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ABSTRACT: It is widely believed that consistent theories of quantum gravity satisfy two
basic kinematic constraints: they are free from any global symmetry, and they contain
a complete spectrum of gauge charges. For compact, abelian gauge groups, complete-
ness follows from the absence of a 1-form global symmetry. However, this correspondence
breaks down for more general gauge groups, where the breaking of the 1-form symmetry
is insufficient to guarantee a complete spectrum. We show that the correspondence may
be restored by broadening our notion of symmetry to include non-invertible topological
operators, and prove that their absence is sufficient to guarantee a complete spectrum
for any compact, possibly disconnected gauge group. In addition, we prove an analogous
statement regarding the completeness of twist vortices: codimension-2 objects defined by
a discrete holonomy around their worldvolume, such as cosmic strings in four dimensions.
We discuss how this correspondence is modified in various, more general contexts, including
non-compact gauge groups, Higgsing of gauge theories, and the addition of Chern-Simons
terms. Finally, we discuss the implications of our results for the Swampland program, as
well as the phenomenological implications of the existence of twist strings.
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1 Introduction

Although the landscape of quantum gravity theories may be vast, certain features seem to
be universally true of all such theories. One such feature is the absence of global symmetries,
including p-form global symmetries, for which the charged operators are supported on
manifolds of dimension p [1]. Another such feature is completeness of the spectrum — the
presence of particles (or multiparticle states) transforming in every representation of the
gauge group [2]. Compelling evidence for the absence of global symmetries in quantum
gravity has been given in [3—10], while arguments for completeness of the spectrum — also
known as the “Completeness Hypothesis” — were provided in [5, 6].

It has often been remarked that the absence of global symmetries and completeness
of the spectrum are related to one another. Although the motivation for these two con-
jectures comes from gravity, their relationship is a purely field theory statement that can
be studied in the context of effective quantum field theories, without committing to a
particular UV completion.! In what follows, we will make this relationship precise in the

!Statements similar to ours have been discussed in the framework of algebraic QFT in [11]. In some
cases, the underlying assumptions made there are significantly stronger than ours. Our arguments apply
quite generally, for example, to EFTs (independent of their UV completion or lack thereof) or to TQFTs.



pure gauge theory of a connected, compact gauge group G: such a theory has a 1-form
“electric” global symmetry, with symmetry group given by the center Z(G), whose charged
operators are Wilson lines. Such a symmetry is characterized by the presence of topological
codimension-2 operators Uy, each labeled by an element g € Z(G), which fuse according
to the group multiplication law:

Ug X Ug/ = Ug// , g// = gg/ (11)

This 1-form symmetry is explicitly broken to a subgroup in the presence of charged matter,
and we show that it is broken completely if and only if the spectrum is complete. Thus,
in such a theory, absence of the 1-form electric symmetry is in 1-1 correspondence with
completeness of the spectrum. Note that this statement applies to both quantum field
theories as well as quantum gravities.

However, this correspondence between the absence of global symmetries and complete-
ness does not hold in general, as pointed out in reference [6]: a finite, nonabelian gauge
group G, such as S4, may have a trivial center, so it does not have a 1-form electric sym-
metry even if its spectrum is incomplete. Nonetheless, there is a generalization of the
no global symmetries-completeness correspondence that applies to finite gauge groups [12]:
completeness of the spectrum is equivalent to the absence of certain codimension-2 topolog-
ical operators, known as Gukov-Witten operators [13, 14], which are labeled by conjugacy
classes of G. If G is abelian, these Gukov-Witten operators generate the 1-form electric
global symmetry. But if G is nonabelian, they satisfy a more complicated fusion algebra
than the one of (1.1), and in particular not every topological Gukov-Witten operator will
have an inverse. In this sense, we might say that completeness of the spectrum is in 1-1
correspondence with the absence of non-invertible 1-form electric global symmetries, which
are characterized by the presence of topological, non-invertible codimension-2 operators.

In this paper, we will see that a similar story applies to all compact gauge groups:
completeness of the gauge theory spectrum is equivalent to the absence of (possibly non-
invertible) 1-form electric global symmetries. When G is connected, finite and abelian, or a
simple direct product of a connected group with a finite abelian group, the electric 1-form
symmetry is an ordinary, invertible symmetry. But when G is finite and nonabelian, a
nontrivial semidirect product of an abelian group with a connected group, or a product
of a nonabelian finite group with a connected group, the electric 1-form symmetry will be
non-invertible.

One example of the latter case is O(2) ~ U(1) x Zy gauge theory, which can be thought
of as U(1) gauge theory with the Zy charge conjugation symmetry gauged. We will study
this theory in detail, and we will see that the pure gauge theory has a non-invertible 1-form
symmetry with a continuous family of non-invertible topological codimension-2 operators.
In the presence of charged matter, this continuous non-invertible global symmetry may be
broken to a discrete, non-invertible “subgroup.” If the spectrum is complete, it is broken
entirely, and there are no topological Gukov-Witten operators whatsoever. For general
compact gauge groups, we prove the following statement:



Statement 1: Electric completeness vs. topological Gukov-Witten operators

Consider a gauge theory with compact gauge group G coupled to a set of matter fields
transforming in representations of G. Then the theory is electrically complete (i.e.,
states exist transforming in all possible representations of G) if and only if there are

no topological Gukov-Witten operators in the theory.

This correspondence breaks down in the case of noncompact gauge groups, however: R
gauge theory may have an incomplete (albeit dense) spectrum of states without any topo-
logical Gukov-Witten operators.

One objection to discussing completeness for nonabelian gauge groups is the possibility
of confinement. In a confining gauge theory, all asymptotic particle states in flat space are
neutral under the gauge symmetry, and so the sense in which charged states exist must be
clarified. Relatedly, the statement of completeness relies on “the” gauge group, which is not
a duality-invariant notion. In reference [6], this was resolved by restricting to completeness
for “long-range gauge symmetry,” a distinct physical concept that is manifestly duality
invariant, but which excludes confining gauge theories. Since we would like to discuss
confining gauge theories, we need a different definition.

Our definition of completeness is that a charged state “exists” if the corresponding
Wilson line operator may end on a charged point operator, which we think of as creating
the charged state (see [12] for related discussion). Equivalently, the charged state exists in
the defect Hilbert space on S%! with an insertion of a defect Wilson line at a point. In a
confining theory, the energy of such a state will diverge as the volume of S¢! grows, but
the existence of such a state on a finite volume sphere shows that the theory kinematically
includes charged states, even if they are dynamically confined in the IR. This definition
may be made duality-invariant by requiring such states not only for Wilson lines, but for
every line operator in the theory, a notion referred to as total completeness [12].

A similar story plays out on the magnetic side of things: continuous gauge groups
feature 't Hooft operators of dimension d — 3, whose topological classes are labeled by
elements of m1(G)/70(G), where an element of mo(G) acts on a path in 71(G) via conju-
gation.? If the action of mo(G) is trivial, then there is a magnetic (d — 3)-form symmetry
with group m1(G)Y, the Pontryagin dual group of 71(G). This symmetry group is broken
in the presence of dynamical, magnetically charged objects of dimension d — 3 (monopoles,
in four dimensions), and it is broken completely if and only if the magnetic spectrum is
complete. If mo(G) acts nontrivially on 71(G), however — as in the case of O(2) gauge
theory — the magnetic (d — 3)-form symmetry will be non-invertible.

In addition, whenever 7o(G) is nontrivial, there will be a (d — 2)-form, possibly non-
invertible global symmetry generated by topological Wilson lines, which are in 1-1 cor-
respondence with representations of mo(G). In this paper, we will not prove any general
statement regarding the magnetic non-invertible (d — 3)-form symmetry, but instead focus
primarily on the latter (d — 2)-form symmetry generated by the Wilson lines. The charged
operators under this (d — 2)-form symmetry are the Gukov-Witten operators themselves,

2Note that o (GQ) is a group, with the group structure descending from the multiplication in G.



and the symmetry will be broken in the presence of certain dynamical (d — 2)-dimensional
objects, which we will refer to as “twist vortices.” The global symmetry is broken entirely if
and only if the spectrum of twist vortices is complete. Again, we prove a general statement:

Statement 2: Twist vortex completeness vs. topological Wilson operators

Consider a gauge theory with compact gauge group G coupled to a set of dynamical
twist vortices, which give rise to a holonomy when a charged probe particle circles
them. Then the spectrum of twist vortices is complete (i.e., multi-vortex states of all
allowed charges exist) if and only if there are no topological Wilson line operators in
the theory.

In quantum gravity, it is natural to suspect that all such global symmetries — including
non-invertible global symmetries — are broken. 1-form electric global symmetries may
be broken simply by adding weakly-coupled charged matter in every representation of the
gauge group, while the (d—2)-form and (d—3)-form magnetic global symmetries require the
existence of magnetically-charged objects of appropriate dimension. One way to produce
these objects within Lagrangian effective field theory is to un-Higgs the gauge group G to a
larger gauge group G. If G is connected, then m(G) is trivial, and the (d—2)-form (possibly
non-invertible) global symmetry will be broken completely. If G is simply connected, then
71(G) is also trivial, and the (d — 3)-form magnetic global symmetry will also be broken
completely.

The relationship between completeness and the absence of 1-form electric global sym-
metries is modified in the presence of nontrivial Chern-Simons terms. These terms mix
various electric and magnetic higher-form global symmetries into a single structure known
as a “higher-group” global symmetry [15-17]. In simple examples, such as U(1) gauge the-
ory with a BF-coupling or a §F A F' coupling, we will see that this mixing can destroy the
simple relationship between completeness (or magnetic completeness) of the spectrum and
the absence of electric 1-form global symmetries (or magnetic (d — 3)-form global symme-
tries). However, the relationship between the endability of all extended operators and the
absence of any topological operator persists in the presence of these Chern-Simons terms.

The remainder of the paper is structured as follows: in section 2, we review the notion
of a p-form global symmetry, topological operators, and the linking and fusion of such
operators in pure gauge theories. In section 3, we establish a relationship between com-
pleteness/magnetic completeness and the absence of ordinary, invertible electric/magnetic
global symmetries for compact, connected gauge groups, illustrating our results in U(1) and
SU(N)/Zx gauge theory. In section 4, we review the relationship between completeness
and the absence of non-invertible global symmetries for finite gauge groups, illustrating
our results in S3 gauge theory. In section 5, we extend this result to general compact,
disconnected gauge groups, and we examine the non-invertible global symmetries of O(2)
gauge theory in depth. In section 6, we consider noncompact examples of R gauge theory
and Z gauge theory, showing that the relationship between completeness and the absence
of global symmetries breaks down in these cases. In section 7, we examine how (non-



invertible) electric and magnetic global symmetries behave under Higgsing, and we show
how these symmetries can be broken by un-Higgsing to a larger gauge group. In section 8,
we study how Chern-Simons terms affect our results. Finally, we end in section 9 with
conclusions and remarks on how our results fit into the larger Swampland program, as well
as the phenomenological implications of twist vortices.

2 Topological operators in gauge theories

In this section, we review aspects of topological operators and higher-form symmetries,
both in the general setting and in the special case of gauge theories. In particular, we
review the notions of Wilson operators and Gukov-Witten operators in gauge theories, and
derive the conditions under which these operators are topological in pure gauge theory.

2.1 Higher-form symmetries and topological operators

As discussed in [1], a p-form global symmetry is characterized by the presence of “charge
operators” Ug(./\/l(d_p_l)), also known as symmetry generators, each of which carries sup-
port on a closed manifold M(@P=1) of codimension p + 1 and is labeled by an element g
of the symmetry group. These operators fuse according to the group multiplication law,
namely,

Ug(MUP=1) 5 Uy (MU0 = U (M2 g = g4 (2.1)

In particular, every symmetry generator U, has an inverse, given by U, L= Ug-1, such
that Uy X Uy,—1 = 1, the identity operator. Thus, we say that these symmetry generators
are invertible. They are also topological in the sense that small, continuous deformations
of M(@=P=1) o not affect any physical observables provided M(@—P=1) does not cross any
charged operators in the deformation process.

Symmetries are associated with Ward identities. In the language of these symmetry
generators, the Ward identity says that a symmetry generator Uy (S (d*pfl)) supported on
a sphere surrounding a charged operator V(C(p)) in some representation py of the global
symmetry is equal to the charged operator itself multiplied by py (g), the action of g in the
representation py:

Uy (S*P~1)V(CP) = py (g)V (C). (2.2)

When the global symmetry group is abelian, which is necessarily the case when p > 1,
pv(g) is simply a phase. The Ward identity can be understood as the result of shrinking
the sphere S“P~1 to zero size on the operator V; such a shrinking is allowed due to the
topological nature of the operator.

Not all topological operators are associated with global symmetries of the type con-
sidered above. Rather than satisfying a fusion algebra of the form (2.1), a more general
topological operator of dimension d — p — 1 may satisfy a fusion algebra of the form

T, (M=) 5 Ty M=) = ST NG T (M) (2.3)

for some integer coefficients N¢,. In particular, if T, and T} are symmetry generators,
the sum on the right-hand side is given by a single term with coefficient 1, but for a



more general topological operator this is not the case. Relatedly, a general topological
operator T, is not necessarily invertible: there may not exist any topological operator T
such that T, x T} is equal to the identity. In this paper, we will refer to a set of such non-
invertible topological operators which is closed under fusion, along with their associated
fusion algebra, as a non-invertible global symmetry. This notion has appeared before in the
context of 2-dimensional CFTs (see, e.g., [18-23]) as well as more general condensed matter
systems (see, e.g., [24-27]) under various other names, including algebraic higher symmetry,
categorical symmetry, and fusion category symmetry, referring to the more complicated
fusion algebra (2.3).

These more general topological operators may link with a “charged” operator V(C(p))
of dimension p, generalizing the Ward identity of (2.2):

T,(5%7 ")V (e®) = By (a)V(CW). (2.4)

Here, By (a) is a linking coefficient.?> We say that the operators T, and V link nontrivially
when By (a) # Bi(a) where Bi(a) is the linking coefficient with the identity operator (in
particular, By (a) = 0 is nontrivial linking!). Like the equations above, this should be
understood as an operator equation, valid within general correlation functions provided
that there are no other operator insertions that link nontrivially with S~ or C(?). As
before, this can be understood as the result of shrinking the sphere S4P~! to zero size on
the operator V. Note that (2.4) will lead to constraints on correlation functions of charged
operators, similar to the case of an ordinary symmetry, although the non-invertibility and
more complicated fusion algebra (2.3) will lead to qualitative differences.

We will refer to Bi(a) as the quantum dimension of the operator T, dim(7}).* This
nomenclature originates from the literature on nonabelian anyons in (2 + 1)d TQFTs (see,
e.g., the review [28]). Anyons are inserted by line operators and, because a system with n
anyons is protected by a gap, the dimension of the Hilbert space d,, is well defined. The
quantum dimension is the asymptotic value of d,, /n as n — oo, and it is not necessarily an
integer. In this paper, we consider an analogous concept in d dimensions.

Quantum dimensions multiply under fusion and sum under addition of surfaces:

dim(7T, x Tp) = dim(T,) x dim(T) (2.5)
dim(7T, + Tp) = dim(T,) + dim(T). (2.6)

Note that the trivial surface operator has quantum dimension 1, and in fact so does any
invertible operator, including charge operators for p-form symmetries.

So far, we have been considering the charged operator V(C(p)) defined on a manifold
CP) without boundary. Suppose now, however, that V(CP)) may be defined on a manifold
C®) with boundary. This is not always possible in a given theory; if it is, we say that the

3In principle, one might imagine that By (a) could be a matrix, but in every case we study it is simply
a number.

4For operators of higher dimension, there are multiple notions of quantum dimension one could construct,
corresponding to different topologies of the support of the operator, and which do not obviously agree. We
thank Meng Cheng, Ryan Thorngren, Xiao-Gang Wen, and Xueda Wen for discussions on this point.
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Figure 1. Endable operators and topological operators. If a dimension p charged operator V(C®))
can end, a topological operator T,(S? P~!) surrounding it may be shrunk to a point, yielding a
factor of By (a) (left), or it may be unlinked, yielding a trivial factor By(a). This means that if T,
does not satisfy By (a) = Bi(a), then it cannot be topological whenever V (C®)) is endable.

operator V is endable. If a topological operator T,(S?~P~1) surrounds an endable operator
V(C®)) supported on some manifold C'?) with boundary, T,(S%?~!) may be either (a)
shrunk to a point, yielding a factor of By (a); or (b) unlinked from V and then shrunk to
a point (see figure 1), yielding a factor of Bj(a). This implies By (a) = Bj(a), or in other
words, any endable operator must link trivially with any topological operator. If T, = U,
is an invertible operator, we learn that any endable operator of dimension p cannot carry
charge under a p-form global symmetry. This relationship between endability of V' and the
topological nature of T, will show up repeatedly in what follows.

Finally, note that the property of being endable is closed under fusion: given two end-
able operators Vi (C (), V5(C®) supported on a manifold with boundary C?), we may fuse
them to form a new endable operator V3(C?)). Similarly, the property of being topological
is also closed under fusion: if two surfaces T, and 7} are topological, their fusion T, x Ty
will be as well.

2.2 Wilson operators and Gukov-Witten operators

We will illustrate the above abstract discussion with examples arising in gauge theories:
Wilson operators and Gukov-Witten operators. By gauge theory, we mean a quantum field
theory defined by a path integral over connections for some Lie group G,° with the Yang-
Mills action (in particular, some of our arguments must be modified for Chern-Simons
theories). Wilson and Gukov-Witten operators may or may not be endable, and they

5For us, Lie groups include discrete groups, as they are Lie groups of dimension zero. For discrete groups,
the Yang-Mills action is trivial, and the path integral is simply a count of G bundles modulo gauge.



may or may not be topological. In this subsection, we will review the definitions of these
operators. In the remainder of this section, we will characterize the conditions under which
they are endable and topological in pure gauge theories.

In a gauge theory, there is a natural set of line operators, the Wilson lines, defined by
the path-ordered exponential

W,(y) = Tr,P {exp <z]§cA>} , (2.7)

where p is a representation of G and C is an arbitrary closed curve. These lines have
a natural physical interpretation as the worldvolume of a very massive probe (i.e., non-
dynamical) particle charged under G in the representation p.

