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Abstract

Probabilistic circuits (PCs) represent a probability distribution as a computational graph. Enforcing structural proper-

ties on these graphs guarantees that several inference scenarios become tractable. Among these properties, structured

decomposability is a particularly appealing one: it enables the efficient and exact computations of the probability of

complex logical formulas, and can be used to reason about the expected output of certain predictive models under miss-

ing data. This paper proposes Strudel, a simple, fast and accurate learning algorithm for structured-decomposable

PCs. Compared to prior work for learning structured-decomposable PCs, Strudel delivers more accurate single PC

models in fewer iterations, and dramatically scales learning when building ensembles of PCs. It achieves this scalabil-

ity by exploiting another structural property of PCs, called determinism, and by sharing the same computational graph

across mixture components. We show these advantages on standard density estimation benchmarks and challenging

inference scenarios.

Keywords: Probabilistic circuits, structure learning, structured decomposability

1. Introduction

In several real-world scenarios, decision making requires advanced probabilistic reasoning, i.e., the ability to

answer complex probabilistic queries [1]. Consider, for instance, querying a generative model for the probability of

events described as logical constraints [2], e.g., rankings of user preferences [3, 4]; or the probability of Bayesian

classifiers agreeing on their prediction [5]; or to conform to human expectations [6, 7]. Answering these queries goes

beyond the capabilities of intractable probabilistic models like classical Bayesian networks (BNs) and more recent

neural estimators such as variational autoencoders (VAEs) and normalizing flows [8]. Moreover, in many sensitive

domains like healthcare and finance, the result of these queries is required (i) to be exact, as approximations without

guarantees would make the decision making process brittle, and (ii) to be provided in a limited amount of time. This

explains the recently growing interest around tractable probabilistic models (TPMs) which guarantee both (i) and (ii)

by design.

Probabilistic circuits (PCs) [9, 1] propose a unifying framework to abstract from the myriad of different TPM

representations. Among these, arithmetic circuits [10], probabilistic sentential decision diagrams [11], sum-product

networks [12], and cutset networks [13] naturally fit under the umbrella of PCs. Classical bounded-treewidth graphical

models [14] and their mixtures [15] are easily cast into a PC. Within the framework of PCs, one can reason about the

tractable inference capabilities of a model via the structural properties of its computational graph. In turn, this enables

learning routines that, by enforcing such specific structural properties, deliver PCs guaranteeing tractable inference

for the desired classes of queries.

The structured decomposability [11] property of PCs enables the largest class of tractable inference scenarios. In-

deed, all the advanced probabilistic queries we mentioned in the introductory paragraph can be exactly and efficiently

answered using structured-decomposable PCs. In a nutshell, a structured-decomposable PC encodes a probability dis-

tribution in a computational graph by recursively decomposing it into smaller distributions according to a hierarchical

partitioning of the random variables, also called vtree. However, while inference on structured-decomposable PCs has

been extensively studied [2, 3, 16, 17], relatively little attention has gone to learning these circuits from data. The

Preprint submitted to International Journal of Approximate Reasoning November 19, 2021



p(Xi = 1|XPai
) XPai

= 0 XPai
= 1

p(X4 = 1) 0.4 0.4

p(X3 = 1|X4) 0.8 0.3

p(X2 = 1|X3) 0.5 0.9

p(X1 = 1|X3) 0.7 0.4

(a)

X4

X3

X1 X2

(b)

X4

X3

X1 X2

(c)

X2 = 1

X2 = 0

X1 = 1

X1 = 0

.9

.1

.5

.5

.4

.6

.7

.3

×

×

X3 = 1

X3 = 0

1.0

1.0

×

×

X4 = 1

X4 = 0

.3

.7

.8

.2

×

×

.4

.6

(d)

Figure 1: A structural decomposable PC and its corresponding vtree and equivalent BN. The CLT over RVs X = {X1, X2, X3, X4} in (1b) with

