A Survey of Interface Representations in Visual Programming
Language Environments for Children’s Physical Computing Kits

Sarah Brown
Embodied Learning and Experience
Lab, University of Florida
Gainesville, USA
sarah.brown@ufl.edu

Strawbees cooe 2 Untited Program By Seve

MODKIT v Sc

Sharon Lynn Chu
Embodied Learning and Experience
Lab, University of Florida
Gainesville, USA
slchu@ufl.edu

Untitled Project (===

Pengfei Yin
Embodied Learning and Experience
Lab, University of Florida
Gainesville, USA
pengfeiyin@ufl.edu

v =

| &
-
-
) —

LHEEEEEL

C XD

E |® Sensing

S elel e
48V GND

Figure 1: Examples of Visual Programming Languages for Physical Computing Kits: Strawbees Code [1], Modkit [25], and

MakeCode Chibitronics [33]
ABSTRACT

Physical computing toolkits for children expose young minds to
the concepts of computing and electronics within a target activ-
ity. To this end, these kits usually make use of a custom Visual
Programming Language (or VPL) environment that extends past
the functionality of simply programming, often also incorporating
representations of electronics aspects in the interface. These rep-
resentations of the electronics function as a scaffold to help the
child focus on programming, instead of having to handle both the
programming and details of the electronics at the same time. This
paper presents a review of existing physical computing toolKkits,
looking at the What, How, and Where of electronics representa-
tions in their VPL interfaces. We then discuss potential research
directions for the design of VPL interfaces for physical computing
toolkits for children.

CCS CONCEPTS

« Human-centered computing — Graphical user interfaces.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

IDC °21, June 24-30, 2021, Athens, Greece

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8452-0/21/06...$15.00
https://doi.org/10.1145/3459990.3460727

268

KEYWORDS

physical computing kits; visual programming languages for chil-
dren; electronics; robots

ACM Reference Format:

Sarah Brown, Sharon Lynn Chu, and Pengfei Yin. 2021. A Survey of Inter-
face Representations in Visual Programming Language Environments for
Children’s Physical Computing Kits. In Interaction Design and Children (IDC
"21), June 24-30, 2021, Athens, Greece. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3459990.3460727

1 INTRODUCTION

There have been a great many physical computing toolkits de-
veloped for children, particularly in the past 30 years [7]. These
incorporate some form of physical construction with the ability
to program one’s creation. Physical computing kits range from
programmable robots like the Thymio bot [40], to micro-controller-
based solutions like Talkoo, which implements the use of an Ar-
duino [21]. The benefits of these kits and their accompanying VPLs
are clear: they provide a multi-disciplinary learning experience for
the child, which encourages them to construct new understanding
of concepts from their own experiences [8]. Through this process,
physical computing kits have been shown to increase interest in
programming and STEM activities, as well as students’ overall en-
joyment and engagement [6, 39].

Many of these kits and toys come with a custom Visual Program-
ming Language, or VPL, which is used by the child to program the
accompanying hardware towards some sort of educational benefit.
However, these unique programming environments often surpass
the functionality of a traditional language or VPL interface, en-
abling children to engage with computational hardware such as

https://doi.org/10.1145/3459990.3460727
https://doi.org/10.1145/3459990.3460727

IDC ’21, June 24-30, 2021, Athens, Greece

electronic components as well. Due to the multi-disciplinary nature
of these kits and toys, it is common then to find representations
of the electronics embedded in the custom VPL interface itself,
serving to scaffold understanding between the computation and
electronics being programmed. We provide a handful of examples
of these physical computing VPL interfaces in Fig 1 [1, 25, 33]
that contain aspects of the electronics that children can program
through the programming interface. The embeddedness of interface
representations of the electronic components in the VPL typically
helps to visually promote the connections between the electronics
and coded instructions, as a form of scaffold for the child during
programming.

However, to the best of our knowledge, a comprehensive review
has not been conducted of the ways in which these VPLs for physical
computing kits scaffold understanding of electronic components
within their respective programming environments. To provide
a foundation for the understanding of how to design these VPLs
and identify future avenues for research, we present an analysis
of their design, examining the ways they represent electronics in
terms of What is represented, How it is represented, and Where it
is represented.

1.1 Goals of Review

The goal of this review is to identify common design strategies
for representing electronic components in the user interfaces of
Visual Programming Languages for children within the context
of physical computing kits. This understanding can then aid in
informing future designs and investigations of these specialized
programming environments for children.