Wilson line operators may or may not be topological. For example, all of them are
topological if GG is discrete, while none of them are topological if G is compact and con-
nected. A Wilson line is called endable if it may be defined on an open curve with endpoints.
A Wilson line in representation p can end in a local charged operator in the same repre-
sentation.® This operator creates a charged particle (or collection of particles), so a Wilson
line can end if there are states (particles) in the gauge theory transforming in the same
representation p.

Two Wilson lines supported on the same curve « fuse according to the tensor product
operation:

p®u:@m & WPXWH:ZWW. (2.8)

In particular, Wilson line operators with dim(p) # 1 are not invertible. Physically, this
fusion can be understood by thinking of the Wilson line W, as a probe particle in the
representation p. A pair of such probe particles in the representations p and u together
form a multiparticle state in the representation p @ p, which by (2.8) can be decomposed
into a sum over states in the representations v;.

Strictly speaking, (2.8) should only be taken literally for topological Wilson lines, giving
a well-defined fusion algebra in the sense of section 2.1. By contrast, non-topological Wilson
lines are not closed under fusion; there are short-distance singularities, and additional
operators may appear when fusing two Wilson lines.” In spite of these subtleties, the OPE
of two non-topological Wilson lines labeled by p and p must include Wilson lines labeled
by every representation in the right-hand side of (2.8), as the Wilson lines labeled by {v;}
taken together insert a complete set of states in the full reducible representation p ® u.®
Because of this, we will refer to (2.8) as the fusion structure even for non-topological Wilson
lines, as our interest is in the completeness of the charge spectrum, a kinematic question
that isn’t affected by the non-universal features of the Wilson line OPE.

5Such a charged operator is only well-defined when a Wilson line is attached, so strictly speaking it is
not a genuine local operator at all. When we say a local charged operator, we are using a common abuse
of terminology that simply indicates that the end of the Wilson line is pointlike.

"We thank Shu-Heng Shao for discussions on this point.

8In general, the endability of a direct sum of operators only implies the endability of at least one of the
summands. However, in the case of fusion (2.8), this complete set of states ensures that each summand
W,, is endable if each of W, and W,, are endable.



Finally, another way to define a codimension-k operator in a gauge theory is to excise
some k-dimensional locus from spacetime and specify boundary conditions for the gauge
field on the rest of the geometry. For instance, one could excise a codimension-2 manifold
M@=2) " and specify a choice of connection on the transverse S'. G-connections on S?
modulo gauge equivalence are classified by elements of G (which specify the holonomy
around the circle) modulo the conjugacy action of G on itself (which implements gauge
transformations). This is the same as the set of conjugacy classes of G. The resulting set
of codimension-2 operators T(S;W(/\/l(d”))7 where a is a conjugacy class in G, are called
Gukov-Witten operators [13, 14]. Just like Wilson lines, Gukov-Witten operators admit
a simple physical interpretation: they correspond to insertions of probe (non-dynamical)
vortices, codimension-2 objects defined by the nontrivial gauge holonomy around their
worldvolume.? Outside a vortex, the gauge field is locally pure gauge, but globally this is
not the case.

For completeness, we describe the fusion of Gukov-Witten operators supported on the
same codimension-2 manifold, following reference [29]. Suppose we want to compute the
fusion of Gukov-Witten operators labeled by two conjugacy classes a and b. If we have
two representatives g € a, ¢’ € b, then the conjugacy class ¢ = [gg’] of the product is an
allowed fusion channel for the Gukov-Witten operators. Summing over all representatives,
we obtain the fusion rule

TV « TGV — 3 NGTSV, (2:9)
(&
where the fusion coefficient N7, is the number of G-orbits in the set,

S={(g9,9,9")eaxbxclgd=4"}, (2.10)

of ways of multiplying elements of a and b to obtain an element of ¢. As with (2.8), for non-
topological Gukov-Witten operators we must only interpret (2.9) as describing a universal
part of the Gukov-Witten operator OPE. We show in section 2.3.1 that topological Gukov-
Witten operators always correspond to conjugacy classes with finitely many elements, so
the fusion coefficients NS, are finite integers when the conjugacy classes a, b, ¢ correspond
to topological Gukov-Witten operators.

2.3 Topological operators in pure gauge theories

In this subsection, we will explain how to characterize which Wilson lines and Gukov-Witten
operators are topological in pure gauge theory, i.e., in the absence of charged particles or
twist vortices. We will see that this is correlated with which Gukov-Witten and Wilson
lines operators (respectively) are endable. In the rest of the paper, starting in section 3, we
will explain how this story changes in the presence of dynamical charged states. We also
recommend that readers less familiar with the subject first take a look at the examples in
sections 3, 4, and 5 if the following discussion is too abstract.

9For example, in d = 4 these are strings, while in d = 10 they are 7-branes, such as D7-branes in Type
IIB string theory.
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Figure 2. Cross-section of a particle worldline going around a vortex; the time direction is shown,
and the (d — 3) spatial directions along which the vortex extends are suppressed. The fact that
the particle winds around the vortex means that the corresponding Wilson line and Gukov-Witten
operators are linked, in the Euclidean picture. The linking property (2.4) of topological and charged
operators encodes the fact that the correlator on the left and right pictures differ by a multiplication

by the character of the representation, which is the Aharonov-Bohm factor.

2.3.1 Topological Gukov-Witten operators and endable Wilson lines

Gukov-Witten operators are sometimes, but not always, topological. A familiar case in
which they are topological is in free U(1) gauge theory, where the Gukov-Witten operators
generate a 1-form electric symmetry. On the other hand, in pure SU(2) gauge theory, the
only nontrivial topological Gukov-Witten operator is the one generating the Zy 1-form sym-
metry; the rest are not topological. In this subsection, we ask: under what conditions is a
Gukov-Witten operator in a pure gauge theory topological? The answer can be understood
from the endability of the Wilson lines with which Gukov-Witten operators link.

Let us begin by assuming that a Gukov-Witten operator TGGW(Sd_Q) is topological,
and understanding how to specialize the general linking equation (2.4) to this context.
In the Euclidean picture, the Aharonov-Bohm phase is encoded in the linking properties
of the corresponding Wilson line W,(y) and the Gukov-Witten operator oW (M(4=2)).
Specifically, if S92 is a (d — 2)-sphere that links the curve +, then

TEWV(ST2YW,(7) = XP—@size(a) W,(v), (2.11)
Xp(l)
where we have defined the character of the conjugacy class a in representation p,
Xp(a) :=Tr(p(g1))- (2.12)

In the Lorentzian picture, this equation can be understood as a generalization of the
Aharanov-Bohm effect: the holonomy carried by the probe vortex (i.c., the Gukov-Witten
operator) can be measured via an Aharonov-Bohm experiment in which a probe particle
in a representation p (i.e., a Wilson line) is moved adiabatically around the vortex. This
process is illustrated in figure 2. By taking the probe particle to be in a fully mixed state
in its gauge indices, one gets a gauge-invariant characterization of the holonomy around
the vortex as [30]

Gy N 0(an)) = ié& , (2.13)

dim
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which matches the first factor on the right-hand side of (2.11).19 The second factor size(a) is
the quantum dimension of the Gukov-Witten operator, as defined in section 2.1, associated
with the process of shrinking the sphere S%~2 in the absence of a Wilson line. This shrinking
process produces a local operator that commutes with all other operators of the theory, so
by Schur’s lemma, it must be proportional to the identity. The constant of proportionality
TEW

is given by number of elements in the conjugacy class a, i.e., dim( ) := size(a). From

this, we recover (2.4) with linking coefficient given by

B,(a) = iﬁi size(a) , (2.14)

and we see that the linking of TSW (M(@=2)) with W,(v) is nontrivial when

Xp(a) 7 xp(1) := dim(p) . (2.15)

A Gukov-Witten operator that is topological cannot link with an endable Wilson line, by
the argument illustrated in figure 1 and discussed in section 2.1. Thus, if x,(a) # x,(1)
for an endable Wilson line W), we conclude that T, 'GW' cannot be topological.

To better understand how to interpret the condition (2.15) for nontrivial linking, it is
useful to establish a lemma, which will be used several times in the remainder of the paper.

Lemma 1. Let G be a compact Lie group, and p a (complex) representation of G. Then,
Xp([9]) = xp(1) if and only if p(g) is the identity for all g € [g].

Proof. Clearly, if p(g) is the identity for all g € [g], i.e., p(g) = p(1) = I, then x,([g]) =
Tr,(I) = xp(1). Conversely, since G is assumed compact, any complex representation can
be chosen to be unitary. This means that the eigenvalues A;,7 = 1,..., dim(p) of p(g) must
be roots of unity. Since x,(1) = dim(p), we see that >_; A\; = x,([g]) can be no larger than
dim(p), with equality if and only if A; = 1 for all 4. Thus, p(g) = I. O

In pure G gauge theory, the Wilson line in the adjoint representation is endable, as it
may end on the field strength F),,,, which transforms in the adjoint. By considering multiple
insertions of F},,, we further obtain multiparticle states in tensor powers of the adjoint
representation, and any Wilson line corresponding to a representation which appears in
such a tensor power is thus endable. In fact, these are precisely the endable Wilson lines
in pure G gauge theory:

Statement 3: Endable Wilson line operators in pure gauge theory

Consider a pure G gauge theory. The endable Wilson line operators are precisely those
corresponding to representations p built from the adjoint under taking tensor products
and sub-representations.

Tn the case of U(1) gauge theory, and with a magnetic flux specified by @ € U(1), the character
Xq(0) = ¢'? is the usual Aharonov-Bohm phase; equation (2.13) is the natural nonabelian analog.
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Hence, any Gukov-Witten operator that links nontrivially with an adjoint Wilson line
cannot be topological. So, we have reduced the problem of classifying topological Gukov-
Witten operators in pure gauge theory to that of finding conjugacy classes [g] for which

Xadj([9]) # Xadj(1)-
By Lemma 1, we see that the topological Gukov-Witten operators in pure G gauge
theory correspond precisely to conjugacy classes [g] which act trivially on the adjoint

L' = go for all g

representation.!! This is in turn equivalent to the statement that ggog™
in the identity component Gy, i.e., the connected component of G containing the identity.
(Note that if this holds for one representative g € [g], it holds for all such representatives.)

The set of such g is known as the centralizer of G in G, denoted Zg(Gy).

To summarize:

Statement 4: Topological Gukov-Witten operators in pure gauge theory

Consider pure G gauge theory, with G compact. The topological Gukov-Witten opera-
tors are precisely those corresponding to conjugacy classes contained in the centralizer
Zc(Go) of the identity component Gg of the group G.

From what we have said so far, one might worry that the quantum dimension of
a topological Gukov-Witten operator could be infinite, as the number of elements in a
conjugacy class can be infinite. However, we now show that for a compact gauge group,
the conjugacy classes corresponding to topological Gukov-Witten operators are of finite
size, hence these surfaces have finite quantum dimension. In fact, the converse is true
as well: every conjugacy class of finite size corresponds to a topological Gukov-Witten
operator.

Suppose TEW(M(d_2)) is topological. Fixing a representative g of the conjugacy class
a = [g], we can write g = highy ", go = haghy ' for any g1, g2 € a. If hy and hs lie in the
same connected component Gy C G then hjhy ! lies in the identity component Gy. Since

g1 = (hihy )ga(hihy ') ~! (2.16)

and g1, g2 € Zg(Gp) per Statement 4, we then obtain g; = go. Thus, the number of distinct
elements in [g] is no greater than the number of connected components, which is finite for
any compact group. In particular, this shows that the factor of size(a) in (2.14) is finite.
Conversely, if a conjugacy class contains finitely many elements, then it must be invariant
under conjugation by any h € Gy by continuity. This implies that the conjugacy class is
contained in Zg(Gyp), and thus the corresponding Gukov-Witten operator is topological.

HN\fore precisely, Lemma 1 establishes that a trivial action of the adjoint representation is a necessary
condition for a Gukov-Witten operator to be topological. It is well-known that this condition is sufficient
when G is connected or finite: in section 7.4, we will argue that this is sufficiently more generally by showing
that the general case can be reduced to these special cases.
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2.3.2 Topological Wilson lines and endable Gukov-Witten operators

Just as we did for Gukov-Witten operators, we should ask which Wilson lines in a pure
gauge theory are topological, as well as which Gukov-Witten operators are endable. In
order to address both of these questions, we introduce the following lemma, which is a
simple consequence of the Ambrose-Singer Theorem [31].

Lemma 2. Let A be a connection on a principal G bundle over a manifold X, and suppose
v : 81 = X is a contractible closed curve in X. Then the holonomy of A around 7 is
contained in the identity component Gy of G.

Proof. This follows immediately from the Ambrose-Singer Theorem [31], which states that
the holonomy around a contractible closed curve is generated by the curvature, valued in
the Lie algebra of G. O

With this lemma in hand, we immediately see that if the identity component Gy
acts trivially on a representation p, then W,(v) is topological. In particular, let v; and
o be homotopic paths between a pair of spacetime points p,q. Then a closed curve ~
incorporating 1 can be deformed to a homotopic closed curve 4/ incorporating 2. This
alters W,(v) by inserting the holonomy around the contractible closed curve 5 Ly, at the
point p on the Wilson line. Per Lemma 2, this holonomy lies in Gy, hence it acts trivially
on p by assumption, and therefore W,(y) = W,(v'), i.e., W,(7) is topological. Conversely,
if the identity component Gg acts non-trivially on p then W, () and W,(+’) will in general
differ by insertions of the curvature, and therefore W, will not be topological. In summary:

Statement 5: Topological Wilson line operators in pure gauge theory

Consider a pure G gauge theory. The topological Wilson operators are precisely those
corresponding to representations p on which the connected identity component Gy of
the group acts trivially, or equivalently, representations of mo(G) = G/Go.

Now that we have described the topological Wilson lines, we should describe the
endable Gukov-Witten operators in the pure gauge theory. Just as the non-topological
Gukov-Witten operators are those that link nontrivially with endable Wilson lines, the
non-topological Wilson lines are those that link nontrivially with endable Gukov-Witten op-
erators. In order to see this, suppose we wish to define a Gukov-Witten operator on an open
codimension-2 manifold M(@=2) with boundary &M. To define such an operator, we delete
a tubular neighborhood of M, and define boundary conditions for our gauge field. In the
bulk of M, we place the Gukov-Witten boundary condition for some group element g € GG
on the transverse S'. Along M, the transverse S' becomes the boundary of a hemisphere
%5’2 that links with OM, as depicted in figure 3. In order to define boundary conditions
along M, we must pick a connection on %SQ such that the holonomy around the boundary
St is our fixed group element g. By Lemma 2, this is only possible for g € Gy, and in fact
since our curvature may be arbitrary, this is possible for any g € Gg. Thus, we learn:
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Figure 3. A Gukov-Witten operator for a conjugacy class [g] in the identity component of G
(represented by the fuzzy line in the picture) may end on an “improperly quantized” ’t Hooft
operator, depicted here by an open dot. To have a Gukov-Witten operator end, we specify a
boundary condition for the gauge field on a hemisphere of the ending locus (depicted by dotted
lines) by demanding that the holonomy becomes trivial in a smooth way. By Lemma 2, this is only
possible for g in the identity component.

Statement 6: Endable Gukov-Witten operators in pure gauge theory

Consider a pure G gauge theory. The endable Gukov-Witten operators are precisely
those corresponding to conjugacy classes contained in the identity component Gy of G.

What are the objects on which endable Gukov-Witten operators end, defined by gauge
fields on a hemisphere? We may identify these codimension-3 operators as improperly
quantized 't Hooft operators. These should not be confused with genuine 't Hooft operators,
which are defined by boundary conditions on a closed S? rather than the hemisphere %Sz.
Physically, in four dimensions, an 't Hooft operator may be thought of as the worldvolume
of a probe monopole. An improperly quantized 't Hooft operator can be interpreted as the
worldvolume of an “illegal” probe monopole, which does not respect Dirac quantization
and, therefore, can only live at the boundary of a Gukov-Witten operator.

2.3.3 ’t Hooft operators and magnetic global symmetries

For completeness (no pun intended), we can also construct the magnetic analogs of these
objects in general dimension. The 't Hooft operator is constructed in a manner similar to
Gukov-Witten operators, by excising a codimension-3 locus of spacetime and prescribing
boundary conditions around it. Correlators of topological operators are sensitive only to
the topological class of the boundary conditions, which is simply a G-bundle on the angular
S2. These are classified by the equatorial transition function, which is a map from S! to
the gauge group, modulo conjugation. The topological class of a map from S* to G is the
same as an element of 71 (G). This element is invariant if we conjugate by elements in the
connected component of the identity of GG, which describe continuous deformations of the
path. This is not the case when we conjugate by an element not in the identity component.
The group of components my(G) acts on the space of paths, so 't Hooft operators are
naturally classified by classes in 71 (G) modulo conjugation by m(G).
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In four dimensions, 't Hooft operators are line operators, and the definition of an ’t
Hooft line we have given above is essentially the same as the one originally given by 't
Hooft [32]. Tt is worth noting, however, that the name “’t Hooft line” has been assigned to
more than one concept in the literature [33]. In [34], for instance, “’t Hooft line” refers to
“Wilson line of the Langlands dual group,” which derives from the GNO duality exchanging
electric and magnetic charges [35]. This notion leads to a finer classification of 't Hooft
lines than the one we have given above. For instance, for G = SU(2), the definition in the
previous paragraph leads to the conclusion that pure SU(2) theory has no 't Hooft lines,
since m1(SU(2)) = 0. However, the Langlands dual group, which is SO(3) = SU(2)/Zz, has
nontrivial Wilson lines. This finer classification of 't Hooft lines has the drawback that it
invokes the Langlands dual of G, which to our knowledge is not known for disconnected
G. We plan to explore this further in upcoming work.