CPTs in (1a) is compiled into the structured-decomposable PC in (1d) whose extracted vtree is shown in (1c). In (1d),
⊙

are input distributions,⊗
are products, and

⊕
are sums. Each product node is colored as its corresponding vtree node in (1c). All the edges in red are ªactiveº in the

circuit flow for the input configuration {X1 = 1, X2 = 0, X3 = 1, X4 = 0}. The feed forward computational order is from left to right, and the root

node is on the right.

only prior work fully tailored towards structured-decomposable PCs is LearnPsdd [18]. LearnPsdd first introduces the

task of learning a vtree, and starts from a fully-factorized circuit normalized for the vtree. Furthermore, LearnPsdd

performs a local search: it evaluates many candidate PC structures and computes for each of them their penalized

likelihood scores. This learning procedure is costly and prevents PCs from scaling to larger real-world datasets. Ideas

on how to possibly design alternative score-based learners for structured-decomposable PCs are discussed in [19].

In this paper we introduce Strudel, a simpler and faster way to learn structured-decomposable PCs. Specifically,

we do not perform vtree learning and instead initialize the PC structure in Strudel using the best TPM that can be

learned with guarantees. Moreover, Strudel drastically simplifies the search by not computing a likelihood score for

each candidate structure but greedily growing the circuit. It considerably speeds up learning while still delivering

accurate PCs. This is even more relevant when learning large mixtures of PCs; here we propose to scale even further

by mixing components that share the same structure, and exploiting CPU/GPU parallelism. We demonstrate these

performance gains on 20 standard benchmarks and on the more challenging task of computing the expected predictions

of regression models in the context of missing data [7].

The rest of paper is organized as follows. Sections 2 and 3 introduce the framework of PCs for tractable proba-

bilistic inference. Sections 4 and 5 describe Strudel for learning single PCs and mixtures thereof. Then, Section 6

discusses implementation details on how to parallelize the computation on both CPU and GPU. Lastly, Section 7

discusses our experimental results.

2. Probabilistic Circuits

2.1. Representation

Recently, the great interest in tractable probabilistic modeling propelled the introduction of a multitude of repre-

sentations. Many of these representations can be understood under a unifying computational framework, which we

refer to as probabilistic circuits (PCs) [9, 1]. PCs reconcile and abstract from the different graphical and syntactic rep-

resentations of recently introduced TPM formalisms such as arithmetic circuits [10], probabilistic sentential decision

diagrams (PSDDs) [11], sum-product networks (SPNs) [12], and cutset networks [13]. In contrast to the intractable

probabilistic models such as VAEs, PCs enable reasoning about the tractable inference scenarios they support. Their

answers are guaranteed to be exact, and for many queries, inference runs in time linear in the size of the circuit, long

as it satisfies certain structural properties.

Notation. We use upper-case letters for random variables (RVs), e.g., X,Y , and lowercase ones for their assign-

ments e.g., x, y. Analogously, sets of RVs are denoted by upper-case bold letters, e.g., X, Y, and their joint values

by the corresponding lower-case ones, e.g., x, y. Here we consider discrete RVs, specifically represented as Boolean

variables, i.e., having values in {0, 1}.
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Representation. A probabilistic circuit (PC) C over RVs X is a pair (G, θ) where G is a directed acyclic graph

(DAG) representing a computational graph, also called the circuit structure; and θ are the circuit parameters. The PC

C encodes a probability distribution pC(X) in a recursive manner.

From the perspective of a DAG, G has three kinds of nodes: input distributions (leaves), product nodes and sum

nodes. Figure 1d shows an example of a PC. Each node n ∈ G encodes a distribution pn, defined as follows. An input

distribution n encodes a tractable probability distribution pn over some RVs ϕ(n) ⊆ X, where ϕ is called the scope.