2 BACKGROUND AND RELATED WORK
2.1 Physical Computing

As summarized by Blikstein [8], physical computing kits were
born from Papert’s concept of constructionism, which proposes
that (based on Piaget’s theory of constructivism) learners are able to
understand new theories about their world if they construct these
new theories from their own experiences, and that the best way
of doing this is through the creation of a shareable object by the
learner. The nature of these shareable objects have evolved greatly
over the years. While early examples of physical computing kits
included programmable bricks, such as the Lego Mindstorms RCX
[22], these kits have since taken many forms, using a variety of
micro-controllers (such as the Arduino or BBC Microbit [9]), and
non-electrical components (such as textiles [12] or toys [24]). How-
ever, the general premise is unanimous: learning is more engaging
when one interacts with and programs tools and materials to create
a computational artifact. It is an embodied experience, explained
by Katterfeldt and colleagues as ‘Begreifbarkeit’ [22]. Derived from
the German word for ‘graspable,’ they use this term to explain the
way the body and mind work together to achieve understanding. It
calls for more than the mere creation of an artifact, but for itera-
tive problem-solving and the understanding that comes through
such a process. In the end, this understanding is not limited to
just one discipline. Children come to learn about construction, ro-
botics, electronics, science, and computation by engaging in these

269

One et al.

multi-disciplinary experiences [18, 38], while also increasing their
interest and engagement in STEM topics [6, 39].

2.2 Visual Programming Languages for
Children

The idea of a programming interface designed specifically for chil-
dren is far from new, and in recent years many physical computing
kits have been accompanied by custom VPLs made to be more acces-
sible to children. An early example of a VPL created with children
in mind is Kahn’s ToonTalk [20], which sought to teach formal
programming concepts in a fun and accessible way. Their method
of choice was the use of visual metaphor - every computational
component was made concrete as some sort of graphic or animation.
Its goals were twofold: to be easy for children to learn while also
providing a powerful programming environment. Since then, many
VPLs for children have followed in its footsteps, varying between
the degrees of learning ease and capabilities as a programming
environment. There is a children’s VPL for every occasion - while
examples such as Scratch, a VPL which allows for the creation of
rich media projects [28], offer great flexibility, others aim for a
younger audience, such as the VPL that accompanies Terrapin’s
Blue-Bot [47], which allows the user to send simple instructions to
a pre-assembled robot.

The interfaces of these visual languages for children rely heavily
on the use of blocks [55], which come embedded with computational
instructions that are then stacked together to form a sequence of
code. Block-based programming languages have been widely used
in teaching children computational concepts prior to learning to
code, and it has been found that children who have block-based
programming experience perform better when introduced to text-
based programming compared to their peers with no experience
[17]. This makes VPLs a natural fit for physical computing kits,
providing a low barrier to entry into the programming of their
constructed artifacts.

Such VPLs are typically packaged with an accompanying elec-
tronic component(s) - such as a robot, LEDs, or micro-controller.
These electronic components are often embedded within the VPL
interface itself. For example, the event blocks in the Thymio VPL
interface intentionally mimic the design of the Thymio robot, pro-
viding a direct, visual mapping between the computation and the
electronics that it impacts [43, 49] (Figure 2). This mapping between
the digital representation in the VPL interface and the real-world
physical component allows children to create quicker connections
between how the code they are creating will affect their constructed
artifact. Other examples of interface representations of the physical
components of a kit include showing icons of the hardware on the
computing blocks themselves [26], portraying simulations of the
electronics [18, 35], or having a block that is composed of a picture
of the electronic component itself [25].

2.3 Interface Representations of Physical
Components as Scaffolds

Scaffolding, as described by the broader educational literature, is the

process through which an expert intervenes in the learning process

of the novice [29]. This can manifest in a variety of approaches,

including demonstrating solutions to challenges the learner faces,

Interface Representations in Children’s Visual Programming Language Environments

1—
. . ’f
\
4L - = "
=il @ v
. . = |
-

Figure 2: An example of coding blocks in the Thymio bot’s
VPL (left) next to an image of the Thymio bot (right).

maintaining the direction or focus of the learner, or simplifying
the nature of a task [3]. In the case of VPLs in physical computing
kits, we suggest that the designer scaffolds understanding for the
child user through design elements which elucidate the connec-
tions between the in-the-screen computation and the in-the-world
electronics being programmed. As described early on by Wood et
al. [52], this is well aligned with the purpose of scaffolding to allow
novices, such as children, to solve problems that they would be
unable to without assistance. A newcomer to physical computing
may not implicitly understand the ways the code they create im-
pacts the physical artifact, or be able to imagine all the different
possibilities that the code enables for the artifact. With physical
objects, one can easily tinker and experiment quickly with an arti-
fact during its creation. For example, a sculptor moulding clay to
create a sculpture does so by interacting directly with the clay in
different ways. However, for the creation of computational physical
artifacts, one has to interact with code that then controls the artifact.
This two-step process for creation may easily create a cognitive
burden on a learner, resulting in perhaps poorer creations or less
learning. Thus, in physical computing interfaces, since the expert
is not physically present, the scaffolds they provide to children are
embedded in the design of the interface itself, and serve to guide
them through the learning process.

