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We explore the effectiveness of variational quantum circuits in simulating the ground states of
quantum many-body Hamiltonians. We show that generic high-depth circuits, performing a se-
quence of layer unitaries of the same form, can accurately approximate the desired states. We
demonstrate their universal success by using two Hamiltonian systems with very different proper-
ties: the transverse field Ising model and the Sachdev-Ye-Kitaev model. The energy landscape of
the high-depth circuits has a proper structure for the gradient-based optimization, i.e. the presence
of local extrema — near any random initial points — reaching the ground level energy. We further test
the circuit’s capability of replicating random quantum states by minimizing the Euclidean distance.

I. INTRODUCTION

Variational Quantum Eigensolver (VQE) [1, 2] is one of
the most promising hybrid quantum-classical (HQC) al-
gorithms, which may offer a precise approximation of the
ground state of quantum systems. It is based on the itera-
tive application of the following three steps: state prepa-
ration, measurement and optimization. Let us briefly
describe each step. First, the preparation of a trial state
[1)(0)) is carried out by successive application of unitary
quantum gates that depend on variational parameters 6.
Second, the measurement step estimates the trial state
mean energy,

E(0) = (v(0)[#](9)), (1)

by taking the expectation value of Hamiltonian H of the
target system over the trial state. Third, the optimiza-
tion step adjusts the variational parameters @ of the trial
wavefunction to minimize the mean state energy F(0)
by applying a classical optimization algorithm. See [3]
and references therein for more details. After a suffi-
cient number of iterations, the variational state |1)(6*))
at a convergence point 8 = 8* is expected to reproduce
well the ground state of the target Hamiltonian H, under
the assumption that the state Ansatz |1(0)) is paramet-
rically expressible and well-trainable under the gradient
based optimization. It is then a crucial question to find
such an Ansatz.

Ideally, we are looking for a universally effective Ansatz
capable of solving the VQE problem associated with an
arbitrary target Hamiltonian. Note that it is generically
a very challenging task: unless the target Hamiltonian is
local, the ground states of non-local interacting systems
are relatively close to typical quantum states that con-
stitute most of the Hilbert space. Universality is thus
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equivalent to demand a circuit Ansatz to approximate
any random state |¢) at certain values of the circuit pa-
rameters.

The existence of a parameter set ¢, such that |¢)(p)) ~
|¢), is therefore a necessary condition for the effective-
ness of the variational circuit. On top of that, we must
concern if the gradient descent optimization can actu-
ally reach the parameters ¢ from randomly initialized
ones. Suppose that we use a layered quantum circuit
composed of repetitive application of variational layers
with the same architecture. Since increasing the number
of layers extends the dimension of the parameter space,
it can affect the circuit’s expressibility only positively.
However, there has been a reported tension between in-
creasing depth of layers and trainability of the circuit via
minimizing the mean energy, (1), known as the barren
plateau phenomenon [4].

When the layered circuit reaches a certain depth such
that it evolves to an approximate 2-design, a numerical
experiment [4] has shown the exponential decay of the
variance of energy gradients Vg F(0) with respect to the
number n of qubits — for random circuit states obtained
by uniformly sampling from the parameter space. Com-
bined with another fact that the random energy gradient
vanishes on average, Chebyshev’s inequality implies that
the initial energy gradient can exponentially rarely devi-
ate from zero. Such diminishing gradients hinder the be-
ginning of efficient energy minimization, possibly causing
the variational state to be stuck on non-optimal plateaus.

There have been several proposals to overcome the van-
ishing gradient problem and optimize the variational cir-
cuit. The most obvious approach is to incorporate some
physics information on the target Hamiltonian [5-8], e.g.
the ground state symmetry, for designing a less generic
problem-tailored Ansatz. As an alternative direction to-
wards the universal applicability of the variational algo-
rithms, novel initialization [9, 10], architecture [11, 12],
and optimization [13-15] of generic purpose circuits have
been developed to enhance the circuit performance.



The main goal of this paper is to demonstrate the in-
herent capability of variational circuits as universal and
accurate eigensolvers for generic Hamiltonians — if they
can even approximate close-to-random states. To this
end, we will simply put aside the barren plateau prob-
lem by sufficiently increasing the classical computation
capacity. Specifically, we will consider the high-depth
regime of the layered quantum circuit, thus building an
exponentially high-dimensional parameter space. In this
regime, the variational circuit has sufficiently many lay-
ers and consequently many parameters. Hence, the norm
of the gradient vector || Vo E(0)]| can still grow to a finite
size, capable of moving the circuit parameter 8 from ini-
tial points, even though the magnitudes of the individual
components |0; F(0)| are exponentially suppressed for the
number n of qubits. We will illustrate the effectiveness
of the high-depth circuits by solving two concrete VQE
problems for the following quantum many-body Hamilto-
nians: the 1d Ising model in a constant transverse mag-
netic field, which is a prototypical model of locally in-
teracting spin-chain systems, and the Sachdev-Ye-Kitaev
(SYK) model, which is a strongly interacting quantum
mechanical system of Majorana fermions [16-18]. De-
spite the striking contrast in these two Hamiltonians’
ground state properties, we will find that the high-depth
circuit achieves a very high fidelity in approximating both
ground states. Moreover, we will see that the high-depth
circuits can narrow the Euclidean distance from random
states up to arbitrary precision, indicating outstanding
expressibility and trainability that stems from the high-
dimensionality of 6.

