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Abstract

We present the occurrence rates for rocky planets in the habitable zones (HZs) of main-sequence dwarf stars based
on the Kepler DR25 planet candidate catalog and Gaia-based stellar properties. We provide the first analysis in
terms of star-dependent instellation flux, which allows us to track HZ planets. We define η⊕ as the HZ occurrence
of planets with radii between 0.5 and 1.5 R⊕ orbiting stars with effective temperatures between 4800 and 6300 K.
We find that η⊕ for the conservative HZ is between -

+0.37 0.21
0.48 (errors reflect 68% credible intervals) and -

+0.60 0.36
0.90

planets per star, while the optimistic HZ occurrence is between -
+0.58 0.33

0.73 and -
+0.88 0.51

1.28 planets per star. These
bounds reflect two extreme assumptions about the extrapolation of completeness beyond orbital periods where
DR25 completeness data are available. The large uncertainties are due to the small number of detected small HZ
planets. We find similar occurrence rates between using Poisson likelihood Bayesian analysis and using
Approximate Bayesian Computation. Our results are corrected for catalog completeness and reliability. Both
completeness and the planet occurrence rate are dependent on stellar effective temperature. We also present
occurrence rates for various stellar populations and planet size ranges. We estimate with 95% confidence that, on
average, the nearest HZ planet around G and K dwarfs is ∼6 pc away and there are ∼4 HZ rocky planets around G
and K dwarfs within 10 pc of the Sun.

Unified Astronomy Thesaurus concepts: Exoplanets (498)

Supporting material: machine-readable table

1. Introduction

One of the primary goals of the Kepler mission (Borucki
et al. 2010; Koch et al. 2010; Borucki 2016) was to determine
the frequency of occurrence of habitable-zone (HZ) rocky
planets around Sun-like stars, also known as “η⊕.” HZ rocky
planets are broadly construed as any rocky planet in its star’s
HZ, roughly defined as being at the right distance from the star
so that its surface temperature would permit liquid water (see
Section 2). Measuring η⊕ informs theories of planet formation,
helping us to understand why we are here, and is an important
input to mission design for instruments designed to detect and
characterize HZ planets such as LUVOIR (The LUVOIR
Team 2019) and HabEX (Gaudi et al. 2020).

Kepler’s strategy to measure η⊕ was to continuously observe
>150,000 solar-like main-sequence dwarf stars (primarily F, G,
and K) with a highly sensitive photometer in solar orbit,
identifying planets through the detection of transits. In the
process, Kepler revolutionized our perspective of exoplanets in the
Galaxy. The planet catalog in the final Kepler data release 25
(DR25) contains 4034 planet candidates (Thompson et al. 2018),
leading to the confirmation or statistical validation of over 2300
exoplanets48—more than half of all exoplanets known today.

Identifying HZ rocky planets proved to be a greater challenge
than anticipated. Based on the sensitivity of the Kepler photometer
and the expectation that solar variability was typical of quiet main-
sequence dwarfs, it was believed that 4 years of observation
would detect a sufficient number of rocky HZ planets to constrain
their frequency of occurrence. However, Kepler observations
showed that stellar variability is, on average, ∼50% higher than

solar variability (Gilliland et al. 2011), which suppressed the
number of HZ rocky planets that could be detected in 4 years. In
response, Kepler’s observational time was extended to 8 years, but
the failure of reaction wheels, required to maintain precise
pointing, prevented the continuation of high-precision observa-
tions in the original Kepler field after 4 years (Howell et al. 2014).
Furthermore, by definition, Kepler planet candidates must have at
least three observed transits. The longest orbital period with three
transits that can be observed in the 4 years of Kepler data is 710
days (assuming fortuitous timing when the transits occurred).
Given that the HZs of many F and late G stars require orbital
periods longer than 710 days, Kepler was not capable of detecting
all HZ planets around these stars.
The result is Kepler data in which transiting rocky HZ

planets are often near or beyond Kepler’s detection limit. Of the
thousands of planets in the DR25 catalog, relatively few are
unambiguously rocky and near their HZs: there are 56 such
planet candidates with a radius of �2.5R⊕ and 9 planet
candidates with a radius of �1.5R⊕ (using the planet radii
from Berger et al. 2020a). As described in Section 2, we expect
many planets near the HZ larger than 1.5R⊕ to be non-rocky.
These small numbers present challenges in the measurement of
the frequency of occurrence of HZ planets.
Converting a planet catalog into an underlying occurrence

rate is also challenging due to the existence of selection effects
and biases, with issues only exacerbated in the η⊕ regime.
Planet candidate catalogs generally suffer from three types of
error:

1. The catalog is incomplete, missing real planets.
2. The catalog is unreliable, being polluted with false

positives.
3. The catalog is inaccurate, with observational error leading

to inaccurate planet properties.

Near the detection limit, both completeness and reliability can be
low, requiring careful correction for the computation of occurrence
rates. The DR25 planet candidate catalog includes several products
that facilitate the characterization of and correction for completeness

46 Deceased.
47 Retired.

Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

48 https://exoplanetarchive.ipac.caltech.edu
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and reliability (Thompson et al. 2018). Data supporting complete-
ness characterization, however, are only supplied for orbital periods
of 500 days or less, requiring extrapolation of completeness for
planets beyond these orbital periods.

These issues are summarized in Figure 1, which shows the
DR25 planet candidate population and its observational
coverage, observational error, completeness, and reliability.
The details of these populations are given in Appendix C.

Our calculation of HZ occurrence will be in terms of planet
radius and instellation flux, measuring the photon flux incident
on the planet from its host star, which allows us to consider
each star’s HZ. We will proceed in two steps:

1. Develop a model describing the planet population in the
neighborhood of the HZ (Section 3.4). Because this is a
statistical study, the model will be based on a large

Figure 1. Two views of the DR25 planet candidate population with radii smaller than 2.5R⊕ and instellation flux near the host star’s HZ around main-sequence dwarf
stars. Top: Instellation flux versus stellar effective temperature, showing the HZ and Kepler observational coverage. The background color map gives, at each point,
the fraction of stars at that effective temperature and instellation flux that may have planets with orbital periods of 710 days or less, so it is possible to observe three
transits. The contours show the fraction of planets with periods of 500 days or less, indicating available completeness measurements. The solid green lines are the
boundaries of the optimistic HZ, while the dashed green lines are the boundaries of the conservative HZ (see Section 2). The planets are sized by their radius and
colored by their reliability. Bottom: Instellation flux versus planet radius. The color map and contours show the average completeness for the stellar population
(Section 3.3.1). The planets are sized and colored by reliability (Section 3.3.3), with radius and instellation flux error bars. In the lower panel the ⊕ symbol shows the
Earth.
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number of stars, using the observed DR25 planet
candidate catalog and Gaia-based stellar properties, and
will include corrections for catalog completeness and
reliability.

2. Derive the average number of rocky planets per star in
each star’s HZ from the planet population model
(Section 3.5). This will often be done in a subset of the
parameter space used to compute the population model.

When computing a quantity over a desired range of parameters
such as the radius and instellation flux, it is often the case that
using data from a wider range will give better results. For
example, it is well known that polynomial fits to data have
higher uncertainty near the boundaries of the data. As
explained in Section 2, we are primarily interested in rocky
HZ planets, with planet radii between 0.5R⊕ and 1.5R⊕ and
instellation flux within each star’s estimated HZ, for stars with
effective temperatures between 4800 and 6300 K. To create our
population model, we will use a larger domain with a planet
radius range of 0.5R⊕ to 2.5R⊕ and an instellation range 0.2
to 2.2 times Earth’s insolation, which encloses the HZs of all
the stars we consider. We will focus on using two stellar
populations: one exactly matching our desired effective
temperature range of 4800–6300 K and one with a larger range
of 3900 K to 6300 K to investigate whether the larger range
will improve our results. Most of our results will be reported
for both stellar populations because it is possible that including
stars in the 3900–4800 K range will bias our results. We will
have a population model for each choice of stellar population.

Once we have our population models, we will use them to
compute our definition of η⊕, the average number of planets
per star with radii between 0.5 and 1.5R⊕, in the star’s HZ,
averaged over stars with effective temperatures from 4800 to
6300 K. In the end we will find that the two stellar populations
predict similar median values for η⊕, but the model using stars
with effective temperatures from 3900 K to 6300 K yields
significantly smaller (though still large) uncertainties. While we
are focused on our definition of η⊕, occurrence rates over other
ranges of planet radii and stellar temperatures are of interest.
We will use a population model based on the 3900–6300 K
stellar population to compute the average number of HZ planets
per star for various ranges of planet radii and stellar effective
temperatures.

1.1. Previous Kepler-based η⊕ Estimates

Attempts to measure η⊕ and general occurrence rates with
Kepler have been made since the earliest Kepler catalog
releases (Borucki et al. 2011). Youdin (2011) and Howard et al.
(2012) were two influential early studies, in which planets
found in only the first four months of data (Q0–Q2) were used
to constrain Kepler occurrence rates. Youdin (2011) developed
a maximum likelihood method to fit an underlying planetary
distribution function, which later influenced the Poisson
likelihood function method adopted by, e.g., Burke et al.
(2015) and Bryson et al. (2020a). Howard et al. (2012) took an
alternative approach of estimating occurrence rates in bins of
planets, defined over a 2D grid of planet radius and orbital
period. In each bin, nondetections were corrected for by
weighting each planet by the inverse of its detection efficiency.
This inverse detection efficiency method is one of the most
popular approaches in the literature.

Catanzarite & Shao (2011) and Traub (2012) (Q0–Q5;
Borucki et al. 2011) were among the first papers to focus on the
η⊕ question specifically. Later η⊕ papers from Dressing &
Charbonneau (2013) (Q1–Q6; Batalha et al. 2013), Kopparapu
et al. (2013) (Q1–Q6), Burke et al. (2015) (Q1–Q16; Mullally
et al. 2016), and Silburt et al. (2015) (Q1–Q16) were able to
take advantage of newer planet catalogs based on increased
amounts of data. Other papers have used custom pipelines to
search Kepler light curves to estimate η⊕ with independently
produced planet catalogs: namely, Petigura et al. (2013)
(Q1–Q15), Foreman-Mackey et al. (2014) (Q1–Q15), Dressing
& Charbonneau (2015) (Q1–Q16), and Kunimoto & Matthews
(2020) (Q1–Q17). Still more have been meta-analyses of
results from the exoplanet community based on different
Kepler catalogs (Kopparapu 2018; Garrett et al. 2018).
Comparisons between these η⊕ studies are challenging due

to the wide variety of catalogs used, some of which are based
on only a fraction of the data of the others. Characterization of
completeness has also varied between authors, with some
assuming a simple analytic model of detection efficiency (e.g.,
Youdin 2011; Howard et al. 2012), others empirically
estimating detection efficiency with transit injection/recovery
tests (e.g., Petigura et al. 2013; Burke et al. 2015), and still
others simply assuming a catalog is complete beyond some
threshold (e.g., Catanzarite & Shao 2011). Borucki et al. (2011)
provided a comprehensive analysis of completeness bias,
reliability against astrophysical false positives, and reliability
against statistical false alarms based on manual vetting and
simple noise estimates. Fully automated vetting has been
implemented via the Robovetter (Coughlin 2017) for the
Kepler DR24 (Coughlin et al. 2016) and DR25 catalogs. The
final Kepler data release (DR25), based on the full set of Kepler
observations and accompanied by comprehensive data products
for characterizing completeness, has been essential for
alleviating issues of completeness and reliability. The DR25
catalog is now the standard used by occurrence rate studies
(e.g., Mulders et al. 2018; Hsu et al. 2018; Zink et al. 2019;
Bryson et al. 2020a).
DR25 was the first catalog to include data products that

allowed for the characterization of catalog reliability against
false alarms due to noise and systematic instrumental artifacts,
which are the most prevalent contaminants in the η⊕ regime.
Thus nearly all previous works did not incorporate reliability
against false alarms in their estimates. Bryson et al. (2020a)
were the first to directly take into account reliability against
both noise/systematics and astrophysical false positives and in
doing so found that occurrence rates for small planets in long-
period orbits drop significantly after reliability correction.
Mulders et al. (2018) attempted to mitigate the impact of
contamination by using a DR25 Disposition Score cut (see
Section 7.3.4 of Thompson et al. 2018) as an alternative to
reliability correction. As shown in Bryson et al. (2020b), while
this approach does produce a higher-reliability planet catalog,
explicit accounting for reliability is still necessary for accurate
occurrence rates.
Studies have also varied in stellar property catalogs used, and

exoplanet occurrence rates have been shown to be sensitive to
such choices. For instance, the discovery of a gap in the radius
distribution of small planets, first uncovered in observations by
Fulton et al. (2017), was enabled by improvements in stellar
radius measurements by the California Kepler Survey (Johnson
et al. 2017; Petigura et al. 2017). The use of Gaia DR2 parallaxes,
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which have resulted in a reduction in the median stellar radius
uncertainty of Kepler stars from ≈27% to ≈4% (Berger et al.
2020b), has been another significant improvement with important
implications for η⊕. Bryson et al. (2020a) showed that the
occurrence rates of planets near Earth’s orbit and size can drop by
a factor of 2 if one adopts planet radii based on Gaia stellar
properties rather than on pre-Gaia Kepler Input Catalog stellar
properties.

1.2. Our Work

Measuring η⊕ requires a definition of what it actually means
to be considered a rocky planet in the HZ. Different authors use
different definitions, including regarding whether η⊕ refers to
the number of rocky HZ planets per star or to the number of
stars with rocky HZ planets. In this paper, for reasons detailed
in Section 2, we define η⊕ as the average number of planets per
star with a planet radius between 0.5 and 1.5 Earth radii in the
star’s HZ, where the average is taken over stars with effective
temperatures between 4800 and 6300 K. We compute η⊕ for
both conservative and optimistic HZs, denoted respectively as
hÅ

C and hÅ
O.

Most of the existing literature on HZ occurrence rates
characterize the HZ using orbital period, where a single period
range is adopted to represent the bounds of the HZ for the
entire stellar population considered. However, no single period
range covers the HZ for a wide variety of stars. Figure 2 shows
two example period ranges used for HZ occurrence rate studies
relative to the HZ of each star in our stellar parent sample. The
SAG1349 HZ range of 237� period� 860 days is shown in
blue, and ζ⊕, defined in Burke et al. (2015) as within 20% of
Earth’s orbital period, is shown in orange. While these period
ranges cover much of the HZ for G stars, they miss significant
portions of the HZs of K and F stars and include regions

outside the HZ even when restricted to G stars. This will be true
for any fixed choice of orbital period range for the range of
stellar effective temperatures required for good statistical
analysis. Such coverage will not lead to accurate occurrence
rates of planets in the HZ. Given that the period ranges of many
HZ definitions also extend beyond the detection limit of
Kepler, computing η⊕ requires extrapolation of a fitted
population model to longer orbital periods. Lopez & Rice
(2018) and Pascucci et al. (2019) presented evidence and
theoretical arguments that inferring the population of small
rocky planets at low instellation from a population of larger
planets at high instellation can introduce significant over-
estimates of η⊕.
For these reasons, we choose to work in terms of the

instellation flux, measuring the photon flux incident on the
planet from its host star, rather than the orbital period. In
Section 3 we describe how we adopt existing occurrence rate
methods and completeness characterizations to use instellation
flux instead of orbital period. We address concerns with
extrapolating completeness to long orbital periods by providing
bounds on the impact of the limited coverage of completeness
data (Section 3.3). Following Howard et al. (2012), Youdin
(2011), and Burke et al. (2015), among others, we compute the
number of planets per star f. As in Youdin (2011) and Burke
et al. (2015), we first compute a population model in terms of
the differential rate λ≡d2f/dr dI, where r is the planet radius
and I is the instellation flux. We consider several possible
functional forms for λ and allow λ to depend on the stellar
host’s effective temperature. We compute λ over the radius
range 0.5 R⊕�r�2.5 R⊕ and the instellation flux range
0.2 I⊕�I�2.2 I⊕, averaged over the effective temperatures
of the stellar population used for the computation (Section 3.4).
Occurrence rates will be computed by integrating λ over the
desired planet radius and instellation flux range and averaging
over the desired effective temperature range to give f, the
average number of planets per star (Section 3.5).
By restricting our analysis to planets with r�2.5 R⊕ in

regions of instellation flux close to the HZ, we believe we are
avoiding the biases pointed out by Lopez & Rice (2018) and
Pascucci et al. (2019). As seen in Figure 1, there are more
detected planets with 1.5 R⊕�r�2.5 R⊕ than planets with
0.5 R⊕�r�1.5 R⊕, so our results in Section 4 will be driven
by these larger planets, but all planets we consider are at similar
low levels of instellation. In Figure 2 of Lopez & Rice (2018)
we note that for instellation flux between 10 and 20 there
is little change in the predicted relative sizes of the
1.5 R⊕�r�2.5 R⊕ and 0.5 R⊕�r�1.5 R⊕ planet
populations. Naively extrapolating this to instellation of <2
in the HZ, we infer that the sizes of these larger- and smaller-
planet populations in the HZ are similar. Therefore by working
at low instellation flux we are likely less vulnerable to
overestimating the HZ rocky planet population.
We use both Poisson likelihood–based inference with

Markov Chain Monte Carlo (MCMC) and likelihood-free
inference with approximate Bayesian computation (ABC). The
Poisson likelihood method is one of the most common
approaches to calculating exoplanet occurrence rates (e.g.,
Burke et al. 2015; Zink et al. 2019; Bryson et al. 2020a), while
ABC was only applied for the first time in Hsu et al.
(2018, 2019). As described in Section 3.4.2, these methods
differ in their treatment of reliability and input uncertainty and
allow us to assess the possible dependence of our result on the

Figure 2. The HZ flux range compared with example orbital periods,
previously used to estimate HZ occurrence for G, K, and F stars. For each star
in the stellar parent sample, we show the instellation flux range of each orbital
period range, with the SAG13 instellation flux range shown as the blue region
(comprised of a horizontal blue line for each star showing the flux range for
that orbital period range) and ζ⊕ shown as the orange region. The solid green
lines are the boundaries of the optimistic HZ, while the dashed green lines are
the boundaries of the conservative HZ (see Section 2). The planet population is
the same as that in Figure 1, and the planets are sized by their radius.

