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Abstract

Background Brassinosteroids (BRs) are a class of phytohormones with important roles in regulating physiological and
developmental processes. Small RNAs, including small interfering RNAs and microRNAs (miRNAs), are non-protein cod-
ing RNAs that regulate gene expression at the transcriptional and post-transcriptional levels. However, the roles of small
RNAs in BR response have not been studied well.

Objective In this study, we aimed to identify BR-responsive small RNA clusters and miRNAs in Arabidopsis. In addition,
the effect of BR-responsive small RNAs on their transcripts and target genes were examined.

Methods Small RNA libraries were constructed from control and epibrassinolide-treated seedlings expressing wild-type
BRI1-Flag protein under its native promoter in the bri/-5 mutant. After sequencing the small RNA libraries, differentially
expressed small RNA clusters were identified by examining the expression levels of small RNAs in 100-nt bins of the
Arabidopsis genome. To identify the BR-responsive miRNAs, the expression levels of all the annotated mature miRNAs,
registered in miRBase, were analyzed. Previously published RNA-seq data were utilized to monitor the BR-responsive
expression patterns of differentially expressed small RNA clusters and miRNA target genes.

Results In results, 38 BR-responsive small RNA clusters, including 30 down-regulated and eight up-regulated clusters, were
identified. These differentially expressed small RNA clusters were from miRNA loci, transposons, protein-coding genes,
pseudogenes and others. Of these, a transgene, BRI, accumulates small RNAs, which are not found in the wild type. Small
RNA:s in this transgene are up-regulated by BRs while BRI/ mRNA is down-regulated by BRs. By analyzing the expression
patterns of mature miRNAs, we have identified BR-repressed miR398a-5p and BR-induced miR156g. Although miR398a-
5p is down-regulated by BRs, its predicted targets were not responsive to BRs. However, SPL3, a target of BR-inducible
miR156g, is down-regulated by BRs.

Conclusion BR-responsive small RNAs and miRNAs identified in this study will provide an insight into the role of small
RNAs in BR responses in plants. Especially, we suggest that miR156g/SPL3 module might play a role in BR-mediated
growth and development in Arabidopsis.
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Introduction

Brassinosteroids (BRs), as phytohormones, are essen-
tial for plant growth and development including biotic
and abiotic stresses tolerance in higher plants (Oh et al.
2020). Most of BR signaling research focused on plant
growth and development with identifying essential sign-
aling components from the plasma membrane to nucleus.
Mutants for either BR biosynthesis or normal signaling
pathways share similar developmental defects including
severe dwarfism, rounded leaves, shortened petioles, flow-
ering time, senescence, reduced male fertility, and other
abnormal photomorphogenesis (Clouse et al. 1996; Frie-
drichsen et al. 2000; Li and Chory 1997; Noguchi et al.
1999). As the first BR signaling mutant, bril brassinoster-
oid insensitive 1 (bril) with EMS treatment of Arabidopsis
seeds, was identified through a loss of function genetic
screen for BR insensitivity with root growth in the pres-
ence of BR (Clouse et al. 1996). BRs are perceived by the
plasma membrane-localized and leucine-rich repeat (LRR)
receptor kinase BRI1 (Wang et al. 2001). In the absence
of BRs, BRI1 KINASE INHIBITOR 1 (BKI1) binds to
BRI to prevent heterodimerization between BRI1 and its
co-receptor, BRI1 ASSOCIATED KINASE 1 (BAK1) (Li
et al. 2002; Nam and Li 2002). GLYCOGEN SYNTHASE
KINASE 3 (GSK3)- like kinase, BRASSINOSTEROID
INSENSITIVE 2 (BIN2), phosphorylates bril EMS SUP-
PRESSOR1/BRASSINAZOLE RESISTANT1 (BES1/
BZR1) family transcription factors (He et al. 2002). BRI1
encodes a serine/threonine (Ser/Thr) leucine-rich repeat
receptor-like protein kinase (LRR-RLK) (Li and Chory
1997). Biochemical analysis indicated BRI is a critical
component for BR perception and signal transduction
(Wang et al. 2001). Genetic and biochemical analyses
strongly support that heterodimerization of BRI1 and
BAKI1 may be important for BR signaling (Li et al. 2002;
Nam and Li 2002). In the presence of BR, BRII recep-
tor perceived BR on island domain of extracellular region
and eventually, BKI1 is phosphorylated and disassociated
from BRI1 (Jaillais et al. 2011; Wang and Chory 2006),
which leads to the association of BRI1 with co-receptor
BAKI1 (Bucherl et al. 2013; Sun et al. 2013). After het-
erodimerization of both receptor kinases, autophospho-
rylation and transphosphorylation between BRI1 and
BAKI1 then lead to the activation of BRI kinase (Wang
et al. 2008) and serial signaling cascaded to downstream
through phosphorylation and activation of bril SUPPRES-
SOR 1 (BSU1), a Kelch-repeat domain-containing pro-
tein phosphatase, leading to the dephosphorylation and
inactivation of BIN2 (Ryu et al. 2007; Wang et al. 2002).
The inhibition of BIN2 and action of PROTEIN PHOS-
PHOTASE 2A (PP2A) promotes the nuclear accumulation
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of non-phosphorylated BES1/BZR1 (Di Rubbo et al. 2011;
Tang et al. 2011). As likely master transcription factor,
BES1/BZR1 interconnected to many other transcriptional
regulators to control the expression of thousands of genes.

