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In this note, we prove that for all five-dimensional supergravities arising from M-theory compact-
ified on a Calabi-Yau threefold, points of vanishing gauge coupling lie at infinite distance in the
moduli space. Conversely, any point at infinite distance in the vector multiplet moduli space is a
point of vanishing gauge coupling. This agrees with expectations from the Tower/Sublattice Weak
Gravity Conjecture, the Swampland Distance Conjecture, and the Emergence Proposal.

INTRODUCTION

Quantum gravities with sufficient supersymmetry tend
to have (i) gauge fields and (ii) continuous moduli spaces
of vacua controlled by expectation values of scalar fields
[1]. Recently, much work has gone into understanding
the universal behavior that arises in weakly-coupled lim-
its of these gauge theories and in asymptotic, infinite
distance limits of these moduli spaces. This had led to
a number of “swampland conjectures” that attempt to
describe this universal behavior, along with other gen-
eral features of quantum gravities. Among them are the
Tower /Sublattice Weak Gravity Conjecture (T /sLWGC)
[2-5], the Swampland Distance Conjecture (SDC) [1],
and the Emergence Proposal (EP) [6-9].

The T/sLWGC requires an infinite tower of particles
to become massless at a point of vanishing gauge cou-
pling, whereas the SDC requires an infinite tower of par-
ticles to become massless at an infinite distance point in
moduli space. In turn, the EP suggests that a vanish-
ing gauge coupling should emerge as an infinite tower of
charged particles become light [7], and infinite scalar field
distance should emerge as an infinite tower of particles
become light [8, 9].

Thus, a supergravity theory satisfying the T /SLWGC
will have an infinite tower of massless charged particles
in the limit of vanishing gauge coupling, which by the EP
should generate an infinite distance in scalar field space.
Conversely, a theory satisfying the SDC will have an in-
finite tower of massless particles in the limit of infinite
distance, which by the EP should generate a vanishing
gauge coupling (assuming the particles are charged).

In this note, we will see that these expectations
are borne out in 5d supergravity theories arising from
M-theory compactifications on Calabi-Yau threefolds:
points of vanishing gauge coupling are at infinite dis-
tance, and points at infinite distance in vector multi-
plet moduli space have vanishing gauge coupling.! These

1 These points of zero gauge coupling and infinite distance are

results complement similar results in 4d N/ = 2 super-
gravity theories arising from type II compactifications on
Calabi-Yau threefolds [8, 11] and 6d supergravity theories
arising from F-theory compactifications on elliptically-
fibered Calabi-Yau threefolds [10, 12, 13].

The remainder of the note is structured as follows. We
begin with a brief review of relevant properties of Calabi-
Yau threefolds and 5d supergravity, and we derive a re-
lated positivity lemma. We then prove that points of
zero gauge coupling lie at infinite distance in the moduli
space as well as the converse statement.

THE KAHLER CONE OF A CALABI-YAU
THREEFOLD

A Calabi-Yau threefold X is equipped with a (1,1)-
form J known as the Kdhler form, which takes values
inside a strongly convex polyhedral cone whose interior
is the Kdhler cone, K(X). Within the Kahler cone, J can
be expressed as a positive linear combination,

T =Y wit', >0, (1)

where each w;,i = 1,..., N is called a generator of the
Kahler cone. If the number of generators N is equal to
the dimension h!(X) of the Kihler cone, the cone is
simplicial. If N > h11(X), the cone is nonsimplicial.
Any (1,1)-form A in the closure of the Kéhler cone is
called nef. Nef (1, 1)-forms have the property that their
triple product is non-negative: Ay - Ao - A3 > 0 for A; nef.
In particular, this implies that the triple intersection of
any three generators of the Kéhler cone is non-negative.
If the Kahler cone is simplicial, we can take the gen-
erators wy of the Kéhler cone to be a basis of A (X).
Thus, we can write J =, w; Y, with Y/ > 0, and the

associated geometrically with curves or divisors of the Calabi-
Yau going to infinite size [10].



triple intersection numbers are all non-negative:

I,J,K =1,...h"(X).
(2)

Such a basis does not exist when the Kéhler cone is non-
simplicial [14]. One can choose a subset of the generators
as a basis for h1!(X), but then one cannot express J as a
positive linear combination of these particular generators
over the entirety of the Kahler cone.