49 https://exoplanets.nasa.gov/exep/exopag/sag/#sag13
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assumption of a Poisson likelihood function. We present our
results in Section 4. Recognizing the importance of reliability
correction in the η⊕ regime and confirming the same impact of
reliability of Bryson et al. (2020a), we choose to report only
our reliability-incorporated results. We also present results both
with and without incorporating uncertainties in planet radius,
instellation flux, and host star effective temperature in our
analysis. Our final recommended population models and
implications for η⊕, as well as how our results relate to
previous estimates, are discussed in Section 5.

All results reported in this paper are produced with Python
code, mostly in the form of Python Jupyter notebooks, found at
the paper’s GitHub site.50

1.3. Notation

When summarizing a distribution, we use the notation -
+m e

e
2
1

to refer to the 68% credible interval [m − e2, m+e1], where m
is the median and “n% credible interval” means that the central
n% of the values fall in that interval. We caution our
distributions are typically not Gaussian, so this interval should
not be treated as “1σ.” We will also supply 95% and 99%
credible intervals for our most important results.

We use the following notation throughout the paper:

1. r: planet radius in units of Earth radii R⊕
2. I: planet instellation flux in units of Earth instellation I⊕
3. Teff: stellar effective temperature in kelvins. When

referring to a planet, this is the effective temperature of
that planet’s host star.

4. f: the number of planets per star, typically a function of r,
I, and Teff

5. λ: the differential rate population model≡d2f/dr dI,
typically a function of r, I, and Teff. λ is defined by
several parameters—for example, exponents when λ is a
power law.

6. θ: the vector of parameters that define λ, whose contents
depend on the particular form of λ

η⊕ without modification refers to the average number of HZ
planets per star with 0.5 R⊕�r�1.5 R⊕ and a host star
effective temperature between 3900 and 6300 K, with the
conservative or optimistic HZ specified in that context. hÅ

C and

hÅ
O, respectively, specifically refer to occurrence in the
conservative and optimistic HZs. Additional subscripts on η⊕
refer to different stellar populations. For example hÅ,GK

C is
the occurrence of conservative HZ planets with 0.5 R⊕�r�
1.5 R⊕ around GK host stars.

2. Habitability

2.1. Characterizing Rocky Planets in the HZ

A key aspect in computing HZ planet occurrence rates is the
location and width of the HZ. Classically, it is defined as the
region around a star in which a rocky-mass/size planet with an
Earth-like atmospheric composition (CO2, H2O, and N2) can
sustain liquid water on its surface. Surface liquid water is
important for the development of life as we know it, and the
availability of water on the surface assumes that any biological
activity on the surface alters the atmospheric composition of

the planet, betraying the presence of life when observed with
remote detection techniques.
Various studies estimate the limits and the width of the HZ in

the literature (see Kopparapu 2018 and Kopparapu et al. 2019
for a review) and explore the effect of physical processes such as
tidal locking, the rotation rate of the planet, the combination of
different greenhouse gases, planetary mass, obliquity, and
eccentricity on HZ limits. These effects necessitate a more
nuanced approach to identifying habitability limits and are
particularly useful for exploring those environmental conditions
where habitability could be maintained. However, for the
purpose of calculating the occurrence rates of planets in the
HZ, it is best to use a standard for HZ limits as a first attempt,
such as Earth-like conditions. One reason is that it would
become computationally expensive to estimate the occurrence
rates of HZ planets considering all the various HZ limits arising
from these planetary and stellar properties. Furthermore, future
flagship mission concept studies like LUVOIR (The LUVOIR
Team 2019), HabEX (Gaudi et al. 2020), and OST (Meixner
et al. 2019) used the classical HZ limits as their standard case to
estimate exoEarth mission yields and identify associated
biosignature gases. Therefore, in this study we use the
conservative and optimistic HZ estimates from Kopparapu
et al. (2014), where the conservative inner and outer edges of the
HZ are defined by the “runaway greenhouse” and “maximum
greenhouse” limits and the optimistic inner and outer HZ
boundaries are the “recent Venus” and “early Mars” limits. By
using these HZ limits, we are able to (1) make a consistent
comparison with already published occurrence rates of HZ
planets in the literature that have also used the same HZ limits,
(2) provide a range of values for HZ planet occurrence, and (3)
obtain an “average” occurrence rate of planets in the HZ, as the
conservative and optimistic HZ limits from Kopparapu et al.
(2014) span the range of HZ limits from more complex models
and processes.
We consider planets in the 0.5–1.5 R⊕ size range to calculate

rocky planet occurrence rates, as studies have suggested that
planets that fall within these radius bounds are most likely to be
rocky (Rogers 2015; Wolfgang et al. 2016; Chen & Kipping
2017; Fulton et al. 2017). While some studies have indicated that
the rocky regime can extend to as large as 2.5 R⊕ (Otegi et al.
2020), many of these large–radius regime planets seem to be
highly irradiated planets, receiving stellar fluxes much larger
than those of planets within the HZ. Nevertheless, we have also
calculated the occurrence rates of planets with radii up to 2.5 R⊕.
We note that Kane et al. (2016) also used Kopparapu et al.
(2014) HZ estimates to identify HZ planet candidates using
DR24 planet candidate catalog and DR25 stellar properties.
We also limit the host stellar spectral types to stars with

4800�Teff�6300K, covering mid-K to late F. The reason for
limiting to Teff>4800K is twofold: (1) the inner working angle
(the smallest angle on the sky at which a direct-imaging telescope
can reach its designed ratio of planet to star flux) for the LUVOIR
coronagraph instrument ECLIPS falls off below 48 mas at 1
micron (3λ/D) for a planet at 10 pc for Teff�4800K, and (2)
planets are likely tidal-locked or synchronously rotating below
4800K, which could potentially alter the inner HZ limit
significantly (Yang et al. 2013, 2014; Godolt et al. 2015; Way
et al. 2015; Wolf & Toon 2015; Kopparapu et al. 2016, 2017; Bin
et al. 2018). The upper limit of 6300 K is a result of planets in
HZs having longer orbital periods around early F stars, where

50 https://github.com/stevepur/DR25-occurrence-public/tree/master/
insolation
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Kepler was not capable of detecting these planets, as described in
Section 1.

2.2. Effective Temperature Dependence of the Width of the HZ

The width of the HZ for hotter stars is larger than the width
for cooler stars, implying that the HZ occurrence rate may be
dependent on the host star’s effective temperature. In this
section we derive an approximate form for this effective
temperature dependence, which we refer to as the “geometric
effect.”

We compute the instellation flux I on a planet orbiting a
particular star as =I R T a2 4 2

* , where R* is the stellar radius in
solar radii, T=Teff/Te is the effective temperature divided by
the solar effective temperature, and a is the semimajor axis of
the planet orbit in astronomical units. We assume the orbit is
circular. Then the size of the HZ Δa is determined by the
instellation flux at the inner and outer HZ boundaries, Iinner and
Iouter, as

D = -

= -

a a a

R T
I I

1 1
. 1

outer inner

2

outer inner
*

⎛
⎝⎜

⎞
⎠⎟ ( )

The factor -I I1 1outer inner( ) has a weak Teff dependence,
ranging from 1.25 at 3900 K to 0.97 at 6300 K, which we
crudely approximate as constant in this paragraph. We also
observe that, for the main-sequence dwarf stellar populations
we use in our computations (described in Section 3.1), R* has
an approximately linear dependence on T, which we write as
t +T R0( ) (τ≈1.8 and R0≈−0.74). Therefore

tD µ +a T R T . 20
2( ) ( )

So even if the differential occurrence rate λ has no dependence
on a and therefore no dependence on I, the HZ occurrence rate
may depend on Teff simply because hotter stars have
larger HZs.

Several studies, such as Burke et al. (2015) and Bryson et al.
(2020a), have examined planet occurrence in terms of the orbital
period p and have shown that df/dp is well approximated by a
power law pα. In Appendix A we show that this power law,
combined with the relationship between instellation flux and
period, implies that the instellation flux portion of the differential
rate function λ, df/dI, has the form

t» +n ddf dI CI T R T 30
4(( ) ) ( )

where n a= - -3

4

7

3( ) and δ=−ν−1. This form incorpo-
rates the combined effects of the size of the HZ increasing with
Teff and dependence on the period power law pα. The
derivation in Appendix A uses several crude approximations,
so Equation (3) is qualitative rather than quantitative.

In Section 3.4 we consider forms of the population model λ
that separate the geometric effect in Equation (2) from a possible
more physical dependence on Teff, and compare them with a
direct measurement of the Teff dependence. To separate the
geometric effect, we incorporate a geometric factor g(Teff)
inspired by Equation (2). Because of the crude approximations
used to derive Equations (2) and (3) we use an empirical fit to
the HZ width Δa for all stars in our stellar sample. Because we
will use this fit in models of the differential population rate df/dI
in Section 3.4.1, we perform the fit computing Δa for each star

using a fixed flux interval ΔIä[0.25, 1.8]. Because
=a R T I2 4
* , Δa is just a scaling of each star’s luminance

R T2 4
* by the factor -1 0.25 1 1.8 . As shown in Figure 3,

Δa is well fit, with well-behaved residuals, by the broken power
law

=
-

-


g T

T T

T

10 if 5117 K,

10 otherwise.
4eff

11.84
eff
3.16

eff

16.77
eff
4.49

⎪

⎪

⎧
⎨
⎩

( ) ( )

If the semimajor axes of planets are uniformly distributed in
our stellar sample, then we expect that HZ planet occurrence
would have a Teff dependence due to Equation (4). In
individual planetary systems, however, there is evidence of
constant spacing in alog( ) (Weiss et al. 2018), implying
spacing proportional to Δa/a. In this case there would be no
impact of larger HZs with increasing Teff: taking a to be the
average of the inner and outer semimajor axes, the star-
dependent terms cancel each other, so Δa/a is the same for all
stars, independently of Teff. This would imply that HZ
occurrence has no Teff dependence due to the increasing size
of the HZ. However, Weiss et al. (2018) also pointed out that
the characteristic spacing of systems is at most weakly
correlated with stellar type, with stronger correlation of the
characteristic spacing with planet radius. A more detailed
treatment of planet spacing is necessary to explore how
multiplicity influences HZ planet occurrence.

3. Methodology

We base our occurrence rate of f planets per star on a
differential population rate model l =I r T, , d f I r T

dI dreff
, ,2

eff( ) ( ) that
describes how f varies as a function of incident stellar flux I and
planet radius r. We allow λ(I, r, Teff) (and therefore f (I, r, Teff))
to depend on the host star’s effective temperature Teff. In
Section 3.4 we use the DR25 planet candidate catalog to
determine λ. We cannot, however, simply take all the planet
candidates in the DR25 catalog at face value. We must
statistically characterize, and correct for, errors in the catalog.
The DR25 planet candidate catalog contains 4034 planet

candidates, identified through a uniform method of separating
planet candidates from false positives and false alarms (Thompson
et al. 2018). This automated method is known to make mistakes,
being both incomplete due to missing true transiting planets and
unreliable due to misidentifying various types of astrophysical
false positives and instrumental false alarms as transiting planets.
Low completeness and low reliability are particularly acute near
the Kepler detection limit, which happens to coincide with the
HZs of F, G, and K stars. We characterize DR25 completeness
and reliability using the synthetic data described in Thompson
et al. (2018) with the methods described in Bryson et al. (2020a).
We correct for completeness and reliability when determining the
population rate λ using the methods of Bryson et al. (2020a) and
Kunimoto & Bryson (2020).
The methods used in Bryson et al. (2020a) and Kunimoto &

Bryson (2020) computed population models in terms of orbital
period and radius. Generalizing these methods to instellation
flux, radius, and effective temperature is relatively straightfor-
ward, with the treatment of completeness characterization
presenting the greatest challenge. In this section we summarize
these methods, focusing on the changes required to operate in
instellation flux rather than in period and to allow for
dependence on Teff.
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3.1. Stellar Populations

As in Bryson et al. (2020a), our stellar catalog uses the Gaia-
based stellar properties from Berger et al. (2020b) combined
with the DR25 stellar catalog at the NASA Exoplanet Archive
(see Footnote 49), with the cuts described in the baseline case
of Bryson et al. (2020a). We summarize these cuts here for
convenience.

We begin by merging the catalog from Berger et al. (2020b),
the DR25 stellar catalog (with its supplement), and the catalog
from Berger et al. (2018), keeping only the 177,798 stars that
are in all three catalogs. We remove poorly characterized,
binary, and evolved stars, as well as stars whose observations
were not well suited for long-period transit searches (Burke
et al. 2015; Burke & Catanzarite 2017), with the following
cuts:

1. Remove stars with a Berger et al. (2020b) goodness of fit
(iso_gof ) of<0.99 and a Gaia renormalized unit weight
error (RUWE; Lindegren 2018), as provided by Berger
et al. (2020b), of >1.2, leaving 162,219 stars.

2. Remove stars that, according to Berger et al. (2018), are
likely binaries, leaving 160,633 stars.

3. Remove stars that have evolved off the main sequence,
recomputing the Evol flag described in Berger et al.
(2018) using the Berger et al. (2020b) stellar properties,
leaving 105,118 stars.

4. Remove noisy targets identified in the KeplerPorts
package,51 leaving 103,626 stars.

5. Remove stars with NaN limb darkening coefficients,
leaving 103,371 stars.

6. Remove stars with a NaN observation duty cycle, leaving
102,909 stars.

7. Remove stars with a decrease in observation duty cycle of
>30% due to data removal from other transits detected on
these stars, leaving 98,672 stars.

8. Remove stars with an observation duty cycle of <60%,
leaving 95,335 stars.

9. Remove stars with a data span of <1000 days, leaving
87,765 stars.

10. Remove stars with a DR25 stellar properties table
timeoutsumry flag≠1, leaving 82,371 stars.

Selecting FGK stars with effective temperatures between 3900
and 7300 K, which are a superset of the stellar populations we
consider in this paper, we have 80,929 stars.
We are primarily interested in HZ occurrence rates for stars

with effective temperatures hotter than 4800 K, and Kepler
observational coverage is very poor above 6300 K (see Section 2).
We fit our population model using two stellar populations and
examine the solutions to determine which range of stellar
temperatures is best for computing the desired occurrence rate.
These stellar populations are as follows:

1. hab:stars with effective temperatures between 4800 and
6300 K (61,913 stars)

2. hab2:stars with effective temperatures between 3900 and
6300 K (68,885 stars)

The effective temperature distribution of the stars in these
populations is shown in Figure 4. This distribution has
considerably fewer cooler stars than we believe is the actual
distribution of stars in the Galaxy. Our analysis is weighted by
the number of stars as a function of effective temperature.
There are two stellar population cuts recommended in Burke &

Catanzarite (2017) that we do not apply. The first is the
requirement that stellar radii be less than 1.35 Re (1.25 Re in
Burke & Catanzarite 2017, but Burke now recommends 1.35 Re
(private communication)). We do not impose this stellar radius cut,
instead opting for a physically motivated selection based on the
Evol flag. After our cuts, 6.8% of the hab2 population are stars that
have radii larger than 1.35 Re. The completeness analysis for these
stars is not expected to be as accurate as that for smaller stars.
The second recommended cut that we do not apply is the

requirement that the longest transit duration be less than 15hr.
This cut is due to the fact planet search in the Kepler pipeline does
not examine transit durations longer than 15hr (Twicken et al.
2016). For the hab2 population, assuming circular orbits, the transit
durations of planets at the inner optimistic HZ boundary exceed
15hr for 2.7% of the stars. The transit durations of planets at the
outer optimistic HZ boundary exceed 15hr for 35% of the stars,

Figure 3. The width of the optimistic HZ (outer HZ boundary minus inner HZ
boundary) as a function of effective temperature for all the stars in our parent
sample with effective temperatures between 3900 and 6300 K. The line shows
the broken power-law fit in Equation (4). The percentage residual from the fit is
shown in the lower panel.

Figure 4. The distribution of stellar effective temperature for the stellar
populations used in this paper.

51 https://github.com/nasa/KeplerPORTs/blob/master/DR25_DEModel_
NoisyTargetList.txt
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with the duration being less than 25hr for 98.7% of the stars.
While the exact impact on completeness analysis of transit
durations longer than 15 hr is unknown, there is evidence that the
impact is small. KOI 5236.01, for example, has a transit duration
of 14.54hr, an orbital period of 550.86 days, and a transit signal-
to-noise ratio (S/N) of 20.8. KOI 5236.01 is correctly identified in
the Kepler pipeline in searches for transit durations of 3.5–15hr.
KOI 7932.01 has a transit duration of 14.84hr, an orbital period of
502.256 days, and a transit S/N of 8.1, among the lowest transit
S/N for planet candidates with periods of >450 days. KOI
7932.01 is correctly identified in searches using transit durations of
9–15hr. So even for low-S/N transits, the transit can be identified
in searches for transit durations 9–15 times the actual duration. If
these examples are typical, we can expect that transit durations of
up to 25hr will be detected. While these examples do not show
that the impact of long transits on completeness is actually small,
the bulk of these long durations occur in orbits beyond 500 days,
so they are absorbed by the upper and lower bounds on
completeness we describe in Section 3.3.2. We are confident that
long transit durations, as well as large stars, cause completeness to
decrease, so their impact falls within these upper and lower
bounds.

3.2. Planet Input Populations

We use the planet properties from the Kepler DR25
threshold-crossing event (TCE) catalog (Twicken et al. 2016),
with the Gaia-based planet radii and instellation fluxes from
Berger et al. (2020a).

Three DR25 small-planet candidates that are near their host
star’s HZ (planet radius of �2.5 R⊕ and instellation flux
between 0.2 and 2.2 I⊕) are not included in our planet sample.
KOI 854.01 and KOI 4427.01 are orbiting host stars with
effective temperatures of �3900 K, and KOI 7932.01ʼs host
star is cut from our stellar populations because it is marked
“evolved” (see Bryson et al. 2020a).

