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Abstract

We study several exotic systems, including the X-cube model, on a flat three-torus
with a twist in the xy-plane. The ground state degeneracy turns out to be a sensitive
function of various geometrical parameters. Starting from a lattice, depending on how
we take the continuum limit, we find different values of the ground state degeneracy.
Yet, there is a natural continuum limit with a well-defined (though infinite) value of
that degeneracy. We also uncover a surprising global symmetry in 24+ 1 and 3 + 1
dimensional systems. It originates from the underlying subsystem symmetry, but the
way it is realized depends on the twist. In particular, in a preferred coordinate frame,
the modular parameter of the twisted two-torus 7 = 71 + i7o has rational 71 = k/m.
Then, in systems based on U(1) x U(1) subsystem symmetries, such as momentum
and winding symmetries or electric and magnetic symmetries, the new symmetry is a
projectively realized Z,, X Z,,, which leads to an m-fold ground state degeneracy. In
systems based on Zy symmetries, like the X-cube model, each of these two Z,, factors
is replaced by Zgeq(n,m)-
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1 Introduction

The exciting, growing field of fracton phases of matter started with the discovery of two
peculiar models [1,2]. They have stimulated a lot work, which has uncovered additional
models of fractons and has led to deeper insights. This subject is reviewed nicely in [3,4].
These reviews include many references to other interesting papers.

These models are not rotationally invariant, and the Hamiltonian depends on preferred
directions, which we will denote by (z,y, z). They are typically formulated on a lattice with
L., L,, and L, sites in these directions with periodic boundary conditions. Then, the number
of ground states depends on these three integers. Models based on Zy spins typically have

ground state degeneracy
GSD = N@UalyLz) (1.1)

but, as we will see, other functional forms are also possible. A characteristic example, which
will also be studied below, is that of the X-cube [5], or more generally, its Zy version, where
the entropy @ is given by

Q(Ly. Ly, L) = 2(Ly + L, + L.) — 3 . (1.2)

This expression is peculiar for two reasons. First, even though the system is gapped,
the number of ground states diverges as the system size goes to infinity, i.e., in the limit
L,,L,, L, — co. Second, the expression (1.2) is not extensive. It is sub-extensive; it grows
linearly with the size of the system. Other examples, including the original Haah code [2],
exhibit an even more bizarre Q(L,, Ly, L.), which is not even monotonic in the three sizes.

The existence of these models raises many interesting and deep questions. One of them



is how to formulate a continuum quantum field theory description of them. Early work on
the subject appeared in [6-8]. Here we will follow the systematic approach of [9-14].

The original models were formulated on a flat right-angled torus aligned with the preferred
directions (x,y, z). This immediately raises the question how to formulate these models on
more complicated manifolds. An important idea in this direction is to place the system on a
foliated space [15-20,7,21,8]. The foliation then determines the alignment of the preferred
coordinates (z,y, z).

Our goal here is to place such a system on a slightly nontrivial space such that the analysis
is still straightforward. We will keep the torus flat, but will allow it to be slanted — not right-
angled. We will also allow a twist of the torus relative to the preferred (z,y, z) coordinate
system. The local interaction is still invariant under the appropriate subgroup of the rotation
group, but the global boundary conditions do not respect this rotation symmetry.

1.1 The twisted torus

Specifically, we will study the system with twisted boundary conditions. On the lattice, we
label the sites by integers (Z, ¢, Z2) and impose the identifications

(2,9,2) ~ (@4 Ly, g+ Ly, 2+ L) ~ (@ + Lg, g+ Ly, 2+ LY) ~ (& + Ly, g+ L), 2 + LY) .

(1.3)

Related problems were studied in [15, 16, 22-25]. Although our approach is different,
some of the issues we will address have counterparts in these papers.

Actually, for simplicity, we will limit ourselves to nontrivial twists only in two of the
directions, i.e.,

(2,9,2) ~ (@ + Ly, g+ Ly, 2) ~ (2 + L, § + Ly, 2) ~ (2,9,2 4 L2) . (1.4)
We will refer to the closed cycles associated with these identifications as the U, V', and Z
cycles, respectively.

There is a lot of freedom in choosing the generators of the identifications. We will take
all the integer coeflicients L to be non-negative.

Without loss of generality, we can also align the U cycle with the x direction — the X
cycle. Then, in order to have a complete basis, we need V to be dual to X, the X cycle.
In this case Ly = 0, and some of our expressions below simplify. Alternatively, we can align
the V' cycle with the y direction — the Y cycle. In this case, we need U to be dual to Y, the
Y cycle. It is important to note that in general, the X and Y cycles do not generate all the



cycles, and therefore they cannot be used as a complete basis. This fact will have interesting
consequences.

We have analyzed all the models in [10-12] on such a torus. Some of these models
are gapless. Their states with generic momenta have a peculiar dispersion relation, but
other than that, they are quite standard. As these modes reflect local physics, the effect of
the twisted boundary conditions on them is quite trivial. These gapless theories also have
strange states at non-generic momenta — specifically, states where two of the momenta p,,
py, P. vanish. Some peculiarities of these modes were discussed in [10,11].!

Here we will focus on the consequences of the twisted boundary conditions and will find
that the system has states that realize the underlying subsystem symmetry in a surprising
way. In some of the non-gauge systems, some momentum and winding symmetries do not
commute. In some of the gauge theories, some electric and magnetic symmetries do not
commute. These effects are reminiscent of effects found in [26,27] and discussed further
in [28,29].

The gapped models are particularly interesting, and we will follow and extend their
analysis in [10,12]. The twisted boundary conditions change the ground state degeneracy and
the surprising realization of the subsystem symmetry in some gapless models has counterparts
in the gapped systems.

Analyzing the X-cube model along the lines of [12], we will show that in this case (1.2)
is replaced by

GSD = N+ L) =300 q (N M) (1.5)

where
LY = ged(LY, LY),
1 = eed (LY, 1Y),
LMLY — LYLY

T LeLen

(1.6)

As stated above, without loss of generality we can take L = 0, and then these expressions
simplify:
L3 = ged(L2, 1Y),
L =1L,
_ L
- ged(Ly, Ly)

A special case of this expression was found in [25].

(1.7)

! As emphasized in [10, 11], some of the detailed features of the charged states in the gapless models
depend on higher-derivative terms that go beyond the leading order terms in the continuum Lagrangian.
This subtlety is not present in the gapped models and does not affect the peculiarities we will discuss below.



The ground state degeneracy (1.5) has several interesting features.

As in the untwisted model, the ground state degeneracy (1.2) depends on the number
of sites in the lattice. As we rescale the lattice data to infinity L; — oo with fixed
ratios, the number of ground states diverges in a sub-extensive manner.

Relative to the untwisted model, the number of ground states (1.5) depends on more
lattice data L]. Small changes in these integers can make a large effect on the number
of ground states. In fact, the ground state degeneracy does not change monotonically
with this data. These facts are reminiscent of the dependence of the ground state
degeneracy on the number of sites in the Haah code [2].

As in the Haah code [2], the previous point makes it clear that the model does not
have an unambiguous continuum limit. Unlike the original untwisted model, where the
logarithm of the ground state degeneracy diverges linearly in the size, but is otherwise
well-defined, here different ways of taking the continuum limit lead to different answers.

The exponential dependence of the ground state degeneracy (1.5) on L] has a natural
interpretation in the layer constructions of these models [30,31]. The model is con-
structed out of L, layers in the zy-plane, L°T layers in the yz-plane, and L‘;ﬁ layers
in the zz-plane. The exponential part of the degeneracy is then as in the untwisted
model with the same number of layers. The connection to the layers construction
was discussed in a special case in [23]. See also the general discussions in [16], which
advocates the use of foliated manifolds.

In addition to the exponential behavior in (1.5), there is also a factor of ged(N, M).
It reflects an interesting symmetry group, which is a central extension of Zgcq(n,ar) X
Ligea(n,vry- We will discuss it in detail below.

These peculiarities of (1.5) follow from properties of the charges of the subsystem global

symmetry (or equivalently, the logical operators) of the system. Some of these charges are
associated with closed lines along x, or y, or z. Because of the twisted boundary conditions
(1.3),
of distinct charges depends sensitively on L. The ground state degeneracy follows from

(1.4), these lines wrap the torus an integer number of times. Consequently, the number

the number of such charges. This sensitivity leads to the peculiarities of the ground state
degeneracy mentioned above. This fact is reminiscent of the way the ground state degeneracy
arises in the Haah code.

Let us comment on the continuum limit in more detail. The continuum limit is taken by

introducing a lattice spacing a and taking L] — oo with fixed

0 =limal} . (1.8)

i
a—0

>



The fact that LT can diverge in this limit and can lead to infinite @) is common in these
models. The important point here is that the limits lim,_,q Lfﬁ and lim,_,o aLflclc can depend
on the way we take the continuum limit. This means that different sequences of lattice
models, all approaching L! — oo with the same continuum values (1.8), can have different
ground state degeneracies.

This might lead us to question to what extent the continuum Lagrangian describes the
physics of such a system. The system must be regularized, and the limit as the regularization
is removed can lead to an infinite ground state degeneracy that depends sensitively on the
regularization. However, there is a natural way to regularize the continuum system such that
the answer is unambiguous. In particular, we let integers L] go to infinity in fixed ratios.
More explicitly, starting with the continuum quantities ¢}, we introduce a lattice spacing a
with lattice integers L] such that aL] = ¢;. (This is possible only when the ratios of ¢ are
rational.)

Taking this natural limit, we find the continuum limits of (1.7):

eff 1 eff
¢, =limaly,

a—0
eff 1 eff
gy - l]il—l;I(l) a’Ly 9 (19)
m = lim M .

a—0

This means that in the continuum, the torus in the xy-plane is subject to the identifications

(z,y) ~ (x+ml"y) ~ (x+ k" y+ 67

(1.10)
m,k €Z : ged(m, k) = 1.

The real part of the modular parameter 7 = 7 + i7y for this torus is rational, i.c., 7 = LA

We would like to stress an important point about the integers m and k. From (1.10),
they appear to be related to the geometry of the torus rather than its topology. However,
the integers m and k have a topological meaning. As we will discuss below, they are asso-
ciated with intersection numbers of preferred cycles on the torus. One way to realize their
topological nature is to replace the metric ds? = da? + dy? in the oy coordinate system with
another flat metric. Then 7 will be different, but the intersection numbers will not change.



1.2 A new, surprising symmetry

The analysis of [10-12] starts with the 2 4+ 1-dimensional XY-plaquette model of [32]. We
refer to its continuum limit as the ¢-theory. Its Lagrangian is

£=B@or - 30007 . o~or(r@ ). 0

with n*(z),nY(y) € Z. The two operators

Jo = MOaO(bu

1.12
J“’:-—%axﬁ%ﬁ (1.12)

form the Noether current of a momentum U(1) subsystem symmetry with the conservation
equation

o Jo = Du0, I . (1.13)

They are conserved also on the twisted torus. The number of independent conserved charges

The conserved U(1) charges are

is infinite, and we discretize them on a lattice. It was L, + L, — 1 on an untwisted torus,
and reduces to LT + Lzﬁ — 1 on a twisted torus.

The same local operators (up to rescaling) (1.12) lead to a conserved current for a winding
U(1) subsystem symmetry

1
Jo¥ = —0%
0 27 ¢

1

7= Yo, (1.15)
2

o J5Y = 0,0,J ,

with the conserved U(1) charges

%daj{]gy, %dngy. (1.16)

Again, their number is reduced by the twist from L, + L, — 1 to LT + Lzﬁ — 1. As argued

in [10], all the states that are charged under these symmetries acquire large energy, of order

1

=, in the continuum limit. A conservative approach simply ignores them.

We will see that the theory on the twisted torus (1.10) has another symmetry constructed

7



out of the same momentum and winding currents. It is a clock and shift symmetry generated
by two operators U and U satisfying

27

Un=0m=1, UU=enUU. (1.17)

This symmetry is a central extension of Z,, X Z,,.> Here the first factor can be interpreted
as a momentum symmetry and the second factor as a winding symmetry. Surprisingly, these
two symmetries do not commute.

One consequence of the clock and shift algebra (1.17) is that every state in the Hilbert
is in an m-dimensional representation. In particular, the system (1.11) on the twisted torus
(1.10) with 71 = £ has m ground states!

The same conclusion is true for the 3 + 1-dimensional version of this model, which was
analyzed on the untwisted torus in [11]. This model is dual to a gauge theory, the A-
theory [11]. In the language of this gauge theory, the theory has electric and magnetic
subsystem symmetries, and the central extension of Z,, X Z,, represents non-commutativity
between electric and magnetic fluxes.

This situation is reminiscent of the analysis of ordinary U(1) gauge theories in 3 + 1
dimensions on a manifold with torsion cycles [26,27]. A cycle 7 in space is torsion if ~
is not contractible, but m~ is contractible, i.e., there is a surface ¥ such that m~y = 0.
Following [28,29], we can interpret [26,27] as follows. The operator

U — ¢i$ A= [y da (1.18)

satisfies U™ = 1, but U itself is nontrivial. Similarly, using the dual gauge field A, the
operator o i
U=chAmlsdd (1.19)

satisfies U™ = 1. The parts of these operators associated with the surface ¥ are similar to the
charges of the magnetic one-form symmetry and the electric one-form symmetry respectively.
However, since they include also the Wilson and the 't Hooft lines, they are charged under
the electric and the magnetic one-form symmetries respectively. As a result, U and U do
not commute and obey (1.17).

