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ABSTRACT: We draw attention to a class of generalized global symmetries, which we call
“Chern-Weil global symmetries,” that arise ubiquitously in gauge theories. The Noether
currents of these Chern-Weil global symmetries are given by wedge products of gauge
field strengths, such as Iy A Hz and tr(F%), and their conservation follows from Bianchi
identities. As a result, they are not easy to break. However, it is widely believed that
exact global symmetries are not allowed in a consistent theory of quantum gravity. As
a result, any Chern-Weil global symmetry in a low-energy effective field theory must be
either broken or gauged when the theory is coupled to gravity. In this paper, we explore
the processes by which Chern-Weil symmetries may be broken or gauged in effective field
theory and string theory. We will see that many familiar phenomena in string theory, such
as axions, Chern-Simons terms, worldvolume degrees of freedom, and branes ending on or
dissolving in other branes, can be interpreted as consequences of the absence of Chern-Weil
symmetries in quantum gravity, suggesting that they might be general features of quantum
gravity. We further discuss implications of breaking and gauging Chern-Weil symmetries
for particle phenomenology and for boundary CFTs of AdS bulk theories. Chern-Weil
global symmetries thus offer a unified framework for understanding many familiar aspects
of quantum field theory and quantum gravity.

KEYwORDS: Gauge Symmetry, Global Symmetries, Superstrings and Heterotic Strings,
Brane Dynamics in Gauge Theories

ARX1v EPRINT: 2012.00009

OPEN AcCCESs, (© The Authors.

Article funded by SCOAP®, https://doi.org/10.1007/JHEP11(2021)053



Contents

1
2

8

Introduction

Higher-form global symmetries
2.1 Breaking and gauging global symmetries
2.2 Chern-Weil global symmetries

F Chern-Weil currents

3.1 BF theory

3.2 Completeness hypothesis and abelian Higgs model
3.3 Axion monodromy and (—1)-form global symmetries

tr F'?2 Chern-Weil currents
4.1 Gauging

4.2 Breaking

4.3 Gauging and breaking

String/M-theory
5.1 Kaluza-Klein and winding gauge theories
5.2 Heterotic
5.3 Type II
5.3.1 Type ITA without branes
5.3.2 Type IIA with branes
5.3.3 Nonabelian open string currents
5.3.4 Type 1IB
5.3.5 Gravitational currents
5.4  M-theory
5.4.1 Comparison with Type IIA
5.5 Rigid Calabi-Yau three-folds
5.6 Taking stock

AdS/CFT
6.1 AdS;/CFTg
6.2 AdSs/CFT,

Phenomenological outlook
7.1 Axions: existence and quality problem
7.2 Chiral fermions

Conclusions

A Derivation of the Chern-Simons action

o © ~N ot W =

13
15

19
19
20
22

25
25
28
31
32
34
37
38
40
41
43
45
46

47
48
52

54
o4
59

62
64




1 Introduction

Symmetries have long played a major role in theoretical physics. In recent years, it has been
widely understood that the concept of symmetry is broader than previously recognized [1,
2], and the notion of a p-form generalized global symmetry has been introduced [3]. Such a
symmetry acts on charged operators supported on p-dimensional manifolds and is realized
(in theories with d spacetime dimensions) by linking the charged operators with (d—p—1)-
dimensional symmetry operators. This new language has led to crisp reformulations of old
physics: for example, the classic topological understanding of confinement due to Polyakov
and 't Hooft [4, 5] becomes the statement that the confining phase of a gauge theory with
gauge group G is one where a l-form Z(G) center symmetry (acting on 1-dimensional
Wilson loop operators) is preserved by the theory’s ground state.

In this paper, we point out a ubiquitous class of generalized global symmetries that
have received limited attention from the symmetry point of view. These objects, which
we call Chern-Weil symmetries, are generated by (gauge-invariant) products of gauge field
strengths. To give a few examples, the generators could take the form of tr(F A F) or
tr(FFAF ANF A---) where F is the field strength of a nonabelian gauge theory, or F' or
F N H where F, H are field strengths of U(1) gauge fields, or even (generalizing the notion
of “gauge field” slightly) do or do A F' where o is a compact (periodic) scalar field. All of
these expressions are closed forms thanks to Bianchi identities obeyed by the gauge fields.
This fact may be familiar to readers from the theory of characteristic classes (see, e.g.,
chapter 11 of [6]), but we will review the explanation in § 2.2 below. Any such closed
k-form wy, with quantized (integer) periods gives rise to a U(1) global symmetry generated
by the operators exp (ia i} M, wk). We refer to these as Chern-Weil symmetries owing to the
two mathematicians who initially appreciated the importance of such closed forms, years
before the advent of Yang-Mills theory itself.

The fact that these closed forms give rise to global symmetries can have important
implications for the dynamics of gauge theories. As with any global symmetry, we can
gauge a Chern-Weil symmetry, in the absence of 't Hooft anomalies. In some cases Chern-
Weil symmetries are explicitly broken, but because this requires a breakdown in the Bianchi
identity for a gauge field, it imposes requirements on the ultraviolet dynamics of the gauge
theory. Thus, like other global symmetries, Chern-Weil symmetries provide useful probes
of a theory.

These symmetries have been occasionally discussed in the literature, especially in 5d
gauge theories where tr(F' A F') generates an ordinary 0-form global symmetry under which
instantons are charged particles [7-9], and in 6d gauge theories where such a current gen-
erates a 1-form symmetry under which strings are charged [10-12].! However, to the best
of our knowledge there has been little systematic study of general Chern-Weil global sym-
metries. We find that Chern-Weil symmetries provide a unifying language in which a
wide variety of phenomena in quantum field theory, and especially in string theory, can be
usefully rephrased.

n 6d superconformal field theories, these continuous 1-form symmetries are necessarily gauged [12].
The charged strings have been extensively studied; see, e.g., [13, 14].



Theories of quantum gravity are believed to have no global symmetries [15-18]. Recent
work has sharpened this old folklore and extended it to the case of generalized global
symmetries [19-21]. (For even more recent arguments, see [22-25].) Of course, effective
field theories describing the low-energy dynamics of quantum gravity often contain gauge
fields, and hence potentially have Chern-Weil global symmetries. This raises the question:
how does quantum gravity avoid having Chern-Weil global symmetries? In broad strokes,
the answer is clear: any candidate Chern-Weil global symmetry must be either gauged or
broken. In practice, however, we find that the physics of how Chern-Weil global symmetries
are gauged or broken is often rich with subtleties. By investigating this question in various
corners of quantum field theory and string theory, we find a new perspective on familiar
physics. For example, Chern-Simons terms are ubiquitous in string theory vacua. It has
previously been argued that the presence of these terms in theories of quantum gravity
is sufficient to avoid certain paradoxes involving black hole remnants [26]. We suggest a
different reason why such terms are so common in theories of quantum gravity: by gauging
Chern-Weil symmetries, they remove potential global symmetries from the theory. On the
other hand, some Chern-Weil symmetries are simply broken. For example, if a gauge group
(G is Higgsed to a product group G; x G2 C G, then the low energy effective field theory
contains two different Chern-Weil symmetry generators, tr(F; A F1) and tr(F» A Fy), while
the UV theory has only a single such generator tr(F A F'). In this case, the low-energy
Chern-Weil global symmetries are accidental, and are explicitly broken (to a diagonal
subgroup) in the full theory.

We find many examples in which Chern-Weil symmetries in quantum gravity are both
broken and gauged. By this we mean that a linear combination of the Chern-Weil current
and other currents is gauged, but the Chern-Weil charge is not conserved independently.
(Notice that here, and throughout the paper, we use the term “current” even for an operator
that is not conserved, but which is potentially or approximately conserved.) This is not so
different from, for example, the electron charge current, which is gauged by the photon but
broken because the charge of an electron can be converted into the charge of (e.g.) a muon.
Furthermore, we find that the breaking of the Chern-Weil symmetry is often correlated with
the existence of localized degrees of freedom. For example, in a U(1) gauge theory, the
existence of magnetic monopoles breaks the would-be Chern-Weil symmetry generated by
FAF, so gauging this current via a Chern-Simons term of the form C'AFAF' is inconsistent.
However, when these magnetic monopoles admit dyonic excitations, they have a compact
scalar o localized on their worldvolume, and a current of the form F' A F' + 05' Adao is
conserved and may be gauged. In some cases, the presence of a Chern-Weil global symmetry
in a UV theory may be used to argue for the existence of localized degrees of freedom on
the worldvolume of objects in an IR theory, leading to a new perspective on results that
could be obtained with anomaly inflow [27].

It has been argued that theories of quantum gravity should admit states of all possible
charges; this is known as the “Completeness Hypothesis” [21, 28]. This notion is closely
linked to the absence of global symmetries. As an example, in a U(1) gauge theory the
existence of magnetic monopoles breaks the (d — 3)-form Chern-Weil symmetry generated
by the current F' (this simplest example of a Chern-Weil global symmetry is the familiar
magnetic 1-form global symmetry in 4d Maxwell theory [3]). More generally, an incomplete



spectrum in a gauge theory implies the existence of certain topological operators, which
generalize global symmetries [29, 30]. In string theory, however, enumerating the set of
charged objects (such as fundamental strings, D-branes, and NS5-branes) only tells a small
fraction of the story. There are also extensive relationships among these objects, which
can end on or dissolve into each other. We find that these phenomena are closely linked
to the absence of Chern-Weil global symmetries. In particular, the interplay between
Chern-Simons terms, which gauge Chern-Weil symmetries, and brane-localized degrees of
freedom, which are necessary for consistency of this gauging, leads to phenomena such as
the dissolving of lower-dimensional branes in higher-dimensional branes. Many aspects of
the physics of string theory, traditionally presented as consequences of direct computation
from the top down in specific supersymmetric theories, are seen from our perspective as
necessary ingredients to provide a consistent theory of quantum gravity containing gauge
fields but lacking Chern-Weil global symmetries.

Recently, it was conjectured that quantum gravity theories cannot have nontrivial
cobordism invariants [31]. Although we focus our discussion on the absence of Chern-
WEeil global symmetries, one could rephrase much of the discussion in the language of
cobordism. While [31] mainly focused on cobordisms of compactification manifolds, we
could also consider cobordisms of manifolds equipped with gauge bundles. As Chern-
Weil currents represent topological invariants of the gauge bundle, they serve as a first
approximation to the collection of symmetries arising from cobordism classes of manifolds
with gauge fields.? Moreover, Chern-Weil currents arising from Poincaré symmetry, such
as tr(R A R), describe charges carried by nontrivial cobordism classes. As a result, the
absence of nontrivial cobordism invariants is closely related to the absence of Chern-Weil
global symmetries.

The paper is organized as follows. In section 2, we provide a review of generalized
global symmetries, their currents and charged operators, and what it means to gauge or
break them. We then introduce Chern-Weil symmetries. Section 3 discusses the simplest
example of Chern-Weil currents, those involving a single field strength. We revisit the
familiar BF theory and reframe the discussion of axion monodromy models in terms of

?

the slightly exotic notion of “(—1)-form symmetry,” which we introduce and discuss in
some detail. Section 4 focuses on two-field Chern-Weil currents, explaining their gauging,
breaking, and how the combination of the two can lead to nontrivial constraints on the
worldvolume degrees of freedom of charged objects. Section 5 illustrates the general con-
siderations in examples from several string compactifications, while section 6 does the same
in the context of AdS/CFT. Section 7 discusses how careful consideration of Chern-Weil
symmetries could lead to interesting phenomenological constraints, and finally, section 8

contains our conclusions.

2 Higher-form global symmetries

We begin this section with a review of higher-form global symmetries, as discussed in the
seminal paper [3]. A p-form global symmetry in a quantum field theory in d dimensions is a

2More precisely, they enter as the bottom row in the Atiyah-Hirzebruch spectral sequence computing
the bordism homology of the classifying space of the gauge group.



global symmetry for which the charged operators are supported on p-dimensional manifolds.
The case p = 0 corresponds to an ordinary global symmetry, as the charged operators are
local operators, supported on manifolds of dimension 0, i.e., points in spacetime. Global
symmetry transformations form a group G. G may be either nonabelian or abelian in the
case of a O-form global symmetry, but G must be abelian for a p-form symmetry with p > 0.

The symmetry group G may be either discrete or continuous. If G is continuous, then
under certain (often reasonable) assumptions, it admits a conserved (d—p—1)-form Noether
current Jg_,—1. The statement that J;_,_; is conserved is equivalent to the statement that
it is closed as a differential form:?

dJg_p—1=0. (2.1)

The hallmark of a p-form global symmetry is the existence of topological operators
Ug(M (d*pfl)), which are labeled by elements ¢ of the group G and supported on mani-
folds M(@—P=1) of dimension d — p — 1. Here, the statement that the “charge operator” is
topological means that all correlations functions with the operator are invariant under con-

d=p=1)  provided that the manifold does not cross

tinuous deformations of the manifold M
any charged operators in the deformation process. Two such charge operators supported

on the same manifold fuse according to the group multiplication law:
Uy (M) 5 Uy (M7 = U (M), (2.2)

with ¢” = gg’. When G = U(1) and a Noether current exists, one can write the charge

operators more explicitly,

r(d—p—1)\ _ .
Ug = gin (]U’( P )) = exp (za %M(d_p_l) Jd—p—l) . (2.3)

The topological nature of the charge operators then follows immediately from the conser-
vation of Jg_,_1.
Symmetries are associated with Ward identities. In terms of these operators, such a

Ward identity is given by the relation,
Uy(STP-1)V(C) = g(v)V(C), (2.4)

where Uy(S97P~1) is supported on a small (d — p — 1)-sphere that links once with the
charged operator V(C®)), which lives on the manifold C?) of dimension p. Here, g(V) is
a representation of g, which is simply a phase determined by the charge of V in the case
that G is abelian.

The prototypical example of a theory with a higher-form global symmetry is Maxwell
theory in four dimensions, which has action

S— / (—2%25’2 A *FQ) . (2.5)

3Some readers may be more accustomed to the statement that a p-form global symmetry admits a

(p + 1)-form Noether current j,i1, which is co-closed: dxjpy1 = 0. This is simply a matter of convention,
and the two definitions of the Noether current are related via Hodge duality, Jg—p—1 = *jp+1-



This theory has Wilson line operators, each of which is supported on a closed 1-manifold
~() and labeled by an electric charge n € Z:

Wo(vM) = exp (zn ﬁ(l) Al) : (2.6)

Wilson lines are charged under an electric 1-form U(1) global symmetry. Its conserved

Noether current is given by
1

JY = ?*FQ. (2.7)
The generators of this global symmetry are labeled by a phase « € [0, 27) and are supported
on dimension-2 manifolds M(?). Explicitly, such operators are given by the exponentiated
integral of the Noether current over M2,

Lo
Ug:ei’" = exp (? /M(2) *FQ) . (28)

The Ward identity for the electric 1-form symmetry says that if a Wilson line of charge n
supported on a curve 7(1) is surrounded by an S? supporting a symmetry generator Ugy—eia,
the symmetry generator can be removed at the expense of a phase exp(ina),

exp <Zg—(; ./52 *FQ) - exp (zn }i(l) A1> = exp (ina) exp <m .é(l) A1> . (2.9)

Pure Maxwell theory in four dimensions also has a magnetic 1-form U(1) global symme-
try with Noether current J) = %FQ whose charged operators are 't Hooft lines. The sym-
metry generators and Ward identity for this symmetry are perfectly analogous to the elec-
tric case we have just discussed, and indeed the two are related by electromagnetic duality.

2.1 Breaking and gauging global symmetries

Standard lore holds that exact global symmetries are not allowed in a consistent theory
of quantum gravity. This means that any would-be global symmetry in a quantum field
theory must be removed before such a theory can be coupled to quantum gravity. Within
the framework of quantum field theory, there are two ways to remove a global symmetry:
(i) gauge the symmetry or (ii) break it explicitly.*

To gauge a p-form global symmetry with Noether current J;_,_1, one couples the
current to a dynamical (p + 1)-form gauge field Bp41:

1
SO / <—2—g2Hp+2 ANxHpio+ Bpy1 A Jdpl) , (2.10)

with Hpyo = dBpy1 (locally). The conservation of Jg_,_; implies that the action is in-
variant up to boundary terms under symmetry transformations Byi1 — Bpt1 +dA,. The
equation of motion for B, then takes the form

1 ,
9—2@1*Hp+2 = (=P T (2.11)

4A spontaneously broken symmetry is still a global symmetry of the quantum field theory from the
modern perspective, as it still has topological operators U,. For the purposes of this paper, we work under
the assumption that no such topological operators may exist in a consistent theory of quantum gravity.



In particular, as a result of the gauging process, Jj—p,—1 is not merely closed, but exact.
Equation (2.11) is a generalization of Gauss’s Law, and implies that the integral of Jy_, 1
over a closed manifold vanishes.

More generally, the gauging of a p-form symmetry may be understood in terms of
the operators charged under that symmetry. Such charged operators are no longer genuine
operators of the theory once the symmetry has been gauged, as the gauging process projects
onto the gauge-singlet sector of the theory. Instead, the charged operators will represent
boundaries of higher-dimensional gauge-invariant operators. For instance, one may consider
a local operator ¢(x) carrying charge n under some 0-form U(1) global symmetry. Upon
gauging this symmetry, ¢(x) is no longer a genuine local operator of the theory, but instead
¢(x) represents the endpoint of a Wilson line operator of charge n.

In contrast, one way to break a symmetry is to add terms to the Lagrangian that
violate the conservation of the Noether current. As a first example, we may consider once
again the theory in (2.10). In the absence of the B A J coupling, Jy_p—2 := xHp12 is a
conserved current for a (p + 1)-form symmetry. Thus, the B A J coupling serves to both
gauge the p-form symmetry with current J4_,_; and break the (p+1)-form symmetry with
current Jd_p_2.5

As a second example of global symmetry breaking, consider the electric 1-form symme-
try of pure U(1) gauge theory in four dimensions discussed previously. To break this 1-form
global symmetry, we add a charged particle ¢ (which we take to be a complex scalar) to
the gauge theory,

1
/ (—ﬁFg AxFy — (dap)t Axdap —m2plpx 1> , (2.12)
g
with d4 = d — ¢A;. The equation of motion for the gauge field then takes the form

g—id*FQ = —jS = x(ipTdap —ipdapl). (2.13)
In particular, J¥ is no longer conserved: the U(1) electric 1-form symmetry has been broken
by the addition of the charged particle. More generally, a charge n particle will break this
U(1) symmetry to a Z, subgroup.

The process of breaking a higher-form global symmetry may often be understood in
terms of the operators charged under the symmetry as well. In particular, one way to break
a p-form global symmetry is to modify the theory with the global symmetry so as to allow
the charged p-dimensional operators to live on p-dimensional manifolds with nontrivial
boundary (such operators are called endable in the language of [29]). For instance, in
pure U(1) gauge theory, Wilson lines may be supported only on closed manifolds without
boundary, so they are not endable. But in the presence of charge n matter ¢, the Wilson line
of charge n is endable, as it may end on a local excitation ¢(x) of the charged particle. Any
global symmetry generator U, (S?) linking the Wilson line with boundary may be smoothly
unlinked, which means that the Wilson line cannot carry charge under this symmetry. This

5For mathematically inclined readers, this should be thought of as a differential in a cochain complex or
spectral sequence, which removes both cochains from cohomology.



in turn restricts g = €’® to be an nth root of unity, which shows that indeed, the presence
of the charge n particle breaks the U(1) electric 1-form global symmetry of the pure gauge
theory down to a Z,, subgroup.

2.2 Chern-Weil global symmetries

We have seen that pure U(1) gauge theory in four dimensions possesses a conserved 2-
form current, F,. Indeed, this is true more generally for pure U(1) gauge theory in d > 3
spacetime dimensions, as the equation of motion gives dFs = 0 in the absence of any
magnetically-charged sources.

In fact, F; is only one of a family of conserved p-form currents in U(1) gauge theory.
In particular, we may consider the current

Jog = Fy A--- N Fy := F¥, (2.14)
~—_————
k
This satisfies
dJop = kdFy A F5™1 (2.15)

so it is indeed conserved provided dF; = 0.

A nonabelian gauge theory with field strength F5 similarly possesses currents of
the form

Jo, = tr [FQ AR Fg} = tr FY. (2.16)
k

The trace is taken in some representation, which we will suppress in our notation unless it
is necessary to clarify. The conservation of Joy follows from rewriting (see, e.g., Theorem
11.1 of ref. [6])

dJy, = d tr FY.
= ktr [dF, A FE1
= ktr [(dF — i[Aq, o)) A B
= ktr [daFy A F]
=0, (2.17)
where in the last step we have used the Bianchi identity d 4 F» := dFy —i[A;, F5] = 0. Note
that in the nonabelian, semisimple case, Joi vanishes for k = 1 since tr £ = 0, so we do
not have a conserved current in this case. Similarly, if the gauge group G is associated
with a simple Lie algebra g, Jok vanishes for kK = 3 unless g = A,,—1 with n > 3. We could
also form multi-trace conserved currents, such as Jop A Jo;.
By a similar analysis, a higher-form gauge symmetry with (p — 1)-form abelian gauge
field C),—1 also possesses a collection of conserved currents,
Jip = Hy N+ AN H, = HJ. (2.18)
—_——
k

with H, = dC,_; (locally). These vanish for £ > 1 if p is odd, due to antisymmetry of the
wedge product.



Even more generally, a theory with multiple gauge fields will have conserved currents
involving products of field strengths of distinct gauge fields. In particular, a theory with

a collection of (p; — 1)-form gauge fields CI(DP—I’ C;(a?—lv' .. ,C’ISJJ)_I has conserved currents of
the form

Jiele = FI A LA FSY (2.19)
for an arbitrary set of indices 41, ...,i, € {1,..., N}, where an index i € N may be repeated

more than once (again, provided p; is even, since F,Sf) AN F (f) =0 for p; odd).