3.3. Completeness and Reliability

3.3.1. Detection and Vetting Completeness

The DR25 completeness products are based on injected data—a
ground truth of transiting planets obtained by injecting artificial
transit signals with known characteristics on all observed stars at
the pixel level (Christiansen et al. 2020). A large number of transits
are also injected on a small number of target stars to measure the
dependence of completeness on transit parameters and stellar
properties (Burke & Catanzarite 2017). The data are then analyzed
by the Kepler detection pipeline (Jenkins et al. 2010) to produce a
catalog of detections at the injected ephemerides called injected
and recovered TCEs, which are then sent through the same
Robovetter used to identify planet candidates.

Detection completeness is defined as the fraction of injected
transits that are recovered as TCEs by the Kepler detection
pipeline, whether or not those TCEs are subsequently identified as
planet candidates. We use the detection completeness of Burke &
Catanzarite (2017), which was computed for each target star as a
function of the period and the simulated multiple-event statistic
(MES), based on stellar noise properties measured in that star’s
Kepler light curve. MES is a measure of the S/N that is specific to
the Kepler pipeline (Jenkins et al. 2010). The result is referred to
as completeness detection contours.

Vetting completeness is defined as the fraction of detected
injected transits that are identified as planet candidates by the

Robovetter (Coughlin 2017). We compute vetting complete-
ness for a population of stars based on the simulated MES and
orbital period of injected transits. We use the method of Bryson
et al. (2020a), which models vetting completeness as a
binomial problem with a rate given by the product of rotated
logistic functions of MES and the orbital period. We assume
that vetting completeness and detection completeness are
independent of each other, so we can multiply them together
to create combined completeness contours.
The product of vetting and detection completeness as a function

of period and MES is converted to a function of period and planet
radius for each star. This product is further multiplied by the
geometric transit probability for each star, which is a function of
planet period and radius, given that star’s radius. The final result is
a completeness contour for each star that includes detection and
vetting completeness and geometric transit probability.
We need to convert the completeness contours from radius and

period to radius and instellation flux. For each star, we first set the
range of instellation fluxes to 0.2�I�2.2, which contains the
HZ for FGK stars. We then interpolate the completeness contour
from period to instellation flux via =I R T a2 4 2

* , where R* is the
stellar radius, T=Teff/Te is the effective temperature relative to
the Sun, and a is the semimajor axis of a circular orbit around this
star with a given period.
Once the completeness contours are interpolated onto the radius

and instellation flux for all stars, they are summed or averaged as
required by the inference method used in Section 3.4.2.

3.3.2. Completeness Extrapolation

For most stars in our parent sample, there are regions of the
HZ that require orbital periods beyond the 500day limit of the
period–radius completeness contours. Figure 5 shows the
distribution of orbital periods at the inner and outer optimistic
HZ boundaries for FGK stars in our stellar sample relative to
the 500day limit. We see that a majority of these stars will
require some completeness extrapolation to cover their HZs
and a small fraction of stars have no completeness information
at all. It is unknown precisely how the completeness contours
will extrapolate out to longer periods, but we believe that the
possible completeness values can be bounded.
We assume that completeness is, on average, a decreasing

function of orbital period. Therefore, the completeness beyond
500 days will be less than the completeness at 500 days. While
this may not be a correct assumption for a small number of
individual stars due to local completeness minima in the period
due to the window function (Burke & Catanzarite 2017), we
have high confidence that this assumption is true on average.
We therefore bound the extrapolated completeness for each star
by computing the two extreme extrapolation cases:

1. Constant-completeness extrapolation, where, for each radius
bin, completeness for periods greater than 500 days is set to
the completeness at 500 days. This extrapolation will have
higher completeness than reality, resulting in a smaller
completeness correction and lower occurrence rates, which
we take to be a lower bound. In the tables below we refer to
this lower bound as “low” values. Here “low” refers to the
resulting occurrence rates, and some population model
parameters in the this case will have higher values.

2. Zero-completeness extrapolation, where, for each radius
bin, completeness for periods greater than 500 days is set
to zero. Zero completeness will have lower completeness
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than reality, resulting in a larger completeness correction
and higher occurrence rates, which we take to be an upper
bound. In the tables below we refer to this upper bound as
“high” values. Here “high” refers to the resulting
occurrence rates, and some population model parameters
in this case will have lower values.

We solve for population models and compute occurrence rates
for both extrapolation cases. Figure 6 shows the relative
difference in the completeness contours summed over all stars.
We see that for effective temperatures below ∼4500 K the
difference between constant- and zero-completeness extrapola-
tion is very close to zero, because these cooler stars are well

Figure 5. The distribution of orbital periods of the inner and outer optimistic HZ boundaries. We show the orbital period distribution of circular orbits at the outer
(blue) and inner (orange) boundaries of the optimistic HZ for our FGK stellar sample. The blue vertical dashed line at 500 days indicates the limit of the completeness
contours, beyond which there is no completeness data. The orange vertical dotted line at 710 days shows the limit of Kepler coverage, in the sense that beyond
710 days there is no possibility of three detected transits resulting in a planet detection. Stars whose orbital period for the inner HZ boundary is beyond 500 days have
no completeness data in their HZ, while stars whose outer HZ boundary orbital period is beyond 500 days require some completeness extrapolation. Kepler could not
detect HZ planets for stars whose inner HZ orbital period is beyond 710 days, while stars whose outer HZ orbital periods are beyond 710 days have only partial
coverage, which will decrease completeness.

Figure 6. Left: The relative difference (difference divided by value) between the constant extrapolation and zero extrapolation completeness contours, summed over
FGK stars, as a function of instellation flux and radius. Right: The relative difference as a function of instellation flux and effective temperature.
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covered by completeness data (see Figure 1). We therefore
expect the upper and lower occurrence rate bounds to converge
for these stars.

The Poisson likelihood we use requires the completeness
contours to be summed over all stars, while the ABC method
requires the completeness to be averaged over all stars. We
observe a significant dependence of summed completeness on
effective temperature, shown in Figure 7. We address this
dependence of completeness on effective temperature by
summing (for the Poisson likelihood) or averaging (for ABC)
the completeness contours in effective temperature bins, as
described in Section 3.4.2.

3.3.3. Reliability

We compute planet reliability as in Bryson et al. (2020a).
Because this is done as a function of the MES and period, there
is no change from the methods of that paper.

3.4. Computing the Population Model λ(I, r, T)

As described in Section 1.2, we develop a planet population
model using a parameterized differential rate function λ and
use Bayesian inference to find the model parameters that best
explain the data. To test the robustness of our results, we use
both the Poisson likelihood MCMC method of Burke et al.
(2015) and the ABC method of Kunimoto & Matthews (2020)
to compute our population model. Both methods are modified
to account for vetting completeness and reliability, with the
Poisson likelihood method described in Bryson et al. (2020a)
and the ABC method described in Kunimoto & Bryson (2020)
and Bryson et al. (2020b). In contrast to previous work, we also
take into account uncertainties in planet radius, instellation
flux, and host star effective temperature, described in
Section 3.4.2.

3.4.1. Population Model Choices

We consider three population models for the differential rate
function λ(I, r, T). These models are functions of instellation
flux I, planet radius r, and stellar effective temperature Teff.

These models depend on possibly different sets of parameters,
which we describe with the parameter vector θ. For each
model, we solve for the θ that best describes the planet
candidate data:

q q
q q
q q

l a b g
l a b g
l a b

= =
= =
= =

a b g

a b g

a b

I r T F C r I T g T F

I r T F C r I T F

I r T F C r I g T F

, , , , , , ,

, , , , , , ,

, , , , , , 5

1 0 1 0

2 0 2 0

3 0 3 0

( ) ( ) ( )
( ) ( )
( ) ( ) ( ) ( )

where g(T) is given by Equation (4). The normalization
constants Ci in Equation (5) are chosen so that the integral
of λ from rmin to rmax and Imin to Imax, averaged over Tmin to
Tmax, =F0, so F0 is the average number of planets per star in
that radius, instellation flux, and effective temperature range.
λ1 allows for dependence on Teff beyond the geometric

dependence described in Section 2.2, breaking possible degen-
eracy between any intrinsic Teff and the geometric dependence by
fixing the geometric dependence as g(T). So, for example, if the
planet population rate’s dependence is entirely due to the larger
HZ for hotter stars, captured in λ1 by g(T), then there is no
additional Teff dependence and γ=0. λ2 does not separate out the
geometric Teff dependence.λ3 assumes that there is no Teff
dependence beyond the geometric effect.
All models and inference calculations use uniform uninforma-

tive priors: 0�F0�50,000, −5�α�5, −5�β�5, and
−500�γ�50. The computations are initialized to a neighbor-
hood of the maximum likelihood solution obtained with a
standard nonlinear solver.

3.4.2. Inference Methods

Both the Poisson likelihood and ABC inference methods use
the same stellar and planet populations and the same
characterization of completeness and reliability computed
using the approach of Bryson et al. (2020a). These steps are
as follows:

1. Select a target star population, which will be our parent
population of stars that are searched for planets. We apply
various cuts intended to select well-behaved and

Figure 7. Example dependence of completeness on effective temperature, using the FGK stellar population and constant-completeness extrapolation, which provides
an upper completeness bound. Left: Planet radius versus effective temperature. Right: Instellation flux versus effective temperature. The location of the Earth–Sun
system is shown with a ⊕ symbol.
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well-observed stars. We consider two such populations,
defined by the effective temperature range as described in
Section 3.1, in order to explore the dependence of our
results on the choice of stellar population.

2. Use the injected data to characterize vetting completeness.
3. Compute the detection completeness using a version of

KeplerPorts52 modified for vetting completeness and
insolation interpolation, incorporating vetting complete-
ness and geometric probability for each star, and sum
over the stars in effective temperature bins, as described
in Section 3.3.1.

4. Use observed, inverted, and scrambled data to character-
ize false-alarm reliability, as described in Section 3.3.3.

5. Assemble the collection of planet candidates, including
by computing the reliability of each candidate from the
false-alarm reliability and false-positive probability.

6. For each model in Equation (5), use the Poisson
likelihood or ABC method to infer the model parameters
θ that are most consistent with the planet candidate data
for the selected stellar population.

Because vetting completeness and reliability depend on the
stellar population and the resulting planet catalog, all steps are
computed for each choice of stellar population.

A full study of the impact of uncertainties in stellar and
planet properties would include the impact of uncertainties on
detection contours and is beyond the scope of this paper.
However, we study the impact of uncertainties in planet radius,
instellation flux, and host star effective temperature, shown
Figure 1, on our occurrence rates. For both the Poisson
likelihood and ABC methods we perform our inference
computation both with and without uncertainties, which allows
us to estimate the approximate contribution of input planet
property uncertainties to the final occurrence rate uncertainties.
In Bryson et al. (2020a) it was shown that uncertainties in
reliability characterization have effectively no impact.

For the Poisson likelihood inference of the parameters in
Equation (5) without input uncertainty, reliability is imple-
mented by running the MCMC computation 100 times, with
the planets removed with a probability given by their
reliability. The likelihood used in the Poisson method is
Equation (17) in Appendix B. For details see Bryson et al.
(2020a).

We treat input uncertainties in a manner similar to how we
treat reliability: we run the Poisson MCMC inference
400 times, each time selecting the planet population according
to reliability. We then sample the planet instellation flux,
radius, and star effective temperature from the two-sided
normal distribution with the width given by the respective
catalog uncertainties. We perform this sampling prior to
restricting to our period and instellation flux ranges of interest
so planets whose median property values are outside the range
may enter the range due to their uncertainties. The posteriors
from the 400 runs are concatenated together to give the
posterior distribution of the parameters θ for each model. This
approach to uncertainty does not recompute the underlying
parent stellar population with resampled effective temperature
uncertainties, because that would require recomputation of the
completeness contours with each realization, which is beyond
our computational resources. Shabram et al. (2020) performed
a similar uncertainty study, properly resampling the underlying

parent population, and observed an impact of uncertainty
similar to ours (see Section 4.2). Our analysis of uncertainty
should be considered an approximation. While the result is not
technically a sample from a posterior distribution, in Section 4
we compare the resulting sample to the posterior sample from
the model neglecting these uncertainties and find that the
population parameter values and resulting occurrence rates
change in a predictable way.
The ABC-based inference of the parameters in Equation (5)

is computed using the approach of Kunimoto & Bryson (2020),
with some modifications to accommodate temperature depend-
ence and uncertainties on planet radius, instellation flux, and
temperature.
In the ABC method, the underlying Kepler population is

simulated in each completeness effective temperature bin
separately. Np=F0Nsh(T) planets are drawn for each bin,
where Ns is the number of stars in the bin and h(T) collects the
model-dependent temperature terms from Equation (5), aver-
aged over the temperature range of the bin and normalized over
the entire temperature range of the sample. Following the
procedure of Mulders et al. (2018), we assign each planet an
instellation flux between 0.2 and 2.2 I⊕ from the cumulative
distribution function of Iβ and a radius between 0.5 and 2.5 R⊕
from the cumulative distribution function of rα. The detectable
planet sample is then simulated from this underlying population
by drawing from a Bernoulli distribution with a detection
probability averaged over the bin’s stellar population. We
compare the detected planets to the observed planet candidate
population using a distance function, which quantifies agree-
ment between the flux distributions, radius distributions, and
sample sizes of the catalogs. For the distances between the flux
and radius distributions, we choose the two-sample Anderson–
Darling (AD) statistic, which has been shown to be more
powerful than the commonly used Kolmogorov–Smirnoff test
(Engmann & Cousineau 2011). The third distance is the
modified Canberra distance from Hsu et al. (2019),

år =
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+=
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where ns, i and no,i are the number of simulated and observed
planets within the ith bin’s temperature range and the sum is
over all N bins. For more details, see Bryson et al. (2020b).
These simulations are repeated within a population Monte

Carlo ABC algorithm to infer the parameters that give the
closest match between the simulated and observed catalogs.
With each iteration of the ABC algorithm, model parameters
are accepted when each resulting population’s distance from
the observed population is less than the 75th quantile of the
previous iteration’s accepted distances. Following the guidance
of Prangle (2017), we confirm that our algorithm converges by
observing that the distances between the simulated and
observed catalogs approach zero with each iteration, and see
that the uncertainties on the model parameters flatten out to a
noise floor.
This forward model is appropriate for estimating the average

number of planets per star in a given flux, radius, and
temperature range, similar to the Poisson likelihood method.
However, rather than requiring many inferences on different
catalogs to incorporate reliability or input uncertainty, we take
a different approach. For reliability, we modify the distance
function as described in Bryson et al. (2020b). In summary, we
replace the two-sample AD statistic with a generalized AD52 https://github.com/nasa/KeplerPORTs
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statistic developed in Trusina et al. (2020) that can accept a
weight for each data point, and set each observed planet’s
weight equal to its reliability. We also alter the third distance
(Equation (6)) so that a planet’s contribution to the total
number of planets in its bin is equal to its reliability. As
demonstrated in Kunimoto & Bryson (2020) and Bryson et al.
(2020b), this weighted distance approach gives results
consistent with the Poisson likelihood function method with
reliability. Meanwhile, to account for input uncertainty, the
observed population is altered for every comparison with a
simulated population by randomly assigning each observed
planet a new radius, instellation flux, and host star effective
temperature from the two-sided normal distribution with the
width given by their respective uncertainties.

3.5. Computing Occurrence Rates

Once the population rate model λ has been chosen and its
parameters determined as described in Section 3.4, we can
compute the number of HZ planets per star. For planets with
radii between r0 and r1 and instellation fluxes between I0 and
I1, for a star with effective temperature Teff the number of
planets per star is

ò ò ql=f T I r T dI dr, , , . 7
r

r

I

I

eff eff
0

1

0

1

( ) ( ) ( )

For a collection of stars with effective temperatures ranging
from T0 to T1, we compute the average number of planets per
star, assuming a uniform distribution of stars in that range, as
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We typically compute Equation (8) for every θ in the posterior
of our solution, giving a distribution of occurrence rates.

The HZ is not a rectangular region in the I–Teff plane (see
Figure 1), so to compute occurrence in the HZ for a given Teff,
we integrate I from the inner HZ flux Iout(Teff) to the outer flux
Iin(Teff):

ò ò ql=f T I r T dI dr, , , . 9
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The functions Iout(T) and Iin(T) are given in Kopparapu et al.
(2014) and depend on the choice of conservative versus
optimistic HZ. fHZ(Teff) will be a distribution of occurrence
rates if we use a distribution of θ. For a collection of stars with
effective temperatures ranging from T0 to T1, we compute
fHZ(Teff) for a sampling of Tä[T0, T1] and concatenate these
distributions together to make a distribution of HZ occurrence
rates fHZ for that radius, flux, and temperature range. When we
compute fHZ to determine the occurrence rate for a generic set
of stars, we uniformly sample over [T0, T1] (in practice we use
all integer kelvin values of Tä[T0, T1]). The resulting
distribution is our final result.

Figure 8 shows the impact of uncertainty in stellar effective
temperature on the HZ boundaries. For each star we compute
the uncertainty in the HZ boundaries with 100 realizations of
that star’s effective temperature with uncertainty, modeled as a
two-sided Gaussian. The gray regions in Figure 8 show the
86% credible intervals of the uncertainty of the HZ boundaries.
These intervals are small relative to the size of the HZ and are
well centered on the central value. For example, consider the

inner optimistic HZ boundary, which has the widest error
distribution in Figure 8. The median of the difference between
the median HZ uncertainty and the HZ boundary without
uncertainty is less than 0.002%, with a standard deviation less
than 0.9%. Therefore, we do not believe that uncertainties in
HZ boundaries resulting from stellar effective temperature
uncertainties have a significant impact on occurrence rates.