Plants have to deal with a wide array of signals gener-
ated by an environment. Many signals from the environment,
such as light, temperature, and pathogens, influence how
and when a plant decides to grow (Vert and Chory 2011).
Many scientists tried to identify diverse BR- response genes
in higher plants through employing microarray analysis or
RNA sequencing techniques. In all multicellular organ-
isms, growth must be synchronized, but for plants, this is
of particular importance because the appropriate timing
of growth occurs in response to specific signals. Thus, the
coherence and the time structure of plant growth not only
require mechanisms to infer the current and future state of
the growth condition but also need to be connected to rapid
and robust regulation mechanism systems. Structurally
diverse small- molecule, phytohormones, ABA, auxin, GA,
BR, cytokinin, ethylene, and strigolactone) assists plants in
responding appropriately to the environment (Finet and Jail-
lais 2012). Although diverse plant hormones are thought to
form the central frameworks of plant growth and develop-
ment, the growth-promoting molecules influence each other
by reprogramming the respective structures of their signal-
ing backbone. The program of plant growth is coordinated
temporally and spatially by an intricate network of molecular
regulators in the cells.

Recent studies revealed that non-coding small RNAs play
critical roles in plant development and stress responses via
phytohormone signaling pathways. In this study, we focus
on the microRNAs (miRNAs) involved in BR signaling
pathway. The first miRNA was discovered in the nematode
Caenorhabditis elegans (Lee et al. 1993). miRNAs were
classified as a separate distinct class of RNAs (Lagos-Quin-
tana et al. 2001; Lau et al. 2001; Lee and Ambros 2001).
Currently, 8604 mature miRNAs and 6882 precursor miR-
NAs (pre-miRNAs) have been identified in 73 plant species
(Kozomara and Griffiths-Jones 2014). As we know, miR-
NAs are non-coding RNA molecules which are 19-24 nt
in length and function as gene regulators in diverse organ-
isms. In higher plants, miRNA regulate diverse biological
processes including organ development, phase transition
including flowering (Chuck et al. 2009; Damodharan et al.
2016; Kamthan et al. 2015; Li and Zhang 2016; Meng et al.
2010; Nova-Franco et al. 2015; Rubio-Somoza and Weigel
2011) abiotic and biotic stress tolerance (Hackenberg et al.
2015; Jeong et al. 2011; Karimi et al. 2016; Li et al. 2011;
Naya et al. 2014; Niu et al. 2016; Stief et al. 2014; Sunkar
and Zhu 2004; Wang et al. 2011; Xie et al. 2015). Since
the discovery of the first miRNA, a wide range of studies
has provided clear evidence for the involvement of miRNAs
in many biological processes including stress responses.
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Interestingly, we already know, BR mediated abiotic and
biotic stresses tolerance in plants even though the mecha-
nisms are still unclear in higher plants (ref). Therefore, we
performed miRNA analysis using Arabidopsis seedling to
identify specific mRNAs, which are regulated by BR.