2.4 Existing Surveys of Physical Computing
Kits

Prior reviews in this area tend to focus on reviewing the physical
computing kits as a whole, or on the educational outcomes of these
kits. For example, Blikstein’s review of physical computing toolkits
provides an in-depth history of how these constructionist kits have
evolved over time [7]. In his discussion of today’s design imper-
atives, he stresses the importance of investigating the design of
computing experiences for a wide range of learners. Yu and Roque’s
survey of computational toys and kits for children gives further
insight into how existing kits provide these computing experiences.
They noted that all computational environments included with
these artifacts utilized blocks, either digital or physical in the case
of tangible computing examples [55]. They suggested these blocks
have the potential to expand past the typical tile-like shapes, or
could be in close proximity to the hardware such as in roBlocks
[41], where the tangible programming blocks form the robot itself.
This is another form of scaffolding understanding between the elec-
tronics and computation, but rather than achieving this scaffolding

270

IDC °21, June 24-30, 2021, Athens, Greece

through visual representations, it is achieved through a tangible
joining of the computation with the electronic assembly.

In their 2019 review, Yu and Roque examined a variety of com-
puting kits for their ability to support computational concepts [56],
finding that many supported the concepts of loops, sequencing,
conditionals, and data. This is supported by Sullivan and Heffer-
nan’s review of robotics construction kits [45], who noted as a key
finding that these kits support a progression of learning compu-
tational thinking, starting with the concept of sequencing. They
also noted that the kits they surveyed provided both a robotics
education as well as supported understanding in other domains.
In a similar strain of inquiry, Lye and Koh [27] surveyed ways in
which computational thinking is incorporated into K-12 curricula.
Their implications included the need for more ‘constructionism-
based problem solving learning environment(s) (PSLE)," whose ap-
proaches are backed by evidence. Most constructionism-grounded
kits discussed rely on children experiencing and interacting with
real-world materials, including pre-assembled toys or electronics
that are not pre-assembled for use. We did not find any existing re-
views that focus on analyzing user interfaces of VPLs in children’s
physical computing kits. Understanding how specific aspects of the
interfaces are designed can reveal what has been attempted and
what has not, and thus point to future design directions.

3 PAPER SELECTION

This review includes both academic papers and commercial exam-
ples of physical computing kits and programmable robots. Searches
were ran on a web search engine, and a researcher perused each link
on the first 5 pages of the search results pages. Some of these kits
were associated with research papers, and others were commercial
in nature. In total, 45 physical computing kits (28 commercial and
17 research-based) with VPLs were found. The following criteria
were then applied to all the kits found to exclude those deemed not
relevant for our review. To be included, the kit or toy had to include
a physical component (such as a robot or electronics to assemble),
and a VPL with which to program said component. This was to
ensure our focus on physical computing activities that included
a VPL for us to examine. Furthermore, we only included kits that
used a custom-made VPL instead of a generic programming appli-
cation, such as the Arduino Editor. No other criteria were used. In
the end, 30 kits (26 commercial and 4 research-based) were kept for
inclusion in the analysis.

4 ANALYSIS OF PHYSICAL COMPUTING KIT
VPL INTERFACES

The focus of our analysis was on representations of electronics in
the custom VPL interfaces of the physical computing kits found.
We reviewed how electronics were represented within these VPLs
across three dimensions: (i) What was represented — referring to
what specific electronics components were represented in the VPL;
(if) How it was represented — the visual method used to represent
said electronics; and (iii) Where it was represented — where in the
VPL the electronics were represented, relative to common compo-
nents of VPLs, such as the programming blocks and programming
canvas. This framework intends to capture the design decisions
made in the creation of these VPLs as they scaffold understanding

IDC ’21, June 24-30, 2021, Athens, Greece

between electronic components and the programming interface,
by carefully examining what kinds of representations are present,
and where and how they are represented in the VPL itself. Two
researchers conducted the analysis to extract information for these
dimensions for each VPL included in the review, either through
descriptions of the VPL (which were commonly provided in our
research-based examples, such as academic papers) or through live
versions of the VPL (which were commonly found in our commer-
cial examples). Afterwards, the researchers went through the infor-
mation and performed a qualitative open coding process, assigning
descriptive codes to the information extracted. It was possible for
a single dimension of a VPL to contain multiple codes. One re-
searcher then collapsed all the codes into a final coding scheme.
The codes were then compiled by count, and summary statistics
were produced.

5 RESULTS

We present our review results by each of the three dimensions
analyzed. The summary statistics of the codes generated for each
dimension are shown in Table 1, and examples of each code are
shown in Figure 3. A full breakdown of the codes assigned to each
kit/VPL is provided in Table 2.

5.1 What Electronics Are Represented

Four codes were found for the What dimension, which described
what electronics the designers of the surveyed VPLs decided to rep-
resent in these interfaces. Individual Components was the most
prevalent code (46.46%) and was characterized by a representation
of actual hardware components, such as motors or LEDs, in the
VPL interface. Our provided example in Figure 3 is a block from
Strawbees Code [1], which represents a light sensor as an icon and
text on a block. The code Micro-controller indicated representa-
tions of a micro-controller in the VPL interface, such as an Arduino
or BBC Microbit. The example representation of a micro-controller
shown in Figure 3 is from Cabrera et al’s research [9, 34], which
used the VPL MakeCode, which included a live simulation of the
BBC Microbit controller. Lastly, the code Robot was for any sort
of assembled robot that was represented in the VPL. An example
of this would be the small icons of the Meeperbot shown in their
mobile VPL [30]. And finally, N/A indicated that no electronics
where represented in the VPL, and is used the same for How and
Where.