In this work targeting Boolean RVs, we consider univariate input distributions, specifically leaves for RV Xi ∈ X

will be indicator functions of the form p(Xi = 1) = ⟦Xi = 1⟧. A product node n defines the factorized distribution

pn(X) =
∏

c∈ch(n) pc(X) over its children ch(n). Without loss of generality, we will consider product nodes to have

only two children since product nodes with multiple children are semantically equivalent with and can be tractably

transformed into two children representations. A sum node n defines a mixture model pn(X) =
∑

c∈ch(n) θn,cpc(X)

parameterized by edge weights θn,c. The scope of a product or sum node is the union of the scopes of its children:

ϕ(n) = ∪c∈ch(n)ϕ(c). Thus θ is the set of all sum weights θn,c denoting all the parameters in a circuit C (parameters are

only attached to sum node edges, since input distributions are indicators). From the perspective of a computational

graph G, nodes are computational units, specifically input distribution units, product units and sum units and edges

define an order of execution. Let in(n) = ch(n) be the set of inputs of an inner node n and out(n) the output. The

feedforward evaluation of a PC C following pn(X) defined above computes pr(X), with r as the circuit’s root, to be

the output of this PC, namely pC(X).

PCs are not PGMs. Even if PCs are probabilistic models expressed via a graphical formalism, probabilistic

circuits are not classical PGMs. The clear operational semantics we described above makes PCs peculiar neural

networks [20, 21] whose inner units are either products (acting as non-linearities) or convex combinations of their

inputs. Overall, a PC C defines a multilinear polynomial [10] whose indeterminates are the distributions equipping

the leaves of C.

2.2. Inference

EVI. Any PC C over RVs X that represents a normalized distribution supports computing the likelihood pC(x)

given a complete configuration x (a complete evidence query, EVI) by evaluating the circuit feed forward: starting

from the input distributions and computing the output of children before parents.

Additional structural properties of the PC, such as decomposability, smoothness and determinism, can extend the

set of probabilistic queries that are guaranteed to be answered exactly and in time linear in the size of the PC, that is,

its number of edges. Then, query answering reduces to traversing the PC feed forward and backward given values for

the leaf nodes.

MAR and CON. A PC is decomposable if for every product node, the children have disjoint scopes. That is,

product nodes encode well-defined factorized probability distributions. A PC is smooth if for every sum node, the

children have the same scope. That is, sum nodes encode mixtures of distributions that are well-defined over identical

sets of RVs. Smooth and decomposable PCs enable linear time computation of any marginal query (MAR) [10]. This

also implies linear time computation of conditional probabilities (CON), which are ratios of marginals. SPNs [12] are

examples of smooth and decomposable PCs.

MAP. A circuit is deterministic if for every sum node n and complete assignment x, at most one of the children

of n have a non-zero output. That is, a deterministic sum defines a mixture model whose components have disjoint

support. Smoothness, decomposability and determinism enable tractable maximum a posterior queries (MAP) [22]. 1

Examples of smooth, decomposable and deterministic PCs are cutset networks [13, 24] and selective SPNs [25].

2.3. Structured-Decomposable PCs

More recently, the stronger property of structured decomposability has been introduced to enable a larger class of

tractable inference scenarios [26, 11]. Briefly, the product nodes in a structured-decomposable PC cannot decompose

in arbitrary ways, but must agree on a ªcontract.º A PC is structured-decomposable if it is normalized for a vtree, a

binary tree encoding a hierarchical decomposition of RVs. Each leaf in a vtree denotes a RV, while an internal node

1We adopt the terminology of [14] and [9]: our MAP queries are also called most probable explanation (MPE) queries in [23], and what is

called MAP there, which involves marginalizing over a set of random variables before maximising, corresponds to marginal MAP in our setting.

3



indicates how to decompose a set of RVs in two subsets mapping to its left and right branch. A PC is normalized for

a vtree if the scope of every product node decomposes over its children as its corresponding node in the vtree. An

example of a vtree and a structured-decomposable PC normalized for it are shown in Figure 1c and Figure 1d, where

each product node in Figure 1c is colored as its corresponding vtree node as in Figure 1d.

AND-OR graphs [27] and PSDDs [11] are examples of smooth, deterministic and structured-decomposable PCs.2

Despite all these advanced inference scenarios that structured-decomposable PCs enable, relatively little attention has

been dedicated to learning these circuits from data, and the only attempt so far is difficult to scale [18].