In the case of the X-cube model, the U(1) subsystem symmetry of the gauge theory is
replaced by a Zy subsystem symmetry. In that case, this central extension of Z,, x Z,,
is changed to a central extension of Zgeq(nm) X Zged(N,m)- 1ts irreducible representation is

2More precisely, the operators of the theory are in linear representations of Z,, X Z,,. So strictly, this is
the symmetry group of the system. This symmetry is realized projectively on the Hilbert space. This can
be interpreted as an 't Hooft anomaly in the symmetry.



ged(N, m)-dimensional. This leads to a factor of ged(N, m) in the ground state degeneracy
and corresponds to the factor of ged(N, M) in the lattice expression (1.5).

Below we will discuss this symmetry and its consequences in much more detail.

We end this subsection by pointing out that this relation to [26-29] and the analysis
in Appendix C suggest that our discussion can be phrased in an appropriate version of
differential cohomology. (See an introduction for physicists in [26-29, 33,34].) We will not
do it here.

1.3 Outline

In Section 2, we will discuss the geometry of the foliated torus. For simplicity, we will focus
on a two-torus. We will first analyze a continuous torus and then discuss its lattice version.

In Section 3, we will place a classical, circle-valued field ¢ ~ ¢ + 27 on our twisted torus
and will explore its winding configurations. Here we will find the Z,, winding charges we
mentioned above. This will lead us to a discussion of the symmetries and the spectrum of
the 2 + 1-dimensional ¢-theory of [10] on the twisted torus.

In Section 4, we will study a 2 + 1-dimensional Zy tensor gauge theory on the twisted
torus. This model was analyzed on an untwisted torus in [10]. Starting with a lattice, this
model is not robust under small deformations of the lattice system. However, as discussed
in [10], it makes sense as a continuum field theory. We will study its two dual continuum
presentations of [10]. We will analyze the ground state degeneracy and the spectrum of
operators. We will also comment on the bundles and transition functions of the 2 + 1-
dimensional U(1) A-theory of [10] and the 2 + 1-dimensional Zy tensor gauge theory on the
twisted torus.

Section 5 will analyze the winding configurations of a circle-valued field on the twisted
three-torus. This information will be important in Section 6, where we will use the various
dual continuum field theory descriptions in [12] to analyze the 3 4+ 1-dimensional X-cube
model (i.e., the 3 + 1-dimensional Zy tensor gauge theory) on our twisted torus (1.4).

We will present some more technical information in appendices. In Appendix A, we
will analyze the 2 4+ 1-dimensional Zy plaquette Ising model in the broken phase. In the
continuum limit it becomes the Zy tensor gauge theory of Section 4 [10]. We will compute
the ground state degeneracy on a twisted torus and match it with the answer from the
continuum treatment. This provides a further check of our answer. In Appendix B, we
will discuss the invariants of the transition functions for a circle-valued field ¢ in Section 3.
Appendix C will discuss additional operators that lead to the Z,, x Z,, symmetry in the
¢-theory. The analogous operators in the 2 4+ 1-dimensional Zy theory will be subsequently



(€ + 65 +6)

(0,0)

Figure 1: The fundamental domain of the spatial torus.

analyzed in Appendix D. Finally, Appendix E will discuss the winding configurations of a
circle-valued field ¢*U%) in the 2 of S,.

2 Geometry

In this section, we focus on the geometry of a flat two-dimensional torus 72 on which we are
going to place our system.

2.1 Continuum geometry

Our system is equipped with a preferred coordinate system (z,y). We place it on a torus by
imposing identifications generated by

(@,y) ~ @+ Gy +0) ~ @+ G,y + L) . (2.1)

As in (1.4), we can take all £/ > 0. These two identifications correspond to two cycles of
the torus, which we denote by U and V respectively. See Figure 1 for an illustration of this
geometry.

The preferred coordinate system (z,y) leads to a foliation of the torus. It is given by the
special lines of constant x and constant y. As we will see, the physical answers depend both
on the parameters of the torus and on the choice of foliation. For simplicity, we are going to
limit ourselves to the case where these special lines wrap the torus a finite number of times.
Otherwise, some of the integers below are infinite.

e The Y cycle of the torus is characterized by constant x. It wraps the V' cycle w? times

10



and it wraps the U cycle —w? times. w) and w} are non-negative integers satisfying
ged(w?, w¥) = 1. Using (2.1), we have

Cowy = Llwy . (2.2)

v
Y

. : u s . v u .
times and it wrap the U cycle w; times. Again, w, and w;’ are non-negative integers

e The X cycle of the torus is characterized by constant y. It wraps the V cycle —w

satisfying ged(wy,wy) = 1. Using (2.1), we have

Pt = Pl (2.3)

Yy Yy

The condition that the w] must be finite integers amounts to the statement that ¢2/¢% and
ly /€, are rational.

More mathematically, consider the first homology group I' = H,(T?,Z) ~ Z* of the
torus with integer coefficients. The lattice I' is generated by the U and the V cycles. Their
intersection numbers are (U, V) = —(V,U) = 1. The X and Y cycles mentioned above are

X :wfyLU—w,ZV

/ (2.4)
Y =—-wU+w,V .
The intersection between these two cycles is
w; wv v u v u
m=(X,Y) =det (w“ wz) = Wyw, — W w, . (2.5)
z Ty

By exchanging the U and the V' cycle, we can take m to be positive.

We will denote the sublattice generated by the X and the Y cycles by I'. Using (2.5),
the index of this sublattice is m, i.e.,

/T =27,. (2.6)

When m # 1, I c T and the X and YV cycles are not a complete basis of I'. However,
we can still choose a basis involving X. It is related to the more generic {U, V'} basis by an

SL(Q, Z) lransforma‘ion

n, =1,

w'n? —w Z—

v
vy Y

where the condition on ny and n, can be satisfied because ged(w;, wy) = 1. This defines the

11
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eff eff eff eff
<k£m, y=£y) ((k—km)ﬁx, y=£y)

X

Yy
T—'x (07 0) X bz = mg;ffa 0)

Figure 2: The X and X cycles.

dual cycle X = —ngU +nyV. The transformation SL(2,7Z) (2.7) guarantees that the cycles
X and X generate the entire lattice I', and their intersection is

(X,X)=1. (2.8)

The cycle X can be redefined further by adding to it an arbitrary integer multiple of X.
When m # 1, while X is not an element of f, mX is. More explicitly,

mX =Y +(X,Y)X eT. (2.9)

The cycle X can be taken to be the generator of Z,, in (2.6). Intuitively, if we mod out
by the cycles generated by X and Y, we can think of X as a torsion cycle. This fact will
have important consequences below.

Similarly, we can define the dual of the Y cycle:
YY) = (2.10)

where again we can satisfy the SL(2,7Z) condition since ged(w¥, w?) = 1. The two dual
cycles Y and Y lead to a complete basis of I'. And as for X, we can redefine Y by adding
to it an arbitrary integer multiple of Y.

12



Other interesting intersections are

()E', Y) = —ny Ny + nyn,
(X,)Y) = —nywy +nywy (2.11)
(Y, X) = njw, — nyw,

The {X, X} basis is related to the {Y,Y} basis as

X (X,Y) —(X,Y)\ (Y
R A . ). (2.12)
X (X,7) (X)) \y

Since this is an SL(2,Z) transformation, we have the identity

m(X,Y)=1— (X, YV, X). (2.13)

We limit ourselves to flat space with the obvious metric ds®* = dx? + dy®. Then, the
lengths of the U and V' cycles and the angle between them are

bu =/ (€2)? + (£)?

by =/ (£5)? + (£)? (2.14)
Culy + (L
. Yy X T
COs p = —fufu .

The lengths of the closed X cycle and Y cycle are

by = w,ly —wyly
Py'a T s (2.15)

_ vpv u pgu
by = wyl, —w,l, .

We also introduce the effective lengths

1 14 15
Egﬁz—ﬁr_—x:—w,

m wy - wy

et = —yp — Y — Y

Y o m Y wy we

Y Yy

Note that the area of our torus can be expressed as

mlST = 0,0, sin = (400 — (407 (2.17)

13



As we said above, it is convenient to replace the basis of cycles {U,V} by {X, X}, i.e.,
to align the U cycle with the X cycle (see Figure 2). This corresponds to setting £, = 0 in
(2.1) and leads to simplifications in some of the expressions above. The modular parameter
of our torus is then
Eeﬁ"

y

meet’ (2.18)

T:Tl+i72:;+i
m
k= (X,Y).

This makes it clear that our condition of finite wrapping amounts to 7 = % being rational.

eff
T

k. In addition, the freedom mentioned above in shifting £ by a multiple of m is recognized

Here we also see that the independent data is ¢, E;ﬁ and the two coprime integers m and

as being generated by the familiar 7" transformation on 7.

As we go around the X and X cycle, the coordinates (z,) are shifted as

X (.T,y) — (ZE +mgzﬁ7y)v

2.19
X: (x,y)—>(x+k€§ﬁ,y+fzﬁ). ( )

The geometric interpretation of the effective lengths is the following. Consider a periodic
function on the torus that depends only on y. The periodicity around the X cycle (2.19)
means that

f) =fly+6". (2.20)
Repeating this for a function g(x) that depends only on = we conclude that

g(x) = gz + 1), (2.21)

i.e., their periodicities are smaller than ¢, and /,,.

, whereas the

The length of a closed contour along y at fixed x is given by ¢, = mﬁzﬁ

length of a closed contour along x at fixed y is given by £, = m/(f. In other words,

mﬁzﬂ meett
j{dy = / dy , j{d’r = / dz . (2.22)
0 0

Any well-defined function on our torus f(z,y) must satisfy the periodicity constraints
faufe) = faufer &), fansen = fdeseyigh. )

To integrate a function f(x,y) over the entire fundamental domain, we may first integrate
over a closed contour at fixed z and then integrate x over a region of length /¢, or we may

14
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X eff

0,0) X

y 3
t., * /
) X (

(0,0

Figure 3: The surface integral over the twisted torus in terms of the x and y integrals. The
contour of the integral § dy runs along the blue lines, and the [ dz integral runs over the
red segment of length (¢,

first integrate over a closed contour at fixed y and then integrate y over a region of length
E;ﬁ. In particular, we have

[eff

/T2 drdyf(z,y) = /Ozgﬁ dxfdyf(x,y) = /0 ' dy]{dxf(x,y), (2.24)

Pictorially, the rewriting of the integral is shown in Figure 3.

2.2 Lattice geometry

We now consider a discretization of the twisted geometry by putting it on the lattice, whose
sites are labeled by integers (Z,y). In particular, as in (2.1), we consider identifications
generated by

(@,9) ~ (@ + Ly, g+ L)) ~ (& + Ly, 9+ Ly), (2.25)

with non-negative integers L;.

As in the continuum discussion, we define integers W, describing the number of times a
fixed x or fixed y curve runs around the cycles of our torus. In terms of the parameters L

they are
Lv Lu, Lv Lu
Wu = x Wv = T Wu = Y Wv = Y
© T ged(Ly,Ly)’ T ged(Ly,LY) Y T ged(Ly,Ly)’ P ged(Ly L)

ged (I, W) = ged (W), W) = 1.
(2.26)
The lengths of the X and Y cycles are (compare with (2.15))

L,=W!'L! — WILY,

(2.27)
Ly=WYLY — WELE.



As in the continuum discussion (2.5), we define
M =W W, - W, W, . (2.28)
The effective lengths of the X and Y cycles are
L,
L= = = ged(Ly, LY)
%4 (2.29)
eff _ o u v
Ly = A_; - ng(Ly7 Ly) )

which are the lattice versions of continuum parameters ¢, EZH of (2.16). They represent the

periodicities of functions that depend only on z or only on y.

As in the continuum description, it is convenient to use the basis of cycles X and X (see

(2.7))
()= (5% %) ()
X —N, Ny 4 (2.30)
WEND — WINE =1

These cycles correspond to

X (#,9) = (& + ML, §)
Xt (4,9) = (3 + KL+ L), (2.31)
K

Next, we consider the continuum limit. We introduce a lattice spacing a and scale the
integers L} such that the four limits

li = limal; (2.32)

converge to their continuum counterparts. Similarly,

s _ Wy
m = —
a—0 ; w;‘c‘
. Wy
lim ‘i = —Z
a—0 Wy wy (233)
1 u)2 u)2 —
(llli)r(l)a (Ly)2 + (Ly)2 =1,
lim ay/(L3)* + (Ly)2 =L, .
a—0



However, the limits

imW; . limM , limal; ,  limaLS" (2.34)

a—0 a—0 a—0 a—0

are not well-defined. They do not necessarily converge to the continuum quantities wy, m,
0;, (5%, They depend on the details of how we take LY to infinity.