The remarkable efficiency of the gradient descent op-
timization in the over-parameterized regime was also re-
ported for approximating random unitary matrices [19]
and ground states [8] with certain variational Ansatzes.
More generally, over-parameterization is an active re-
search topic that underlies the success of deep learning.
It makes large neural networks capable to reach a global
minimum during the optimization process, despite the
non-convexity of the energy landscape [20, 21]. While
searching the ground state via the energy minimization,
we will observe some phenomena similar to what happens
during the training of the neural networks with large pa-
rameter spaces, summarized as follows:

First, the energy landscape looks fairly simple in the
local vicinity of randomly chosen points [15]. Generically,
an initial point is already confined in a certain basin of at-
traction, such that an emanating optimization trajectory
can quickly arrive at a nearby local extremum. Especially
if the circuit has enough layers to become an approximate
2-design, almost all uniformly sampled initial states end
up with rather homogeneous energy levels.

Second, for high-depth circuits, all the local extrema
in the energy landscape, reachable by the VQE optimiza-
tion from randomly initialized points, are substantially
close to the exact ground energy, i.e., the value of the
global minimum. These minima are not isolated individ-

ual points but develop multiple flat directions. It explains
the robust success of the high-depth circuits in solving
the VQE problems.

The rest of this paper is organized as follows. Sec-
tion II introduces the architecture of the variational cir-
cuits used throughout this paper. Section III first reviews
the occurrence of the barren plateau phenomenon, then
examines the optimization of the variational circuits us-
ing the VQE example of the 1d Ising model coupled to
a uniform transverse magnetic field. Section IV studies
the same VQE problem for the SYK model, thus showing
the universal effectiveness of the high-depth circuit. Sec-
tion V addresses the ability of the variational circuits to
reproduce typical states by minimizing the Euclidean dis-
tance. In particular, it shows that the high-depth Ansatz
is highly expressible and trainable, being able to reach
any random state. Finally, Section VI concludes with
discussions.

II. CIRCUIT ANSATZES

Our focus in this work is to demonstrate the efficiency
of high-depth layered circuits in a typical VQE problem,
i.e. to approximate the ground state of a given Hamilto-
nian. To this purpose, here we specify the architecture of
the variational circuit used in our numerical experiments.
Our circuit state |1(0)) is composed of L unitary layers
acting sequentially on the initial product state |0), i.e.,

1¥(0)) =Ur(01) Ur—1(0—1) - - U2(62) U1(61)|0), (2)

where each layer U;(6;) has single-qubit y-rotation gates,
parameterized by n periodic variables 6;, and controlled-
z gates operating on all pairs of n qubits. More precisely,
once the single-qubit RY gates have acted upon all in-
dividual qubits, the entangling C'Z gates acting on a-th
controlling and b-th targeting qubits are arranged for ev-
ery integer pair (a,b) satisfying 1 < a < b < n. We have
drawn the circuit state (2) with n = 4 qubits in Figure 1.

Note that we have deliberately chosen an unbiased cir-
cuit architecture, instead of embedding known properties
of the ground states that are under search. Nonetheless,
as we will see in Sections III, IV and V, the above cir-
cuit can solve the ground states of distinct Hamiltonians
by minimizing F(0) and accurately approximate random
quantum states by minimizing the Euclidean distance, as
long as the number L of layers is sufficiently large.

III. LOOKING INTO VQE TRAJECTORIES

This section is devoted to the detailed investigation of
the VQE optimization procedure, with a particular focus
on the effectiveness of the high-depth circuit Ansatz (2).
Our exploration will be based on a concrete Hamiltonian
system, commonly used in measuring the performance of
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FIG. 1. The layered circuit Ansatz |1(0)) used in this paper.

variational circuits, i.e. the 1d Ising model in a transverse
and uniform magnetic field [8, 22].

The 1d transverse field Ising model is defined over a
spin lattice of length n, consisting of the spin-spin cou-
pling between nearest neighbors in the z direction, as well
as the spin interaction with a background uniform mag-
netic field along the transverse x direction. Assuming
periodic boundary conditions, o7, = 0§, the ferromag-
netic Ising Hamiltonian reads

n
=) ofoia—g) of, ®3)
i=1 i

where o7"%* is the Pauli operator acting on the i’th spin,
and g denotes the strength of the uniform magnetic field.

Y.z

The physics of this model has been well-studied [23].
When the lattice size scales up to infinity, n — oo, the
system undergoes a quantumn phase transition at |g| = 1
between the ordered (|g| < 1) and disordered (|g] > 1)
phases. The former phase has the spin-flip Zs symme-
try that connects the two opposite ferromagnetic ground
states, while the latter phase has a unique ground state,
with all the spins aligned along the x direction.