3 Compact, connected gauge groups

So far, we have primarily focused on topological and endable operators in pure gauge
theories. We now want to see how the above story is modified in the presence of charged
particles and dynamical, extended objects. We begin by studying compact, connected
gauge groups, for which Gy = G, and the centralizer Zg(Gyp) is simply the center Z(G).
Hence, Statement 4 implies that the topological Gukov-Witten operators in the pure gauge
theory are labeled by elements of the center Z(G). On the other hand, Gy acts trivially
only on the trivial representation of G, so Statement 5 implies that no Wilson operators
are topological in the pure gauge theory. Relatedly, Statement 6 indicates that all Gukov-
Witten operators are endable in the pure gauge theory, because Gy = G.

3.1 U(1) gauge theory

As a first example, we review U(1) gauge theory in d spacetime dimensions. Most of this
discussion can be found in [1].
Pure U(1) gauge theory has action

1

This theory has Wilson line operators, each of which is supported on a closed 1-manifold
and labeled by an electric charge n € Z, given by

W) = exp (m ﬁ A) . (3.2)

Such a Wilson line is charged under a 1-form U(1) global symmetry, with conserved Noether
current

1
JE = ?*F. (3.3)

The generators of this global symmetry are the Gukov-Witten operators. Since the gauge
group is abelian and connected, its centralizer Z(Gy) is the whole group, so by Statement 4
every Gukov-Witten operator is topological. Each such operator is labeled by a phase o €

— 15 —



[0,27) and supported on a codimension-2 manifold M4=2) " Explicitly, such an operator
is given by the integral of the Noether current over M(4=2)

(a2 io /
Ug:e“" (M ) exp ( M(a=2) *F) . (34)

72
These operators fuse according to the U(1) group law,
Uy(MU9=2) x Uy (MT2) = Uy (M), (3.5)

with g = exp(ia), ¢ = exp(if3), and ¢" = g9’ = exp(i(a + B)). The Ward identity for this
1-form global symmetry implies that such a charge operator supported on an S%~2 linking
a Wilson line is equal to the Wilson line up to a phase,

Uyeeia (ST2)Wi(7) = "Wy (7). (3.6)

These Gukov-Witten operators can also be supported on codimension-2 manifolds with
boundary. In this case, the boundary of such a manifold is an improperly quantized ’t
Hooft operator of magnetic charge m = a. This means that all Gukov-Witten operators
are endable, and relatedly there are no nontrivial topological Wilson lines.

Suppose now that instead of the pure gauge theory, we consider U(1) gauge theory
with a field 1 of electric charge N. Now, the Wilson line of charge N may be supported
on a manifold with boundary v(z,y), with 1 (z), 1(y) supported on the endpoints.'?> As
a result, as illustrated in figure 1, a surface operator that links nontrivially with such
a Wilson line cannot be topological. In particular, the electric surface operators Uj_gia
that remain topological necessarily have a = 27k /N for some integer k: the other surface
operators still exist, but they are no longer topological.

From this, we see that the U(1) electric 1-form global symmetry in the pure gauge
theory has been broken to a Zy subgroup by the addition of the charge N matter. For
N =1, this 1-form electric symmetry is completely broken, and none of the electric surface
operators U, are topological.

An analogous story applies to the 't Hooft operators in the theory. An ’t Hooft operator
Vi (C) is labeled by an integer m and supported on a closed codimension-3 manifold C. Such
operators are charged under a (d — 3)-form U(1) symmetry with conserved Noether current

1
I =_—F 3.7
M=o (37)
The generators of this global symmetry are labeled by a phase n € [0, 27) and are supported
on dimension-2 manifolds M®. Such an operator is given by the integral of the Noether
current over M),

7
0, —ain(M®) = exp (% /W) F) . (3.8)

2More generally, the Wilson line of charge kN may be supported on a manifold with boundary ~(z,y),
with (¢(x))*, (¥ (y))* supported on the endpoints. If 1) (z) is fermionic so that some power (1(z))”* vanishes,
we may seperate the operator insertions, and find operators of charge kN in the OPE.
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The Ward identity for the electric 1-form global symmetry implies that such a charge
operator supported on an S? linking an 't Hooft operator is equal to the 't Hooft operator
up to a phase,

ﬁg:em(SQ)Vm(C) = eV, (C). (3.9)
These charge operators can also be supported on 2-dimensional manifolds with boundary.
In this case, the boundary of such a manifold is an improperly quantized Wilson line of
electric charge n = 7.

An ’t Hooft operator of charge M may end in the presence of a magnetically charged
(d—4)-brane (i.e., a monopole), of magnetic charge M. As a result, a surface operator that
links nontrivially with such an 't Hooft operator cannot be topological. In particular, the
magnetic surface operators Ug:ei,, that remain topological necessarily have n = 2wk /M for
some integer k: the other surface operators still exist, but they are no longer topological.
The U(1) magnetic (d — 3)-form global symmetry in the pure gauge theory has been broken
to a Zjs subgroup by the addition of the charge M magnetic state. For M = 1, this 1-form
magnetic symmetry is completely broken, and none of the magnetic surface operators Ug
are topological.

In four dimensions, the fusion of a Wilson line of charge n with an 't Hooft line of
charge m produces a dyonic line Ly, ,, of charge (n,m). Similarly, electric and magnetic
surface operators may be fused to give operators labeled by both an electric phase and a
magnetic phase,

S (*F) + ﬂF) . (3.10)

2)\
U(g:eia,g/:ei”)(M( )) = exp </M(2) ? 27

Such surfaces link with dyonic Wilson/’t Hooft lines according to
U(9=eia,g’=em)(SQ)Ln,m('Y) = emanan,m(’Y)‘ (3.11)

Suppose we have a U(1) gauge theory with dyons of charge (N1, My), (Na, Ma),. .. ,(Ny, M;).
Now, the only surfaces that remain topological will be the ones that link trivially with all
of the dyons; namely, those Uj_gia o—qin satisfying

Niao+ M;n =0 (mod 27) foralli =1,...,1. (3.12)

Denoting the charge lattice of the U(1) gauge theory by I' ~ Z2, the dyons in question
will generate a sublattice I'iat. The 1-form global symmetry of the theory with the dyonic
matter is then given by the Pontryagin dual of the quotient, (I'/T'mat)¥. (Note that ZY =
U(1),Z% = Zy). Hence, the spectrum is complete if and only if there is no 1-form global
Symmetry.

Finally, let us note that all of the dimension-2 symmetry generators we have discussed

are endable: U may end on an improperly quantized Wilson/’t Hooft line of

g=eie g'=ein)
charge (a,n). Relatedly, any line of charge (n,m) will not be topological, as it links with
at least one such surface. This is a general feature of 4d gauge theories with connected
gauge group G: the Wilson/’t Hooft lines are not topological, whereas the surfaces that

link with them are.
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3.2 SU(N)/Zk gauge theory

Let K be a divisor of N. Pure SU(N)/Zk gauge theory has Wilson lines labeled by
representations of SU(N)/Zg . The adjoint Wilson line is endable, as it may end on a gluon.
Likewise, any representation appearing in some tensor product of adjoint representations
is endable. If K = N, tensor products of the adjoint generate the full set of irreducible
representations, and the spectrum is complete. If K # N, the spectrum is incomplete, as
some Wilson lines are not endable. Wilson lines fall into equivalence classes, each of which
is specified by an integer modulo N/K, and a Wilson line labeled by an integer n is endable
if and only if n = 0.

The Gukov-Witten operators are labeled by conjugacy classes of SU(N)/Zg. Since
the adjoint Wilson line is endable, any Gukov-Witten operator that links nontrivially with
the adjoint line is not topological. The topological operators in this case are all invertible,
and they correspond precisely to elements of the center of SU(N)/Zg, which is given by
Zn/k- If N = K, therefore, there are no such topological operators. If K # N, these
topological operators furnish a Zy, g 1-form symmetry, under which non-endable Wilson
lines are charged.

If matter is added in a representation of the gauge group, additional Wilson lines may
become endable, and the 1-form symmetry may be broken to a subgroup of Zy/g. In
particular, if a Wilson line in the equivalence class specified by the integer n mod N/K is
endable, then the 1-form symmetry is broken to Zg.q(n, n/x)- If all Wilson lines are endable,
the 1-form symmetry will be broken completely. If some Wilson line remains non-endable
after the addition of charged matter, it will be charged under some nontrivial remnant of
the Zy i 1-form center symmetry.

All of the Gukov-Witten operators in SU(N)/Zk gauge theory may end on improperly
quantized 't Hooft operators. Relatedly, none of the Wilson lines are topological.

A similar story plays out on the magnetic side of things (at least with no discrete
theta angles). 't Hooft operators of pure SU(NN)/Zk gauge theory are classified by ele-
ments of 71 (SU(N)/Zk) = Zn/i- Non-endable 't Hooft operators carry charge under a
L/ (d — 3)-form symmetry. In four dimensions, 't Hooft line operators admit a finer
classification: they are in 1-1 correspondence with representations of the Langlands dual
group “(SU(N)/Zk) = SU(N)/Zn/k- The 't Hooft line labeled by the adjoint represen-
tation of the Langlands dual group is endable in the pure gauge theory. Any 't Hooft line
which is not endable is charged under a magnetic Zy,/x 1-form symmetry. Note that this
group is equal to the center of the Langlands dual group.

't Hooft operators may end in the presence of magnetically charged (d — 4)-branes
(i.e., monopoles). Analogously to the electric case, endability of all 't Hooft operators
is equivalent to the absence of a magnetic 1-form symmetry. Furthermore, the 't Hooft
operators themselves are not topological.

As an illustrative example, let us specialize to the case of N = 2. K = 1. Repre-
sentations of SU(2) are labeled by non-negative integers m = 2j, where j is the spin of
the representation, and the conjugacy classes are labeled by 6 € [0, 7], where a represen-
tative of the conjugacy class 6 is given by diag(exp(i6),exp(—if)). The center of SU(2) is
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isomorphic to Zy and consists of the elements § = 0, 7. The characters are given by

sin((m + 1)0).

xm(0) = — 35

(3.13)
Pure SU(2) gauge theory has matter in the adjoint representation m = 2. This means that
the topological Gukov-Witten operators must have

sin(360)
sin(0)

= Xm=2(0) = Xm=2(0) = 1, (3.14)

which is true for § = 0, 7. We see that indeed, there is a Zy 1-form symmetry, generated
by the Gukov-Witten operator with § = 7. This group elements with 6§ = 0, 7 are precisely
those in the center of SU(2), so as expected, the 1-form symmetry group is equivalent to
the center. It is also clear that in the presence of matter in a representation with m odd,
none of the surfaces will remain topological. Simultaneously, the spectrum is complete:
there is a (possibly multiparticle) state in every representation of the gauge group, since
every representation of SU(2) appears in tensor products of the m representation and the
adjoint representation, and there is no electric 1-form global symmetry remaining.

In pure SO(3) = SU(2)/Z2 gauge theory, on the other hand, the spectrum is already
complete even without adding charged matter. At the same time, the center of SO(3) is
trivial, so there is no electric 1-form symmetry. There is, however, a magnetic Zs (d — 3)-
form symmetry, under which non-endable 't Hooft operators are charged. If appropriate
magnetically charged objects are added to the theory, this symmetry is broken, and relat-
edly the magnetic spectrum is complete. In four dimensions, 't Hooft lines are labeled by
representations of the Langlands dual group “SO(3) = SU(2), and the analysis of these
lines, as well as the dimension-2 magnetic topological surfaces that link with them, fol-
lows immediately from our analysis of the SU(2) gauge theory above. In particular, the
Zo magnetic 1-form symmetry is broken in the presence of monopoles in the fundamental
representation of the Langlands dual group SU(2).13

3.3 G- gauge theory

Before moving on to the general logic for arbitrary compact, connected groups, we illustrate
how our above results cohere with some simple group theory facts for the particular case
of the exceptional Lie group Go. This group has trivial center, so by Statement 4, Go
gauge theory has no topological Gukov-Witten operators, even in the absence of charged
matter. In order for the general link between topological operators and completeness to
hold, we then expect that pure Go gauge theory should already be electrically complete,
i.e., every Wilson line must be endable. Translated into mathematics, we expect that every
representation p of Gis should be contained in tensor products of the 14-dimensional adjoint
representation with itself.

131n four dimensions, a similar story applies to SO(3) gauge theory with a nontrivial discrete 8 angle [36].
Here, the operators charged under the Zs magnetic 1-form symmetry are dyonic lines, and the 1-form
symmetry is broken precisely when the dyonic spectrum is complete.
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It is a well-known fact (see, e.g., section 22.3 of [37]) that every irreducible represen-
tation of G4 appears in some tensor power of the “standard” 7-dimensional representation
of G with itself. From, e.g., [38], we further have

14014=1614G27THT7THT7T, 14Q027T=7T614027H640 775189 (3.15)

Therefore, the 7-dimensional irrep appears in the tensor product 14%3 of three copies of
the adjoint representation. This establishes that, indeed, all Wilson lines are endable in
pure G gauge theory.

3.4 General story for compact, connected groups
3.4.1 Electric completeness

As discussed in section 2.3.1, in a pure G gauge theory, the topological Gukov-Witten
operators are labeled by elements of the center Z(G). In the presence of charged matter
in some representation p, the center symmetry is generically broken to a subgroup. In
particular, an open Wilson line in the representation p may be unlinked from the Gukov-
Witten operator U, z € Z(G), as in figure 1, which implies that U, remains a topological
symmetry generator only if the representation p transforms trivially under z. In other
words, the 1-form symmetry remaining in the presence of the charged matter is given by
the kernel of p.

If the spectrum of the gauge theory is incomplete, then p cannot be a faithful repre-
sentation of G: there necessarily exists some z # 1 € Z(G) such that z is in the kernel of
p for all endable Wilson lines p.'* As a result, the remaining 1-form symmetry is a non-
trivial subgroup of the center. If the spectrum is complete, on the other hand, then there
exists matter in some faithful representation p, whose kernel is trivial. As a result, the
1-form center symmetry is completely broken. There is thus a 1-1 correspondence between
completeness of the gauge theory spectrum and the absence of an electric 1-form global
symmetry.

3.4.2 Magnetic completeness

In addition to the electric 1-form global symmetry discussed above, there is also a magnetic
(d — 3)-form global symmetry. In pure gauge theory, the 't Hooft operators charged under
this global symmetry are labeled by elements of 71 (G), and the associated symmetry group
is given by 71 (G)Y, the Pontryagin dual of 1 (G). In the presence of magnetically-charged
(d — 4)-branes (i.e., monopoles), some of these 't Hooft operators can end. When they do,
any symmetry generators that link nontrivially with them will no longer be topological,
and the (d — 3)-form m1(G)" global symmetry will be explicitly broken to a subgroup. The
set of endable 't Hooft operators forms a subgroup H of 71(G), which is normal since
m1(G) is abelian. The remaining magnetic global symmetry is given by (71 (G)/H)", the
Pontryagin dual of m;(G)/H. We thus see that if every 't Hooft operator is endable, so
the magnetic spectrum is complete, then the magnetic 1-form symmetry will be completely
broken. If there is at least one non-endable 't Hooft operator, so the monopole spectrum is

MWe will prove this statement when we consider the case of a general compact Lie group in section 5.3.
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incomplete, then some nontrivial subgroup of the magnetic 1-form symmetry will remain.
This statement also follows from the relationship between electric completeness and the
absence of an electric 1-form global symmetry applied to the Langlands dual group “G.

3.4.3 Twist vortex completeness

Recall from Statement 5 in section 2.3.2 that the topological Wilson operators in pure G
gauge theory are precisely those corresponding to representations p on which the identity
component of the group acts trivially. For G connected, the identity component is the
entirety of G, and the only representation which acts trivially on G is the trivial represen-
tation. Thus, there are no topological Wilson lines, even in the pure gauge theory.

Relatedly, by Statement 6, every Gukov-Witten operator can end on an improperly
quantized 't Hooft operator when G is connected. This means that this theory cannot
admit twist vortices (which correspond to endable Gukov-Witten operators not arising
from elements of Gy), so twist vortex completeness is trivially satisfied. We will elaborate
on this point when we consider more general gauge groups in section 5.3.4 below.

4 Finite gauge groups

The next case we consider is that of finite gauge groups, as previously discussed in detail
in [12]. For finite gauge groups, Gy is simply the identity element of the group. As
a result, Zg(Gp) = G, so Statement 4 implies that in the pure gauge theory, all Gukov-
Witten operators are topological. Similarly, because G acts trivially on all representations,
Statement 5 implies that all Wilson operators are topological in the pure gauge theory.

4.1 Zy gauge theory

Zy gauge theory admits a Lagrangian description as a BF-theory:
N
L=—Bg oNdA;. (4.1)
27

This theory has Wilson line operators of the form
Wn(fy)=exp(inj§A1>, n=0,1,...,.N—1, (4.2)
v

with V,, the operator of charge n. There are also codimension-2 Wilson surfaces for By_o:

Upp (M@=2)) = exp <zm% Bd_g) , m=0,1,... N—1, (4.3)
M(d—2)

These Wilson surfaces also serve as the Gukov-Witten operators for the Zy gauge theory.

All of these Wilson operators are topological: the Wilson lines generate a Zy (d — 2)-
form global symmetry under which the Wilson surfaces are charged. Conversely, the Wilson
surfaces generate a Zy 1-form global symmetry under which the Wilson lines are charged.
The Ward identity for this 1-form symmetry leads to a nontrivial linking of the Wilson
lines and the Wilson surfaces:

Un(S72) - Waly) = 2N W () (4.4)
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Suppose we now add a particle of charge K to the theory. The Wilson lines of charge
nK, n € Z are now endable. As a result, any surface U,, that links nontrivially with these
lines is no longer topological. In particular, the surfaces U,, that remain topological satisfy
mK = 0 (mod N), which means that the 1-form global symmetry is reduced from Zy to
Zgea(N,k)- In particular, the spectrum is complete if and only if there do not exist any
topological Gukov-Witten operators.

Zpn gauge theory can also admit twist vortices, dynamical codimension-2 objects
around which Zy-charged particles acquire Aharonov-Bohm phases. In the 4d context,
these are dynamical strings [39]. They carry magnetic flux under A;. As discussed in § 2,
Gukov-Witten operators may be thought of as inserting a probe vortex. Hence, Gukov-
Witten operators can end on codimension-3 operators that create a dynamical twist vortex,
just as Wilson line operators can end on local operators that create a dynamical charged
particle. In the Zy gauge theory, Wilson lines are topological if Gukov-Witten operators
cannot end, and generate a Zy (d — 2)-form global symmetry. The existence of twist vor-
tices explicitly breaks this symmetry; a complete spectrum of twist vortices fully breaks it,
rendering all of the Wilson lines non-topological.