As an extreme example of dependence on how we take the limit, consider two sequences
of lattice geometries labeled by L, which we will take to infinity as ¢/a with finite ¢. The
first is

Ly="L,=1L, Ly=L,=0. (2.35)

and hence W =Wy =1, Wy =W/ =0, Lot = LZH = L. The second is
Ly=L,=1L, Ly=L,=1. (2.36)
and hence W = Wy =L, Wy =Wy =1, LT = LT = 1.

As in (2.33), both of them lead to the untwisted geometry (3 = ¢, = ¢, £, = {; = 0,

xT

qfv; = % =0, ¢, = ¢, = {. However, while the first one leads to finite w] = lim, o W/,

the second one leads to divergent lim,_,o W/, and misses the fact that the continuum values

derived from £ = () =, {7 = £ = 0 should be wy = wy, =1, wy = w, = 0. Relatedly, it
leads to lim,_,q Lfﬁ = 1 and hence lim,_, 0LL§’ff =0.
This example demonstrates also the discussion around (1.8). The sequence (2.35) is the

one that leads to a natural regularization of the continuum system. Indeed, the continuum
values of w] are the limits of the lattice values.

3 Winding on the twisted two-torus

In this section, we place circle-valued fields on our twisted torus.

As a warmup, let us start with a map from a one-dimensional circle of circumference ¢,
which is parameterized by x (i.e., x ~ z+/) to a target-space f(x). First, consider a smooth
f(x). If f is real-valued, then f(z + () = f(z). If f is circle valued, i.e., f ~ f + 27, then

eif(:1:+€) — elf(l) ) (31)

Lifting f(z) to a real-valued function, we learn that f(z + ¢) = f(z) + g with g € 27Z.
We interpret ¢g as a transition function, which measures the winding number of the map

L =L §ded, f(x).
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Since we allow discontinuous f, this discussion should be modified. We again lift f to
be real-valued. Then, we gauge f(z) ~ f(x)+ 2mn(z) with n(z) € Z, i.e., we allow an z
dependent, integer-valued gauge parameter n(x). Unlike the case of smooth f, where the lift
at one point = constrains the lift at nearby points, now there is no such constraint. We can
again consider a transition function f(x+/¢) = f(z)+ g(x) with g(z) € 2nZ, but now we can
choose another “trivialization” where g(z) = 0, and therefore there is no winding number.
More explicitly, we can perform a non-periodic transformation f(z) — f(z)+2mn(z), g(x) —
g(x)+2m(n(x+¢) —n(x)) to set g(x) = 0. (Note that locally this is a gauge transformation,
but it changes the transition function because it is not periodic.)

Equivalently, as in [10], we can say that in this case f and all its derivatives are not gauge
invariant. Only ¢/ and its derivatives are gauge invariant. Therefore, the winding charge
% § dz0, f is also not gauge invariant and it is not meaningful.

This discussion might appear as a fancy way of stating a well known fact. When the circle
parameterized by x is a lattice and f(x) is circle-valued, the configuration space does not
break into sectors labeled by winding number — there is no winding number on the lattice.
Nonetheless, our extended discussion here will prove quite useful below.

As preparation for later analysis, let us define some useful functions. First, we will use
the periodic delta function

(5P(Qj’1’0,€) :Zé($—$0+[€) . (32)
I€Z
We will also find it convenient to define

OF (z, xo, £,) :/ da'6% (2, 20, () . (3.3)

0

Note that ©F(x, ¢, ¢) is not periodic.?

3.1 Transition functions and winding charges

We want to place a circle-valued field ¢, subject to the rules of [10], on the twisted torus.
In order to simplify the notation we will use the SL(2,7Z) freedom in redefining U and V/
and choose U = X and V = X from this point on. Note that this choice also breaks the
symmetry exchanging X and Y together with the other data characterizing these cycles.

3Below we will sometimes use ©F(z,0, ), which is subject to ambiguity given our convention that
OF(0,z¢,4s) = 0 for any x5. To be more precise, we will define OF (,0,¢,) as OF (x, ¢, £,) with ¢ positive
and infinitesimally small.
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As in [10], we will be interested in discontinuous functions ¢ with certain discontinuities.
Specifically, we allow ¢ to be discontinuous and therefore d,¢ and J,¢ can have delta-
functions. However, we restrict the discontinuities of ¢, such that 0,0,¢ can include a delta
function in z or in y, but we exclude situations where 0,0,¢ has terms like §(x —0)d(y —yo).
A special case of it is a discontinuous ¢ with finite 9,0,¢.

We view the field ¢ as real-valued and to make it circle-valued by imposing the gauge
identification

o(e.y) ~ e y) +om(ni@) +n¥y) . W) EZ. (34)

For an ordinary periodic scalar, the identification involves a position-independent integer.
Here we allow discontinuous identifications of the form (3.4). We do not include in the gauge
identification an arbitrary integer valued function of both x and y, as this takes us out of
the space of functions we defined above.

We start with a real-valued field ¢ on R?. We need to impose the gauge identification
(3.4) and place it on our torus R?/T". Every vector in I' leads to a closed cycle C on our
torus. The identification across C should involve a transition function of the form (3.4)

p(x +C"y+C¥) = o(x,y) + ge(z,y)

. . (3.5)
ge(x,y) = 27r<nc(a:) + n%(y)) , ne(z),ng(y) € Z .
Here (C*,CY) is the vector on the covering space corresponding to C. For example, for our

basis of cycles X and X,
(X7, XY) = (ml5", 0)

VLY _ eff peff (36)
(X, XY) = (k6 6))
We will also discuss the Y cycle, for which
(Y*, YY) = (0,me") . (3.7)

Our goal is to identify the distinct bundles. This involves two steps. First, we trivialize
the bundle by choosing the transition functions. Here we must impose the constraints from
the cocycle conditions. Second, we identify bundles labeled by different transition functions
that are related by redefinitions. Locally, these are gauge transformations, but globally they
are not.

The composition of cycles C = A+ B leads to the cocycle condition

ge(x,y) = gs(x,y) + galx + B,y + BY) = ga(z,y) + gs(z + A",y + AY) . (3.8)
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Using such a composition, it is enough to consider the transition functions for two gener-
ators of I, say X and X, and express the other transition functions as linear combinations
of these. For example, the transition function of the Y cycle is

Y = kX +mX

k m
(3.9)
gy (z,y) = =Y gx(e—Iml y) + > gg (v — JEE  y + (m — J)ET)
I=1 J=1

The fact that the transition functions are separate functions of x and y (3.5) and the
cocycle condition (3.8) impose important constraints. For example, the cocycle condition of
the X and X cycles leads to

n(y+ 61 = 0% (y) = [n% (@ +mlg") = n%(2)] — % (z + k) — n%(2)] (3.10)
and the cocycle condition of the X and Y cycles leads to
n%(y + mﬁzﬁ) — % (y) = n§(z + ml) —ni(z) . (3.11)

From these two conditions and the equation obtained from (3.10) by exchanging X and Y,
we find the periodicity

gx @,y + 1) = gx(2,y) + 27Ny, (3.12)
gy (z + 5 y) = gy (7, y) + 27Ny, '

with the same constant ng,,.

Next, we should identify bundles with different transition functions that are related by
certain transformations. Locally, these are gauge transformations, but they are not single
valued. Specifically, we identify

ge(x,y) ~ ge(x,y) + 27 <nm(as +C%) —n"(z) +n¥(y +C¥) — ny(y)) : (3.13)

As a check, the cocycle condition (3.8) is invariant under this identification.

Let us identify the invariant information in the transition functions. The action of the
transformation (3.13) on the transition functions of the X and Y cycles implies that the
U(1) winding charges (1.16)

) 1 1

1 1
Q') = 57 § de0.0,0 = 3-Oyx(e.) = (o).

(3.14)
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are invariant. Note that since ni (r) and n%(y) are integers, the charges are linear com-
binations of delta functions with integer coefficients. Furthermore, we have the periodicity
(3.12). The integer n,, in (3.12) can now be interpreted as a constant used in [10]:

feﬂ'

r

So far we have identified a continuum of U(1) charges Q*(x) and Q¥(y) labeled by 0 <
r< T 0<y< E;ﬂ, subject to the constraint (3.15). If we regularize the theory on a lattice,
it leads to LT + LZH — 1 integer charges.

ZGH

awQ (@) = [ Q) =y (3.15)

In addition to these integers, we have a Z,,-valued phase:

. m—1 . k—1
3 1
U(z,y) = exp [_E D ox(@+IELy) + = gx(e+ IO, y)] - (3.16)
=0 J=0

We will motivate this operator and discuss it further in Appendices B and C. It is straight-
forward to check that it is invariant under (3.13). Naively this defines many Z,, charges
depending on the choice of z,y. However, using (3.9) and the cocycle conditions, we have

Z%gi :exp[ 27: /0 i’ Q* (x )] exp ﬁfl /0 ydy/Qy(y')] , (3.17)

which is a function of Q*(x) and QY(y). Therefore, U(x,y) leads to a single Z,, invariant
beyond the U(1) charges Q" (z), QY (y).

This Z,, charge can also be written directly in terms of ¢:

. m—1

Uz, y) —eXp[ ;Z (z+ (k+ D)eT, y+€zﬁ)—gb(x+(k+l)€§ﬂ,y))] . (3.18)

We refer the readers for a more detailed discussion on related points to the appendices. In
Appendix B, we will verify the number of winding charges by classifying all the invariants of
the transition functions. In Appendix C, we will discuss additional operators in the ¢-theory
and motivate the Z,, charge (3.16).

We can summarize this discussion as follows. Windings around the X and Y cycles are
measured by the charges Q¥(y) and Q*(z). They are essentially the same as the windings
in the untwisted torus, except that they have periodicities /T and E;ﬁ respectively. The new
charge U is present because our torus has additional cycles. As stated after (2.9), if we mod

out by the X and Y cycles, the X cycle behaves like a torsion cycle. This leads to the fact
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that the new charge is a Z,, charge.

3.2 Winding configurations of ¢

In this section, we present winding configurations of ¢ that realize the winding charges in
Section 3.1.

3.2.1 Special configurations
We start with the winding configurations satisfying
0:0y¢ = 0. (3.19)

These special configurations will be useful for other discussions below.

As a warmup, let us start with a real-valued function on the torus. In (2.20) and (2.21),
we studied a real-valued function that depends only on x or only on y and found that it has
periodicity £¢f and ézﬁ respectively. A trivial extension of this analysis applies to the case of
a recal-valued function [ satisfying 0,0, f = 0. Because of the differential equation, we have
f(z,y) = f*(x) + f¥(y), and the boundary conditions set

fo @+ )
Fily+ 67

S (),

). (3.20)

We will see that the conclusion is different for a circle-valued field ¢ ~ ¢ + 27. Locally,
we can solve (3.19) as

o(z,y) = ¢"(z) + ¢*(y) - (3.21)
The boundary conditions tell us that

oi¢” (@ ml) _ io* (x)

Y

97 (kee) i (D) _ i (2) id¥ (y) (3.22)
This means that ' . |
ez¢x(w+€fi ) _ ne,@x(w)
iV (65T _ n—kewy(y) (3.23)
n"=1

with a position-independent 7.
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We see that while a real-valued function f has the simple periodicity (3.20), a circle-
valued function ¢ has a new Z,, phase n in that periodicity (3.23).

The most general such ¢ can be expressed as

2rr [ x Y "
¢, y) = — 75 — ki | + (@) + [7(y),
m \ (¢ ee
eifz(gc-i-zg‘ﬁ) _ eifz(;p) : eify(y_;,_ngf) _ eify(y) ’ (324)

r=12..m.

It carries a nontrivial Z,, charge (3.16), U(z,y) = €>"*"/™ hut zero U(1) charges, Q*(2*) = 0.

As in [10], we are also interested in discontinuous functions with certain discontinuities.
In particular, f*(x) and fY(y) in (3.24) can be discontinuous. Also, the field ¢ is subject to
a discontinuous gauge transformation (3.4).

This has two important consequences. First, we can replace the first term in (3.24) by
another function with the same transition functions, e.g.

Br,) = T (OF (2,0, 65) — KO (,0,61) + f7(2) + f(y) (3.25)

with different f* and fY. Second, as in the discussion of the one-dimensional case above, the
fact that ei/"(@+E") = ¢if*(@) and /' WHE"Y) = ¢if*®) means that we can choose a lift where
JP(x+ ) = f7(x) and fY(y + £5") = f¥(y) as real functions.

3.2.2 More general configurations

Next, we consider configurations that carry nontrivial U(1) charges with 0,0,¢ # 0. The
minimal winding configuration with nontrivial Q*(x) and Q¥(y) should satisfy

1
Q% (x) =5 ]{dy@ﬁygb = 5P(x,x0,£§ﬁ) ,
o ) ~ (3.26)
Q (3/) :% dxaLau(b = 5 (Z/7 Yo, gy ) )

for some zy and y,. The periodic delta function 6F(z,xg, (¢T) was defined in (3.2). These
configurations can also carry the 7Z,, charge (3.16).