We will apply the VQE algorithm to the finite n Ising
system, which exhibits some differences from the ther-
modynamic limit. Specifically, the Zo degeneracy in the
0 < |g|] < 1 phase is broken at finite n. Our target state
will be always non-degenerate and gapped at |g| # 0. All
concrete calculations presented in this section have been
done for g = 2.

1. Barren Plateaus and Classical Resolution

It was argued in [4] that optimization of the quantum
variational circuits under the random parameter initial-
ization comes with an inherent difficulty, given by the
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(20) as a function of the system size n. The dashed lines are
the regression lines with the functional form of a-n® 2", based
on the numerical data denoted as small circles.

problem of vanishing gradients. For the circuit unitary
ensemble that is quantum 2-design, random initial pa-
rameters are typically located on a plateau in the en-
ergy landscape. It means that the gradient-based op-
timization cannot even roll out. The odds of having
non-vanishing gradients at random points decays expo-
nentially with the system size n, impeding a large-scale
application of the variational circuits. Its consequence
would be even more detrimental on actual quantum de-
vices, where the sampling noise must be taken into ac-
count [4, 14]. Given its prominence, we begin by review-
ing the vanishing gradient problem in the VQE setting.

Consider the ensemble of the energy gradients over the
parameter space of the variational circuit in Figure 1. For
analyzing the k’th component, 0y F(0), that belongs to
the ¢’th variational layer, it is convenient to group the L
layer unitaries (2) into the following two blocks:

¥(0)) =U_(6-) U (64)10), (4)
where 8y = {0, | | T] = a}, 0+ = U< 0a, 0- = U, Oas

Ui (04) = Ur(00)Up—1(00—1) - U2(02) Ur(01),
U_(6-) =Ur(0L) - Urs2(0r42) Ur1(0141).

(5)

As the partial derivative Oy acts only on U;(6y), the vari-
ance of the k’th gradient component, Varg[0xE(0)], is

/%W(O)I[U—(@-)VW-(O-)*,’H}W)(H»Q (6)

where V}, denotes the Pauli operator ¢¥ acting on the k’th
spin variable, such that Tr(V}) = 0 and Tr(V}?) = 2",

If we assume the quantum 2-design property of U, (6)
and/or U_(0_), the above integral (6) can be replaced
with the unitary matrix integral. In that case, the matrix
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integral can be handled exactly and simplified to

2Tr(H?)
T @

Such simplification (7) happens when both Uy (04 ) are 2-

designs. Instead, if the 2-design condition does not hold
for either of Uy (604 ), we have the following expression:

—2% / &ﬁ:ﬁ Tr([Vi, U_(0_)THU_(6_)]?) (8)

if only U, (04 ) is a 2-design while U_(6_) is not, or

r 2
B [ e (U0 UL 0F) ()

where p = [0)(0|, if not U4 (04) but only U_(0_) is a
2-design. Asymptotically in the system size n, the above
expressions (7)—(9) are all bounded as

4Tr(H?)
where we find the upper bound by expanding the commu-
tator inside the integral of (8) and (9), then applying the
following trace inequality that holds for two Hermitian

matrices A, B [24]:
|Tr(AB)*™| < Tr(A?*™B*™) for m € N. (11)
To determine the scaling behavior of the upper bound
(10) with respect to the system size n, we examine how
Tr(#H?) scales with n by extrapolating the values obtained
from exact diagonalization of the Hamiltonian (3) up to
n < 17. The result is presented in Figure 2. We see that
the term Tr(H?) scales as 2", such that the exponential
factor in the denominator of the upper bound (10) cannot

fully be balanced by Tr(#?). Then, inserting the upper
bound (10) into Chebyshev’s inequality, which states

Varg [akE(O)}

Pr(|0uE(0)] > €) < >

(12)
with O F(0) being a random variable of zero mean, the
probability of having a non-zero and finite derivative is
exponentially suppressed with growing n. Therefore, the
large-scale VQE problems are expected to suffer from the
vanishing gradients.

We have not yet justified the assumption that either of
the unitaries Uy (041 ) is quantum 2-design. To see if the
problem of exponentially vanishing gradients happens in
the circuit unitaries of Figure 1, we numerically estimate
the variance of initial gradients by collecting 103 random
energy gradients of the Ising model. Figure 3a clearly
exhibits an exponential decay of the partial derivatives
with the increasing number n of qubits, where the shaded
region displays component-wise fluctuations of the vari-
ance for all 1 < k < nL. It shows that the energy land-
scape for the circuit in Figure 1 indeed contain the barren
plateaus, which hinders the circuit optimization towards
the ground state.