We will refer to all the currents we have just constructed, in both abelian and non-
abelian gauge theory, as “Chern-Weil” currents, as the conservation of these currents is a
lemma in the construction of the Chern-Weil homomorphism, which plays a key role in the
study of characteristic classes of gauge bundles. Likewise, we will refer to the symmetries
generated by these currents as Chern-Weil symmetries. Note that the current Jj, generates
a (d—kp—1)-form global symmetry in d dimensions, which is well-defined provided d > kp.

If the gauge groups whose field strengths appear in the Chern-Weil current J are
compact, J will have quantized periods, thereby generating a U(1) global symmetry (as
opposed to R). For k = 1, this is simply the familiar statement of Dirac quantization
for magnetic charge. For k = 2, J = tr(F» A Fy), this is the familiar statement that
instanton number is quantized. From the physics point of view, this is related to the fact
that a single BPST instanton [32] is accompanied by the 't Hooft vertex, which emits an
integer number of fermions of each flavor and chirality, due to the chiral anomaly [33]. The
mathematical counterpart of this is the Atiyah-Singer index theorem (see, e.g., [6]), which
relates the integral of J to the number of zero modes of the 4d Dirac operator coupled
to the instanton gauge bundle, which is an integer. Similar arguments hold for Dirac
operators coupled to arbitrary bundles in any dimension, and integrality properties of the
more general Chern-Weil currents are related to the integrality of these indices.®

The case d = kp is somewhat degenerate: we may still define the Chern-Weil current
Jkp = Jq, but the conservation dJg; = 0 of this current is trivial since it is a top form.
Nonetheless, it can be useful to think of such a current as generating a “(—1)-form” global
symmetry,” and we will even see that there is a sense in which these symmetries can be
broken or gauged. Such a “symmetry” may be considered a U(1) symmetry if the periods

of Jd, f

spacetime
While the notion of a (—1)-form global symmetry is somewhat tenuous, since any

Jy, are quantized, whereas it is an R symmetry otherwise.

top form is closed, the notion of gauging a (—1)-form symmetry is on more solid footing:
gauging a global symmetry renders the current exact, and it is perfectly sensible to ask
if a top form Jy is exact. U(1) (—1)-form gauge symmetries are associated with compact
scalar fields, also known as axions, which play an important role in model building for
cosmology and particle physics. An axion 8 is thus identified as a O-form gauge field, which
leads to the Chern-Weil current d as well as potentially mixed currents, e.g., d0() A d9()

5The classic approach [34] uses the splitting principle to show that any bundle over a manifold M is
the pullback of a direct sum of U(1) bundles over a certain auxiliary manifold F1(M), so integrality follows
from integrality in the abelian case.

"The notion of a (—1)-form symmetry has already appeared in the literature (see, e.g., [35-37]) and is
linked to the presence of “dynamical parameters.”



or df A Fy, as in (2.19). We will revisit these (—1)-form symmetries periodically in the
remainder of this paper.

As we have just seen, the conservation of Chern-Weil currents follows from the Bianchi
identity for the field strength of a (possibly nonabelian) gauge theory. As a result, Chern-
Weil symmetries are not easy to break — their conservation follows from rather general
statements in the theory of characteristic classes. Nonetheless, compatibility with quantum
gravity lore requires these symmetries to be either broken or gauged in quantum gravity.
In what follows, we will see how exactly this may be done, examining the breaking/gauging
of Chern-Weil symmetries in effective field theory, string/M-theory, and AdS/CFT.

3 F Chern-Weil currents

We begin by discussing Chern-Weil currents of the form .J, = F},. This corresponds to the
simplest case in (2.14), namely k = 1, and reduces to the well-understood (d — p — 1)-form
magnetic global symmetry. Still, it is illustrative to consider this case first, as many of
the features regarding the gauging and breaking mechanisms will also be present in the
cases with £ > 1. Hence, we will use this section to introduce some concepts that will
be useful for future sections, including different notions of charge [38], as well as a first
encounter with the apparent puzzle of introducing charged states to break a symmetry
which is already gauged by a coupling to By_, field.

3.1 BF theory

Let us begin with the canonical example of BF theory in four dimensions (see [19] for a
similar discussion). The action is given by

1 1 m
S = ———H3NxHs — — IO AxFo + — Bo AN Fy | . 3.1
/( 292 3 *113 262 2 * 2+ o 2 2> ( )

where Fy» = dAy, H3 = dB3, and m € Z. With the BF coupling m set to zero, the
theory has four independent U(1) global symmetries: a O-form symmetry with current Hs,
an electric 1-form symmetry with current *F5, a magnetic 1-form symmetry with current
Iy, and a 2-form symmetry with current xHs. All of them are examples of Chern-Weil
symmetries with k¥ = 1 in an appropriate duality frame. As discussed in section 2.1, these
symmetries may be broken by the addition of fundamental objects (i.c., configurations
which are singular from the point of view of the low-energy effective field theory), namely
instantons, electric charges, monopoles, and strings, so that we have

1

. 1 1 1 i
_ .inst . . __ .string
zﬂng — ]lens , gd*FQ = ]g, %dFQ = ]én, ?d*Hg =J2 . (32)

In this section, we investigate the fate of these global symmetries in the presence of a
nonzero BF coupling m # 0, both without and with additional charged objects. There
is a mixed ’t Hooft anomaly between the electric and magnetic 1-form symmetries with
currents xF> and Fb, and between the 2-form and O-form symmetries with currents xHgs
and H3; these anomalies determine much of the physics of the BF theory [3].



Let us begin by focusing on the magnetic 1-form symmetry with current F5, which is
conserved,

dF,y =0, (3.3)

in the absence of monopoles. In fact, with m # 0, this symmetry is gauged by the coupling
to Bs in (3.1) since the current is exact, as can be seen from the equation of motion for Bo,

1 m
—d*xH3z = —I5. 3.4
92 * 113 2 2 ( )

In this case, it is also possible to see the gauging explicitly as a Stueckelberg coupling in
the dual Lagrangian description,

1 1 .
Sdual = / (—2—92H3 N*H3z — @(dz‘h — mB2)2) ; (3.5)

where A is the electromagnetic dual field to A;, with field strength F» and coupling
¢ = 2m/e. The A, field gets “eaten” by the 2-form gauge field, which becomes massive.
The theory is only invariant under the combined transformation

Al — 1211 +mAi1, By — By+dA; (36)

which indicates that the 1-form magnetic global symmetry is gauged by the 2-form gauge
field By. This renders the corresponding current Fy exact, as indicated in (3.4).

The 0-form global symmetry with current Hj3 is gauged in an analogous way. The
current is exact,

1 m
dH3 = O, gd*FQ = —%H:;, (37)

meaning that the O-form symmetry is gauged by the electric 1-form gauge field A;. In
terms of the compact scalar field ¢ which is dual to the 2-form gauge field By, one recovers
the typical Stueckelberg action

1 1
Sham = [ (—gez o A*Fs = 37200 = m A1) 39

where f = ¢g/(27), and so indeed this O-form symmetry (corresponding to shifts of ¢) is
gauged by the 1-form gauge field A;.

We have just seen that two of the four potential global symmetries of (3.1) are gauged.
The other two (namely, the 2-form and the electric 1-form global symmetries) are instead
broken to Z,, by the BF coupling. The current associated to the 2-form global symmetry is
*xHs, which by (3.4) is not conserved. Hence, (3.4) may be simultaneously read as gauging
the 1-form global symmetry with F5 and breaking the 2-form global symmetry with *Hs,
leaving no conserved global current if m = 1.8

8This possibility was emphasized in [26], where it was also conjectured that Chern-Simons couplings are
indeed the ubiquitous mechanism by which quantum gravity guarantees the breaking/gauging of higher-form
symmetries.
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As discussed in section 2.1, the breaking of global symmetries may be related to the
presence of charged objects. In this case, we should expect the non-conservation of xHg to
be related to the presence of strings charged under By. Indeed, by comparison with (3.2),
we may identify these strings as field configurations carrying nonzero magnetic flux [ Fb.
Though these magnetic flux strings are not fundamental defects, they are still dynamical
objects of codimension 2, and carry m units of string charge for each unit of magnetic flux.
One might object that there are no infinitely long magnetic flux strings with finite tension,
since we may calculate

/ F2 = 22—7T *Hg = O, (39)
R2 g*m Js1,
using (3.4) and the fact that Hs must die off faster than 1/7 in order to have finite tension.
However, this is a consequence of the fact that Bs is confining in four dimensions, just as
an ordinary U(1) gauge field is confining in three dimensions. The magnetic flux strings are
thus analogous to quarks in QCD: charged dynamical excitations in the UV, but confined
in the IR.

Similarly, the current associated to the electric 1-form global symmetry is xF5, which
by (3.7) is not conserved. The breaking of this symmetry corresponds to the presence of
dynamical objects with m units of electric charge, which in this case are the codimension-3
localized fluxes of H3. Unlike fluxes of F5, fluxes of H3 are not confined, since the gauge
field A; is not confining in four dimensions.

In summary, the BF coupling gauges the 0-form symmetry with current H3 and breaks
the dual current xHg. Likewise, it breaks the electric 1-form global symmetry with current
*F5 and gauges the dual magnetic symmetry, with current F5. This can be understood as
a consequence of the mixed 't Hooft anomaly between the 0-form and 2-form symmetries,
as well as between the electric and magnetic 1-form symmetries.

Now, what if we have a BF coupling m # 0 and fundamental charged objects? For
strings and electric charges, there is no issue, as the symmetries they break are already
broken. On the other hand, monopoles and instantons naively present a contradiction, as
we are trying to simultaneously gauge and break the 3-form and magnetic 1-form global
symmetries. In terms of currents, we have

1 : 1
I = godFy o d(dsHz) = 0, jI™ = —dH; oc d(dxFp) =0, (3.10)

so indeed, adding monopoles or instantons alone would be inconsistent. For monopoles,
this can be understood as a result of the Meissner effect: the action (3.1) describes a Type
I superconductor, in which the presence of a nonzero magnetic flux destroys the phase.

The resolution to this paradox lies in the fact that there may be additional conserved
currents in the presence of additional sources. In particular, suppose that in addition to
monopoles, we now add fundamental strings charged under Bo.” The equation of motion
for By then gives

1 m :
—dxH3 = — Fy + 458, 3.11
7 *H3 o 21 Jo (3.11)

In fact, if |m| # 1, such strings may be necessary in the context of quantum gravity to break the Z,
global 2-form symmetry that would otherwise be preserved.
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Thus, while monopoles break the original magnetic 1-form symmetry with current JM =
+=F5 as in (3.2), the linear combination (JM) = ZF, + 55" of magnetic flux and

fundamental string charge is gauged. Further, taking the exterior derivative gives
0 = d(d*Hz) 22 dF, + djSmE — gy gjstrin, (3.12)
T

which tells us that monopoles must sit at the junction of m fundamental strings. By placing
m strings on top of —1 units of magnetic flux, we may form a stringlike excitation that is
uncharged under Bs, and so is deconfined. This is what happens in the intermediate phase
of a Type II superconductor, where magnetic flux strings may pierce the material without
destroying the phase entirely.!”

Similarly, the addition of both instantons and electrically-charged particles coupled to
A; leads to the equation of motion [39],

1 m
—d*xFy = ——H. 5 3.13
oz o113 + 3, (3.13)
and its exterior derivative,
0= —mgji™* + djs. (3.14)

Thus, whereas the original current Js = %H 3 is no longer conserved due to the instanton
current in (3.2), the improved current (J3)' = —3% H3 + j§ is gauged by its coupling to A;.
Further, we see that the fundamental instantons provide a tunneling process by which one
unit of H3 flux can decay into m electric particles.

The distinction between the original currents J3, J3 and the improved currents (J31),
J5 was famously discussed by Marolf in [38]. The conserved charge that couples to the
electromagnetic field can be carried either by localized objects (brane sources) or by fluxes.
In the language of that paper, j;mng and j§ are currents of (non-conserved) “brane source
charge,” whereas (JM) and J} are gauge invariant, conserved currents with quantized
charge, which play the roles of both “Page charge” and “Maxwell charge” [40]. The dis-
tinction between Page charge and Maxwell charge collapses in cases like this one, with
two-field Chern-Simons terms (BF terms), but not in cases with three-field Chern-Simons
terms. We will encounter the more general case in sections 4 and 5.

In this paper, we will consider both ways of breaking the symmetries, either by the
presence of localized fundamental objects or non-localized solitonic field configurations, as
both occur in string theory. Ultimately, the distinction between these two is not sharp in
a UV-complete theory, since if one were able to take the zero-size limit of the flux tube
carrying charge [ Fb, one would get a localized fundamental string. As the flux tube starts
to shrink, at some point the energy density at its core will surpass the EFT cutoff, so
the shrinking cannot be described purely within the low-energy EFT. This situation is

10T such a superconductor, the role of “fundamental string” is played by the codimension-2 locus where
the condensate field (a complex scalar) goes to zero. The fact that a magnetic monopole must be attached
to m such strings can be seen as follows. The S? surrounding the monopole carries a gauge bundle of Chern
class one, while the complex scalar is a section of the associated line bundle of charge m, and so has exactly
m zeroes on S2, corresponding to the locations of the m strings.
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common in string theory, where higher-form global symmetries are typically broken both
by the presence of localized charged fundamental objects as well as Chern-Simons/BF

couplings. We will elaborate on this point in section 5.

3.2 Completeness hypothesis and abelian Higgs model

Standard lore holds that the Completeness Hypothesis follows from the absence of higher-
form global symmetries, at least for abelian gauge groups.'! For the case of the BF theory
considered in the previous section at m = 0, this lore is borne out by equation (3.2), and
indeed the breaking of all four symmetries of the theory implies the presence of dynamical
instantons, electric particles, monopoles, and strings. However, for m = 0, we have seen
that the story becomes more complicated. In this section, we discuss the implications of a
nonzero BF coupling m for these two Swampland conditions.

To begin, let us consider the electric symmetries of the BF theory in (3.1). When
m = 0, there is an electric U(1) 1-form symmetry with current xF and an electric 2-form
symmetry with current xHs. For m # 0, each of these symmetries is explicitly broken to
a Zy, — the A; Wilson line of charge m can end on an 't Hooft local operator of By, and
likewise the By Wilson surface of charge m can end on an 't Hooft line of A;. This reduces
the symmetries to Z,, as discussed at the end of section 2.1. Breaking these symmetries
entirely further requires a complete spectrum of charged particles and charged strings,
respectively: the one-to-one relationship between the Completeness Hypothesis and the
absence of higher-form global symmetries appears to be intact.

The magnetic side of the story is very different, however. For any nonzero m, the
instantons and monopoles are not only absent, but forbidden, since the symmetries they
would break are gauged. Monopoles can exist if strings are added to the theory such
that the current F5 is broken while another linear combination involving F5 is gauged, as
explained around (3.11). For m > 1, such strings are required to break the Z,, 2-form
global symmetry discussed above. For m = 1, however, there is no need to introduce
fundamental strings to break any global symmetry. Hence, for m = 1 we may construct a
theory without global symmetries that lacks magnetic monopoles.

Is this a counterexample to the statement that the Completeness Hypothesis follows
from the absence of higher-form global symmetries? The answer to this question depends
on our definition of “completeness.” On the one hand, the BF theory at hand has a U(1)
gauge field without any magnetic charges, so naively it seems magnetically incomplete. On
the other hand, such a strong notion of completeness is somewhat misguided, since this
theory lacks not only monopoles, but also 't Hooft line operators. In addition, the U(1)
gauge field in this theory has a mass given by m4 = efm, where m is the BF coupling, e
is the electric gauge coupling of A; and f is the decay constant of the axion; one might
suspect that the relationship between completeness and the absence of higher-form global
symmetries should apply only to massless gauge fields.

However, we should not give up so quickly on a stronger notion of completeness. To
begin, we note that at energies well above m 4, the photon is approximately massless, so in

1 For nonabelian gauge groups, this lore is false as stated; see [20, 29, 30] .
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the high-energy limit we expect to recover a massless 1-form gauge field A; and a massless
2-form gauge field B,. To understand the physics at high energies, we must distinguish
two possible UV completions: either we can consider ¢ to be a fundamental axion so that
the BF theory (3.1) is valid at high energies up to the quantum gravity scale, or we can
consider ¢ to be Nambu-Goldstone boson arising after Higgsing an abelian Higgs model.

In the abelian Higgs model, the BF theory description (3.1) breaks down at a cutoff
given by the symmetry-breaking vev v ~ f, above which the theory enters in a Maxwell
phase with a massless vector boson.!? In this case, the charged strings involved in breaking
the 2-form Z,, global symmetry are unavoidable, as they can be constructed as semiclassical
solutions of the theory, with tension T' ~ f2. The vev of the Higgs field goes to zero at
the core of the string, implying that the limit f — 0 is at finite distance in field space.
Such a string must be able to break in order to avoid an exact 1-form global symmetry,
which in turn requires a complete spectrum of monopoles. As we saw in the scenario
around (3.11) above, the current X F» + j;trmg is gauged, whereas the current F3 is broken
by the monopoles. Thus, avoiding higher-form global symmetries in the abelian Higgs
model requires completeness of both the electric and magnetic spectra.

In contrast, in the theory with the fundamental axion, the gauge field acquires a
Stueckelberg mass. There is no symmetry-restoring point at finite field distance, so f — 0
is at infinite distance, and the core of fundamental strings charged under the B-field is
singular. (This invariant distinction was suggested as the most useful way to distinguish
between the Higgs and Stueckelberg mechanisms in [41].) For m > 1, charged strings
are required to break the 2-form symmetry and to satisfy the Completeness hypothesis,
but for m = 1 neither the absence of global symmetries nor the Completeness Hypothesis
demand the existence of such strings. In the absence of such strings, monopoles are not
allowed, either.

Nonetheless, string compactifications do seem to produce a complete spectrum of
strings and monopoles even if the gauge fields become massive due to Stueckelberg cou-
plings. One way to understand this is by the emergence of approzimate global symmetries
in the ultraviolet: at high energies in the Stueckelberg model, the BF coupling becomes
negligible, and a 2-form global symmetry is restored. If, as suggested in [42, 43], we de-
mand that approximate global symmetries (and not just exact global symmetries) must be
forbidden at the Planck scale in a consistent theory of quantum gravity, we conclude that
these strings must be present in the theory.'® As in the abelian Higgs model, the pres-
ence of these strings leads to an exact 1-form global symmetry, whose breaking requires a
complete spectrum of monopoles. Thus, whereas the strict absence of higher-form global
symmetries leads to our stricter definition of completeness, the absence of approximate
higher-form global symmetries implies our stronger definition, which requires monopoles
even in the presence of a BF coupling.

We will discuss the proper definition of the Completeness Hypothesis, as well at its
relationship to the absence of global symmetries in quantum gravity, in [30].

12T the UV Maxwell phase, the 1-form global symmetry is spontaneously broken. This is in contrast to
O-form global symmetries, which are typically broken in the IR.

3The absence of approximate global symmetries at the Planck scale in quantum gravity is also closely
related to the Emergence Proposal [44—48] and tower versions of the Weak Gravity Conjecture [49-52].
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3.3 Axion monodromy and (—1)-form global symmetries

The above discussion applies to any k = 1 Chern-Weil symmetry with current J, = F), in
any dimension d > p. It is interesting to consider the limiting case d = p, corresponding to
a top-form field strength. Much of the analysis carries over to this limiting case, and the
current Jy = F}; is associated with a (—1)-form global symmetry as discussed in section 2.2.
In this section, we will revisit the axion monodromy mechanism from this perspective and
explain the gauging and breaking of (—1)-form global symmetries, relating this to the folk
conjecture that there are no free parameters in string theory.
Consider the following action in four dimensions:

1 1 m
S:/ (—2—t2F4/\*F4—2—£2d¢/\*d¢+§¢/\F4) , (315)

where Fy = dA3, ¢ is an axionic field, ¢ is a coupling constant with units of energy squared,
¢ is a coupling constant with units of inverse energy (or length), and m € Z. The gauge
field As has no propagating degrees of freedom in four dimensions, but it has the role of
inducing a potential for the axion. The usual lore holds that one can now integrate out
the 3-form gauge field via its equation of motion,

1 m m
t_Qd*F4 = —EdQﬁ = *F4 = tz <f0 — %Qﬁ) R (316)

where fy is an integration constant, to yield a description depending only on the axion,
S—/ Lo A xdop— 12 (f m¢>2 (3.17)
B 202 07 on ’ )

Hence, the axion gets a multi-branched potential (see figure 1) that is invariant under the
combined transformation

o—o+2m, fo— fo+m, (3.18)

which is actually a gauge redundancy of the theory. This multi-branched potential has been
extensively used in the context of axion monodromy to engineer large field ranges starting
with a compact scalar field [53-57]. The action (3.17) is actually a dual description of the
theory in (3.15) in which the 3-form gauge field is replaced by its “dual (—1)-form gauge
field” with field strength fy, and the compact scalar plus fy is equivalent to a non-compact
scalar (see, e.g., [58]). It has been argued [59] that any potential for an axion can be brought
to the Kaloper-Sorbo-Dvali form in (3.15) if one allows a non-canonical kinetic term for
As. In the presence of more axions and 3-form gauge fields, it is possible to generalize the
couplings in (3.15) to describe any flux-induced scalar potential in string theory this way,
including interactions as well as mass terms [60—63].