In addition, the Ké&hler form J is often able to cross cer-
tain codimension-1 boundaries of the Kéhler cone IC(X)
into the Kihler cone K(X) of a birationally-equivalent
Calabi-Yau X, which is related to X by a flop transition.
The union of the Kéhler cones of all of these birationally-
equivalent Calabi-Yau threefolds is called the extended
Kihler cone of X, which we denote Ky(X). Within
a given Kéhler cone K(X), J may be written as J =
S ywrY!, with YI > 0 and Cryx > 0, but this positiv-
ity will cease to hold as J passes through the boundary
between the two Kihler cones, as some Y switches from
positive to negative.

These subtleties are avoided if J is contained in a par-
ticular, simplicial subcone of a particular Kéahler cone
K(X). In particular, consider generic paths in the ex-
tended Kéahler cone of some Calabi-Yau X,

Crig i=wr-wy-wg >0,

v:[0,1] = Ku(X), xw— J(z), (3)
where J(z) approaches either an asymptotic boundary
or a point of zero gauge coupling as x — 0. If 2y > 0
exists such that for 0 < z < g, J(x) in contained within
the closure of a particular simplicial subcone of a single
Kéhler cone K(X) with generators {wy}, then we may
write

hl,l(X)

Z wrY(z),

I=1

J(x) = Yi(x) >0 for all x € [0, zg).

(4)

Notably, the Kéhler moduli Y/ depend on z, but the
basis (1,1)-forms w; do not. In this basis, Crjx > 0
and Y (z) > 0 for all I, J, K. We will use this positivity
repeatedly in what follows.

5D SUPERGRAVITY

Many features of a 5d supergravity are captured by its
prepotential, a cubic homogeneous polynomial:

1
F = 8CL,KY’YJYK = 1. (5)
In an M-theory compactification to 5d on a Calabi-Yau

threefold X, indices I,.J, K run from 1 to h%!(X), the
constants C s are the triple intersection numbers of (2),

and the moduli Y7 are volumes of calibrated 2-cycles, see
(4). The constraint F := 1 follows from the fact that the
overall volume of the Calabi-Yau is not a vector multiplet
modulus in 5d, so the vector multiplet moduli space has
dimension AY!(X) — 1, and may be thought of geomet-
rically as the F = 1 slice of the extended Kihler cone.?
At a %;eneric point in moduli space, the gauge group is
U(1)r H(X) and the gauge kinetic matrix is given by?

ary = FrFj;—FrJ. (6)
with

Fr = %CIJKYJYK, Frj = C]JKYK. (7)
The eigenvalues of the gauge kinetic matrix correspond to
the inverse-squares of gauge couplings, A\; ~ 1/g%. Thus,
the eigenvalues of aj; are positive-semidefinite every-
where in moduli space and positive-definite at a generic
points, and an eigenvalue of ay; blows up precisely when
a gauge coupling vanishes.

The metric on moduli space is given by the pullback
of the gauge kinetic matrix to the F = 1 slice of the
extended Kahler cone,

ds\*_ dvidy’ (. dy! :
de) — de de  \Ude

ay’'dy”’
Mody dw
(8)
To show that points of zero gauge coupling lie at in-
finite distance in moduli space, we consider a path in
vector multiplet moduli space that approaches a point
of zero gauging coupling. As discussed previously, we
assume the path in question lies inside a fixed simplicial
subcone of a fixed Kéhler cone as we approach zero gauge
coupling, described by

vI, V' >0, (9)

in an appropriate basis. The intersection numbers are
non-negative in this basis:

vI,J,K, Crjx >0. (10)

The ability to choose a basis where (9) and (10) hold as
zero gauge coupling is approached amounts to a regular-
ity condition on the path: we assume it does not meander
back and forth indefinitely between different Kéhler cones

K(X), K(X) within the extended K&hler cone, nor does
it endlessly meander in and out of the simplicial subcone

2 In 4d N = 2 compactifications of type IIA string theory, there
may be additional non-geometric phases in the vector multiplet
moduli space, but in 5d these phases are absent [15].