On the other hand, Figure 3a shows that the variance,
at a fixed value of n, converges to a constant by increasing
the number L of layers. The variance is independent of L
beyond a transition point Ly, where the circuit unitaries
with L > Ly evolve to approximate 2-design. Due to the
saturation, having exponentially many parameters can
compensate for the exponential decay of individual com-
ponents when calculating the gradient norm ||VeE(8)],
which appears in the evolution of the circuit energy under
the gradient descent with an infinitesimal rate a:

dE(0)

—2 — —a||VoE(O))? (13)



Therefore, the vanishing gradient problem inherent to the
quantum Hilbert space can be resolved in a classical way,
i.e. by using the exponentially high-dimensional @-space.

In agreement with the reasoning above, Figure 3b ex-
hibits a small initial drop dominated by the transient de-
crease of Varg[0rE(0)] for L < Ly layers, then a steady
increase driven by the linear growth in the number of
circuit parameters. One can approximate the asymptotic
increase rate of the norm ||V E(0)|| as

IVeE(8)|| ~ v/nL x Vare[0x E(8)] (14)

which agrees well with the numerically estimated growth
rates between log |[Ve E(0)|| and log L in Figure 3b:

n qubits 4 6 8 10
rate 0.504 0.502 0.503 0.501

We remark that the barren plateau phenomenon con-
cerns only the initial steps of the gradient descent update.
In almost all physical systems of relevance, the Hamilto-
nian spectrum is symmetrically distributed around a cer-
tain value, which we canonically set to zero. A random
state is therefore in a superposition of multiple Hamilto-
nian eigenstates, whose mean energy is almost certainly
zero. On the other hand, the variational mean energy
quickly becomes a negative value after a few steps of the
VQE optimization, implying that the circuit state is no
longer represented by sample statistics of random states.

Having found that the vanishing gradient problem can
be trivially avoided at the cost of having exponentially
many parameters, we turn to answer if the variational cir-
cuit with a sufficiently many layers can actually solve the
VQE problems. We will examine the optimization error,
the training curve, and the trajectory in the parameter
space at different values of the circuit depth L.

2. Optimizing the Circuit

We now come back to original task of approximating
the ground state of the Ising model, Eq. (3).

The VQE optimization results of the circuit states (2),
with different numbers L of layers and under the random
initialization of the circuit parameters 6, can be summa-
rized to the following two features:

1. For small enough L, the minimized energies E(6*)
that the circuit states can reach are highly variable.

2. For larger L, the F(0*) distribution turns concen-
trated around a mean value which gets smaller.

We illustrate them with the outcomes of the VQE algo-
rithm for the case of a chain having n = 10 sites and
for L € {8,10,12,14,16, 18,20} layers. To find the op-
timal parameters 8* that minimize the energy, we use
the Adam optimization algorithm [25], which iteratively
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FIG. 4. Optimized VQE energy (F(0*)— Ey) density for the
Ising model over 35 distinct runs with random initialization.

updates the variational parameters @ by the exponen-
tial moving averages of gradients and their squares. It
has a clear advantage in convergence speed, being widely
used in a variety of deep learning models. The parameter
update rule is decided by a choice of three hyperparam-
eters (o, 81, B2). We have collected 35 independent VQE
runs for the Ising Hamiltonian (3), whose initial parame-
ters are randomly sampled from the uniform distribution
U(0,2m)®"L after 500 parameter updates with the hy-
perparameters (a, 51, 82) = (0.05,0.9,0.999).

The sample distribution of the final VQE energy FE(0*)
is visualized in Figure 4 for different numbers L of layers.
One can characterize it as follows. First, the energy dis-
tribution at the local extremum 6* clearly exhibits the
widespread spectrum for a shallow depth, e.g.,

3.52 < E(6*) — Ey < 12.6
4.67 < E(6*) — Ey < 16.9

for L = 8,
for L = 10.

sometimes achieving a relatively good energy level while
the gap always persists. Second, by stacking more layers,
i.e., L > 12, deeper than the 2-design transition point
detected in Figure 3a, the energy distribution starts to
concentrate around a value, which is far from the ground
energy Ey. Third, the average value of E(6*) continues
to decrease for the growing number L of layers, suggest-
ing that the high-depth variational circuits can possibly
simulate the ground state using the VQE optimization.

Encouraged by the observed shrinkage of the mean and
variance of E(6*), we also have done the single VQE
tryouts for a broader span of (n, L), as summarized in
Figure 5. It is clear that being deeper enhances the vari-
ational circuit’s capability to replicate the ground state
|to), reaching the ground state energy Ey and achieving
a high level of fidelity with |¢o). The high-depth circuits
can achieve a zero error with the following precision:

|E(0) — Ey| <107° - AE (15)

where AF denotes the bandwidth of the target Hamilto-
nian H, defined as the difference between the largest and
smallest eigenvalues of H. We note that such precision
can be achieved only with an appropriately chosen learn-
ing rate «, in order to avoid too-large parameter updates
that prevent the fine-level optimization. Here we refrain
from the systematic hyperparameter search, which may
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FIG. 5. Single-run VQE outcomes for the Ising model (3)
using the layered circuit Ansatze (2) at different depths L.

