(2.3)

3
[o2]
S
K 20 20 60 80 100
j
(a)
u(e)
3
(=)
S
j
(b)
FIG. 1. Plots of log |Q;| for U(5) and U(6) indices. The colors

of the points encode the sign of (—1)/Q;: red being positive and
blue being negative. Re(S(j)) computed from the black hole
entropy function is the Bekenstein-Hawking entropy, given by
the curve drawn with a solid black line. (a) N = 5 and (b) N = 6.
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N =2, ..., 6, and presumably holds exactly for other values
of N. Slightly beyond this point, j 22N +1, [Q)] is
smaller than [Q7| for a certain while. So j =2N +1 is
naturally interpreted as the threshold where the trace
relation starts to reduce the BPS states.

Now we consider the regime in which j is substantially
larger than this threshold, so that the resulting |Q;| cannot
be explained from |Q}| with the trace relation reduction.
(|2;] becomes bigger than |Q§ | for sufficiently large j.)

Eventually we enter a region with j ~ N2, whose gravita-
tional dual description will be the BPS black holes in AdS.
To provide the comparison with the Bekenstein-Hawking
entropy of these black holes, let us first explain the entropy
function approach to understand its structures in a simple
manner [27]. We present the results in the version which
only keeps one fugacity x [5,6]. The entropy function we
shall discuss assumes the convention 3A — 2@ = 2zi. Then

x2 = e, x3 = ¢~ can be solved as
2mi A
x=e 35 = —e2, (2.5)

In this setup, consider the following entropy function of j
and w:

) N2A3 w—=27i . N? 2zi+20\3
Sl =g T3 1T\
w—2ri .
3 J. (2.6)

The first term on the right-hand side originates from
log Z in the grand canonical ensemble, and the second
term is the Legendre transformation factor, whose expo-
nential becomes x/ of (1.9). At fixed charge j > 0, one
extremizes S(w, j) with . This yields a cubic equation in
®, which yields three different solutions @,. Among these
three, we take the one which yields maximal Re(S(j)) > 0
where S(j) = S(w,, j). At this solution, one finds

. Br438
e (e

_ N (@ -2z +¢)

== 2

B N?>7’ —9ng? —88 | m+¢
logZ—+§ 2 37— 0f

N? (m—88)(z + &)
_15_46—2’ (27)

where ¢ is a real number satisfying —z < £ < 0. It para-
metrizes the imaginary part of @, and is a monotonically
increasing function of j implicitly given by the second line.
Inserting this value back to S(w,j), one obtains S(j)
given by

N2 7(n? — 27 — 3
Re(S(j)) = ?”(ﬂ ;ef <) 3Zf§if
N? -5 2
Im(S(j)) = —ﬁﬂ(” ?(H”) —?ﬂj (2.8)

where the relation j(£) is assumed. The fact is that Re(S(}))
is precisely the Bekenstein-Hawking entropy of the BPS
AdS black holes of [22-24] at Q= Q, = O, = Q3 and
J=J, =J,. More precisely, [22-24] found black hole
solutions carrying two charges Q, J, depending on only one
independent parameter. The entropy is a function of this
parameter, which is in one to one correspondence with
j=06(Q +J). Therefore, expressing the one-parameter
Bekenstein-Hawking entropy in terms of j, one obtains
the above Re(S(j)). Here, N? in the gravity side is related
to the inverse Newton constant G5! of the 5d gravity as

N? = %, where ¢ is the radius of AdSs.

The classical gravity description will be reliable at small
enough Newton constant, i.e., N2> 1. To compare with
our numerical results at N = 5, 6, we plug in N> = 25 or 36
to (2.8) expecting that N2 is reasonably large. In Fig. 1, we
have drawn these Re(S(j)) by the black solid lines. At large
enough charge j (especially for U(5) where we could do
numerical calculations for larger charges), this agrees very
well with the numerically computed entropy log |Q;| of the
index. There appear intriguing oscillations of our numerical
log |©2;|, which appear to be subleading in# at large enough
charges. We shall comment on these subleading fluctua-
tions in the next section.