By enforcing structured decomposability, several classes of advanced probabilistic queries become computable

exactly and efficiently. For instance, structured-decomposable PCs allow to compute symmetric and group queries [2]

and, given certain constrained vtrees, same-decision probabilities [28], their expected version [29] and classifier agree-

ment [5]. Moreover, if two PCs conform to the same vtree, it is possible to efficiently compute the KL divergence

between them [17] or to multiply them [16]. Besides, it becomes possible to also compute the expected predictions of

a discriminative modelÐa classifier or a regressorÐin a tractable manner with respect to the input distribution mod-

eled by a generative model if both are circuits conforming to the same vtree and if the discriminative model defines

its predictions in a certain way [7, 30]. We showcase this advanced inference scenario in Section 7, where we employ

regression circuits [7] as discriminative models and structured-decomposable PCs as generative ones. Regression

circuits are deep regressors comprising a structured-decomposable circuit that acts as a feature extractor and a linear

regressor that is learned on top of the circuit extracted features. Crucial to our purposed, we can build a regression

circuit that conforms to the same vtree of a PC we have learned with our structure learning algorithm.

3. Circuit Flows: Fast Inference and Parameter Learning

Before explaining Strudel, we briefly introduce circuit flows ± a computational tool that allows us to scale up our

learner. Determinism not only makes MAP inference tractable, but also enables closed-form parameter estimation in

PCs [11] and dramatically speeds up inference by leveraging circuit flows [31].

3.1. Definition and Computation

We first introduce context and then formally define circuit flows.

Definition 1 (Context). Let C be a PC over RVs X and n be one of its nodes. The context γn of node n denotes all

joint assignments that return a nonzero value for all nodes in a path between the root of C and n.

γn :=
⋃

p∈pa(n)

γp ∩ supp(n)

where pa(n) refers to the parent nodes of n and supp(n) := {x : pn(x) > 0} is the support of node n.

Note that the context of a node is different from its support. Even if the node returns a non-zero value for some input,

its output may be multiplied by 0 at its ancestor nodes; i.e., such node does not contribute to the circuit output of that

assignment.

We can now express circuit flows in terms of contexts. Intuitively, the context of a circuit node is the set of all

complete inputs that ªactivateº the node. Hence, an edge is ªactivatedº by an input if it is in the contexts of both nodes

for that edge.

Definition 2 (Circuit flow). Let C be a PC over variables X, (n, c) its edge, and x a joint assignment to X. The circuit

flow of (n, c) given x is

fC(n, c; x) = [x ∈ γn ∩ γc]. (1)

2In their original formulation [11], PSDDs required a stronger notion of determinism, which is related to its logical constraints well has no

practical implication for tractable probabilistic inference.
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Algorithm 1: circuitFlows(C, x)

Input : PC C, one data sample x

Output : circuit flows of sample x for each node n and edge c, cached in f

1 // visit children before parents, compute support s

2 foreach n ∈ C do

3 if n is a leaf then

4 Xi ← literal that n represent

5 s(n)← ⟦Xi = xi⟧

6 else if n is a sum node then

7 s(n)←
∨

c∈ch(n) s(c)

8 else

9 s(n)←
∧

c∈ch(n) s(c)

10 // visit parents before children, compute circuit flows

11 foreach n ∈ C do

12 if n is root then

13 fC(n, c; x)← s(n) for every c ∈ ch(n)

14 else if n is a sum node then

15 fC(n, c; x)← s(c) ∧
∨

p∈pa(n) fC(p, n; x) for every c ∈ ch(n)

16 else if n is a product node then

17 fC(n, c; x)←
∨

p∈pa(n) fC(p, n; x) for every c ∈ ch(n)

Note that the determinism property guarantees that for every sum node, at most one input has a flow of 1, and

the rest has a flow of 0. Figure 1d shows an example of a circuit flow, all the edges in red are ªactiveº for input

configuration {X1 = 1, X2 = 0, X3 = 1, X4 = 0}. We can compute the circuit flows via feed forward evaluation (to

compute the support) followed by a backward pass as shown in Algorithm 1. We cache intermediate results to avoid

redundant computations and to ensure a linear-time evaluation. To compute the circuit flows on a dataset, we can

compute the flow of each data sample in parallel via vectorization.