4. Results

4.1. Inferring the Planet Population Model Parameters

For each choice of population differential rate model from
Equation (5) and stellar population from Section 3.1, we
determine the parameter vector θ with zero and constant
extrapolated completeness, giving high and low bounds on the
occurrence rates. These solutions are computed over the radius
range 0.5 R⊕�r�2.5 R⊕ and the instellation flux range 0.2
I⊕�I�2.2 I⊕ using the hab and hab2 stellar populations
described in Section 3.1. We perform these calculations both
without and with input uncertainties in the planet radius,
instellation flux, and Teff shown in Figure 1. Examples of the
resulting θ posterior distributions are shown in Figure 9 and the
corresponding rate functions λ are shown in Figure 10. The
solutions for models 1–3 for the hab and hab2 stellar
populations computed using the Poisson likelihood method
are given in Table 1, and those computed using ABC are given
in Table 2. An example of the sampled planet population using
input uncertainties is shown in Figure 11.
We compare models 1–3 using the Akaike information

criterion (AIC), but the AIC does not indicate that one of the
models is significantly more consistent with the data than another.
The resulting relative likelihoods from the AIC analysis relative to
model 1 are 0.31 for model 2 and 2.07 for model 3. Such low
relative likelihood ratios are not considered compelling.
The F0 parameter, giving the average number of planets per star

in the solution domain (see Section 5), indicates that solutions using
zero-completeness extrapolation (see Section 3.3.2) yield higher
occurrence than those using constant-completeness extrapolation.
This is because zero-completeness extrapolation induces larger
completeness corrections. The zero-completeness extrapolation

Figure 8. The uncertainty in the HZ boundaries due to uncertainty in stellar
effective temperature. For every star, the inner and outer boundaries of the HZ
are shown in green, with the 68% credible interval for each boundary shown in
gray. The solid green line is the optimistic HZ, and the dashed green line is the
conservative HZ.
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solution provides an upper bound on the HZ occurrence rate, and
the constant extrapolation solution provides a lower bound. Reality
will be somewhere in between and is likely to be closer to the zero
extrapolation case for hotter stars, which have lower completeness
in their HZs.

The hab stellar population is a subset of the hab2 population,
so one may expect that they give similar solutions. But the hab
stellar population contains significant regions of extrapolated
completeness and low-reliability planet candidates for the flux
range considered in our solution (see Figure 1). While the hab2
population contains the same regions, hab2 also contains many
cooler stars that host higher-reliability planet candidates. These
stars provide a better constraint on the power laws we use to
describe the population. The result is that the hab2 solution has
significantly smaller uncertainties than the hab solution, as seen
in Tables 1 and 2.

4.2. HZ Occurrence Rates

Table 3 gives η⊕, computed using the Poisson likelihood
method, for the optimistic and conservative HZs for the hab
and hab2 stellar populations and models 1–3. The low and high
values correspond to the solutions using constant- and zero-
completeness extrapolation, which bound the actual occurrence
rates (see Section 3.3.2). We see the expected behavior of zero-
completeness extrapolation leading to higher occurrence due to
a larger completeness correction. Table 4 gives the same
occurrence rates computed using the ABC method. The
distributions of η⊕ using these models and the Poisson
likelihood method are shown in Figure 12. We see that for
each model, when incorporating the input uncertainties, the hab
and hab2 stellar populations yield consistent values of η⊕.
Without using the input uncertainties the hab population yields
consistently lower values for η⊕, though the difference is still
within the 68% credible interval. Model 3 with hab2 gives
generally higher occurrence rates than model 1. We also see

that the median occurrence rates are about ∼10% higher when
incorporating input uncertainties, qualitatively consistent with
those of Shabram et al. (2020), who also see higher median
occurrence rates when incorporating uncertainties. It is not
clear what causes this increase in occurrence rates: on the one
hand the sum of the inclusion probability, defined in
Appendix C, for the planet candidates in Table 8 is 53.6,
compared with the 54 planet candidates in the analysis without
uncertainty, indicating that, on average, more planets exit the
analysis than enter it when incorporating uncertainties. On the
other hand, the sum of the inclusion probability times the planet
radius is 106.6, compared with 105.0 for the planet candidates
in the analysis without uncertainty, indicating that, on average,
larger planets are entering the analysis. This may have an
impact on the power-law model, leading to higher occurrence
rates.
Table 5 gives the occurrence rates for a variety of planet

radius and host star effective temperature ranges, computed
using the hab2 stellar population and models 1–3. We see that
the uncertainties for the 1.5–2.5 R⊕ planets are significantly
smaller than those for the 0.5–1.5 R⊕ planets, indicating that
the large uncertainties in η⊕ are due to the small number of
observed planets in the 0.5–1.5 R⊕ range. The distributions of
occurrence for the two bounding extrapolation types are shown
in Figure 13. The difference between these two bounding cases
is smaller than the uncertainties. Table 6 gives the 95% and
99% intervals for the 0.5–1.5 R⊕ planets using model 1
computed with hab2.
Figure 14 shows the dependence of the HZ occurrence rate

on effective temperature for models 1–3 based on the hab2
stellar population and for model 1 for the hab stellar
population. For each model, the occurrence using zero and
constant extrapolation is shown. Models 1 and 2 show a weak
increase in occurrence with increasing effective temperature.
Model 3 shows a stronger increase in occurrence with effective
temperature, consistent with model 3ʼs assumption that the

Figure 9. The posterior distributions of model 1 from Equation (5) for the hab2 stellar population and zero extrapolation completeness. Left: With input uncertainty.
Right: Without input uncertainty.
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only temperature dependence is the geometric effect described
in Section 2.2. However, as shown in Figure 6, the difference
between constant and zero extrapolated completeness is near
zero for Teff�4500 K, so we would expect the difference in
occurrence rates to be close to zero in that temperature range.
This is true for models 1 and 2 but not true for model 3. We

take this as evidence that models 1 and 2 are correctly
measuring a Teff dependence beyond the geometric effect.
We recognize that the statistical evidence for this Teff
dependence is not compelling, since the overlapping 68%
credible intervals for the two completeness extrapolations
would allow an occurrence rate independent of Teff.

Figure 10. The marginalized population rate of model 1 from Equation (5) for the hab2 stellar population and zero extrapolation completeness, with and without
incorporating uncertainties on planet radius, instellation flux, and host star effective temperature. The top row for each case shows the completeness-corrected
population model compared with the observed planet population. The bottom row for each case shows the underlying population model. The dark gray regions are the
68% credible intervals, and the light gray regions are the 95% credible intervals.
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An issue that arises with zero-completeness extrapolation
(=high bound) is that, strictly speaking, planet candidates with
orbital periods of >500 days are in a region of zero
completeness around their host star and would not contribute
to the Poisson likelihood (see Equation (16) in Appendix B).
There is one such planet candidate in the hab2 stellar sample
with reliability=0.67. Performing our Poisson inference, we
remove this planet with a period of >500 days for model 1 and
incorporate input uncertainties, yielding an optimistic η⊕=

-
+0.70 0.41

1.01, compared with -
+0.88 0.51

1.27 (from Table 3) when
including the planet. While this result is well within the 68%
credible interval of the result with the planet included,
removing this planet has a noticeable impact on the upper
bound for the optimistic η⊕. However this planet is in fact

detected, implying that completeness is not zero for periods of
>500 days, at least for this planet’s host star. If the actual
completeness is very close to zero, a planet detection implies a
large population. We therefore leave this planet in the analysis,
thinking of “zero completeness” as a limit of the completeness
going to zero when the HZ includes orbital periods of
>500 days, summed or averaged over the stellar population
for our computations.

5. Discussion

5.1. Instellation Flux versus Orbital Period

We choose to compute our occurrence rates as a function of
instellation flux for two major reasons: this allows a more direct

Table 1
Parameter Fits with 68% Confidence Limits for Models 1–3 from Equation (5) for the hab and hab2 Stellar Populations from Section 3.1, Computed with the Poisson

Likelihood Method

With Uncertainty Without Uncertainty

Based on hab Stars Based on hab2 Stars Based on hab Stars Based on hab2 Stars
Low Bound–High Bound Low Bound–High Bound Low Bound–High Bound Low Bound–High Bound

Model 1
F0 + -

+1.08 0.57
1.56–+ -

+1.97 1.17
3.73 + -

+1.11 0.44
0.88–+ -

+1.59 0.7
1.56 + -

+0.70 0.32
0.77–+ -

+1.41 0.77
2.12 + -

+1.02 0.37
0.66–+ -

+1.46 0.59
1.18

α - -
+1.05 1.2

1.41–- -
+1.09 1.18

1.36 - -
+1.08 0.85

0.94–- -
+1.18 0.87

0.96 - -
+0.29 1.18

1.39–- -
+0.51 1.15

1.35 - -
+0.96 0.74

0.83–- -
+1.03 0.77

0.83

β - -
+0.56 0.42

0.48–- -
+1.18 0.56

0.6 - -
+0.84 0.3

0.32–- -
+1.19 0.36

0.37 - -
+0.43 0.4

0.46–- -
+1.13 0.5

0.54 - -
+0.78 0.28

0.3 –- -
+1.15 0.33

0.34

γ - -
+1.84 3.39

3.33–+ -
+0.91 3.88

3.87 - -
+2.67 1.57

1.59–- -
+1.38 1.78

1.84 - -
+2.13 3.13

3.06–+ -
+0.25 3.47

3.39 - -
+2.33 1.46

1.47–- -
+1.03 1.64

1.66

Model 2
F0 + -

+1.04 0.55
1.52–+ -

+1.96 1.18
3.72 + -

+1.13 0.46
0.92–+ -

+1.50 0.66
1.43 + -

+0.80 0.38
0.9 –+ -

+1.33 0.71
1.98 + -

+1.00 0.38
0.7 –+ -

+1.43 0.6
1.21

α - -
+1.03 1.23

1.41–- -
+1.05 1.18

1.45 - -
+1.13 0.86

0.97–- -
+1.12 0.86

0.94 - -
+0.48 1.17

1.36–- -
+0.47 1.16

1.33 - -
+0.92 0.78

0.88–- -
+1.01 0.8

0.88

β - -
+0.56 0.42

0.48–- -
+1.20 0.56

0.6 - -
+0.85 0.3

0.32–- -
+1.18 0.35

0.37 - -
+0.51 0.4

0.45–- -
+1.09 0.51

0.55 - -
+0.80 0.28

0.31–- -
+1.18 0.33

0.34

γ + -
+2.60 3.61

3.56–+ -
+5.33 4.02

3.94 + -
+1.19 1.63

1.64–+ -
+2.31 1.85

1.91 + -
+2.03 3.23

3.1 –+ -
+4.66 3.51

3.43 + -
+1.26 1.54

1.54–+ -
+2.73 1.71

1.73

Model 3
F0 + -

+1.13 0.58
1.52–+ -

+1.83 1.0
2.76 + -

+1.41 0.59
1.14–+ -

+1.89 0.78
1.51 + -

+0.89 0.4
0.94–+ -

+1.24 0.6
1.49 + -

+1.25 0.5
0.93–+ -

+1.75 0.7
1.26

α - -
+1.08 1.18

1.39–- -
+1.06 1.18

1.38 - -
+1.37 0.83

0.91–- -
+1.28 0.82

0.9 - -
+0.60 1.12

1.3 –- -
+0.38 1.18

1.34 - -
+1.21 0.78

0.88–- -
+1.17 0.76

0.85

β - -
+0.56 0.41

0.48–- -
+1.16 0.51

0.55 - -
+0.89 0.29

0.32–- -
+1.29 0.32

0.35 - -
+0.49 0.39

0.45–- -
+1.06 0.48

0.53 - -
+0.83 0.28

0.3 –- -
+1.26 0.31

0.33

Notes.The low and high bounds correspond to the constant- and zero-completeness extrapolation of Section 3.3.2. “With Uncertainty” means the planet candidate
radius, instellation flux, and host star effective temperature uncertainties are taken into account.

Table 2
Parameter Fits with 68% Confidence Limits for Models 1–3 from Equation (5) for the Four Stellar Populations from Section 3.1, Computed with the ABC Method

With Uncertainty Without Uncertainty

Based on hab Stars Based on hab2 Stars Based on hab Stars Based on hab2 Stars
Low Bound–High Bound Low Bound—High Bound Low Bound–High Bound Low Bound–High Bound

Model 1
F0 + -

+1.18 0.56
0.95–+ -

+2.04 0.99
1.44 + -

+1.17 0.44
0.78–+ -

+1.61 0.65
1.05 + -

+0.73 0.29
0.54–+ -

+1.37 0.61
1.08 + -

+0.94 0.32
0.45–+ -

+1.41 0.57
0.99

α - -
+1.14 0.89

1.02–- -
+0.95 0.86

0.99 - -
+1.14 0.77

0.75–- -
+1.18 0.67

0.72 - -
+0.17 0.97

1.19–- -
+0.11 0.88

1.17 - -
+0.71 0.68

0.67–- -
+0.83 0.74

0.77

β - -
+0.69 0.38

0.41–- -
+1.32 0.44

0.51 - -
+0.90 0.26

0.31–- -
+1.26 0.31

0.35 - -
+0.67 0.35

0.38–- -
+1.30 0.41

0.43 - -
+0.89 0.25

0.25–- -
+1.26 0.32

0.30

γ - -
+0.84 4.11

3.81–+ -
+2.16 3.68

3.91 - -
+2.60 1.84

1.74–- -
+1.14 2.02

2.15 - -
+1.93 3.37

3.54–+ -
+1.82 3.77

3.94 - -
+2.27 1.71

1.65–- -
+0.78 1.91

2.11

Model 2
F0 + -

+1.06 0.48
0.90–+ -

+1.88 0.87
1.38 + -

+1.14 0.43
0.74–+ -

+1.66 0.70
1.26 + -

+0.70 0.28
0.44–+ -

+1.22 0.57
0.87 + -

+0.96 0.34
0.45–+ -

+1.35 0.51
0.85

α - -
+1.07 0.93

1.11–- -
+0.96 0.90

0.90 - -
+1.15 0.76

0.76–- -
+1.25 0.72

0.80 - -
+0.06 0.88

1.02–- -
+0.09 0.98

1.07 - -
+0.75 0.71

0.70–- -
+0.82 0.66

0.76

β - -
+0.67 0.35

0.41–- -
+1.30 0.44

0.45 - -
+0.90 0.27

0.28–- -
+1.24 0.36

0.33 - -
+0.64 0.36

0.39–- -
+1.19 0.42

0.43 - -
+0.89 0.23

0.26–- -
+1.27 0.31

0.32

γ + -
+3.09 3.42

3.64–+ -
+5.68 3.42

2.60 + -
+1.34 2.04

1.95–+ -
+2.85 2.24

2.21 + -
+2.72 3.78

3.19–+ -
+5.03 3.58

2.90 + -
+1.44 1.64

1.68–+ -
+3.04 1.97

2.01

Model 3
F0 + -

+1.20 0.57
0.93–+ -

+1.75 0.77
1.19 + -

+1.57 0.58
0.93–+ -

+1.90 0.69
1.08 + -

+0.82 0.31
0.56–+ -

+1.21 0.49
0.82 + -

+1.25 0.47
0.69–+ -

+1.62 0.59
0.81

α - -
+1.16 0.88

1.14–- -
+0.93 0.81

0.98 - -
+1.54 0.67

0.68–- -
+1.32 0.65

0.71 - -
+0.27 0.98

1.02–- -
+0.09 0.99

1.06 - -
+1.14 0.70

0.76–- -
+0.95 0.67

0.70

β - -
+0.71 0.36

0.41–- -
+1.24 0.41

0.42 - -
+0.97 0.23

0.27–- -
+1.33 0.27

0.26 - -
+0.66 0.34

0.32–- -
+1.24 0.39

0.42 - -
+0.96 0.23

0.25–- -
+1.35 0.26

0.27

Notes.The low and high bounds correspond to the constant- and zero-completeness extrapolation of Section 3.3.2. “With Uncertainty” means the planet candidate
radius, instellation flux, and host star effective temperature uncertainties are taken into account.
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Figure 11. The union of the planet instellation fluxes and radii for the 400 realizations in the uncertainty run shown by blue dots superimposed on the lower panel of
Figure 1 for the hab2 stellar population and model 1. See the caption of Figure 1 for an explanation of the other elements of the figure.

Table 3
η⊕, Computed Using Population Models Based on the hab and hab2 Stellar Populations, with and without Uncertainties for Models 1–3 and Using the Poisson

Method

With Uncertainty Without Uncertainty

Based on hab Stars Based on hab2 Stars Based on hab Stars Based on hab2 Stars
Low Bound–High Bound Low Bound–High Bound Low Bound–High Bound Low Bound–High Bound

Conservative HZ
Model 1 -

+0.30 0.21
0.69– -

+0.54 0.39
1.46

-
+0.37 0.21

0.48– -
+0.60 0.36

0.90
-
+0.15 0.11

0.32– -
+0.34 0.25

0.83
-
+0.34 0.18

0.37– -
+0.54 0.30

0.69

Model 2 -
+0.28 0.20

0.66– -
+0.53 0.39

1.46
-
+0.39 0.23

0.51– -
+0.56 0.33

0.83
-
+0.19 0.13

0.39– -
+0.32 0.23

0.78
-
+0.33 0.18

0.38– -
+0.53 0.30

0.70

Model 3 -
+0.31 0.22

0.69– -
+0.55 0.39

1.22
-
+0.59 0.34

0.74– -
+0.79 0.44

0.95
-
+0.21 0.15

0.42– -
+0.30 0.21

0.64
-
+0.50 0.28

0.60– -
+0.72 0.39

0.80

Optimistic HZ
Model 1 -

+0.50 0.35
1.09– -

+0.80 0.57
2.07

-
+0.58 0.33

0.73– -
+0.88 0.51

1.27
-
+0.26 0.18

0.52– -
+0.51 0.36

1.17
-
+0.54 0.28

0.56– -
+0.80 0.44

0.99

Model 2 -
+0.48 0.33

1.06– -
+0.78 0.58

2.05
-
+0.61 0.35

0.77– -
+0.83 0.48

1.17
-
+0.32 0.22

0.62– -
+0.48 0.33

1.11
-
+0.52 0.28

0.58– -
+0.78 0.44

1.00

Model 3 -
+0.53 0.37

1.10– -
+0.81 0.57

1.73
-
+0.92 0.52

1.12– -
+1.14 0.63

1.35
-
+0.36 0.25

0.68– -
+0.46 0.31

0.92
-
+0.79 0.44

0.92– -
+1.04 0.56

1.14

Notes.The low and high bounds correspond to the constant- and zero-completeness extrapolation of Section 3.3.2. “With Uncertainty” means the planet candidate
radius, instellation flux, and host star effective temperature uncertainties are taken into account.