The charges (3.26) lead us to look for a configuration satisfying

1

o (3.27)

2m | 1 1
8x8y¢(x: y) = E [Eép(yv y07ngf) + ge_ﬂ‘(sp(x? 2o, g;ﬁ) -
T Y
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for some xy and 7. Such a minimal winding configuration is given by

¢ = 2 (3 — (X, Y#) OF (y, o, 1) + 27 (2 (Y, X>£) 0P (z, 2o, £°)

EI E’y g’y g.’l}
1 y\? 1. r\* | wy z oy (3.28)
—9 —— (X V=] - =YV, X) | — 2 w, TGy '
™ 2< ,Y) <€y) 2< , X) (Ex) + 0,0, T om (c“ﬁx +C‘/€y)
cx:%Q},X)—l—r, cyz—%<)~(ay> <<)~(,}7>+<}7’X))—<)~(,Y)r

Here we have chosen ¢,, ¢, such that the transition functions take a simple form (see below).
We also have the freedom of adding a standard winding configuration (3.24) to ¢ and shifting
the value of r.

Let us check that the transition functions are indeed 2nZ-valued. Using (3.8), it suffices
to check this for the transition functions for the X and X cycles. The transition function
around the X cycle is

gx(z,y) = ¢ (x + mfi,ﬁ, y) — é(z,y) = 270" (y, yo,ﬁ,zﬂ) — 27r(§~/,X>@P(x, mo,fiﬁ) + 27
(3.29)
Similarly, the transition function around the X cycle is

g5(@,9) =6 (v 4+ (X VET, g+ 67) = 6(a,y) = 20(X, V)O" (w,20, 657 . (3.30)

Using (2.13), one finds that the cocycle condition is satisfied.

In addition to the winding charges Q*(x), Q¥(y), the minimal winding configuration (3.28)
also carries the Z,, charge (3.16)

o) =exo | =200 [ e e | [0y

X eXp {% (kr + ro)]

(3.31)

where rq = —(”L_Tl)m(f(, Y)— @(?, X). The first line, which depends on z, y, is expressed

in terms of the the winding charges Q*(z), Q¥(y).

3.3 Comments about the 2 + 1-dimensional ¢-theory

The 2+ 1-dimensional ¢-theory (1.11), which had been introduced in [32], was studied in [10]
on an untwisted torus. Its main features are
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e The theory has “momentum” and “winding” subsystem symmetries, (1.12) and (1.15),
each of which leads (on the lattice) to L, + L, — 1 conserved U(1) charges.

e In the quantum theory, all the states charged under these symmetries acquire large
energy, of the order of the UV cutoff.

e The theory is self-dual. The duality exchanges the original field ¢ with another field
@™, Tt also exchanges the momentum and winding symmetries.

Let us see how this picture changes on the twisted torus. First, it is clear that the
conserved momentum and winding currents remain conserved. By analogy to the untwisted
case, we now have Lef + LZH — 1 conserved U(1) charges. It is also clear that all the states
charged under these symmetries acquire large energy in the quantum theory.

The main novelty in the problem on the twisted torus is associated with the configurations
(3.24) with r # 0 mod m. These configurations have two consequences. First, they carry a
discrete Z,, winding charge under (3.16). Since this operator can be defined in terms of the
transition functions, it is a conserved operator in the ¢-theory. See Appendix C for more
discussion on the winding operator.

Second, a shift of ¢ by (3.24) is a momentum symmetry. Clearly, it is not included in the
LeF + LT —1 U(1) momentum symmetries. Instead, this shift amounts to a Z, momentum
symmetry. This symmetry operator cannot be written simply in terms of the ¢ field — it is
a twist operator of ¢. Alternatively, it is represented, as in (3.18), in terms of the dual field

o™ as

-1

3

V(z,y) = exp | — (™ (x+ (k+ DTy + €5 — o™ (x+ (k+ D y) )| . (3.32)

0

i
m

~
Il

This operator has all the properties of U(x,y) that we mentioned above. In particular, up
to adding momentum charges, it is independent of x and y.

The two Z,, global symmetries generated by (3.18) and (3.32) commute with all the
U(1) momentum and winding symmetries. But they do not commute with each other. They
generate a clock and shift algebra

unz — V’l’n — 1 , (3 33)
Uy = e VY . '
(Since ged(k,m) = 1, we can redefine the generators of this algebra to make the phase

above €2™/™ as in (1.17).) This algebra has an m-dimensional representation. Therefore,



the Hilbert space of our problem includes a factor of this m-dimensional representation. In
particular, the system must have m degenerate ground states.

We conclude that unlike the theory on the untwisted torus, here we have two Z,, sym-
metries, and these two symmetries do not commute. Clearly, these two symmetries are
exchanged under the self-duality of the system. Also, unlike the U(1) momentum and
winding symmetries, all the states in the theory transform under these symmetries in their
m-dimensional representation. As we mentioned in the introduction, these effects are remi-
niscent of the phenomena discovered in [26,27].

4 2+ l-dimensional Zy tensor gauge theory

As a warm-up for the 3 + 1-dimensional X-cube model, we start by placing the 2 + 1-
dimensional Zy tensor gauge theory in [10] on a two-dimensional spatial torus with twisted
boundary condition (2.1). We will analyze this model using the two dual presentations
in [10].

4.1 Special Zy configurations

In the rest of this paper, we will frequently consider a Zy-valued ¢ field on a twisted torus.
More explicitly, such a Zy field ¢ obeys the same rule as in Section 3.1 plus one Zy condition:

No ez (4.1)
2

Similar to Section 3.2.1, of particular interest is the special case when
0,0,¢ = 0, (4.2)

is obeyed.

The most general expression of such a Zy-valued ¢ can be found through an analysis
similar to that of Section 3.2.1. The phase n there now obeys not only n™ = 1, but also

n™ = 1. Hence it is a Ziged(N,m) Phase. In conclusion, the most general such ¢ takes the form:
27r N T P H 927
= —0= ) —k ° 2 (we y _

where r = 1,--- ,ged(N,m) and Wi(z") € Z. Using the freedom in (3.4) to redefine ¢, we
can choose a lift of W(z?) such that Wi(z® + £5T) = W#(z?).
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4.2 ¢ — A theory

The first presentation of the Zy model is based on the Lagrangian

1

"~ or

- 1 ~

L Exy(awayﬁb - NAa:y) + 2_B<80¢ - NAO) ) (4'4)
T

where (Ag, A,,) are U(1) tensor gauge fields and ¢ is a 27-periodic real scalar field that

Higgses the U(1) gauge symmetry to Zy. The gauge transformations of these fields are

¢~ o+ Na,
AO ~ AO + c%oz, (45)
Agy ~ Agy + 0,0,0.

The fields E*Y and B are Lagrange multipliers. Their coefficients are are not important at
this stage, but we set them such that E*¥ and B are standardly normalized field strengths
in the dual picture. The equations of motion are

0,0y — NA,y =0,
806 — NAg =0, (4.6)
E"=B=0.

Using the equations of motion (4.6), we can solve all the other fields in terms of ¢. Then,
we mod out by gauge transformations ¢ ~ ¢ + Na. The remaining configurations are linear
combinations of the winding mode (3.28) with different xg, 9. The coefficients in the linear
combinations are in the set {0, 1,..., N —1}. In addition, the winding configuration is labeled
by an integer r, which in the Zy theory is defined modulo ged(N,m).

We will regularize the ground state degeneracy by putting the theory on a lattice. As
discussed in Section 2, the discretization of a continuum geometry is not unique, and we will
see that the ground state degeneracy depends not only the continuum geometric data £, but

K2
also the details of the lattice regularization.

Let us consider a lattice geometry of the form discussed in Section 2.2. From this point
on, the analysis of the ground state degeneracy proceeds in an analogous way as in [10], with
the replacement L, — L3, L, — LS. Recall that L' = ged(LY, LY), LS = ged(Ly, LY).
A general winding configuration on this lattice is labeled by a choice of integers W¥ €
{0,1,..., N — 1} for each & = 1,---, L' on the lattice and W} € {0,1,..., N — 1} for each
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yg=1,--- ,L‘;ﬁ on the lattice. We also have the constraint
T _ y
D Wa=2 W (4.7)
a 8

In addition to these integers, the winding configuration is further labeled by a Zgeqv
-valued integer r. (Recall that M is the lattice version of m.) Combining these together, the
ground state degeneracy of our model is given by

NEHET L ocd(N, M) . (4.8)

This formula for the ground state degeneracy has several peculiar features. Like that of
the untwisted model in [10], the logarithm of the ground state degeneracy grows with the
size of the system in a sub-extensive manner. In contrast with that of the untwisted model,
however, this ground state degeneracy does not vary monotonically under small changes in
the parameters L]. Relatedly, it does not have a well-defined continuum limit. To see this,
let us compare the ground state degeneracy of two sequences of lattice models with the same
continuum limit. In particular, consider the sequence in (2.35),

LY=L'=L, L' =L"=0, (4.9)

x

and the sequence in (2.36),

Ly=L,=1L, L,=1L,=1. (4.10)
These sequences both approach the same continuum quantities ¢;. But the first of these
sequences has LT = LZH = L, and M = 1, and hence a ground state degeneracy of N2F~1,
whereas the second sequence has LT = LZH =1, and M = L? — 1, and hence a ground state
degeneracy of Ngcd(N, L? — 1). The ground state degeneracy of these models is therefore
completely different: the first diverges in the continuum limit L — oo, whereas the second
is ill-defined. As we said above, the first sequence is the natural choice for this continuum
theory.

4.2.1 Using transition functions

In the previous analysis, as in the discussion of this theory on the untwisted torus in [10], we
assumed that we can always set the transition functions of the gauge theory on the spatial
two-torus to be trivial. Here we will show that the same conclusion is obtained by allowing
arbitrary transition functions.
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We consider nontrivial circle-valued transition functions v that determine

Asy(x 4+ C*,y + C¥) = Ayy(,y) + 0:0,7¢ (3, )

N (4.11)
O(z +C% y+CY) = @D (1, y)

where ® is a complex field with charge J. (We will limit ourselves to static configurations.)
The composition of cycles C = A + B leads to the cocycle condition:

exp [15(7,y) + iya(r + B,y + BY)] = exp [iva(z,y) + ivs(z + Ay + AY)] . (4.12)

Next, we identify configurations with different transition functions that are related by
certain transformations. Specifically, for any circle-valued function e?’, we identify

explive(w,y)] ~ exp [ive(w,y) +iB(x +C* y +C¥) —iB(z,y)]
Aq;y(l', y) ~ Axy<(E, y) + axayﬁ(xa y) (413)
O(x,y) ~ PEVND(2,y) .

If ¢¥ is single-valued on our torus, then this is a gauge transformation, and it does not
change the transition functions. Otherwise, it relates different trivializations of the same
configuration.

Consider first the pure gauge A-theory. Locally, we can choose A,, = 0 and then all
the information about the gauge fields is in the transition functions. The analysis of these
transition functions is parallel to the discussion of the transition functions and winding
configurations in the ¢-theory in Section 3.1 and Appendix B. There is only one difference:
the integer valued functions ge of the scalar theory are replaced in the gauge theory with
real, circle-valued functions .

First, we focus on the X and Y cycles. We will return to the X cycle shortly. We find

X = X @HXW)
e = @R W)
oY (5T v (@)tie (4.14)

cif e _ pifk(y)+ie
As in in Section 3.1 and Appendix B, 0,f%(y), 0.f%(z), and ¢ are physical and gauge
invariant. (We will soon relate them to the holonomy around the X and Y cycles.) In

order to check whether there is additional invariant information, we follow the approach in
Appendix B and set these quantities to zero and look for more data. In particular, we look
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for additional information in
X — oifx(2) ’
¢ — (i) (4.15)
oix  GUE@HLW)

Imposing the cocycle conditions and using the freedom to change the trivialization, we find
that all the functions here can be set to zero.

Unlike the analysis of the ¢-theory, there is no additional Z,, charge. Specifically, in
following the steps in Appendix B with circle-valued functions, rather than integer-valued
functions, the identification (B.4) becomes

i (1) +Cx)

@) o ,
W i )—Cx) ’ (4.16)

1Z

e ~ 6i(2_mCX') 7

where C'y and Z were denoted in Appendix B by Ny and N, respectively. Since now they
are circle-valued, we can set ¢’ = 1 and there is no additional Z,, charge.