be more relevant for the case where the average gap be-
tween nearby energy levels shrinks, but simply stick to
a = 0.05 (L =4,6,8) and o = 0.01 (L = 10). We have
found that (15) can be achieved when the circuit depth
L passes through the following threshold value:

n qubits 4 6 8 10
Ly, layers | 10 24 68 250

We also remark that deeper circuits do not necessarily
lead to better performance with VQE, as displayed by the
gentle ramp after passing the threshold point L,. This
can be understood as follows: As the space of variational
parameters 6 has more dimensions, the basin of attractor
to local extrema becomes narrower [11], giving a larger
value of the estimated inverse volume [26]

k
VT=ZMMM (16)

where the summation is taken over the top-k eigenvalues
{Ni(H)}_, of the Hessian matrix H;; = 9;0;E(0). For

6

instance, the positive correlation between L and V,~ ' (L)
can clearly be identified in Figure 7a, drawn for £ = 100.
As a result, the VQE trajectory is unlikely to land at an
exact extremum but wander around nearby points, whose
deviation gets larger as the attractor basin becomes nar-
rower and steeper.

Even with the optimal number of layers, such that the
circuit state can reach an exact extremum and accurately
represent the ground state |¢y) of the Ising Hamiltonian
(3), the narrowness of the attractor basin still makes the
VQE trajectory somewhat unstoppable, passing through
the best point 8* and then hopping around in the lo-
cal neighborhood. Figure 6a shows that the VQE error
E(6;) — Ej slightly increases on average and mildly fluc-
tuates after achieving the minimum error E(6*) — Ej.
This residual error can be reduced by making use of pop-
ular optimization tricks, such as early stopping or learn-
ing rate scheduling, which causes the VQE optimization
to stop at the optimal point. For instance, by introducing
the exponential decay of the learning rate «, i.e.

/500
ar = agc™/ ,

T>0 (17)
at the optimization step 7 with a constant value ¢ = 0.3,
we could reduce the late time fluctuations as in Figure 6b.

So far, we have discussed some important aspects of the
VQE optimization. The main observation is that, when
supported by the high-dimensional parameter space, ran-
domly initialized variational circuits can approximate the
Ising ground state with remarkably high accuracy. The
energy gradient neither vanishes nor randomly fluctuates
along the optimization trajectory, making it quickly con-
verge to a local minimum that exhibits a small energy gap
from the ground energy Ey and high fidelity with the ex-
act ground state |¢g). We will explore this efficiency of
the high-depth circuit in some details by visualizing the
VQE trajectory on the energy landscape.

3. Visualizing the Trajectory

A key characteristic that contributes to the success of
the high-depth circuit is the fact that randomly initial-
ized points are likely to be already confined in the basin
of attraction of a good attractor, i.e. a local extremum
that is close enough to the ground state energy. We illus-
trate now this point by looking at the actual optimization
trajectories under the energy minimization.

For a given initial point 8y and the trajectory T (68g) =
{0, } thereafter, we identify the optimal parameter 8* as
the point in the trajectory T(6y) having the minimum
energy expectation value,

E(0*) < E(6,) forany >0, (18)
which is the best possible representative point of the lo-
cal extrema that the trajectory 7(8g) converges around.
The associated basin of attractor can be estimated by
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calculating the Hessian H;; = 0;0;F(0*) at the opti-
mum 0*. We are interested in the eigenvalue spectrum,
{Ai(H)}, from which we distinguish steep and flat direc-
tions and calculate the degree of steepness.

Similar to the case of deep neural networks [26-28],
the local extrema in the VQE energy landscape of high-
depth circuits are often interconnected in multiple flat
directions, whose corresponding Hessian eigenvalues are
zero, looking like valleys rather than isolated singular
points. Success of the VQE algorithm is not affected
by a specific position in flat directions, but only con-
cerned with if a ball, initially at a considerable height,
can roll off in steep directions and reach a sufficiently
deep gorge. It motivates us to consider the k-dimensional

hypersurface S, (6*) along the k steepest directions, i.e.,
spanned by the top-k Hessian eigenvectors. More pre-
cisely, we want to examine if the Si(6*)-projected Eu-
clidean distance between 8* and 6, decreases along the
trajectory T (60g) as the optimization step 7 progresses,
until E(0;) = E(6*). This will tell us if the entire tra-
jectory T (8g) is confined in the k-dimensional basin of
attraction, while ignoring the movement in the directions
of less or zero attraction.

