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A number of studies have shown that chaos occurs in scattering: the outgoing deflection angle is
seen to be an erratic function of the impact parameter. We propose to extend this to quantum field
theory, and to use erratic behavior of the many-particle S-matrix as a probe of chaos.

INTRODUCTION

How can we characterize chaos in quantum field the-
ory? Based on intuition from studies of chaotic scattering
in classical and quantum mechanics, we will propose that
chaos is visible in the quantum field theory S-matrix.

Chaos in classical physics is characterized by stretching
and folding: a region of phase space experiences stretch-
ing along unstable directions, with an average rate given
by the Lyapunov exponents, along with folding, in or-
der to remain confined to a finite region of phase space.
An initially localized patch of phase space evolves into a
highly complex structure which is spread throughout the
available phase space, while still maintaining the same
volume as the initial patch, as required by Liouville’s
theorem.

In quantum systems, the state space is not phase space,
but rather that of the eigenfunctions and eigenvalues of
the Hamiltonian. Quantum systems which are classically
chaotic are known to exhibit universal features, such as
Wigner-Dyson statistics for energy eigenvalues [1]. Semi-
classical theory based on the Gutzwiller trace formula
[2], a kind of generalization of Bohr-Sommerfeld quanti-
zation, provides a bridge between the spectral data of the
quantum Hamiltonian and the dynamics of the classical
system.

Chaos in many-body systems and field theories is far
more challenging to study, yet is of essential importance,
as it provides the microscopic underpinning of thermo-
dynamics [3-6]. A recent insight has been to extend the
application of the out-of-time-order correlator [7] - which
gives a quantum mechanical analog of a Lyapunov expo-
nent - to quantum field theories with a large number of
fields [8, 9], such as the SYK model [10-14]. However,
a deeper understanding of chaos in quantum field theory
will require knowing much more. Certainly within classi-
cal mechanics, knowing that there are positive Lyapunov
exponents does not, by itself, tell one of the full richness
of chaotic dynamics.

In looking for a characterization of chaos in quantum
field theory, we will neither seek a quantum generaliza-
tion of chaos in classical field theory, nor shall we seek
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FIG. 1: (a) A particle scattering off of three disks. (b)
A plot from [16] of the outgoing deflection angle as a
function of the impact parameter. The left plot includes
the full range of impact parameters, while the right plot
zooms in on a subset. The plot clearly demonstrates
chaos: the deflection angle undergoes wild fluctuation
under variation of the impact parameter.

the continuum limit of a lattice system, either classical
or quantum. Instead, we will immediately go to the nat-
ural observable of quantum field theory: the S-matrix.
In a scattering experiment, one starts with far-separated
wavepackets at early times, which interact at intermedi-
ate times, leading to far-separated wavepackets at late
times. The S-matrix is the overlap of the in state with
the out state. The vast majority of the infinite number
of degrees of freedom that a field theory possesses, and
which make it so challenging to study chaos, are never
excited in a scattering experiment.

The phenomenon of chaos in scattering, while less fa-
miliar than chaos in systems with bounded phase space,
is well-established. We will recall a few canonical exam-
ples in classical and quantum mechanics, and then we
will propose this be extended to the S-matrix in quan-



tum field theory. A special case, which has recently been
discussed, is chaos in the black hole S-matrix [15].

CHAOS IN SCATTERING

A classic example of chaotic scattering, discussed in
[16], is that of elastic scattering of a particle against three
fixed disks [17-22], as shown in Fig. 1 (a). The particle
enters with some impact parameter, it scatters off of the
three disks, perhaps hitting several of the disks multiple
times, and it emerges at some outgoing scattering angle.
A plot of the scattering angle versus the impact parame-
ter is shown in Fig. 1 (b). Strikingly, the scattering angle
is a highly erratic function of the impact parameter: the
system is chaotic.

The result appears puzzling at first: for most impact
parameters, the particle will undergo only a few collisions
with the disks before emerging, and restricting to those
initial conditions would surely not give an erratic scat-
tering angle. Indeed, the fraction of impact parameters
that lead to the particle spending longer than time T
within the scattering region decays exponentially, e=77.
However, crucially, there exist infinitely many impact pa-
rameters that lead to the particle spending an arbitrarily
long amount of time within the scattering region, bounc-
ing around between the disks. It is this property which
gives the erratic behavior shown in Fig. 1 (b): an ar-
bitrarily small range of impact parameters will lead the
particle to scatter into the full range of deflection angles.