We end up with the same data we have with trivial transition functions, but with nonzero

1

Aoy =7 F (@) + éf%y) , (4.17)

with 0, ff () = f*(2) + ¢ §y dyf'(y), 0,f%(y) = f(y) + - $x dxf*(x). As a check, they

both have the same holonomies

Y2 1 1 )
Wx = exp (Z/ dng dx (—fm(x) + —fy(y))) — x(@y2)—rx (@,91)) ,
Y1 X gy gw
2 1 1 .
Wy = exp (@/ dm% dy (_fy(y) + —fx(l'))) — oty (@2,9) =y (71,9))
T Y g:r gy

Let us repeat this analysis in the Zy theory using this perspective of the Higgs theory
(4.4). The matter field ¢ transforms such that ® = ¢ in (4.11) and (4.13) has charge
J = N. We choose the unitary gauge ¢ = 0 and set A,, = 0. In order for the gauge choice
¢ = 0 to be meaningful, the transition functions (4.15) should be N’th roots of unity. In

(4.18)

contrast to the U(1) gauge theory of A, we can no longer use the identification (4.16) to set

e’® = 1. In more detail, now ¢® and €' in (4.16) are N’th roots of unity. Therefore, (4.16)
identifies €2 ~ ¢/Z—*%¥") and we end up with ged(N, m) distinct values. Placing this result

on the lattice, we reproduce (4.8).
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Let us phrase it more explicitly. The Zy theory has ged(N, m) configurations:

=1, Ay=A,,=0,
| i m | (4.19)
€Z’YX —e ﬂ—erVgcd(N,m) , 61’75( — 1’
with 7 =0,1,--- ,ged(N,m) — 1. Such configurations are present in the U(1) A-theory, but
they do not contribute to the holonomies (4.18). In fact, they are identified with the trivial
configuration with €% =1 by a change of the trivialization (4.13), with e.g.,

; 2mir T Y
i _ _ = L
= e [yt f;;ffﬂ (420
or o
6 _ _ mr P ey 1.9P off
e exp [ Nacd(V.m) (@ (x,0,05") — k© (y,O,Ky ))} (4.21)

Therefore, the U(1) theory does not have another label associated with these configurations.
This is to be contrasted with the situation in the Zy theory. Here, as we explained above,we
cannot perform identifications like (4.20) or (4.21) because they are not Zy-valued. (Equiv-
alently, they do not preserve the choice ¢ = 0 in the Higgs theory (4.4).) Consequently, the
configurations (4.19) are nontrivial in the Zy theory and lead to the factor ged(N, M) in
(4.8).

Let us offer a broader view on the analyses of the transition functions in the various
theories. The transition functions for the ¢-theory in Section 3.1, and those for the U(1)
and Zy tensor gauge theories in this section, are subject to similar cocycle conditions and
identifications, but with coefficients valued in different groups, Z, U(1), and Zy respectively.
In these three cases, there is an additional Z,, label for the ¢-theory, no such label for the
U(1) A-theory, and an additional Zgseq(nm) label for the Zy-theory. These additional labels
can be thought of as torsion parts of an appropriate cohomology with Z, U(1), and Zy
coefficients.

4.3 BF-type Zy tensor gauge theory

Next, we compute the ground state degeneracy using a dual presentation of the same Zy

model [10]:*

1. . L e
L= 5 N™ (0 Az, — 0:0,A0) = 5 -N™ Ly, . (4.22)

4Since ¢™¥ is circle-valued, the Lagrangian has to be defined more carefully. Specifically, we can choose
a trivialization, use this expression in each patch, and add correction terms similar to those in Appendix C,
in the overlap regions. We will not do it here.
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The phase space is given in the temporal gauge Ay = 0 by

{aﬁxy(x, Y), Auy(,y) | 0,0,0™ =0, Agy(z,y) ~ Apy(z,y) + 00,0z, y)} : (4.23)

This is solved modulo gauge transformations by®

1 1

(4.24)
2mr . .
¢$y - W (@P(‘Ta Oaége;ff) - k@P(ya 07€ZH>) + fx(l') + fy(y) )
where r = 1,--- ,m. Here the functions f(z") and f;(xl) have periodicity €. Compare A,,

with (4.17) and see Section 3.2.1 for the origin of the first term in ¢*V.

The quantization of f*, fY and their conjugate variables fm, fy proceeds in an analogous

way as in [10], with the replacement £, — ¢ ¢, — ézﬁ. On a lattice, it leads to NE&"+L57 -1

states.

The global considerations constrain the allowed values of r. One way to see that, is

to note we have the operator statement eV¢""

m/ged(N,m). This leads to ged(N,m) values.

= 1. Therefore, r should be a multiple of

Combining the above two contributions, we reproduce the ground state degeneracy (4.8).

4.4 Global symmetry operators

Here we compute the ground state degeneracy using the global symmetry operators. This
calculation mirrors the lattice calculation of the ground state degeneracy using the logical
operators.

The gauge-invariant local operator "’ generates a Zy electric global symmetry. In

iNg™Y

particular, e = 1. The equation of motion states that

0,0, = 0. (4.25)

The discussion in Section 4.1 then implies that the Zy electric symmetry can be generated
by -
@) g < @< o+ e

o 4.26
i y(m,y)7 Yo <y < Yo _}_ngf? ( )

“Here we take the transition functions for A,, to be trivial. Alternatively, as above, we can set A, =0
and have the nontrivial information in the transition functions.
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for any choice of (z¢,yo). There is also a Liged(N,m) Operator
V = exp [—iwy(m, Y+ EZH) + 9™ (z, y)} . (4.27)

The discussion in Section 4.1 implies that V is independent of x,y, despite its appearance.
On a lattice, this leads to Lgﬁ + LZH — 1 Zy charges and one Zg.q(n,ar) charge.

On the other hand, the strip operators

2
W) (21, 22) = exp [l / dx ]{ dyAxy:| :
. Y2
W) (Y1, y2) = exp {lj{dl’/ dyAzy}
Y1

generate a Zy dipole global symmetry. They obey the constraint W (0, £57) = W, (0, £).
On a lattice we therefore have LT + LZH — 1 such operators.

(4.28)

There is one more gauge-invariant operator, which is most conveniently expressed in the
¢ — A description:

U—exp[ ngNm /

Eeff

. m Y eff / peff
T /0 ds 0, p(ks() ,s)}
(4.29)

We will motivate this Zgeq(n,m) operator in Appendix D and discuss its relation to the Wilson
strips W(;). One can check that this is indeed a gauge-invariant operator. Note that the
integrand in the first line vanishes in the rectangle (k — 1)(F < 2 < k(28,0 <y < (%,

£e11r

kyeeﬂ“/eeﬂ“_i_méeﬁ“
v | dr (6F (2,0, 655) — KOP (3,0,657) Asy (1)

y[eﬁ/geﬂf

To summarize, just like on an untwisted torus, the Zy theory has a Zy electric and a Zy
dipole global symmetry. Similar to the analysis in [10], there are L°T + LZE — 1 Zy operators
for each of these symmetries on a lattice. The novelty on a twisted torus is that there are
two additional Zgeq(n,m) symmetries generated by V and U.

The Zgea(n,m) symmetry generated by U in the Zy theory comes from the Z,, symmetry
generated by U(0,0) (see (3.16)) in the ¢ theory before Higgsing. More specifically, when the
equation of motion A,, = %&anqﬁ is imposed, the operator U is equal to 2/(0, 0)™/gcd(V:m)
on-shell.

Similarly, the Zyeq(n,m) symmetry generated by V in the Zy theory comes from the Z,,
symmetry generated by V (3.32) in the ¢ theory before Higgsing. Using the equation of
motion 0,0,¢™ = 0, we see that V is equal to V on-shell.
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Let us discuss the commutation relations between these operators.

In the unitary gauge, where ¢ = 0, (4.29) is manifestly an operator in the Zy gauge
theory. It is then clear that U and V form a Zgeq(n,m) clock and shift algebra. This leads to
ged(N,m) states in the Zy theory.

The rest of the operators satisfy

iN¢*™ _ xwN _ ywN _
et =Wy =Wy =1,

eiwy(m,y)W(z)(xl, Ty) = eZm/NW(:c) (21, x2)6¢¢w(z,y) ; ifz; <x+ Iggecﬂ < x5 for some I € Z,
ei¢xy(m,y)w(y)(yl7 ) = eQm/NW(y)(yl, y2)ei¢”(r.y) ’ ify; <y—+ ]é;ﬁ < yo for some I € Z,
(4.30)

and they commute otherwise. (Here, we took for simplicity xo —x; < (6T and y, —y; < Esz.)

We can pick the following basis for them:

W) (z,z +a), exp [i¢p™ (z,0)] , (b — 1) < o < kot
W (y.y +a), exp [ig™ ((k — D6 y) —io™ ((k-1E0)], 0<y <4t
(4.31)

Here a is an infinitesimal UV regulator, e.g., the lattice spacing. The range of x,y for these
operators is chosen such that they commute with U, V. The pair of operators in each line
at the same x or y form a Zy clock and shift algebra, and they commute otherwise. On a
lattice, these give LT + LZH — 1 copies of the Zy clock and shift algebra. This algebra leads
to NL&"TL5"-1 states in the Zy theory.

Combining these two contributions, we reproduce the ground state degeneracy (4.8).

5 Winding in 3 + 1 dimensions

In this section, we place a classical circle-valued field ¢ on a three-dimensional twisted torus.
We perform a twist in the zy-plane of the form discussed in Section 2, but we do not twist
in the zz-plane or yz-plane. The twist changes the allowed winding configurations relative
to those in [11] on an untwisted torus.

This discussion is relevant both for the 3 + 1-dimensional ¢-theory of [11] on the twisted
torus and for the discussion of the Zy tensor gauge theory in Section 6.

The winding charges of a circle-valued ¢ field in 3 + 1 dimensions are associated with
cycles on the zy-, yz-, and zzx-planes. For the yz-plane, we will choose the Y cycle and
the Z cycle to parameterize these charges, and similarly for the zz-plane. For the zy-plane,
however, the X and the Y cycles do not generate all the cycles. Instead, we will choose the
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basis {X, X}. The most general possible winding charges are given by (recall the definition

(3.2)) ,
% f d$0x0y¢ = ; W)Zé’[)’ 5P(y7 Ys; g;ﬁ”) )

1 xX €:

o %dy@xayqb =3 Wy, 6" (2,20, )

1 c

- 7{ dz0,0.6 = > WY, 0" (y,ys, (7).
B

) ) ) (5.1)

o j{dz&raz(ﬁ = XQ:WZQ(S (2, g, L)

1 z

g ]{dx@zamgb = Z W5, 6" (2,2, L),
Y

o (dxa 0v0 + dyd.0,0) = ) Wi 6%(2, 2, L),

Y

and the Z,, charge discussed in Section 3.1. Here {z,}, {ys}, {21} are a finite set of points
on the intervals [0, £57), [0, £5), [0, £.) of the three axes, respectively. The W} ,’s are integers
associated with the points {2 } and I labels the cycle. These charges obey the constraints

ng(ﬁ _ZWYUM

ZWM = mZWZw (5.2)
Z ZW§B+kZWZQ.

"

The winding configurations associated with nontrivial Wy, W)y( 5 and the Z,, phase have
already been discussed in Section 3.2. The rest of the winding configurations are (recall the

definition (3.3))

¢ =2rm [(g_ — k= ) ZWX')/@P(Z 2y, s ZWZCX@P(x Ty €T

y z z €
+ 7ot W)Z"y@P(Z’ 2z Uy) + Z;Wgﬂ@ (Y, y8,4;)") ) — _gc_ff



Here W 5, W55, W5, W;W € 7 are the integer winding charges obeying (5.2).

In order to verify that the function ¢ of (5.3) is an allowed configuration, we need to
check its periodicity on the torus. It suffices to check that ¢ is a 2m-periodic function along
the Z, X, and X cycles. The transition function around the Z cycle is

gZ(xayWZ) = gb(m,y,z—&—@) - Qb(JT,y, =27 ZWZQGP .Z’ xa,geﬂ +ZW56 y y57‘€EH)

(5.4)
The transition function around the X cycle is
gX(xv Y, Z) = d)(l’ + mg;ﬂ”’ Y, Z) - QS(Q:? Y, Z) =2m Z W)Z(WGP(Zv Zrys Ez) : (55)
v
The transition function around the X cycle is
95 (@4, 2) = e+ kT y + 6, 2) = o(x,y,2) =21 Y Wi O"(2,2,,L.). (5.6)

Y

Indeed, all these transition functions are 277 valued. Using (5.2), one finds that the cocycle
conditions are satisfied.

Combining with the winding configurations in Section 3.2, we have 2(L"+ LT+ L,) — 3
integer winding charges and one Z,, phase in 3 + 1 dimensions on a lattice.
6 3+ l-dimensional Zy tensor gauge theory
Let us now consider the Zy tensor gauge theory of [12], the continuum limit of the X-cube

model [5], on the twisted torus. We twist in the zy-plane, as in Section 2, but we do not
twist in the xz-plane or yz-plane.

6.1 ¢ — A theory

We start with the Higgs Lagrangian using ¢ and A [12]:
1 » 1.
_ __§ E9(0,0;6 — ) _
L= 2(27‘() < E (Gﬁjgb NAZJ) 27TB(80¢ NA()) . (61)

The fields £ in the 3’ and B in the 1 serve as Lagrange multipliers. Their coefficients are
set such that £ and B are standardly normalized field strengths of a dual theory. The U(1)
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gauge transformation acts on the fields via

with 27-periodic ¢ and «, as in Section 5.

The equations of motion are given by

0050 — NAy =0,
0o — NAy =0, (6.3)
Ei=B=0,

and they imply the vanishing of the gauge-invariant field strengths of A:

E;; = aOAij - 8iajA0 )

(6.4)
Blijir = 0iAji — 0 Ak .