Table 4
η⊕, Computed Using Population Models Based on the hab and hab2 Stellar Populations, with and without Uncertainties for Models 1–3 and Using the ABC Method

With Uncertainty Without Uncertainty

Based on hab Stars Based on hab2 Stars Based on hab Stars Based on hab2 Stars
Low Bound–High Bound Low Bound–High Bound Low Bound–High Bound Low Bound–High Bound

Conservative HZ
Model 1 -

+0.33 0.20
0.46– -

+0.50 0.31
0.69

-
+0.40 0.21

0.45– -
+0.61 0.33

0.63
-
+0.16 0.10

0.24– -
+0.26 0.16

0.44
-
+0.29 0.15

0.28– -
+0.49 0.27

0.61

Model 2 -
+0.30 0.19

0.41– -
+0.52 0.31

0.63
-
+0.40 0.21

0.43– -
+0.64 0.35

0.73
-
+0.14 0.09

0.19– -
+0.25 0.15

0.36
-
+0.31 0.15

0.28– -
+0.47 0.24

0.50

Model 3 -
+0.35 0.22

0.47– -
+0.50 0.29

0.56
-
+0.69 0.35

0.64– -
+0.81 0.40

0.69
-
+0.18 0.11

0.27– -
+0.27 0.16

0.36
-
+0.50 0.26

0.48– -
+0.62 0.31

0.55

Optimistic HZ
Model 1 -

+0.54 0.33
0.72– -

+0.73 0.45
0.98

-
+0.62 0.32

0.66– -
+0.89 0.47

0.89
-
+0.26 0.16

0.37– -
+0.39 0.23

0.62
-
+0.45 0.23

0.42– -
+0.71 0.38

0.86

Model 2 -
+0.48 0.30

0.66– -
+0.75 0.44

0.90
-
+0.62 0.32

0.63– -
+0.92 0.49

1.02
-
+0.24 0.14

0.30– -
+0.37 0.22

0.52
-
+0.47 0.23

0.41– -
+0.68 0.34

0.70

Model 3 -
+0.56 0.36

0.72– -
+0.73 0.41

0.81
-
+1.05 0.52

0.96– -
+1.15 0.57

0.99
-
+0.30 0.18

0.43– -
+0.39 0.23

0.51
-
+0.75 0.39

0.72– -
+0.89 0.44

0.78

Notes.The low and high bounds correspond to the constant- and zero-completeness extrapolation of Section 3.3.2. “With Uncertainty” means the planet candidate
radius, instellation flux, and host star effective temperature uncertainties are taken into account.
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characterization of each star’s HZ, and it allows a more
constrained extrapolation to longer orbital periods than work-
ing directly in terms of orbital period.

By considering instellation flux, we can measure HZ occurrence
by including observed planets from the HZ of their host stars,
which is not possible across a wide range of stellar temperatures
when using orbital period (see Figure 2). Instellation flux also
allows a direct measurement of the impact of uncertainties in stellar
effective temperature and planetary instellation flux.

The HZ of most G and F stars includes orbital periods that are
beyond those periods well covered by Kepler observations (see
Figures 1 and 2), requiring significant extrapolation of orbital
period–based planet population models to long orbital periods.
Such extrapolation is poorly known or constrained, leading to
possible significant and unbounded inaccuracies. In instellation
flux, however, there is planet data throughout those regions of our
domain of analysis that have reasonable completeness (see
Figure 1), so no extrapolation in instellation flux is required. In
this sense, replacing orbital period with instellation flux (deter-
mined by the orbital period for each star) moves the problem of

extrapolating the population model to longer orbital periods to
extrapolating the completeness data to lower instellation flux. In
Section 3.3.2 we argue that completeness, on average, decreases
monotonically with decreasing instellation flux. This allows us to
bound the extrapolated completeness between no decrease at all
(constant extrapolation) and zero completeness for instellation flux
for orbital periods beyond the 500day limit where completeness is
measured. We then perform our analysis for the two extrapolation
cases and find that their difference in HZ occurrence rates is small
relative to our uncertainties. In this way we provide a bounded
estimate of HZ occurrence rates using instellation flux, rather than
the unbounded extrapolation resulting from using orbital period.

5.2. Comparing the Stellar Population and Rate Function
Models

Our approach to measuring η⊕ is to compute the planet
population rate model λ(r, I, Teff)≡d2f (r, I, Teff)/dr dI,
integrate over r and I, and average over Teff. We compute the
population model λ using the hab and hab2 stellar populations
(Section 3.1) to measure the sensitivity of our results to stellar

Figure 12. The distribution of η⊕ for population models computed using the hab (dashed lines) and hab2 (solid lines) stellar populations for the three models in
Equation (5), demonstrating that we get similar results from models 1 and 2 for both stellar populations. Medians and 68% credible intervals are shown above the
distributions. The result from the hab2 population including effective temperature dependence is shown with a thick black line. Top: Incorporating the uncertainty on
planet radius, stellar instellation, and stellar effective temperature. Bottom: Without incorporating uncertainties. Left: The conservative HZ. Right: The optimistic HZ.
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type, and we consider several possible functional forms for λ
(Equation (5)).

5.2.1. Comparing Population Rate Function Models

We believe that we have detected a weak dependence of HZ
occurrence on host star effective temperature Teff, with hotter

stars having slightly higher HZ occurrence. Model 2
( a b gF r I T0 eff), which directly measures Teff dependence as a
power law with exponent γ, indicates a weak Teff dependence
for the zero-completeness extrapolation case, though in the
constant extrapolation case γ includes 0 in the 68% credible
interval (see Table 1). This is somewhat remarkable given that,

Table 5
Number of Habitable Zone Planets per Star for Various Ranges of Planet Radii and Host Star Effective Temperatures, Computed Using the Population Model Based
on the hab2 Stellar Population with the Poisson Likelihood Method and Incorporating Uncertainties in Planet Radius, Instellation Flux, and Host Star Effective

Temperature

Planet Radius 4800–6300 K 3900–6300 K 3900–5300 K (K Dwarfs) 5300–6000 K (G Dwarfs)
Low Bound–High Bound Low Bound–High Bound Low Bound–High Bound Low Bound–High Bound

Conservative HZ

Model 1
0.5–1.5 R⊕ -

+0 37. 0.21
0.48– -

+0 60. 0.36
0.90

-
+0.35 0.19

0.43– -
+0.50 0.29

0.73
-
+0.32 0.17

0.35– -
+0.42 0.23

0.50
-
+0.38 0.22

0.50– -
+0.63 0.38

0.94

1.5–2.5R⊕ -
+0.16 0.05

0.07– -
+0.24 0.08

0.14
-
+0.15 0.05

0.06– -
+0.20 0.07

0.12
-
+0.14 0.04

0.05– -
+0.17 0.06

0.07
-
+0.17 0.05

0.06– -
+0.26 0.09

0.13

0.5–2.5R⊕ -
+0.54 0.24

0.52– -
+0.85 0.42

0.99
-
+0.51 0.22

0.46– -
+0.71 0.34

0.80
-
+0.46 0.19

0.37– -
+0.60 0.26

0.52
-
+0.56 0.25

0.53– -
+0.90 0.45

1.01

Model 2
0.5–1.5R⊕ -

+0 39. 0.23
0.51– -

+0 56. 0.33
0.83

-
+0.36 0.20

0.44– -
+0.47 0.27

0.67
-
+0.33 0.18

0.36– -
+0.40 0.22

0.47
-
+0.40 0.23

0.53– -
+0.59 0.35

0.86

1.5–2.5R⊕ -
+0.16 0.05

0.06– -
+0.24 0.08

0.13
-
+0.15 0.05

0.06– -
+0.20 0.07

0.11
-
+0.14 0.04

0.05– -
+0.17 0.06

0.07
-
+0.17 0.05

0.06– -
+0.25 0.08

0.12

0.5–2.5R⊕ -
+0.56 0.26

0.54– -
+0.81 0.39

0.91
-
+0.51 0.23

0.47– -
+0.68 0.32

0.75
-
+0.47 0.20

0.38– -
+0.58 0.25

0.50
-
+0.57 0.27

0.56– -
+0.85 0.42

0.94

Model 3
0.5–1.5R⊕ -

+0 59. 0.34
0.74– -

+0 79. 0.44
0.95

-
+0.43 0.26

0.63– -
+0.59 0.35

0.82
-
+0.31 0.17

0.37– -
+0.43 0.24

0.51
-
+0.64 0.35

0.72– -
+0.85 0.46

0.93

1.5–2.5R⊕ -
+0.20 0.07

0.11– -
+0.29 0.10

0.15
-
+0.15 0.06

0.13– -
+0.22 0.09

0.17
-
+0.11 0.04

0.05– -
+0.16 0.05

0.07
-
+0.22 0.06

0.07– -
+0.32 0.09

0.11

0.5–2.5R⊕ -
+0.81 0.39

0.79– -
+1.11 0.52

1.02
-
+0.60 0.32

0.71– -
+0.84 0.44

0.92
-
+0.42 0.20

0.39– -
+0.60 0.28

0.54
-
+0.87 0.38

0.75– -
+1.18 0.51

0.97

Optimistic HZ
Model 1

0.5–1.5R⊕ -
+0 58. 0.33

0.73– -
+0 88. 0.51

1.28
-
+0.54 0.29

0.64– -
+0.73 0.41

1.02
-
+0.49 0.26

0.51– -
+0.60 0.33

0.69
-
+0.60 0.34

0.75– -
+0.93 0.55

1.32

1.5–2.5R⊕ -
+0.25 0.06

0.09– -
+0.35 0.11

0.19
-
+0.23 0.06

0.09– -
+0.29 0.10

0.17
-
+0.21 0.06

0.07– -
+0.25 0.08

0.09
-
+0.26 0.07

0.09– -
+0.37 0.11

0.17

0.5–2.5R⊕ -
+0.84 0.37

0.78– -
+1.25 0.59

1.39
-
+0.78 0.33

0.68– -
+1.04 0.47

1.13
-
+0.71 0.28

0.53– -
+0.86 0.36

0.72
-
+0.87 0.38

0.79– -
+1.33 0.63

1.42

Model 2
0.5–1.5R⊕ -

+0 61. 0.35
0.77– -

+0 83. 0.48
1.17

-
+0.55 0.31

0.66– -
+0.68 0.39

0.95
-
+0.50 0.27

0.54– -
+0.57 0.31

0.66
-
+0.63 0.36

0.79– -
+0.87 0.51

1.22

1.5–2.5R⊕ -
+0.25 0.06

0.09– -
+0.34 0.10

0.17
-
+0.23 0.07

0.09– -
+0.29 0.10

0.16
-
+0.21 0.06

0.07– -
+0.25 0.08

0.09
-
+0.26 0.07

0.08– -
+0.37 0.11

0.16

0.5–2.5R⊕ -
+0.87 0.39

0.81– -
+1.19 0.56

1.28
-
+0.79 0.34

0.70– -
+0.99 0.45

1.05
-
+0.72 0.29

0.55– -
+0.84 0.35

0.69
-
+0.90 0.40

0.83– -
+1.25 0.59

1.32

Model 3
0.5–1.5R⊕ -

+0 92. 0.52
1.12– -

+1 14. 0.63
1.35

-
+0.67 0.40

0.96– -
+0.85 0.50

1.17
-
+0.46 0.26

0.55– -
+0.61 0.33

0.70
-
+1.00 0.54

1.08– -
+1.23 0.65

1.32

1.5–2.5R⊕ -
+0.31 0.11

0.16– -
+0.42 0.15

0.21
-
+0.22 0.10

0.20– -
+0.31 0.13

0.25
-
+0.16 0.05

0.07– -
+0.23 0.07

0.10
-
+0.34 0.08

0.10– -
+0.46 0.12

0.14

0.5–2.5R⊕ -
+1.26 0.59

1.19– -
+1.60 0.73

1.43
-
+0.92 0.49

1.07– -
+1.20 0.62

1.30
-
+0.63 0.29

0.58– -
+0.85 0.38

0.75
-
+1.35 0.57

1.11– -
+1.71 0.71

1.36

Notes.The η⊕ values for model 1 are shown in boldface. The low and high bounds correspond to the constant- and zero-completeness extrapolation of Section 3.3.2.
As explained in Section 5.2 we recommend model 1 as the baseline model. Results from the other models are included for comparison.

Figure 13. The distribution of η⊕ for the two bounding extrapolation cases, computed with model 1 and hab2 with input uncertainties. Left: The conservative HZ.
Right: The optimistic HZ.
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as discussed in Section 2.2, the size of the HZ grows as at least
Teff

3 . This is consistent with model 1 ( a b gF r I T g T0 eff eff( )), which
includes a fixed g(Teff) term from Equation (4), reflecting the
increase in size of the HZ with increasing temperature, and an
additional gTeff power law to capture any additional Teff. In
Table 1 we see that model 1 yields a very low or negative value
for γ, consistent with the weak direct detection of Teff
dependence in model 2. The consistency between models 1
and 2 is further indicated by the fact that they yield very similar
occurrence rates, as shown in Tables 3–5, as well as in
Figure 14.

Model 3 (F0r
αI βg(Teff)) assumes that the Teff dependence of

HZ occurrence is entirely due to the increase in size of the HZ
with increasing Teff. When averaged over our η⊕ effective
temperature range of 4800–6300 K, model 3 yields somewhat
higher occurrence rates than models 2 and 3 (see Tables 3 and 4
and Figure 12).

Models 1 and 2 have the expected behavior of the high and
low bounds converging for cooler stars (see Figure 14),
consistent with the extrapolation options coinciding for these
stars (see Figure 6). Model 3 (λ3=F0C3r

αI βg(T)) does not
have this behavior, but model 3ʼs fixed Teff dependence does
not allow such a convergence.

Because models 1 and 2 detect a weaker Teff dependence
than would be expected due to the larger HZ for hotter stars
(Equation (4)) if planets were uniformly distributed, we do not
believe that model 3 is the best model for the data.

Models 1 and 2 yield essentially the same HZ occurrence
results, but model 1 separates the geometric effect from
intrinsic Teff dependence. We therefore emphasize model 1, but
model 2 provides a direct measure of the total Teff dependence.

5.2.2. Comparing the hab and hab2 Stellar Populations

Without input uncertainties, the hab and hab2 stellar
populations yield interestingly different values for η⊕. How-
ever, Tables 1 and 2 show that the F0 parameter fits for hab
have significantly larger relative uncertainties than those for
hab2, with hab having ≈200% positive uncertainties compared

with the ≈100% positive uncertainties for the hab2 fits. In
addition, the effective temperature exponent γ has larger
absolute uncertainties for hab than for hab2. These larger
uncertainties propagate to larger relative uncertainties in the
occurrence rates in Tables 3, 4, and 5. This can also be seen by
comparing hab and hab2 for model 1, as shown in Figure 14.
These large uncertainties result in the differences between hab
and hab2 being less than the 68% credible interval. With input
uncertainties, the results for the hab and hab2 stellar
populations are more consistent, being well inside the 68%
credible interval, but hab still has larger relative uncertainties.
We believe the larger uncertainties for hab relative to hab2

are due to the hab2 population being less well covered by the
Kepler observations than hab. A larger fraction of planet
candidates for stars in the hab effective temperature range of
4800 K–6300 K are in a region of lower completeness and
reliability (Figure 7) and have poorer observational coverage
(Figure 1). The hab2 population, with an effective temperature
range of 3900–6300 K, includes regions with better observa-
tional coverage and more reliable planet detections.
Basing our occurrence estimates on hab2 covers the full

range of K stars without extrapolation, allowing us to produce,
for example, GK, G, or K HZ occurrence rates using the same
population model. This avoids possible ambiguities that may be
due to different population models. Finally, when considering
Teff uncertainties, there are several planets close to the lower
hab boundary at 4800 K, which leads to a larger impact of Teff
uncertainties on the population model because those planets
will be in some uncertainty realizations and not in others (see
Figure 1). In contrast, the lower Teff boundary for hab2 is
outside the 68% credible interval for all detected planets.
Therefore, although the hab population exactly matches our
effective temperature range for η⊕, we prefer models computed
using the hab2 population.
To summarize, we adopt model 1 based on hab2 for our

primary reported result, but we also provide the results for
models 1–3 and the hab stellar population.

5.3. Computing η⊕

We find reasonable consistency in η⊕ across the models for
both the hab and hab2 stellar populations as shown in Tables 3
and 4. Table 5 gives the occurrence rates for several planet
radius and stellar effective temperature ranges, using the hab2
population model. The uncertainties reflecting our 68%
credible intervals for our η⊕, counting HZ planets with radii of
0.5–1.5R⊕, are large, with positive uncertainties being nearly
150% of the value when using input uncertainties. Comparing
occurrence rate uncertainties with and without input uncertain-
ties in Tables 3 and 4, we see that the bulk of the uncertainties
occur without input uncertainties, while using input uncertain-
ties increases the output uncertainty by nearly 20%. The much
smaller uncertainties for larger planets (1.5 R⊕�r�2.5 R⊕)
in Table 5 suggest the large uncertainties in η⊕ are driven by
the very small number of detections in the η⊕ range, combined
with the very low completeness (see Figure 1). Low
completeness will cause large completeness corrections, which
will magnify the Poisson uncertainty due to few planet
detections. There are more planets with larger radii that are
in a regime of higher completeness, resulting in lower
uncertainties for larger planet occurrence rates.