3 See, e.g., [16, 17]. We set 2&% =1, with Y({lere> = \/gh{there) and
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of K(X) generated by the w;. This assumption is jus-
tified when seeking distance-minimizing paths, as such
meandering will only serve to increase the path length.

Per (6), some component of Y/ must go to infinity for
an cigenvalue of ay; to blow up. Let Y/ = Y!(z) be an
arbitrary parameterization of the path, with x = 0 the
point at which a gauge coupling goes to zero. We assume
a Laurent expansion of the form

Vi) = 3 v (1)
n=—N

for some N > 0, where the path lies entirely within the
cone Y! > 0 for a finite interval 0 < z < zy.*

To show that zero gauge coupling lies at infinite dis-
tance, we proceed by contradiction: assuming the path
length to be finite, we derive Y,/ = 0 for all n < 0, and
therefore Y () is finite as  — 0, so az; is also finite.

A POSITIVITY LEMMA

We first derive a basic consequence of (9), (10), which
we use repeatedly in what follows. While clearly

CrigY'YYE >0, (12)

in general there is no constraint of the form
CrxYIy/ YPK > 0 on the Laurent coefficients. The fol-

m=n

lowing lemma establishes when such a constraint holds:

It CIJKYqIYTJYSK =0 forall (g,rs)<(m,n,p)
then C]JKY,QK{YPK >0. (13)

Here we define a partial order on tuples:

(5. F) < (0,5, K) if i<ij<j k<K, (14)

and (i,7,k) < (¢/,4', k') indicates distinct ordered tuples.
To prove (13), let S,, be the set of indices I for which
the Laurent expansion of Y/ () has leading term z" (i.e.,
for which Y,/ # 0 and Y,_, = 0). This divides the
indices I into disjoint sets S,,,n = —N,...,00. Writing
an index I restricted to lie within S,, as I,,, (9) implies

Y[ >0, (15)
as the leading term cannot be negative as z — 0. Thus:

CrrY Y] YE = > Cra g YiY v (16)
(q7r’s)g(7n7n’p)

Next, we show inductively that Cj JKYqI Y, YSK =0
for (q,r,s) < (m,n,p) if and only if Cr, 5k, = 0 for

(g,7,8) < (m,n,p). Clearly

CrorYINYINY Sy = Cr o i WJYIRYIRYIRY,
(17)

which vanishes if and only if Cr_, s_yx_y = 0 because

Yf;VN > 0. Now suppose that Cr;xY]Y/Y = 0 and
C'Iq 7.k, = 0forall (q,r,s) < (m,n,p) for some particular
m,n,p. We find

CIJKYnIz+1YnJYpK - CIm+1 JnKp erli-;l Ynjn Ypr o (18)

which vanishes if and only if Cy,,_, 1, i, = 0. The same
conclusion follows when incrementing n or p, completing
the proof by induction.

Thus, if C’IJKYIIIY,,.JYSK =0 for all (¢,7,s) < (m,n,p)
then Cp, .k, = 0 for all (g,r,s) < (m,n,p), implying

CLrY YV =Cr .k, Y, YIny e (19)

m

This is non-negative per (10), (15), so (13) is proven.

PROOF OF INFINITE DISTANCE
Consider the constraint
1 InJvyv K
ECUKY Y'Y® =1, (20)

and expand the left-hand side in negative powers of .
We show that

CrY Y)Y =0 for  m+n+p<0. (21)

In particular, the leading power of x gives
1 .
ECIJKY_INY_JNY_KNJC“N =0, (22)

therefore C’IJKY_INY_JNY_KN = 0. Next, suppose that
C[JKYWI]/YﬁIYpK = 0 for all m +n+p < —M, where
M > 0. The leading power of x now gives

1
6 Z CI‘]KYnIlY;{]YpKLU_M =0. (23)
ety

The lemma (13) implies that each term in the sum is non-
negative, hence each term vanishes individually, prov-
ing (21) by induction.