We will sometimes also use Bj(jx) = Byijix + Biiyj;-

Using the equations of motion (6.3), we can solve all the other fields in terms of ¢, and
the solution space reduces to

{¢}/¢~¢+Na. (6.5)

Then, all the ¢ configurations can be gauged to a linear combination of the winding modes
(3.28), (5.3). In these linear combinations the coefficients are integers valued in {0, ..., N —1}.

For the purpose of finding the ground state degeneracy, we place the system on a lattice.
From this point on, the analysis of these winding modes is similar to [12] if we replace L,, L,
by L, LZH. These winding modes are labeled by 2L + QLZff + 2L, — 3 integers valued
in {0,..., N — 1}, plus one Zgea(n,m) phase as in Section 4.2. Therefore, the ground state
degeneracy is

NQL?CH“LZHHLZ_Sng(N, M). (6.6)

Alternatively, we can compute the ground state degeneracy by choosing a trivialization
where the gauge fields are trivial and all the nontrivial information is in the transition
functions. This proceeds along the same lines as in Section 4.2, and we again arrive at the
same result (6.6).
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6.2 Comments on the U(1) A theory

In the previous subsection we computed the ground state degeneracy of the Zy X-cube model
using one of the continuum Lagrangians in [12]. Below we will reproduce the same result
using the other dual Lagrangians of the X-cube model in that reference. These presentations
involve an exotic gauge field A. Before we discuss these other presentations, we first comment
on some new features of the U(1) gauge theory of A on a twisted torus. We refer the readers
to [11] for detailed discussion of this gauge theory on an untwisted torus.

The temporal components Aé(j " and spatial components A are in the 2 and 3 of the
spatial Sy rotation symmetry. They are subject to the gauge transformations

e

A’L(jk) -~ Ai(jk) + 9o&'m) :

o y 6.7)
AT~ A 4 9 aM0) |

where ¢*%) is 27-periodic and transforms in the 2 of S;. The electric and magnetic fields

for A are - . e
EY = 0yAY — 9, Ay

N 1 o
i#]

(6.8)

Similar to Section 3.1, we start with gauge fields on the covering space R3. (We limit
ourselves to static configurations.) The identification across a cycle C should involve the
circled-valued transition function of the form (6.7):

Aij(ff + Cz’ y+ ny zZ+ CZ) = Aij (ZE, Y, Z) + ak’s/lc{:(”) (ZE, Y, Z) (69)

where (C*,CY,C?) is a vector on a covering space corresponding to the cycle C. Since they
transform in the 2 of the S, spatial rotation symmetry, the transition functions are con-

Complex matter fields 0% with charge J satisfy *®=)d¥(z0)p=v) = 1. They transform
under (6.7) as
Hik) 160 gilik) (6.10)

and under (6.9) as

IR (3 4 Oy + CY, 2 + CF) = 7 @uGIOR (5 y oY | (6.11)
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The composition of cycles C = A 4 B leads to the cocycle condition:

exp [ A" @,y 2) + A (0 + By + BY 2+ Bz)] (6.12)
= exp [i’yﬁjk)(x, Y, z) + i’?;(jk)(x + A% y+ AY 2 + Az)] :

Next, we identify configurations with different transition functions that are related by

certain transformations. Specifically, for any three circle-valued functions eif"M satisfying
(BT WIHBVENLBD) — 1 e identify

expliie™ (2,9, )] ~ exp [i767 (@9, 2) + 3B @ + €%,y + €% 2 +C7) = iB P (,y,2)] |
A (2, y,2) ~ A9 (2, y,2) + 0,35 (2, y, 2)

UK (3, y, 2) ~o e THVP @UAGIR) (1 g ).

(6.13)
If ¢#"" is single-valued, then this is a gauge transformation and it does not change the
transition functions. Otherwise, it relates different trivializations of the same configuration.

The Conﬁguratlons on our three-torus are characterized by the circled-valued transition
i(ik)
functions e’ (#¥2) subject to the cocycle conditions (6.12) modulo the identifications
(6.13).

Restrict to flat gauge fields

We will be particularly interested in configurations with B = 0. For such configurations,
we can further set locally AY = 0 by gauge transformations, and all the information is then
contained in the transition functions.

Since A% = 0, the transition functions must obey
6}3;@@) —0 (6.14)

: (25(W2) | 2y(z2) | L2(wy) o : .
for every C. Using ¢l "Tic "+ ) = 1, we find that the transition functions factorize:

5" — exp [ifi(y) +if3(2)] |
e = exp [if8(x) —ifi(2)] , (6.15)
e = oxp [—ifE(x) —ifi(y)]
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This parametrization has a zero mode ambiguity

felo) ~ fe(x) +ee, foly) ~ fey) —ce,  fé(2) ~ fé(2) +ce. (6.16)

We will soon discuss the periodicities of these functions f&(z").

) i(Gk)  20UR) L Li(ik) . . > ;
We will choose e7x" ", e""x ez " associated with the X, X, Z cycles as our basis for

the transition functions, while the others (including the one associated with the Y cycle) are

determined in terms of them. We will use the zero mode ambiguity (6.16) to set, ex(0) =
%) — ifz(0) — 1.

. 2 1(7k) .. .
As discussed above, not all values of e"c” "~ are distinct, and we can relate them using

ei#% In order to preserve A= 0, ei8'"" should factorize into three functions of one variable
GiBTYR) L GiFY (y)+iF (2) :
eiﬁy(z:v) _ 6z‘Fw(.z*)—il:‘Z(z) , (617)
PV _ iFT (@) —iFY(y)
This allows us to set
k) = IxW) = ¢if7(:) = 1 (6.18)
and then the residual freedom in (6.17) is with functions satisfying
eiF””(x-i-mf;ﬁ) — (iFT (@) :
oiFY () _ GiFY(y) : (6.19)

e’LF (z+€2) e’LF (2) )

We are then left with six functions of one variable, ¢/X®) ¢ifZ() (%@ (Z()  (iff(@)
and eifg(y), satisfying eif%(0) — i3 0) — Lif2(0) — 1.

We now discuss the constraints on these six functions from the cocycle conditions (6.12)
for the {X, Z}, {X, Z}, and {X, X} cycles. They constrain the functions to satisfy
efXWHEN — ifkW)  ifk () _ pifk () R EmET) _ ifR @)
GTE@HIY) — Gify@)+ify)+2mis (7 (0.65M —kOP (0.6 (6.20)

o5 () — 6—27ri%®1°(z,0,€z)+if§~((z)

I
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where

T+ _ Lify () (6.21)
o5 t) _ ifz(2)

Here r =0,1,--- ,m—1 is an integer that arises from an argument similar to that of Section
3.2.1.

Finally, we can use the residual freedom in e in (6.19) to further restrict the period-
icity of ex® to ¢of;
TR +lgT) _ if (@) (6.22)

To summarize, the B =0 configurations can be described by A = 0 and transition
functions that are characterized by six circle-valued functions of one variable eifx W) eifk(2),
5@ @) ifz@) and eif2W) | satisfying e/x(© = %0 = ¢ifZ(0) = 1 and with period-
icities ¢, EZH ,or £, as well as a Z,,-valued integer r. These functions are physical and they
contribute to the holonomies.

On a lattice, these lead to 2(L" + L¢™ 4 L) — 3 distinct U(1) phases and one Zj;-valued
integer. (Recall that we label the lattice quantities by upper case letters and their continuum
counterparts by lower case letters.)

The main novelty on a twisted torus is the m configurations labeled by r. Quantum
mechanically, most of these configurations acquire infinite energies [11]. However, these m
degenerate states remain zero-energy states.

Similar to the discussion in Section 3.3, the 3 4 1-dimensional ¢-theory also has m de-
generate ground states. This provides another check of the duality derived in [11] between
the pure U(1) gauge theory of A and the ¢-theory.

6.3 gg— A theory

We now proceed to compute the number of ground states from the perspective of a different
Higgs Lagrangian using a circle-valued field ¢U%) in the 2 of S, and gauge fields (A(i)(j M A )
in the (2,3') of Sy [11,12]. In comparing with the discussion around (6.10), $i0%) = ¢i¢"?"
with charge J = N. These fields are subject to the gauge transformation

~ -

AIGD 416D 4 g 4i0K)
Al A 4 9k (6.23)
R G 4 kD)
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where ¢¢() and @*(9) are 27r-periodic and transform in the 2 of Sy, as in Section 5. The
Lagrangian is:

b (9 gk _ i) L
L= 2(2r) Z Ey (M N4 ) 6(2n)
1#]

Tk(ij 2 k(ij
Z Biij <ao¢k“) - NAO(])) . (6.24)

i#i#k

We can choose the unitary gauge et 0N — 1, and then the equation of motion sets the
B = 0. Following the discussion in Section 6.2, we can choose A = 0, and then all the
. o . . o . 2i(iF)
information is contained in the transition functions e”c’ . In order to preserve the gauge

choice """ = 1, they should be Zy phases. These transition functions are parameterized by
six Zy-valued functions efx®) ¢ifx() 3@ I3E) Gifz@) and ¢if20) | satisfying ¢/x©) =
%O = ¢ifz(0) = 1 with periodicities ffcﬁ, ﬁiﬁ, or £, together with a Zgcq(n,m)-valued integer.

On a lattice, this leads to the ground state degeneracy (6.6).

Of special importance are the ged(N, m) states characterized by

: 2i(5k) ~i(ik s ~#(5k)
O =1, AN = AT =0, &% =1,
1 27 P T
e“fﬁ(yZ) = eng(N "')kr@ (y O‘[z ) s 677%(230) = e_gcd(N,m)TG ((E,O,f; ) s
(6.25)
Aoy ( CH UG DR k@P(y,O,Esz))’
2z (yz) 2y(zz) 2z (zy)

Vs =% = e“cd<N y krOF (2,0,62) ; ez =1 ,

where r =0,1,--- ,gcd(N,m) — 1.

6.4 BF-type Zy tensor gauge theory

Now we consider a dual presentation of the Zy tensor gauge theory [6,12], which will permit
a different computation of the ground state degeneracy. This presentation involves gauge
fields (Ag, Ai;) in the (1,3’) of Sy, and (ANUK) A3) in the (2,3') of S;. These fields are
subject to the gauge transformations (6.2) and (6.7), and their field strengths are (6.4) and
(6.8).

The BF-type Lagrangian in this presentation is:

N (1 L .
i#]
As in [12], we work in temporal gauge, setting Ay = 0 and Af)(jk) =0.

The analysis of the terms involving A,,, A proceeds in a similar way as in Section 4.3.
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The quantization of the electric modes for A, A leads to the bulk part of the spectrum,
which becomes NZ+L"~1 states on a lattice. In addition, there are ged(N, m) states (6.25)
coming from the transition functions of the A gauge theory. On a lattice, we have in to-
tal V L?EH*L;ﬁ"lgcd(N , M) states. We will henceforth focus on the modes associated with
Aup, Ay, A7 AVZ

Yz

The solutions to the Gauss law constraints modulo gauge transformations are

1 1
Azx = zzx(t7 Z) + - ;Ez(t7x) )

l, l,
1 1.

Ayz = f_ 3z(t7y) + E_ yz(tvz) )
z y

) 1. 1. (6.27)
AP = _fzzx(ta Z) + _fafr(ta ZL’) )
gy gy

. 1 . 1 4
AY* = g—fgz(t, [L’) + g—fgz(t, Z) .

xT

eff

ysand 2~z 40,

These functions are periodic in x ~ x + (T y ~ y + ¢

The functions f and f are subject to a redundancy due to the zero modes [12]. To remove
the redundancy of f, we define the following combinations:

(1 2) = f (2 + E—i]{daﬂ (¢, 29) (6.28)

They are subject to the constraint
%dxz Gt ') = %dm” Lt 2. (6.29)

We will use these constraints to solve for the modes fZ (t,z = 0), _;Z(t,z = 0) in terms

of the others. Correspondingly, we use the redundancy to set their conjugate variables
f25(t,z = 0), f¥*(t,z = 0) to zero.

Let us now discuss the periodicities of the modes f. Using the gauge transformations
a of the form (3.28), (5.3), we find that different components of f}; have correlated, delta
function periodicities. To diagonalize these periodicities, we define

- k -

)= S+ ). 6.30
fX( >Z> m yz( 2) + mfZ.L( Z) ( )
Then the modes fZ,(t,z), fx(t, 2), f5(t, @), f2.(t,y) have independent periodicities. For ex-
ample,

fe(t,2) ~ fe(t,2) +2m6% (2, 20,¢.), 2z #0mod £, (6.31)
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for each zy. The other three modes have similar delta function periodicities.

We now turn to the periodicities of the modes f . Their periodicities arise from the large
gauge transformations:

z

)
7 W (y),

1 . T = Y T Y

— &) — [ x YL Y WA — L WA

50 = (£ - XL W) + FWEE) - LW
1 Yy Yy ~ x z xr

= y(zat):_ z g hadl T _~ T _ z
520" = LW+ (L= X)) Wila) = £ W) = W),
1

30 = 2 20+ W) - (L= 007 ) Wit - (£ - &N L) we).
(6.32)

where W;(wl) € Z. We will motivate these gauge transformations in Appendix E where we
discuss the winding configurations of a classical field in the 2 on our twisted torus.