The branches of the potential labeled by distinct values of the parameter fy are gauge
equivalent. Membranes electrically charged under As can describe dynamical transitions
among the branches, making manifest that fy is dynamical. To avoid an exact 2-form
global symmetry, these membranes must break open on strings charged under B, the
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V(g)

¢

Figure 1. The multi-branched potential of axion monodromy. Each branch of the potential is
labeled by a distinct integer value of the discrete flux parameter fy. The theory is invariant under
the gauge transformation ¢ — ¢ + 2m, fo — fo +m.

2-form gauge field dual to the axion ¢. This is analogous to the situation studied in
section 3.1, in which strings break open on monopoles, thereby violating the conservation
of the current 75" in (3.11).

This theory is analogous to the BF theory in the previous section, with ¢ and Ag playing
the roles of A; and Bs in the BF theory. Again, there are four global symmetries, two of
which are broken and two of which are gauged by the coupling ¢Fy. The 3-form global
symmetry with current Jy = t% * Fy is broken, as can be seen in (3.16), while the 2-form
symmetry with current J; = %dgf) is gauged. (In fact, it is possible to write yet another
dual description of the theory involving the Stueckelberg coupling £ O (dBy — mCj3)?.
The 3-form gauge field then becomes massive by eating Bs, whose 2-form global symmetry
becomes gauged.) Analogously, the 0-form continuous shift symmetry of the axion with
current J3 = 71; * d¢ is broken, while the (—1)-form symmetry with current J; = %le
is gauged. The conservation equation for the current Js = 712— * d¢ is just the equation of
motion for ¢, so the current is not conserved in the presence of a potential, as

1
d(xdg) = 2 Fy (3.19)

This equation also shows that the current Jy = %le is exact, indicating that the (—1)-form
symmetry has been gauged, and the potential in (3.17) is the analog of the Stueckelberg
coupling for this “(—1)-form gauge field” Hence, axion monodromy corresponds to a
concrete realization of gauging a (—1)-form global symmetry. As in our earlier discussion
of BF theory, the fact that the gauging of the (—1)-form global symmetry with current Fj
corresponds to explicit breaking of the 3-form global symmetry with current xFy is due to
a mixed 't Hooft anomaly between these two symmetries, as is the fact that the 0-form
symmetry with current xd¢ is explicitly broken when the 2-form symmetry with current
d¢ is gauged.

In the same way that (—1)-form global symmetries can be gauged, they can also be
broken. As mentioned at the end of section 2.2, breaking a (—1)-form symmetry might
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appear meaningless, since the conservation of a top-form current is tautological, dFy = 0.
However, in the context of a fundamental 3-form gauge field, we will see that there is a
precise sense in which this symmetry may be broken. Consider for example the theory of a
3-form gauge field without an axion coupling ¢ A Fy. The (—1)-form symmetry gets broken
in the presence of some additional constraint that supplements the action, e.g.,

foh =@, (3.20)

where fy = t% * Fy. This type of constraint is very common in string compactifications,
where it arises from tadpole conditions in higher dimensions. For instance, the background
charge Q% may arise from localized sources, while the parameter A is an internal flux.

A constraint of this form is equivalent to gauging the 3-form global symmetry with
current fp, and in fact (3.20) may be viewed as a version of Gauss’s Law, ensuring the
cancelation of space-filling brane charge, similar to the cancelation of D9-brane charge in
Type I string theory. To see the gauging more explicitly, we may incorporate the constraint
in the action by means of a Lagrange multiplier C4, as proposed in [63]. The action then
takes the following form:

S = /M 2 fofox1+ /M (ng + %hfo) Cy . (3.21)

This action is again analogous to the BF theory considered above, but now with Cy and fj
playing the roles of By and F5. Upon integrating out the 4-form potential Cy4, one recovers
the original action plus the constraint (3.20). In [63], it was shown that this action is
dual to

1 -~ ~
s= [ SRR+ [ o, (3.22)
Mt M

where the Cj couples to a space-time filling 3-brane and the new gauge-invariant field
strengths are 13’4 = Fy + hCjy. The theory is invariant under

Cy — Cy+dA3, Az — A3 — hAgs, (3.23)

so the 3-form global symmetry is gauged. Notice that the conservation equations for the
currents read

dxF; =0, dF,; =d(hCy), (3.24)

referring to the 3-form and the (—1)-form symmetry respectively.

Taken at face value, (3.24) should tell us that the (—1)-form symmetry with current
Fy = 2 f; is broken in the presence of a tadpole constraint, just as the electric symmetry
with current xF3 is broken in BF theory. However, we should be a bit more careful: as
written, (3.24) does not quite make sense, since it involves an equality of 5-forms in four
dimensions. In order to make sense of (3.24), we are forced to consider five-dimensional
manifolds. Adopting a construction familiar from the study of anomalies, given a four-
manifold M, we may consider the cylinder M x [0, 1] (or more generally, a cobordism from
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M to itself). Given two configurations of the theory that differ by the value of [, Fy
sitting at boundaries of the cylinder, we can ask if there exist field configurations in the
interior of the cylinder that restrict to our given configurations on the boundary. If this is
not possible, the symmetry is preserved; dFy = 0 on the five-manifold M x [0, 1], and the
charge [, Fy is a topological invariant in the space of field configurations. Otherwise, the
(—1)-form global symmetry is broken; there is some smooth deformation that changes the
value of this charge.

We may thus understand (3.24) as holding not in the spacetime M, but in the cylinder
M x [0,1]. Indeed, there are field configurations of As,Cy on M x [0,1] where the charge
v Fy is different on the left and right boundaries; for example, we may take

A3 =0, Cy=tvoly, (3.25)

or any gauge conjugate, where ¢ is the coordinate on [0, 1]. Thus, the (—1)-form symmetry
with current Fj is indeed broken. Once this symmetry is broken, it is no longer consistent
to couple Fy to an axion ¢, as a broken symmetry cannot be gauged. This is clear from
the fact that Fj is not integer valued, so a coupling ¢ A F; would violate the periodicity
of ¢, just as a coupling Ay A Jz_1 of an ordinary gauge field to a broken O-form current,
dJg—1 # 0, would violate the gauge symmetry of A;. Thus, when this (—1)-form symmetry
is broken, we should expect to find ¢ frozen to a particular value. That a tadpole constraint
on fo freezes ¢ as well may be understood more directly: in the presence of an axion, we
have the gauge redundancy (3.18), and so it is only meaningful to set the gauge-invariant
combination fo + m¢ to a particular value.

This breaking of a (—1)-form global symmetry was interpreted in [63, 64] as an ob-
struction to dualizing the internal flux fp to a dynamical 3-form gauge field from the EFT
perspective.'*  Clearly, we can always dualize the fluxes to 3-form gauge fields, but the
obstruction refers to the impossibility of describing within the EFT a dynamical transition
that shifts the value of the flux by crossing a membrane charged under C3. Since the 3-
form global symmetry is gauged, these membranes should be attached to space-time filling
3-branes with a characteristic energy scale above the EFT cut-off; notice that Q% is an
input of the EFT. Such a scenario, by which a space-filling brane ends on a dynamical
membrane, is analogous to a charged string ending on a monopole as discussed above in
BF theory.!?

In section 5 we will describe other string theory examples in which (—1)-form global
symmetries are broken. Let us note that, even if they are broken, it still makes sense to
talk about these symmetries if there is some limit in which they become approzimate. For
instance, the dynamical process that breaks them might force us beyond the validity of the
low energy EFT by involving energies above the cutoff, in which case a low-energy observer
may see an approximate (—1)-form global symmetry.

" Fluxes associated to (—1)-form global symmetrics that are gauged or broken correspond, in the termi-
nology of [63, 64], to dynamical EFT fluzes or fluxes which are fized from the EFT perspective, respectively.

5The presence of such a transition can be understood from the perspective of [31], which predicts that
any two consistent theories of quantum gravity should be connected by a dynamical domain wall.
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To sum up, parameters in an EFT are associated to (—1)-form global symmetries. In
the same way that p-form global symmetries correspond to charges defined on (d —p — 1)-
dimensional slices of spacetime, the case of (—1)-form global symmetries corresponds to
charges carried by the entire spacetime. The “background gauge field” coupling to a global
(—1)-form symmetry are the labels of the vacua of a family of theories, such as #-vacua or
Coleman’s a-eigenstates [37]. If this parameter is actually dynamical, such as in the case
of axion monodromy, then the top-form current is exact and the symmetry is gauged; if
there is a path in configuration space that allows us to deform the value of the charge, then
the symmetry is broken, and the parameter must be set to a particular value. This occurs,
for instance, in the case of a tadpole constraint. Hence, the absence of free parameters in
quantum gravity is closely related to the absence of (—1)-form global symmetries, as also
pointed out in [37]. It is tempting to posit that the absence of these symmetries might be
related to the uniqueness of a single quantum gravity theory [31] and thus to the notion of
string universality (see [65-73] for works in this direction).

4 tr F? Chern-Weil currents

We now turn our attention to Chern-Weil currents of the form tr F5 := tr(Fy A F). In
contrast with the /' Chern-Weil currents considered in the previous subsection, these cur-
rents exist in nonabelian gauge theories as well as abelian gauge theories, since every simple
Lie algebra has a nontrivial quadratic Casimir. Such a current generates a (d — 5)-form
U(1) global symmetry in d > 5 dimensions. In quantum gravity, such a symmetry must be
either gauged or broken, which means that the current should either be exact or else not
conserved, respectively. In this section, we will consider examples of each of these.

4.1 Gauging

As in the case of the Jo = Fy Chern-Weil current considered in the previous section, the
Jy = tr F§ Chern-Weil current may be gauged by coupling the current to a (d — 4)-form
U(1) gauge field Cy_4:

1 1 1
S:/ (P APy — — Hy s AkHy s+ —Ca s Atr(Fa ATy |, (4.1
.<2gir(2 o) = gog Has MeHas + g5 Caca Al F 2)> .

where Hy_3 = dCy_4.'% In the presence of this cubic Chern-Simons coupling, the equation

of motion for Cy_4 is
872
—5 dxH;_3 = tI‘(FQ N Fg) = Jy. (42)
9o
The Chern-Weil current is now exact: Jy = d(---), indicating that the symmetry has
indeed been gauged. Note that in 4d this is a (—1)-form symmetry, and the gauge field

Cy4_4 is an axion, as in the axion monodromy scenario studied in section 3.3.

10We have written the normalization of the Chern-Weil current appropriate for an SU(N) group with
trace taken in the fundamental representation and the Dynkin index of the fundamental normalized to 1/2;
constant factors may vary, more generally.
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Let us now specialize to the case in which Fj is the field strength for a U(1) gauge
symmetry. In this case, the cubic Chern-Simons coupling also breaks the electric 1-form
symmetry, as

1 1
— d*xFy = ——d(Cy_4 AN F: 4.3
9124*2 4772((14 2), (4.3)

o) JE_Q = é*FQ is no longer conserved. One might attempt to define an improved current

. 1
JdE_2 = JE—Q + mCd_4 N Fs, (4.4)

but this (d — 2)-form is not invariant under gauge transformations of Cy_4, so it is not a
genuine operator in the theory.

Let us further specialize to the case of d = 4. Here, the breaking of the electric 1-form
symmetry can be understood via the action of a large gauge transformation 6§ — 6 + 27
on the line operators in the theory. Recall from section 2 that pure U(1) gauge theory has
Wilson/’t Hooft lines of charge (n, m), where n is the electric charge and m is the magnetic
charge. In the presence of the 0F» A F5 coupling, however, a line operator of charge (n,m)
transforms under § — 6 + 27 into a line of charge (n + m,m). This phenomenon is known
as the Witten effect [74] and will be discussed further in section 4.3 below. The Witten
effect implies that the electric charge of a line operator is not a gauge-invariant quantity,
and correspondingly the electric 1-form symmetry is not a valid symmetry of the theory.

This is our first example of a more general phenomenon that we will study in detail
below: under § — 6427, an electric charge is “dissolved” into an 't Hooft line of the theory.
More generally, in d > 4, a large gauge transformation of Cy_4 dissolves an electric charge
into the 't Hooft surface of dimension d — 3. In section 4.3, we will study the analog of
this phenomenon for dynamical objects as opposed to the defects considered here, in which
electric charge is dissolved in a magnetic monopole due to additional degrees of freedom
on the monopole worldline. In section 5, we will see higher-form generalizations of this in
string theory, in which lower-dimensional branes are dissolved in higher-dimensional ones.

Finally, let us briefly consider the theory of (4.1) in the presence of external electric

sources. The equation of motion may then be written either as ngf_2 = jg/[_afweu or as
dJC]ZJ_2 = jgfgl;e, where jglV[_alxweH is the Maxwell current and jgfgl;e is the Page current, as

discussed in [38]. These two notions of charge are distinguished in the presence of the
three-field Chern-Simons term: Maxwell charge is conserved and gauge invariant but not
localized, whereas Page charge is conserved and localized but not gauge invariant.

4.2 Breaking

Breaking of quadratic Chern-Weil currents takes different forms depending on whether the
underlying field strength is abelian or not. In all higher-form cases, we will only need to
deal with the abelian case, which we illustrate with a U(1) gauge field d dimensions. Such
a theory may have monopole (d — 4)-branes, with current j5". These give a nonvanishing
contribution to the Bianchi identity,

1
—dF = 33" 4.
27rd J3 ( 5)
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As a result, they also break the abelian Chern-Weil current:'”

d(F AF) = 2F NAF = 47F A j5 # 0. (4.6)
Just as the linear combination of currents 2 Fy + 558 remains conserved in (3.11), how-

ever, some linear combination of currents involving F' A F' may remain conserved even in
the presence of monopoles. We will see examples of this in the following subsection.

The nonabelian case is more complicated. Let us consider a nonabelian semisimple
group G with connection A. In that case, the Chern-Weil current tr(F' A F') cannot be
broken by monopoles in the same way as above. Indeed, if G is simply connected, there
are no topologically nontrivial monopoles whatsoever. In general, the topological classes of
monopoles correspond to nontrivial bundles on the S? transverse to the monopole world-
volume, and are classified by elements in 71 (G). Suppose such a monopole led to a non-
conservation of Chern-Weil charge, say by n units. Since 71(G) is torsion for any compact
semisimple Lie group, by putting together a finite number of such monopoles, we could
violate Chern-Weil charge conservation by a multiple of n units with a topologically trivial
field configuration, which is impossible.

If the Chern-Weil current is not broken by monopoles, how can it be broken? Con-
sider the case of a nonabelian gauge group G which is spontaneously broken to a product
including semisimple factors. The usual GUT breaking

SU(3) x SU(2) x U(1)
Zg

SU(5) — (4.7)
would be one such example, though there are many more. In the UV, there is a single
Chern-Weil current, tr (F SU() A FSUG) ) However, after spontaneous symmetry breaking,
the IR gauge group has three Chern-Weil currents,

tr(FSUG) A FSUGY) g (FSU@ A pSU@) - UM A pUO), (4.8)

The abelian Chern-Weil current is explicitly broken by monopoles, as discussed above, but
at least one of the two nonabelian Chern-Weil currents is an emergent symmetry in the
IR, which should be broken once UV effects are taken into account. Indeed, an SU(3)
instanton can be transformed into an SU(2) instanton by shrinking it to be smaller than
the symmetry breaking length scale, rotating in SU(5) appropriately, and re-expanding.
Since the charge associated with the current tr <FSU(3) A FSU(3)) decreases in this process

while the charge associated with tr (F SUR A F SU(Q)) increases, the Chern-Weil current

tr(FSU(3> A FSU(3>) —tr (FSU(2> A FSU<2>) (4.9)

is not conserved.
This represents a special case of a more general phenomenon: IR Chern-Weil sym-
metries may be broken in the UV by un-Higgsing to a larger gauge group. To see why,

"In fact, monopoles only break the U(1) Chern-Weil symmetry to a Zs subgroup, as discussed in sec-
tion 5.5.
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consider the spontaneous symmetry breaking of a gauge theory with gauge group G down
to a subgroup, H. The G gauge connection splits as

AC = AP A+ (4.10)
where AH is defined by the condition that it leaves the Higgs vev ® invariant,
(A)e(t,)® =0, (4.11)

where the matrices {t,} are those of whichever representation the field ® lives in. One can
define a projector
Tap = P (t5t5) P, (4.12)

so that mq,(AH)? = 0, which satisfies
Tapm¢ = Cy|®|?m¢, (4.13)

where (5 is the eigenvalue of the quadratic Casimir in the Higgs representation, and indices
are raised/lowered using the Killing form. As a result, one can write

VCa|®[?

which gives us the connection in the unbroken subgroup in terms of the connection on G

(AH), = <5ab - &> (AC)P = T, (3)(AC)?, (4.14)

and the Higgs vev. From this, one may write the field strength and the Chern-Weil current
of A" in terms of those of A® and Higgs field insertions. The derivative of the Chern-Weil
current is in general nonvanishing, due to the terms coming from I1,;(®) and its derivatives.
In this way, the embedding into the nonabelian gauge group breaks the symmetry explicitly,
due to the additional insertions of Higgs operators in the UV definition of the IR Chern-
Weil current.

In 4d, the Chern-Weil symmetries broken by this unification process are (—1)-form
symmetries. Any such broken symmetry cannot be consistently coupled to an axion. In
the case of SU(5) GUT breaking, only one global symmetry remains, so only one axion can
be coupled to the three Chern-Weil currents in the IR.

4.3 Gauging and breaking

In many examples, the symmetry associated with a Chern-Weil current is explicitly broken,
but a linear combination of this current and another current is gauged. An example of this
phenomenon arises in SU(2) gauge theory Higgsed to U(1) by an adjoint scalar field ®.
This theory has semiclassical 't Hooft-Polyakov monopoles, magnetically charged under
the unbroken U(1). These monopoles and their collective coordinates, which play a key
role in our discussion below, are reviewed in the textbooks [75, 76].

In this theory, we can formulate a puzzle. Consider the SU(2) gauge theory in the
un-Higgsed phase. We may gauge the Chern-Weil current, as discussed above, by adding a
(d—4)-form U(1) gauge field C with a minimal Chern-Simons coupling to tr(F A F'). After
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Higgsing to U(1), the IR theory inherits a coupling of C' to the U(1) Chern-Weil current
FAF: . .
UV: —CAtr(FAF) = 1IR:—CAFAF. (4.15)
82 472

Because we will keep track of constant prefactors throughout this subsection, let us be
explicit about our conventions. In the UV theory, we take the trace in the fundamental
representation of SU(2), with the convention F|yy = F'T? and tr(TT7) = 6. In the IR
theory, we take F' in the conventional normalization for a U(1) gauge theory with a minimal
charge normalized to 1. Taking T° to be the unbroken generator of SU(2), the doublet
representation carries charges +1/2 under T3, so our normalization is that F|jr = %F3.
This means that in the IR theory, the coupling of C' to the Chern-Weil current is twice the
minimal allowed value.'®
The existence of the 't Hooft-Polyakov monopole means that the IR, Chern-Weil current
is not conserved:
d(FAF)=47F A j3* # 0. (4.16)

This raises a puzzle: gauging the Chern-Weil current in the UV is consistent, because it is
conserved. This leads to a Chern-Simons coupling C' A F' A F' in the IR, which seems to
gauge the IR Chern-Weil current. Yet such a gauging appears inconsistent, because the
IR Chern-Weil current F' A I is broken by the existence of monopoles. How do we resolve
this apparent inconsistency?

We encountered a similar puzzle in section 3.1 when looking at & = 1 Chern-Weil
currents. There, the resolution lay in the fact that while the Chern-Weil current F' itself
was broken, a linear combination (J3!)' = 5= F + F5E was gauged, with 757" the string
charge current. A similar resolution applies to the puzzle at hand, so that F'A F' is broken,
whereas a linear combination Jj := F A F + wy is gauged. In this case, however, there is
not an obvious candidate for the 4-form wy, since there is no 4-form gauge current in the
bulk theory.

It turns out that a description of the gauged current Jj requires a detailed under-
standing of the degrees of freedom on the monopole worldvolume. The 't Hooft-Polyakov
monopole solution has a set of collective coordinates (also known as zero modes or mod-
uli). The most obvious are the translational zero modes, which allow for the motion of the
monopole worldvolume in spacetime. A less obvious zero mode is the dyon collective co-
ordinate [78-80], which allows a magnetic monopole to acquire electric charge and become
a dyon [81]. The dyon collective coordinate is a compact scalar field o localized on the
monopole worldvolume. The corresponding deformation of the classical monopole solution
corresponds to a rotation around the direction of @ in field space, and has the form of a
gauge transformation that does not vanish at infinity.

For concreteness, we will review the physics of the dyon collective coordinate in the
well-studied case of d = 4, then comment on the extension to general d below. In 4d, the
effective theory on the monopole worldline is just a theory of quantum mechanics, so o

8We could, alternatively, work with SO(3) gauge theory, so that the minimal charge in the UV and the
IR is the same. This would change the quantization of the Chern-Weil charge (with familiar consequences,
e.g., altered periodicity of the 8 term [77]), and eventually lead to the same conclusions.
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is a quantum-mechanical particle on a circle. The spectrum of this theory is labeled by
the integer momentum of ¢ around the circle; in this context, this integer corresponds to
(one-half) the electric charge of the dyon. Furthermore, the #-term in the bulk induces a
1d f-term on the monopole worldline:

1 my 0
=- d d —d 4.1
= g, a7 Mxdag g pdas, (4.17)

where my; and myy are the monopole and W boson masses respectively and djo = do +
2A is the covariant derivative. The O-term shifts the spectrum of the quantum particle
on a circle in precisely the correct way to implement the Witten effect [74] discussed in
section 4.1. In particular, it leads to a spectrum with magnetic and electric charges

0
gu =1, ¢gg = — 4+ ng, where ng € 27Z. (4.18)
T

A shift of 8 — 6 + 27 leaves the spectrum invariant, but with a monodromy under which
each state shifts to a state with two additional units of electric charge. (As a reminder, the
reason that ng is even is that we use a normalization in which SU(2) fundamentals, which
we have not incorporated into this theory, carry one unit of U(1) electric charge.)