4.2 S3 gauge theory

The symmetric group 53 has three irreducible representations: the trivial representation 1,
the sign representation 1_ of dimension 1, and the standard representation 2 of dimension
2. Tt has three conjugacy classes: the trivial conjugacy class [1], the conjugacy class [6] of
size 2, and the conjugacy class [7] of size 3.

Correspondingly, the theory has three irreducible Wilson lines, Wy, W_, and Wj,
associated respectively with the irreducible representations of Ss. It has three codimension-
2 Gukov-Witten operators, 1jyj, Tig;, and T;]. All of these operators are topological. Unlike
the previous examples we have seen, however, most of these topological operators do not
generate global symmetries. The lone exception is the Wilson line W_, which squares to
the trivial operator and thus generates a Za (d — 2)-form global symmetry. The nontrivial
Wilson lines W_, W5 obey the fusion algebra

Wox Wo =Wy +W_ +Ws, Wox W_ =Ws,. (4.5)

Note that W5 does not have an inverse operator — it is a non-invertible topological oper-
ator. The nontrivial Gukov-Witten operators 1jg), T}, are similarly non-invertible.
The Wilson lines and the Gukov-Witten operators link nontrivially. In particular,

we have
To(S7%) - Wi(7) = By(a)Wi (7)., (4.6)
with By(a) given by:
b \a|[1] [7] [6]
B = "5 (@)
2 |1 0 —1
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In the presence of matter in the sign representation of S3, the Wilson line W_ is
endable. Since B_([7]) # Bo([7]), the Gukov-Witten operator Tj links nontrivially with
an endable Wilson line, and therefore it is not topological in the presence of this charged
matter.

In the presence of matter in the standard representation of Ss3, all of the Wilson lines
are endable by (4.5), and none of the Gukov-Witten operators are topological. We see
that completeness of the gauge theory spectrum is equivalent to the absence of topological
codimension-2 Gukov-Witten operators.

Nonabelian finite-group gauge theories can also admit twist vortices, which have non-
abelian Aharonov-Bohm interactions with charged matter [40, 41]. In pure S3 gauge theory,
the Wilson lines are topological. However, if the Gukov-Witten operators are endable due
to the existence of dynamical twist vortices, then Wilson lines with which they link nontriv-
ially will no longer be topological. From the table of By(a), we see that if the Gukov-Witten
operator T}, is endable, then both the W_ and W3 Wilson lines are not topological. On
the other hand, if only the Gukov-Witten operator T}y is endable, then W_ will remain
topological, because it has the same linking with Tjg; as the trivial Wilson loop Wy. Be-
cause the equivalence class [7] includes two-element transpositions, it generates the entire
group S3. Hence, endability of T}, implies endability of Tjg}, because T}y can arise in the
fusion of Tj, operators. The converse is not true: representatives of the class [¢] do not
generate all of S3. Thus, we see that in this example, the absence of topological Wilson
lines is equivalent to the endability of all nontrivial Gukov-Witten operators, which is in
turn equivalent to the existence of a complete spectrum of twist vortices. We will argue
below that this generalizes to all finite groups.

4.3 General story for finite groups

4.3.1 Electric completeness

The following is a quick review, without proof, of completeness and topological operators
in discrete gauge theories; for a general proof, see section 5.3.3. More details can be found
in [12].

Consider the d-dimensional gauge theory of some (abelian or nonabelian) discrete
gauge group G. Such a theory will have Wilson lines, each labeled by a representation
of G, and codimension-2 Gukov-Witten operator, each labeled by a conjugacy class [g] of
G. For an abelian group, each conjugacy class consists of a single element, [g] = g, and
every Gukov-Witten operator is invertible. For a nonabelian group, a conjugacy class will
generically have more than one element.

A Gukov-Witten operator labeled by the conjugacy class [g] can link with Wilson
line labeled by a representation v. Namely, surrounding the Wilson line with an S92
supporting a topological Gukov-Witten operator and shrinking the S?~2 to a point yields
the Wilson line times a linking coefficient B, ([g]):

B,(lg]) =~ size(lg), (4.8)
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with x, the character of the representation v, size([g]) the number of elements in the
conjugacy class [g], and [1] the trivial conjugacy class.

If a given Wilson line v an end on some charged particle, some surfaces will no longer
be topological. In particular, any surface which links nontrivially with v will be rendered
non-topological. To be more precise, if

Xu([g]) # Xu(l) = dim(l/), (4'9)

then the surface labeled by the conjugacy class [g] will cease to be topological in the presence
of matter in the v representation of G. If the spectrum is complete, so that all Wilson lines
can end, then every Gukov-Witten operator is rendered non-topological [12]. Conversely, if
the spectrum is incomplete, there will exist at least one topological Gukov-Witten operator.

4.3.2 Twist vortex completeness

Just as the endability of all Wilson lines is equivalent to the non-existence of topological
Gukov-Witten operators, the endability of all Gukov-Witten operators is equivalent to the
non-existence of topological Wilson lines. In the special case of three dimensions, where
Gukov-Witten operators are line operators, this follows from general properties of the
modular tensor category of line operators [12, 42]. Here, we will provide an argument in
higher dimensions.

The Wilson lines of a finite-group gauge theory are all topological in pure gauge theory.
If twist vortices are coupled to the theory, however, their Gukov-Witten operators will be-
come endable. If a Wilson line links nontrivially with an endable Gukov-Witten operator,
it will not be topological, as illustrated in figure 1 but with the role of Wilson lines and
Gukov-Witten operators interchanged. A Wilson line in the representation p links nontriv-
ially with a Gukov-Witten operator for the conjugacy class [g] when x,([g]) # x,(1). If all
Gukov-Witten operators are endable, then there are no nontrivial topological Wilson lines,
because the only representation p for which x,([g]) = x,(1) for all conjugacy classes [g] is
the trivial representation.

The converse statement is less obvious: if there are no nontrivial topological Wilson
lines, then all Gukov-Witten operators must be endable. The statement that there are no
nontrivial topological Wilson lines means that for every nontrivial representation p, there
exists at least one conjugacy class [g] corresponding to an endable Gukov-Witten operator
for which x,([g]) # x,(1). Equivalently, given a representation p for which x,([g]) =
Xp(1) for all [g] for which the Gukov-Witten operator is endable, it must be the trivial
representation. To show that this implies that all Gukov-Witten operators are endable,
we use the following fact about group theory:

Lemma 3. Consider a group G and a set S C Conj(G) of conjugacy classes of G, with
the property that x,([g]) = x,(1) for all [g] € S only if p is the trivial representation of G.
Then the representatives of the conjugacy classes in S generate the entire group G.

Proof. The representatives of the conjugacy classes in S generate a subgroup H of G.
Because it is constructed from conjugacy classes, this subgroup is normal: H < G. To

— 24 —



show that H = G, we will argue that the quotient G/H is trivial. Consider an irreducible
representation v of G/H. Composition of v with the projection 7 : G — G/H determines
a pullback representation p of G, ie., p = v := vomw. For any h € H, we have
p(h) = v(m(h)) = v(1) = 1. In particular, this means that x,([g]) = x,(1) for all [g] € S.
But then, by assumption, p is the trivial representation of G. Because 7 is surjective,
we conclude that v is the trivial representation of G/H. Hence G/H admits only trivial
representations, so it is the trivial group, and H = G. O

If there are no topological Wilson lines, there must be a sufficient set S of endable
Gukov-Witten operators to link nontrivially with all possible Wilson lines. The theorem
tells us that this set of endable Gukov-Witten operators can generate all Gukov-Witten
operators through their fusion. But any operator appearing in the fusion of endable op-
erators must also be endable, and so we conclude that all Gukov-Witten operators are
endable. Gukov-Witten operators for finite groups end on operators that create dynamical
twist vortices (in 4d, these are twist strings). We conclude that the absence of topological
Wilson line operators is equivalent to completeness of the spectrum of twist vortices.

In fact, nothing in this argument relied on G being a finite group. Thus, we have estab-
lished one of the main results of our paper, Statement 2, as promised in section 1. When
G is a general compact group, endability of some Gukov-Witten operators will correspond
to the existence of twist vortices, while others will already be endable by Statement 6. We
will elaborate on this point in more detail below, in section 5.3.4.

4.3.3 Magnetic completeness

The magnetic spectrum of a discrete gauge theory is trivially complete: m1(G) is trivial,
since the identity component of G is simply a point. Thus, there are no 't Hooft operators,
and there is no magnetic (d — 3)-form symmetry.

4.3.4 A surface operator subtlety

Before we move on from finite groups, let us mention a subtlety in our arguments, pre-
viously discussed in section 5.1 of ref. [12].1> In Zs x Zy gauge theory in any number
of dimensions, there is a surface operator v(3) associated with the nontrivial element of
H?(Zy x Z3,U(1)) = Zy, which has a nontrivial triple linking with two Gukov-Witten
operators. This suggests a different way that a Gukov-Witten operator can cease to be
topological: if we render the operator v(X) endable by adding a new dynamical string to the
theory, then the Gukov-Witten operators that link with v would no longer be topological.
This poses a loophole, through which the absence of topological Gukov-Witten operators
might not necessarily imply the endability of all Wilson line operators. Statement 1 was
artfully phrased to avoid this loophole, by referring only to G gauge theories coupled to
matter fields in representations of G (and not to the stringlike objects that could render
v(X) endable).

15We thank Shu-Heng Shao, Po-Shen Hsin, Meng Cheng, and Qing-Rui Wang for bringing this subtlety
to our attention, and for discussions on this topic.
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Of course, in this setting one might also inquire about the necessary ingredients to
eliminate the topological operator v(X) from the theory. We believe that a sufficiently
careful analysis will show that, in general, the endability of all extended operators is
equivalent to the absence of any topological operators. However, the precise proofs that
we present in this paper address only limited subsets of operators and dynamical objects.
We will discuss similar subtleties in the context of Chern-Simons terms in more detail in
section 8. We leave a complete exploration of the details of H%(G,U(1)) surfaces, and
the search for a universal proof of the equivalence of completeness and the absence of
topological operators, for future work.

5 Compact, disconnected gauge groups

We will now move on to study topological operators for gauge theories for the case of a
generic, disconnected Lie group.!® This case has features in common with both those of
compact, connected Lie groups, and of finite groups. Like the latter, it admits topological
Wilson lines as well as topological Gukov-Witten operators. In fact, the presence of non-
invertible symmetries for such a gauge theory was recently studied [43], for the gauge group
U(1)N=! % Sy (our main example of O(2) gauge theory is the case N = 2).

5.1 O(2) gauge theory

O(2) = U(1) x Zs gauge theory can be constructed from U(1) gauge theory by gauging
charge conjugation [44, 45].

O(2) has a trivial irrep 1, a “det” irrep 14¢¢ of dimension 1 (which gives the determinant
of an element of O(2)), and other irreps of dimension 2 labeled by positive integers ¢ > 1,
which we will denote 2,. The det rep is the adjoint representation, reflecting the fact that
F,, is not gauge invariant but transforms to —F},, under charge conjugation. Under the
branching O(2) — U(1), 2, — 1, ® 1_,, whereas 1q4¢; — 1, the trivial rep. Thus, a charge
g Wilson line of O(2) gauge theory can be constructed as a gauge-invariant sum of Wilson
lines of U(1) gauge theory:

WA (y) = WD () + W'V (5) = exp (iqﬁA) + exp <iq]£z4> : (5.1)

The fusion between two O(2) Wilson lines is given by the tensor product of their

representations. In particular, we have (for ¢ # ¢')

2q X 2q’ = 2q+q’ D z‘q,qq, 2q & 2q = 22q D 1get O 1,

(5.2)
2(] ® 1get = 2(1’ Lget ® 1get = 1.

16We do not require our Lie groups to have dimension greater than zero, i.e., we include finite groups as
examples of compact Lie groups.
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We can understand the first of these fusion laws from the perspective of the U(1) Wil-
son lines:

me)wagy—ew(ﬂq+d[fA)+@®<Kq—d[fA)
+ exp <i(—q +q) % A) + exp <—i(q +4q) 7{ A) (5.3)

0(2)
q—q'|’

_o®

- Tat+q + VV\

As usual, codimension-2 Gukov-Witten operators are labeled by conjugacy classes of
O(2). All elements of O(2) with determinant —1, (i.e., those elements disconnected from
the identity) lie in a single conjugacy class. The associated Gukov-Witten operator 7, (gsf )
links nontrivially with the adjoint (det) line, which is endable, so this surface operator is
not topological.

The remaining conjugacy classes have determinant 41 and are labeled by an angle

0 € [0, 7], where a given class 6 may be represented by the matrix

<cos€—sin9>, (5.4)

sin@ cos6

and 0 ~ —0 ~ 0 + 27. The center of O(2) is isomorphic to Zo and is generated by the
element with 6 = 7.

The Gukov-Witten operators labeled by conjugacy classes 6 € (0, 7) may be written
as gauge-invariant sums of Gukov-Witten operators of U(1) gauge theory:

TC?0(2) ( M(d—z)) _ Uc‘fé” ( ./\/l(d_2)) + Ug&? ( M(d—2))

() B

All of these operators are topological in pure O(2) gauge theory, and they have quantum
dimension 2. Meanwhile, the surface with 8 = 7 is given simply by the § = 7 surface of
the U(1) gauge theory:

T;)f) (M=) = Ugil)(M(d—ﬂ)) = exp (;—Z % *F> . (5.6)
Im

This surface has quantum dimension 1 and generates the Zs “center” 1-form global sym-
metry.

The fusion of two topological surfaces labeled by 6, 6 can be understood in terms of
the U(1) electric symmetry generators. In particular, for 6 # ¢’ # 7w — ¢’ € (0, 7), we have

TO2) (9) x TO?) (¢') = exp (2(99;20/) ]{*F) + exp (2(99;29/) %*F)

+ exp (z(é{’]—:@) f*F) + exp (—Z(eg;zel) %*F) (5.7)
=719 (9 +¢') x TP (9 — ¢").

— 27 —



Similarly, we have for 6 € (0,7):

TO®)(9) % TOR) (1) = exp (Z(ggﬂ f *F) +exp (Z(_Hg—”) / *F) — 7O()(g 4 ),

2 2
(5.8)

and 793 (1) x TO®) (1) = 1.
The fusion of two surfaces with 6 = 6’ or § = m — 6’ are slightly more complicated.
The former is

TO@)(9) x TOP () = 1+ Waer + TP (26), (5.9)
while the latter is
T9@ () x TO® (1 — 6) = TO@ (1) + TO®) (1, det) + TO@ (20 — 1), (5.10)

Here, 1 is the trivial surface, Wy is a trivial surface with a Wilson line in the det repre-
sentation, and TO®?)(r, det) is a 7 surface with a det Wilson line. The appearance of the
det Wilson line — an operator of lower dimension — at the junction of higher-dimensional
operators is characteristic of a higher-group global symmetry [46]. In the case at hand,
two of the higher-dimensional operators are not invertible, but rather have quantum di-
mension 2.17

The fact that Wye; appears in the fusion of two topological surfaces indicates that det
is a topological line. This can also be seen as a consequence of Statement 5, because the
identity component of O(2) acts trivially on the determinant representation.

If we surround a Wilson line in a representation v of O(2) with a topological surface
T.is and shrink the surface to a point, we find the Wilson line times a linking coefficient,

B,(6) = i:gg; x size(6), (5.11)

with size(f) = 1 for § = 0,7, and size(f) = 2 otherwise, and
Xq(0) = € + 7% = 2cos(¢h), x0(6) = Xaet(6) = 1. (5.12)

In the presence of matter in a representation ¢, Wilson lines in the ¢ representation can
end. The surfaces that remain topological are those that link trivially with such a Wilson
line, i.e., those satisfying x,(6) = x4(0). From (5.12), this is equivalent to cos(¢f) = 1. We
see that for ¢ = 1, the only such surface that survives is the trivial surface: as expected,
no nontrivial surfaces remain topological when the spectrum is complete.

On the other hand, for ¢ = 2, the Zg surface T(@ = m) remains topological. The
“center symmetry” survives even in the presence of matter in a representation g provided
that ¢ is even.

"The appearance of electrically charged particles in the fusion of strings has been discussed previously in
the context of discrete gauge theories [47]. It would be worthwhile to explore further the analogous fusion
of surface operators we have seen here.
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For more general ¢, however, there will be additional surfaces that remain topological,
indexed by an integer k:
0 =2nk/q,0<6<m. (5.13)

These surfaces are not invertible for § € (0,7). This is evidenced by the fact that the
conjugacy class 6 has two elements for 6 € (0,7), so the quantum dimension of 7'() is
equal to 2. Note that for ¢ = 3, the invertible operator (m,0) will cease to be topological.
Nonetheless, there are still topological operators with § = 27w /3. We see that topological
Gukov-Witten operators exist if and only if the spectrum is incomplete.

Similarly, topological Wilson lines exist if and only if the spectrum of twist vortices is
incomplete. The one Wilson line which is topological in pure O(2) gauge theory is the det
line. It links nontrivially with the Gukov-Witten operator associated with the conjugacy
class of elements with determinant —1. This Gukov-Witten operator becomes endable,
and the det line non-topological, when the theory contains a dynamical twist vortex which
induces charge conjugation on a charged particle that circles the vortex. In the 4d case,
this twist vortex is the familiar “Alice string” of O(2) gauge theory [41, 45, 48]. All other
Gukov-Witten operators can already end on improperly quantized 't Hooft operators in the
pure gauge theory, according to Statement 6. This property is inherited from the endability
of the Gukov-Witten operators of U(1) gauge theory.