The path length is finite if and only if the Laurent
expansion of (3—2)2 at = 0 has no 1/z? (log divergent)
or more singular (power-law divergent) term. From (8),
we obtain



2
Z 7nC]JKYn€YnJYpKIm+n+p> —

m,n,p

ds\*_ 1 (1
dx T2\ 2

2
1 1 IynJyv K, m+n+ 1
=2 (g ";p(m +n+p)CrikY, Y, Y, x pl — 52

Per (21), the most singular power that can occur is 1/x2.
This term takes the form:
ds\’ 1
(%) B = g Z(m2 +mn + nZ)CIJKYéYnJY_Ifn_n.
m,n
(25)
Each summand is non-negative by (13), therefore
CrgY, Y/ YE, =0, (m,n)# (0,0, (26)
to have a finite path length.
We now make use of the assumption that the gauge
kinetic matrix is positive-definite. Consider

V= Yt (27)
n

for arbitrary coefficients t,,. We have

2
1 .
V;SIV;‘/JG’IJ = |:§ Z tm, CIJKKQ YnJYpA (Eerner
m,n,p
S it Crar Y Y™ > 0 (28)

m,n,p

for all 0 < x < z¢ and arbitrary ¢,.
Using (28), we show inductively that
CrxY, Y)Y =0 whenm <0, (29)
for all n,p. To do so, note that this statement is true

when m +n + p < 0 per (21), (26). Now suppose that it
is true for m+n+p< M, M >0, ie.,

CrrYpY,/VE =0, m<0, m+n+p<M, (30)
CLrY Y)Y >0, m<0, m+n+p=M, (31)

where (31) is a consequence of (13). We choose t, = 0
for 0 < p < |M/2] and t, > 0 for p < 0 or p > |M/2].

4 This ansatz is more general than it appears. For instance, by ap-
propriately redefining x, such a Laurent expansion exists for any
path specified by algebraic functions Y/ (z). (Algebraic functions
occur naturally in this context due to the polynomial nature of
the prepotential.)

1
2 : InJyvK,,
P mnCUKYmYn Yp lm+n+p’

m,n,p

> (mn+mp +np)Crix VLY,V am e,
m,n,p

(24)

This ensures that

1
3 S tmCrar YLV YK amt e = 0(aM) +0 (1Y),

m,n,p

Z tmtnCIJKYIYJY;,KLEerner = O(.IIM)-i-O(;rQ L%J +2)’

m-n
m,n,p

(32)

where the first term on the right-hand side is the lead-
ing contribution from terms with either m,n or p neg-
ative, and the second is the leading contribution from
terms with m,n and p all non-negative. Thus, the lead-
ing contribution to V,/V;”ar; is at order 2™, only the
second term in (28) contributes at this order, and only
the terms in the sum with either m,n or p negative con-
tribute. Thus,

VYtIV;JGIJ = - ZtmtnCIJKYn{LYnJyj\ijmfan
m,n
+0(2™M*h). (33)
Each summand is non-positive per (31), so each must
vanish individually. Symmetrizing:

(tmtn + bty +tatp) CrLig Y Y,/ Y. =0, m+n+p= M.

(34)
Given m < 0, the constraint m +n+ p = M implies that
either n > |M/2] or p > |M/2], hence either tp,t, > 0
or tyty, > 0, implying tmt, + tmtp + tnhtp > 0. Thus,

CLrY Y)Y =0, m+n+p=M, m<0, (35)
which establishes (29) by induction.
As a corollary, using (6), (7) we obtain
ar YV =0, n<o. (36)

Since ay; is assumed positive-definite along the path, this
implies Y, = 0 for n < 0, hence the Laurent expansion is
actually a Taylor expansion, and Y/ remains finite along
the path. This implies that aj; also remains finite, and
in particular we cannot reach a zero-coupling point along
a finite-length path. This establishes our desired result:
points of vanishing gauge coupling lie at infinite distance
in moduli space.