Similar plots are shown for lower N in the Appendix. Of
course, inserting the finite values of N? to (2.8) becomes
less meaningful for those lower values. As one can see from
these figures, the numerical log |Q;| and Re(S(j)) do not
agree that well for N =2 or N = 3. Here we note that,
although S(j) of (2.8) is introduced here as the entropy
function for the black hole, valid at N% > 1, it has been
shown [5] that (2.6) and (2.8) are true at any finite N> when
@ becomes small (or equivalently, when j > N?). This is
called the “Cardy limit” of higher dimensional SCFTs in
the recent literature. In this case, (2.8) and (2.6) have been
derived from the field theory side for any value of N. As
one can see gaps between log |Q;| and Re(S(j)) for N = 2,
3 in Figs. 4 and 5 in Appendix A, it appears that the charge
Jj = 100 has not yet reached the Cardy regime.

We can also try to characterize which kinds of black
holes are well described by our numerical data, and which
kinds are not well visible. In AdS, one can classify black
holes into “small black holes” and “large black holes”
depending on various (closely related) criteria. The clas-
sification was originally made for AdS Schwarzschild
black holes. However, similar notion exists for our BPS
black holes by the charge playing the role of energy, and the
inverse chemical potential playing the role of temperature.
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The most intuitive way to distinguish the AdS black holes is
whether the “size” of the black hole is smaller than the AdS

radius 7, or larger than it. To make it more precise, consider
the temperature 7 of the black hole given by % = dfi—s,f). For
our BPS black holes, Re(w), j, Re(S(j)) play the role of 7!,
E, S(E) respectively. They satisfy the analogous relation
! d[ReS(j)]
-R =—".
sRe(@) dj

Now consider taking the second derivative with energy
(or j),

dT~'(E) d*S(E) 1dRe(w(j)) d*[ReS(j)]

dE dE* '3 dj dj?

where the first and second expressions apply for
Schwarzschild black holes and our BPS black holes. The
negativity of these expressions implies that the black holes
are stable in the canonical and grand canonical ensemble,
respectively, due to the heat capacity or susceptibility being
positive. We call these black holes “large black holes.” They
are characterized by the entropy being a convex function of £
or j. Our BPS black holes are in the large black hole branch

forj > j, = w (or —\/Lg < ¢ < 0). On the other hand,

forj < jo (or—7 < & < — %), the curve S(j) is concave and

(2.9)

. (2.10)

one is in the small black hole branch. As one sees from the
black curvesin Fig. 1, the visibly concave region is at so small
charges, that they are essentially overlapping with the region
J<2N +1 in which the graviton description is good.
Namely, we find that the small black hole branch squeezed
by the graviton region from the left and j, from the right is not
clearly visible from our finite NV indices. At large enough N,
the two charge scales j ~ 2N + 1 and j ~ j, will be given
enough hierarchy to allow a visible small black hole region.
However, our finite N index does not seem to have
large enough N to make this region clearly visible.
Indeed, this can be clearly seen from our numerical plots
in Fig. 1. In the small black hole region, S(j) will increase
very fast in j. However, our numerical log |Q;| does not
manifestly exhibit such an inflating region. It will be
interesting to compute €2;’s for larger N’s to see this region.

So far, we explained how to compare our log |;| with
Re(S(j)) of the dual black holes. There is other interesting
information that one can get from our numerical data,
concerning Im(S(j)), the signs of Q;, and the subleading
oscillations that one sees in the figures. These will be
discussed in more detail in the next section.

III. INTERPRETATIONS AND
DISCUSSIONS

In this section, we discuss more detailed information
encoded in our numerical Q;, and relate it to the inter-
pretations made on (2.6).

We first study the signs of Q;. The pattern of the signs
visible in the series Z(x) = ) Q;x/ apparently looks very

complicated. However, one observes simplifications upon
inserting x — —x:

Z(—x) = (~1)Qxl.

J

(3.1)

The signs of (—1)/Q; are shown in Fig. 1 and also in the
figures of Appendix A by the colors of the dots. After
this substitution, one finds that the sign change pattern is
correlated to the subleading oscillation pattern of log |Q;].
Namely, the sign changes only at the local minima of the
oscillation.

At this point, we revisit the interpretation of complex
S(j) at the saddle point of the Legendre transformation at
macroscopic charges, that we outlined in Sec. 1. The
interpretation asserts that the sign of cos[Im(S(j)) + -]
equals the sign of the integers Q;. Since we have observed
very simple sign oscillation patterns of our data (—1)/Q;
let us try to understand this also from the entropy function
(2.6). Since (—1)/ = ™/, one finds that

N2 (204 2023
2w? 3

w, + i |
J+-| +cec,

(—1)/Q; ~ exp

(32)

where - - - are possible subleading corrections in small #

and } that have not been computed to date. From this, one
obtains

(~1)/; ~ exp[Re(S(j)) + - -] cos [Im(S(j)) + 7j + - .
(3.3)

Although the subleading corrections to Re(S(j)) will not
affect our studies below, the corrections to Im(S(j)) will
be somewhat important since they will make a finite
phase shift of the oscillation. The corresponding entropy
(1.11) improving the black curve of Fig. 1 is shown
in Fig. 2.