5.2 How Electronics Are Represented

Five codes were found for the How dimension, which described
how the chosen electronics were represented in the VPLs. The most
prevalent of these, after N/A (35.48%) was Text (32.36%), which
indicates that the electronics were represented in a text format,
perhaps the simplest option to represent the electronics within
the programming environment. An example of this would be the
plain text descriptions of electronics found on the blocks in Pico
Cricket’s VPL [11]. The code Simulation refers to the electron-
ics being represented in the form of a simulation within the VPL
interface. In Seyed et al’s work, they used the simulation of an
arcade machine in Microsoft’s MakeCode Arcade in conjunction
with physical computing hardware that allowed the students to

271

One et al.

assemble small arcade machines [35, 42]. This allowed students to
see very easily how the changes in their code affected the electron-
ics, providing scaffolding through a virtual representation of the
computational tasks the students coded. VPLs who received the
code Icons in this dimension represented the electronics as simple
graphical icons, unlike Image which refers to electronics being
represented as a photographic or complex graphical image. Our
only example of Image is the Modkit hardware blocks [25], while
an example of Icons would be Grasp I0’s blocks [26], which uses
simple icons to represent hardware components such as a servo.
These kinds of graphical representations do not go as far as simula-
tions do in scaffolding understanding between the electronics and
the computation. However they still bring the electronics to the
same graphical level as the programming blocks, allowing students
to associate the two together and make appropriate connections.

5.3 Where Electronics are Represented

Four codes were found for the Where dimension. The most preva-
lent code after N/A (40.00%) was In Blocks (26.67%), where the
electronics were represented in the computational blocks used to
construct programs within the VPL, creating a direct connection be-
tween the implied piece of computation the block represented and
the electronic it affects. In the commercially available HoneyComb
Queen Kit, the block-based VPL includes textual representations
of hardware components such as LEDs on the blocks themselves
[14]. Separate Blocks indicated that the electronic representations
were treated as the entire programming block within the VPL. The
VPL developed for the Thymio robot uses the entire block to display
an iconic representation of the Thymio robot, thus qualifying it as
representing the electronics as a separate block of its own [48]. This
method of scaffolding has different implications - here, the user
might think more holistically about the electronics as they program,
as the computation is represented alongside a full representation
of the electronics (in the case of the Thymio robot). Additionally,
perhaps this approach where the electronics surrounds the compu-
tation, alters which the child considers first in placing the block -
the computation or the electronics, as opposed to when the compu-
tation surrounds the electronics. Lastly, the code Separate Ul refers
to when electronics were displayed in their own section of the VPL,
outside of the canvas area used to program. For example, in Mi-
crosoft’s MakeCode Chibitronics, the Chibitronics micro-controller
is displayed to the left of the programming canvas, in its own UI
space [33]. This approach, like in the example, is useful when the
representation of the electronics does not comfortably fit into the
screen real estate alongside the programming blocks, such as in the
case of simulations.

6 DISCUSSION

The goal of this review was to identify common design strategies
for representing electronic components in the user interfaces of
VPLs for children within the context of physical computing kits. We
achieve this goal through the framework used in our analysis, which
allowed us to identify What was represented in the interface, How
it was represented, and Where it was represented. Our codes reflect
common design choices made in the representation of electronics
in VPLs for children, and we have discussed how these decisions

Interface Representations in Children’s Visual Programming Language Environments

Text

St

E.g., Pico Cricket [8]

o\

=

IDC °21, June 24-30, 2021, Athens, Greece

button (L7ED is pressed

Figure 3: Snippets from Representative VPL interfaces for each code.

What How Where
Individual Components | 46.67% | N/A 35.48% | N/A 40.00%
N/A 36.67% | Text 32.36% | In Blocks 26.67%
Micro-Controller 10.00% | Simulation | 16.13% | Separate Blocks | 16.67%
Robot 6.67% | Icons 12.90% | Separate UI 16.67%
- - Image 3.32% - -

Table 1: Our resulting codes, broken down into percentages within each category (each column totals 100%).

impact the scaffolding of the electronics and computation in these
interfaces. We now identify future avenues for research and design,
based on our findings.

From our results of What is represented in terms of electronics in
VPL interfaces, there appears to be a focus on representing smaller
electronics components, such as individual pieces of hardware, as
opposed to representing larger higher-level units such as assembled
robots or micro-controllers. This indicates a preference to scaffold
directly between the computation and individual components that it
affects, which may support understanding and iterative exploration
at a more granular level. We propose that the trend of representing
individual electronic components be also supplemented by a larger,
more holistic representation of the electronics-enabled physical ar-
tifacts, to both provide a low-level and high-level scaffolding of the
electronics as they relate to the computation. Future research could
investigate the impacts of scaffolding electronics at these vary-
ing levels of scale on students’ understanding of the relationships
between the computation and electronics, and their ability to en-
gage in an iterative tinkering process for creation of computational
artifacts.