Intuitively, a circuit flow encodes which parameters are activated by different input configurations. As such, circuit

flows characterize how a particular complete assignment x propagates through the circuit and they represent a binary

encoding of a tree circuit. An analogous concept has been introduced in the literature of non-deterministic circuits

such as sum-product networks under the name of induced sub-circuit [32, 33]. Note that the semantic of circuit flows

and induced sub-circuits differ in that to materialize the latter we need to set evidence over the latent variables that are

associated to the sum units of the considered circuit, thus making it ªtemporarily deterministicº. Induced sub-circuits

have been used as a metaphor to understand non-deterministic circuits as mixture models with exponentially many

components, linking them to the notion of network polynomials [34, 35]. While this intermediate representation

has been helpful in inspiring novel parameter learning schemes for non-deterministic circuits such as sum-product

networks [36, 37], their concrete connection to the likelihood computation for a deterministic circuit has not been

investigated. We are the first to do that as shown next.

3.2. Fast Inference

For a given sample x, a circuit flow acts as a mapping fC : X 7→ {0, 1}|θ| from sample x to a binary vector, called

flow embedding, with as many entries as there are parameters in C. The k-th entry in fC(x), which also defines the

flow at edge e associated with the k-th parameter in θ, is 1 if sample x flows through the edge e reaching the output,

and 0 otherwise.

As such, the log-likelihood LLC(θ; x) of a deterministic circuit C parameterized by θ, given a single input config-

uration x, is efficiently computed as

LLC(θ; x) = log(pC(x)) = fC(x)T · log(θ).
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Similarly, the circuit flow of a batch of samples D can be represented as a binary matrix FC(D) ∈ {0, 1}|D|×|θ|. Then,

the log-likelihood given the entire batch at once is efficiently vectorized as

LLC(θ;D) = FC(D) · log(θ).

This formulation of the likelihood has the clear benefit that a vectorized computation can yield significant speedups.

Furthermore, the matrix FC(D) can be computed by propagating bit-vectors forward and backward through the circuit

C. Recall that flow embeddings are binary vectors by definition, and they can be used to compute the log-likelihoods

because of determinism property. Bit-vector arithmetic is extremely efficient, much more so than using floating-point

vectors to compute the same likelihoods. Lastly, circuit flows will greatly benefit inference in our large ensembles

sharing the same structure (cf. Section 5). Since a flow only depends on the circuit structure, for a mixtureM = {Ci}
k
i=1

of k PCs sharing the same structure, we need to evaluate a single flow fM once. As such, the log-likelihood of M

given x can be efficiently computed as:

LLM(Θ; x) = logsumexp( fM(x)T · log(Θ) + log(w)), (2)

where w = {wi}
k
i=1

are the mixture weights, Θ is the matrix whose columns are the parameters θi of the ith PC in

the mixture, and logsumexp sums probabilities over all mixture components in their logarithmic representation. We

empirically show these speedups in Section 7 and Appendix D.

3.3. Parameter Learning

More instrumental to our purpose, flow embeddings can be used for parameter learning of a PC C. We define the

aggregate flow aC(i, j;D) of one edge ei, j associated with the kth weight θi, j, as the total number of configurations in

the dataset D that flow through edge ei, j, and whose likelihood therefore contains the kth weight θi, j as a factor. That

is, aC(i, j;D) =
∑|D|

h=1
FC(D)[h, k]. Now, the maximum likelihood estimator (MLE) of weight θi, j can be computed in

closed form as the ratio

θMLE
i, j =

aC(i, j;D)∑
∗aC(i, ∗;D)

. (3)

In other words, θMLE
i, j

can be computed as the ratio of the number of samples in D flowing through edge ei, j over the

total number of samples flowing through node i.