Let us now specialize to 4 dimensions and study the 't Hooft operators (now lines)
of the theory. Like the Wilson lines, these are labeled by positive integers and can be
constructed from gauge-invariant sums of the 't Hooft lines of U(1) gauge theory prior to
gauging charge conjugation:

VPO 0) = VPO + vV (). (5.14)

q —-q

More mathematically, the ’t Hooft lines are in 1-1 correspondence with elements of the quo-
tient 71(0(2))/m0(0(2)), where the basepoint of loops in 71(0(2)) is the identity, and ele-
ments of 7 (O(2)) act by conjugation on these loops. 71 (0(2)) is then equal to 71 (U(1)) = Z
(since U(1) is the connected component of O(2)) and the quotient by my(O(2)) identifies
loops of opposite orientation.

The fusion algebra of these loops is identical to the fusion of O(2) Wilson lines: lines
of magnetic charge ¢, ¢’ fuse to lines of charge ¢ + ¢/, |¢ — ¢’|. Two 't Hooft lines of the

same charge ¢ fuse according to
VOR 5 VOB = 1 + Wy + V;;(Q). (5.15)

Here, Wyt is the Wilson line in the det representation: the appearance of a Wilson line in
the fusion of two purely magnetic 't Hooft lines is a novelty not encountered in the compact
examples considered previously.

The topological dimension-2 surfaces that link with the 't Hooft lines are similarly in 1-1
correspondence with the topological electric surfaces studied above: there are topological
surfaces of quantum dimension 2 for all n € (0,7), which can be written as

202) 1\ 42y — UM g1 U (@) ﬁf ) <ﬁ7{ )
15,7 (M) =Ugy (MZ)+U ) (M) = exp <27r MF +exp | —o— MF . (5.16)
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All of these operators are topological in pure O(2) gauge theory, and they have quantum
dimension 2. There is also a surface with n = m, which is given simply by the n = 7
magnetic surface of the U(1) gauge theory:

IO M) =TI MOD) —exp (5§ F). (5.17)
M

This surface is invertible and squares to the identity operator. The fusion of the magnetic
surfaces is identical to that of the electric surfaces considered previously.

The linking between a topological surface T'(n) and an ’t Hooft line Vy is given precisely
by By(f), defined in (5.11). In the pure O(2) gauge theory, none of the 't Hooft lines V
can end, and all of the magnetic surfaces T(0), 8 € (0, ) are topological. In the presence of
a monopole of magnetic charge ¢, V; is endable, and any surfaces T(n) that do not satisfy
cos(ng) = 1 will cease to be topological. By the same analysis as in the electric case, the
absence of topological magnetic surfaces is equivalent to the completeness of the magnetic
spectrum.

Although the fusion algebras of the Wilson lines and electric surfaces match those of
the 't Hooft lines and magnetic surfaces, there is one subtle difference between the electric
and magnetic sides of the story: in particular, 't Hooft lines of odd charge ¢ are pseudo-
real, whereas Wilson lines of odd charge ¢ are real. We can see this by realizing O(2) as a
Higgsing of SO(3), as described in section 7.1; the odd-charge 't Hooft lines of O(2) descend
from the topologically nontrivial 't Hooft lines of SO(3), which correspond to pseudoreal,
half-integer spin representations of “SO(3) = SU(2) under S-duality.

In fact, the fusion algebra and the reality properties of the 't Hooft lines (along with
the det line) exactly match the representations of O(2) = (U(1) x Z4)/Zs. Likewise,
the topological magnetic surfaces T' (n) are in 1-1 correspondence with topological Gukov-
Witten surfaces of O(2) gauge theory. It is thus natural to identify O(2) gauge theory
as the S-dual of O(2) gauge theory in four dimensions. We plan to explore S-duality of
disconnected gauge groups further in future work.

Even more generally, O(2) gauge theory has dyonic operators carrying both electric
charge n and magnetic charge m. These are labeled by a pair of integers (n,m), with
the identification (n,m) ~ (—n,—m) due to gauging charge conjugation of U(1) gauge
theory. These can be understood as the sum of two U(1) dyonic lines of charge (n,m) and
(—n, —m), respectively.

Similarly, there are mixed electric-magnetic topological operators labeled by a pair of
angles (0,7n), with the identification (6,7) ~ (—6,n). These have quantum dimension 2
unless 6 and 7 are both equal to 0 or 7, in which case they have quantum dimension 1.

The linking coefficient between a (6,7) surface and an (n,m) line is given by

Bnm)(0,1) = 2 cos(On + nm) x size(0,n), (5.18)

where size(6,7) is the quantum dimension of the surface. If the line (n,m) is endable, then
any surface with cos(6n +nm) # 1 will not be topological.

More generally, if dyonic lines of charge (ny,m1), ..., (n;,m;) are endable, then only
surface operators (6, 7n) satisfying cos(n;0 +m;n) = 1 for all i will be topological. These are
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precisely the conditions for such an operator to be topological in the U(1) gauge theory,
as can be seen from (3.12). Thus, from our discussion of U(1) gauge theory, we see that
topological surfaces will exist if and only if some line operators are not endable.

5.2 The structure of a compact Lie group

The simplest examples of disconnected, compact Lie group are finite groups. One way to
obtain disconnected gauge groups that are not finite is to gauge an outer automorphism of
a connected Lie group, as in the O(2) example we have just discussed. Another example
is the group Eg x FEg, which has an outer automorphism that acts by swapping the two
FEjg factors. Gauging this outer automorphism produces a disconnected, compact Lie group
(Eg x Eg) x Zg, which is actually the gauge symmetry of what is usually referred to as the
Eg x Eg heterotic string theory [49].

In fact, the most general compact Lie group is not that far away from the above
construction [50, 51]:

Theorem 4. Let G be a compact (not necessarily connected) Lie group G, and let Gy be

its identity component. Then
Go X R

P Y
where R is a finite group whose elements act on Gg either trivially or via an outer auto-

G = (5.19)

morphism of Gy, and P is a finite, common normal subgroup of Z(Gy) and R.'8

Proof. For compact connected G, the short exact sequence of groups
1 —— Inn(Go) —— Aut(Go) —— Out(Gpy) —— 1 (5.20)

splits [52]. Since the sequence splits, we can choose a subgroup Ry C Aut(Gy) such that
Aut Go = Inn Gy ¥ Ry (so Ryp = OutGy). Now consider the conjugation map f : G —
Aut(Gy) (ie., f(g) maps h to g~'hg). The preimage K = f~!(Ry) is a subgroup of G
whose intersection with Gy is its center Z(Gy), because all other elements of Gy map to
nontrival elements of Inn(Gy).

Moreover, K intersects every connected component of G. To see this, note that multi-
plication by an element of Gy maps to composition with an element of Inn(Gp) under the
conjugation map f, whereas every element of Aut(Gy) is the composition of an element
of Ry with an element of Inn(Gy) (since Aut Gy = Inn Gy X Rp). Putting these two facts
together, we conclude that for any g € G there is some gy € Gg such that the action by
conjugation of ¢’ = ggo lies in Ry. Since g and ¢’ € K lie in the same connected component,
K intersects every connected component.

As the preimage of a closed Lie group Ry by a continuous map, the group K is a
closed Lie subgroup of the compact Lie group G, and hence is a compact Lie group itself.
In particular, K therefore has finitely many connected components. As proven in [53],
any such group has a finite subgroup R that intersects every connected component. Since
K likewise intersects every connected component of G, R is a finite subgroup of G that

18 Although P is abelian, in general P is not central in G because R can act non-trivially on P C Z(Go).

- 31 -



intersects every connected component and whose elements act on Gy either trivially or as
an outer automorphism.

Let P = RN Gq be the intersection of R with the identity component Gy. By con-
struction P C Z(Gp). Moreover, P is normal in R because Gq is normal in G.

Now consider Gy x R where R acts on G as above. There is a homomorphism (go, ) —
gor from Gy x R to G given by multiplication in G. Because R intersects every connected
component of G, the homomorphism is surjective, with kernel (p~!,p) for p € P. Thus
G= % as claimed. O

In physical terms, this structure theorem tells us that the most general gauge group
can be obtained from a connected gauge group Gy by gauging a discrete group R (some of
whose elements may act by non-trivial outer automorphisms on Gy) and then quotienting
by a common subgroup of the discrete group R and the center of the connected group
Z(Gy). Note that when P is central in Go X R, the quotient by P corresponds to gauging
a 1-form symmetry [1].

5.3 General story
5.3.1 Characterizing topological Gukov-Witten operators in pure gauge the-

ory

As discussed in section 2, in pure G gauge theory, the topological Gukov-Witten operators
Tig)
of the identity, Zs(Gg). It is possible to give a more concrete description, in terms of the

are those labeled by conjugacy classes in the centralizer of the connected component

topological surfaces we encountered in previous sections on compact gauge theories and
finite gauge theories. In particular, following the discussion of section 5.2, let us write
G = (Gp x R)/P, where Gy is compact and every element of R acts on G either trivially
or by nontrivial outer automorphism. To begin, let us suppose P is trivial, and let K C R
be the subgroup of R that acts trivially on Gj.

Any topological surface operator T, must satisfy xadj([9]) = Xaqj(1) (we will argue
in section 7.4 below that this is also a sufficient condition). As discussed in Lemma 1

L = gy for all gg in Gy,

and Statement 4, this is equivalent to the statement that ggog™
the component of G connected to the identity. It is not hard to see that the elements
g = (z,h), x € Gy, h € R satisfying this equation are precisely those of the form (z, k),
where z € Z(G) and k € K. Thus, topological surfaces T}, are associated with conjugacy
classes consisting of elements of this form.

In general, some of these conjugacy classes will be composed of one or more elements
of the form g = (2,1), 1 # z € Z(G). Such a surface can be thought of as a gauge-invariant
sum of 1-form center symmetry generators of G, invariant under the action of R. For
instance, the surfaces T'(6),0 € [0, 7] of G = O(2) gauge theory that we saw above all take
this form — they can be written as gauge invariant sums of Gy = U(1) 1-form symmetry
generators, invariant under the action of R = Zs.

Some conjugacy classes will be composed of one or more elements of the form g = (1, k),
1 # k € K. The corresponding topological surfaces are the Gukov-Witten operators of the
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discrete gauge theory R that link trivially with the endable Wilson line in the adjoint
representation.

Finally, some conjugacy classes will consist of elements of the form g = (2, k), 2,k # 1,
z € Z(G), k € K. The associated topological surfaces can be constructed by fusing the
above two types of topological surfaces — namely, by fusing one surface Tj,, g = (2,1)
with another surface Tjy1, ¢’ = (1, k).

Thus, we see that the topological Gukov-Witten operators in G = Gy x R gauge theory
can be written as (a) gauge-invariant sums of 1-form center symmetry generators of G
gauge theory, (b) Gukov-Witten operators of R gauge theory, or (c) fusions of (a) and (b).
This is still true for the most general case of G = (Gp x R)/P: the quotient by P will
simply project out some of these topological Gukov-Witten operators.

5.3.2 Invertible Gukov-Witten operators

As discussed in section 2.1, not all topological operators are invertible. A topological
operator T is invertible if and only if there exists another topological operator 7! such
that T x T—! = 1, the trivial operator. By (2.5), we see that 7" may be invertible only
if it has quantum dimension 1. As we have seen, topological Gukov-Witten operators,
under which Wilson lines are charged, are labeled by conjugacy classes, and the quantum
dimension of these surfaces is given by the number of elements in the conjugacy class. This
means that an invertible topological surface corresponds to a conjugacy class with a single
element, g, so that hgh™' = g for all h € G. This is precisely the condition that g lies in
the center Z(G) of G. Hence, Gukov-Witten operators labeled by elements of the center
Z(@G) are indeed topological and invertible.

As discussed in section 2.3.1, the Lemma 1 applied to the adjoint representation shows
that the topological Gukov-Witten operators in pure G gauge theory correspond to the
centralizer Z(Gp), which contains the center Z(G). The fact that Z(G) is typically a
proper subset of Zg(Gy) for a disconnected gauge group G implies that there will be
additional codimension-2 topological operators that are not invertible.

5.3.3 Electric completeness and topological surfaces

Next, let us turn to the relationship between general topological operators and completeness
of the spectrum. In our language, completeness is equivalent to the statement that every
Wilson line W, should be endable. We want to show that if this is not satisfied, then some
surface operator T, will remain topological, whereas if it is satisfied, then all of these
surfaces will be rendered non-topological. From what we have said so far, this is equivalent
to the following theorem about group theory:

Theorem 5. Let G be a compact (not necessarily connected) Lie group, and let Rendable
be a subset of the set R of all irreps of G that is closed under tensor product (i.e., if
p,0 € Reondable With p ® 0 = @, i, then p; € Rendable). Then, Repdable is a proper subset
of R if and only if there exists a non-trivial element g € G such that x,(g) = x,(1) for all

pE Rendable .
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Proof. First, suppose that such a g exists. By Lemma 1, p(g) = I for all p € Rendaple- This
implies that no representation that decomposes into irreps in Repgable could be faithful,
since g acts trivially in every such representation. But, every compact Lie group has a
faithful representation, which must include an irrep that is not included in Rendable-

Conversely, suppose no such g exists. In this case, the Hilbert space direct sum,

pad = P p, (5.21)

peRendable

is a faithful, unitary representation of G, using that every irrep of a compact Lie group
is unitary. By Theorem A.10 of [6], any faithful, unitary representation of a compact Lie
group has a finite dimensional, faithful sup-rep jeng.!” Finally, by Theorem A.11 of [6], the
tensor powers of any faithful, unitary representation (and its conjugate) of a compact Lie
group generate the entire representation ring, i.e., given penq finite dimensional and faithful
and o an irreducible representation of G, there exist n, m such that p?rfé &) p‘?}ﬂ =0d....

Since Rendable 18 assumed to be closed under tensor products, we learn that Repgaple contains
every irreducible representation of G, i.e., Rendable = R. O

Theorem 5 is one of the primary results of our paper. It shows that for a general
compact gauge group G, if all Wilson lines are endable, then each of the codimension-2
surfaces Ty is rendered non-topological. Conversely, if some Wilson lines are not endable,
then there exists a topological surface T}y, which links trivially with all endable Wilson
lines, yet nontrivially with a non-endable Wilson line. This establishes Statement 1, as
promised in section 1.

5.3.4 Twist vortex completeness

We have already established, by Lemma 3, that in a theory of gauge fields coupled to
dynamical twist vortices, there are no topological Wilson lines if and only if all Gukov-
Witten operators are endable. For finite-group gauge theories, the endability of every
Gukov-Witten operator necessarily requires the addition of dynamical twist vortices to the
theory, labeled by a collection of conjugacy classes whose fusion generates all conjugacy
classes in G. In fact, even when the identity component Gg of a group is nontrivial, the
endability of every Gukov-Witten operator only requires adding additional dynamical twist
vortices whose corresponding conjugacy classes generate every conjugacy class in the finite
group 7o(G) under the quotient map G — mo(G).

In order to see this, recall that the Gukov-Witten operators corresponding to the
conjugacy classes in GGy are already endable in pure gauge theory on improperly quantized
't Hooft operators, by Statement 6. Suppose that we add to the theory dynamical twist
vortices labeled by some conjugacy class [g] in G that intersects a non-identity connected
component F. By fusion with the vortices labeled by conjugacy classes in Gy, we can
generate dynamical vortices labeled by the conjugacy classes of any group element in F,

191n fact, it is possible to find such a finite dimensional faithful representation algorithmically, by ordering
all irreps and taking direct sums until a faithful rep is produced. By compactness, this process must
terminate after a finite number of steps.
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since the action of Gy on F' by left or right multiplication is transitive. In order to generate
every conjugacy class in G, it is thus sufficient to add a collection of twist vortices that
generate conjugacy classes intersecting every connected component of G, or equivalently,
which generate all conjugacy classes in m(G), as claimed.

Thus, even for disconnected Lie groups G with a nontrivial identity component Gy, the
collection of additional, dynamical twist vortices is still controlled by a finite group, namely
mo(G). This establishes Statement 2 in section 1. In 4d theories, these twist vortices can

Y

provide examples of “cosmic strings,” with potential phenomenological implications that

we will sketch in section 9.2.

5.3.5 Magnetic completeness and global symmetry

So far, we have focused primarily on Wilson lines and the electric side of the story. In
this section, we briefly comment on ’t Hooft operators and magnetic global symmetries.
To begin, we restrict ourselves to the study of G gauge theory with G = (Gy x H)/P, Gy
connected, H finite, in d > 3 dimensions. Note in particular that the semidirect product
between Gy and H studied above has been replaced by a direct product.

In such a theory, 't Hooft operators may be classified by nontrivial G gauge bundles.
These gauge bundles are labeled by elements of 71(Gyp), the first fundamental group of
the identity component of G. As in the case of a connected gauge group discussed in
section 3.4.2, there is a magnetic (d — 3)-form 71(Gp)" global symmetry, where 7 (Gp)" is
the Pontryagin dual group of 71 (Gj).

't Hooft operators can end in the presence of magnetically charged (d —4)-branes (i.e.,
monopoles). The set of endable 't Hooft operators forms a subgroup N of m1(Gg), which
is normal since 71(Gp) is abelian. The remaining magnetic global symmetry is given by
(71(Go)/N)V, the Pontryagin dual of m1(Gp)/N. From this, we see that if all 't Hooft
operators are endable, then the magnetic symmetry will be completely broken. If not, then
some nontrivial remnant will exist. Notably, all of the topological magnetic operators of
dimension 2 are invertible.

How is this story modified in the more general case G = (Gy x H)/P, where some
elements of H acts via nontrivial outer automorphism on Gy? First, the set of 't Hooft
operators is now classified by 71 (G)/mo(G), where elements of my(G) act via conjugation
on loops in m1(G) with basepoint equal to the identity. The action of mo(G) will in general
identify distinct elements of 71(G), and as a result 71 (G)/m(G) is not generically a group,
as we saw in the case of O(2) gauge theory.

The category of topological magnetic operators is morally equal to the “Pontryagin
dual” of 7 (G)/mo(G). However, when 71 (G)/mo(G) is not a group, its Pontryagin dual is
not well-defined. From the O(2) example above, we expect that in this case some of the
topological magnetic operators will be non-invertible. One way to understand this category
would be to map it to the category of topological Gukov-Witten operators of some other
gauge group G, related to G via S-duality. For instance, for G = O(2), we saw that the
spectrum of 't Hooft lines and topological magnetic surfaces in 4d could be understood as
the spectrum of Wilson lines and topological Gukov-Witten surfaces of O(2) gauge theory.
We leave further exploration of magnetic completeness, topological operators, and S-duality
of these disconnected gauge groups to future work.
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6 Noncompact gauge groups

Our previous results regarding the correspondence between topological (endable) Gukov-
Witten operators and endable (topological) Wilson lines does not work for noncompact
gauge groups. In this section we illustrate the differences in a couple of examples.