Table 6
Credible Intervals of the Upper and Lower Bounds on HZ Occurrence for
Model 1 Computed Using the Population Model Based on the hab2 Stellar

Population (see Section 1) and Accounting for Input Uncertainty

Low High Total

95% Credible Interval
hÅ

C [0.07, 1.91] [0.10, 3.77] [0.07, 3.77]

hÅ
O [0.11, 2.88] [0.16, 5.29] [0.11, 5.29]

hÅ,G
C [0.07, 1.92] [0.10, 3.76] [0.07, 3.76]

hÅ,G
O [0.11, 2.90] [0.16, 5.26] [0.11, 5.26]

hÅ,K
C [0.07, 1.34] [0.09, 1.92] [0.07, 1.92]

hÅ,K
O [0.11, 1.96] [0.13, 2.66] [0.11, 2.66]

99% Credible Interval
hÅ

C [0.04, 3.19] [0.06, 6.91] [0.04, 6.91]

hÅ
O [0.06, 4.76] [0.09, 9.58] [0.06, 9.58]

hÅ,G
C [0.04, 3.13] [0.06, 6.57] [0.04, 6.57]

hÅ,G
O [0.06, 4.65] [0.10, 9.09] [0.06, 9.09]

hÅ,K
C [0.04, 2.06] [0.05, 3.06] [0.04, 3.06]

hÅ,K
O [0.07, 2.97] [0.08, 4.20] [0.07, 4.20]

Note.See Section 1.3 for the definitions of the different types of η⊕.
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5.4. Implications of η⊕

Estimates of η⊕ are useful in calculating exoEarth yields
from direct-imaging missions, such as in the flagship concept
studies for LUVOIR and HabEX. These mission studies
assumed an occurrence rate of h =Å -

+0.24 0.16
0.46 for Sun-like

stars based on the NASA ExoPAG SAG13 meta-analysis of
Kepler data (Kopparapu et al. 2018). The expected exoEarth
candidate yields from the mission study reports are -

+54 34
61 for

LUVOIR-A (15 m), -
+28 17

30 for LUVOIR-B (8 m), and 8 for the
HabEx 4 m baseline configuration, which combines a more
traditional coronagraphic starlight suppression system with a
formation-flying starshade occulter. Table 5 provides the η⊕
values based on the three models for G (Sun-like) and K
dwarfs. If we assume the range of η⊕,G from the conservative to
the optimistic HZ from Table 5 for planets of 0.5–1.5 R⊕ from
the “low” end, say, for model 1, η⊕,G would be between

-
+0.38 0.22

0.50 and -
+0.60 0.34

0.75. While these η⊕ values appear to be
larger than the -

+0.24 0.16
0.46 occurrence rate assumed by the

mission studies, it should be noted that these studies adopted
radius range of 0.82 to 1.4 R⊕, and a lower limit of

´ -a0.8 0.5, where a is the HZ-corrected semi-major axis.

This is slightly a smaller HZ region and lower radius than the
one used in our study. As a result, it is possible that we might
be agreeing with their assumed η⊕ value if we use the same
bounding boxes. Computing the conservative HZ as described
in Section 3.5 but replacing the planet radius range with

£ £ År R0.82 1.4 gives a lower bound of -
+0.18 0.09

0.16 and an
upper bound of -

+0.28 0.14
0.30, nicely bracketing the value assumed

in mission studies.
η⊕ can also be used to estimate, on average, the nearest HZ

planet around a G and K dwarf assuming the planets are
distributed randomly. Within the solar neighborhood, the stellar
number density ranges from 0.0033 to 0.0038 pc−3 for G
dwarfs and 0.0105 to 0.0153 pc−3 for K dwarfs (Mamajek &
Hillenbrand 2008; Kirkpatrick et al. 2012).53 For G dwarfs,
multiplying with the conservative ( -

+0.38 0.22
0.50) model 1 “low”

end of the η⊕,G values (i.e., the number of planets per star), we
get between -

+0.0013 0.0007
0.0016 and -

+0.0014 0.0008
0.0019 HZ planets pc−3.

The nearest HZ planet around a G dwarf would then be
expected to be at a distance of d= (3/(4π× np))

1/3, where np is
the planet number density in pc−3. Substituting, we get a d

Figure 14. Optimistic HZ occurrence rate for planets with radii between 0.5 and 1.5 R⊕ as a function of host star effective temperature. η⊕ is the average over the
temperature range 4800 K�Teff�6300 K. The black lines show the median occurrence rate when using zero-completeness extrapolation (upper line) and constant-
completeness extrapolation (lower line). The gray areas show the 68% confidence limits for the two completeness extrapolation cases, and the darker gray areas are the
overlap of the 68% confidence regions. Top left: Model 1 based on hab2. Top right: Model 2 based on hab2. Bottom left: Model 3 based on hab2. Bottom right: Model
1 based on hab, with the medians from model 1 based on hab2 in red.

53 http://www.pas.rochester.edu/~emamajek/memo_star_dens.html
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between -
+5.9 1.26

1.76 pc and -
+5.5 1.34

1.83 pc, or essentially around ∼6 pc
away. A similar calculation for K dwarfs assuming the model 1
conservative HZ η⊕,K values from Table 5 indicates that, on
average, the nearest HZ planet could be between -

+4.1 0.90
1.19 pc and

-
+3.6 0.79

1.05 pc, or around ∼4 pc away.
An additional speculative calculation one could do is to take

the number of G dwarfs in the solar neighborhood within 10 pc
—19 from RECONS54—and multiply it with the “low”
conservative η⊕,G value from model 1, -

+0.38 0.22
0.50. We then get

-
+7.2 4.2

9.5 HZ planets around G dwarfs (of all sub–spectral types)
within 10 pc. A similar calculation for K dwarfs from the same
RECONS data with 44 stars and a model 1 “low” value,
conservative HZ h =Å -

+0.32,K 0.17
0.35 indicates that there are -

+14 7.5
15

HZ planets around K dwarfs within 10 pc. It should be noted
that the number for the nearest HZ planet and the number of
HZ planets in the solar neighborhood use the “low” end of the
rocky planet (0.5–1.5 R⊕) occurrence rate values from Table 5.
As such, these represent the lower-bound estimates. In other
words, there may potentially be an HZ rocky planet around a G
or K dwarf that is closer, and maybe more HZ planets, than the
values quoted above.

This can be quantified from the numbers shown in Table 6,
which provides the 95% and 99% credible intervals of the
upper and lower bounds on HZ occurrence for model 1
computed with hab2 and accounting for input uncertainty. If we
use only the “low” values and the lower end of the conservative
HZ occurrence values from this table (0.07 for 95% credible
interval, 0.04 for 99%), then the nearest HZ planet around a G
or K dwarf star is within ∼6 pc away with 95% confidence and
within ∼7.5 pc away with 99% confidence. Similarly, there
could be ∼4 HZ planets within 10 pc with 95% confidence and
∼3 HZ planets with 99% confidence. The lower bound of the
95% credible interval for G dwarfs is also 0.07, so assuming
100 billion stars in our Galaxy and a G-dwarf fraction of 0.041,
there are likely at least 287 million rocky conservative HZ
planets orbiting G-dwarf stars in our Galaxy.

The numbers provided in this section are first-order estimates
to simply show a meaningful application of η⊕, given its
uncertainties. Weiss et al. (2018), Mulders et al. (2018), and He
et al. (2020) have shown that there is strong evidence for
multiplicity and “clustering’’ (planets in multiplanet systems
are correlated in size to their neighbors). However, the similar-
size trend has not been characterized for orbits corresponding
to the HZs of G and K dwarfs. If the pattern of similarly sized
planets extends to HZ, the nearest sun-like star hosting an
Earth-size planet in the HZ would be farther from our sun than
we estimated in this paper, but it could have multiple Earth-
sized planets in the HZ.

5.5. Comparison with Previous Estimates of η⊕

Our work is the first to compute HZ occurrence rates using
the incident stellar flux for HZs around subsets of FGK stars
based on the DR25 catalog and Gaia-based stellar properties
and using the HZ definition of Kopparapu et al. (2014). Other
works in the literature have produced occurrence rates for
orbital periods related to FGK HZs, but as discussed in
Section 1.2 and Section 3.5, we measure occurrence between
HZ boundaries as a function of Teff. This is a different quantity
from occurrence rates based on orbital period. The few
occurrence rate estimates in the literature based on instellation

flux, such as that of Petigura et al. (2013), use a rectangular
region in terms of radius and instellation flux and only
approximate the HZ. Therefore, we do not directly compare our
occurrence rates with those in previous literature.
We provide a formal computation of Γ⊕, which is commonly

used to compare η⊕ estimates (see, for example, Figure 14 of
Kunimoto & Matthews 2020). For a planet of period p and
radius r, we define G º d f d p d rlog log2 = pr d2f/dp dr, and
Γ⊕ is Γ evaluated at Earth’s period and radius. We need to
express Γ in terms of instellation flux I, which we will do
using =d f dp dr d f dI dr dI dp2 2( )( ).
For a particular star, the instellation on a planet at period p in

years is given by = - -I R T M p2 4 2 3 4 3
* *

, where R* is the stellar
radius in solar radii, M* is the stellar mass in solar masses, and
T=Teff/Te is the star’s effective temperature divided by the
solar effective temperature. Then

ql

G =

= - -

p r
d f

dI dr

dI

dp

R T

M
r p I r T

4

3
, , , 10

2

2 4

2
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4
3*

*

⎛
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⎞
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( ) ( )

because d2f/dI dr=λ(I,r,T,θ), one of the differential
population rate models from Equation (5). To compute Γ⊕

for a particular star, we evaluate Equation (10) at r=1 R⊕,
p=1 year, and = -I R T M2 4 2 3

* * , the instellation a planet with
a 1 year orbital period would have from that star. The result is
the Γ⊕ in radius and period implied by our differential
population rate function in radius and instellation for that star
and may be compared directly with Γ⊕ from period-based
occurrence studies.
We compute Γ⊕ using model 1 from Equation (5) with input

uncertainty on the hab2 stellar population. For each star in
hab2, we evaluate Equation (10) using the posterior θ
distribution and concatenate the resulting Γ⊕ distributions
from all the stars. We do this for both completeness
extrapolations in Section 3.3.2, giving low and high bounds.
This results in a Γ⊕ between -

+0.45 0.24
0.46 and -

+0.50 0.26
0.46. While this

is a formal mathematical exercise that has not been demon-
strated to be truly equivalent to Γ⊕ defined in period space, the
match between this value and our conservative HZ
h =Å -

+0.37C
0.21
0.48– -

+0.60 0.36
0.90 for model 1 for hab2 with input

uncertainty in Table 3 is remarkable.
Our value of Γ⊕ is somewhat higher than values using post-

Gaia stellar and planetary data (see, for example, Figure 14 of
Kunimoto & Matthews 2020), but not significantly so. For
example, Bryson et al. (2020a) found G =Å -

+0.09 0.04
0.07 when

correcting for reliability in the period–radius space. Using the
same population model, Bryson et al. (2020a) found a SAG13
η⊕ value of -

+0.13 0.06
0.10. It is not clear by how much we should

expect Γ⊕ to correspond to η⊕.

5.6. Effective Temperature Dependence

As described in Section 4.2 and Figure 14, our results
indicate a weak, and thus not compelling, increase in HZ planet
occurrence with increasing stellar effective temperature. This
Teff dependence is weaker than would be expected if planet
occurrence were uniformly spaced in the semimajor axis (see
Section 2.2) because hotter stars have larger HZs. This can be
seen quantitatively in the median differential population rates54 http://www.recons.org/census.posted.htm
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for models 1 and 2 using the hab2 population in Tables 1 and 2.
In model 2 we observe a median Teff exponent γ<3,
compared with the prediction of γ≈3 to 4.5 due to the larger
HZ for hotter stars from Equation (4). This is reflected in model
1, which includes the correction for the larger HZ so if Teff
dependence were due only to the larger HZ, then γ would equal
0. The high bound of model 1 finds a median γ<−1,
indicating that we see fewer HZ planets than expected in the
larger HZ of hotter stars if the planets were uniformly spaced.
However the upper limits of γʼs 68% credible interval in
Tables 1 and 2 are consistent with the prediction of uniform
planet spacing in larger HZs for hotter stars. For example, the
posterior of γ for model 1 (hab2 population, high bound) has
γ�0 22.3% of the time.

Our detection of a weaker Teff dependence than expected
from larger HZs is qualitatively consistent with the increasing
planet occurrence with lower Teff found in Garrett et al. (2018)
and Mulders et al. (2015). But our uncertainties do not allow us
to make definitive conclusions about this Teff dependence.

5.7. Dependence on the Planet Sample

To study the dependence of our result on the planet sample, we
perform a bootstrap analysis. We run a Poisson likelihood
inference using hab2 and model 1 with zero extrapolation (high
bound) 400 times, resampling the planet candidate population
with replacement. Each resampled run removes planets according
to their reliability as described in Section 3.4.2 but does not
consider input uncertainty. The concatenated posterior of these
resampled runs gives = -

+F 1.4040 0.680
1.768, a = - -

+0.920 1.072
1.236,

b = - -
+1.175 0.444

0.465, and g = - -
+1.090 2.217

2.446. These parameters
yield h =Å -

+0.483C
0.324
0.997 and h =Å -

+0.716O
0.472
1.413. Comparing these

with the hab2 model 1 high value without uncertainty in Tables 1
and 3, we see that the central values from the bootstrap study are
well within the 68% credible interval of our results and the
uncertainties are as much as 50% higher.

A similar study of dependence on the stellar sample is not
feasible because each resampled stellar population would
require a full recomputation of detection and vetting complete-
ness and reliability. Performing hundreds of these computations
is beyond our available resources.

5.8. Impact of Catalog Reliability Correction

All results presented in this paper are computed with
corrections for planet catalog completeness and reliability (see
Section 3.3). Figure 15 shows an example of what happens
when there is no correction for catalog reliability. We compute
hÅ

C , the occurrence in the conservative HZ, with model 1, zero-
completeness extrapolation (high value), accounting for input
uncertainty and using the hab2 stellar population. With
reliability correction, we have h =Å -

+0.60C
0.36
0.90, and without

reliability correction we have h =Å -
+1.25C

0.60
1.40. In this typical

case reliability has a factor-of-two impact, consistent with
Bryson et al. (2020a), though because of the large uncertainties
the difference is less than the 68% credible interval.

5.9. η⊕ based on the GK and FGK Stellar Populations

Our definition of η⊕, restricted to stars with effective
temperatures between 4800K and 6300 K, varies somewhat from
the literature. To connect with other occurrence rate studies we

repeat our analysis using the GK (3900 K�Teff�6000 K) and
FGK (3900 K�Teff�7300 K) stellar populations to compute
planet population models, with the results listed in Table 7. We
provide our η⊕ derived from these stellar populations as well as
the HZ occurrence for the GK and FGK Teff ranges. The values
for our definition of η⊕ are consistent with the values in Tables 3
and 4. We caution, however, that the FGK population extends
well into stellar effective temperatures where there are no planet
detections and very low or zero completeness, so an FGK result
necessarily involves extrapolation from cooler stars.

5.10. Caveats

While this study takes care to incorporate detection and
vetting completeness and importantly both reliability and
observational uncertainty, there are still unresolved issues.
We summarize these issues here, each of which can motivate
future improvements to our occurrence rate model and
methodology.
Power-law assumption.Products of power laws in terms of

radius and period are commonly adopted for planet population
models in occurrence rate studies, but there is growing evidence
that calls their suitability into question. For instance, improve-
ments to stellar radius measurements have revealed that the radius
distribution for small, close-in planets is bimodal, rather than a
smooth or broken power law (Fulton et al. 2017), which has also
been observed in K2 data (Hardegree-Ullman et al. 2020). Power
laws are not capable of describing such non-monotonic popula-
tions. Looking at the bottom panels of Figure 10 (without
uncertainty), we can see some data points in the radius and
instellation flux distributions do not lie along our inferred power
laws. However, using input uncertainties (top panels of Figure 10)
washes out this structure, making it more difficult to discern the
failure or success of a power-law model as a descriptor of the data.
There is also strong evidence that populations are not well
described by products of power laws in terms of radius and period
(Petigura et al. 2018; Lopez & Rice 2018) for orbital periods of
<100 days. Therefore a product of power laws such as
Equation (5) in terms of radius and instellation flux is unlikely
to be a good description of planet populations at high instellation.

Figure 15. A comparison of the distributions, with and without reliability
correction, of the conservative HZ hÅ

C computed with model 1, zero-
completeness extrapolation (high value), accounting for input uncertainty and
using the hab2 stellar population.
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At low instellation of the HZ, however, the observed planet
candidate population does not indicate any obvious structure (see
Figure 1). Given that our domain of analysis is plagued by few
detections, low completeness, and low reliability, more observa-
tions are likely needed to determine more appropriate population
models. Therefore, because most of our planet population have
radii larger than 1.5 R⊕, those larger planets are likely driving the
population model and may be causing bias in the model in the
smaller-planet regime due to our simple product power laws in
Equation (5).

Planetary multiplicity.Zink et al. (2019) pointed out that
when short-period planets are detected in the Kepler pipeline,
data near their transits are removed for subsequent searches,
which can suppress the detection of longer-period planets
around the same star. They found that for planets with periods
greater than 200 days detection completeness can be sup-
pressed by over 15% on average. Our stellar population has
removed stars for which more than 30% of the data has been
removed due to transit detection via the dutycycle_post stellar
property from the DR25 stellar property table (for details see
Bryson et al. 2020a). We do not attempt to quantify the extent
to which this stellar cut mitigates the impact identified in Zink
et al. (2019), nor do we account for this effect in our analysis.

Stellar multiplicity contamination.Several authors (Ciardi
et al. 2015; Furlan et al. 2017; Furlan & Howell 2017, 2020)
have shown that undetected stellar multiplicity can impact
occurrence rate studies in at least two ways. Stellar multiplicity
can reveal planet candidates to be false positives, reducing the
planet population, and valid planet candidates in the presence
of unknown stellar multiplicity will have incorrect planet radii
due to flux dilution. They estimate that these effects can have
an overall impact at the 20% level. Stellar multiplicity can also
bias the parent stellar sample because unaccounted-for flux
dilution will bias the completeness estimates. Our analysis does
not take possible stellar multiplicity into account. However
stellar multiplicity has been shown to be associated with poor-
quality metrics, specifically the BIN flag of Berger et al. (2018)

and the Gaia RUWE metric (Lindegren 2018). For example, A.
Kraus et al. (2021, in preparation) found that few Kepler target
stars with RUWE>1.2 are single stars. As described in
Section 3.1, we remove stars from our parent stellar population
that have been identified as likely binaries in Berger et al.
(2018) or have RUWE>1.2, which is expected to remove
many stars with undetected stellar multiplicity (for details see
Bryson et al. 2020a). We do not attempt to quantify the impact
of undetected stellar multiplicity for our stellar population after
this cut.
Planet radius and HZ limits.There are several stellar,

planetary, and climate model–dependent factors that could
reduce the occurrence rates calculated in this work. It is quite
possible that uncertainties in the stellar radii may alter the
planet radii, moving some rocky planets into the mini-Neptune
regime of >1.5 R⊕. Or, it is possible that the upper limit of
1.5R⊕ is an overestimate of the rocky planet limit, and the
rocky-to-gaseous transition may lie lower than 1.5R⊕.
Although, as pointed out in Section 2 following Otegi et al.
(2020), the rocky regime can extend to as large as 2.5R⊕,
many of these large–radius regime planets are highly irradiated
ones, so they may not be relevant to HZ rocky planets.
The HZ limits themselves may be uncertain, as they are

model and atmospheric composition dependent. Several studies
in recent years have calculated HZ limits with various
assumptions (see Kopparapu et al. 2019 for a review). In
particular, the inner edge of the HZ could extend further in,
closer to the star, due to slow rotation of the planet (Yang et al.
2014; Kopparapu et al. 2016; Way et al. 2016), and the outer
edge of the HZ may shrink due to “limit cycling,” a process
where the planet near the outer edge of the HZ around FG stars
may undergo cycles of globally glaciated and unglaciated
periods with no long-term stable climate state (Kadoya &
Tajika 2014, 2015; Menou 2015; Haqq-Misra et al. 2016).
Consequently, the number of planets truly in the HZ remains
uncertain.