In summary, the circuit flow formulation has the benefit of (1) vectorizing the computation, (2) allowing for a

single computation of the flow embeddings to be reused across PCs with the same structure but different parameters,

for example in large ensembles, and (3) yielding simple closed-form parameter estimates. Moreover, we will show in

Section 4 that flows can act as one of the building blocks in structure learning. Thus, both our learner for expressive

single models in Section 4 and for scalable ensembles in Section 5 will make use of this efficient formulation.

4. Strudel: Learning Structured-Decomposable Probabilistic Circuits

The objective of structure learning for PCs is to find a circuit structure and parameters that approximate well the

data distribution. If the learned PC has to guarantee tractable inference for certain classes of queries, its structure has

to enforce the corresponding properties discussed in Section 2. For the advanced inference scenarios we are interested

in, and to retain efficient parameter learning (cf. Section 3), we require structured decomposability and determinism.

So far, the only alternative learner to deliver such PCs is LearnPsdd [18], while ideas to develop alternative score-

based learners are discussed in [19]. Since the development of Strudel, several new learners were proposed that target

structured-decomposable PCs [38, 39, 40], as well as novel regularization techniques for large PCs [41, 42].

In this section, we first propose Strudel, a STRUctured-DEcomposable Learner, and then explain how it compares

against LearnPsdd [18].

Briefly, Strudel starts from the best tree shaped Bayesian Network learned from data ± Chow-Liu trees. And

then it performs a greedy search or beam search over the space of possible structured-decomposable PCs iteratively

to optimize the circuit structures and parameters. Specifically, at each iteration we perform a local modification on

circuit structures, which is guided by some heuristic scores calculated from data.
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Algorithm 2: getVtree(T , opt)

Input : a CLT T , option opt decides how to organize a set of sub-vtrees from a set of children into a vtree

Output : vtreeV

1 X ← root node in T

2 if X is a leaf node then

3 return makeVtreeLeafNode(X)

4 else

5 vl ← makeVtreeLeafNode(X)

6 vs← getVtree(Xc, opt) for every Xc ∈ ch(X)

7 vr ← a binary tree with vs as its leaves built according to option opt

8 return makeVtreeInnerNode(vl, vr)

4.1. From Chow-Liu Trees to Structured-Decomposable PCs

Chow-Liu trees. Providing a good initial candidate structure to a structure learning algorithm is crucial, as it

might save considerable time during search. We use Chow-Liu trees (CLTs) as the ªbestº initial PC structure possible

as they are tree-shaped BNs that: (1) guarantee to encode the best tree model in terms of KL divergence with the data

distribution; (2) support linear time marginals and MAP inference; (3) and can be learned in time O(|X|2|D|). Further-

more, as we will show next, we can quickly compile CLTs into smooth, deterministic and structured-decomposable

PCs and extract a vtree from them.

More formally, a CLT T over RVs X is a tree-shaped BN equipped with parameters θi|Pai
defining the conditional

probability table (CPT) of node i associated to RV Xi with parent node Pai. An example of a CLT is shown in Figure 1b.

The classic Chow-Liu algorithm [43] learns a CLT T from data D by running a maximum spanning tree algorithm

over a complete graph induced by the pairwise mutual information (MI) matrix over variables X as estimated from

data D. These MI estimates are used to compute the θi|Pai
parameters, and can be smoothed by adding a Laplace

correction factor α. See Appendix A for a detailed algorithm.

Compiling CLTs. We now turn our attention to compiling a CLT into a structured-decomposable PC and distilling

a corresponding vtree from it. Compiling generic BNs into smooth, deterministic and decomposable PCs3 has been

extensively researched in the literature [10], and compilation of a BN into a structured-decomposable circuit has also

been explored [44, 16, 45]. However, compiling a BN (even a CLT) for an arbitrary vtree can lead to an exponentially

larger PC. Therefore, we adopt a simple strategy tailored for CLTs that extracts a vtree guaranteeing a linear-size PC

in the number of RVs.