An alternative perspective on the localized scalar field o, valid when d > 6, is that
it is a Nambu-Goldstone boson. The bulk U(1) gauge symmetry may be thought of as
effectively acting as a U(1) global symmetry of the monopole worldvolume theory, where
A restricted to the worldvolume behaves as a background connection, in much the same
way that bulk gauge symmetries restrict to boundary global symmetries in AdS/CFT.
From the worldvolume viewpoint, the U(1) global symmetry is spontaneously broken: the
global part of bulk U(1) gauge transformations does not leave the monopole worldvolume
vacuum invariant, and o is the Nambu-Goldstone boson that parametrizes these degenerate
states.'® The Nambu-Goldstone perspective will be useful in several later examples, where
we will encounter spontancously broken (p — 1)-form global symmetries of worldvolume
theories, in which the gauge transformation of a p-form gauge field B), in the bulk induces
a (p — 1)-form Nambu-Goldstone zero mode A,_; on the worldvolume that appears in the
gauge-invariant Stueckelberg combination dgA,_; = dA,_1 + B, [3, 82].

Returning to the case of the 't Hooft-Polyakov monopole in a general dimension d > 4,
there is still a compact boson ¢ in the worldvolume theory and an action of the form (4.17),
with € replaced by the bulk (d — 4)-form gauge field C. Though the worldvolume is no
longer 1-dimensional, the underlying physics remains similar, with ¢ allowing us to dissolve
electric charge inside the monopole worldvolume. Now, we are equipped to resolve our
puzzle. In the IR theory below the Higgsing scale, the gauge field C' couples to a linear
combination of bulk and localized terms,

1 1 )

19Tn the cases with d = 4 or d = 5, the worldvolume theory does contain the massless field o parametrizing
different classical monopole solutions, but the terminology “Nambu-Goldstone boson” is inappropriate for
o due to the Coleman-Mermin-Wagner theorem: the quantum theory on the worldvolume does not have
degenerate vacua, but a single vacuum sampling all values of ¢ uniformly.
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where one can view the magnetic current j3" as the delta functions necessary to localize the
coupling to o on the monopole worldvolume. The current J} is conserved, since d(dso) =
2F on the worldvolume due to the Stueckelberg structure of the o Lagrangian, and in fact
it is exact due to the coupling to C.

In the IR theory, then, the Chern-Weil current F' A F' is explicitly broken by the
presence of magnetic monopoles, but the sum of this current and a current localized on the
monopole worldvolume is conserved. If we view d 4o as a 1d Chern-Weil current, we see that
C gauges the diagonal symmetry generated by the bulk and localized Chern-Weil currents.
This resolves our puzzle. In fact, if we had not known about the dyon collective coordinate
and the Witten effect before, we would have been led to discover them by thinking about
how the nonabelian Chern-Weil current in the UV can be consistently gauged. We will see
a number of examples below with a similar flavor, in which consistent gauging of Chern-
Weil symmetries requires the existence of localized fields, which allow for the dissolution
of branes within branes of a higher dimension.

From the point of view of the Swampland program, one might have dismissed Chern-
WEeil currents built from abelian gauge fields as uninteresting, because they are explicitly
broken by the existence of magnetic monopoles. This example shows us that one should
not be so hasty. We will see that there are many more examples that share the feature
that localized fields lead to the conservation of a diagonal symmetry built from multiple
Chern-Weil currents. Quantum gravity requires that such conserved diagonal symmetries
are gauged.

5 String/M-theory

In this section, we will discuss how Chern-Weil symmetries are broken or gauged in several
string theory setups. We will see how a variety of known string theory phenomena can
actually be derived by requiring the absence of these symmetries, which suggests that they
might be general features of quantum gravity rather than accidents of the string lamppost.
We will also identify some universal patterns that will be useful later on when discussing
the phenomenological implications.

5.1 Kaluza-Klein and winding gauge theories

Kaluza-Klein theory on a circle provides a simple example of an abelian gauge theory in a
gravitational context. Consider a gravitational theory in D = d + 1 dimensions, with the
metric ansatz

2

where y = y + 27 R parametrizes the compact dimension. The Kaluza-Klein gauge field is
Ajp, with field strength F» = dA; (locally). The scalar A(z) is the radion field.

In Kaluza-Klein theory, the field strength F5 is not a conserved current due to the
existence of the KK monopole, which is a smooth solution to the D-dimensional Ein-
stein’s equations [83, 84]. Unlike the 't Hooft-Polyakov monopole discussed above, the
KK monopole has no dyonic zero mode that would allow it to carry electric Kaluza-Klein
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charge. Recall that for the 't Hooft-Polyakov monopole, this zero mode arose from a
U(1) gauge transformation that did not vanish at infinity. The KK monopole solution is
translationally invariant along the compactified dimension, so the analogous operation acts
trivially on the solution and does not correspond to a zero mode. As a result, in a pure
gravity theory, the Chern-Weil current Fs A F5 is not conserved as a simple consequence of
dFy = 75, and there is no worldvolume degree of freedom to enliven the story.

The abelian Kaluza-Klein gauge theory can be realized within many different consistent
theories of quantum gravity, and in specific examples, there is often more to say. For
example, a D-dimensional theory that includes a gauge field BéD) coupled to string charge,
when compactified on a circle, gives rise to a winding gauge field Bi. In such a theory, we
can investigate the fate of various Chern-Weil currents.

The 2-form gauge field in the compactified theory has a modified Bianchi identity,
which we will now briefly review for clarity.?’ The winding field (and corresponding field
strength) in D dimensions (labeled with superscript (D)) and those in d dimensions (un-
marked) are related via the ansatz

D) _p o4 L dy )

32 —BQ+27TBl/\<R+A1 ,
(D) ~ 1 dy )

H = H. —H =+ A). 2
3 3—1—27T 2/\<R—|— 1 (5.2)

With this ansatz, H; and H, = dB; are gauge-invariant field strengths, but Hj is not
simply dBs; rather,
~ 1
H3 =dBy — — By A Fs. (53)
27

This construction is necessary because Bs shifts under a By gauge transformation:
1
By — By +d¢, Bsw— By + %éFQ (54)

The corresponding B kinetic term in the compactified theory has the form [ ﬁg A *E[g,
and the field strength obeys a modified Bianchi identity

_ 1
dHy = ——Ho N F5. 5.5
3 5 2 N F2 (5.5)

The identity (5.5) indicates that the 4-form Chern-Weil current Ho A F} is exact, or equiv-
alently, that the corresponding symmetry is gauged. This consequence of modified Bianchi
identities will play an important role in our discussion below.

If the Chern-Weil current Ho A Fb is gauged, what is the corresponding gauge field?
The kinetic term contains terms of the form A; A Hy A xHg. We can apply Hodge duality,
*H3 = dBg4_4, and integrate by parts to view this as a term Bg_4 A (F2 A Hz). In other
words, the field that gauges the mixed Chern-Weil current is the magnetic dual of the
string gauge field Bs.

The observation that the Chern-Weil current Ha A Fb is gauged leads to a variation
on the puzzle we encountered in section 4.3. We have already noted that dFy # 0, due

20This well-known example is discussed, for instance, in §8.1 of [85].
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to the existence of KK monopoles. Similarly, we have dHs # 0 due to the existence of
objects carrying magnetic charge under By, referred to as “H-monopoles” [86, 87]. Such
charges are carried by NS5-branes for the 9d circle compactification of a 10d superstring
theory, or NS21-branes for the 25d circle compactification of 26d bosonic string theory.
The existence of independent magnetic monopoles for Kaluza-Klein and winding charge
implies that Ha A Fy is not even a conserved current; a fortiori, it cannot be exact. We
seem to have derived a contradiction.

As in the ’t Hooft-Polyakov discussion above, the resolution to this puzzle lies in
interactions that are localized on monopole worldvolumes, which we neglected in writing
the modified Bianchi identity (5.5). It is intuitively clear that the H-monopole should
be able to carry electric Kaluza-Klein (momentum) charge: it is not wound around the
compact dimension, so we should be able to boost it along that dimension. Indeed, it
is known that the appropriate dyonic collective coordinates exist, so that H-monopoles
can carry electric Kaluza-Klein charge, whereas KK monopoles can carry electric winding
charge [88, 89]. Specializing to the 9d compactification of the Type II superstring for
illustration, the full gauging via Bj takes the schematic form

By A (Fo A Hy + 5§ Adp,0® + G5 Ada, o™ + jY55) (5.6)

where jfsg"w denotes the current for NS5-branes wrapped on the internal dimension. In
order to have no global symmetries, it must be the case that other linear combinations of
the currents appearing here are broken. That is, the charges associated with each of the
terms in parentheses may be dynamically converted into charges under the other terms.
We will not elaborate on the details relating to the NS5 charge here, but will discuss similar
phenomena in later sections.

We can gain further insight by considering circle compactifications at the self T-dual
radius. In this case, there is an enhanced SU(2) gauge symmetry (in the heterotic context)
or SU(2) x SU(2) symmetry (in the bosonic string context). There are Chern-Weil currents
of the form tr(F A F), built out of the nonabelian gauge fields. Moving slightly away from
the self-dual point in moduli space, we recover the abelian theory through Higgsing, with
an adjoint Higgs (in the heterotic case) or a bi-adjoint Higgs (in the bosonic string case).
Thus, we see that these examples are intimately related to the ’t Hooft-Polyakov case
previously described.

A rather different case arises for the compactification of 11d M-theory to 10d, which
for small circle radius becomes Type IIA string theory, where the Kaluza-Klein photon is
identified with the Ramond-Ramond gauge field C';. In this context, the KK monopole
is a D6-brane. Unlike the previous case we considered, there is no 1-form winding gauge
field, and no scalar zero mode on the KK monopole worldvolume. However, if we consider
gauge fields of different degree, there is analogous physics: the 11d 3-form C'5 gives rise to
both a 10d 3-form with a modified Bianchi identity and a 2-form Bs (the string charge) in
10d. The modified Bianchi identity ensures that the Chern-Weil current Hs A F5 is gauged.
Due to the change in degrees of the forms, the analogue of the compact scalar o above
is now a 1-form gauge field A; that must exist on the D6-brane worldvolume and shift
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under a Bs gauge transformation. Thus, the worldvolume effective action of the D6-brane
can be deduced by studying properties of zero modes of the Kaluza-Klein monopole in
the compactified 11d theory [90]. With this analogy to the cases discussed above to guide
us, we will now turn our attention to a more general discussion of the role of Chern-Weil
currents in superstring theory.

5.2 Heterotic

Chern-Weil symmetries arise naturally in heterotic string theory. The 10d massless het-
erotic bosonic fields include nonabelian gauge fields, a B-field, and the metric. We can
construct Chern-Weil currents out of these from the characteristic classes of the gauge
bundle and geometry. For instance, for the Spin(32)/Zs heterotic string in 10d we have

H=w(r), JE=u(r'), J=u(r?), Jf=u(r). (5.7)

We will take the traces in the gauge factors to be in the adjoint representation, and those
involving geometry to be in the vector representation. Index theorems ensure that these
charges are quantized, though not in the basis above. The precise normalization will not
be important for most of our discussion. In addition, we may also define

JI = Hy =dBy, J =+Hs = dBy, (5.8)

where Bg is the dual potential to By. To understand which symmetries are gauged and
which are broken, we must take into account the Green-Schwarz couplings in the 10d action:

/Bg/\tr F4 /BG/\ tr(F2> tr(R2>) (5.9)

The first one arises at tree level in string perturbation theory , while the second is a one-loop
effect that is often expressed in terms of a modified Bianchi identity:
1 1 1 2 9

where we also included a current for fundamental NS5-branes. We have introduced normal-
ization factors such that the NS5-brane charge and the periods of H are integer-quantized.
Thus, the above linear combination of the three 4-form currents is gauged. Since there is
no other 3-form potential that could do the trick, we expect that linear combinations

a tr(FQ) +b tr(RQ) + ¢ Jnss (5.11)

orthogonal to (5.10) are broken. Unlike in abelian examples, we cannot use the existence of
monopoles to conclude that these currents are not closed. There is however a more indirect
way of seeing why this is the case: consider an instanton of the gauge bundle, which is
a finite size smooth codimension-4 gauge field configuration with nonzero tr(F?) charge.
The instanton has a moduli space which includes a rescaling modulus, which maps a given
configuration to another one of different size,

4@ = Aup) (5.12)
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As the instanton becomes smaller and smaller, the magnitude of the field strengths at its
core grows bigger and bigger, and at some point it is not a solution of heterotic supergravity
in any meaningful way. Rather, this “small instanton” is a localized fundamental object,
namely, an NS5-brane [91]. Thus, when an instanton shrinks and becomes an NS5-brane,
the charges associated with the currents tr(F 2) and Jyss each change by one unit, whereas
the combination

1
yr tr(Fz) + Jxss, (5.13)

is conserved.

This symmetry breaking is not visible in the low-energy supergravity theory. In the
full string theory, the instanton and the NS5-brane are one and the same; there is just one
conserved current. The IR splitting of the 5-brane charge into tr (F2) and Jygs arises only
after we introduce a cutoff on effective field theory, as we cannot transform an instanton
into an NS5-brane without shrinking it to be smaller than the cutoff. An effective field
theorist thus chooses to “forget” that the NS5-brane and the small instanton are actually
the same object, which leads them to see an accidental global symmetry that is not present
in the full quantum gravity.

Indeed, this is perfectly analogous to the breaking of the various Chern-Weil currents
in (4.8) in the IR of an SU(5) GUT considered in section 4.2. The nonconservation of
these currents cannot be expressed in terms of gauge-invariant combinations of fields in
the IR gauge theory, signaling the emergence of an accidental symmetry. Only when one
goes to distance scales shorter than the cutoff of the IR gauge theory does one realize that
the various types of instantons can be rotated into one another via the full SU(5) gauge
group, so in the UV theory only one linear combination of the IR Chern-Weil currents
remains conserved.

The story for tr(RZ) is more complicated, as the charge under this current is carried
by manifolds. Consider the current

1 2
Jy = 1672 tr(R ) + JNss (5.14)

in flat space. While one can put a gauge instanton of unit charge on R", there is no way
to introduce “one unit of tr(R?)” without changing the topology. The natural way to do
this is via a connected sum construction, as discussed in [31] (see also [92]): one takes
a compact four-manifold with nonvanishing tr(R?), cuts out a small S3, and glues the
resulting manifold to R* with a 4-ball By excised, R*\ B;. The resulting gravitational
soliton looks like flat space away from a small region where the gravitational charge is
localized, just like in the case of a gauge instanton (see figure 2).

Which compact manifolds X, can we glue in this way to R?? Heterotic supergravity
includes fermions, so we should only glue Spin 4-manifolds. The spin bordism group is
generated by K3, so any such manifold X, is cobordant to a connected sum of an integer
number of K3’s. It is sufficient for our purposes to discuss the case of a single K3. We have

1 2
- — 2. 1
o /thr(R) (5.15)
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K3

=

R4

Figure 2. Creating a gravitational soliton with nonzero tr (RQ) charge on R* via the connected sum
construction. We take a manifold with nonzero [ tr(Rz), such as K3, and glue it to R* via a small
tube. To a far away observer, this looks like a “particle” with nonzero gravitational Chern-Weil
charge. This picture should be understood as a constant time snapshot, and can be generalized to
other dimensions and gravitational solitons. See [31] for an extended discussion.

We remind the reader that the trace on the left-hand side is taken in the vector repre-
sentation. One way to see this is to note that heterotic compactifications on K3 require
24 NS5-branes to cancel the tadpole. Thus, gluing a K3 to flat space yields —24 units
of Jy charge. From our experience with similar setups, we therefore expect that this K3
manifold may be converted into 24 anti-NS5-branes by shrinking it smaller than the string
scale, at which point the effective field theory breaks down and the distinction between the
geometric soliton and the anti-NS5-branes is blurred. It would be interesting to investigate
this further.?!

A similar story applies to the currents J& = tr(F*) and J£ = tr(R?). Our remaining
discussion will be more schematic, dropping constant prefactors. Green-Schwarz couplings
lead to [93]

dH7 = JE + I8+ (JI)? + U2+ Jf T 4580 = s, (5.16)

where j§! represents the contribution from fundamental strings. The current Jg is exact,
so the associated symmetry is gauged, whereas other currents must be broken, presum-
ably by transitions between the objects charged under them. Indeed, the transition of
a tr(F?*) soliton to a fundamental string of unit charge was explored in [94]. There are
8-manifolds with nonvanishing tr(R*), so we can construct gravitational solitons as we did
before. However, geometric transitions involving a change of tr (R4) charge are not so well
understood.

Next, we turn to a discussion of Chern-Weil symmetries of the Eg x FEg heterotic
string. The story is nearly identical to that of the Spin(32)/Zsy heterotic string, but with
one important modification: while in the Spin(32)/Zy theory there is a single Chern-Weil
4-form tr(F A F), in the Eg x Eg theory there are two: one for each Eg factor. The Bianchi

21 As circumstantial evidence, we should point out that there are related examples of conifold transitions
in heterotic string theory where some tr(R2> is traded for NS5-branes in a controlled, supersymmetric way,
although these examples involve additional ingredients.
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identity (5.10) now involves both of these currents:
dH = try (FO A FW) 4 trp(FO A PP — tr(R?) + Jxss. (5.17)
There is a new combination,
try (FW A FWY — try(FP A PO, (5.18)

which is explicitly broken (in the same sense as above), since a small instanton of either
Eg can become an NS5-brane. In fact, (5.18) does not represent a conserved current in the
effective theory for another reason: it is not gauge invariant. The gauge group is actually
Za x (Eg x Eg), where the Zs factor acts by swapping the two Eg factors. As a result, (5.18)
is not gauge invariant, so it does not constitute a genuine operator of the theory.

The situation changes in compactifications where the background spontaneously breaks
the symmetry between the two Fg factors (which happens, for instance, in the presence
of Wilson lines). As a result, the IR theory after spontancous symmetry breaking has
gauge-invariant operators try(F() A FU), tro(FZ) A F®)), Nevertheless, the fact that an
NS5-brane can still turn into an instanton of either gauge group means that both currents
are actually broken.

The story also changes slightly for the 8-forms tr(F 4). For a given Fg factor, we have
the identity

tr(F) = ﬁ(tr(ﬁ)ﬁ (5.19)

where the traces are taken in the adjoint. This means that Jg is, in a sense, a “composite”
of the lower-dimensional Chern-Weil currents, so the pointlike transition that changes the
tr(F4) charge can arise only at the intersection of NS5-branes. In Horava-Witten theory,
this transition corresponds to a double instanton in the end-of-the-world M9-brane; one of
the instantons can condense into an M5-brane, which may then be pulled to the bulk, with
a worldvolume instanton that carries the necessary M2-brane charge.

Finally, we discuss briefly the non-supersymmetric SO(16) x SO(16) string. This theory
is very similar to the Fg X Fg case, with one important difference: there is no tr(R4)
term in the anomaly polynomial. As a result, the tr(R4) charge does not correspond to
fundamental string charge and is not explicitly broken by any known effects. Since there is
just one massless antisymmetric tensor in the SO(16) x SO(16) theory, the current cannot
be gauged independently, so it must be broken. Like the breaking of the tr(RQ) and tr(R4)
currents in the heterotic superstring, a more thorough understanding of how this occurs is
beyond the scope of the present paper.

5.3 Type Il

In this section, we will discuss how Chern-Weil global symmetries are broken/gauged in
Type II string theory. We will distinguish between abelian Chern-Weil symmetries con-
structed from the closed string field strengths and the nonabelian ones coming from the
open string sector.
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5.3.1 Type IIA without branes

The bosonic action of ten-dimensional massive Type IIA superstring theory in the demo-
cratic formulation is given by

1 1
L=—— > GpAxG,-— o1 A *Hs, (5.20)
»=0,2,4,6,8,10

where the improved gauge-invariant field strengths are
Gp=F, —dBa A Cp_3 + Goe™, (5.21)

where F}, = dC,_1 (which is not gauge invariant). We have omitted the Einstein-Hilbert
term, the dilaton kinetic term, and the dilaton dependence of the other terms, in order to
focus on the Chern-Weil symmetries without cluttering our notation. The Bianchi identities
and the equations of motion read

dG - HsAG =0, dH;=0, (5.22)
dxGp + H3 A %Gpyo = 0. (5.23)

To avoid double counting, we impose the following duality condition:
Gy = (=1)P %G1, (5.24)

The equation of motion for G, is then equal to the Bianchi identity of G19—p, and the
theory is self-dual.

Let us begin by discussing Chern-Weil global symmetries with k = 1, i.e., with currents
of the form F,,. By going to the appropriate duality frame, they reduce to the electric and
magnetic global symmetries of the higher-form gauge fields, with currents constructed from
the gauge-invariant field strengths G, and Hs. In the former case, we have (9 — p)-form
global symmetries with currents G, whose conservation equations read

dG1o = Hz A %G, dG4 = —H3 A %Gy,
dGg = —Hg A xGy, dGy = H3 A *Ghp, (525)
dGg = H3 N\ %G, dGy =0,

where we have used (5.23) and (5.24). Note that the three currents on the left-hand
side of (5.25) can be understood as currents for electric higher-form symmetries, whereas
those on the right-hand side of (5.25) can be understood as currents for the corresponding
magnetic symmetries (or vice versa).