Materials and methods
Plant material and growth conditions

Plants expressing wild-type BRI1-Flag protein under its
native promoter in the bril-5 mutant were used at the plant
material. Seeds were surface sterilized, kept at 4 °C for
2 days, and Arabidopsis thaliana plants were grown in shak-
ing liquid culture as previously described (Oh et al. 2009)
and plants were treated with 1 pM epibrassinolide (epiBL)
or solvent control for 90 min before harvest.

Small RNA library construction and sequencing

Total RNAs, including small RNA fractions, were isolated
using mirVana™ miRNA isolation kit (ThermoFisher,
Waltham, MA) from Arabidopsis seedlings treated with
mock or epiBL for 90 min, with three biological replicates.
Small RNA library was prepared using the TruSeq small
RNA sample preparation protocol (Illumina, San Diego,
CA), barcoded, and sequenced on an Illumina GAXII
platform.

Small RNA cluster analysis

Small RNA reads were adaptor-trimmed and mapped to
the Arabidopsis genome (TAIR10) sequence using bow-
tie2 (Langmead and Salzberg 2012). Reads unambiguously
mapped to TAIR10 features, including known miRNA
loci, were counted using a custom python script. Adaptor-
trimmed reads of length 21-24 nt aligned to the 100-nt bins
in each strand of the Arabidopsis genome sequences were
counted. The starting position of each alignment was con-
sidered when assigning reads to the 100-nt bins. DESeq
(Anders and Huber 2010) was used to identify 100-nt bins
showing significantly different expression between control
and epiBL-treated samples (adjusted p value < 0.05) among
all 100-nt bins with on average more than 5 reads aligned
to them across the samples. Integrative Genomics Viewer
(Robinson et al. 2011) was used to visually confirm the dif-
ferential expression patterns.

Analysis of differentially expressed miRNA

miRNA expression analysis was conducted using CLC
genome workbench small RNA pipeline (Qiagen, Denmark).

After pre-processing, miRNA reads were retrieved by map-
ping the small RNA reads to the know Arabidopsis miRNAs
from miRBase Release 22.1 (Kozomara and Griffiths-Jones
2014). After normalization of miRNA reads with TP4M
(Transcripts Per 4 Million reads), differentially expressed
miRNAs were identified by a twofold difference between
control and epiBL-treated seedlings with statistic signifi-
cance of p value <0.001.

RNA-seq analysis of miRNA targets

The experimentally validated target genes for miR156g and
miR398a-3p were obtained from our previous data (Jeong
et al. 2013a). Putative targets for miR398a-5p were compu-
tationally predicted using psRNATarget program (Dai and
Zhao 2011). The expression patterns of these miRNA targets
were analyzed using RNA-seq data. Previously published
RNA-seq data (Oh et al. 2014) of control and epiBL-treated
Arabidopsis seedlings were downloaded from National
Center for Biotechnology Information Gene Expression
Omnibus (NCBI GEO) under accession number GEO
GSE51772 (GSM1252262, GSM 1252263, GSM 1252264,
GSM1252265). RNA-seq reads were processed and mapped
to Arabidopsis genome (TAIR10) sequence using CLC
genome workbench RNA-seq pipeline (Qiagen, Denmark).
The expression level of each gene was normalized as RPKM
(Reads Per Kilobase of transcripts per million reads) and
differentially expressed genes were analyzed according to
the manufacturer’s instructions.

Results and discussion

Profiling of small RNAs from epibrassinolide-treated
and mock-treated Arabidopsis seedlings

To investigate the role of small RNAs in BR responses in
Arabidopsis, three biological replicates of small RNA librar-
ies were constructed and sequenced from epiBL-treated
and mock-treated control seedlings for 90 min. Sequenc-
ing results showed that approximately four million raw
reads per library were obtained. After processing of adapter
sequences and filtering out low-quality sequence reads,
clean small RNAs were mapped to the Arabidopsis genome
sequences. All mapped sequences were classified according
to non-coding RNA gene, protein-coding gene, pseudogene,
transposable element gene, and intergenic regions (Table 1).
Of non-coding RNA genes, the majority of 21-24-nt small
RNAs mapped to the known miRNAs while the other size
of small RNAs mostly mapped to rRNAs and tRNAs. This
result implies that miRNAs are precisely processed to spe-
cific sizes by DCL enzymes while most of small RNAs
originated from rRNA and tRNAs are degraded byproducts.
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Table 1 Mapping of small RNA-seq reads to the Arabidopsis thaliana genome