We start from the observation that a rooted CLT provides a natural variable decomposition. While rooting the CLT

can be done arbitrarily, we root it at its Jordan center as a heuristics to minimize the resulting vtree depth and thus

yielding smaller PCs. Then we traverse the CLT top-down to build the vtree as shown in Algorithm 2, for each node

Xi ∈ T , if Xi is a leaf node, makeVtreeLeafNode compiles it to a vtree leaf node vi containing variable Xi; otherwise

makeVtreeInnerNode builds an inner node with vi as its one branch, and the vtree for its children ch(Xi) as its other

branch. To turn a set of children ch(Xi), which is conditionally independent given their parent Xi, into a vtree, we

compile each child as a sub-vtree separately (line 6) and then make a binary vtree where each leaf is one sub-vtree,

with option opts decides how to organize a set of sub-vtrees (line 7). Figure 2 shows an example of all possible vtrees

built from the given CLT/BN: X1 → Xi for every i ∈ {2, 3, 4, 5, 6} ignoring variable imputations and left-right branch

symmetries. It also illustrates how to turn a set of sub-vtrees normalized for conditionally independent variables

X2, ..., X6 given X1 into a sub-vtree. opt decides how to organize a set of sub-vtrees, if we want the resulting PC to be

shallow then the vtree is more balanced as in (2b) and (2c); otherwise, if we want the resulting PC to be deep, then

the vtree has a more linear shape, such as in (2d).

After a vtree is fully grown, we proceed compiling the CLT bottom-up as shown in Algorithm 3. During compi-

lation, caching the previously compiled sub-circuits (line 1) guarantees that we obtain a PC of linear size [10]. For

every node Xi ∈ T that we visit, and for every parent configuration, we introduce sum nodes selecting a value of Xi

3Specifically to Arithmetic Circuits [10] represented as DAGs having parameters attached to leaf nodes.
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Figure 2: All possible vtrees built from given CLT ignoring all variable imputations and left-right branch symmetries. The CLT over RVs

X = {X1, X2, X3, X4, X5, X6} in (2a) and its vtrees in (2b, 2c, 2d). opt is balanced for (2b) and (2c), and linear for (2d).

Algorithm 3: compileCLT(T ,V)

Input : a CLT T and vtreeV

Output : compiled PC C

1 v2n(v)← ∅ for every v ∈ V

2 // iterate children before parents

3 foreach v ∈ V do

4 if v is a leaf node then

5 X ← RV(v)

6 n+, n− ← makeLiteralNodes(X)

7 if X is leaf node in CLT T then

8 v2n(v)← sumNodes([n+, n−], X)

9 else

10 v2n(v)← [n+, n−]

11 else

12 Xl ← RV(leftMostDescendent(leftBranch(v)))

13 Xr ← RV(leftMostDescendent(rightBranch(v)))

14 nsl ← v2n(leftBranch(v))

15 nsr ← v2n(rightBranch(v))

16 products← nl

⊗
nr for nl, nr ∈ zip(nsl, nsr)

17 if XPal
is XPar

then

18 v2n(v)←
⊕

(n) for n ∈ products

19 else if Xl is XPar
then

20 v2n(v)← sumNodes(products, Xl)

21 else

22 error(VtreeV is not valid)

23 return v2n(r)[0] where r is root of vtreeV

with edge weights p(Xi|XPai
= xPai

) (line 17 ∼ 22), i.e., its distribution conditioned on the parent configuration. A

corresponding indicator leaf, following the vtree structure, is introduced in the product (line 16). This yields a smooth

deterministic sum node branching over the possible values for the considered RV. Figure 1d illustrates the compiled

PC for the example CLT in Figure 1b and a step-by-step compilation progress is in Appendix A. The detailed pseudo-
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code is listed in Algorithm 3, where makeLiteralNodes,
⊗

, and
⊕

refer to building leaves, product nodes and sum

nodes given a random variable or inputs. Subroutine sumNodes returns two sum nodes branching over products and

indicator leaves, which is listed in Appendix A.

4.2. How And What to Split

From this initial circuit, Strudel applies the split operation at each step, performing a greedy search.