These gauge transformations correlate the integer-valued periodicities of different com-
ponents of f;?. To diagonalize these periodicities, we define

(1)~ (2. (6.33)

Then the modes ng(t, z), ff((t, z), fjm(t, x), fgz(t, y) have independent, pointwise 277 peri-
odicities.

Written in this basis of f and f with independent periodicities, the Lagrangian is diago-

nalized:

off eof

o _ N y A _
dafi ()t o) + o [ dyft nanLiey)
, T Jo (6.34)

2 [ (¥t )00 2t 2) + J2 (1 =)0 (1.2) )

27'[' o+

N

27 Jo

Recall that we have removed the modes at z = 0 using the constraint (6.29) of f and the
redundancy of f. Quantizing these modes on a lattice, we obtain a Hilbert space with
NESHL 2022 yeorg_energy states. Combining with the contributions from A,,, A%, we

reproduce the ground state degeneracy in (6.6).

6.5 Global symmetry operators

We can compute the ground state degeneracy in yet another way, using the Zy symmetry
operators of the theory. As we will see, the twist leads to various novelties that are not
present when the system is placed on the untwisted torus. Even though, as in [12], we will
use continuum notation, this approach is easily related to the corresponding lattice analysis
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using logical operators. In particular, it mirrors the recent lattice discussion in [23].

Let us start with the global symmetry operators depending on A,, and its conjugate
variable A®. This part of the analysis proceeds as in Section 4.4, with e there replaced
by e $ =A™ We find NU"+H" " 1ged(N, M) states.

We now turn to the remaining gauge-invariant operators. The operators built of A,,, A,.
are the Wilson strips:

2
W (o) (21,29, Z) = exp {2/ da:]!dzAzm] ,

Y2 (6.35)
W) (y1,92, Z) = exp {1/ dyj{dszz} )
Y1

and

z2
W) (21, 22, X) = exp {2/ dz]{dxAm} ,

. (6.36)
W, (21, zg,f() = exp {z/ dz?{ (dz A, +dy Ayz)] .
z1 X

(Here, for simplicity, we took 0 < x5 — 21 < E;ﬁ, 0<y—1y < E;ﬁ, and 0 < 2z — 21 < (,.)
More generally, we can study Wilson strip operators W .y(21, 22, C) associated with any curve
C on the twisted xy-torus. They depend only on the homology class of C and not on the
explicit representative. Since {X, X} form a basis of I' = H(T?,Z), every Wilson strip

W .)(21, 22,C) can be generated by (6.36).

The Wilson strips are subject to two constraints, which come from viewing the same
integral in two different ways:

) a0

W) (0,6, ZYW ) (0, 657, 2)F = W, (0,2, X).

» Yy o y Y

Wy (0, 05 7)™ =W ,,(0,£,, X),
@ ) () ) (6.37)

Next, the gauge-invariant operators of A= Av* involve the Wilson lines along the X and
the Y cycles:

Wm(y, z) = exp {z’]{dazﬁyz] ,

W (2, 2) = exp {Z j{ " Am} | (6.38)

The vanishing of the magnetic field of A implies that the Zy symmetry operator Wx(y, z)
factorizes [12]:

T LT

W (y,2) = W, (y) W_(2) (6.39)



and similarly in the other directions

There is one important novelty here, which was not present in the case of the untwisted
torus: the Wilson line operators WI, Wy, W~ do not generate all the gauge invariant oper-
ators constructed out of A. Consider the Wilson strip operators of A [12]:°

13(21, 29,C) = exp {z/ dzj{ (azflyzdx — 9, A% dy — ay/]wydy)] ) (6.40)
21 C

Since the magnetic field of A vanishes, this strip operator P depends only on the homology
class [C] of the curve C on the twisted xy-torus, and not on its representative.

Let us first consider the case when [C] is a cycle of f, i.e., the sublattice of I' generated by
the X and Y cycles. That is, [C] = n, X + n,Y with n,,n, € Z. In this case we can choose
the representative C in (6.40) to first go around the X cycle n, times, and then around the
Y cycle n, times. For this choice of C, the term ayfw in (6.40) does not contribute to the
integral, and the strip operator can be written in terms of the Wilson lines:

A

P(z1,2,C) = W (y, 2)"* W' (2, 2) "W (yy, 1) "= W’ (, 2 )™ . (6.41)

Note that the negative sign in the exponent in (6.40) leads to negative signs in the exponents
here. It is important that because of (6.39) this P(zy, 22,C) is independent of z and y.

However, if [C] is not a cycle in [, then the strip operator f’(zl, 29,C) is not generated
by the Wilson lines. We should then include these operators as independent Zy opcrators
in addition to (6.38). Note that on an untwisted torus, I' = T and therefore it suffices to
study the Wilson lines Wx, Wy, W’

We conclude that the gauge-invariant operator built out of A,,, A,., A= A¥* are gener-
ated by (6.35), (6.36), (6.38), and (6.40). We can group these operators as follows:

W)z, 2 +a,Z), Wy(a:,z: ), 0<a<

(
Wy (yy+aZ), W(yz=0), 0<y<ef (6.42)
W(Z)(z,z—l—a,f(), f’(O,ng), 0<z<{,, '
Wi (z,2+a,X), P(O,z,X)_l, 0<z<dt,.

Here a is an infinitesimal UV regulator, e.g., lattice spacing. Using (6.37), the operators
W (2z,2+a,X) and W(,y(z, 2+ a,X) at z =0 can be solved in terms of W,) and W

)
and therefore they are not included as independent operators in (6.42). The operators W’

6Both the Wilson lines (6.38) and the Wilson strip (6.40) can be extended in time to become defects in
the Zy theory. They are the continuum representations of the probe limits of a single lineon and a dipole
of lineons (which is a planon) of the X-cube model, respectively. See [12] for more details.
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and W’ at z > 0 can be generated by those at z = 0 and P(O,Z,X),P(O, z,f()_l.

The pair of operators at the same point in space in each line in (6.42) form a Zy clock
and shift algebra, and operators at different points in space or on different lines in (6.42)
commute with each other. On a lattice, this gives rise to LT + Lzﬁ + 2L, — 2 copies of the
Zy clock and shift algebra. The dimension of the minimal representation of this algebra is
NLEH+LF+2L:=2 - Combining with the contributions from the operators of Ay, A% we have
reproduced the ground state degeneracy (6.6).
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A 2+ 1 dimensional plaquette Ising model

In this appendix, we compute the ground state degeneracy of the 2 + 1-dimensional Zy
plaquette Ising model on our twisted lattice. We will assume the absence of the transverse
field and that we are in the broken phase. The low energy limit of this lattice model is the
Zy tensor gauge theory of [10].

We will analyze the model in the Hamiltonian formalism. On every site (Z, ) there is a
pair of Zy clock and shift operators U(%, 9), V (&, 9) that obey V (2, 9)U(%,9) = e*™/NU(2,9)V (2, 9)
and U(z,9)Y = V(2,9)N = 1. The Hamiltonian is

H=-3Y V(@jnVE+19) V(E i+ ) VE+1Li+1) +cc. (A1)

(2,9)
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Since there is no U in the Hamiltonian, we can diagonalize the Hilbert space at every site
using V.

Let the eigenvalue of V (2, 9) be s(&, 1), which is also a Zy phase, i.c., s(z,9)" = 1. The
translations along the X and X cycles imply that (see (2.31))

X: s+ ML, ) =s(2,9),

- A2
X:s(@+ KL, g+ L) = s(,9) - (A2

Let us find the ground states. We need to find {s(Z, )} subject to the constraint:
s(@,9) s+ 1,9) " s(@ 9+ 1) s(@+ Ly +1) =1, (A.3)

for all lattice sites (#,¢). This is a lattice version of the analysis of €™ in Section 4.4. We
will follow steps similar to the steps there and will reproduce the answer in the continuum

(4.8).
Locally, (A.3) is solved by

s(@,9) = s(1,1)7s(2,1)s(1,9) (A.4)

thus reducing the number of independent variables to L, + LZH — 1. Next, we impose the
boundary conditions (A.2):

s(&4+ ML, 1) = s(2,1),

A5
s(24+ KL, 1) s (1, 5+ LT) = s(2,1)s(1,9) . A9

This leads to
s(@+ LT 1) = ns(,1)
s(Lg+ LN =n""s(1,9)

with a constant 7 satisfying ™ = n"¥ = 1 and therefore nged®.M) — 1,

(A.6)

We conclude that the independent solutions are labeled by Lef + LZH — 1 integers modulo
N from s(#,1) and s(1,7) and an integer modulo ged(N, M) from 1. So we end up with

NESHLT1 o d(N, M) (A.7)

solutions.
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B Invariants of the transition functions for ¢ on a two-

torus

In this appendix, we discuss the invariants for the transition functions ge(z,y) under the
identification (3.13). Our goal is to show that all the invariants are given by the U(1) charges
Q*(z), Q(y) in (3.14) (subject to (3.15)), and one integer modulo m charge (3.16).

Starting with a generic ¢ configuration, we can always subtract from it a standard con-
figuration with the same U(1) charges. The resulting ¢ configuration has vanishing U(1)
charges. Therefore, it is enough to consider such configurations. We are going to show that
for them the only remaining invariant is a Z,, charge. This means that we start with a
configuration with

9x = 27‘(’71?( (:E ) )
gy = 27l (y)

and ng, = 0. Since there is also invariant information in g, we should take it into account.

(3.9) leads to

(B.1)

m—1
nd(y) = n%(y+IEH - N,
I=0

. . (B.2)
0=N = nk(z—Jml" +> n%(z— Ik,
J=1 I=1
for some integer . The cocycle condition (3.10) leads to
n% (z +ml) —n% (z) = n% (v + k€T — n%(z). (B.3)
The freedom in splitting the zero mode between n% (z) and n'%(y) leads to the following
identification ) )
ng(x) ~n%(z) + N,
n(y) ~n%(y) — Ng (B.4)
N ~N —mNyg
Therefore, only
2Mi 2mi o
exp(2miN /m) = exp [_W Z n’% (x — ITke") + g Zn?(w - Jmé';,ﬁ)]
=1 J=1
2mi T 2mi e (55
= exp [——Zn%(m#—[ﬁiﬁ)ﬁ-ﬁ n%(x—kJEff)]
1=0 J=0
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is meaningful. In the second line, we have used (B.3). Indeed, this agrees with the Z,, charge
in (3.16) in the special case when all the U(1) charges Q*(z), Q¥(y) vanish.

To complete the counting, we use the same strategy as above. We subtract from our
configuration a standard configuration with the same nonzero Z,, charge and find a config-
uration with vanishing 7Z,, charge. We are going to show that in this case there is no other
invariant information.

Using (3.13), we can choose n%(z) = n’ (y) = 0. Then (B.2) implies n3.(y) = 0 and

k

0= Znﬁ(z — Jmeemy. (B.6)

J=1

The only remaining transition function n% (x) has periodicity n% (z + k¢¢T) = n% (r) and is
subject to a residual identification:

n%(z) ~ n%(x) + n"(z + mﬁfcﬂ) —n®(x), (B.7)

where n”(z) satisfies
n®(z + kT = n?(2). (B.8)

Finally, we show that the remaining transition function n% (z) can be set to zero as
follows. Since ged(m, k) = 1, we can parameterize every point x as z = & — Rm/°T + Pk(et
for some 0 < 7 < /¢" and R, P € Z. This parametrization of x in terms of (%, R, P) has the
ambiguity (%, R, P) ~ (Z, R+ k, P —m). Using this parametrization, we choose n*(x) to be

n'(z) ==Y 0% (@ —Iml). (B.9)

I=1

The condition (B.6) ensures that this n”(z) is invariant under the above ambiguity and
has periodicity &¢¢T. This residual identification then removes all the remaining transition
functions.

To conclude, we have shown that all the invariant information in the transition functions
is captured by Q*(x),Q¥(y) in (3.14) and one Z,, charge (3.16).

C Additional operators in the ¢-theory

In this appendix, we discuss some additional operators in the ¢ theory. These include the
U(1) charges Q*(x), Q¥(y) (3.14) and the Z,, charge (3.16).
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We start with a first attempt. We want to use the local winding current %amaygz) to
construct an operator by integrating it against a certain profile function ¢g(z,y):

7

“exp [2— ¢o(7,9)0:0,¢(x,y) |7 (C.1)
™ J72

Here ¢y(x,y) is another classical background configuration, which is distinct from our field

¢(z,y). (For the purpose of this discussion, our field ¢(x,y) is also a classical field.) Both

¢o and ¢ obey the rules in Section 3.

This definition, however, is not precise. First, since both ¢ and ¢ are not real-valued
functions on the torus, the integral generally depends on the choice of the fundamental

domain for the torus. Second, this expression is not invariant under the gauge transformation
(3.4) for ¢o.