Read length category 21-24nt

Not 21~24 nt

Feature category % Aligned to the sense

strand of the feature®

% Aligned to the antisense
strand of the feature®

% Aligned to the sense
strand of the feature®

% Aligned to the
antisense strand of the

feature®
Non-coding RNA gene
miRNA 13.02+1.21 0.01+0.00 3.78+0.53 0.00+0.00
other RNA 0.71+£0.08 0.63+0.04 0.21+£0.02 0.05+0.00
rRNA 4.85+0.43 0.07+0.01 7.84+0.55 0.02+0.00
snoRNA 0.05+0.01 0.00+0.00 0.24+0.05 0.00+0.00
snRNA 0.01+0.00 0.00+0.00 0.02+0.00 0.00+0.00
tRNA 0.31+0.02 0.02+0.00 473+1.11 0.03+0.01
Protein-coding gene 2.98+0.10 2.40+0.11 1.26+0.02 0.65+0.09
Psuedogene 0.16+0.00 0.14+0.00 0.03+0.00 0.02+0.00
Transposable element (TE) gene 8.57+0.54 9.09+0.59 0.86+0.09 1.61+0.18
Intergenic 15.52+0.44 14.85+0.33
Reads aligned to genome 58.54+0.84 36.19+0.87
Reads in each length category 61.51+0.86 38.49+0.86
Total reads 100 (178,952,778 reads)

*Mean + standard deviation of 6 samples (3 control and 3 BR-treated samples)

We also noticed that a significant amount of small RNAs
were mapped to protein-coding genes, which might play a
role in gene expression regulation. In addition, we found
that transposable elements and intergenic regions also accu-
mulate small interfering RNAs (siRNAs) to suppress their
expression.

Identification and differential expression analysis
of BR-responsive small RNA clusters

Small RNA expression is regulated by various environmental
changes and during the development (Baulcombe and Dean
2014; Bologna and Voinnet 2014; Khraiwesh et al. 2012). To
measure the small RNA expression levels of epiBL-treated
and control seedlings in Arabidopsis, a sliding bin of 100-
bp divided the Arabidopsis genome and the abundance of
21-24-nt small RNAs that mapped in each bin were counted.
Of 1.35 million bins of Arabidopsis genome, 79,781 bins
(5.88%) represented more than 10TP4M expression levels in
at least one small RNA library and used for further analysis.
The most abundant small RNA clusters were identified in
the loci encoding miR165/miR166 family and followed by
other miRNA loci. To identify BR-responsive small RNA
clusters, small RNA abundance in each bin was compared
between epiBL-treated and control seedlings. Overall, a lin-
ear regression between two samples produced a coefficient
of determination (R?) of 0.9893, illustrating tight regula-
tion of small RNA expression (Fig. 1a, b). With the statis-
tical analysis, we have identified 38 bins with significant
fold changes by BL treatment (Fig. 1a, b, Table 2). These
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include 30 down-regulated bins and eight up-regulated bins.
Down-regulated bins correspond to miRNA loci, transpos-
able elements, protein-coding genes, pseudogenes and others
(Table 2). For instance, At/ g31173 encoding MIR167d rep-
resents down-regulation of mature miRNAs by epiBL treat-
ment (Fig. 1c). We noticed that Ar4g04408 and At4g04409
are annotated as pseudogenes that are inverted repeats
encoding MIR841b, which is down-regulated by epiBL-
treatment (Fig. 1d). Of up-regulated bins, one is MIR156¢g
locus and seven bins correspond to a BRII gene. Especially,
a lot of small RNAs were accumulated in a BRII gene from
both control and epiBL-treated seedlings. In a recently pub-
lished database of 2000 Arabidopsis small RNA libraries,
we were not able to see a significant accumulation of small
RNAs in a BRIIgene (Feng et al. 2020). However, our small
RNA sequencing data are from the transgenic plants express-
ing a BRI1-Flag protein under its native promoter in the
bril-5 mutant. Thus, we assumed that these might be due to
transgene-induced small RNA accumulation.