272

In terms of How electronics are represented, a surprising ma-
jority of cases where electronics were represented in VPLs used
text as the means of representation, though there were a number
of combined text with icons. Much like Kahn’s ToonTalk [20], the
use of visual approaches may be more likely to engage the child.
However, there has yet to be research on which modality, whether
visuals, text, or a combination of both, are more adept at scaffolding
understanding between the computation and electronics. Another
research direction could be to investigate different design strategies
to embed given modalities of the electronics representations in the
VPL interface, without overcrowding the screen.

An interesting case in this dimension was the use of simulation,
which, for all but one case, was used to represent assembled elec-
tronics components such as robots or micro-controllers. One may
naturally ask: what is the purpose of a simulation of electronics in
a scenario where the physicality of the experience is so integral?
In the case of the work of Cabrera et al. [9], whose study of the
VPL MakeCode was included in this review, the use of a live simu-
lation impacted the way children interacted with the BBC Microbit
micro-controller. Their results showed that in the condition where
an interface with a simulation was provided, users spent less time

IDC ’21, June 24-30, 2021, Athens, Greece

Physical Computing Kit/VPL | Reference What How Where
Meeperbots [30, 31] Robot Icons In Blocks

Coji [54] N/A N/A N/A

Thymio [40, 43, 48, 49] | Individual Components | Icons Separate Blocks
Dash [53] N/A N/A N/A

Blue-Bot [47] Robot Simulation | Separate UL
TALKOO [21] Individual Components | Text Separate Blocks
MakeCode [9, 34] Micro-Controller Simulation | Separate Ul
Custom Textile Kit [12] Individual Components | Simulation | N/A

Mover Kit [51] N/A N/A N/A
MakerArcade [35, 42] Micro-Controller Simulation | Separate UI
Pico Cricket [11] Individual Components | Text In Blocks
Strawbees Code [1] Individual Components | Icons In Blocks
MakeCode Chibitronics [33] Micro-Controller Simulation | Separate Ul
Cozmo (23] N/A N/A N/A

Modkit [25] Individual Components | Image Separate UL
Node-RED [36] Individual Components | Text Separate Blocks
Grasp 10 [26] Individual Components | Icons; Text | In Blocks
Wyliodrin [37] Individual Components | Text In Blocks
MakeCode Mindstorms [32] Individual Components | Text In Blocks
Sphero SPRK+ [44] N/A N/A N/A

Scottie Go! [16] N/A N/A N/A

Robotis Dream II [2] N/A N/A N/A

My First Robot [50] N/A N/A N/A

Photon [13] N/A N/A N/A

The Scribbler 3 Robot [19] Individual Components | Text Separate Blocks
Roboplus [15] Individual Components | Text Separate Blocks
SunFounder PiCar-V [46] Individual Components | Text In Blocks
UBTECH Jimu Robot MeeBot 2.0 | [4] N/A N/A N/A
HoneyComb Queen [14] Individual Components | Text In Blocks

Robo Wunderkind [5] N/A N/A N/A

One et al.

Table 2: Our coding breakdown for each of the gathered kits/VPLs.

interacting with the physical device, but exhibited differing inter-
action patterns. They also found that users who interacted with
the VPL that contained a simulation touched the included micro-
controller less frequently, but for longer periods of time, likely due
to not needing to upload the program to the physical device ev-
ery time they wanted to test it. Further investigations are needed
to fully assess how having a simulation readily available affects
behaviors such as tinkering or rapid-prototyping of code.

The results for Where to represent electronics in physical com-
puting kits were particularly revealing. There seems to be a strong
preference to place representations of the electronics as close to the
computation as possible, either in programming blocks or making
up entire blocks themselves. This places the electronics in close
proximity to the computation, making a clear connection between
the two for students to understand. Additionally, by incorporating
the electronics into the blocks, representations of the electronics
become directly manipulable by children, perhaps further strength-
ening their understanding of how changes in the computation
reflects in the accompanying electronic components. It would be

273

interesting to investigate how the proximity of electronics repre-
sentations to the code scaffold understanding of how the two affect
each other.

The potential of physical computing kits extends past the learn-
ing of computation and fabrication alone. Though not many, there
do exist some who use physical computing to also incorporate sci-
ence learning into the mix [10, 18]. Thus, in the future, as more
of these physical computing kits are made specifically for STEM
education, there may be a need for similar scaffolding of STEM
concepts through the embedding of appropriate STEM-related rep-
resentations into the VPLs provided to children. Much like how the
design strategies that we uncovered support the understanding of
electronics, they could also be wielded to support the understand-
ing of concepts in the target subject domain, such as science, where
the physical computing activities are being applied.

7 CONCLUSION

We have presented a review of how VPLs designed for children’s
physical computing kits scaffold understanding between compu-
tation and electronics within the kit. We discussed existing ways
this scaffolding is achieved, as well as possible directions for future

Interface Representations in Children’s Visual Programming Language Environments

research and design. This includes providing both low-level and
high-level representations of electronics, the increased use of vi-
sual representations, and the expanding of these scaffolding design
strategies to the science concepts within physical computing kits
for science learning. We hope this both aids in the design of future
VPLs in physical computing kits for children, paves the way for
future avenues of research, as well as broadens the understanding
of existing methods VPLs used to scaffold understanding between
computation and electronics. One limitation of this work is that the
review of physical computing kits conducted was not necessarily
systematic and comprehensive in nature.