The equations of motion imply that none of these currents are conserved, except for
the 9-form global symmetry with current Gq. If we turn off the Romans mass by setting
Gy = 0, a 7-form global symmetry emerges instead, since then dGo = 0. Hence, there is
always one global symmetry that remains unbroken in the absence of branes. In order to
break this symmetry, we need to add D8-branes (or D6-branes in the absence of a Romans
mass), in the same way that the electric 1-form U(1) symmetry of U(1) gauge theory in
section 2.1 was broken by the existence of charged particles.
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The NS 2-form field B has an equation of motion and Bianchi identity of the form
dxHz = dC,_3 A Gy + d(eP)Go AxG,  dH3 =0, (5.26)

so the magnetic symmetry with current Hj is also left unbroken. Breaking this global
symmetry requires the addition of NS5-branes.

The currents we have considered thus far are gauge invariant. The charge appearing
on the non-conservation of these currents is known as the Maxwell charge [38], and it is not
quantized nor conserved. On the other hand, the currents xF), are not gauge invariant but
are conserved in the absence of localized branes. The charge associated to these currents
is called the Page charge; it is not gauge invariant, but it is conserved and quantized (since
the field strengths are exact).

We can next study the fate of the Chern-Weil symmetries of the form X, A'Y,, where
X, is a p-form field strength and Yj is a ¢-form field strength. The simplest examples we
might consider take the form Fy A Fy and F» A F5. We have seen that Fj, is not gauge
invariant, however, so these currents are not gauge invariant either.

This naturally leads to us consider Chern-Weil currents of the form G, A Gy, since the
improved field strength G, is gauge invariant. However, these currents are not conserved
as one can easily see using (5.25), with the exception of Gy A G and the combination

1
Jy = GoGy — §G§ (5.27)

since
d(GoGy) = Go ANH3 A Gy, d(G3) =2H3 A Gy A Gy (5.28)

implying dJ4 = 0. The other possible combination is to consider Chern-Weil symmetries
of the form G, A H3, which are gauge invariant and conserved, since

d(Gp/\H3) :Hg/\GIFQ/\Hg =0. (5.29)

However, these currents are exact, as is clear from (5.25), so the associated global symme-
tries are gauged. Furthermore, one can check that the current Go A H7 is not conserved by
using (5.25) and (5.26).

Finally, we can consider Chern-Weil symmetries with £ > 2. The only new conserved
current arising is

1
Jg 1= G%GG — GoGaGy + gGg , (5.30)
whose conservation dJg = 0 follows from using that
d(Ge) = H3Ga, d(GaGy) = H3(GoGa+ G3), d(G3) =3GoG5 . (5.31)

We can also take products of the previously discussed conserved currents to engineer higher-
form ones, like J7 or Jy A Jg, or products thereof with Go.

One could attempt to construct a conserved 8-form current using the same logic as
above, yielding GoGg — GoGg + %Gi. However, although indeed conserved, it is also exact
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as it appears on the right hand side of the equation of motion for B in (5.26). Hence, the
symmetry is gauged. Analogously, the possible conserved 10-form currents associated to
potential (—1)-form symmetries are exact (and therefore, gauged) when using the equation
of motion of the dilaton.??

To summarize, the only conserved (not-gauged) currents are G’g, G%Hg, G§J4, G§J6,
GkJ? and GEJy A Jg with k > 0 and Jy, Jg defined in (5.27) and (5.30) respectively. We
will see in the next section that these symmetries get broken in the presence of branes.

Before closing this subsection, let us notice that, in the massless case with Gy = 0,
all the symmetries constructed from Jy and Jg reduce to products of Fy. Hence, the
only conserved currents (in the absence of branes) in massless Type IIA are Hz and F¥
with k£ > 0.

5.3.2 Type ITA with branes

As discussed in the previous subsection, we need to introduce D8-branes and NS5-branes
to break the global symmetries with currents G and Hj respectively. Gauge invariance
of the bulk gauge fields highly constrains the worldvolume action of these branes. In fact,
as shown in appendix A, the Chern-Simons action of D-branes follows simply from the
existence of worldvolume degrees of freedom that gauge the 2-form global symmetry of the
NS B-field. The Chern-Simons action reads

Scg = / > ConeTrr, (5.32)

qu

The B-field then appears on the worldvolume only in the gauge-invariant combination
Fpp = 2ma’ Fpp + Ba, where Fp, = dA; is the worldvolume gauge field strength of the
Dp-brane. We will show below that the existence of these worldvolume gauge fields can
be motivated from breaking the bulk Chern-Weil symmetries in a consistent way, similar
to the situation described in section 4.3. But before that, a further observation is in
order. Even if only D8-branes are required to break the bulk global symmetry with current
Gy, the existence of these branes necessarily implies the existence of lower-dimensional
D-branes as well. This can be understood as follows. Consider the above worldvolume
action (5.32). A brane with non-trivial worldvolume gauge fields actually induces charge
of lower-dimensional branes, as is clear from (5.32). By taking the zero size limit of these
charge configurations, we can recover a localized lower-dimensional brane, as explained in
more detail in section 5.3.3.

Suppose that we did not know about the existence of the worldvolume gauge fields A
and the Chern-Simons couplings (5.32). Then, the presence of branes would raise a similar
puzzle to the one discussed in section 4.3. Consider for example the current G4 A Hs. In

22There are two possible combinations yielding 10-form conserved currents that are exact,
1 1
d(e*® xd¢) = 5Ha A Hr + 2(5Go A Gro + 3Gz A Gs — Ga A Ge)
1 1
d(G2Hyr + 2Goe*? « dop) = gGSGw + gGoGgGg — 5GoGaGe — G3G6 + EGQGL

so the associated global symmetries are gauged.
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the presence of D4-branes, the Bianchi identity for Fy, hence also G4, is modified:
dF; =6P* — dGy= H3 A Fy+ Go A Hz A By + 624, (5.33)

where 694 is the delta-function current localized at the brane. Therefore, the 2-form global
symmetry with current G4 A Hs is actually broken:

d(G4 VAN Hg) = (55]?4 A Hs. (5.34)

This presents a puzzle, however, because the RR 3-form C5 couples to G4 A Hs, suggesting
that this current should be not only closed, but exact, and the corresponding 2-form sym-
metry should be gauged. In fact, we know it is gauged in the absence of brane sources, as
explained in the previous subsection. An equivalent way to explain the puzzle is that (5.34)
is inconsistent with the equation of motion for Cs, since it would imply that

d(d*G4) = d(G4 A Hg) #0! (5.35)

This puzzle is resolved by the presence of dynamical degrees of freedom on the D4-brane
worldvolume, just as the analogous puzzle was resolved by electric degrees of freedom on the
monopole worldvolume in section 4.3. Let us suppose that we do not already know about
these degrees of freedom, and see how their existence and properties might be deduced. We
can attempt to render (5.35) consistent by hypothesizing a 2-form field Fp,, localized on the
brane, appearing in a term of the form Fp, A 6P4 on the right-hand side of the equation of
motion for C3. If this field satisfies the equation dFp, = Hz, this will guarantee d®>xG4 = 0.
We can then write Fp, as Fp, = B2 + 2ma’ Fpp, where Fp), is a closed 2-form that must
shift under a gauge transformation of Bs to ensure gauge invariance of the brane action. If
we assume that the worldvolume theory is weakly coupled (i.e., Lagrangian), we can then
argue for the presence of a Nambu-Goldstone zero mode on the brane corresponding to
a 1-form gauge field with field strength Fp,, by appealing to the discussion below (4.18).
In this case, the new worldvolume degrees of freedom on the brane correspond to gauge
fields.?? As explained in more generality in appendix A, we can extend these arguments to
derive the Chern-Simons action of the D4-brane, a special case of (5.32):

Scg = /D4 Z Cy N e /b = /D4(C'5 — C3 N Fpp+ C1 AN Fpp A Fop) - (5.36)
q

This indeed modifies the equation of motion for C3 as expected:?*

dxGy = Gy A Hz + Fpy A oP4 = Jr. (5.37)

B The existence of massless vectors also follows from supersymmetry of the D-branes and the existence
of translational Nambu-Goldstone modes. To conclude the existence of massless vectors we need to assume
either a large amount of worldvolume supersymmetry or a Lagrangian description in the brane worldvolume.

240One might ask how the story changes if one replaces the D4-brane above by an O4-plane, which does
not have a worldvolume gauge ficld. The answer is that the orientifold projection also ensures that the
right hand side of (5.34) is trivial at the level of differential forms that we discuss in this paper, so that the
current is gauged with no further complications.
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We see that while the 7-form G4 A Hs is not closed in the presence of D4-branes, a combi-
nation of this current plus another one localized on the D4-brane yields a new current J;
which is exact. Hence, the associated 2-form global symmetry with current J7 is gauged.
The same occurs for other symmetries with currents G, A Hz when introducing D-branes.

More generally, the Chern-Simons action of the branes always involves the right cou-
plings to either break the Chern-Weil symmetries or gauge them by rendering their asso-
ciated currents exact. For instance, the gauge-invariant 8-form

Js = Fh AN*xGy + F4 NGy + (03 -4 /\]:Dp) /\5?4 (5.38)
is exact due to the equation of motion for Bs:
d~H = Js, (5.39)

so the associated 1-form symmetry is gauged by Bs. Hence, the presence of D4-branes
breaks the Chern-Weil current Fb A *G4 + Fy A G4, but the sum of this current and last
term in (5.38) is exact, so the corresponding symmetry is gauged.

Finally, we can investigate the fate of the Chern-Weil symmetries Jy, Jg defined
in (5.27) and (5.30), and products thereof, in the presence of branes. First of all, let
us consider massless Type ITA so that Gg = 0. As explained at the end of the previous
subsection, the only conserved Chern-Weil symmetries with k > 1 are powers of F¥. In
the presence of D6-branes, all these symmetries get broken as

A(FF) = kFEt A oD5 +£0 . (5.40)

In the presence of branes, in principle we could also construct new currents of the form
FF A 5?]?6 but they are all exact by the previous equation, implying that the associated
symmetries are gauged. However, the are other new currents localized at the branes and
involving the worldvolume fields whose non-conservation occurs only when considering
coincident or interesting branes. For example, d[(G4 — FppF2) A 659] oc #5696 A 656 £ 0.

The massive case with Gy # 0 works in a similar way. The currents Jy and Jg defined
in (5.27) and (5.30) are not closed in the presence of branes,

. 1
dJy = GodP* + (G2 — GoFpy) A S50 + <G4 — FppGa + 5?&,@5) AP L0 (5.41)

and similarly for Jg, so the corresponding global symmetries are broken, as well as those
constructed from taking products of Jy, Jg and Gy. However, we can construct new currents
localized on the branes of the form w A §. For instance, at rank 3 we get a new conserved
current given by

J3 = (GQ - Gopo) A (5]138 (5.42)

For a scenario with non-intersecting branes, this yields a global symmetry. However, we
expect the symmetry to get broken when allowing the branes to intersect and taking into
account the new degrees of freedom appearing at the intersections. To motivate this,
consider the modified Bianchi identity for G2 in the presence of branes,

dGy = H3Go + 655 + Fp,o1° (5.43)
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Figure 3. Illustration of the process that converts between a Yang-Mills instanton localized on
a stack of Dp-branes (depicted at left) and a D(p — 4)-brane that can move freely into the bulk
(depicted at right). The instanton solution has a size modulus, and small instantons are indis-
tinguishable from lower-dimensional D-branes. As a result, instanton charge and D(p — 4)-brane
charge are not independently conserved, avoiding a global symmetry.

When computing the derivative of (5.42), we should get d.J5 oc #696 A6P8+#Fp, 018 ASDE,
which is non-zero if the branes are intersecting.

The same occurs when considering other currents of higher rank of the form w A 4.
Because the generalization of the DBI+CS effective action for intersecting branes is not as
well understood as in the abelian case, we conclude the analysis of Type ITA abelian currents
here, with the following message. The absence of Chern-Weil global symmetries with £ = 1
requires the existence of charged branes, as is already known, but the implications do not
stop here. The non-conservation of higher rank currents with k > 1 requires the existence
of worldvolume degrees of freedom on the branes, which in turn implies the existence of
degrees of freedom at the intersections of branes when considering higher rank symmetries,
and so on; until presumably recovering the full spectrum of Type IIA. It is very impressive
how the simple quantum gravity criterion of no global symmetries seems to be enough
to recover much of the rich structure of branes and worldvolume fields present in Type
ITA string theory compactifications. This provides further evidence that the plethora of
dynamical extended objects and interconnections typical of string theory is a generic feature
of quantum gravity.

5.3.3 Nonabelian open string currents

Another way to engineer Chern-Weil currents in Type II string theory is via worldvolume
gauge fields. The DBI + CS action for a stack of Dp-branes includes terms of the form
tr(F22), which yield nonabelian Chern-Weil currents. Since the gauge fields live on the
Dp-branes, this current is associated to a (p — 5)-form global symmetry.

There is an intuitive way to understand how this Chern-Weil symmetry gets broken.
Consider a gauge instanton on the worldvolume of the Dp-brane stack, with non-zero
charge tr(F?). Taking the zero-size limit of this instanton, we end up with a localized
object of the same charge. This process cannot be described in the regime of validity
of supergravity, but it is well known in string theory and produces a lower-dimensional
D(p — 4)-brane [91, 95-97], as depicted in figure 3. Hence, the current

057, A tr(F?) —opy”, Y (5.44)
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is not conserved. This is analogous to the symmetry associated to tr (FQ) in heterotic string
theory discussed in section 5.2, whose breaking is manifest by the process transforming a
small instanton with tr(# 2) charge into an NS5-brane. As discussed there in detail, the
distinction between the small instanton and the lower-dimensional brane is meaningless in
the full string theory, implying that the global symmetry is broken. However, it remains as
an approximate global symmetry in the IR, as such a process cannot be described within
the low energy EFT.

A linear combination orthogonal to (5.44) is exact, signaling the existence of a (p —4)-
form gauge symmetry. This can be seen from the modified Bianchi identity for Fia_p.
For example, we may consider an instanton with D4-charge in the worldvolume of a stack
of D8-branes. Due to the Chern-Simons couplings in the brane worldvolume action, the
equation of motion for C5 (equivalently, the Bianchi identity for C3) gets modified to

dFy = 6% + (B? + tr F?) A 678, (5.45)

where we have restored the dependence on the B-field. Hence, an orthogonal combination
to (5.44) indeed corresponds to an exact current. This is another example of gauging a
linear combination involving Chern-Weil currents while breaking the other combination.

As a final remark, notice that the limiting case of tr(# 2) living on a stack of D3-branes
is an example of a (—1)-form global symmetry. The process of dissolving this brane into
a D(—1) instanton illustrates the breaking of the current 683 A tr(F?) — 55)(_1) and the
gauging of the orthogonal combination.

5.3.4 Type IIB

We can also investigate how Chern-Weil symmetries are broken or gauged in ten dimen-
sional Type IIB superstring theory. It shares certain similarities with the Type ITA case,
so we will keep the discussion short, focusing only on the differences.

Let us begin the analysis in the absence of branes. Excluding the Einstein-Hilbert
term, the IIB pseudo-action in Einstein frame in SL(2,7Z) covariant notation is

1 1 .. A 1. 1 ) 4
S D —K%O/ |:—§d9913 /\*d(Pij + (ping /\*Fg + §F5 AN *F5 — §€ijc4 A Fé VAN Fg] . (546)

Here €19 = —e97 = +1 and <,0ij = cpji satisfies the constraint det gpij = 1, with inverse
Pij = qksjlcpkl, whereas F§ = dCi, Fy =d0y — %5,,;]-03 A Fi, and the equations of motion
must be supplemented by the constraint xF5 = Fj. In terms of more familiar fields

1 (|7 m 1 (1 -7 (I3
—— : = — . Fi= : 5.47
4 T2 ( 7 1 Pij To \ —T1 |T’2 3 Hg ( )

where 7 = 71 + img = Cy + e~ ®. Tt is also sometimes useful to consider (pij = cp”slj =
5ikg0kj, or explicitly:

o= e (‘ﬁ |T|2> . (5.48)

-1 7
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Suppose first that SL(2,Z) is not gauged. Possible Chern-Weil currents can be built
from FY, F, F% = ¢ j* Fi , 09, dp | and xdyp¥. Combinations built only from ¢% and
its exterior derivatives are exact whenever they are closed (since the moduli space is con-
tractible), so we can ignore these. The currents F} are conserved and not gauged. However,

- 1 . P
dFfs = —587;3'}7?7; VAN Fj =—F3 AN Hs, (549)

so the only non-zero wedge product of these currents is gauged. Moreover,
dES = F3 A By, (5.50)

SO F% is broken, gauging the currents Fi A Fy in the process. Now consider the 9-form
currents *dy”. One finds:

d[o’;xdgt| = R A, (5.51)

hence all of these currents are broken, gauging the 10-form currents F3i A [:’? ). Note that,

]

by comparison, the 10-form current F:,Ei A F~’7j is broken, since (formally)

AFF AP = —FEAFI A #£0. (5.52)

Any wedge product of conserved currents J A H, where J is a conserved current and H
is built from % and its exterior derivatives, is exact, since J A H = d(J A K), where
dK = H. Wedge products of non-conserved currents and ¢% and its exterior derivatives
are likewise not conserved. Thus, we conclude that the only conserved, non-exact currents
before SL(2,Z) is gauged are F3 and Hs. Their breaking requires the presence of D5- and
NS5-branes, respectively.

Once SL(2,7Z) is gauged, the fields F3, H3 no longer define currents for global symme-
tries, as they themselves are no longer gauge-invariant under SL(2,Z). In fact, the only
SL(2, Z)-singlet Chern-Weil current in Type IIB is the current F3 A Hs, which is gauged
according to (5.49), so one might think that there are no global symmetries coming from
gauge fields in Type IIB supergravity once SL(2,Z) is gauged. This is incorrect, as there are
global symmetries arising from the SL(2,7Z) gauge field itself. Given a discrete gauge group
G, there is an associated (d — 2)-form global symmetry, whose charge on a l-manifold is
given by the projection of the holonomy of the gauge field to the abelianization Gyy,.2° The
breaking of this symmetry corresponds to adding defects of codimension two, around which
the discrete gauge field has nonzero monodromy, such as Krauss-Wilczek strings in four
dimensions. In the case at hand, we have SL(2,7Z).p = Z12, and so we have an 8-form Zo
symmetry in Type IIB supergravity once SL(2,7Z) is gauged.?6 In order to break this sym-
metry, we must add 7-branes to the theory, such as D7-branes or their SL(2, Z)-conjugates.
Introducing these 7-branes will in turn introduce new global symmetries, which will have
to be gauged or broken by additional mechanisms. For instance, once D7-branes are added,

?These symmetries will be discussed in more detail in an upcoming paper [98].
2Properly speaking, we should consider the pin* double cover of GL(2,Z) considered in [99] and its
abelianization, but this subtlety isn’t important for the current discussion.
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it is possible to consider Type IIB backgrounds with nonzero Fp = ;12gd7' A dT, which thus
becomes a source of new Chern-Weil symmetries (which are trivial in the absence of 7-
branes).?” A consistent treatment of these symmetries would involve new ingredients, like
the Gaberdiel-Green couplings of Type IIB [100, 101], the complete analysis of which we
will not attempt here.

5.3.5 Gravitational currents

We also comment briefly on gravitational currents in Type II. In section 5.2, we found that
these are often gauged in heterotic string theory. The situation in Type II is the converse;
they are often broken. As explained in [31], in ITA the class of K3 is killed by eight O4-
planes, which uplift to MO5-branes in M-theory. In this particular case it is also possible
to describe the non-conservation of tr(R?) via a smooth eleven-dimensional supergravity
background, since the ITA K3 compactification uplifts to K3 x S and Qgpin =0.

One would also expect the same class to be broken in IIB, since it does not couple to
any massless field; this is more mysterious, since the process destroying the charge must
be non-supersymmetric, as explained in [31]. Note that the fact that one can have conifold
transitions in Calabi-Yau manifolds [102, 103], which can change the value of tr(RQ), do
not constitute evidence that [ tr(R?) is broken, since [ tr(R?) is a bordism invariant for
four-manifolds, but not 6-manifolds.

In Type IIA, a certain linear combination of tr(R*) and tr(R2)2 is gauged by the
gravitational coupling

/32 A Xs. (5.53)

See [104] for a detailed discussion. This means that certain two-dimensional compactifica-
tions of ITA, for instance compactification on a Bott manifold [105], require the inclusion
of additional F1 strings, which are pointlike on the compactification manifold. Upon circle
compactification and T-duality, these become pure KK momentum, matching the fact that
the [ A1 A Xg coupling that arises directly from dimensional reduction of (5.53) in the
Type ITA frame becomes a one-loop effect in the IIB perspective [104]. In the IIB frame,
the wound F1 strings become pure geometry, and so the same linear combination is broken
in IIB. From the IIB perspective, compactification on Bott x R? is fine, but if one replaces
the R? factor by a space with an S factor, some KK momentum needs to be introduced.

Additional currents can be gauged in the presence of D-branes or orientifold planes,
due to the presence of the A-roof and L-genus term in the D-brane and orientifold action
respectively (see for instance [106]),

A(RT) L(RT/4)
Spbrame O | 2 A CHFYAC, Sosientite 3/1/—“}, 5.54
D-b A(Ry) (£ Orientifold L(Rn/0) (5.54)

where Ry, Ry are the curvatures of tangent and normal bundles respectively. These cou-

plings mean that gravitational Chern-Weil currents like &p_prane A tr(R?) can source RR

2"The symmetry with current Fp was described in [31] as the symmetry associated with the cobordism
class of Type ITB on CP'. As argued there, the object which breaks this symmetry is a (currently unknown)
non-SUSY cobordism defect.
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fields, and likely participate in a gauging-breaking scenario involving gravitational currents
as above, which we will not explore in detail here.