6.1 R gauge theory

We used the compactness of G several times in the proof of Theorem 5. It is interesting
to consider see how this theorem is violated if G is not compact. In particular, consider
G = R, and suppose that the Wilson lines of charge ¢ = m + nv/2 are endable for m,
n € Z. This spectrum is incomplete — for instance, a Wilson line of charge 1/2 cannot
end. However, no surfaces will remain topological: the characters in question are given by
Xq(@) := exp(2miga), and for any o € R, there exists ¢ such that the Wilson line of charge
q is endable, and x,(a) # 1.

It is interesting to note, however, that although the spectrum is not complete in this
example, the charges of the endable Wilson form a dense subset of the real numbers.
Indeed, for R gauge theory, a slightly modified version of Theorem 5 holds true: there exist
topological surfaces if and only if the set of charges of endable Wilson lines is not dense in
R. One direction of this statement is obvious: if this set is dense, then no a € R will satisfy
Xq(a) = exp(2miqar) = 1 for all endable Wilson lines W,. Conversely, if the set of charges
of endable Wilson lines is not dense, then there exists a neighborhood (-4, d) of the origin
that does not contain any endable Wilson line W, ¢ # 0. Allowing ¢ to be the value of the
largest such neighborhood, we conclude that § must in fact be the smallest positive charge of
an endable Wilson line. From here, we see that Wis, Wios, Wiss, .. .. are all endable, and
indeed these must be the only endable Wilson lines: given some other endable Wilson line
W.,, then if v € (nd, (n+ 1)), then W3 with § = |y —nd| < ¢ is endable, contradicting our
assumption that § was the smallest positive charge of an endable Wilson line. As a result,
surfaces with o = n/é will be topological for all n € Z, as xms(na) := exp(2mimn) = 1.

6.2 7 gauge theory

We next consider pure Z gauge theory in d dimensions. Wilson lines are labeled by phases
a € [0, 27), whereas Gukov-Witten operators are labeled by integers. All of these operators
are topological: the Wilson lines generate a U(1) (d — 2)-form global symmetry, whereas
the Gukov-Witten operators generate a Z 1-form global symmetry. The charge operators
of the 1-form symmetry are charged under the (d — 2)-form symmetry, and vice versa (as
is typical for a discrete gauge symmetry).

In the presence of charge a matter, the Wilson line of charge « is endable. The Gukov-
Witten operator labeled by the integer n is not topological unless an € 27Z. If a/x is
rational, therefore, a Z 1-form global symmetry is preserved. If a/7 is not rational, however,
then the 1-form symmetry is completely broken, even though the spectrum is incomplete.
As in the R gauge theory example considered above, however, the set of endable Wilson
lines in this case form a dense subset of [0,27). On the other hand, if the Gukov-Witten
operator labeled by n is endable, then the (d — 2)-form global symmetry is broken to Z,,
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so the spectrum of Gukov-Witten operators is complete precisely when the (d — 2)-form
global symmetry is absent.

Unbroken Z gauge theory is rarely considered in the study of quantum field theory and
quantum gravity. However, spontaneously broken Z gauge groups appear in rather familiar
examples of field theories, and the results are quite different then. Let us consider the
theory of a compact scalar field 6 in four dimensions,

L— /deA*de, (6.1)

with 6 := 6 + 27. This theory has a U(1) 0-form global symmetry given by 6 — 6 + ¢ for
¢ € [0,27). Additionally, the compact scalar can be dualized to a 2-form Bg, and there is a
2-form magnetic global symmetry given by shifting Bo by a flat connection, By — By + Co,
dCs = 0.

Alternatively, we can view this system as the theory of a noncompact real scalar ¢
with a spontaneously broken gauge symmetry Z, under which ¢ transforms as ¢ — ¢ + 2.
Before gauging this Z 0-form symmetry, there is a O-form global symmetry R. Such a
symmetry is associated with topological codimension-1 surfaces,

Ueia (M3) = eia §M3 *d¢, (6.2)
which act on local operators /%) by
Ui (S3(2))e?P9@) = giaBeibd(a) (6.3)

for a, 3 € R, and S3(x) a 3-sphere whose interior contains the point .

Gauging the Z symmetry amounts to restricting (5 to lie in Z and imposes the condition
that the periods of *d¢ must be integers, which identifies @ ~ o + 27w. As a result, the R
O-form global symmetry is reduced to the quotient R/Z ~ U(1).

As discussed above, pure Z gauge symmetry has two remaining symmetries: a Z
electric 1-form symmetry, and a U(1) magnetic 2-form symmetry generated by the Wilson
lines of the gauge theory. However, in the case at hand, the 0-form gauge symmetry Z is
spontaneously broken by the field ¢, and the Wilson line in Z representation o € [0, 27),
namely eiaf 4 can end on an operator of the form e’*?. This means that the magnetic
surfaces labeled by integers are not topological, so there is no Z 1-form electric global
symmetry that results from gauging the axion shift symmetry. Instead, there is only a
U(1) 2-form global symmetry generated by the Wilson lines, under which the magnetic
surfaces are charged.

Thus, we are left with a 0-form U(1) global symmetry and a 2-form U(1) global sym-
metry, exactly as we had for the compact scalar field 6, with associated 3/1-form currents
*xd¢ and d¢, respectively. The symmetry generators for the 2-form symmetry exp(ia f,y do)
are the Wilson lines of the Z gauge theory. Since these groups are now compact, we can use
Statements (1) and (2) again to recover the correspondence between absence of topological
operators and completeness of the spectrum. It is worth noticing that whenever we find
these noncompact gauge groups in string theory, they are indeed spontaneously broken to
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a compact group, so this is consistent with the expectation of no global symmetries and
the Completeness Hypothesis in quantum gravity. The canonical example is SL(2,Z) in
Type 1IB, which gets spontaneously broken to finite subgroups in the moduli space.

7 Higgsing

In the previous sections we have shown that, for compact gauge groups, completeness
of the gauge theory spectrum is equivalent to the absence of topological Gukov-Witten
operators, while completeness of twist vortices is equivalent to the absence of topological
Wilson lines. One could wonder how robust is this story under Higgsing. In other words,
could the process of Higgsing change the spectrum of topological operators such that a
complete UV theory gives rise to an incomplete IR theory, or vice versa? Here, we show
that the process of Higgsing preserves completeness: the IR theory is complete if and only if
the UV theory is also complete. We further discuss the behavior of Gukov-Witten operators
and 't Hooft operators under Higgsing, and we argue that any Lie group can be obtained
as a result of Higgsing an SU(n) gauge theory for sufficiently large n. The resulting theory
will have no topological Wilson lines, and it will have no magnetic (d — 3)-form symmetry.

We begin with a number of examples.

7.1 Higgsing SU(2) and SO(3)

We start with Higgsings of pure SU(2) gauge theory (with zero theta angle). The SU(2)
theory has Wilson lines labeled by SU(2) representations. Adjoint lines (and more generally,
integer spin representations) are endable, and so the only non-endable Wilson lines are
those that represent the Zs center nontrivially (half-integer spin). None of these lines are
topological.

The Gukov-Witten operators correspond to conjugacy classes of SU(2). Recall from
section 3.2 that these conjugacy classes are labeled by 6 € [0, 7|, where a representative of
the conjugacy class 6 is given by diag(exp(if), exp(—if)). The center of SU(2) is isomorphic
to Zo and consists of the elements 6§ = 0,7. The Gukov-Witten operator associated to
@ = 0 is the trivial operator, and the # = w Gukov-Witten operator is a topological,
invertible operator which generates the 1-form center symmetry. Gukov-Witten operators
corresponding to 6 € (0,7), on the other hand, are not topological. All of these Gukov-
Witten operators are endable, and relatedly there are no nontrivial topological Wilson lines.
There are also no topologically nontrivial 't Hooft operators, since there are no nontrivial
SU(2) bundles over S? (see section 2.3.3).

Having discussed the operators in the SU(2) theory, we now describe how they map to
different operators after Higgsing.

Higgsing to U(1). In this textbook example, we turn on a vev for a scalar ® in the
adjoint representation to break the gauge group to U(1) in the Cartan. The SU(2) Wilson
line of spin j becomes a sum of U(1) Wilson lines of charge 2s for s = —j, —j+1,--- ,j—1,7,
where we have normalized the IR quantum of charge to be 1. As before, Wilson lines of odd
charge are topological. The matching of Gukov-Witten operators is subtler. Gukov-Witten

— 38 —



operators in the IR theory are labeled by an angle 6 € [0,27). In pure U(1) gauge theory,
these are all topological and generate a U(1) 1-form symmetry, but in the case at hand this
symmetry is broken to a Zo subgroup by the Higgs field.

The resulting Zs topological operator is the IR description of the UV topological
Gukov-Witten operator. Naively, we seem to have twice as many non-topological IR Gukov-
Witten operators (which are labeled by an angle 6 € (0, 27) other than 7) as non-topological
UV Gukov-Witten operators (which are labeled by an angle in (0,7). To understand
this mismatch, notice that the UV Gukov-Witten operator was defined by first excising
a codimension-2 surface from the path integral and then specifying the holonomy in the
transverse S' to be g € SU(2), and then summing over all g in the conjugacy class. When
attempting to do this in the spontaneously broken vacuum, any g that does not preserve
the adjoint Higgs vev ® will lead to a discontinuity and disappear from the path integral.
Only those g € [g] that commute with ® will contribute. In our case, writing the Higgs

@zas((l)_Ol), 6> 0, (7.1)

vev as

we get that for an SU(2) conjugacy class with parameter 0, the sum collapses®® to the

i0 —i6
e 0 e 0
g= ( 0 ew) and ¢ = ( 0 ew) . (7.2)

These two elements belong to the same SU(2) conjugacy class, but they are in different

elements

conjugacy classes in U(1); thus, the UV Gukov-Witten operator with parameter 6 becomes
a direct sum of two IR Gukov-Witten operators. This explains the mismatch noted above.

More general linear combinations of the IR, Gukov-Witten operators can be obtained
from the UV theory as operators with insertions of the Higgs field ®. For example, consider
the same definition for the Gukov-Witten operator, as a sum over boundary conditions on
ST, but introduce additional ®-dependent factors in the sum, such as

Yooo= D (g ®). (7.3)

g€lg) g€lg]

In the broken phase, with the vev (7.1), again only the two elements (7.2) contribute, but
the additional Higgs-dependent factors ensure that we produce the linear combination
2isin 0 (Uy_eio ~ Uy_o0) (7.4)
of the IR theory. In this way, all surface operators of the IR theory originate from operators
in the UV theory dressed with Higgs fields. We emphasize that the particular dressing (7.3)
is only one arbitrary example, not of special physical relevance.
Finally, the IR theory 't Hooft operators are labeled by 7;(U(1)) = Z. In contrast,
7m1(SU(2)) is trivial, so there are no nontrivial 't Hooft operators in the UV theory. Again,
we can construct (many) UV operators involving the Higgs field that become the IR ’t Hooft

20There are some issues of normalization and dividing by volume of the gauge group.
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operator. For instance, consider the operator defined by excising a line and prescribing
boundary conditions on the angular S? as

d — Dy - fo, (7.5)

where fg2 is a representative of the nontrivial map from S? to SU(2)/U(1) = S2. In the IR,
this behaves as an 't Hooft operator in the spontaneously broken vacuum for any nonzero
value of ®.

Since there are no non-endable 't Hooft operators in the UV, the 't Hooft opera-
tors we just constructed must be endable. As is well-known, the IR theory contains 't
Hooft /Polyakov monopole solutions [54, 55], and the 't Hooft operators can end on oper-
ators that create these monopoles. In terms of the UV description (7.5), the line can end
by simply deforming ®( to zero.

Higgsing to O(2) and O(2). Consider the spin 2 representation of SU(2). Regarding
SU(2) as the double cover of SO(3), the spin 2 representation corresponds to a symmetric

tensor. If we choose coordinates (x,y, z) for the vector representation, then a vev like
(®) = dz? (7.6)

only preserves rotations in the zy plane, but it also preserves simultaneous reflections of
the z and z or y and z coordinates. The unbroken subgroup will be a double cover of O(2),
and in particular, since these simultaneous reflections are equivalent to 180° rotations in
the zz or yz planes, the reflections will square to —1 in the double cover. The resulting
group is Pin™ (2), or equivalently,

U(l) A Z4

Pin=(2) = 0(2) = 7

(7.7)
We have introduced the notation O(n) to denote generally the extension of O(n) by reflec-
tions that square to (—1),

~ SO(TL) X Z4

7 (7.8)

Note that Pin™(2) = O(2), but this is a low-dimensional accidental isomorphism.
Going back to O(2), we can now match Wilson lines and Gukov-Witten operators. The
group 6(2) can also be described explicitly as the group of 2 x 2 matrices generated by

cos(f) —sin(0) [ 01
o (sin(@) cos(0) /)’ "\ 210 (7.9)
Notice that this is essentially the same matrix description of O(2), except that reflections
are multiplied by i. The representation theory of O(2) and O(2) are very similar, including
the adjoint (which represents R by a sign) and two-dimensional representations indexed by

an integer ¢. Unlike for O(2), only representations of even ¢ are real; those of odd ¢ are
pseudoreal instead (these are the spinor representations when we regard O(2) as Pin™(2)).
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The adjoint of SU(2) decomposes as a sum of the sign representation and the charge
q = 2 real representation. This means that in the IR theory, the adjoint (sign) representa-
tion and all the real representations of even charge are always endable. The fundamental
representation of SU(2) becomes the pseudoreal representation of charge ¢ = 1.

The conjugacy classes of O(2) are similar to those of O(2), discussed in section 5.1:
there is one conjugacy class for each 6 € [0, 7], as well as a conjugacy class for reflections.
The relation between SU(2) and O(2) conjugacy classes is one-to-one for classes of deter-
minant +1 — they are described by the same set of data. For instance, the pseudoreal
g = 1 line will be endable if the UV SU(2) theory has fields transforming in the funda-
mental representation. The Gukov-Witten operator associated to reflections is rendered
non-topological since it links with the determinant line, which is endable. This Gukov-
Witten operator is not present as a Gukov-Witten operator in the UV gauge theory, but
only as an operator involving the Higgs field, similar to the discussion around (7.3).

Just like in the SU(2) — U(1) example above, we also have 't Hooft operators, labeled
by principal O(2) bundles on the transverse S?. These are classified by the equatorial
transition function S' — O(2) up to the conjugation action. This can be used to fix a
basepoint, so 't Hooft operators are labeled by Z. They can all end on operators that
create monopoles, constructed in the same way as before.

In pure 0(2) gauge theory, the Wilson line in the det representation is topological. In
the case at hand, this line is no longer topological, however, as the Gukov-Witten operator
it links can end on an operator that creates a vortex. These vortices are just ordinary
ANO (Abrikosov-Nielsen-Olesen) strings [56, 57] (or their non-abelian generalization [30]),
constructed by allowing the Higgs field ® to wind appropriately around the core of the
string. This winding corresponds to flipping the direction of the vev (7.6) as we wind
around the string. Specifically, if ¢ is an angular coordinate centered on the string, we
have the holonomy

(®) () = (cos(p/2)dz + sin(p/2)dy)?, 0 < p < 27 (7.10)

After one turn, the vev remains the same, but the coordinate z has flipped sign, specifying
a holonomy by a reflection.

This concludes our discussion of O(2). We now briefly consider O(2), to connect
with section 5.1. O(2) is not a subgroup of SU(2), since the reflections have determinant
—1, but it is a subgroup of U(2) or SO(3). We will consider the latter possibility, where
breaking to O(2) is achieved by the same vev (7.6) in a symmetric tensor representation.
Since SO(3) = SU(2)/Zs, there is a surjective map from SU(2) conjugacy classes to SO(3)
conjugacy classes, which are labeled by 6’ = 20 € [0,7]. This map identifies conjugacy
classes with angle # and m — 6. In particular, the center conjugacy class in SU(2) is
mapped to the identity, and the classes with angle § and m — 6 are mapped to the same
conjugacy class, labeled by 6’ = 26. Accordingly, only representations which have the same
character for 6 and m — 6 survive; as is well-known, these are precisely the integer-spin
representations of SU(2).

The map from SU(2) to SO(3) descends to a map from O(2) to O(2), and a similar story
takes place for Gukov-Witten operators and Wilson lines. The only novelty is the presence
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of an 't Hooft operator in SO(3), associated to an SO(3) bundle with nontrivial Stiefel-
Whitney class on the transverse S2. This line survives and becomes a genuine 't Hooft
operator of the IR theory. Finally, the topological Wilson line in the det representation is
rendered non-topological by the same ANO string as in the 0(2) theory.

7.2 Higgsing U(1) — Zn

Let us move now to the canonical example of Higgsing U(1) to the discrete subgroup Zy,
as both groups have been independently studied in this work. The set of operators of U(1)
were discussed in section 3.1, where we explained that there Wilson lines and ’t Hooft
operators are labeled by integers n € Z and are not topological and not endable (in the
absence of charged states). There are also electric and magnetic Gukov-Witten operators
given in (3.4), (3.8) labeled by a phase a € [0, 27), which are topological and endable in
improperly quantized Wilson lines/’t Hooft operators of charge n = a respectively.

By contrast, as discussed in section 4.1, the Wilson lines in Zy are labeled by inte-
gers n = 0,...,N — 1 and are topological but not endable. Furthermore, Gukov-Witten
operators of the electric symmetry are also labeled by integers n = 0,..., N — 1, which are
topological and not endable. This might seem to contradict the U(1) case, where every
Gukov-Witten operator is endable, and no nontrivial Wilson line is topological. The key to
resolving this apparent contradiction is to note that the Higgsing produces twist vortices,
which allow all electric Gukov-Witten operators to end and, therefore, render the elec-
tric Wilson lines non-topological. In four dimensions, these twist vortices are the familiar
strings of the Abelian Higgs model, which are charged under the 2-form global symmetry
of the B-field dual to the axion that is eaten up by the gauge field. The Wilson surfaces
charged under the 2-form global symmetry are the same as the electric Gukov-Witten
operators (see (4.3)), so these get indeed broken in the presence of the strings. Hence,
completeness of the spectrum of twist vortices is guaranteed in the Higgsed theory, and
this in turn implies the absence of topological Wilson line operators, as expected.