Correlation of BR-responsive small RNA clusters
and mRNA expressions

To examine the correlation of small RNA abundance and
mRNA expression levels in differentially expressed small
RNA clusters, we have analyzed the expression patterns
of three selected genes. mRNA expression patterns by
epiBL-treatment in Arabidopsis seedlings were obtained
from the previously published RNA-seq data (Oh et al.
2014). At1g31173, which encodes MIR167d, accumulated
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Fig. 1 Brassinosteroid-responsive siRNA clusters. a Volcano plot
showing statistical significance (—log,, P value) versus fold change
(log, fold change) of small RNA cluster data from control and epiBL-
treated seedlings (n=3 biological replicates). Small RNA clusters
with increased expression (fold-change value>2 and p value <0.01)
are shown in red, and small RNA clusters with decreased expression
(fold-change value <2 and p value <0.01) are shown in blue. b Scat-
ter plot illustrating pairwise comparison of the normalized abundance
of small RNA clusters between control and epiBL-treated seedlings.

less small RNAs under epiBL treated condition (Fig. 1c¢).
Although MIR167d expression was also slightly down-
regulated by epiBL treatment, the regulation was not
significant because the expression levels were quite low
(less than 2 FPKM) both in control and epiBL-treated
seedlings (Fig. 2a). Ar3g58270 encoding Phospholipase-
like protein also did not represent significant expression
changes by epiBL treatment even though small RNAs
originated in this gene were significantly down-regulated
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Snapshots of the IGV browser showing the position and abundance
of small RNAs for the up-regulated and down-regulated siRNA clus-
ters. Small RNA abundances for three biological replicates of control
and BL-treated samples are indicated with grey and magenta colors,
respectively (color figure online)

(Fig. 2b). However, At4g39400, which encodes BRII,
represented a significant negative correlation between
small RNA expression and mRNA expression by epiBL
treatment (Fig. 2¢). Small RNAs originated from a BRI!
transgene were more accumulated while BRI/ mRNAs
were down-regulated by epiBL treatment. It is known that
the expression of BRI, encoding a BR receptor, is down-
regulated by a BR-mediated negative feedback mechanism.
This result implies that up-regulation of small RNAs in a
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Table 2 (continued)

Mean BR  log, (BR/Control) FDR

Mean control

Feature category ~ Feature annotation

Feature

Bin end

Bin start

Chr

Bin ID

4.E-03

-0.62
-0.57

3485
851

5370
1267

tRNA-Ala

n/a

tRNA

n/a

ATCGO01190
N/A

134,100

47,000

134,001

mBin1192807 ChrC

3.E-02

ChrM 46,901

pBin1193481

down-regulated transcript might play a role in epigenetic
regulation of the transgene.

Identification of differential expression analysis
of BR-responsive miRNAs

To identify BR-responsive miRNAs, we have examined
the expression levels of mature miRNAs in the control and
epiBL-treated seedlings. Of 428 Arabidopsis mature miR-
NAs, registered in miRBase Release 22.1, 257 miRNAs were
detected in our small RNA libraries. Of 257 expressed miR-
NAs, only two mature miRNAs, miR156g and miR398a-5p,
were significantly regulated by epiBL treatment (Fig. 3a, b).
This result implies that most miRNAs may not be regulated
by BR. It is also possible that treatment of epiBL for 90 min
may not be enough to change the other miRNA expressions.
We also noticed that some miRNAs that we have identi-
fied from small RNA cluster analysis were not classified
as BR-responsive miRNAs. This might be due to using the
different criteria for identifying the differentially expressed
small RNAs between small RNA cluster analysis and mature
miRNA analysis. It is also possible that mature miRNAs
were not significantly changed even though the other small
RNAs in a precursor, including miRNA* (the passenger
strand of mature miRNA) and other degraded small RNAs,
were slightly changed by epiBL-treatment. Thus, we did
not count miR167d, miR399a, miR841ab, and miR850 as
BR-responsive miRNAs (Table 3). In the end, miR156g
and miR398a-5p were identified as up-regulated and down-
regulated miRNAs by epiBL treatment (Fig. 3c, d).