In the rest of this appendix, we will give a precise definition of this operator that does not
suffer from the issues above. See [34] for a closely related discussion in other more familiar
models.

For simplicity, we will set (T = é‘f = 1 in this appendix.

We claim that the more precise version of the operator (C.1) is

i Yst1 Tv+ky+m
o =esp [y [y [ dwon(e0)0.0,6(0.0)
e &

i Zo+kys+m 0
T Jztkys (0.2)
y*+1

— i ds [g% (&« + ks, 5)0,0(Ts + ks, s) + kO, g% (Tu + ks) §(Z. + ks, s)]
Y=

where T, = =, — ky,. In the first line we have picked the fundamental domain in the covering
space to be a parallelogram with the lower left corner at (x.,v.). Here g3 is the transition
function for ¢g along the cycle C and

1 1
ny; = 7 (% (@ + k,y+1) — g% (z,y)] = 7 (9% (x +m,y) — g% (z,y)] . (C.3)

Recall that because of (3.5), 0,4% (and similarly d,gx) is a function of one variable.



Alternatively, this operator can be written as

i ys+1 Tx+ky+m
o =exp [y [y [ dwon(w.0)0.0,0(0.0)
T Jy. Futky
,L' Tsx+kys+m 0
27 Ty +kys
7 Yxt1

+ - ds [g% (Zs + ks, 8)k0, (T + ks, 5) + 0yg% (s) d(Ts + ks, 5)] }
Yx

In the special case of an untwisted torus, & = 0,m = 1, and this operator reduces to

7: Tx+1 y*+1 ’
U =esp [y [ de [T dyon(e.)2.0,0(0.0)
T Je., Ys
7 Yxt+1

i Tx+1
Ao (@ n)0oleny) = 5o [ deghepiotey) (O

2 ys

It is straightforward to check that this operator satisfies the following properties:

e It is independent of the reference point (z.,y.).

e [t is symmetric under exchange of ¢ and ¢.

It is invariant under the gauge transformation of ¢g:

do(,y) ~ ¢o(x,y) + 2mng(x) + 2mng(y)

ni(z),ni(y) €Z. (C.6)

Since this operator is symmetric in ¢ <> ¢q, it is also invariant under the gauge trans-
formation of ¢:
oz, y) ~ ¢(x,y) + 2mn®(x) + 2mn?(y) ,

n®(z),n’(y) € Z. (G7)

If 0,0,¢0 = 0, the operator U(¢y) depends only on the transition functions of ¢, where
we have used the second property above. Therefore, it is a conserved operator in the
¢-theory.

When proving some of these statements, we drop integers of the form [ dag(x)d,n(x) for
some integer-valued functions g(z),n(x) in the exponent of U(¢y).



We are now ready to discuss the most general conserved winding charges, which are U (¢y)
with 0,0,¢9 = 0. As discussed in Section 3.2.1, the most general such ¢, takes the form

do= L (0 (2,0,1) — KO (4,0,1)) + f*(x) + f'(y) (C.8)

m
with r an integer modulo m and f'(z* + 1) = fi(x").

The most general winding charge is therefore

. om—1 . k-1
Ulgn) =exp [ = =37 g (1,0) + 2 3 gx(J,0)]
mIs M= (C,g)

cowp i f o @)@ () +i § duP Q0]

where we have set x, = y, = 0 for simplicity. We have thus unified the U(1) charges (3.14)
and the Z,, charge (3.16) into a single general winding operator U (¢py).

The analogous operators associated with the momentum symmetry of ¢ can be described
using the dual field ¢*¥. (See [10] for details on the self-duality of the ¢-theory.) More
explicitly, these operators are given by (C.2) with ¢ replaced by ¢™¥. They shift ¢ by ¢.

D Wilson operators of the Zy theory

In this appendix, we construct the most general gauge-invariant Wilson operator in the ¢ — A
presentation of the 2 + 1-dimensional Zy gauge theory on a twisted torus. For simplicity,
we will set /e = E;ﬁ = 1 in this appendix.

We follow a reasoning similar to that in Appendix C. We start with a background profile

circle-valued function ¢q(z,y) and attempt to define

iN
“exp {—% Po(z,y)Agy(x,y) |7 (D.1)
T2

However, such an expression is generally not gauge-invariant, and depends on the choice of
the fundamental domain of the torus.

To remedy these issues, we define the following operator in a similar spirit as in Appendix



Yx+1 Ty +ky+m
U(po) = exp / dy / dz ¢o(x,y)Asy(z,y)

«+ky
i Tatkys+m 0
- dxg~(:€,y*)ax¢(37:y*)
2 % (D.2)
y*+1

7
2

+ iny; ¢(Z. + ky., y*)}

ds [g% (s + ks, 5)0,0(Z, + ks, 5) + kO, g% (T + ks, s) ¢(Z. + ks, 5)]

When the equation of motion A,, = %axﬁygb is imposed, it becomes the operator U(¢y) in
the ¢-theory (C.2). A similar calculation shows that U(¢g) is independent of the choice of
the reference point x,, y.. For simplicity, we will set 2, = y. = 0 from now on.

It is clearly invariant under ¢ ~ ¢ + 2wn*(x) 4+ 2mn¥(y). Under a gauge transformation
¢~ ¢+ Na, Ayy ~ Ayy + 0,0y, this operator picks up a factor:

’LN Yxt1 Ty +ky+m
exp / dy/ dz a(x, y)0,0,¢0(x, y)

*+ky
iN Tx+ky«+m

R dﬁL’goﬁ (x,y*)6x¢0($ay*)
27 Fatky. * (D.3)
iN [t

~ o ds (9% (T« + ks, 8)0ypo(Zs + ks, s) + kO, g% (T+ + kS, S) po(Ts + ks, 5)]

N0 G0 + ke, )|

where g¢ is the transition function and ng; is similarly defined . The condition for U(¢y) to

be gauge invariant is

N
0:0y¢0 = 0, 2;% €Z. (D.4)
On top of these conditions, ¢y should still have 27Z-valued transition functions. As discussed

in Section 4.1, the most general such ¢, takes the form (4.3).

We now discuss several important examples of U (¢y):

e Consider
2T

Go = N (@P(%yl, 1) — @P(?J;y% 1)) . (D.5)

(Here, for simplicity, we assume 0 < ys —y; < 1.) This gives the Wilson strip operator



(4.28)
Wi (51 2) = exp {z /y y dy ]f dxAxy(a:,y)} | (D.6)

There is a similar choice of ¢ giving the Wilson strip that is extended along the y
cycle. They generate the Zy dipole global symmetry of the Zy gauge theory.

e As another example, we can take ¢, to be:

21

ced oy (07 @:01) — 7 (5,0,1)) (D.7)

¢o =
This leads to the Zgcq(nv,m) operator in (4.29):

ky-i—m
U —eXp / dy/ z (07 (2,0,1) — kO (y,0,1)) Ayy(z,y)
ng ky

(D.8)

— m/o dsaygzﬁ(k:s,s)] :

Note that the first integral has no support in the rectangle t — 1 < x < k,0 <y < 1.

We have therefore unified the most general Wilson operators built from A and ¢ into
U(¢o) with different choices of ¢y obeying (D.4). On a lattice, we have L& 4 LT — 1 Wilson
strip operators W ;) (4.28) and one Zg.q(n,u) operator U (4.29).

E Winding configurations of qAb

In this appendix, we place classical circle-valued fields (5"(9"“) in the 2 of Sy on a twisted
three-torus. This, for example, is the quantum field of the ¢-theory of [11]. In contrast to
the parallel analysis for ¢ in Section 5, we will see that, on a lattice, there is no new winding
charge beyond those labeled by the 2( L + L;ﬁ + L,) — 3 integer winding charges.

The ¢-theory is dual to the 3 4+ 1-dimensional U(1) gauge theory of A [11], where the
winding charges of q% are mapped to the electric charges of A. Similar to the analysis of the
transition functions in Section 4.2, there is no new electric charge in the 3 + 1-dimensional
gauge theory of A beyond those labeled by the 2(LT + Lgﬂ + L.) — 3 integers. Hence, the
computation in this appendix provides another check of the above duality.

Furthermore, the gauge parameters ‘%) of the gauge field Ain [11,12] are also in the 2 of
S4. The winding configurations in this appendix were used as the large gauge transformations
(6.32) in the gauge theory of A in Section 6.4.

<t
<t



We now proceed to analyze the winding charges of (;Aﬁi(jk). The winding charges obey
0;0;Q%(x',x7) = 0 with i # j # k and can be expressed as

@(0:2) = 5 P dadu 6 = W)+ WC2),
QY (2, 2) — % 7{ dyd, 3= = W2 (2) + W () (E.1)
@ (o) = 57 § 0.6 = Wia) 4 W2y).
where W!(2") € Z. Pairwise they share a common zero mode:
(Wia"), Wi(a?)) ~ (Wi(z') + 1, W} (') — 1) (E.2)

Since ()’s are single-valued integer operators on the torus, the discussion in Section 3.2.1
implies that W (z + 67) = Wi (z), W/(y + 67) = W(y), Wi(z+ L) = Wi(2).

However, these integers are not all independent. To see this, consider the following
combination:

oWy (2) = (X, Y)0.W;(2) =0.Q" — (X,Y)0.Q"
R X . E.3
:i@z % dyay¢y(zm) _ m—w@]{dxam(pz(y@ ) ( )
27 27

We start by showing that the last expression can be rewritten as
. 1 L .
Q"(Y) = 3-0. j[ (8m<by(‘a’)dx + ayd)y(“)dy) , (E.4)
T Je

where C is any curve homologous to Y = mX =Y + (X, V)X (2.9). Note that (E.4) only
depends on the homology class of the curve C, but not the explicit representative. For any
cycle S, the charge Qy(S) computes the derivative of the winding charges of éy(”) along S
and takes the form

va 2,2y, 0.), ny€Z. (E.5)
Let us choose C to be a curve that first goes around the Y cycle once and then goes
around the X cycle (X,Y) times. With this choice, we can write Q¥(Y) as

1
om

= 7{ dyazangy(zw) _ M ]{d$awazagw(y2)
2r 2m

o6

QYY) = ]{ (a 8,0" ) dy — 8,00 dx — 9,0,¢°Y dx)



In the first line we used ng(yz) + &y(”) + ¢*@¥) = (. In the second line we used the fact that
0,07 is a single-valued operator, and therefore 9,0.¢**¥)dy does not contribute to the
integral along C, which is always aligned with the x or the y axes. We have thus shown that

0.W;i(2) — (X, Y)0.W;(2) = Q"(Y) = mQ"(X) . (E.7)
Therefore, from the general form of the charge Qv (E.5), we arrive at the constraint:

OW;(2) = (X V). Wi (2) =m )y M0 (2,2, L), (E.8)

Y

for some integers M., € Z. Using (2.13), this constraint is equivalent to

O.WE(z) — (Y, X)0.WZ(z mZM’éF 2,29, L2) (B.9)

for some integers M’ € Z.

We summarize that the winding charges of (ﬁi(jk) on a twisted torus are parameterized
by Wi(2") subject to the constraint (E.8) and the redundancy (E.2). On a lattice, we have
2(Lef + Lgﬂ + L) — 3 such integers.

Below we present the explicit winding configurations of (Z)“j k) that realize all these charges.
For convenience, we will use (E.2) to gauge fix W7 (z = 0) = Wi (2 = 0) = W (zx =0) =0
below.

The most general winding configuration is

1 - Y x Y o
= Arlyr) — 2y 20\ _ W3~ — 2 WY
07 = W)+ W)~ W)~ W)
1 - Y x z x
= gyler) — L E il v 1 _ T " z
30" = LW )+ W) = WE @) = - WEGR), (E.10)
1 - z z ]
= gz(wy) 2 z Y _ Y we _ 9wy
507 = L W) W) - W) — ).
where ‘
T = <Y X>€
. (E.11)
j=z—(X, Y) oy
y

These coordinates are shifted by (z,7) — (Z — (Y, X),, 5+ () along the X cycle, and are
shifted by (Z,9) — (Z + (X, Y),, §) along the X cycle.



Let us check that the transition functions are 27Z-valued. The transition function around

the Z cycle is:
g = —2mW(y),

gy = —om Wi (),
G = 2mWE () + 27 W (y).

The transition function around the X cycle is:

G = 2n WY (y) + 2nWE(2)
G = —2m(V, X)Wy (x) — 27 W (2)
G = 2 (Y, X)W () — 2nW¥(y) .

Finally, the transition function around the X cycle is

2(yz XY) . 1.
g = QW%W:C (2) = 21— W (2)

y(zx YRV, T X’Y z 1 z
g;é ) = 20 (X, Y)W (z) — 27r< - >Wx (z) + QWEWZ/ (2)

i7" = —2m(X Y)W ()

(E.12)

(E.13)

(E.14)

In the gauge choice W7 (z = 0) = W7 (z = 0) = 0, (E.8) is equivalent to —(X,Y)WZ(2) +

Wi(z) € mZ. Hence, all these transition functions are indeed 27Z-valued. The cocycle

conditions are trivially satisfied since all the transition functions are single-valued.
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