Figure 7b displays the VQE error E(0,) — Ey and the
projection distance [|0, —60*||s,,,(o~) along the actual op-
timization trajectories, whose step number 7 is indicated
by color. We have made the following observations: First,
when an appropriate value of k is selected, both the dis-



tance |0, —60*|s, (6=) and the loss value E(0,)— Ey con-
tinuously decrease on a macroscopic scale. It exhibits
that the trajectory 7 (60p) converges without escaping
from a specific basin of the attractor that encloses a ran-
domly initialized point @y. Second, for a shallow circuit
state, the optimization trajectory often makes a slight
detour in some orthogonal directions. In contrast, the
steady convergence occurs typically for large L. It im-
plies that the vicinity of any randomly initialized param-
eters is effectively convex. Finally, we find from Figure 7a
that the attractor basin in the direction of Sj(6*) evolves
rapidly steeper and narrower as the depth L increases,
thereby causing the rapid convergence and substantial
late-time fluctuation around 6*. It is noticeable that the
initial convergence follows a milder path than later fluc-
tuations in the L = 64 case, while the convergence in the
L = 80 case happens along a much steeper route. Taken
together, these observations show the quick convergence
of high-depth circuits [8, 19] under the VQE algorithm.

IV. SOLVING THE SYK MODEL

Our discussions so far have been based on just a par-
ticular Hamiltonian, (3), the Ising model in a transverse
uniform magnetic field. Since the variational circuit that
we use has no features particularly tailored for the Ising
model, we expect it to closely replicate the ground states
of other Hamiltonians in the high-depth regime. To check
the generality of the prior discussions on the efficiency of
the high-depth circuits, we will now solve the VQE prob-
lem, defined for another Hamiltonian of very distinct na-
ture: the Sachdev-Ye-Kitaev (SYK) model.

1. The SYK Model

The SYK model [16-18] is built out of 2n Majorana

fermions in 1d, i.e. the operators v;, with i =1, ..., 2n,
satisfying the following anti-commutation relations
{visvit =di5 (19)

where d;; denotes the Kronecker delta. The SYK Hamil-
tonian is an all-to-all Hamiltonian, which couples all the
Majorana fermions together in a fully non-local fashion,
consisting of the following ¢-body interaction terms with
q > 2 being an even integer:

H = (z')q/2 Z JiroigYir T Yig s (20)

11 < <iq

where the coupling constants J;, . ;, are randomly sam-
pled from the Gaussian distribution of mean 0 and vari-
ance

2 _ JQ(Q —1)!
<Ji1. > - (277,)‘171 ’ (21>

g
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where J? is a constant which we set to be equal to one.
The model has recently attracted a widespread attention
from different communities, due to some peculiar features
it enjoys. It has been shown that when ¢ > 4 the model
is highly chaotic [17, 18, 29, 30|, although solvable in
the large n limit [17, 18], thus creating a perfect situa-
tion to study relevant questions on quantum chaos which
are usually out of reach for other chaotic models. More-
over, the SYK model has intriguing connections with the
physics of black holes and quantum gravity, promoting
itself as an ideal candidate to address new questions on
holography and the AdS/CFT correspondence.

We will focus our attention on the SYK model with
q = 4. Tt has two notable features that can be a source
of trouble for any eigensolver algorithms, regardless of
being classical or quantum mechanical, whose goal is to
reach the ground state. First, the energy spectrum of
the SYK model is very dense, especially having a small
energy gap between the ground state Fy and all other
excited states. Second, the SYK ground state is much
less distinguishable from generic quantum states in the
Hilbert space, supporting the volume law scaling of the
entanglement entropy. Therefore, the VQE computation
with the SYK model must be seen as a highly challenging
benchmark [31].

As another characteristic, the SYK model is known
to have two-fold degenerate eigenstates, if and only if
n = 4k + 2 for any positive integer k [29, 30]. Denoting
the two-fold degenerate ground states by |¢1) and |¢2),
that we assume to be normalized and orthogonal to each
other, the VQE target states for the SYK model are then
given by all the possible linear combinations of the form:

¢y b
Ve

|o? + 517
with « and 8 being complex numbers. Therefore, the
distance between the circuit state |1(8)) and the closest
state of the form |¢g) can be measured by computing

(W (8)]61)]* + 1(1(8)|¢2)|* < 1 (23)

with the inequality which is saturated whenever [1(8))
takes exactly the form (22).

We will numerically show that the high-depth quan-
tum circuit can effectively learn the ground state of the
SYK model. It will imply that even complicated sys-
tems, involving non-local interactions and a high level of
entanglement, can be universally simulated through the
variational circuits.

|¢0) = [62)  (22)

2. Optimizing the Circuit

We start by discussing if the SYK Hamiltonian causes
the vanishing gradient problem for the variational circuit
in Figure 1. When at least one of Uy (0+) is a 2-design,
the scaling behavior of Tr(#?) will determine if the SYK
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energy gradient will be exponentially suppressed or not.
The Hamiltonian (20) has been exactly diagonalized up
to n = 15. Moreover, an approximate analytical formula
of the spectral density is at disposal in [32], which we use
to extrapolate Tr(#H?) for the large system size n. The
results are presented in Figure 2. We clearly see, as in the
Ising model, that Tr(#H?) scales like 2", which indicates
the abundance of the barren plateaus in the VQE energy
landscape of the SYK model.