5.4 M-theory

Next, we consider Chern-Weil symmetries and their breaking and gauging in M-theory,
where the story is particularly simple and elegant. We first consider pure eleven-
dimensional supergravity:

S:— d'tay/—gR —

AFy. (5.55)
2 K11

The possible Chern-Weil symmetry currents include Fy, F7 = xFy and F4 A Fy, all of them
gauge invariant. However, the F); equation of motion,

1
dxFy = —§F4 N Fy, (556)

simultaneously breaks F and gauges Fy A Fj, so Fy is the only remaining nontrivial con-
served current.

To break Fj, we must introduce a localized magnetic source such as an Mb5-brane.
Even without UV input, the structure of the supergravity action requires that such a
brane have a worldvolume chiral boson, as we now explain in detail. (The argument is
similar to those for other worldvolume scalars previously discussed in sections 4.3, 5.3.2,
and in appendix A.) To do so, it is convenient to work with a democratized supergravity
pseudoaction:

Sdem = /dllm\/ gR — —/F4/\*F

T (5.57)

where Fy = d4g — %A;} A Fy and the equations of motion must be supplemented by the
constraint F7 = xFy.
Naively, the magnetic 5-brane would have the Chern-Simons charge coupling

Scharge = MS/AGa (558)

however, Ag — Ag + %)\2 A Fy under A3 — A3+ dAs. Hence, the above action is not gauge
invariant, and it is not possible to couple Ag to the brane without including worldvolume
degrees of freedom. Equivalently, since dFy = ¢d(X) for a charge ¢ magnetic brane with
worldvolume ¥, Fy A F} is no longer closed, requiring an additional term in the Fy Bianchi
identity:

dFy = —%F4 A Fy+ qHs A 6(D), (5.59)

for some three-form Hs. Taking the exterior derivative, we find dHs = Fy, so that Hs =
dBsy + Az for some worldvolume field Bs.
The F; Bianchi identity can be solved using a Dirac string =, Fy = dAs+¢d(E), where
= = Y. Using the same Dirac string, we obtain:

1
= ddg — 5 A3 A Fy - gAg AS(Z) + qBa A S(S), (5.60)
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assuming that the string does not self-intersect (6(2) A 6(Z) = 0). Consistency with the
constraint Fy = «F requires the brane to couple electrically as well as magnetically, via
the action®®

1 k
Sbrane D) & [AG + _BQ A F4] - _5/ Hg VAN *27’[3, (561)
3 Jx 2 2 Js

for some ps and k5 to be determined, where the Ag charge coupling is rendered gauge
invariant by the transformation of the worldvolume field By — By — A9 under the gauge
transformation Az — Az + dg.

Consistency of the resulting equation of motion dx Fy = —2k?%, u56(2) with the Bianchi
identity dFy = ¢6(X) and the constraint xFy = —F, implies p5 = ﬁ. Likewise, we find

1
dxFy = —§F4 N Fy + %/Hg VAN 5(2) — 3/@%1k’5 * Hz A 5(2) (5.62)

Consistency with (5.59) and «Fy = E% requires that

3
352 ks o H = — My =  ks= -1 xgHz=—Hs, (5.63)
4 4K?2
11
where we assume g > 0 for definiteness, and the constraint xxHs = —7H3 is consistent
with the equation of motion d xx, H3 = —F}. Thus, the brane carries a worldvolume chiral

boson, just like a standard Mb5-brane. Just as in the discussion in section 4.3, this boson
can also be thought of as a Nambu-Goldstone mode.

Once such a five-brane has been introduced, there are no remaining (continuous) global
symmetries. Note that, of the brane localized currents, 4(X) is gauged by the Fj Bianchi
identity, whereas Hsz A §(X) is broken, gauging Fy A (%) in the process.

In particular, there is no need to explicitly include M2-branes, as their charge is carried
by the chiral boson on the M5-branes, as well as being induced by the bulk Chern-Simons
term. If M2-branes are included, they modify the Fr Bianchi identity:

. 1
AFy = =S Fy A Fy+ gHs A 6(35) + '6(5). (5.64)

Now Jg = —%F4 A Fy+ qHsz N §(X5) is conserved but no longer gauged, so we seem to have
a global symmetry. To avoid this, M2-branes must be allowed to end on the M5-branes,
inducing worldvolume flux

/
dHs = Fy — %525 (9%,). (5.65)

Exchanging a spatial boundary for a temporal boundary, this implies that M2-branes are
dissolvable in M5-branes. Thus, in some sense M2-branes are nothing but worldvolume
flux concentrated at a point, as any distinction between these two objects would create a
global symmetry. (Whether such concentrated flux is energetically favorable is a dynamical
question that cannot be answered by an analysis of the global symmetries.)

28The corresponding probe action would be Sprobe D s fz [Ag + %Bz A F4] — %’i fz Hs N\ *xHs, without
the 1/3 in the first term. The difference comes about because the bulk democratic supergravity action has
a hidden dependence on the worldvolume fields through the modified Fy and Fr Bianchi identities.
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5.4.1 Comparison with Type ITA

It is interesting to compare the discussion of cleven-dimensional supergravity / M-theory
above with the preceding discussion of Type ITA supergravity / string theory, since the
latter is the circle compactification of the former. Eleven-dimensional supergravity com-
pactified on a circle automatically includes D0 branes (Kaluza-Klein modes) and D6-branes
(Kaluza-Klein monopoles). As discussed above, once D6-branes are included, we automati-
cally obtain objects carrying D4, D2, and DO charge due to the worldvolume gauge field on
the D6. Thus, the only remaining global symmetry current is Hs, broken by NS5-branes
in string theory. Since Type ITA NS5-branes arise from M5-branes transverse to the M-
theory circle, this story is closely analogous to the eleven-dimensional viewpoint. There is
one global symmetry current (Fy or Hs, respectively), broken by including a single type of
brane (an Mb5-brane or NS5-brane, respectively), which is forced to carry a worldvolume
gauge field to respect bulk gauge invariance.

However, closer examination yields an interesting puzzle. In the case with a global
symmetry, hence no M5/NS5-brane, the ten-dimensional theory has a D4-brane-like object
(concentrated D6 worldvolume flux), even though it is well known that D4-branes arise
from Mb5-branes wrapping the M-theory circle. Is there therefore some solitonic M5-like
object in eleven-dimensional supergravity, obviating the need to include a fundamental
magnetic brane?

Let us give a simple argument that this is not the case, and then explain how this
can be consistent with the ten-dimensional description. A solitonic (horizon-free) Mb5-like
object would have long-range fields resembling those of an M5-brane. Let €211 be the region
of spacetime near the solitonic core. By extending {21; far enough away from the solitonic
core, we conclude that 9Q = R%! x §* to reproduce the long-range behavior of an M5-brane.
Assuming a static, uniform solution, R>! factors out entirely, so that ;; = R>! x Q5 and
54 = 0Q5. The M5 charge is measured by the integral

Qs :]{ Fy :/ dF, =0, (5.66)
54 Qs

using Stokes’ theorem. Therefore, the pure supergravity equation dFy = 0 precludes
M5 charge.

Now let us turn to D4-brane charge dissolved in a D6-brane. We could measure the
presence of D4 charge using the “Maxwell charge” [38]

QB3 :]{ Gu, (5.67)
54

but Gy is not closed (dG4 = H3 AG3), so the result depends on the choice of linking sphere.
Instead, consider the “Page charge”

e = fig% (G4 + H3 A C4]. (5.68)

Provided that the S* does not intersect any D4-branes, or NS5-branes with worldvolume
flux, the integrand is closed, so the result does not depend on the choice of linking sphere.
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Figure 4. The left panel depicts a D6-brane with dissolved D4-brane charge, represented as a
blurry core. The D4 charge is measured by the flux on a linking S*, represented by the dotted
sphere. This cycle does not uplift to an S* in eleven dimensions because the circle fibration over
S4 has no global section, as it is the double suspension of the Hopf fibration. In the right panel, we
now have a spherical D6-brane. The S* no longer intersects the D6 worldvolume, so the fibration is
trivial over S* and the cycle has an 11d uplift. This S* is nontrivial in homology (since it intersects
the 2-cycle ws involving the M-theory circle and a radial direction, as shown in the figure).

Although the same integral over a generic cycle would depend on large gauge transfor-
mations of C1, this dependence disappears when Hj is topologically trivial (exact) on the
cycle. This is always true on S* because H3(S%) = 0, so (5.68) is well defined.

The relation between the 10d and 11d fields is

" =G0 4+ 5O A (dy + ). (5.69)

Thus, naively (5.68) lifts to (5.66) where the integration cycle is chosen by picking an
arbitrary point on the M-theory circle for each point on the 10d S*. How, then, is it
possible to have Qpy # 0 when (as we argued) Qn = 07

To answer this question, we consider two distinct cases of interest. First, suppose that
the D6-brane carrying the D4-charge is an infinite plane R%!. In this case, because of the
non-trivial graviphoton gauge field, the transverse S* does not lift to S* x S*, but rather
to 5°.29 In particular, the S' fibration over S* does not have a global section. This means
that there is no four-cycle lift of the linking S* over which to integrate Fj, and hence no
direct connection to Qs = 0. This is depicted in figure 4.

To eliminate the D6 charge, and with it the non-trivial graviphoton gauge bundle, we
instead consider a D6-brane with worldvolume R*! x $2? and one unit of worldvolume flux
threading the sphere. In the limit where the S? shrinks to zero size, this configuration looks
indistinguishable from a D4-brane. Taking the transverse S* to have a larger radius than
the 2, the M-theory lift is just the naive S* x S, so now (5.68) does lift to (5.66). However,
because of the non-trivial topology induced by the circle fibration in eleven dimensions,

29The linking S? of the D6-brane lifts to an S* via the Hopf fibration, and so the S! fibration over S* is
the double suspension of the Hopf fibration, with total space S°. As a result, the eleven-dimensional space
is topologically R0,
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this S is nontrivial in homology, hence Stokes’ theorem does not apply and Quis # 0 is
possible. To see that this is so, consider the two cycle wy formed by the S' fibered over a
line stretching from the D6-brane off to infinity. The intersection number of this two-cycle
with S* is one, hence S* is nontrivial in homology, as shown in figure 4.

In fact, the M-theory lift of dissolving a D4-brane in the D6-brane is the process of
moving an M5-brane wrapping the S on top of the D6-brane, where the S shrinks to zero
size and the Mb-brane self-annihilates, leaving behind Fy flux, where the linking between
the S* and this two-cycle traced out by the Mb5-brane reflects the change in flux as the
brane is brought in from a distance.

Thus, in summary, although M5-branes do not arise in pure eleven-dimensional super-
gravity, D4-brane-like objects (with the charges of an M5-brane wrapping the M-theory
circle) do. Despite all these complications, the presence or absence of global symmetries
lines up perfectly between the different dimensions, given a sufficiently careful treatment.

5.5 Rigid Calabi-Yau three-folds

In most examples of U(1) gauge ficlds in string theory we have seen, a combination

1 1
=—KANFPK+—j3'Ad .
et ANt ooy Adao, (5.70)

of the Chern-Weil current associated to a bulk U(1) gauge field and the degrees of freedom

Ji

on the monopole is conserved, according to the discussion in section 4.3. Indeed, in these
cases, Jj is frequently gauged by coupling to a dynamical (d — 4)-form gauge field C. In
d = 4, this is a manifestation of the Witten effect, and our dynamical gauge field is simply
an axion field 0. In this way, the examples we have considered explain the presence of a
dynamical axion in d = 4 string models by requiring the remaining (—1)-form symmetry
J} to be gauged.

In this section, we consider a striking exception to this pattern, with no dynamical
axion among the light fields of the theory. This is the case of Type IIB string theory
compactified on a rigid Calabi-Yau three-fold,*° as considered in [107] . Such a model
describes a theory of NV = 2 supergravity in d = 4 with only one U(1) gauge field (the
graviphoton) and no vector multiplets. In particular, as the #-angle can only depend on
scalars in vector multiplets, not those in hypermultiplets, we see that these models must
have 6 frozen to a specific value in the IR. Interestingly, the authors of [107] find that
all known examples of rigid Calabi-Yau three-folds have § = 0 or = up to an SL(2,Z)
transformation.

In these examples, we claim that the Chern-Weil current F5 A F5 of the graviphoton is
simply broken by monopoles. Indeed, though the f-angle appears to be a free parameter in
the IR, theories with € # 0 or 7 up to SL(2,Z) apparently do not admit a UV completion,
and as such it would be inconsistent to couple them to a dynamical axion, just as it would
be inconsistent to couple a theory with an explicitly broken global symmetry to a dynamical
gauge field. The fact that we find both possibilities 8 = 0, 7 is consistent with the equation

F F F
d (_2 A _2> .y <_2 A 33) , (5.71)

2r 27w 2

30That is, one with h>! = 0.
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obtained by dividing (4.16) by (27)?, which tells us that monopoles only violate Chern-
Weil charge conservation by two, and thus only break the U(1) (—1)-form symmetry to a
Zo subgroup.

While these theories provide examples of four-dimensional compactifications of string
theory with no axion in the deep IR, we should note that there will still be a heavy axion,
given by a KK mode of the ten dimensional metric. Thus, the statement that the Chern-
Weil symmetry F A F5 is simply broken by monopoles holds only below the KK scale, while
we expect a more typical story involving both an axion and a conserved linear combination
of currents to hold above the KK scale. On the other hand, our four dimensional description
of physics also breaks down once we start exciting many KK modes, so these models provide
an example of a theory with no axion whose mass is below the EFT cutoff.

5.6 Taking stock

Having surveyed a number of examples in string theory and M-theory, we can now step back
and offer a broader perspective on what we have learned. Consistent with the lore about
quantum gravity, we have not found any examples of true Chern-Weil global symmetries
in a gravitational setting. We have found that Chern-Weil symmetries can simply be
broken by the existence of magnetically charged objects, as in section 5.5. However, we
find that more often, the Chern-Weil symmetries are gauged, via Chern-Simons terms. To
be more precise, the gauging is usually of a linear combination of the Chern-Weil current
and other currents, with other linear combinations being broken by various dynamical
processes that can convert Chern-Weil charge into other charges. Whereas the presence
of Chern-Simons terms in string theory might have been thought of as a requirement of
spacetime supersymmetry, or as a derived consequence of the string worldsheet theory, we
see that these terms also play an important conceptual role unrelated to such details, as
already pointed out in [26]: they serve to banish a global symmetry from the theory, by
gauging it.

In quantum gravity, we expect that abelian gauge theories will always have dF' # 0,
due to the existence of magnetically charged objects. As we first saw in our discussion of
the 't Hooft-Polyakov monopole in section 4.3, this means that a Chern-Simons coupling
of the form C'A F'A F is consistent only in the presence of worldvolume degrees of freedom
on the magnetically charged object, which allow us to dissolve electric charge inside that
object. In string theory examples (e.g., with Ramond-Ramond gauge fields), electrically
and magnetically charged objects are frequently different types of branes. Consistency of
the bulk Chern-Simons terms requires that one kind of brane charge can be dissolved inside
another kind of brane. If a charge can be carried either by branes moving freely or in a
dissolved form inside another brane, there must be dynamical processes that can convert
between the free charge and the dissolved charge. Otherwise, we would have a global
symmetry, due to our ability to count these two kinds of charges separately (with only
one linear combination being gauged). Thus, we see that the well-known string theoretic
phenomenon of branes dissolving in other branes can be viewed as a mechanism by which
the theory avoids unwanted global symmetries. This also has the consequence that a brane
can end on another brane, with the junction of the branes serving as the location where
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free charge is converted into dissolved charge. Thus, much of the intricate structure of
branes and their interactions within string theory can be viewed as providing a mechanism
for removing potential global symmetries from the theory. This suggests that this struc-
ture could survive beyond the known string lampposts, as a general feature of theories of
quantum gravity.

Another pattern we have observed in Type II string theory and M-theory is that, while
many Chern-Weil symmetries are broken by Chern-Simons couplings, in each example we
find at least one current that is unbroken at the level of the bulk supergravity action,
corresponding to the required branes of the highest dimension. These are the D6-branes
and NS5-branes in massless Type IIA, the D8-branes and NS5-branes in massive Type I1A,
the D5-branes and NS5-branes in Type IIB with SL(2,Z) ungauged, the 7-branes in Type
IIB with SL(2,7Z) gauged, and the M5-brane in M-theory. Once these branes are added,
branes of lower dimension may then be inferred as dissolved objects by the logic discussed
in the previous paragraph. In this way, the highest-dimensional branes may be viewed as
generating the full spectrum of dynamical branes. It would be interesting to provide a
more complete description of this structure in general.

Finally, we note that in abelian gauge theories the Completeness Hypothesis, i.e., the
existence of both electrically and magnetically charged objects spanning the full lattice of
charges, can be viewed as a consequence of the absence of global symmetries associated with
the currents F and xF. Our results suggest that the absence of global symmetries associated
with higher Chern-Weil currents leads to a stronger conclusion than the Completeness
Hypothesis, telling us not only about the existence of charged objects but also about
relationships between them (e.g., the fact that one object can end on another). There is
a close affinity between these remarks and the concept of higher-group symmetries (see,
e.g., [108-111]).

6 AdS/CFT

We have seen how Chern-Weil symmetries can be gauged, broken, or a combination of
both. We will now discuss examples of these structures in quantum gravity in AdS, where
the dual CFT provides a novel perspective on some of these phenomena, often involving
anomalies of global symmetries. In AdS/CFT, a bulk gauge field can correspond to either
a conserved current or a gauge field in the boundary, depending on boundary conditions.
When the CFT has an 't Hooft anomaly, it is inconsistent to gauge the corresponding
global symmetry, and therefore this maps to inconsistent boundary conditions in the bulk.
The presence of a Chern-Simons term is the source of the inconsistency in these boundary
conditions, and consequently, the Chern-Simons terms that are associated with gauging of
Chern-Weil symmetries typically correspond to 't Hooft anomalies of the dual field theory.
However, there are some examples, where the Chern-Simons terms involve massive bulk
fields, that do not clearly fall in this framework.

We will start with quantum gravity in AdS7 and then briefly comment on the more
familiar AdSs/CFT,4 example.
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6.1 AdS;/CFTg

All known six-dimensional conformal field theories are supersymmetric. These supercon-
formal field theories (6D SCFTs) may have either N' = (2,0) supersymmetry or ' = (1,0)
supersymmetry. We will be interested in the latter.

6D SCF'Ts have been studied by many groups, dating back to the 1990s (see, e.g., [112—
115]). More recently, a classification program of 6D SCFTs has been undertaken [116-119],
involving a combination of field theory constraints and F-theory constraints (see [120] for
a review). This classification encompasses all known 6D SCFTs,?! though it relies on the
assumption that each SCFT admits a tensor branch: after giving vevs to scalar fields
in tensor multiplets (each of which features a 2-form gauge field B, under which the
dynamical strings are charged), one may perform an RG flow whose endpoint is a free field
theory in the IR. The classification program then proceeds by classifying these free field
theories, all of which take a rather simple form as a generalized quiver gauge theory.

Of particular interest for us are those 6D SCFTs whose tensor branches can be de-
scribed in terms of an SU(N;) quiver gauge theory. These theories may be constructed in
Type IIA string theory via D6-D8-NS5-brane webs [124] and may be realized as the IR
fixed points obtained after giving vevs to hypermultiplets in the worldvolume theory of
M5-branes probing C2?/Z,, singularities. The ITA brane setup is

Brane To | X1 | X2 | X3 | T4 | 5 | g | 7 | 8 | X9
D8 - == === x]|=]1=1=
(6.1)
NS5 | — | — | — | —|—|—| x| x| x]|x
D6 - =] = === —=-] x| x| x
These theories have quivers of the form
fi f2 I
(6.2)

Here, su(ny) is the I'th gauge algebra, and f; indicates the number of flavors associated with
the I’th gauge group. There are also bifundamental hypermultiplets (ny,Tiy;1) stretching
between each pair of adjacent gauge groups. Anomaly cancelation, which is very stringent
in six dimensions, dictates

2ny=nj_1+nr1 + f1, (6.3)

with ng = nyy1 := 0. This condition implies that the hypermultiplet content of the theory
is uniquely specified by the Dirac pairing and the ranks n; of the gauge groups, so the
integers fr are in fact redundant, and often omitted from the quiver description in (6.2).

31Up to subtleties involving frozen singularities in F-theory, which are now reasonably well under-
stood [121-123].
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In the Type IIA picture, the gauge symmetries su(ny) are associated with the world-
volume of a stack of n; D6-branes stretched between a pair of NS5-branes. The flavors fr
are associated with a stack of f; D8-branes that intersects the stack of ny D6-branes. The
separation between the I'th and I+ 1’st NS5-branes corresponds to the vev of the scalar in
the I'th tensor multiplet. Moving to the conformal fixed point requires taking all of these
vevs to vanish, and therefore coalescing all of the NS5-branes into a single stack.