The quantum version of a particle scattering off of a
potential is much richer. Semiclassically, one can form a
wavepacket of high momentum modes and, for instance,
study possible interference effects of classical paths. More
generally, quantum scattering is described by the S-
matrix, which, in the basis of plane waves, is the overlap
of the in state and the out state, S(p'— §) = out{q|D)in,
where p and ¢ are the ingoing and outgoing momenta,
respectively. One can alternatively consider a discrete
basis of states, |n), so that the S-matrix is a matrix,
Spm(E) = out{m|n)in, where E is the energy of the
state. Extrapolating from examples, Bliimel and Smi-
lansky [23-25] conjectured that, for systems whose clas-
sical analog is chaotic, “the statistical properties of the
S-matrix (for i — 0) are determined by Dyson’s theory
for the orthogonal ensemble of random unitary matrices”
[16].

For most chaotic systems, the S-matrix must be found
numerically. A remarkable analytic example is that of a
leaky torus [26-29]: one cuts out a piece of hyperbolic
space and identifies the sides, as shown in Fig. 2. The
result is a torus, of negative curvature, that has a cusp
extending to infinity [30]. In terms of Fig. 2 (a), y = oo
along with the three points at y = 0: = = —1,0,1, are
identified with infinity. One can send ingoing waves from
infinity through the cusp, and observe the phase shift
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FIG. 2: A piece of hyperbolic space is cut out and the
sides are identified, as indicated in (a). The result is a
torus with a cusp that extends to infinity (a “leaky
torus”), as shown in (b). One considers a quantum
mechanics scattering problem on the leaky torus. A
wave is sent into the torus from the end of the cusp, at
infinity. The relative phase of the reflected wave
involves the Riemann zeta function: an analytic yet
erratic function, as shown in (c).

of the outgoing waves. The solution to the Schrodinger
equation at large y, and after integrating over the x di-
rection, is a superposition of an incoming and outgoing
wave, y2~"F + S(k)y2 T with the S-matrix,

Z(1 + 2ik)

Sk) = Z(1 — 2ik)

where  Z(z) = 77%/?D(2/2)¢ () ,
1

(1)

where ((z) is the Riemann zeta function, see Fig. 2 (c).
The phase is erratic: even though the Riemann zeta func-
tion is analytic, it is seemingly unpredictable.

CHAOS IN THE QUANTUM FIELD THEORY
S-MATRIX

We would like to generalize the discussion of chaos
in nonrelativistic scattering to relativistic quantum
mechanics. This requires the language of quantum field
theory. In quantum field theory, one computes the n
to m S-matrix, ou(Pl,- .., PmlP1s- -+, Pn)in, Where the
in state in the asymptotic past consists of n particles
with d-dimensional momenta p;, and the out state in the
asymptotic future consists of m particles with momenta
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FIG. 3: We expect a many-particle S-matriz in
quantum field theory to exhibit chaos. The interactions
occur within the shaded region. In certain settings, one

may view the collection of particles p;, with
i=1,...,N, as analogous to the three disks in Fig. 1.

Proposal

We propose that the N+1 to M+1 quantum field the-
ory S-matrix,

out<p/1a~lea(1|pla~pN7p>m 5 (2)

in the limit N + M > 1, may exhibit chaos in some
regions of phase space, in the sense of erratic behavior
under variation of some of the individual momenta such
as p.

The motivation for this proposal comes from the ex-
ample of the three-disk scattering problem discussed in
the previous section. The quantum field theory S-matrix
is much richer than the one-to-one S-matrix in the me-
chanics problem of a particle scattering off of a potential.
To imitate the latter, we think of the N particles with
momenta p; as playing the role of the potential (the three
disks), and the additional particle with incoming momen-
tum p and outgoing momentum ¢ as playing the role of
the particle scattering off of the potential. We must take
N to be large, in order to have a state that is far from
the vacuum. Note that in the three-disk problem, a sin-
gle disk is already a state that is far from the vacuum;
for quantum field theory, each particle is a fundamental
excitation, so we need a state with many particles [31].