First, Fig. 2 clearly shows that the signs of (—1)/Q; are
equal to the sign of cos [Im(S(j)) + zj + n]. As mentioned
in the previous paragraph, we empirically fitted the possible
subleading correction # by an O(1) constant. Although 7 is
in principle a function of j, N> such as 11(#) constant 7
seems to be reasonably good within the relatively short
ranges of charges in Fig. 2." The agreements in Fig. 2
justify our interpretation that the oscillation caused by the
complex saddle point accounts for the sign oscillations
of Q;. Moreover, Fig. 2 shows that the oscillation of
| cos [Im(S(j)) + #j + n]| accounts for the subleading oscil-
lations of our numerically computed log |Q;|. Therefore, we

'We also note that, upon including the 1-loop determinant
factor of the Legendre transformation (2.6) in this framework,
one obtains much better agreements than those in Fig. 2.
However, we do not show these results here since they do not
seem to be based on a systematic calculus of the subleading
terms.
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u()

Log |1

(a)

u(e)

Log |Q)|

j
(b)

FIG. 2. Same plots as Fig. 1, with the extra red/blue curves
for Re(S(j)) + log| cos [Im(S(j)) + zj + #]|- A subleading con-
stant 7 is empirically tuned to # &~ —1 to minimize the overall off-
phase behaviors. The red and blue colors of the curves denote
cos[Im(S(j)) +xj+n] =0, respectively. (a) N =5 and (b) N = 6.

find that our finite N numerical data strongly supports the
detailed structures of the macroscopic entropy computed at
the complex saddle points of Legendre transformation.

As mentioned in the Introduction, it seems that our
interpretation for the complex saddle point is very
universal. To confirm this expectation, it will be helpful
to study other indexlike generating functions which are
simpler than the large N index of the N' = 4 Yang-Mills
theory. In particular, for the Yang-Mills index, note that
the analytic form of S(j) is known only to the leading
order in large N and j. Due to this limitation, we added
an empirical constant z at a subleading order to see if the
structures of S(j) and Q; are compatible with each other.
So it will be desirable to study simpler examples in which
we can easily compute the subleading corrections for the
precision tests.

As a simple example, consider the inverse of the
MacMahon function,

P

n=1

_exp{ Zi(l ] ngf

(3.4)

Numerically, one can easily expand f(x) in power series of x
with a computer to very high orders. At large charge j, one
can see that the resulting Q;’s become macroscopic with sign
oscillations. We shall now make an analytic evaluation of the
asymptotic entropy at j > 1, with necessary subleading
corrections in ; included. We would like to compute

1
Q -
1= D

dx .

gy

% iy

1 dx i 4

= Zexp|jp-> -l (35
i f x 0P [jﬂ “~n(l- e‘”/’)z} (3.5)

where x = e™”. The saddle point values S, of B will be
small complex numbers with Re(f3,) > 0. At small /3, one
can use

1o L(3) 1 P
- = =2 - logf—{'(~1,0) + 5o
e e A T R
B s
725760 " 43545600 (3.6)

where ((s) is the Riemann zeta function, and {'(—1,0) =

—0.165421 is the derivative {'(s, ¢) = ag %-9) of the Hurwitz
zeta function. Using this formula with hlgher order correc-
tions in small /3, one can approximate the integral (3.5) with
subleading corrections in } included. One finds that the

following mutually complex conjugate pair of saddle points
are dominant:

L 20(3)\3
fo=e (J) 367 129622000

I ~
| ﬂﬂyfq

|t

FIG. 3. Two plots of log |Q;| for the MacMahon function. Red/
blue colors denote the positive/negative signs of €.

eT5

(3.7)

=)

o

700 150 200 J
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Performing the Gaussian approximations at these two saddle points (with some subleading terms included) and adding the two
contributions, one obtains