The vanishing gradient problem has also been observed
numerically by computing the sample variance of J E(0)
over a collection of 1000 random parameters, as displayed
in Figure 8a. Clearly, the energy gradient J;E(6) is ex-
ponentially suppressed by increasing n. We also see that
for the SYK model, contrary to the Ising Hamiltonian,
there is almost no transient regime where 9 E(0) is still
large, yet decreasing for the growing number L of layers.
The lack of the transient regime, which is a consequence
of the non-local nature of the SYK interactions [11], is a
clear obstacle in using the variational circuit to approxi-
mate the SYK ground state in the low-depth regime.

On the other hand, as we can see from Figure 8b, the
norm of the gradient vector is again increasing for the
growing number L of layers, due to the saturation of the
Varg [0k E(0)] with respect to L. The empirically mea-
sured growth rates between log ||VeE(0)|| and log L are

n qubits 4 6 8 10
rate 0.503 0.503 0.501  0.502

matching the simple estimation formula (14). Tt tells
that the gradient-based optimization can at least launch
for high-depth quantum circuits, which bypass the van-
ishing gradient problem using an exponentially high-
dimensional parameter space.

As the next step, we examine the performance of the
variational circuit Ansatz (2) in reaching the ground state

10 20 30 40 50
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N
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FIG. 9. Optimized VQE energy (E(0*)— Ey) density for the
SYK model over 35 distinct runs with random initialization.

of the SYK Hamiltonian, by repeating the same numeri-
cal experiments conducted in Section III 2 under the same
choice of hyperparameters («, 1, 82) = (0.05,0.9,0.999).

First, the sample distribution of the minimized energy
E(6*) for randomly initialized circuits with 4 < L < 16
layers is illustrated in Figure 9, based on 35 sample VQE
runs at each L. A notable observation is the small vari-
ance of the final energy, compared to the Ising VQE en-
ergy distribution in Figure 4, even at very low depth.
We interpret it as another manifestation of the fact that
the ground state that we aim to approximate is less dis-
tinguishable from generic quantum states. Hence, devel-
oping an optimization trajectory demands more classical
computing power through the high-dimensional @-space
[31]. Another — and perhaps the most important — point
to stress is that, the mean value of the minimized circuit
energy E(0*) decreases by stacking more layers, just like
what has happened to the Ising VQE problem. It sug-
gests that the high-depth circuits can reach a very good
approximation of the SYK ground states.

Second, we have measured the performance of the lay-
ered circuit Ansatz (2) in approximating a ground state
of the SYK model (20), as a function of the circuit depth.
Specifically, the VQE single-run error E(6*)—Ejy is drawn
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FIG. 10. Single-run VQE outcomes for the SYK model (20)
using the layered circuit Ansatze (2) at different depths L.

in Figure 10. The high-depth circuit performs very well,
reaching a zero error with the following accuracy,

|E(6) — Eol <107° - AE,

when the depth L arrives at the following values.

n qubits 4 6 8 10
L, layers | 12 30 96 220

We also note from Figure 10b that the fidelity between
the optimized and ground states tends to decrease at an
intermediate scale of depth, while the VQE error contin-
ues to reduce without temporary increase. Such contrast-
ing behavior is due to the dense energy spectrum of the
SYK model near the ground energy level Ey. With an
intermediate-depth circuit, the VQE algorithm is going
to approximate not the exact ground states, but some
low-lying excited states. In this way, the energy contin-
ues to decrease but the fidelity does not improve. How-
ever, for sufficiently deep circuits, the VQE algorithm can
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overcome the difficulty and reach an excellent agreement
with the ground state.

Interestingly, we have seen that the necessary number
L, of layers to reach the high precision (15) is roughly in
the same order, both for the SYK and Ising models. We
will also see that the circuit (2) with L > L, achieves
high precision in replicating random states by minimiz-
ing the Euclidean distance, as shown in Figure 11. This
compatibility highlights the universal effectiveness of the
high-depth circuit in approximating any quantum state
in the Hilbert space, both generic and non-generic ones.

V. APPROXIMATING RANDOM STATES
USING EUCLIDEAN LOSS FUNCTION

Taking one step further, we will look into the high-
depth circuit’s capability to approximate generic quan-
tum states |¢) by minimizing the Euclidean distance.

Recall that the variational circuit |¢(0)) with L layers
depends on nl parameters, which are periodic over the
finite interval [0, 27) up to an overall sign. It is a mapping
from the nL-dimensional torus to the Hilbert space of n
qubits. As a practical measure for the expressibility and
trainability of the circuits in simulating quantum states,
we consider whether, for a given quantum state |¢), there
exist a point @* in the parameter space, reachable by
the gradient-based optimization such that |[(0*)) =~ |¢).
Such measure of expressibility is motivated by [33] but
tailored for the hybrid algorithms. Its definition follows:

Let us apply the gradient descent to find the minimum
distance at the closest point

6" = argmin |[|[¢(0)) —[4)]| (24)

between the circuit and target states, where ||| is the Eu-
clidean norm of a complex vector. The (in)expressibility
of the variational circuit is written as the average of the
minimum distances over all quantum states:

1

= gy | e min )~ (25)

Notice that the closeness between two quantum states
is usually defined by using the trace distance, which is
highly sensitive to small parameter changes. Instead, we
have adopted the Euclidean distance to improve the con-
vexity of the optimization landscape, such that the clos-
est point 8* can be found as easily as possible. The Eu-
clidean norm defines trivially a convex landscape. Hence,
any non-convexity of the optimization landscape is inher-
ited from the variational circuit itself that fixes how to
embed the nL-dimensional torus into the Hilbert space.