A possibly instructive setup to study, which models
a static potential, is in a theory with two species of
fields, one heavy and one light. The light field is taken
to have an interaction with the heavy field, but no self-
interaction. Taking the N particles with momentum p;
in the in state to be excitations of the heavy field, and
the in particle with momentum p to be an excitation of
the light field, the S-matrix will be concentrated around
N ~ M and p} ~ p; (since N is large, ¢ can differ signif-
icantly from p, with the process still conserving momen-
tum). The incoming particle with momentum p, after

interacting with the N other particles, will exit with mo-
mentum ¢g. The setup is thus like that of a one-to-one
S-matrix, p — ¢, in the background of N particles with
momenta p;, see Fig. 3.

Finding explicit examples in which the chaos effect in
the S-matrix can be computed will be a challenge. Work-
ing perturbatively to a few orders in the coupling is not
sufficient. Moreover, replacing the background state of
N particles p; with a thermal state is not appropriate;
this would wash out the chaos [32]

Of course, since relativistic quantum field theory sub-
sumes non-relativistic quantum mechanics, with appro-
priate choices of initial state one can achieve, to arbitrar-
ily good accuracy, scattering in classical mechanics or in
quantum mechanics. For instance, one could take an in
state that gives a long-lived intermediate state that looks
like three disks. It would be interesting to study scatter-
ing of a relativistic particle in this background, thereby
extending the non-relativistic analysis. One would hope,
however, to also be able to see chaos in the S-matrix in
regions of parameter space in which there is no interme-
diate classical state.

Chaos in the black hole S-matriz

There is one case in which chaos in a field theory
S-matrix has in a sense already been seen, in the context
of a black hole, as discussed in [15], building on earlier
work [8, 33-35]. By appropriately sending in a large
number of particles, we can form a black hole as an
intermediate state, which decays into Hawking quanta
at late times. The question is what impact a change in

FIG. 4: A sector of the quantum gravity S-matrixz which
exhibits chaos [15]. Incoming particles collide to form a
black hole as an intermediate state. The green shaded
region is the interior of the black hole; the edge is the
horizon. An additional particle falls into the black hole
(blue line on the right). The dashed vertical line
indicates where the horizon would have been had the
extra particle not been sent in. The outgoing Hawking

quanta, one of which is shown, are closer to the new
horizon than to the old horizon.



one of the in particles has on the S-matrix. The setup,
shown in Fig. 4, is the following: we add an additional
particle to the in state, so that the in state has N+1
particles, where the additional particle interacts with the
others much later; at a time at which they have already
formed a black hole that is decaying into Hawking
radiation. The effect of the additional particle is to shift
the black hole horizon slightly outward. The subsequent
outgoing Hawking quanta find themselves slightly closer
to the horizon, which in turn causes them to take longer
to escape. More precisely, in Schwarzschild coordinates,
and for a horizon of radius r,, a Hawking quanta that is
at radius s + 9 takes a Schwarzschild time ¢ ~ % log =
to escape. Decreasing § — § — Ar, increases the
escape time by an amount At ~ Ar,e?™/8 where j
is the inverse temperature of the black hole, which is
proportional to its mass, which we can take to be the
center of mass energy of the in state [36]. This is chaos:
slightly increasing the energy of the in state causes an
exponentially large change in the out state.

The Horowitz-Polchinski correspondence principle [37]
relates black holes and strings, suggesting one may be
able to observe chaos in scattering involving highly ex-
cited strings. This is indeed the case and will be dis-
cussed for bosonic string theory in [38]. An excited string
is characterized by the occupation numbers of the dif-
ferent modes, and can be formed by repeatedly scatter-
ing photons off of an initial unexcited string (a tachyon),
with the occupation numbers determining the momenta
of the photons. Consequently, scattering of highly ex-
cited strings is an example of an S-matrix with a large
number of particles, and the observed erratic behavior of
the S-matrix in [38] is an illustration of the chaos effect
proposed here.

DISCUSSION

Decades of progress in quantum field theory have given
rise to both special field theories that are tractable even
at finite coupling, as well as quantitative statements -
such as a c-theorems - that are valid for all theories.
Nevertheless, even a qualitative understanding of the dy-
namics of general quantum field theories remains an open
problem. The primacy of the S-matrix within quan-
tum field theory, combined with the generic appearance
of chaos in classical field theory, suggests that studying
chaos in the S-matrix of quantum field theory may be a
productive route. We have proposed one look for erratic
behavior of the many-particle S-matrix under a small
change in the momenta of a few particles. It will be im-
portant to find explicit examples of this, and to give a
quantitative measure of the degree of chaos.
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