The effect of BR-responsive miRNAs on their target
gene expression

To assess the effects of differentially expressed miRNAs
on their target gene expression, BR responses of miRNA
target gene expressions were examined by analyzing
the RNA-seq data. miR156g targets seven genes encod-
ing Squamosa promoter binding protein-like (SPL) pro-
teins, including SPL2, SPL3, SPL4, SPL6, SPL9, SPL11,
and SPL15 (Jeong et al. 2013b; Wu and Poethig 2006).
Because miR156g are up-regulated by epiBL treatment,
we expected that SPL genes could be down-regulated by
BR. Of seven SPL targets, however, only SPL3 showed
significant down-regulation by epiBL treatment (Fig. 4a).
This result might be due to the fact that there are ten other
miR 156 family members which are not regulated by BRs
(Table 3). Of miR156 family, miR156a-f and miR157a-
¢ are more abundant than miR156g. The contribution
of up-regulated miR156g by BRs may not be enough to
affect the expression levels of the other SPL genes except
SPL3. However, down-regulation of SPL3 by BRs might
be miR156g-specific. It is known that different members
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Fig.2 Small RNA abundances
and mRNA expression levels

of brassinosteroid-responsive
siRNA clusters. a Small RNA
and mRNA expression pat-
terns of Arl1g31173 encoding
MIR167D. b Small RNA and
mRNA expression patterns of
A13g58270 encoding Phospholi-
pase-like protein. ¢ Small RNA
and mRNA expression patterns
of At4g39400 encoding BRII.
On the left panel, fold changes
of small RNA abundance

and mRNA expression levels
between control and epiBL-
treated seedlings are shown as
black and red bars, respectively.
P values of the statistical signifi-
cance are indicated in the bars.
On the right panel, the mRNA
expression levels of SRNA clus-
ters are shown. Two biological
replicates of control and epiBL-
treated seedlings are represented
as grey and magenta colors,
respectively. RPKM; Reads Per
Kilobase Million (color figure
online)
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Fig. 3 Brassinosteroid-
responsive miRNAs. a Volcano
plot indicating statistical
significance (—log, P value)
versus fold change (log, fold
change) of miRNA expres-
sion levels from control and
epiBL-treated seedlings (n=3
biological replicates). A
miRNA with increased expres-
sion (fold-change value >2 and
p value <0.01) is shown in red,
and a miRNA with decreased
expression (fold-change

value <2 and p value <0.01) is
shown in blue. b Scatter plot
showing pairwise comparison
of the normalized abundance
of miRNA between control
and epiBL-treated seedlings.
Each dot represents the mean
of the normalized abundance
of a miRNA (n=3 biological
replicates). Red and blue dots
indicate up-regulated and down-
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of small RNA-seq with the
normalized miRNA expres-
sion levels (TP4M, Transcripts
Per 4 Millions). Fold changes
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the significance of deferential
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of a miRNA family could be differentially expressed and
may have their distinct function on their targets (Jeong
2016; Neilsen et al. 2012). Further study on the expres-
sion patterns of miR156 family members and SPL genes
may provide the insight into the mechanism of BR-spe-
cific miR156g/SPL3 regulation. Since the miR156/SLP3
module is known to regulate vegetative phase change and
flowering (Gandikota et al. 2007; Wu and Poethig 2006),
BRs may regulate shoot development in Arabidopsis by
miR156 and SPL genes.

We have identified miR398a-5p as a down-regulated
miRNA. In Arabidopsis, there are three MIR398 precursors,
MIR398a, MIR398b, and MIR398c. Of these, MIR398b
and MIR398c generates same mature miR398bc and less

é\0\/

— ]

320 -

240 -

Abundance (TP4M)

LA o
éb\’ & & L
()

abundant miR398bc-5p. However, miR398a generates
less abundant miR398a and more abundant miR398a-5p.
miR398a sequence is different in the 3’ end compared to
miR398bc sequence (Table 3). miR398 is known to target
two copper/zinc superoxide dismutase genes, CSD1 and
CSD2 (Beauclair et al. 2010; Jones-Rhoades and Bartel
2004). Because the expression of miR398a and miR398bc
were not affected by BRs, the expression levels of CSDI
and CSD2 were affected by epiBL treatment (Fig. 4b). The
expression levels of the predicted targets of miR398a-5p,
genes encoding ARM repeat and ABCG40, were also not
significantly changed by epiBL treatment (Fig. 4b). This
result implies that these two targets are not regulated by
miR398a-5p or that miR398a-5p may not be a functional
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Table 3 Expression patterns