1 Z 3 Lam ol ] . log(2£(3)) =i
U e 2 [Eei;(zg(g))]z)}+361°gj_5(_1’0)_ 36 360
X |:3€:F3 (F(?))) +Zei3 (2€(3)> - 216203) N I (3.8)

|
Here, the three factors on the right-hand side come from the =~ Note added.—On the same day this work appeared on the
saddle point action, the 1-loop determinant, and possible  arXiv, the paper [28] was also on the arXiv, which overlaps
higher loop corrections, respectively. We plot this asymp-  with our Sec. II.
totic log |Q;| in Fig. 3, together with the dotted plot
obtained from the series expansion up to O(x*?) order.
APPENDIX: NUMERICAL DATA
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Zyo) =14 3x% = 2> 4+ 9x* — 6x° + 11x0 — 6x7 4 9x® + 14x” — 21x10 4 36x!! — 17x!2
—18x13 4 114x™ — 194x"5 4 258x1° — 168x'7 — 112x'8 + 630x"0 — 1089x2°
+ 1130421 —273x2 — 1632x% + 4104x%* — 5364x% 4 3426x20 4 3152x%7
—13233x28 4 21336x% — 18319x°0 — 2994x3! 4+ 40752x2 — 76884x + 78012x%*
— 11808x%5 — 121384x¢ 4 262206x37 — 293145x3 + 91904x>° 4 359775x*
— 867906x*! + 1026540x** — 404454x* — 1086312x* + 2815744x% — 3415932x4
+1436112x%7 4 3403791x* — 9007578x% + 10895604x0 — 4420644x3! — 11068260x>>
+ 28481682x7% — 33440475x%* 4 11822670x>° + 36950502x° — 88878842.x7
+ 98770059x°% — 259189860 — 124747447x% + 272655942x%! — 279580701x%
+35207790x% + 419441625x%* — 818211192x% + 751976333x% + 54317328x%7
— 1386833514x%8 4 2387940758x% — 1893048381x7" — 700663056x7" + 4467470232x72
— 6731222448x7 4 4333120557x"* + 3746183998x7 — 13926217512x7° + 18169226454x"7
— 8426843619x78 — 15799669950x7 + 41774162736x%0 — 46405515308x%!
1 10894454985x%2 4 58624684746x%% — 119915881179x3* + 110030518596x%
1 9268878210x%0 — 198813575484x%7 + 327212977320x% — 233510264916x%
— 140308837617x" + 626333831526x%" — 840626319591x2 + 404682823524x%
+ 692617559553x% — 1844851526580x%° + 2001340988797x% — 375443664666x"7
— 2639017467255x% 4 5082041971496x%° — 4283590699023x'% + O(x'°") (A1)

The next expression is the U(3) index, whose log ;| is drawn in Fig. 5.

Zyz =1+ 3x% = 2% + 9x* — 6x7 + 21x% — 18x7 + 33x% — 22x% + 36x!10 + 6x!! — 19x!% + 90x'3
—99x™ + 138x15 —9x'0 — 210x'7 4 672x'8 — 1116x"° + 1554x% — 1270x" — 361>
+ 2898x% — 6705x>* + 10224x5 — 9918x20 + 2018x%7 + 16470x%% — 42918x>°
+ 66906x30 — 66006x>" + 13566x32 + 106404x>3 — 273204x3* + 407442x35 — 364710x°
— 12024x%7 4 778272x%% — 1731542x% 4 2300499x* — 1611774x*! — 1093848x*
+ 5702562x* — 10400586x* + 11407626x* — 4086693x*° — 13996782x*
+38712766x* — 56127654x* + 44316099x°° + 16085226x°" — 122617179x°>
4 231054624x53 — 251544720x>* + 80412606x>° + 324099348x°° — 844286204x°7
+ 1147990887x% — 767030682x% — 628392075x%° + 2808255348x°! — 4642468821 x%
+4223264234x%% + 209141406x%* — 8584019040x%5 4 17327115906x°°
— 19194283332x%7 + 6197598675x% 4 24052600650x%° — 61026825105x7°
+ 78594793644x7" — 43722790228x7% — 60628872366x73 4 205754044713x7*
—300949636742x7 4 217767461283x7° 4 129914189388x"7 — 671070962823x73
+ 1099745830260x7° — 937888762842x%0 — 191081792160x%" + 2135620393074x%
— 3884644088484x% + 3715774679244x%* — 114903322902x% — 6683223253806x%
+ 13381744369680x%7 — 13925733216507x% + 2562254228766x%
+20719792872015x% — 45245335312008x" 4 50127612882930x2
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— 14402257204784x7 — 64103402035710x°* + 150872971344750x%
— 174917721819708x® + 62316941736600x°" + 199276922573595x%
—497907763520398x” + 595172510765379x'% + O(x!!) (A2)

The U(4) index comes next. The corresponding figure, log|€;| vs j, is drawn in Fig. 6.