PROOF OF ZERO GAUGE COUPLING

We now show the converse: points at infinite distance
in vector multiplet moduli space are necessarily points
of vanishing gauge coupling. An analogous result in 4d
N = 2 supergravity theories has been shown in [11] us-
ing asymptotic Hodge theory [18-21], but here we will
establish the 5d result using only the cubic nature of the
prepotential and the positivity conditions discussed pre-
viously.

It will prove useful to extend our discussion away from
the F = 1 slice of the Kéhler cone, instead letting the
Y ! be homogenous coordinates invariant under rescaling
YT — AY!. ar; extends straightforwardly to the space
of homogenous coordinates,

FrFr  Frs

arjy = f4/3 - f1/37 (37>

Extending the metric requires a little more care. We
define projected coordinates

. Yy!

= .7:1/3 Y (38>

which necessarily satisfy CryxYIV7VE = 6. We then
have the metric

oVK gyL

N 9 oI gy J

dylay”’, (39)

on the space of homogenous coordinates Y/, where B
is given by (6). Using (38), this can be written as

As? = guay'ay”’, g =21t 71

y=3t - o)

This metric is positive-semidefinite: all eigenvalues are
positive inside the Kéahler cone except for the null eigen-
value corresponding to rescaling Y1 — AY/.

Next, suppose Y/ is a point at infinite distance in mod-
uli space. We will argue that Yy is also a point of vanish-
ing gauge coupling. As before, consider a path with end-
point Y1(z = 0) = Y{ that is contained entirely within
a region Y! > 0 in a basis where Crjx > 0. This implies
that F;;, F;, and F are non-negative for all I, J.

By homogeneous rescaling, we can ensure that each Y/
remains finite in the limit Y/ — Y/, and at least one Y'*
remains nonzero. This coordinate choice implies that Y/
also remains finite for all I, so infinite distance requires
at least one eigenvalue of g7 to diverge. Since each Y
is finite, each Fy is also finite, which by (40) means F
must vanish at Y.

Next, we show that in our chosen coordinate sys-
tem there exists K such that F2 /F is nonzero at the
point Y. Since Y is nonzero, there exists at least
one pair of indices K, M such that Frar = CxprY”
remains nonzero in the limit Y/ — Y{; otherwise,

ar;Y{Yy = 0 everywhere in moduli space, contradicting
positive-definiteness of a;; in the interior of the Kahler
cone. If K = M, then grxx > 0 (required by positive-
semidefiniteness of gr;) implies (Fx)?/F is nonzero at
Y. If K # M, then consider

Floxrgum > F2larm?, (41)

which is required by positive-semidefiniteness of gry. If
the right-hand side of this inequality vanishes at Yy,
then because Fips is nonzero, FxFar/F must also be
nonzero. Alternatively, if the right-hand side is nonzero,
then the left-hand side must also be nonzero. gx i and
gnmam must be non-negative, so from (40) and the fact
that F7s is non-negative in our coordinate system for all
1, J, we again conclude that Fx Fps/F is nonzero. This
in turn implies that either 7% /F or F3,;/F is nonzero,
so without loss of generality we may assume (Fg)?/F is
nonzero at Yy .

Since (Fg)?/F is nonzero and F — 0 as YT — Y{,
(Fx)?/F4/3 diverges in this limit. From (37), this im-
plies axk diverges in the limit unless fKK/fl/3 =
(Fi)?/F*3 + O(1) terms, but in the latter case g is
negative due to the factor of 2/3 in the first term of (40)
relative to (37), contradicting semidefiniteness of gr ;. We
conclude that axy is infinite at Y, so Yy is indeed a
point of vanishing gauge coupling.

Note that our proofs relied heavily on the positivity
conditions (9) and (10), which are ensured by the prop-
erties of Calabi-Yau geometry discussed previously. We
have not found any counterexamples to the statements
we have proven by relaxing these conditions. It would be
interesting to find such counterexamples or to develop
proofs that do not rely on Cpyx positivity.
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