Each stack of f; D8-branes gives rise to a U(fr) flavor symmetry of the 6D SCFT.
However, as shown in [125], a certain “center-of-mass” U(1) suffers from an ABJ anomaly,
and as a result the full global symmetry of the theory is reduced to S[[T; U(fr)] x SU(2)r.
At the level of the algebra, this can be written

m ) N
Due @ sulfs) o) (6.4)
i=1 J=1,f;>2

where m + 1 is equal to the number of f; satisfying f; > 1, which is in turn equal to
the number of D8-brane stacks. The anomaly polynomial Ig, which is an 8-form that
may be calculated for any known 6D SCFT by the prescription of [126], contains terms of

the form?2
N

s> Y ayFTrF3, (6.5)
J=1,f;>3
where the requirement n; > 3 comes from the fact that Tr F3 = 0 for any simple Lie
algebra except su(n) with n > 3. Since there are m + 1 D8-brane stacks, there can be
at most m + 1 nonabelian field strengths F; with nonvanishing Tr F'3, whereas there are
m uy factors, each of which couples to a distinct linear combination Y ;c; Tr F3 of non-
abelian field strengths. As a result, every linear combination >~ ;c JTrFE has a nonzero
FU(1)(Z gegTr F j) anomaly with the possible exception of one linear combination associ-
ated with the anomalous center-of-mass U(1).

Holographic duals of the D6-D8-NS5 A/ = (1,0) 6D SCFTs have been studied in [127—
132]. The holographic dual theories live on the bulk spacetime AdS7 x M3, where M3 has
SU(2) isometry, corresponding to the SU(2)r symmetry on the boundary. Ms looks like
an American football, as illustrated in figure 5. The different stacks of D8-branes wrap
around S%’s along the symmetry axis of the football at different positions. Each SU(f;)
global symmetry in the boundary SCFT corresponds to an SU(fr) gauge symmetry in the
bulk. We are especially interested in the Tr F} Chern-Weil currents associated with each
of these symmetries. In particular, we want to know if every such current couples to an
abelian gauge field in the bulk via an A; A Tr F 13 Chern-Simons coupling. Indeed, such a
coupling arises from the CS term of the J’th D8-brane stack [127]:

Sos = Tk / C ATr (e2”E1+B2) : (6.6)

#2There is also a term of the form f C5 Tr I, which naively would seem to produce an additional U(1)
by reducing C3 = Ac, A wz with we the volume form of the sphere. However, this U(1) actually confines
and is gapped [127], so we will not include it in the discussion below.
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SU(f1)
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Figure 5. Schematic representation of the compactification space M3 (see also [130, 132]). It looks
like an American football, with stacks of D8-branes at particular positions wrapping the angular
S2. A stack of fr branes provides an SU(f;) symmetry at low energies.

where C is the formal sum of all RR potentials. Expanding the exponential, we find a
coupling of the form

/aﬂﬂﬁ, (6.7)

where F; represents the SU(ny) field strength and Fj represents the U(1) field strength
that together combine into the full U(n;) gauge group of the brane. In the case at hand,
the D8-brane worldvolume is AdS; x S?, and after integrating by parts and reducing on

the S2, we obtain terms in the 7d action of the form?3

EM&DQAEO&AﬁE% (6.8)
S

where Fy = dC1, and we are ignoring an overall normalization factor. As explained in [127],
both C; as well as the “center-of-mass” gauge U(1) obtain a mass through the Stueckel-
berg mechanism, the latter of which is the bulk dual to the ABJ anomaly that removes the
center-of-mass U(1) in the boundary SCFT. What remains are precisely the m massless
U(1) vector bosons (associated with m + 1 D8-brane stacks) that we had in (6.4). The CS
coupling in (6.8) cancels the anomaly (6.5) via anomaly inflow, so the aforementioned pres-
ence of the Fy(y (3o ey Tr F! 3) couplings in the anomaly polynomial ensures the presence
of these CS couplings in the bulk theory. To be more precise, since every linear combina-
tion 3" ; ¢y Tr F'3 has a nonzero Fyy(Xyes Tr F3) term in the anomaly polynomial, with
the possible exception of the center-of-mass linear combination, every Chern-Weil current
>y ¢s Tr F$ in the bulk theory has a nonzero Chern-Simons coupling Ay jesTr F 4,
with the possible exception of the center-of-mass linear combination, which couples to an
anomalous (massive) vector gauge boson. As a result, every Tr F' 3 Chern-Weil current in
the bulk is gauged by an abelian gauge field, at most one of which may be massive. The
charge coupled to the massive U(1) is only conserved at energy scales above the vector
mass; the symmetry is broken at low energies.

Although we have considered here only a special class of 6D SCFTs constructible in
Type IIA string theory, the conclusions are likely quite general. This is because the only

33We thank Fabio Apruzzi and Marco Fazzi for discussions on this point.
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su(n),n > 3 global symmetries known to arise in 6D SCFTs arise in the tensor branch
description as (i) flavor symmetries of fundamentals of su(m),m > 2 gauge algebras, (ii)
flavor symmetries of fundamentals of ¢ gauge algebras, (iii) flavor symmetries of spinors
of s0(10) gauge algebras, or (iv) leftover global symmetries after gauging part of the Eg
global symmetry of an E-string SCFT [112]. Our above analysis carries over to symmetries
of type (i) and extends straightforwardly to those of type (ii) and type (iii), since the flavor
symmetry of n fundamentals of ¢g or n spinors of s0(10) is in fact su(n) & u(1), and the
su(n) field strength F' couples to the u(1) field strength Fyyq) via a Fyq) Tr F3 term in the
anomaly polynomial, just as we have seen in the theories studied above. Our analysis does
not generalize so straightforwardly to case (iv). A better understanding of the holographic
duals of theories with such global symmetries is required before an analysis of their Tr '3
Chern-Weil currents may be carried out.

We may also consider tr F? Chern-Weil currents, involving two powers of the gauge
fields. In this scenario, gauging would imply a coupling to a massless three-form. On the
other hand, onee simple way to break these Chern-Weil symmetries is coupling to a massive
three-form, of mass p. The equation of motion becomes

dxFy = puFy + tr F?, (6.9)

At scales below u, the symmetry appears to just be broken. Above 4 we have an example of
gauging-breaking as in section 4.3, where the Chern-Weil charge can transition into F flux.

We will now see that all these Chern-Weil symmetries are coupled to massive 3-forms
of this kind. The D8-branes in the brane construction remain as sources in the AdS; x Mj
bulk, wrapping AdS7 x S2. The Chern-Simons action (6.6) includes worldvolume couplings

/ tr F2 A Cs, (6.10)
D8

which after reduction become 7d couplings to a 3-form [¢. Cs. This is the magnetic dual
to the RR potential C; discussed earlier, so it is massive for the same reasons.
However, ('3 only couples in this way to the linear combination

> trFy. (6.11)
I

What happens to the other combinations? They too are broken, since a configuration with
nonzero tr F 12 in the worldvolume of a D8-brane can be shrunk to a pointlike D4-brane
and pulled from the D8-brane worldvolume and into any other D8-brane worldvolume,
as discussed in section 5.3.3. This is possible because the different D&-brane stacks are
wrapped on the same homology cycle, as depicted in figure 5.

There is one more Chern-Weil symmetry we must discuss: we can also take tr F2 for
the suy R-symmetry, which corresponds to rotations of the transverse S2. The explanation
in this case is slightly more complicated. As explained in [133] in the context of M-theory
compactifications to seven dimensions, dimensional reduction in gauged supergravity be-
comes subtle, and in the particular case of M-theory on a four-manifold the field strength
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G4 of the M-theory 3-form picks up a piece proportional to the Euler class of the tangent
bundle of M,. This means that the triple Chern-Simons term in M theory

/03 NGy NGy (6.12)

will produce, under dimensional reduction on a fluxed background, terms involving the
Chern-Weil current. In [133], this was used to argue for the existence of certain topological
couplings in the 7d effective action, such as

/tr(F/\F/\F/\A)-l—... (6.13)

where A are gauge fields for the isometries of My. The same argument leads to additional
topological couplings, not considered in [133] because they involve massive fields and so
are not visible at the level of the supergravity action. In particular, by picking

Gy = tr(FQ) + wy (6.14)

where wy is proportional to the volume form of M, and represents the background G4 flux,
one finds a term in the effective action

/AdS? tr(F2> A Cs. (6.15)

This is a coupling to a massive three-form, since there is also a coupling of the form [ C5AGy
in seven dimensions. Thus, the symmetry is broken.

The analysis in [133] was focused on compactifications of M-theory to seven dimensions,
but a variant of it involving the IIA Chern-Simons term (which is the dimensional reduction
of (6.12))

/Hg/\F4/\C3. (616)

presumably applies in our case. One would need to argue that the ITA field strength Fy
picks a piece proportional to the Chern-Weil current, as in (6.14); this again follows from
application of the M theory argument (itself based on fivebrane anomaly cancellation [134])
to a circle compactification.

6.2 AdS;/CFT,

We now consider the holographic model of AdS;/CFT4. The 10d IIB triple-Chern-
Simons term

/F5/\F3/\B2 (617)

becomes, after compactification on the S® with N units of five-form flux,
N/F3 A Bs. (618)

This is a two-field topological term, a five-dimensional analog of the BF coupling discussed
in section 3.1. Most of the discussion from that section carries over to the case at hand,
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with the caveat that the theory involves two 2-form gauge fields rather than one 1-form
gauge field and one 2-form gauge field, so it describes a discrete Zy 1-form gauge symmetry
instead of a O-form gauge symmetry (see [135] for a thorough discussion). This topological
field theory is also related to the singlet sector of the duality, where different boundary
conditions are mapped to the global structure of the dual gauge group [136, 137]. A
consistent choice of boundary conditions means that only one linear combination of By or
C5 gives rise to 1-form symmetry operators in the dual field theory; different choices of
boundary conditions correspond to different CFT’s, and changes of boundary conditions
are related to gauging this 1-form symmetry (see section 6 of [3], and [138] for a particularly
clear discussion).

More mundane examples of Chern-Weil symmetries include the “baryonic” symmetries
present in compactifications on Sasaki-Einstein manifolds [139, 140]. These are dual to
N =1 SCFTs, and arise from reduction of 10d RR fields on cycles of the internal manifold.
The corresponding (abelian) Chern-Weil currents are often gauged by bulk Chern-Simons
terms that descend directly from 10 dimensions. More concretely, consider Type IIB string
theory on a Sasaki-Einstein manifold threaded by N units of five-form flux. Dimensional
reduction of Cy along the three-cycles of the Sasaki-Einstein manifold leads to U(1) baryonic
symmetries in four dimensions. The corresponding U(1) gauge fields Cy = A A ws satisfy a
modified Bianchi identity

Ad+F = kH3 Adg, Cy= duws (6.19)

where ws, w3 are closed forms and k = [ wa A w3. The corresponding Chern-Weil currents
are explicitly broken.

On top of these, Type IIB string theory on AdS; x S° contains nonabelian SU(4)
gauge bosons, coming from the fluxed gravity reduction on the five-sphere. They are
the KK vectors gauging the (double cover of the) isometry group of the five-sphere, and
correspond to the R-symmetry of the dual theory. As in the AdS7/CFTg example of the
previous section, we can construct a Chern-Weil current

Jy = tr(F A F) (6.20)

which should either be gauged or broken. In the AdS; example, we argued that the current
was coupled electrically to a massive mode of the 3-form gauge field. It is conceivable
that the 5d case behaves similarly, but we have not been able to provide a proof. The 7d
examples involve a twisted reduction of the M-theory 3-form which is not available in the
Type II perspective, due to the self-duality of the 5-form field strength [141]. Perhaps the
massive coupling could be more easily described from the T-dual picture [142], where some
of the requisite couplings can be found from reduction of the 10d Chern-Simons term (6.16).

Unlike in the AdS7 case discussed above, there is now also a nonabelian current, asso-
ciated to the traceless totally symmetric tensor dg,. of SU(4) [143],

(J4)a - dachb A FC; (621)

where indices are lowered and raised using the Killing form. This current is not conserved

or gauge invariant, but it does satisfy a covariant conservation equation:

daJs = 0. (6.22)
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In spite of the similarity with the usual current conservation equation dJs = 0, there
is no reason why quantum gravity must exclude currents satisfying (6.22). J4 is neither
conserved nor gauge invariant, so it does not contradict the absence of global symmetries
in quantum gravity. However, in holography, this nonabelian current is in fact the current
associated with SU(4) color charge, due to the presence of a 5d triple Chern-Simons term,

k tr(ANFAF), (6.23)
AdSs
where k = N2 —1 [141]. Including Chern-Simons terms, the Yang-Mills equation of motion

changes to
AxFo —igfLAY AxF¢ = kd3.FP A F°, (6.24)

and so the current we constructed is simply the current of SU(4) color charge. In this
example, the nonabelian Chern-Weil current is “broken” in the sense that its divergence
is nonvanishing. However, in contrast to the case of an abelian gauge field, no quantum
gravity principle requires this “breaking.” It would be interesting to see if the abelian
arguments could be modified so that the presence of the triple Chern-Simons term could
be understood from first principles. We leave further exploration of this possibility to
future work.

We finish this section with some more general comments. As we have seen, the topo-
logical terms that gauge Chern-Weil currents often correspond to 't Hooft anomalies of
the dual field theory involving currents dual to the bulk gauge fields. While this seems to
be a general story whenever the bulk Chern-Weil symmetry is gauged, we lack a similar
understanding when the Chern-Weil current is coupled a massive gauge field. For instance,
consider the R-symmetry tr(F 2) current in AdS;. We might expect that the coupling to
a massive bulk field would be dual to a mixed anomaly involving the R-symmetry and a
vector operator above the unitarity bound, which is a “non-conserved current.” It would be
worthwhile to understand this better, and we hope to return to this point in future work.

7 Phenomenological outlook

7.1 Axions: existence and quality problem

Axions play a crucial role in many scenarios for physics beyond the Standard Model. Ini-
tially proposed to solve the strong CP problem [144-147], such fields also provide prominent
candidates for dark matter [148-150] or the inflaton [151, 152], among many other possible
applications. In our discussion we will refer to an axion that couples to tr(F' A F') for QCD
and solves the strong CP problem as a “QCD axion.”3*

Since the early days of superstring theory, string constructions of 4d gauge theories
have been found to include axions [153-155]. In supersymmetric theories, these axions
form part of a complex scalar field, together with a modulus or “saxion” that controls
the coefficient 1/ g® of a gauge kinetic term. One reason to expect axions to exist is the

34Some authors prefer to reserve the term “axion” for the QCD axion, and use “axion-like particles” or
“ALPs” for the general case.

— 54 —



belief that all parameters of string theory are determined dynamically, and in particular
continuous parameters like the theta angle are often determined the vacuum expectation
values of scalar fields. However, the rigid Calabi-Yau example in section 5.5 already shows
that these scalar fields can in principle be very massive, with a mass around the cutoff of
the EFT.

More generally, in the non-supersymmetric context, we expect that all moduli, in-
cluding axions, generically acquire a potential and become massive. It is important to
understand whether string theory makes generic predictions about the existence and prop-
erties of axions, as this constitutes one of the most promising ways to confront string theory
predictions with real-world data. For example, given that a nonabelian gauge group exists
within a weakly-coupled 4d effective field theory, we can ask: does an axion 6§ exist within
the effective field theory with a coupling @ tr(F A F)?3° If so, what is its decay constant,
i.e., how large is the distance in field space around the 6 circle? What physical effects
determine its potential V(0)? What is the size and functional form of that potential? For
the case of QCD, does the axion solve the strong CP problem? Such questions have been
asked in many concrete string constructions, and a generic expectation has arisen that
string theories contain light axions, with decay constants often of order the string scale,
and masses exponentially smaller than the string scale (the literature is too large to review
here, but good entry points are [156, 157]).

The perspective on Chern-Weil symmetries that we have taken in this paper provides a
useful new angle on several of these questions, especially the existence of axions and the na-
ture of the physical effects contributing to V' (#). The answers suggested by the Chern-Weil
viewpoint suggest that quantum gravity naturally contains some of the necessary precon-
ditions for a QCD axion solution to the strong CP problem. Combining this perspective
with the Weak Gravity Conjecture for axions [158] could provide further insight on the
relationship between the axion potential and decay constant.

Let us begin by assuming®® that the Standard Model gauge fields propagate in d > 4
dimensions, either within the bulk of the extra dimensions (as in heterotic string theory)
or on a higher-dimensional brane (e.g., D7-branes within Type IIB string theory). In
this circumstance, the Chern-Weil current tr(F A F') for QCD would generate a forbidden
(d — 5)-form generalized global symmetry, unless it is gauged or broken. Unlike the case
of a Chern-Weil current for an abelian gauge group, which can be broken by the mere
existence of magnetic monopoles that lead to dF # 0, it is more difficult to eliminate the
Chern-Weil current for a nonabelian gauge group. Indeed, in every example that we have
discussed, there is a (d — 4)-form gauge field that couples to a linear combination of the
Chern-Weil current and other currents,

1

35The rigid Calabi-Yau example in section 5.5 shows that the axion can still have a very high mass in
abelian examples. However, the abelian case is also special from the Chern-Weil point of view, since here
(and only here) the Chern-Weil current can be broken by the addition of monopoles. In this section we
restrict our discussion to the nonabelian case.

36There is no need to assume that the fields propagate in higher dimensions if we are willing to base the
discussion on the absence of (—1)-form global symmetries in four dimensions, as explained later.
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The menu of options for what appears in the ‘- --’ is quite limited: we can have currents
associated with “small instantons,” like the D(p — 4)-branes discussed in section 5.3.3,
which are continuously connected to YM instantons; currents for other gauge groups that
are “unifiable” with QCD (see section 4.2); currents for other gauge groups that are in-
terchanged with QCD under an outer automorphism (as in the Eg x Eg case discussed in

section 5.2); or 4-form field strengths of 3-form gauge fields.3”

While we have no rigor-
ous proof that these are the only possibilities, any viable option should require that the
Cg_4-charge can be transferred among any of the terms appearing in the brackets, so that
no unbroken, ungauged currents are left over. In particular, we know of no way to fully
break a Chern-Weil current for a monabelian gauge theory, without a coupling to a gauge
field as in (7.1). Although this gauge field is very massive in some cases, in most cases
it has a mass at or below the cutoff; we will elaborate on this below. Furthermore, we
have discussed Cy_4 and the associated (d — 5)-form global symmetry generally, but the
discussion applies in particular to d = 4, with the caveats discussed in section 3.3 regarding
(—1)-form symmetries.

While the idea that Chern-Weil currents are always somehow coupled to gauge fields
is not rigorous, it strongly suggests not only that axions exist, but that their properties are
constrained. In particular, it sheds light on one of the greatest challenges of axion model-
building, the axion quality problem [159-162]. This problem can be summarized as follows:
QCD dynamics generates an axion potential Vocep () with a minimum at = 0, where CP
violation is absent from the strong interactions [163]. Experimental constraints require that
the minimum of the full potential lies at |#] < 1071°. Hence, any additional contributions to
V(0) must either have a minimum closely aligned with the QCD minimum (which is highly
non-generic or fine-tuned), or must simply be much smaller than the QCD contribution.
This is quite challenging (see [164] for a recent pedagogical overview). In models where the
axion is the phase of a complex scalar @ transforming under an approximate global Peccei-
Quinn (PQ) symmetry, one must forbid or strongly suppress many PQ-violating operators
like ®" + &1 that could appear in the Lagrangian. This might be done by invoking a large
discrete gauge symmetry under which such terms carry a nonzero charge. The philosophy
behind this approach to the strong CP problem is that U(1)pq is only an approximate
symmetry in some range of energies, and may be broken by a wide variety of effects.

By contrast, in theories where the axion arises from the holonomy of a higher-
dimensional gauge field, the situation is much better. Effects that contribute to the po-
tential are intrinsically nonlocal in the extra dimensions, and are generally exponentially
suppressed. Very schematically, if we take the instanton contributions to be cosine poten-
tials and write their coefficients in the form of exponentials, we must consider terms like

V(0) ~ —Aty [750P cos(6) + e~ 5omer cos(@ + )] (7.2)

3TFor instance, consider the Bianchi identity for G in the presence of D6-branes in Type ITA:
dGe = —Hs A Ga + tr Fi, A 65°

It implies that the combination of currents on the right-hand side is gauged by C5. When compactifying
to four dimensions, it reduces to hG4 + tr (]:]%p) gauged by the axion ¢ = f C'3, where h is an NS flux.
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If the relative phase § ~ O(1), we need Syther 2 Sqcp + 23 in order to obtain a minimum
at |#] <1071 We emphasize that these formulas are not to be taken too literally; QCD
dynamics does not generate a simple cosine potential, and the exponentially small QCD
contribution cannot be thought of as a single-instanton term. The moral is simply that if
terms in the potential can be controlled so that they are all exponentially small, then we
have essentially taken the log of the axion quality problem: rather than explaining a small
number like 1071, we need only a modest additive difference between exponents. This is
a well-known fact (discussed, for instance, in section 2 of [157]).

The additional insight provided by the Chern-Weil perspective is that the types of
physics that can generate the e~ Sether terms are very restricted. For example, suppose that
an axion field 8 couples to both the QCD Chern-Weil current and that of a hidden confining
gauge group, i.e., we have a term of the form 6 [tr(F' A F') + tr(H A H)]. Then 0 gauges one
linear combination of two conserved currents. The independent linear combination must
be either gauged or broken. If it is gauged, we have two axions, 6 and €', with couplings

(npb + npl) tr(F A F) 4+ (ng + n'y6’) tr(H A H). (7.3)

If the potential generated by the strong dynamics of H is larger than that generated by the
strong dynamics of QCD, we can integrate out the linear combination ng6 + n/;60’, leaving
behind a light periodic axion coupling to tr(F A F'), which will then solve the strong CP
problem.?® Thus, additional gauged Chern-Weil currents do not contribute to the axion
quality problem. Alternatively, it may be that the other linear combination of currents
is simply broken. We have seen that this can happen if the F' and H gauge groups are
embedded within a unified gauge group (or one that could be unified somewhere in the
moduli space of the theory). It can also happen if there is a Zy exchange symmetry between
F and H, as in the case of the Fg x Fg heterotic string theory, where there is just one
angle for the two factors [166]. In both the unification and exchange scenarios, UV physics
relates the different gauge groups, and potentially provides constraints on the value of § or
the relationship between Syiher and Sqcep. We have also seen that Soiher may arise from
small instantons (e.g., D(p — 4)-branes in Type II string constructions). Because these are
limiting cases of small-size QCD instantons, and the QCD axion potential is dominated
by infrared effects (where large-size instantons overlap and the dilute gas approximation
fails), it is likely that they are subdominant.