. ! miRNA Sequence Control BL Fold p value

ofA differentially e.xpres.sed (TP4M) (TP4M) change

miRNAs and their family

members miR156a-f ~UGACAGAAGAGAGUGAGCAC 15,252.3 12,338.9 1.03  0.709
miR156¢g —CGACAGAAGAGAGUGAGCAC 31.6 100.1 403  1.53%10722
miR156h -UGACAGAAGAAAGAGAGCAC 5.6 5.9 1.33  0.633
miR157a -c UUGACAGAAGAUAGAGAGCAC 28,551.9 22,263.1 —1.01 0.798
miR157d ~UGACAGAAGAUAGAGAGCAC 1604.9 11241 -1.13 0.117
miR398a UGUGUUCUCAGGUCACCCCUU 75.3 61.5 1.04 0.728
miR398bc UGUGUUCUCAGGUCACCCCUG 270,334.0 213,708.3 -1.01 0.927
miR398a-5p AAGGAGUGGCAUGUGAACACA 286.4 1041 -2.13  1.09%107'°
miR398bc-5p AGGGUUGAUAUGAGAACACAC 670.4 4877 —1.10 0.218
miR167ab UGAAGCUGCCAGCAUGAUCUA 4820.3 4088.8 1.02  0.822
miR167c -UAAGCUGCCAGCAUGAUCUUG 173.9 1308 —-1.05 0.707
miR167d UGAAGCUGCCAGCAUGAUCUGG 5334.5 34852 —1.23 0.011
miR399a UGCCAAAGGAGAUUUGCCCUG 7311.1 4808.2 —1.20 0.011
miR399bc UGCCAAAGGAGAGUUGCCCUG 17,672.1 15,123.9 1.05 0497
miR399d UGCCAAAGGAGAUUUGCCCCG 582.7 3578 —1.30 0.001
miR399%¢ UGCCAAAGGAGAUUUGCCUCG 9.6 53 —144 0357
miR399f UGCCAAAGGAGAUUUGCCCGG 958.7 6225 —123 0.007
miR841a UACGAGCCACUUGAAACUGAA 4068.4 3339.8 1.07  0.450
miR841b UACGAGCCACUGGAAACUGAA 936.7 4428 —1.63 525%107°
MIR850a UAAGAUCCGGACUACAACAAAG 104.8 717 —-1.16 0.253

miRNA. We can not rule out the possibility that miR398a-5p
may regulate the other targets that were not computationally
predicted.

Conclusion

In this study, we have examined the BR-responsive small RNA
clusters and miRNAs by analyzing small RNA libraries con-
structed from control and epiBL treated seedlings. In results,
38 differentially expressed small RNA clusters and two BR-
responsive miRNAs were identified. Of BR-responsive small

@ Springer

RNA clusters, we found that a BRI transgene generates vari-
ous small RNAs, which were not identified in the wild type
plants. In addition, these small RNAs were up-regulated by
epiBL treatment while BRII expression is down-regulated
by a negative feedback mechanism. This result implied the
possible epigenetic regulation in a transgene by BRs. Of BR-
responsive miRNAs, we were not able to see the effect of BR-
repressed miR398b on their target gene expression. However,
BR-induced miR156g down-regulated SPL3. These data will
provide the insight into how small RNAs are involved in BR
responses in plants.
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Fig.4 Analysis of miRNA target gene expression between con-
trol and BL-treated seedlings. a Expression levels of miR156g tar-
get genes, SPL2, SPL3, SPL4, SPL6, SPL9, SPL11, and SPLI5. b
Expression levels of miR398a-3p and miR398a-5p targets. CSD/ and
CSD?2 are targets of miR398a-3p, while ARM repeat and ABCG40
are predicted targets of miR398a-3p. miRNA target gene expression
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levels are examined by analyzing the RNA-seq data of control and
epiBL-treated seedlings. Histograms show the normalized RPKM
(Reads Per Kilobase of transcript, per Million mapped reads) values
for two biological replicates of control and BL-treated seedlings. The
fold changes and p values between control and epiBL-treated seed-
lings are indicated (color figure online)
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