For an actual estimation of €, we substitute the Haar
unitary integral (25) with the sample mean over m states:

fn= @) - lod| (20)
i=1
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Given a target state |¢;), we start with an Ansatz state
[4(@)) with nL initial parameters 0, randomly sampled
from the uniform distribution U(0,27)®"L. To reach
the optimal parameters 6* that minimize the distance,
we use the Adam optimization algorithm with the hy-
perparameters («, 81, 82) = (0.05,0.9,0.999). Note that
the overwhelming majority of Hilbert space is filled with
generic states with a high degree of entanglement, so the
sample states |¢;) will almost never be non-generic, low-
entangling states similar to the Ising ground state.

Figure 11 shows the sample mean &, over m = 10 ran-
dom target states, divided by the number 2™ of state com-
ponents. The narrow shade displays the fluctuation range
of the component-averaged distance |||¢(0*))—|¢p;) || - 27"
across different target states indexed by i = 1,...,10.
We have selected the minimum distance among the first
7 < 500 optimization steps, which is sufficient since the
optimal parameter 6* is empirically always found in an
early stage of the optimization.

We find that the (in)expressibility approaches to 0 as
the circuit depth L grows. To achieve the following high
precision,

E€m=10 § 10_5 . 271’ (27)

the depth L has to be greater than the threshold values:

n qubits 4 6 8 10
L. layers | 10 24 56 150

Note that the slight ramp-up after the steep fall of £,,—1¢
is caused by the fluctuation of 8 around the optimal point
6*, since the fluctuation size gets amplified for bigger L.
It is a common phenomenon in gradient-based optimiza-
tion, where a suitable reduction of the learning rate can
turn it to the stable convergence 8 — 6*.
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In Figure 11, we have found the following overall trend:
Deeper circuits are not only a superset of shallow circuits
but also behave more effectively in the gradient-based op-
timization. Though the functional form of the variational
circuit in Figure 1 is composed of only two types of gates,
it can accurately express and reach most quantum states
in Hilbert space in the high-depth regime.

VI. DISCUSSION

From the viewpoint of the vanishing gradient problem,
adding more parametric gates to the circuit architecture
brings both positive and negative effects on trainability.
On the negative side, it makes the circuit unitary ensem-
ble closer to quantum 2-design, whose one- and two-point
correlators are equivalent to those of Haar random uni-
taries, so that initial random gradients may decay expo-
nentially with the system size n [4]. On the positive side,
however, it enlarges the dimensionality of the parameter
space and maintains the norm of random gradients to be
finite.

Until now, we have explored one limiting regime, where
the impact of exponentially many parameters dominates
over the barren plateau phenomenon. It turns out that
the high-depth circuit has been very effective in solving
the ground states of the Ising and SYK Hamiltonians, as
well as in simulating generic random states. One may
note a certain degree of qualitative similarity between
the VQE optimization trajectory of high-depth circuits,
demonstrated in Section I112, and the lazy learning [34]
in over-parameterized neural networks. We speculate it
as naturally emerging in any systems involving the high-
dimensional parameter space. It would be interesting to
know why local extrema on the energy landscape of the
high-depth circuits can reliably reach a zero VQE error,
as studied in [35] for the neural networks.

Some interesting phenomena that we found during the
optimization of low- and intermediate-depth circuits need
to be further understood. For low-depth circuits, it is im-
portant to characterize what features of the initial points
lead to the observed big difference in their minimized en-
ergy levels. We are also curious to know what makes the
local minima on the energy landscape of intermediate-
depth circuits so homogeneous. More generally, we want
to understand how the circuit states evolve along a gra-
dient optimization trajectory on average, in terms of var-
ious quantum information measures.

We need to concern two types of errors for the actual
use of the variational circuits on the near-term quantum
devices [36]. Firstly, for accurate estimation of the energy
gradient, it is necessary to sample the variational wave-
function repeatedly, ideally exponentially many times in
the system size n. Under the assumption that we can
collect only a limited number of samples, the energy gra-
dient estimation will be inevitably noisy. Therefore, the
expressibility and trainability of the variational circuit



needs to be addressed with noisy gradients, or even with-
out direct gradient computation as in [37, 38]. We expect
the simplicity of the energy landscape in the high-depth
regime may bring robustness against the sampling noise.
Secondly, and more severely, quantum hardware noise
restricts our ability to maintain quantum states when a
sequence of layer unitary acts on them. A noise-induced
mechanism that causes the vanishing gradient problem
has also been studied in [39]. We would like to investi-
gate if the variational circuit approach can be successful
under decoherence of quantum states in the near future.
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