The 't Hooft operators of the pure U(1) gauge theory are labeled by integers, and they
are charged under a (d — 3)-form U(1) global symmetry. Upon Higgsing to Zy and flowing
to the deep IR, this 1-form magnetic symmetry is gauged, and as a result there are no 't
Hooft operators in the IR theory.

7.3 Higgsing O(2)

Higgsing to Dih,. Let us next consider the Higgsing of O(2) gauge theory to a discrete
subgroup. In particular, suppose we condense some matter field of charge q. We will first
consider ¢ = 2, then ¢ = 3 and then general gq.

When there is matter in the ¢ = 2 representation of O(2), the U(1) part of the gauge
group is Higgsed down to Zs. The remaining gauge group is Zg X Zg. In general, Zo X Zo
gauge theory has Wilson lines e; and ey associated with each Zo factor, which fuse to give
the line ejeo. Similarly, it has magnetic surfaces m; and ms, which fuse to give mims.
Each e; links nontrivially with m;, yielding a phase of —1.

In the UV theory, there is just one conjugacy class with a topological surface: namely,
the # = 7 class, which is associated with the Zg center symmetry of O(2). This surface
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is endable, as such a surface may end on an improperly quantized 't Hooft operator.
Similarly, there is one topological Wilson line Wy, associated with the det rep. This line

) in the conjugacy class of O(2) that is disconnected

links nontrivially with a surface Tgs(f
from the identity — this surface is not topological, due to the endability of the det line,
nor is it endable.

Thus, we have the following dictionary from the O(2) gauge theory to the Zg x Zy

gauge theory:

0(2) Zg X ZQ
TO(Q) (71') mq

7o) ms (7.11)
quz(lz ) e1
Wiet €2

Here, m; and e are endable, while e1, mo, ejes, and mimsg are not endable. As a result,
m1 and eg are topological, while the rest of the lines and surfaces are not. Clearly, the
resulting Zo X Zo gauge theory is not pure — some surfaces and lines are endable, so not
every surface/line is topological.

Next, we consider the case of Higgsing by a field of charge ¢ = 3. Now, the U(1) part
of the gauge group is Higgsed to Zs. The remaining gauge group is a nonabelian group of
order 6, namely, S3.

S3 gauge theory was discussed previously in section 4.2. It features nontrivial Gukov-
Witten operators Tig), Ti, labeled by two nontrivial conjugacy classes, [0] and [7], of size
2 and 3, respectively. It features Wilson lines W_, W5, labeled by the two nontrivial
representations of S3, namely the sign representation and the standard representation.
These representations have dimensions 1 and 2, respectively.

Upon Higgsing the O(2) gauge theory by a ¢ = 3 particle, one topological surface
remains, namely 7°(®) (9 = 27/3). This surface is also endable, and it descends to the S3

surface Tjp). The S3 surface T}, comes from surface Td?s(f )

associated with the disconnected
component of the identity, and it is neither endable nor topological. The topological,
endable line Wyt descends to the line W_, whereas the line W5 comes from any Wilson
line W;,) @ With q" # 0 mod 3. Such a line is neither topological nor endable. Thus, we

have the dictionary:

0(2) Ss3

TO®) (2/3) Tio)
Tyl T (7.12)

qO,(Q) (¢ #0 mod 3) | Wy

Wdet w_

Note that the quantum dimensions of the topological lines and surfaces match up correctly:
the size of the O(2) conjugacy class with 6 = 27/3 is two, which is also the size of the
conjugacy class 6 of S3. The sign rep and the det rep are both 1-dimensional, whereas the
¢’ rep and the standard rep are both 2-dimensional.
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Finally, let us consider the condensation of a scalar in a general charge ¢ represen-
tation. The resulting group is the dihedral group with 2¢ elements, Dih,. This group is
represented as

Dih, = (z,alz? =a? = e, maz™'=a""). (7.13)

Here, a should be thought of as the generator of the Z, remaining after Higgsing U(1)
with a charge ¢ particle, while x represents charge conjugation. The topological surfaces
(all of which are endable) are given by TO®?) () with § = 2nk/q, k = 1,2,...,[q/2].
For 0 # =, these surfaces have quantum dimension 2, and they correspond to conjugacy
classes containing the elements {a*,a=*}. If ¢ is even, then the surface TO®) (9 = 7) is
an invertible topological surface, and it corresponds to the conjugacy class of the element
a?/2, which is in the center of Dih,. The remaining conjugacy classes of Dih, all feature
elements of the form [za™] for some m, which means that they come from the disconnected
component of O(2): such surfaces are neither endable nor topological.

The det Wilson line Wyt of O(2) gauge theory descends to det Wilson line of Dih,. This
is an endable, topological line corresponding to the representation of Dih, whose kernel
consists of all elements of the form a™.?! The other Wilson lines of Dih, gauge theory
come from Wilson lines of charge ¢’. Here, there is an identification of representations ¢’ ~
¢'+q ~ q—¢', which means that for ¢ odd, there are two-dimensional representations of Dih,,
given by ¢ = 1,2,...,(q¢—1)/2, and for g even there are two-dimensional representations
given by ¢ =1,2,...,q/2 — 1. For q even, the ¢/2 rep splits into a pair of 1-dimensional
representations (as we saw for the case of ¢ = 2 above, in which the ¢ = 1 line decomposes
into the irreps e; and ejeg). Thus, when combined with the trivial rep and the one-
dimensional irrep coming from the det rep, this gives a total of (¢ 4+ 3)/2 irreps for ¢ odd
and (¢ + 6)/2 irreps for g even, as expected. Aside from the det Wilson line, none of these
Wilson lines are topological or endable.

Higgsing to U(1). We may also Higgs O(2) to U(1) by giving a vev to an adjoint-valued
scalar field. Asin (5.14), the O(2) Wilson line of charge ¢ descends to a pair of U(1) Wilson
lines of charge ¢ and —g. The spectrum of the IR U(1) gauge theory is complete if and only
if the spectrum of the UV O(2) gauge theory is complete: namely, if there exists matter in
the ¢ = 1 representation of O(2). In four dimensions, an analogous story holds for the ’t
Hooft line operators.

In the absence of matter in a charge ¢ representation of O(2), the non-invertible,
topological Gukov-Witten operator T9®?)(8) for € (0,7) descends to a sum of invertible,
topological Gukov-Witten operators UY(1)(9) + UV (—9) (5.5). For § = =, the invertible
operator TO®)(r) descends simply to UV (r). These operators cease to be topological in
the presence of charged matter, and the spectrum is complete precisely when no topological
Gukov-Witten operators remain.

The non-endable Gukov-Witten operator of O(2) gauge theory is no longer a genuine
operator of the U(1) gauge theory: instead, it represents the boundary of a codimension-1

21The existence of such a representation is guaranteed by the fact that {e,a,a?,...,a9 "} is a normal
subgroup of Dihg, and any normal subgroup is the kernel of some homomorphism. In this case, the
homomorphism maps Dih; — Zs, so the nontrivial irrep of Z induces a nontrivial irrep of Dih,.
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surface operator. The det Wilson line, which was topological in O(2) and linked with the
non-endable Gukov-Witten operator in question, is trivial in the resulting U(1) gauge the-
ory. We see once again that topological operators in the UV theory descend to topological
operators in the Higgsed theory, though they may be trivial in the latter theory.

7.4 The Coulomb branch of a general gauge theory

We now consider the theory on the Coulomb branch of a general gauge group G, obtained
by giving a vev to a scalar field ® in the adjoint representation.
By the structure theorem in section 5.2, we may write G as

_G()XIR

G I

(7.14)

where Gy is connected, R is a finite group whose elements act on Gq either trivially or via
an outer automorphism of Gy, and P is a finite, common subgroup of Z(Gy) and R. For
a generic vev of @, this group will be broken to

U(1)" x K

H =
P )

(7.15)
where 7 is the rank of Gy and K is the subgroup of R that acts trivially on Gy.

In pure H gauge theory, every Gukov-Witten operator is topological. Such an operator
is labeled by an element g of U(1)" and a conjugacy class [k] of K, modulo the subgroup P.
After Higgsing from G, some of these Gukov-Witten operators are no longer topological, as
some Wilson lines are endable. In particular (assuming that the only matter of the G gauge
theory is the adjoint-valued scalar ® that acquires a vev), Wilson lines labeled by charges
in the root lattice of Gg are endable. Non-endable Wilson lines are therefore labeled by
charges in the U(1)" charge lattice modulo the root lattice of Gy. The topological Gukov-
Witten operators are the ones that link trivially with the endable Wilson lines, and they
are associated with elements (z, k), where z € Z(Gy) and k € K.

At the origin of the Coulomb branch, where the full G gauge symmetry is restored,
Gukov-Witten operators are given by gauge-invariant sums of Gukov-Witten operators of
the theory on the Coulomb branch. By continuity, the gauge-invariant sums of topological
operators described above will remain topological at the origin of the Coulomb branch,
so the Gukov-Witten operators associated with elements (z, k), where z € Z(Gp) and
k € K will be topological in the UV theory. As we argued in section 5.3.1, these are
precisely the Gukov-Witten operators that link trivially with the Wilson line in the adjoint
representation. We see that these operators are indeed topological in G gauge theory with
an adjoint-valued scalar field, and thus they are topological in pure G gauge theory as well.

7.5 General story for Higgsed gauge theories

After discussing these particular examples, we provide the general picture. Consider a
theory with compact gauge group G, which is Higgsed down to H by a vev ® in an arbitrary
representation p. We will consider three kinds of operators: Wilson lines, Gukov-Witten
operators, and 't Hooft operators.
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7.5.1 Wilson lines and Gukov-Witten operators

To begin, we note that the spectrum of the IR theory after Higgsing will be complete
if and only if the spectrum of the UV theory is complete. First, assume that the UV
theory is complete, so there exists matter in every representation of G. Under Higgsing,
the representation p of G decomposes into a direct sum of Wilson lines of representations
of H, as dictated by group theory “branching rules”. Any representation of the IR gauge
group H necessarily shows up in the branching of some representation of the UV gauge
group G [58]. This means that there will exist matter in every representation of H, and
the IR gauge theory is also complete.

Conversely, suppose that the UV gauge theory is incomplete, so that at least one
Wilson line W, is not endable. In the Higgsed theory, the Wilson line W, is identified, by
inserting vevs of ® or ®f, with Wilson lines in representations contained in tensor products
of v with tensor powers of p and p. We claim that W, is never identified with an endable
operator W,. Consider the inner products of characters:

(Xus Xvapmemm) = (Xu XvXp X5 = (XuXp' X5 Xv) = (Xuepmesms Xv)- (7.16)

If 11 is contained in the decomposition of v @ p" @ p" into irreps, then (X, Xvgpreim) 7 0,
and we conclude from eq. 7.16 that v is likewise contained in the decomposition of u®p"™®p™
into irreps. W, and Wj are endable in the UV theory, due to the existence of ®. Hence,
if W, is endable, so is W, in contradiction with our initial assumption. Thus, the non-
endable line W, descends to a nontrivial, non-endable line operator in the IR theory, which
is incomplete as well.

We have argued in section 5.3 that electric completeness is equivalent to the absence of
topological Gukov-Witten operators. Since electric completeness is preserved under Hig-
gsing, we learn that the existence of nontrivial topological operators is similarly preserved
under Higgsing.

The analogous statement does not hold for the topological Wilson lines of a theory. A
topological Wilson in the UV theory will remain topological in the IR, but it may become
trivial at the IR fixed point (as in the ¢ = 2 line of a Z4 gauge theory upon Higgsing
to Zgy, or the det line of O(2) upon Higgsing to U(1)). When a topological line becomes
trivial, the non-endable Gukov-Witten operators that link with it will cease to be genuine
operators of the theory, and instead they will represent the boundaries of codimension-1
operators of the theory. However, a non-topological line operator of the UV theory will
generically remain non-topological unless it becomes trivial. It may also happen that a non-
topological line in the UV becomes (potentially) topological in the IR, such as a Wilson
line of charge ¢ # Omod N in a U(1) theory that is Higgsed to Zy. Such a line is never
exactly topological, since at short enough length scales it behaves as the original line in the
UV theory, and consequently the corresponding Gukov-Witten operators of the IR theory

must be endable. We discuss how this happens below.

7.5.2 't Hooft operators and ANQO vortices

Having dealt with Wilson lines and Gukov-Witten operators in the identity component,
we now turn to 't Hooft operators. For simplicity, we work in four dimensions. These can
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be discussed efficiently in terms of the long exact sequence in homotopy associated to the
fibration:
H—— G — G/H, (7.17)

which is
- — 7T2(G) =0 — WQ(G/H)

T (H) ——— m(G) ——— m(G/H) (7.18)

7T0(H) E— T(’o(G) E—— Wo(G/H)

m2(G) vanishes for any Lie group. The second entry, mo(G/H), classifies 't Hooft /Polyakov
monopole solutions. The fact that it injects into 71 (H) (which classifies the 't Hooft
operators of H, up to conjugation by mo(G)) means that 't Hooft operators of H in the
image of the map are endable. The map from S* to H becomes contractible when embedded
in G, so one can deform the Higgs profile smoothly, similarly to the construction in figure 3.
The resulting configuration is a pointlike operator from the point of view of the IR theory,
and it creates an 't Hooft/Polyakov monopole.

What about 't Hooft operators of H that are not in the image of the map into 7y (H)?
Exactness implies that they embed into 71(G) — they descend from ’t Hooft operators
of the UV theory, in the usual fashion. These operators will be non-endable if and only
if their associated UV line is non-endable. However, not every element of m1(G) is in the
image of this map. Exactness tells us that elements of 71(G) that do not descend to ’t
Hooft operators of H must map to classes in 71 (G/H). The field ® winds around such an
't Hooft operator, and there is an ANO vortex at the location where it vanishes. Indeed,
m1(G/H) classifies (the nonabelian generalization of) ANO vortices [30, 56, 57].

This shows that the spectrum of non-endable 't Hooft operators matches in the UV
and IR. UV 't Hooft operators either become attached to ANO vortices in the IR theory,
or they descend to genuine ’t Hooft operators. Additional lines may exist in the IR, but
they can end on operators that create 't Hooft/Polyakov monopoles.

If we continue to follow the sequence in (7.18), we learn about additional operators.
Classes that are not in the image of the map from m;(G) to m (G/H) will correspond to
ANO vortices that cannot end on monopoles; they are stable, solitonic vortices of the IR
theory. If H is not connected, it will have codimension-2 operators labeled by an element of
mo(H): these are Gukov-Witten operators associated to conjugacy classes not in the identity
component of H. Gukov-Witten operators associated with classes in the image of the map
from 7(G) into mo(H) can end on operators that create ANO vortices, and so become
endable. These link with the new potentially topological Wilson lines in the IR theory
alluded to in the previous section. The rest of the Gukov-Witten operators associated
with 7o(H) descend from classes in m(G), which label the corresponding Gukov-Witten
operators in the UV theory. In this way, all Gukov-Witten operators in the IR descend from
those of the UV, although some become endable. However, not every UV Gukov-Witten
operator desdends to a Gukov-Witten operator of H; those in the image of the map into
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70(G/H) force the Higgs field to jump around them. In the deep IR description, where the
Higgs field is integrated out, this means that they are attached to codimension-1 operators,
and thus become non-genuine codimension-2 operators. The fact that there are dynamical
domain walls for the Higgs field means that the corresponding codimension-1 operators are
actually endable in the full theory.

7.5.3 Embedding in SU(n)

To conclude this section, we will now show that any H gauge theory can be obtained
from Higgsing of an SU(n) gauge theory, for n sufficiently large. Since SU(n) is simply
connected, 71 (SU(n)) and 7p(SU(n)) are trivial, and therefore SU(n) gauge theories have
a complete spectrum of magnetic monopoles and twist vortices. Given an arbitrary com-
pact Lie group H, we may therefore obtain H gauge theory with a complete spectrum
of magnetic monopoles and twist vortices by Higgsing from SU(n) for an appropriate n.
While we do not claim that this is always the method by which quantum gravity produces
a complete spectrum of magnetic objects, it provides a proof of principle that it is always
possible to add this collection of objects even at the level of a Lagrangian field theory.

In mathematical language, the unbroken subgroup H of a symmetry group G when a
field @ in representation R gets a vev ®q is called the “stabilizer subgroup” of &3 € R.

We now prove the following:

Theorem 6. Every compact Lie group H arises as the stabilizer subgroup of some repre-
sentation and vev of SU(n), for n sufficiently large.

Proof. Any given compact Lie group H has a faithful, unitary, finite-dimensional represen-
tation, and so embeds as a closed subgroup of U(m) for some m (see, e.g., [6], Theorem A.8;
or Proposition 1 in appendix I of chapter IX of [59]). By composing with the inclusion
U(m) < SU(m + 1), we may thus realize H as a closed subgroup of SU(n) for n =m + 1.
Now, by Corollary 2 of the Equivariant Embedding Theorem (also known as the Mostow-
Palais theorem) on page 374 of [59], any closed subgroup of a Lie group arises as the
stabilizer subgroup for some element and representation. O

8 Chern-Simons terms

Throughout this paper, we have explored the relation between the absence of (non-
invertible) global symmetries and completeness of the spectrum in the context of isolated
gauge groups. However, the story slightly changes when coupling the gauge field to some
other p-form gauge field, e.g., via some BF coupling or Chern-Simons term. In this sec-
tion, we will explain to what extent the conclusions drawn in this paper are still valid in
these cases.