Zyay =1+ 3x% = 2x% + 9x* — 6x7 + 21x% — 18x7 + 48x® — 42x° + 78x'0 — 66x!! + 107x!?
—36x" + 30x" + 114x"5 — 165x'¢ + 390x!7 — 366x'® + 330x!7 + 276x%° — 1212x2!
+ 3081x%22 — 4986x% + 6924x%* — 6654x> + 2616x20 4 8528x% — 2657 1x78
+ 49800x2 — 67651x% + 63096x3" — 9678x3% — 112980x + 307098x> — 522066x>°
+ 634029x%° — 436260x37 — 296460x°% + 1682020x%° — 3497613x* 4 4937946x*!

— 4501122x* 4 304512x* + 8971113x* — 22380734x™ + 34738953x*

—35553996x*7 4 10888602x*® + 49956294x* — 142303191x°° + 231744000x°!

— 246464136x°% + 90402078x>* + 309123032x>* — 917051802x> + 1494916050x°

— 1558557796x7 + 48539306 1% + 2144544540x% — 5983505013x%

4 9333423798x°" — 9004631841x%% + 1231871108x%% + 15915475365x%

— 38937814944x% + 55770600072x% — 46223256036x°7 — 10405285128x%8

+ 118932061824x% — 247095009891x7° 4 311970699564x"" — 193686936205x7
—205315072914x7 + 855723695370x7* — 1490314195506x7% + 1572823900839x7°

— 458786822988x77 — 2181976709955x78 + 5759182587780x7° — 8289856609587x%

+ 6601945579040x8" + 2245784042823 x%> — 18254661918174x%3 + 35440988310091x3%*
— 40697268408630x% + 17515834035681x% + 43558153249536x%7

— 129719118983523x% + 194052483593046x% — 160650745697554x%°
—40311995227758x°" + 407070606690366x7> — 795660945732754x%

+ 899816226757623x%* — 349806028105302x°° — 1035026648995290x%
+2903482927460364xY7 — 4145273582018487x%% + 3091519137195862x%°

+ 1604158693277994x'% + O(x101) (A3)

The following series expression is the U(5) index. The relevant plot of log |Q;| is given in Fig. 1(a).

Zysy =1+ 3x2 — 2% + 9x* — 6x7 + 21x% — 18x7 + 48x% — 42x° 4+ 99x'0 — 96x!! 4 172x!2
— 156x'3 4+ 252x'* — 160x!> + 195x'6 + 48x17 — 127x!8 4 612x" — 783x%° + 1258x?!
— 948x%2 + 450x> 4 1921x%* — 5430x% 4 11793x%° — 18812x%" + 26379x>8 — 27750x>
4 17809x% + 15648x3! — 78324x32 4- 1750303 — 285576x>* + 366024x3 — 323807x3°
+ 38856x% + 624894x38 — 1718016x% + 3094992x*0 — 4226862x* + 4098270x+?
— 1210728x* — 5968935x* + 18061488x* — 33152565x* + 44941584x%7 — 41448422x™
+ 6241896x* + 75761478x°° — 205993284x°" + 354209109x°% — 440168670x>
4 328572109x>* 4 142704804x> — 1079522706x% + 2385844062x°7 — 3584202447 x>
+3694263972x% — 1331772481x%0 — 4771857420x°" + 14697077445x%% — 25833114276x%
+ 31549909440x%* — 21264664440x°5 — 16439430686x%° 4 86286819246x%7
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— 174750537792x%8 + 238416590234x%° — 201108631665x70 — 27442949994x7!

4 499854484406x7> — 1146580228470x7 + 168495942383 1x7* — 1584800711048x7

+ 184556608692x7° 4 2953939765242x77 — 7447464688605x78 4 11432006505378x7°

— 11287805022885x%" + 2416173603110x%! + 18314405974467x% — 48439160197746x%3

4 75397207473690x% — 74801457474012x% 4 16057846263102x% + 120661512888900x%7
—316568078311605x%8 + 485306430414990x% — 464824039417731x%°
+60350744120262x°" + 837845036799732x%% — 2071759782098082.x%3
+3041713804417725x°* — 2691482911939584x% — 156200831519985x%°
+5991608828442690x°7 — 13462930267605216x% + 18424199416716136x%°

— 14187219139048212x'% 4+ O(x!°1)

(A4)
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