8 SELECTION AND PARTICIPATION OF
CHILDREN

No children participated in this work.

ACKNOWLEDGMENTS

This research was supported by NSF Grant #1934113, Science Mod-
eling through Physical Computing: Contextualized Computational
and Scientific Learning in the Grade 5-6 Classroom.

REFERENCES

[1] Strawbees AB. 2021. Strawbees Code. https://code.strawbees.com/block/

[2] ROBOTIS AMERICA. 2019. ROBOTIS DREAM How does the program work. https:

/lwww.youtube.com/watch?v=31_I05xhoGgU

Julia Anghileri. 2006. Scaffolding practices that enhance mathematics learning.

Journal of Mathematics Teacher Education 9, 1 (2006), 33-52.

[4] Apple. 2021. UBTECH Jimu Robot MeeBot 2.0 App-Enabled Building and Coding

STEM Kit. https://www.apple.com/shop/

[5] Appysmarts. 2019. Simple Drawing robot with Robo Wunderkind (STEM DIY project

for kids). https://www.youtube.com/watch?v=NB6Xb_PjbPc

[6] Paulo Blikstein. 2013. Digital fabrication and ‘making’in education: The democ-

ratization of invention. FabLabs: Of machines, makers and inventors 4, 1 (2013),
1-21.

[7] Paulo Blikstein. 2013. Gears of our childhood: constructionist toolkits, robotics,

and physical computing, past and future. In Proceedings of the 12th international

conference on interaction design and children. 173-182.

Paulo Blikstein et al. 2015. Computationally Enhanced Toolkits for Children:

Historical Review and a Framework for Future Design. Found. Trends Hum.

Comput. Interact. 9, 1 (2015), 1-68.

Lautaro Cabrera, John H Maloney, and David Weintrop. 2019. Programs in

the palm of your hand: How live programming shapes children’s interactions

with physical computing devices. In Proceedings of the 18th ACM International

Conference on Interaction Design and Children. 227-236.

[10] Sharon Lynn Chu, Genna Angello, Michael Saenz, and Francis Quek. 2017. Fun in
Making: Understanding the experience of fun and learning through curriculum-
based Making in the elementary school classroom. Entertainment Computing 18
(2017), 31-40.

[11] Playful Invention Company. 2021. Pico Cricket. https://www.playfulinvention.

com/picocricket/index.html

Richard Lee Davis, Chris Proctor, Michelle Friend, and Paulo Blikstein. 2018.

Solder and Wire or Needle and Thread: Examining the Effects of Electronic Textile

Construction Kits on Girls’ Attitudes Towards Computing and Arts. International

Society of the Learning Sciences, Inc.[ISLS].

[13] Photon Education. 2017. Meet Photon - The world’s first robot that grows with

your child! https://www.youtube.com/watch?v=nI7ZYbNWFII

EF ELECFREAKS. 2021. HoneyComb Queen Kit Electronic Building

Blocks. https://www.amazon.com/HoneyComb-Electronic-Educational-

Programming-Programmable/dp/B07QWVW4RK?th=1

[15] Josep Marin Garces. 2018. Roboplus task bioloid humanoid simple program tutorial.

https://www.youtube.com/watch?v=evAmSv9Qw9g

Scottie Go! 2019. HOW TO PLAY SCOTTIE GO! - INSTRUCTION. https://www.

youtube.com/watch?v=_hTAmU]JttjU

[17] Marcos J Gomez, Marco Moresi, and Luciana Benotti. 2019. Text-based program-
ming in elementary school: a comparative study of programming abilities in
children with and without block-based experience. In Proceedings of the 2019
ACM Conference on Innovation and Technology in Computer Science Education.
402-408.

3

=

[8

[9

=

[12

[14

[16

274

IDC °21, June 24-30, 2021, Athens, Greece

[18] John Grasel, Wynn Vonnegut, and Zachary Dodds. 2010. Bitwise biology: crossdis-
ciplinary physical computing atop the Arduino. In 2010 AAAI spring symposium
series.

Parallax Inc. 2016. The Scribbler 3 Robot. https://www.youtube.com/watch?v=

5xCu-Eg3HeE

[20] Ken Kahn. 1996. ToonTalkTM—an animated programming environment for
children. Journal of Visual Languages & Computing 7, 2 (1996), 197-217.

[21] Eva-Sophie Katterfeldt, David Cuartielles, Daniel Spikol, and Nils Ehrenberg.
2016. Talkoo: A new paradigm for physical computing at school. In Proceedings of
the The 15th International Conference on Interaction Design and Children. 512-517.

[22] Eva-Sophie Katterfeldt, Nadine Dittert, and Heidi Schelhowe. 2015. Designing
digital fabrication learning environments for Bildung: Implications from ten
years of physical computing workshops. International Journal of Child-Computer
Interaction 5 (2015), 3-10.