Table 7
Parameter Fits and η⊕ with 68% Confidence Limits for Model 1 from Equation (5) Computed Using the Population Model from the Poisson Likelihood Method

Applied to the GK and FGK Stellar Populations

With Uncertainty Without Uncertainty

Based on GK Stars Based on FGK Stars Based on GK Stars Based on FGK Stars
Low Bound–High Bound Low Bound–High Bound Low Bound–High Bound Low Bound–High Bound

Model 1
F0 + -

+1.01 0.4
0.82–+ -

+1.23 0.52
1.12 + -

+1.26 0.55
1.2 –+ -

+2.36 1.2
2.94 + -

+0.89 0.33
0.64–+ -

+1.12 0.44
0.83 + -

+1.24 0.51
1.03–+ -

+2.05 0.98
2.14

α - -
+1.00 0.9

1.0–- -
+1.05 0.9

1.0 - -
+1.03 0.87

0.95–- -
+1.16 0.85

0.94 - -
+0.80 0.83

0.93–- -
+0.90 0.78

0.87 - -
+1.00 0.77

0.84–- -
+0.96 0.78

0.87

β - -
+0.90 0.32

0.34–- -
+1.13 0.36

0.37 - -
+0.82 0.3

0.32–- -
+1.23 0.34

0.36 - -
+0.84 0.3

0.33–- -
+1.08 0.34

0.36 - -
+0.82 0.27

0.3 –- -
+1.21 0.32

0.34

γ - -
+3.00 1.72

1.75–- -
+2.25 1.86

1.9 - -
+2.67 1.58

1.57–- -
+1.07 1.77

1.8 - -
+2.76 1.62

1.61–- -
+1.98 1.69

1.75 - -
+2.67 1.43

1.43–- -
+1.15 1.66

1.64

hÅ
C

-
+0.34 0.20

0.48– -
+0.46 0.28

0.71
-
+0.36 0.20

0.46– -
+0.63 0.37

0.92
-
+0.29 0.16

0.37– -
+0.41 0.23

0.53
-
+0.35 0.19

0.40– -
+0.53 0.30

0.68

hÅ,GK
C

-
+0.32 0.18

0.41– -
+0.40 0.23

0.54
-
+0.32 0.18

0.38– -
+0.48 0.27

0.64
-
+0.26 0.15

0.31– -
+0.35 0.19

0.40
-
+0.32 0.16

0.33– -
+0.41 0.22

0.49

hÅ,FGK
C

-
+0.35 0.21

0.54– -
+0.47 0.29

0.81
-
+0.37 0.21

0.53– -
+0.63 0.39

1.18
-
+0.30 0.17

0.43– -
+0.42 0.24

0.64
-
+0.36 0.20

0.46– -
+0.53 0.31

0.88

hÅ
O

-
+0.52 0.30

0.72– -
+0.68 0.41

1.01
-
+0.56 0.31

0.70– -
+0.92 0.54

1.29
-
+0.45 0.25

0.56– -
+0.61 0.34

0.77
-
+0.55 0.29

0.60– -
+0.77 0.43

0.96

hÅ,GK
O

-
+0.48 0.27

0.59– -
+0.59 0.33

0.76
-
+0.50 0.27

0.56– -
+0.70 0.39

0.90
-
+0.41 0.22

0.46– -
+0.51 0.27

0.57
-
+0.49 0.25

0.49– -
+0.59 0.32

0.68

hÅ,FGK
O

-
+0.54 0.32

0.81– -
+0.69 0.42

1.17
-
+0.57 0.33

0.81– -
+0.91 0.55

1.70
-
+0.46 0.27

0.64– -
+0.62 0.35

0.93
-
+0.57 0.30

0.70– -
+0.77 0.45

1.28

Notes.The low and high bounds correspond to the constant- and zero-completeness extrapolation of Section 3.3.2. The superscripts C and O on η⊕ refer to the
conservative and optimistic HZs. η⊕,GK is the HZ occurrence for GK stars (3900 K�Teff�6000 K), and η⊕,FGK is the HZ occurrence for FGK stars
(3900 K�Teff�7300 K).
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5.11. Reducing Uncertainties

Our computation of η⊕ has large uncertainties, with the 68%
credible interval spanning factors of 2 (see Tables 3–5). The
99% credible intervals in Table 6 span two orders of
magnitude. In Section 5.3 we discuss how comparing
occurrence rates with and without input uncertainties in
Tables 3 and 4 indicates that these large uncertainties are
present before considering the impact of uncertainties in the
input data. We also observe in Table 5 that the uncertainties are
considerably smaller for planets larger than those contributing
to our η⊕. We conclude that while input uncertainties make a
contribution, the dominant cause of our large uncertainties is
Poisson uncertainty due to the very small number of HZ planets
smaller than 1.5R⊕ in very low completeness regions of the
DR25 planet catalog (see Figure 1). Our uncertainties may be
close to a noise floor induced by the small number of small HZ
planets resulting from the low completeness.

These large Poisson-driven uncertainties are unlikely to be
reduced by resolving the issues discussed in Section 5.10. Only
by increasing the small-planet catalog’s completeness, resulting
in a larger small-planet HZ population, can these uncertainties
be reduced.

There are two ways in which a well-characterized catalog
with more small planets can be produced:

1. Develop improved planet-vetting metrics that produce a
catalog that is both more complete and more reliable than
the DR25 catalog. There are several opportunities for
such improved metrics, discussed in Bryson et al.
(2020a), such as more fully exploiting pixel-level data
and existing instrumental flags that can give more
accurate reliability characterization than that given using
DR25 products. This approach requires new vetting
metrics. Bryson et al. (2020b) have shown that varying
the DR25 Robovetter thresholds does not significantly
change occurrence rates or their uncertainties once
completeness and reliability are taken into account. In
Appendix D we show that such changes in Robovetter
metrics also do not significantly change the occurrence
rates we find in this paper.

2. Obtain more data with a quality similar to Kepler’s, likely
through more space-based observations. In Section 1 we
describe how the unrealized Kepler extended mission,
doubling the amount of data relative to DR25, was
expected to significantly increase the yield of small
planets in the HZ. An additional 4 years of data from
observing the same stars as Kepler with similar photo-
metric precision would be sufficient. Eight years of
observation on a different stellar population would also
suffice. As of this writing, plans for space-based missions
such as TESS and PLATO do not include such long
stares on a single field. For example, PLATO is currently
planning no more than 3 years of continuous observation
of a single field.55

6. Conclusions

In this paper we compute the occurrence of rocky
(0.5 R⊕�r�1.5 R⊕) planets in the HZ for a range of
main-sequence dwarf stars from the Kepler DR25 planet

candidate catalog and Gaia-based stellar properties. We base
our occurrence rates on differential population models
dependent on radius, instellation flux, and host star effective
temperature (Section 3.4.1). Our computations are corrected for
completeness and reliability, making full use of the DR25 data
products. Using instellation flux instead of orbital period allows
us to measure occurrence in the HZ even though the HZ
boundaries depend on the stellar effective temperature
(Section 3.5). Instellation flux also allows us to transfer the
unconstrained extrapolation required when extending analysis
based on orbital period to a bounded extrapolation of detection
completeness (Section 3.3.2), and we present our results in
terms of these upper and lower bounds (Section 4). The
difference between the upper and lower bounds is smaller than
the 68% credible interval on these bounds.
We compute our occurrence rates using a range of models,

stellar populations, and computation methods. We propagate
uncertainties in the input data, account for detection complete-
ness that depends on the stellar effective temperature, and
check the dependence of our result on the population via a
bootstrap study. In all cases we find consistent results. We take
this as evidence that our occurrence rates are robust.
We find a likely, though not statistically compelling,

dependence of our occurrence rates on the stellar host’s
effective temperature Teff (Section 4.2, Figure 14). Much of this
dependence can be understood as due to the HZ being larger for
hotter stars (Section 2.2). But we find that the Teff dependence
is weaker than would be expected on purely geometric
grounds, implying a decreasing planet occurrence for longer-
period orbits.
Our occurrence rates for rocky planets have large uncertain-

ties. Comparing computations with and without input uncer-
tainties, we find that these large uncertainties are not caused by
the input uncertainties. Comparing the uncertainties on our
rocky planets with the uncertainties on the occurrence of larger
planets (Table 5), we find that the larger-planet occurrence has
much lower uncertainty. We conclude that the large uncertain-
ties are due to the extremely low completeness of the DR25
catalog for small planets in the HZ, leading to few planet
detections. The only way we see to reduce these uncertainties is
by generating more complete and reliable catalogs, either
through improved analysis of existing data or through
obtaining more data with quality comparable to that of Kepler
(Section 5.11).
Conservative habitability considerations (Section 2) and the

limited coverage of F stars in the Kepler data (Section 1) drive
us to define η⊕ as the average number of HZ planets per star
with planet radii between 0.5R⊕ and 1.5R⊕ and host star
effective temperatures between 4800 and 6300 K. Using this
definition, we find that, for the conservative HZ, η⊕ is between

-
+0.37 0.21

0.48 and -
+0.60 0.36

0.90 planets per star, while for the optimistic
HZ η⊕ is between -

+0.58 0.33
0.73 and -

+0.88 0.51
1.28 planets per star. These

occurrence rates imply that conservatively, to 95% confidence,
the nearest rocky HZ planet around G and K dwarfs is expected
to be within ∼6 pc (Section 5.4). Furthermore, there could, on
average, be four HZ rocky planets around G or K dwarfs within
10 pc from the Sun.

This research has made use of the NASA Exoplanet Archive,
which is operated by the California Institute of Technology,
under contract with the National Aeronautics and Space
Administration under the Exoplanet Exploration Program. We55 https://www.cosmos.esa.int/web/plato/observation-concept
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Appendix A
Instellation Flux and Effective Temperature Population

Rate Dependence from a Period Power Law

We can qualitatively estimate the instellation flux portion of the
differential rate function λ by using =df dI df dp dI dp( ) ( ).
From the formula for instellation flux and Kepler’s third law, we
have = -I R T M p2 4 2 4 1

3
* *

( ) , where M* is the stellar mass in solar
masses, T=Teff/Te is the effective temperature divided by the
solar effective temperature, and p is the orbital period in years.
Using the mass–radius relation for main-sequence dwarfs, this
becomes » m -I R T p4 4

3
* , where m = -

x
2 2

3
. When M*�Me,

ξ≈0.8 and μ≈1.17, while for M*>Me, ξ≈0.57 and
μ≈0.8. We make the crude (≈20% error) but convenient
approximation that μ=1. Then using the empirically linear
relationship between radius and temperature for the main-
sequence dwarfs in our stellar population, t» + -I T R T p0

4 4
3( )

and, assuming p and T are independent, »dI dp
t- + -T R T p4

3 0
4 7

3( ) .
Several studies, such as Burke et al. (2015) and Bryson et al.

(2020a), have investigated planet occurrence in terms of the
orbital period p and have shown that df/dp is well
approximated by a power law Fpα (where F is determined
by the radius dependence and normalization). Using this power

law and t» + -p T R T I0
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t

t
t

t

=

»
+

»
+

+
» +

a

a

n d

+

- +

df dI
df dp

dI dp

Fp

T R T

F T R T I

T R T

CI T R T

3

4

3

4

11

0
4

0
4 1

0
4

0
4

7
3

3
4

7
3( )

( )
(( ) )

( )
(( ) ) ( )

where n a= - -3

4

7

3( ), δ=−ν−1, and C is independent of

I. Using the value α≈−0.8 from Bryson et al. (2020a), we
have ν≈−1.15 and δ≈0.15.

Appendix B
Derivation of the Effective Temperature–Dependent

Likelihood

Our observed planet population is described by a point
process with an instellation flux, radius, and effective
temperature–dependent rate λ(I, r, T) and completeness as a
function of flux, radius, and effective temperature for each star
sηs(I, r, Ts). We assume that the probability that ni planets occur
around an individual star in some region Bi (say, a grid cell) of
the flux–radius space is given by the Poisson probability

= =
L -LP N B n

B
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i

B
i
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!
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where

ò h lL =B I r I r T dI dr, , , .i
B
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We do not integrate over Ts because that is fixed to the effective
temperature of the star. We now cover our entire flux–radius
range D with a sufficiently fine regular grid with spacing Δp
and Δr so that each grid cell i centered at the flux and radius
(Ii, ri) contains at most one planet. Then in cell i
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We now ask: what is the probability of a specific number ni of
planets in each cell i? We assume that the probability of a
planet in different cells is independent, so
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because the Bi cover D and are disjoint. Here K is the number
of grid cells and K1 is the number of grid cells that contain a
single planet. So the grid has disappeared, and we only need to
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evaluate λ(I, r, Ts) at the planet locations (Ii, ri, Ts) and
integrate ηsλ over the entire domain.

We now consider the probability of detecting planets around
a set of N* stars. Assuming that planet detections on different
stars are independent of each other, the joint probability of a
specific set of detections specified by the set {ni, i=1,K, N*}
in cell i on all stars indexed by s is given by

h l
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When λ does not depend on effective temperature, we

are able to factor ò h l -= I r I r dI drexp , ,s
N

D s1*
⎡⎣ ⎤⎦( ) ( ) as

ò h l- I r I r dI drexp , ,
D

⎡⎣ ⎤⎦( ) ( ) , where h h= å =I r I r, ,s
N

s1*( ) ( )
is the sum of the completeness contours over all stars. When λ

depends on effective temperature, we partition the stars into
effective temperature bins Sk and approximate Ts as the average
temperature in each bin Tk̄, so within each bin λ does not
depend on the star. Then we can do the factoring within each
bin:
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( ) ( ) is the sum of the completeness

contours over the stars in bin Sk. Note that we are not
integrating over the effective temperature. Therefore
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We now let the rate function λ(I,r,T,θ) depend on a

parameter vector θ, and consider the problem of finding the θ

that maximizes the likelihood
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Because we are maximizing with respect to θ, we can ignore all
terms that do not depend on θ. Therefore, maximizing
Equation (16) is equivalent to maximizing
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When we neglect the effective temperature dependence of λ
and have only one effective temperature partition containing all
the stars, Equation (17) reduces to
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used in Bryson et al. (2020a).

Appendix C
Planet Candidate Properties

Figure 16 and Table 8 give the properties of the DR25
candidates used in our study. These planet candidates are
detected on FGK host stars (of which hab and hab2 are subsets)
after the cuts described in Section 3.1. The basic planet
candidate population is that within our computation domain of
0.5 R⊕�r�2.5 R⊕ and 0.2 I⊕�I�2.2 I⊕, defined by the
planet radius and instellation central values. When we account
for input uncertainties as described in Section 3.4.2, some of
these planets exit our domain and other planets enter the
domain. In a particular realization, only those planets in the
domain are involved in the computation of population models
and occurrence rates. The probability of a planet candidate
being in the domain in a particular realization is given by the
“Inclusion Probability” column of Table 8. We list planet
candidates with an inclusion probability of >1/4000, which, if
reliability=1, have a 10% chance of being included in one of
the 400 realizations used in the computation with uncertainty.
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Figure 16. Planet candidates from Table 8, sized and colored by their inclusion probability. The green box shows the computational domain 0.5 R⊕�r�2.5 R⊕ and
0.2 I⊕�I�2.2 I⊕.