In short, we will see that the relation between endability of all extended operators and
the absence of any topological operator still holds in the presence of Chern-Simons terms.
However, we will see that the two cases below imply some refinements of the Completeness
Hypothesis. In the case of a BF coupling, the spectrum may be in some sense incomplete,
even if every extended operator is endable. In the case of axion electrodynamics, we will see
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that one must consider all topological operators at once. The reason is the mixing between
electric and magnetic symmetries induced by the higher-group structure [15-17, 60] implied
by the axion coupling. This is related to a refined notion of completeness, that includes
both the types of particles as well as their worldvolume degrees of freedom.

8.1 BF theory

Let us begin with BF theory in four dimensions, given by the following action,
S—/( L HyAxHs — — By A xFy+ B /\F) (8.1)
= 2 3 37 5212 2t 5 b2 2 - :

Here, m is an integer. The fate of the higher form global symmetries and their interpretation
in terms of Chern-Weil symmetries was studied in detail in [61]. In the absence of charged
states, for [m| > 1 the U(1) electric 1-form is broken to a Z,,, symmetry, and the same occurs
for the 2-form global symmetry. The theory contains Wilson line and surface operators
given by

Wi, () = exp (z‘mffh) , o m=0,1,...m—1, (8.2)
i

Wi, (2) = exp (zngjg Bg) , no=0,1,...m—1. (8.3)
b

The A; Wilson line is endable whenever ny is a multiple of m, since in that case it can end
on an 't Hooft local operator of By (namely, e®, where ¢ is the dual axion). Similarly the
By Wilson surface of charge no a mutiple of m can end on an 't Hooft line of A;. They
also serve as symmetry operators of the electric symmetries, since

U,.;,l :eiﬁlf*H:eilﬁlfdAd) :eililfA:W

n1=~K1> (8 4>
Ung — eiNQ I*F — eil{z deA — eil{g jB — W '

n=~x-
where we have used the equations of motion, dx F = H = xda¢ and d« H = F = «dgA
with A being the dual magnetic gauge field. In the deep IR, this BF theory is the Z,,
gauge theory studied in section 4.1, and indeed, unless the spectrum is complete and all
Wilson lines and surfaces can end, there are topological symmetry operators.

By contrast, the magnetic side of the story is a bit more puzzling, especially when
|m| = 1 so there is no discrete global symmetry left. The 1-form magnetic global symmetry
and the O-form global symmetry are gauged, so it seems we get an incomplete magnetic
spectrum (there are no monopoles nor instantons) even if there are no global symmetries.
However, there are no genuine 't Hooft operators either (they are not gauge invariant), so it
holds trivially that the absence of global magnetic symmetries is equivalent to the absence
of non-endable 't Hooft operators. Whether UV-complete quantum gravity theories must
satisfy a stronger, less trivial notion of completeness here is an interesting question, and
we direct the reader to section 3.2 of reference [61] for further discussion.
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8.2 Axion electrodynamics

Let us now consider U(1) gauge theory in the presence of a 6 angle:

1 0

Here, the transformation 6 — 6 + 27 does not affect correlation functions of local opera-
tors at separated points. However, it does affect correlation functions of surface and line
operators: in particular, under § — 6 + 27 a purely magnetic 't Hooft line of charge m
picks up electric charge m via the Witten effect [62], and more generally the dyonic lines
transform as Ly, ;, — Lpimk,m under 6 — 6 + 27k. Clearly, such a transformation will
affect the spectrum of topological surfaces: in a theory with a magnetic monopole of charge
1 but no electrically-charged matter, the Gukov-Witten operator Uj_qi is topological for
all @ € [0,27), and there is a U(1) electric 1-form global symmetry. On the other hand,
the magnetic 1-form symmetry is completely broken. After taking § — 6 + 27, however,
the monopole will become a dyon of charge (1,1). Shifting the 6 angle has produced a
new theory, dual to the first, in which the magnetic 1-form symmetry is unbroken, but
the dyonic 1-form symmetry generated by the operators Uy 4 is now broken. However, the
anti-diagonal combination is preserved, and the surface operators U, ;-1 remain topolog-
ical. More generally, although shifts of the # angle may affect which line operators are
endable and which surface operators are topological, they do not alter the 1-form global
symmetry of the theory.
We now make 6 dynamical by promoting it to an axionic field,

_ 1 1, 10)
S—/<—2—92F/\*F—§f dgzﬁ/\*dqﬁ-i—WF/\F), (8.6)

where now ¢ — ¢ + 27 is a gauge symmetry.?> Notice that the electric 1-form global
symmetry is explicitly broken by the axion coupling, since

dxdFy ocdo A Fy #£ 0. (8.7)

Since the electric 1-form symmetry is broken, one might expect that the Wilson line op-
erator of A1 would be endable in axion electrodynamics. This is not the case, and indeed
the Wilson line remains non-endable. To determine endability of some extended operator,
it is enough to reason locally near a supposed endpoint of the operator, so we may assume
we are working on R*. By the equation of motion of the gauge field, we can see that

d (g% K F— 4—;¢F> — 0. (8.8)

The term in parentheses is not gauge invariant under ¢ — ¢ + 27, and so does not define
a consistent current for a global 1-form symmetry. Nevertheless, the integral

1 1
S *xF — —¢F 8.9
s (G~ 7m0), 5

22With these conventions, the action (8.6) is invariant under the axion shift symmetry only for manifolds

where #g f F? € 7. This is the case for every spin 4-manifold.
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is actually gauge invariant, where the integral is over a topologically trivial sphere S? C R*
linking our Wilson line. To see this, note that the flux of F' through a topologically trivial
sphere vanishes. Thus, when ¢ — ¢+27, the integral (8.9) shifts by [ ﬁF , which vanishes
because this S? is topologically trivial.?> Multiplying (8.9) by 4 and exponentiating, we
obtain a topological surface operator that can only be defined on a topologically trivial
S?, but which links nontrivially with the Wilson line operators in R*. Though this is not
a proper surface operator of the theory, it is enough to perform the argument illustrated
in figure 1 and conclude that the Wilson lines cannot end on local operators in axion
electrodynamics.?*

Hence, the Wilson lines remain non-endable, even though the axion coupling breaks
the electric 1-form symmetry. This seems to contradict the statement that the absence
of topological Gukov-Witten operators is in 1-to-1 correspondence with endable Wilson
lines (i.e., a complete spectrum). But there is a milder statement that still holds true.
Even if the electric Gukov-Witten operators are not topological, the theory contains other
topological operators,

U, (M?) = exp <% /M2 F> . UM =exp <% /Ml dgb) : (8.10)

associated to the magnetic 1-form global symmetry and the 2-form global winding sym-
metry of ¢. Hence, we have not found a theory with non-endable Wilson lines but no
topological operators at all.

The operators (8.10) stop being topological if we introduce dynamical monopoles and
strings. In fact, by the Witten effect, the presence of monopoles in axion electrodynamics
also induces electric charge, so all Wilson lines and 't Hooft lines become endable. Similarly,
as described in [64], axion strings must also carry electric charges on their worldsheet, and
a small loop of axion string with nonzero electric charge behaves as a dynamical electric
particle as well. Hence, in the presence of monopoles and strings, all extended operators
can end, in accordance with the fact that there are no topological operators left.

It is interesting to note that the naive 't Hooft line of A; and the winding surface of
¢ are non-genuine, since they are not invariant under gauge transformations of ¢ and A,
respectively. Indeed, under ¢ — ¢+ 2, the 't Hooft line transforms into a dyonic line, and
so must be attached to a surface operator encoding this anomaly. Similarly, the winding
surface of ¢ must be attached to a 3-volume operator defined by the exponentiated integral
of the Chern-Simons 3-form of A;. That these operators are non-genuine is a reflection of
the anomaly inflow from the bulk to the worldvolume of probe monopoles or axion strings.

In order to define genuine operators representing the insertions of heavy probe
monopoles or strings, we must include the worldvolume degrees of freedom that cancel
the anomaly. We may do this by inserting the anomalous partition function of worldvol-

**Note that this argument breaks down if we were to either insert an ’t Hooft line parallel to the Wilson
line or add dynamical monopoles, since we would no longer be able to conclude that f g2 I vanishes.

24By contrast, the Wilson lines can end on an operator inserted at a conical singularity in spacetime,
such as the cone on S x S2. These operators are not local operators in QFT, but they do represent local
operators in quantum gravity, and produce gravitational solitons carrying electric charge [63].
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ume fields alongside the naive 't Hooft line or winding surface operators,
Lgenuine<M1) — Lnaive(Ml)Zw_V_(Ml), Sgenuine(M2) — Snaive(MQ)Z‘lN.V' (./\/12)7 (8.11)

For the 't Hooft line, we may take Zy . to be the partition function of a particle on a circle
discussed in [61, 65, 66]. For the winding surface of the axion, we may take Z, . to be a
chiral boson of unit charge [64], which sits at the boundary of a Chern insulator, described
by the Chern-Simons partition function (see, e.g., [67] for a review).

While the insertion of the partition function of an entire QFT along a submanifold
may seem a bit exotic, it nevertheless defines a perfectly good extended operator in the
bulk theory. Indeed, the picture we advocate here is quite general: just like their dynamical
counterparts, probe particles and branes in general carry worldvolume degrees of freedom,
which are described by a worldvolume QFT. Since the probes themselves have internal
dynamics, the operators representing their insertion must include these degrees of freedom
when they interact with the bulk. In cases like the above, where there is nontrivial anomaly
inflow, the presence of these worldvolume degrees of freedom is essential in order to cancel
the anomaly. Relatedly, while the probe brane inserted by the operator should be regarded
as an infinitely massive object, it may not be possible to make the worldvolume degrees
of freedom on it arbitrarily heavy, in particular if they are chiral and participate in an
anomaly inflow mechanism.

We can extract several lessons from this example. First, there is no longer a one-to-
one correspondence between the absence of topological operators and the completeness of
the spectrum. However, a more general correlation persists, in which the endability of
every extended operator is still equivalent to the absence of any topological operator. This
mixing between the symmetries reflects a higher-group structure [15-17, 60].

Secondly, in the presence of Chern-Simons terms, we do not need to introduce all
charged states to make sure all extended objects can end, but rather only the subset that
allows us to populate the sites of the charge lattice. For instance, by the Witten effect in
axion electrodynamics, the presence of monopoles already implies the presence of states
with electric charge. Moreover, the fact that the operators that insert probe monopoles or
axion strings include the partition function of worldvolume degrees of freedom tells us that
the proper notion of completeness in the presence of a higher-group structure includes the
presence of charged states with appropriate worldvolume excitations.

9 Discussion

9.1 Implications for the Swampland program

In this paper, we set out to understand the relationship between two basic Swampland
conjectures, namely the absence of global symmetries and the completeness of the spectrum
in consistent theories of quantum gravity. Though these are conjectures about the nature
of quantum gravity, their relationship can be studied fully within the context of quantum
field theory, and this is the approach we have taken. We have shown that while the absence
of invertible symmetries is insufficient to imply completeness, the absence of more general,
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non-invertible symmetries is in fact sufficient, at least in the examples we have considered.
We strongly suspect that this pattern is completely general, and that the endability of
every extended operator follows from the absence of any topological operator in a general
QFT (in three dimensional TQFTs, this follows from the modularity of the tensor category
of line operators [12]).

A natural question, then, is whether these non-invertible topological operators are
forbidden in consistent theories of quantum gravity. While the absence of invertible global
symmetries has been established quite well [3-10], the standard arguments involving black
hole physics or holography do not directly apply to rule out non-invertible topological
operators [12]. Of course, if we assume the completeness hypothesis, then by the arguments
outlined in this paper we would expect the absence of any topological operator, but this is
begging the question, as the original goal was to argue for the completeness hypothesis in
the first place. Thus, we would like an argument against general topological operators in
quantum gravity that does not assume completeness.

In fact, the absence of topological operators is a specific case of the broader statement
that quantum gravity should have no nontrivial bulk operators whatsoever. This is a
form of background independence, since a nontrivial bulk operator represents a way to
couple the bulk gravity theory to a non-dynamical, background probe. In this form, the
absence of topological operators follows from the Baby Universe Hypothesis [68], since the
insertion of any such operator would necessarily create a nontrivial baby universe state
on the boundary of a tubular neighborhood of its support. A similar argument from the
Baby Universe Hypothesis shows directly that any operator must be endable, as every
bulk operator must be nonperturbatively gauge equivalent to the identity operator, which
is clearly endable. These arguments may be less than convincing, as the Baby Universe
Hypothesis is less well established than the Completeness Hypothesis itself, but it shows
that the emerging picture in the Swampland program is internally consistent.

A further consideration is to ask whether our analysis, taking place purely within
quantum field theory, may be altered by making gravity dynamical, even without assuming
any Swampland conditions. In fact, work in progress [63] suggests that this is indeed the
case, and that there are new charged objects, given by gravitational solitons, whose charges
must be taken into account when addressing the question of completeness. It would be
very interesting to compare these two approaches, and understand the relationship between
non-invertible symmetries in quantum field theory and the possible charges of gravitational
solitons in general.

9.2 Existence of twist strings

A wide variety of proposed extensions of the Standard Model postulate that the laws of
physics in our universe are invariant under local, discrete symmetries. For example, many
models of dark matter postulate that it is charged under a discrete (finite) symmetry, which
explains its stability. In quantum gravity, we expect that such discrete symmetries are
either slightly broken (and hence, that rare symmetry violating processes can occur, such
as dark matter decay) or gauged. Because a finite symmetry has no massless, dynamical
propagating gauge boson associated with it, there is no easy way for a low-energy observer
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to conclude that such a symmetry is gauged. However, it has long been known that such
symmetries can be associated with twist vortices — strings, in four dimensions — with the
property that a charged particle that circles around the vortex comes back to itself only
up to a gauge transformation [39]. Although it is a common viewpoint that the existence
of such objects is a defining feature of a gauged discrete symmetry [69], one might wonder
whether they necessarily exist as dynamical objects in the theory. We have argued that the
absence of topological Wilson lines — which generate a (possibly non-invertible) (d — 2)-
form global symmetry — is equivalent to the existence of a complete spectrum of such twist
vortices. This provides a stronger argument that these objects should exist in theories of
quantum gravity (at least in d > 4 dimensions, where we expect p-form symmetries are
forbidden for all p).

This argument suggests that a wide variety of cosmic strings could exist in our universe,
with potentially observable consequences. For example, the proton could be stable if there
is a discrete gauged Zs or Zg symmetry under which the proton is charged [70-72]. Our
arguments suggest that such theories should admit cosmic strings with Aharonov-Bohm
interactions with baryons. When the discrete gauge group is not a Higgsed remnant of a
compact connected gauge group, these cosmic strings may be fundamental objects, rather
than semiclassical strings that can be derived within an effective field theory. Similar
remarks would apply to dark matter stabilized by a discrete symmetry (e.g., a Zy or Zy
R-symmetry in a supersymmetric context).

The existence of twist strings has an important consequence for the spontaneous break-
ing of a discrete symmetry. When a global discrete symmetry is spontaneously broken,
stable domain walls are produced [73, 74]. Stable domain walls produced after inflation are
a cosmological disaster: having an equation of state w = —2/3, they redshift more slowly
than radiation or matter, and rapidly dominate the energy density of the universe. Explicit
symmetry breaking can destabilize a domain wall. Gauging can also destabilize the domain
wall, because domain walls can end on twist strings. This has two consequences. The first
is that twist strings are confined to the ends of domain walls, and can experience a force
that attracts them toward each other to annihilate. The second is that the nucleation of
a loop of twist string inside a domain wall can create a hole in the wall, which can be
eaten up by the appearance of such holes, although this process is highly suppressed if the
tension of the twist string is too large [75]. Thus, the physics of twist strings potentially
leads to major differences in the cosmology of models with gauged discrete symmetries and
those with global discrete symmetries.

Gauged discrete symmetries that have nontrivial interplay with continuous gauge sym-
metries are also of interest. We have discussed the case of O(2) gauge theory, in which
the Zo charge conjugation symmetry does not commute with the U(1) electromagnetic
symmetry, in some detail. This leads to the fascinating and well-studied physics of Alice
strings [41, 45, 48], which can convert electrons into positrons. Recently, a variety of ex-
tensions of the Standard Model have been based on the idea of discrete symmetries, like
Zpn, which act to permute copies of a gauge theory. For example, the Twin Higgs model
postulates a mirror copy of the Standard Model, related by a Zs exchange symmetry, which
ameliorates quantum corrections to the Higgs boson mass [76]. The original incarnation
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of this model, and much of the subsequent work, have assumed a small explicit break-
ing of this symmetry, but variations of the model assume an exact Zs symmetry that is
spontaneously broken [77, 78]. We expect that such an exact symmetry would be gauged,
and accompanied by cosmic twin strings, such that circulating (for instance) a Standard
Model gluon around a twin string would convert it to a twin gluon. (A similar picture
should apply to the two Fg factors of the Fg x Eg heterotic string, which are exchanged
by a gauged Zs.) Successful Twin Higgs phenomenology requires that the Zy symmetry be
spontaneously broken, meaning that the twin strings would arise as boundaries of twin do-
main walls across which the roles of the Standard Model and its twin sector are exchanged.
The destabilization of twin domain walls by twin strings could play an interesting role in
the cosmological history of such models.

9.3 Concluding remarks

The concept of symmetry has been a dominant one in the theoretical physics of the last
hundred years. Recently, ever-more general symmetries, including p-form global symme-
tries and higher-group global symmetries, have come to play an increasingly central role
in both condensed matter theory and high energy theory. Although the concept of a non-
invertible symmetry is not new, here we have seen that it has a major role to play through
its equivalence with an incomplete spectrum of charged objects in a theory.

Conjectures about universal properties of quantum gravity have proliferated in recent
years, a phenomenon that has attracted some criticism from observers. Not all of these
conjectures are independent, however, and we can make progress by paring them down to a
smaller set of core ideas. Here we have shown that two of the oldest such conjectures — the
absence of global symmetries and the Completeness Hypothesis — are both subsumed by
the absence of topological operators in quantum gravity. That, in turn, is merely one facet
of a much older observation that quantum gravity does not admit true local operators at
all. There is more progress to be made in taming the growth of Swampland conjectures by
untangling their connections to common roots. The simple, radical ideas about quantum
gravity that unify the conjectures, and the ramifications of those ideas for particle physics
and cosmology, will continue to bear fruit in the years to come.
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