The case with the most severe axion quality problem, then, would appear to be theories
of the schematic form

0[tr(F A F) + Fy, (7.4)

where Fy = dC3. In this case, the contribution to V(#) from QCD instantons can be
overwhelmed by the axion monodromy potential, which arises from Fj at tree level [53,
55, 56, 59]. In order for the orthogonal combination of the two currents to be broken, in
this case it must be possible for a QCD instanton to dissolve into Fy flux. Another way of

38 A more detailed and general explanation of integrating out N heavy axions may be found in §2.2
of [165].
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phrasing the problem is that tr (Fz) couples to a massive axion; if the mass coming from
the fluxes is very large, this will completely spoil the solution to the strong CP problem.

When is (7.4) most problematic? In particular, can it lead to an axion with mass at
or above the EFT cutoff? We did find that in some examples, notably the Chern-Weil
currents in AdS; and AdSs examples in section 6, the Cy_4-form can get a mass of the
order of the cutoff of the effective field theory (i.e., the Kaluza-Klein scale). However, these
examples lack scale separation. They are AdS solutions in which the internal geometry has
a size comparable to the curvature radius of the AdS factor. In these cases, the low-energy
theory in AdS is not very effective, and the compactification is better thought of as a
higher-dimensional background [167]. The usual Swampland statements do not necessarily
apply in the lower-dimensional theory, but they make sense from the higher-dimensional
perspective. For instance, it is possible to have discrete gauge symmetries of arbitrarily
large order [167], which in flat space would be akin to a global symmetry. It is perhaps not
unreasonable to expect that the physics of Chern-Weil currents is different too.

Restricting to scale-separated examples, with a reasonable low-energy EFT, we did
find, in every example we considered, that nonabelian gauge fields are always accompanied
by an axion with mass below the EFT cutoff, coupling to a linear combination of tr(F A F)
and other Chern-Weil currents. If this statement turned out to be true in general, it
would ameliorate the problem in (7.4) and get us closer to a quality QCD axion in string
theory. At this stage we do not have a general argument for it, and it could very well
be that counterexamples exist. For now we will content ourselves with briefly describing
some classes of examples that support this observation, hoping to return to this interesting
question in the future:

e In d > 5 supersymmetric theories, the statement follows from unitarity and super-
symmetry. For instance, in 6d N = 1 theories, positivity of the vector field kinetic
terms requires the existence of a combination of scalars with positive inner products
with the vector of coefficients b; of the b; [ B tr(F2) topological couplings, as de-
scribed in [69]. This in particular means that for any given nonabelian factor, some
b; has to be nonzero. More generally, the statement is a direct consequence of super-
symmetry in any 4d N = 2 theory where the gauge coupling is a modulus. This is
the case in every nonabelian example we know of.

o A more interesting class of examples is then 4d N = 1. For instance, the model-
independent axion in heterotic compactifications to four dimensions sometimes ob-
tains a large mass via the Green-Schwarz mechanism, but usually this mass is be-
low the EFT cutoff [157]. The Green-Schwarz mechanism generates a potential for
charged scalar fields, which often get a vev, leading to additional axions. In this
case, a linear combination of axions remains very light. We do not know how general
this picture is, but we note that [168] related the presence of these charged fields to
Swampland constraints.

e For 4d N = 1 theories arising from Type II compactifications on Calabi-Yau
orientifolds, with gauge fields on Dp-branes wrapping a cycle ¥,_4, the holo-
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morphic gauge kinetic functions depend linearly on chiral superfields of the form
e ®Vol(2)_4) +i pr_4 Cp—4, so that the holonomy of Cp_4 is the 4d axion field. In
the TIB case, we consider p = 7 branes, and these fields are the Kéhler moduli T'; in
the IIA case, we consider p = 6, and these fields are the complex structure moduli
U. These moduli generally remain light; indeed, understanding the mechanism by
which they obtain a mass constitutes the well-studied moduli stabilization problem
in these compactifications.

e Finally, we could discuss non-supersymmetric string theories in 10 dimensions. There,
the coefficient of a [ Bgtr(F?) in the action is determined via the Green-Schwarz
mechanism. A vanishing term would mean that the anomaly polynomial factorizes
as tr(R2)Ig. There is no obvious reason why this cannot happen, and yet we find that
indeed this term is nonvanishing in the three tachyon-free non-supersymetric models
we know of (the SO(16) x SO(16) heterotic string [169], the U(32) model [170], and
the Sp(16) Sugimoto string [171]). The statement is false for tachyonic models.
The easiest way to see this is to consider again ITA on a Calabi-Yau three-fold, and
consider a stack of n unstable D3-branes. These have U(n) worldvolume gauge fields,
but couple to no RR potential [172]. Thus, they lead to a nonabelian Chern-Weil
current which does not couple to any axion.

Whatever the correct statement turns out to be, the observation that string compacti-
fications produce light axions is hardly new [157]. The Chern-Weil perspective hints at the
possibility that this ubiquity of axions might somehow be related to properties of (—1)-form
symmetries in the low-energy effective field theory. Viewing the QCD axion as a gauge field
for a linear combination of currents that includes the QCD Chern-Weil current suggests
that the terms in the axion potential arise from a small menu of possibilities. The axion
quality problem is not completely absent, because other instanton contributions to the
potential exist. However, these instantons must be all somehow continuously connected to
the Yang-Mills instantons of QCD in the ultraviolet in order to avoid an unbroken global
Chern-Weil symmetry, so we expect that there are finitely many effects to consider and
that they cannot take a completely arbitrary form. Large axion monodromy masses from
fluxes are more problematic; in our scale-separated examples they leave an axion below the
cutoff, but they may still give rise to an axion quality problem. The moral of the story
is that quantum gravity provides a candidate QCD axion and ameliorates the axion qual-
ity problem; the extent to which it solves the problem is model-dependent, and deserves
further study.

7.2 Chiral fermions

The main message in this paper is that Chern-Weil currents generate global symmetries
that are every bit as real as any other ordinary symmetry, and hence, we expect them to
be broken or gauged in quantum gravity. We have explained that gauging of a Chern-Weil
current means that it becomes exact. In particular, the axionic coupling ¢ tr(F A F) leads
to an equation of motion in which the current is exact.

— 59 —



From this point of view, anything that leads to the Chern-Weil current becoming exact
could count as gauging. An interesting possibility in four dimensions is a chiral anomaly.
Consider a theory of N massless four-dimensional Dirac fermions ;. As is well-known, we
can construct independently conserved currents at the classical level, corresponding to an
SU(N) vector symmetry and an axial U(1) symmetry:

Jo = Ty s, Jh = i’y b (7.5)

These two have a mixed 't Hooft anomaly, in such a way that coupling the first to a
dynamical SU(N) gauge field leads to nonconservation of the second:

dJy = 9, J < tr(F A F). (7.6)

The nonconservation is proportional to the Chern-Weil current of the nonabelian gauge
field coupled to the fermion, which is therefore exact. Thus, in four dimensions, we can
gauge a Chern-Weil current simply by introducing massless, charged Dirac fermions.

In section 7.1, we focused on axions arising as holonomies of higher-dimensional gauge
fields. In the language of [41], these are fundamental axions: the point in field space where
the axion decay constant f = 0 lies at infinite distance, and the axionic strings cannot be
constructed as solitonic strings in effective field theory. (Rather, they arise as fundamental
objects, like D-branes wrapped on cycles in the internal dimensions.) One may wonder
whether a more traditional field theory axion, arising as a pseudo-Nambu-Goldstone boson
for a broken PQ symmetry, can gauge a Chern-Weil current in the same way. The present
discussion makes it clear that it can, at least in quantum field theory. For example, the
classic KSVZ axion model [173, 174] is a renormalizable model consisting of two Weyl
fermions @, Q in the 3 and 3 representations of SU(3), with a Yukawa coupling yCIDQQ to
a singlet complex scalar ® that gets a vev. This vev spontaneously breaks the (anomalous)
PQ symmetry of the theory, giving rise to a large Dirac mass pairing up ¢ and @ and
producing a pseudo-Nambu-Goldstone boson ¢ that acquires a coupling ¢ tr(F A F') and
plays the role of an axion. In this case, we have a global PQ symmetry current which is
broken only by the anomaly, so that dJpq o tr(F A F). In the high-energy theory, the
Chern-Weil current is gauged by the existence of the PQ-charged fermions. In the low-
energy theory, the PQ current matches onto the axion shift symmetry current, Jpg ~ xdo,
and we can say that the axion gauges the Chern-Weil symmetry, just as we did for a
fundamental axion.

Conventional wisdom holds that we do not expect (7.6) to be exactly correct: because
the current is anomalous, it is not conserved and there is really no associated symmetry,
and hence no reason for generic symmetry-violating terms (like a mass manp, or a Planck-
suppressed operator like (¢1))? /Mgl) to be absent from the Lagrangian, unless they can
be forbidden by a (possibly discrete) gauge symmetry. This argument is at the root of
the usual understanding of the axion quality problem [159-162]. Thus, we will obtain
additional terms on the right-hand side of (7.6):

dJa =0, < tr(FANF)+..., (7.7)
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where the ... represent contributions from operators in the EFT that break the chiral
symmetry explicitly in the effective Lagrangian. Due to these additional terms, it is no
longer true that tr(F A F) is exact, and hence the Chern-Weil symmetry is not gauged.
One might take this to suggest that quantum gravity favors models of fundamental axions,
like those discussed in the previous subsection, over traditional models like the KSVZ axion
accompanied by PQ-violating higher-dimension operators in the Lagrangian, because only
the former succeed in gauging the Chern-Weil global symmetry.

However, our preceding discussion suggests a different perspective on the gauging of
Chern-Weil currents in traditional axion models. We have already seen numerous examples
of a qualitatively similar form to (7.7), in which a linear combination of a Chern-Weil
current and other currents is gauged. Such examples are compatible with the absence of
global symmetries in quantum gravity if there is a mechanism through which the charges
associated with the various terms on the right-hand side can be transmuted into each other,
so that all of the ungauged symmetries are broken. For instance, when gauging the current
via an axion, the axion equation of motion might have the following form,

dxd¢p =tr(F A F) + Z cpcos(ng + o) + -+ - . (7.8)

The linear combination involving tr(F A F') on the right-hand side is gauged. All orthogonal
currents involving tr(F' A F') will be broken if tr(F A F') can turn into cos(n¢ + d,). This
could occur, for example, if the higher harmonics are generated by the coupling of ¢ to the
Chern-Weil current of a separate nonabelian gauge group, such that both gauge groups get
unified in the UV, as discussed in the previous section.

This raises a question: can we do the same trick for the chiral fermions, such that all
charges appearing in the right hand side of (7.7) are somchow related? In other words, are
there models in which the PQ symmetry is broken only by QCD instantons, together with
terms into which such instantons can be continuously deformed? This would mean that
any linear combination involving tr(F A F) orthogonal to the right-hand side of (7.7) must
be broken, so tr(F' A F') can be deformed into any of the other terms in that equation. The
usual argument is that an anomalous symmetry is not a symmetry at all, so all possible
terms can appear. And indeed, it seems hard to imagine how all terms could be connected
to each other, so it is not clear that chiral fermions suffice to gauge a Chern-Weil current
without leaving behind unbroken, exact global symmetries. However, we now see that
there is indeed potentially something special about a symmetry broken only by effects
associated with instantons, as it gauges a Chern-Weil symmetry. In this case, a special set
of operators continuously connected to the instanton charge density might appear on the
right-hand side of (7.7), rather than the completely arbitrary set of terms expected in the
conventional viewpoint. We cannot discard this possibility.

Assuming chiral fermions can indeed suffice to gauge the Chern-Weil current, we can
envision an example of this mechanism in the Standard model: U(1)5+ is an anomalous
chiral global symmetry of the SM without Majorana neutrino masses. Per the above
arguments, it gauges a linear combination of the SU(3), SU(2), and hypercharge Chern-Weil
currents. Since the QCD axion would presumably be gauging another linear combination,
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we would be left with a single linear combination, which is then explicitly broken by
monopoles. This is a different scenario from the GUT breaking in section 4.2; there, there
are two linear combinations of SM Chern-Weil currents that are explicitly broken, and
at most one that is gauged. This fits with the fact that U(1)%*! is not a symmetry in
GUTs, and one expects additional higher-dimension operator contributions to the right-
hand side of (7.6).

Whether or not string theory admits constructions with global symmetries broken
only by instantons and deformations thereof, in the sense that one obtains an equation of
motion of the form (7.7) with all charges on the right-hand side continuously deformable
into one another, appears to be an open question. If such a construction is possible, it
would significantly undermine the traditional arguments associated with the axion quality
problem in models of the axion as a pseudo-Nambu-Goldstone boson. This is an exciting
possibility that deserves further investigation.

8 Conclusions

In this paper, we have introduced the notion of a Chern-Weil global symmetry, and we
have studied how these symmetries may be broken or gauged in quantum gravity. This has
enabled us to unify many existing concepts in quantum field theory and string theory into
a larger framework and to recast them in modern language.

The Chern-Weil symmetry framework also suggests that many of the phenomena ob-
served in string theory may be general features of quantum gravity, rather than accidents
of the string lamppost, as they are intimately related to the absence of these Chern-Weil
symmetries. For instance, the breaking of (d —p— 1)-form global symmetries with currents
F,, requires the existence of charged (d — p — 2)-branes. But this is only the tip of the
iceberg: these generalized global symmetries are Chern-Weil symmetries of rank one, and
if we continue exploring Chern-Weil symmetries of higher rank generated by products of
such field strengths, we find a matryoshka-like structure in which degrees of freedom on
the worldvolume and intersections of the branes are also required. Phenomena like tadpole
conditions and branes dissolving in other branes can be further understood as manifes-
tations of gauged and broken Chern-Weil symmetries. It is remarkable how the simple
criterion of no global symmetries in quantum gravity, when applied to these Chern-Weil
symmetries, allows us to reproduce the rich and diverse web of relationships between the
different types of charges and charged objects in string theory. The Chern-Weil perspective
suggests that these structures may be generic features of quantum gravity.

From a phenomenological point of view, the absence of Chern-Weil symmetries in
quantum gravity can be used to motivate a number of guiding principles for physics beyond
the Standard Model. For instance, the ubiquitous presence of axions coupled to tr(F A F)
terms in string compactifications is associated to the gauging of the Chern-Weil symmetries
with current tr(F A F'). This may shed new light on the axion quality problem in QCD. In
general, one should worry about other contributions to the axion potential that could spoil
the resolution of the strong CP problem. However, if ¢ couples to other gauge fields of a
hidden gauge sector, we expect an unbroken Chern-Weil global symmetry unless the hidden
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sector and the Standard Model unify in the ultraviolet, so their associated instantons may
be transformed into one another. A detailed analysis of how this may affect the axion
potential is a question for future work.

Our work opens several interesting avenues for future exploration. For instance, we
have reformulated axion monodromy as a mechanism for gauging a (—1)-form global sym-
metry, which renders a free parameter dynamical. Alternatively, we have seen how such a
(—1)-form symmetry can also be broken if the parameter is fixed to a particular value, as
happens in the presence of a tadpole constraint. This suggests that the absence of (—1)-
form global symmetries implies the absence of free parameters in string theory. It would be
nice to make this relationship more precise by developing a sharper definition of (—1)-form
global symmetry.

We have seen a few cases of Chern-Weil global symmetries in string theory whose
symmetry-breaking mechanisms are not well understood. This presents an exciting oppor-
tunity for future research, as the absence of these Chern-Weil symmetries could perhaps
be used to argue for new stringy phenomena beyond the realm of low-energy effective field
theory. Furthermore, it could be illuminating to study in more detail how the presence
and properties of degrees of freedom at the intersection of branes follows from the absence
of higher-rank Chern-Weil symmetries in string theory.

The absence of Chern-Weil global symmetries also leads to a new perspective on some
results that can also be obtained using anomaly inflow, like the presence of degrees of
freedom on the worldvolume of localized objects. It would be interesting to dig further
into this connection. For instance, it has been shown that anomaly inflow arguments,
together with supersymmetry, may be used to constrain, e.g., the rank of the gauge groups
consistent with quantum gravity [69]. It would be worthwhile to try to recover such results
using Chern-Weil symmetries and to see what else these symmetries might teach us about
worldvolume field theories.

We have studied a number of examples of Chern-Weil symmetries whose conserved
currents are given by wedge products of field strengths of abelian gauge fields. These field
strengths are themselves conserved currents of lower degree. It would be interesting to
extend our analysis to currents given by wedge products of other, more general currents,
which are not field strengths of abelian gauge fields.

If the last century of fundamental physics has taught us anything, it is the power of
symmetries. Here, we have seen an illustration of an equal but opposite truth: we have
much to learn from the absence of global symmetries, and not merely their presence.
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A Derivation of the Chern-Simons action

In this appendix, we derive the Chern-Simons D-brane action by requiring gauge invariance
of the bulk potentials and the presence of worldvolume gauge fields to consistently break
the Chern-Weil symmetries.

We can rewrite the invariant bulk gauge field strengths in (5.21) as

G =eB(dle B0 + Qo). (A1)

where G = Gog+ Go + -+ + G19 and C = C; + C3 + --- 4+ Cg are formal sums and
eB=14+B+ %BQ + -+ 535. A gauge transformation takes the form

6C = eP(d\ — Goo), B =do, (A.2)

where A = A\g + A2 + -+ 4+ Ag is another formal sum.

To couple a charged p-brane, we require a (p + 1)-form A,1; whose gauge variation is
closed and has integral periods. Thus, G,t2 = dAp+1 must be gauge-invariant and closed,
with integral periods. We can (non-uniquely) split Ap,y1 = Lp41 + Cpt1, where L£,41 is
gauge invariant. Then H, 2 = dC,y; differs from G,;o by an exact amount. Thus, to
couple a brane we first specify an integral cohomology class [#,12], which determines C,11
up to the addition of a gauge-invariant worldvolume Lagrangian £, .

In the absence of worldvolume fields, the possible [#,12]| are as classified in sec-
tion 5.3.1: Go, Hs, J4, Js, J3, Jio. Go would define the coupling of a (—2)-brane, which
is hard to make sense of, whereas Hj defines the Chern-Simons coupling § Bs, as for a
fundamental string. The remaining currents are mysterious; they seem to allow 2-, 4-, 6-,
and 8-branes, but these are not the usual D-branes of ITA string theory; perhaps they are
some kind of non-BPS brane, or perhaps they simply do not exist.

In the presence of worldvolume fields, additional currents are possible. To obtain
standard Dp-brane actions, we introduce a worldvolume gauge field Fp, satisfying

dfpp = Hs, (A.3)

corresponding to
JT"DP = 27ro/FDp + B, (A4)
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in terms of potentials, where Fp, = dA; with A; the worldvolume Maxwell field. Since
we have introduced A; in a rather formal manner, it may not be clear that it should be
treated as a dynamical gauge field. However, in the classical theory we can argue that it
is dynamical, because its equation of motion is satisfied. The equation of motion for the
B-field takes the form

0Lpy1 . D
d x Hs = [bulk terms] + 522 Ndg?, (A.5)
which implies that on the brane worldvolume,
)
a2kt g (A.6)

0B3

This is simply the familiar statement that a massless gauge field like By can only couple to a
conserved current. Because A; only enters the Lagrangian £,,1 via the combination (A.4),
the brane-localized conservation law (A.6) is precisely the same as the equation of motion
of A;. This gives a justification for treating A; as a dynamical localized gauge field. The
bulk and boundary currents in (A.5) are not independently gauge-invariant, so there is no
remaining ungauged global symmetry associated with (A.6).

The relationship (A.3) implies that on the worldvolume, we have:

dG = dFp, NG = d[e™PrG] = 0, (A7)

and we obtain new conserved currents of every even rank, equal to the even-rank compo-
nents of e/ PrG.

To see what the corresponding Chern-Simons coupling looks like, note that
G = e7Pr(d[e PP C] + Gpe 2™ o), (A.8)

Thus,
e*QTFO/FDp 1

e TG = d{e—}bpc} + Goe—Qﬂ'a/FDp =d [e—FD]>C + GoAq A 7
Dp

] A9

where
13

/
e—27ro¢ Fpyp _ 1 47’[’30(
FDp 3

is simply a shorthand for its Taylor series. Therefore, the desired Chern-Simons term for

= 21/ + (27a/)* Fp,, —

FDp/\FDp+"'7 (A.IO)

a Dp-brane is

(A.11)

—27ro/FD _

e p — 1

Ses = i / [eFDPC' 4 GoAL A —] ,
pt1

Fpp

where ¥, is the (p + 1)-dimensional brane worldvolume and the integral picks out the
(p + 1)-form component of the integrand.

How general is the above derivation? Could there be other acceptable worldvolume
theories, given the supergravity gauge transformations? The general picture here is that
the bulk gauge symmetries correspond to brane global symmetries, and the bulk Bianchi
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identities map to a higher-group symmetry structure of the brane global symmetry back-

ground connections. From this point of view, all that one needs is a worldvolume theory

which couples consistently to the background connection for the higher group symmetry.

While the above picture is the only one we know for this case, it would be interesting to

understand this more systematically.
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