Table 8
Planet Candidate Properties

KOI Radius Period Instellation Host Star Teff Reliability Inclusion Probability
(R⊕) (days) (I⊕) (K)

4742.01 -
+1.35 0.08

0.08 112.30 -
+1.01 0.07

0.08
-
+4602 76

84 0.91 1.00000

8107.01 -
+1.19 0.06

0.06 578.89 -
+1.00 0.08

0.08
-
+5832 103

102 0.62 1.00000

7016.01 -
+1.46 0.08

0.09 384.85 -
+1.11 0.08

0.08
-
+5900 100

102 0.68 1.00000

2719.02 -
+1.25 0.08

0.15 106.26 -
+1.25 0.09

0.10
-
+4601 76

81 0.96 1.00000

701.03 -
+1.80 0.04

0.07 122.39 -
+1.44 0.10

0.11
-
+4966 82

82 1.00 1.00000

4036.01 -
+1.71 0.08

0.12 168.81 -
+0.77 0.05

0.05
-
+4697 68

76 1.00 1.00000

2194.03 -
+1.80 0.14

0.10 445.22 -
+1.36 0.12

0.13
-
+5965 116

122 0.68 1.00000

4087.01 -
+1.80 0.08

0.10 101.11 -
+0.82 0.07

0.07
-
+4171 49

56 1.00 1.00000

7923.01 -
+0.91 0.08

0.03 395.13 -
+0.43 0.03

0.03
-
+5064 73

84 0.40 1.00000

8242.01 -
+1.48 0.21

0.10 331.55 -
+0.89 0.07

0.07
-
+5736 97

105 0.53 1.00000

8047.01 -
+1.86 0.22

0.14 302.35 -
+0.38 0.03

0.03
-
+4712 74

78 0.72 1.00000

8048.01 -
+1.76 0.15

0.16 379.67 -
+1.31 0.11

0.11
-
+6058 107

108 0.48 1.00000

7894.01 -
+1.91 0.10

0.15 347.98 -
+1.16 0.10

0.11
-
+5772 106

108 0.86 0.99996

2184.02 -
+1.93 0.21

0.05 95.91 -
+1.66 0.13

0.14
-
+4820 83

88 0.97 0.99993

7749.01 -
+1.68 0.16

0.09 133.63 -
+1.73 0.12

0.12
-
+5098 78

83 0.01 0.99993

7931.01 -
+1.75 0.19

0.10 242.04 -
+1.61 0.15

0.16
-
+5843 100

106 0.84 0.99992

7915.01 -
+2.14 0.26

0.08 382.59 -
+1.69 0.14

0.14
-
+6138 117

118 0.47 0.99990

7953.01 -
+1.63 0.10

0.27 432.97 -
+0.69 0.06

0.07
-
+5421 95

107 0.37 0.99940

4450.01 -
+2.06 0.10

0.14 196.44 -
+1.29 0.11

0.11
-
+5361 89

91 0.99 0.99932

8246.01 -
+1.72 0.22

0.12 425.65 -
+1.70 0.15

0.16
-
+6091 123

125 0.36 0.99898

6971.01 -
+1.69 0.31

0.27 129.22 -
+1.23 0.09

0.10
-
+4921 83

82 0.98 0.99857

87.01 -
+2.22 0.30

0.10 289.86 -
+0.96 0.07

0.07
-
+5625 93

93 0.96 0.99827

7746.01 -
+2.15 0.26

0.12 393.96 -
+1.02 0.13

0.15
-
+6135 114

118 0.56 0.99799
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Table 8
(Continued)

KOI Radius Period Instellation Host Star Teff Reliability Inclusion Probability
(R⊕) (days) (I⊕) (K)

2992.01 -
+2.24 0.24

0.09 82.66 -
+1.02 0.09

0.10
-
+4166 57

68 0.66 0.99754

2931.01 -
+2.22 0.59

0.05 99.25 -
+1.79 0.13

0.14
-
+4806 76

84 0.99 0.99682

3344.03 -
+2.13 0.16

0.15 208.54 -
+1.44 0.14

0.14
-
+5495 95

96 0.97 0.99409

8063.01 -
+2.13 0.19

0.15 405.35 -
+0.63 0.06

0.07
-
+5455 102

103 0.78 0.99238

8159.02 -
+2.20 0.10

0.13 353.02 -
+1.80 0.15

0.15
-
+6290 118

121 0.84 0.98719

7882.01 -
+1.33 0.15

0.08 65.42 -
+1.87 0.13

0.15
-
+4390 74

81 0.90 0.98612

3282.01 -
+1.89 0.10

0.11 49.28 -
+1.66 0.15

0.16
-
+4050 69

64 1.00 0.98445

4622.01 -
+1.48 0.11

0.09 207.25 -
+0.24 0.02

0.02
-
+4147 45

67 0.98 0.98121

5067.01 -
+2.11 0.27

0.19 219.93 -
+1.26 0.09

0.10
-
+5526 87

93 0.21 0.97935

571.05 -
+1.43 0.25

0.14 129.95 -
+0.40 0.03

0.03
-
+4023 62

58 0.92 0.97528

2770.01 -
+2.26 0.08

0.13 205.39 -
+0.45 0.03

0.04
-
+4475 75

80 0.99 0.96615

8033.01 -
+2.24 0.26

0.16 362.13 -
+0.40 0.04

0.04
-
+5035 83

90 0.55 0.94736

2290.01 -
+1.77 0.05

0.10 91.50 -
+2.01 0.14

0.14
-
+4944 74

75 1.00 0.90532

4084.01 -
+2.32 0.09

0.16 214.88 -
+1.14 0.09

0.10
-
+5288 89

94 0.99 0.86571

250.04 -
+2.36 0.13

0.09 46.83 -
+2.00 0.17

0.17
-
+4124 68

43 1.00 0.82052

4005.01 -
+2.36 0.09

0.14 178.14 -
+1.97 0.15

0.16
-
+5545 94

94 0.99 0.79403

4054.01 -
+2.22 0.23

0.35 169.14 -
+1.34 0.10

0.11
-
+5216 86

91 1.00 0.78695

5276.01 -
+2.36 0.14

0.21 220.72 -
+0.91 0.10

0.12
-
+5086 88

95 0.96 0.75601

4015.01 -
+2.42 0.11

0.14 133.30 -
+1.60 0.15

0.15
-
+5051 85

90 1.00 0.72676

2162.02 -
+1.42 0.07

0.09 199.67 -
+2.09 0.18

0.19
-
+5814 112

116 0.99 0.72275

1989.01 -
+2.34 0.06

0.09 201.12 -
+2.10 0.15

0.15
-
+5756 96

97 1.00 0.71591

2028.03 -
+2.40 0.13

0.17 142.54 -
+1.72 0.19

0.21
-
+5213 91

97 1.00 0.71120

5874.01 -
+2.46 0.17

0.07 287.33 -
+1.61 0.12

0.13
-
+5432 102

109 0.03 0.70033

5433.01 -
+2.42 0.13

0.16 237.82 -
+1.81 0.18

0.19
-
+5798 110

112 0.97 0.68318

518.03 -
+2.45 0.07

0.11 247.35 -
+0.56 0.04

0.04
-
+4918 88

90 1.00 0.66314

7345.01 -
+2.44 0.13

0.19 377.50 -
+1.18 0.11

0.12
-
+5883 111

113 0.88 0.62068

2834.01 -
+2.48 0.20

0.08 136.21 -
+1.09 0.10

0.11
-
+4775 83

91 1.00 0.61320

8201.01 -
+2.25 0.24

0.89 392.60 -
+0.38 0.03

0.03
-
+5141 88

91 0.04 0.61117

4745.01 -
+2.37 0.33

0.51 177.67 -
+0.78 0.07

0.08
-
+4790 78

84 0.99 0.59915

2841.01 -
+2.48 0.13

0.16 159.39 -
+1.65 0.18

0.20
-
+5397 100

103 0.99 0.55438

7673.01 -
+0.79 0.17

0.05 80.77 -
+2.20 0.14

0.15
-
+4747 70

78 0.74 0.48552

4121.01 -
+2.52 0.19

0.66 198.09 -
+1.08 0.11

0.12
-
+5237 86

90 0.99 0.45819

812.03 -
+2.10 0.07

0.11 46.18 -
+2.24 0.22

0.24
-
+4293 90

82 1.00 0.43624

2757.01 -
+2.53 0.10

0.11 234.64 -
+1.18 0.09

0.09
-
+5437 97

96 0.96 0.39568

238.03 -
+2.08 0.11

0.11 362.98 -
+2.42 0.49

0.52
-
+6572 320

272 0.90 0.32274

4016.01 -
+2.71 0.40

0.33 125.41 -
+0.81 0.05

0.06
-
+4444 76

78 0.99 0.30347

612.03 -
+3.00 0.77

0.07 122.08 -
+2.00 0.14

0.15
-
+5192 89

94 0.73 0.23460

1876.01 -
+2.58 0.11

0.13 82.53 -
+1.13 0.11

0.12
-
+4269 76

81 1.00 0.23173

8156.01 -
+2.94 0.59

0.34 364.98 -
+1.42 0.12

0.12
-
+6214 108

114 0.41 0.22789

1353.03 -
+2.64 0.19

1.08 330.07 -
+1.38 0.10

0.10
-
+6081 101

102 0.30 0.22344

427.03 -
+2.28 0.08

0.11 117.03 -
+2.34 0.18

0.18
-
+5208 84

90 1.00 0.21061

7880.01 -
+2.61 0.19

0.17 623.71 -
+2.11 0.18

0.18
-
+6753 139

156 0.47 0.20068

8238.01 -
+3.26 0.87

0.19 495.66 -
+0.58 0.05

0.05
-
+5540 106

108 0.74 0.18981

4076.01 -
+1.89 0.11

0.10 124.83 -
+2.37 0.19

0.21
-
+5552 89

94 0.97 0.17777

1430.03 -
+2.83 0.33

0.44 77.47 -
+1.73 0.12

0.13
-
+4543 75

79 1.00 0.15944

1871.01 -
+3.00 0.49

0.27 92.73 -
+1.57 0.11

0.12
-
+4589 72

75 1.00 0.15384

2762.01 -
+2.79 0.27

0.40 133.00 -
+1.10 0.08

0.08
-
+4694 75

80 1.00 0.14364

5581.01 -
+2.68 0.17

0.64 374.88 -
+0.54 0.04

0.04
-
+5311 89

89 0.92 0.13855

4356.01 -
+2.64 0.13

0.17 174.51 -
+0.63 0.06

0.06
-
+4577 80

85 0.99 0.13305

7889.01 -
+2.30 0.17

0.23 130.24 -
+2.57 0.33

0.35
-
+5494 102

105 0.94 0.10455

581.02 -
+2.37 0.09

0.13 151.86 -
+2.45 0.22

0.23
-
+5669 94

100 0.99 0.10319

2529.02 -
+2.40 0.24

0.51 64.00 -
+2.42 0.23

0.24
-
+4607 84

89 0.96 0.09608

1596.02 -
+2.85 0.25

0.70 105.36 -
+1.47 0.11

0.12
-
+4626 69

74 0.79 0.08588

3086.01 -
+2.70 0.14

0.19 174.73 -
+1.60 0.17

0.19
-
+5480 104

104 0.98 0.07218

4636.01 -
+5.02 2.05

5964.94 122.75 -
+2.04 0.22

0.24
-
+5158 86

92 0.01 0.07088

4009.01 -
+2.23 0.11

0.15 175.14 -
+2.63 0.29

0.31
-
+5870 117

120 0.99 0.06576

1938.01 -
+2.26 0.10

0.27 96.92 -
+2.44 0.17

0.19
-
+5086 82

86 1.00 0.06496
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Appendix D
Robovetter Variations

Bryson et al. (2020b) provided alternative planet candidate
catalogs based on the Kepler data, created by changing automated
vetting thresholds. They argued that occurrence rate estimates
should roughly agree between these alternative catalogs. Figure 17

shows the distribution of the model parameter F0 for model 1 for
these catalogs, computed without input uncertainties and zero-
completeness extrapolation with the hab2 stellar population. The
fitted population model coefficients for these catalogs are given in
Table 9. We see reasonable agreement between the Robovetter
variations when reliability corrections are applied.

Table 8
(Continued)

KOI Radius Period Instellation Host Star Teff Reliability Inclusion Probability
(R⊕) (days) (I⊕) (K)

505.05 -
+2.91 0.41

0.06 87.09 -
+2.26 0.15

0.15
-
+4868 70

75 1.00 0.05449

5622.01 -
+3.62 0.68

0.16 469.61 -
+0.40 0.04

0.05
-
+5260 90

98 0.83 0.04917

4014.01 -
+2.96 0.59

0.29 234.24 -
+2.35 0.18

0.18
-
+5993 101

103 0.93 0.04457

5790.01 -
+3.97 0.84

0.52 178.27 -
+0.85 0.07

0.08
-
+4797 75

80 0.98 0.03965

1527.01 -
+3.81 0.73

0.11 192.67 -
+1.85 0.16

0.17
-
+5603 105

105 0.82 0.03565

1707.02 -
+4.32 1.02

11.24 265.48 -
+1.76 0.21

0.28
-
+5766 130

142 0.50 0.03458

8193.01 -
+4.03 0.82

0.73 367.95 -
+0.74 0.08

0.09
-
+5546 92

95 0.36 0.03023

2210.02 -
+2.92 0.22

0.54 210.63 -
+0.58 0.04

0.05
-
+4779 78

80 1.00 0.02503

4202.01 -
+2.54 0.13

0.17 153.98 -
+2.66 0.29

0.32
-
+5741 104

110 1.00 0.02312

947.01 -
+2.02 0.06

0.07 28.60 -
+2.60 0.21

0.23
-
+3926 61

60 1.00 0.01918

2828.01 -
+2.35 0.16

0.08 59.50 -
+2.69 0.23

0.24
-
+4629 80

88 1.00 0.01785

4051.01 -
+2.71 0.10

0.16 163.69 -
+1.63 0.14

0.14
-
+5351 98

100 0.97 0.01523

4242.01 -
+1.66 0.09

0.10 145.79 -
+2.61 0.19

0.20
-
+5725 92

89 0.90 0.01379

2686.01 -
+3.51 0.45

0.07 211.03 -
+0.47 0.03

0.03
-
+4475 69

73 1.00 0.01289

3508.01 -
+1.62 0.09

0.11 190.80 -
+2.71 0.22

0.23
-
+6067 106

106 0.98 0.01120

172.02 -
+2.17 0.08

0.10 242.47 -
+2.71 0.22

0.24
-
+5890 114

118 0.98 0.01037

8276.01 -
+3.48 0.53

0.11 385.86 -
+2.29 0.19

0.18
-
+6618 123

128 0.63 0.01028

2172.02 -
+2.47 0.30

0.10 116.58 -
+2.74 0.25

0.23
-
+5420 93

97 0.98 0.00927

4926.01 -
+1.49 0.14

0.15 69.09 -
+2.78 0.24

0.24
-
+4831 86

92 0.39 0.00750

1986.01 -
+3.53 0.42

0.48 148.46 -
+1.63 0.13

0.15
-
+5228 100

107 0.99 0.00673

1608.03 -
+2.01 0.14

0.07 232.04 -
+2.81 0.22

0.22
-
+6128 111

111 0.89 0.00310

2525.01 -
+1.85 0.08

0.13 57.29 -
+2.93 0.26

0.26
-
+4617 79

87 1.00 0.00253

8249.01 -
+1.58 0.12

0.11 309.19 -
+2.88 0.24

0.29
-
+6153 113

129 0.64 0.00249

4385.02 -
+2.98 0.16

0.21 386.37 -
+0.48 0.05

0.06
-
+5215 93

99 0.90 0.00180

3266.01 -
+2.28 0.57

0.12 54.51 -
+2.79 0.20

0.22
-
+4459 70

75 1.00 0.00158

8275.01 -
+4.06 0.52

0.23 389.88 -
+0.55 0.07

0.08
-
+5370 109

113 0.15 0.00138

7982.01 -
+3.44 0.31

0.23 376.38 -
+1.01 0.12

0.14
-
+5814 103

107 0.56 0.00119

7798.01 -
+2.66 0.19

0.22 309.89 -
+3.12 0.37

0.32
-
+6258 127

133 0.54 0.00110

6786.01 -
+3.35 0.28

0.28 455.62 -
+0.71 0.11

0.12
-
+5622 115

118 0.80 0.00099

2650.01 -
+1.39 0.08

0.11 34.99 -
+3.21 0.33

0.34
-
+4096 80

69 1.00 0.00099

416.02 -
+3.03 0.50

0.19 88.26 -
+2.71 0.20

0.21
-
+5083 85

91 1.00 0.00091

1980.01 -
+2.73 0.40

0.07 122.88 -
+2.70 0.18

0.18
-
+5441 85

85 1.00 0.00087

401.02 -
+4.17 0.53

0.27 160.02 -
+2.13 0.15

0.16
-
+5516 87

90 0.95 0.00057

1078.03 -
+2.16 0.07

0.09 28.46 -
+3.03 0.25

0.27
-
+4015 62

58 1.00 0.00047

1970.02 -
+2.66 0.12

0.15 125.60 -
+2.99 0.30

0.32
-
+5585 96

98 1.00 0.00040

4856.01 -
+2.87 0.19

0.22 147.39 -
+3.16 0.42

0.47
-
+5773 104

108 1.00 0.00029

775.03 -
+2.04 0.11

0.12 36.45 -
+3.17 0.28

0.29
-
+4164 62

49 1.00 0.00026

Note. Boldfaced KOIs have central values in the computational domain 0.5 R⊕�r�2.5 R⊕ and 0.2 I⊕�I�2.2 I⊕.

(This table is available in machine-readable form.)
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Figure 17. Distributions of the parameter F0 in model 1 (see Equation (5)), the occurrence for the hab2 stellar population, for 0.5 R⊕�r�2.5 R⊕ and instellation
flux range 0.2 I⊕�I⊕�2.2 I⊕ for the high-reliability (blue), DR25 (pink), FPWG planet candidate (green), and high-completeness (orange) vetting, computed with
the Poisson method. Left: Without correcting for reliability. Right: Corrected for reliability.

Table 9
Fit Coefficients for the Alternative Planet Candidate Catalogs Using the hab2

Population with Zero-completeness Extrapolation

DR25
High

Reliability
High Com-
pleteness FPWG PC

Max
Separation

(σ)

With Reliability Correction
F0 -

+1.46 0.59
1.18

-
+0.78 0.29

0.58
-
+0.88 0.35

0.69
-
+0.93 0.37

0.74 0.82

α - -
+1.03 0.77

0.83
-
+0.10 0.98

1.08 - -
+0.65 0.87

0.97 - -
+0.66 0.86

0.94 0.88

β - -
+1.15 0.33

0.34 - -
+1.17 0.34

0.36 - -
+0.95 0.35

0.38 - -
+1.00 0.35

0.37 0.44

γ - -
+1.03 1.64

1.66 - -
+2.12 1.77

1.77 - -
+2.83 1.68

1.73 - -
+2.42 1.73

1.72 0.76

No Reliability Correction
F0 -

+2.77 0.99
1.88

-
+1.18 0.41

0.76
-
+2.77 1.02

1.85
-
+2.74 1.04

1.83 1.27

α - -
+1.35 0.63

0.59 - -
+0.36 0.80

0.79 - -
+1.39 0.62

0.62 - -
+1.36 0.62

0.64 1.01

β - -
+1.39 0.28

0.28 - -
+1.26 0.30

0.32 - -
+1.38 0.27

0.28 - -
+1.39 0.28

0.28 0.32

γ -
+0.54 1.34

1.43 - -
+1.18 1.55

1.56
-
+0.44 1.34

1.38
-
+0.46 1.46

1.45 0.84

Notes.These are the posteriors of model 1 for the DR25, high-reliability, high-
completeness, and FPWG planet candidate catalogs from Bryson et al. (2020b)
using the hab2 stellar population and the Poisson likelihood method with zero-
completeness extrapolation. The maximum separation in each row is the
maximum over each row of the difference in medians divided by the
propagated uncertainty of that distance.
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