[23] DIGITAL DREAM LABS. 2021. Cozmo. https://www.digitaldreamlabs.com/
pages/cozmo

[24] Rong-Hao Liang, Han-Chih Kuo, and Bing-Yu Chen. 2016. GaussRFID: Reinvent-
ing physical toys using magnetic RFID development kits. In Proceedings of the
2016 CHI Conference on Human Factors in Computing Systems. 4233-4237.

[25] Modkit LLC. 2021. Modkit for Vex. http://www.modkit.com/vex/editor/

[26] Grasp IO Innovations Pvt. Ltd. 2021. Grasp IO. https://www.grasp.io/

[27] Sze Yee Lye and Joyce Hwee Ling Koh. 2014. Review on teaching and learning of
computational thinking through programming: What is next for K-12? Computers
in Human Behavior 41 (2014), 51-61.

[28] John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn East-
mond. 2010. The scratch programming language and environment. ACM Trans-
actions on Computing Education (TOCE) 10, 4 (2010), 1-15.

[29] Janet Maybin, Neil Mercer, and Barry Stierer. 1992. Scaffolding learning in the
classroom. Thinking voices: The work of the national oracy project (1992), 186—195.

[30] Meeper. 2021. Meeper. https://play.google.com/store/apps/details?id=com.
meepertek.meeperbots&hl=en

[31] Meeper. 2021. MEEPERBOTS. https://meeperbot.com/pages/meeperbots

[32] Microsoft. 2018. MakeCode Mindstorms. https://makecode.mindstorms.com/#

[33] Microsoft. 2021. MakeCode Chibitronics. https://makecode.chibitronics.com/
#editor

[34] Microsoft. 2021. micro:bit. https://makecode.microbit.org/#editor

[35] Microsoft. 2021. Microsoft MakeCode Arcade. https://arcade.makecode.com/
#editor

[36] Node-RED. 2021. Node-RED. https://nodered.org/

[37] Melanie Pinola. 2014. Wyliodrin Programs the Raspberry Pi with a Drag-and-Drop
Interface. https://lifehacker.com/wyliodrin-programs-the-raspberry-pi-with-a-
drag-and-dro-1630107933

[38] Mareen Przybylla and Ralf Romeike. 2014. Physical Computing and Its Scope-

Towards a Constructionist Computer Science Curriculum with Physical Comput-

ing. Informatics in Education 13, 2 (2014), 241-254.

Kanjun Qiu, Leah Buechley, Edward Baafi, and Wendy Dubow. 2013. A curriculum

for teaching computer science through computational textiles. In Proceedings of

the 12th international conference on interaction design and children. 20-27.

Fanny Riedo, Morgane Chevalier, Stéphane Magnenat, and Francesco Mondada.

2013. Thymio II, a robot that grows wiser with children. In 2013 IEEE Workshop

on Advanced Robotics and its Social Impacts. IEEE, 187-193.

Eric Schweikardt and Mark D Gross. 2006. roBlocks: a robotic construction kit

for mathematics and science education. In Proceedings of the 8th international

conference on Multimodal interfaces. 72-75.

Teddy Seyed, Peli de Halleux, Michal Moskal, James Devine, Joe Finney, Steve

Hodges, and Thomas Ball. 2019. MakerArcade: Using Gaming and Physical

Computing for Playful Making, Learning, and Creativity. In Extended Abstracts

of the 2019 CHI Conference on Human Factors in Computing Systems. 1-6.

Jiwon Shin, Roland Siegwart, and Stéphane Magnenat. 2014. Visual programming

language for Thymio II robot. In Conference on Interaction Design and Children

(IDC’14). ETH Ziirich.

Sphero. 2021. Sphero SPRK+. https://www.amazon.com/Sphero-K001RW1-SPRK-

App-Enabled-Robot/dp/B01GZ1S70S?ref_=fsclp_pl dp_2

Florence R Sullivan and John Heffernan. 2016. Robotic construction kits as

computational manipulatives for learning in the STEM disciplines. Journal of

Research on Technology in Education 48, 2 (2016), 105-128.

[46] SunFounder. 2021. SunFounder PiCar-V Kit V2.0 for Raspberry Pi. https:
//www.sunfounder.com/products/smart-video-car?gclid=EAIaIQobChMI6KL-
hpP_6gIVgo5bCh26zAmyEAQYCiABEgLg9_D_BwE

[47] Terrapin. 2021. Blue-Bot. https://www.terrapinlogo.com/products/robots/blue/
blue-bot-family.html

[48] Thymio. 2021. Program with VPL. https://www.thymio.org/program/vpl/

Thymio. 2021. Thymio. https://www.thymio.org/

Tinkerbots. 2017. Meet My First Robot. https://www.youtube.com/watch?v=

oBv_odbrVnU

[51] Technology Will Save Us. 2017. Mover Kit: get kids moving, building & cod-
ing. https://www kickstarter.com/projects/techwillsaveus/mover-kit- the-first-
active-wearable- that-kids-make

[19

[39

[40

(41

=
)

[43

(44

[45

S
2.0

https://code.strawbees.com/block/
https://www.youtube.com/watch?v=3l_I05xhoGgU
https://www.youtube.com/watch?v=3l_I05xhoGgU
https://www.apple.com/shop/
https://www.youtube.com/watch?v=NB6Xb_PjbPc
https://www.playfulinvention.com/picocricket/index.html
https://www.playfulinvention.com/picocricket/index.html
https://www.youtube.com/watch?v=nI7ZYbNWFlI
https://www.amazon.com/HoneyComb-Electronic-Educational-Programming-Programmable/dp/B07QWVW4RK?th=1
https://www.amazon.com/HoneyComb-Electronic-Educational-Programming-Programmable/dp/B07QWVW4RK?th=1
https://www.youtube.com/watch?v=evAmSv9Qw9g
https://www.youtube.com/watch?v=_hTAmUJttjU
https://www.youtube.com/watch?v=_hTAmUJttjU
https://www.youtube.com/watch?v=5xCu-Eg3HeE
https://www.youtube.com/watch?v=5xCu-Eg3HeE
https://www.digitaldreamlabs.com/pages/cozmo
https://www.digitaldreamlabs.com/pages/cozmo
http://www.modkit.com/vex/editor/
https://www.grasp.io/
https://play.google.com/store/apps/details?id=com.meepertek.meeperbots&hl=en
https://play.google.com/store/apps/details?id=com.meepertek.meeperbots&hl=en
https://meeperbot.com/pages/meeperbots
https://makecode.mindstorms.com/#
https://makecode.chibitronics.com/#editor
https://makecode.chibitronics.com/#editor
https://makecode.microbit.org/#editor
https://arcade.makecode.com/#editor
https://arcade.makecode.com/#editor
https://nodered.org/
https://lifehacker.com/wyliodrin-programs-the-raspberry-pi-with-a-drag-and-dro-1630107933
https://lifehacker.com/wyliodrin-programs-the-raspberry-pi-with-a-drag-and-dro-1630107933
https://www.amazon.com/Sphero-K001RW1-SPRK-App-Enabled-Robot/dp/B01GZ1S7OS?ref_=fsclp_pl_dp_2
https://www.amazon.com/Sphero-K001RW1-SPRK-App-Enabled-Robot/dp/B01GZ1S7OS?ref_=fsclp_pl_dp_2
https://www.sunfounder.com/products/smart-video-car?gclid=EAIaIQobChMI6KL-hpP_6gIVgo5bCh26zAmyEAQYCiABEgLg9_D_BwE
https://www.sunfounder.com/products/smart-video-car?gclid=EAIaIQobChMI6KL-hpP_6gIVgo5bCh26zAmyEAQYCiABEgLg9_D_BwE
https://www.sunfounder.com/products/smart-video-car?gclid=EAIaIQobChMI6KL-hpP_6gIVgo5bCh26zAmyEAQYCiABEgLg9_D_BwE
https://www.terrapinlogo.com/products/robots/blue/blue-bot-family.html
https://www.terrapinlogo.com/products/robots/blue/blue-bot-family.html
https://www.thymio.org/program/vpl/
https://www.thymio.org/
https://www.youtube.com/watch?v=oBv_odbrVnU
https://www.youtube.com/watch?v=oBv_odbrVnU
https://www.kickstarter.com/projects/techwillsaveus/mover-kit-the-first-active-wearable-that-kids-make
https://www.kickstarter.com/projects/techwillsaveus/mover-kit-the-first-active-wearable-that-kids-make

IDC ’21, June 24-30, 2021, Athens, Greece One et al.

[52] David Wood, Jerome S Bruner, and Gail Ross. 1976. The role of tutoring in children. 289-299.

problem solving. Journal of child psychology and psychiatry 17, 2 (1976), 89-100. [56] Junnan Yu and Ricarose Roque. 2019. A review of computational toys and kits
[53] Wonder Workshop. 2019. Wonder Workshop. https://www.makewonder.com/ for young children. International Journal of Child-Computer Interaction 21 (2019),
[54] WowWee. 2021. COJI by WowWee. https://wowwee.com/coji 17-36.

[55] Junnan Yu and Ricarose Roque. 2018. A survey of computational kits for young
children. In Proceedings of the 17th ACM conference on interaction design and

275

https://www.makewonder.com/
https://wowwee.com/coji

	Abstract
	1 Introduction
	1.1 Goals of Review

	2 Background and Related Work
	2.1 Physical Computing
	2.2 Visual Programming Languages for Children
	2.3 Interface Representations of Physical Components as Scaffolds
	2.4 Existing Surveys of Physical Computing Kits

	3 Paper Selection
	4 Analysis of Physical Computing Kit VPL Interfaces
	5 Results
	5.1 What Electronics Are Represented
	5.2 How Electronics Are Represented
	5.3 Where Electronics are Represented

	6 Discussion
	7 Conclusion
	8 Selection and Participation of Children
	Acknowledgments
	References