Our split operation is based on the one proposed in LearnPsdd [18], which builds on [46]. Given a PC structure

Ct at iteration t, we create Ct+1 in a two-step procedure. First, we select one edge en,c to split, from one sum node n

to one of its child product nodes c, and one variable Xi to split in the scope of c. Second, we make two partial copies

of sub-circuits rooted at c conditioned on ⟦Xi = 0⟧ and ⟦Xi = 1⟧ respectively. These partial copies are carried out by

copying nodes up to a certain depth bound. We thus create Ct+1 by removing child c from node n in Ct, while adding

both of the new copies. This splitting operation preserves smoothness and determinism since sums are conditioned

on the RV Xi, while it also preserves structured decomposability since the new circuit confroms to the same vtree as

the old one. The pseudo-code is listed in Algorithm 4, in which to perform the construction of the split subcircuits as

described above, we use the subroutine conjoin to conjoin the PC’s logical formula with given literal constraints, and

partialCopy to create a copy of the circuit up to a certain depth (see Appendix B).

Algorithm 4: splitOperation(C, en,c, X)

Input : a PC C, edge en,c between sum node n and product node c, a random variable X ∈ ϕ(c)

Output : PC splited on edge en,c given variable X

1 Cc ← sub-circuit rooted at node c

2 Cc+ ← partialCopy(
⊙

(X = 1)
⊗

conjoin(Cc, X = 1))

3 Cc− ← partialCopy(
⊙

(X = 0)
⊗

conjoin(Cc, X = 0))

4 remove edge en,c from C

5 add edge en,c+ and edge en,c− to C

6 return C

Selecting edges to split. To select an edge and variable to split, the simplest but uninformed strategy would be to

pick one edge and one variable randomly. We name these two strategies eRAND and vRAND. Clearly, more informed

heuristics, but less expensive than the computation of the likelihood, would benefit search. We introduce two novel

heuristics, eFLOW and vMI for selecting an edge and a variable respectively.

To select an edge to split, we are implicitly selecting an sub-circuit, therefore we prefer the sub-circuit responsible

for most of the samples such that we can substitute it with a larger circuits containing more parameters, which can

better fit that multitude of data points. Specifically, eFLOW selects edge ei, j which maximizes the aggregate circuit

flow (cf. Section 3):

scoreeFLOW(ei, j;C
t,D) := aCt (i, j;D) (4)

That is, the eFLOW picks the edges where more samples in D flow through, indicating that introducing a new

sub-circuit there could potentially better model the distribution over those samples.

Selecting RVs to split. Once we pick edge ei, j, we then select the RV among those in the scope of node j.

Specifically our vMI heuristics selects the RV Xk sharing more dependencies with the others in the scope. That is, we

maximize the score:

scorevMI(Xk;Ct,D) :=
∑

Xh,Xk

MI(Xh; Xk) (5)

where MI is the pairwise mutual information estimated on the samples ofD ªflowingº through edge ei, j. By introduc-

ing new parameters for highly dependent RVs we can learn more accurate PCs. The entire greedy local search loop

performed by Strudel is summarized in Algorithm 5.

4.3. From Greedy Search to Beam Search

Issues in greedy search. The greedy search approach we just introduced is efficient. This is because, at each

training step, we only calculate the simple heuristic scores and perform the split operation once to find the best next

9



Algorithm 5: Strudel(D, X)

Input : a datasetD over RVs X

Output : a structured-decomposable PC C

1 T ← LearnCLT(D,X)

2 V ← getVTree(T )

3 C ← compile(T ,V)

4 while C is not overfitting do

5 e∗
i, j
← argmaxei, j∈edges(C) scoreeFLOW(ei, j;C,D)

6 X∗ ← argmaxXk∈ϕ(Ci)
scorevMI(Xk;C,D)

7 C ← SplitOperation(C, e∗
i, j
, X∗;D)

8 return C

circuit. However, by being more greedy, it is possible that our simple heuristics perform a split operation at a certain

iteration that can lead to a less optimal circuit structure in the long run, without any possibility to ªgo backº and fix

it. To circumvent this possible issue, we introduce StrudelBeam, where we modify the structure learning loop of

Strudel to perform beam search, i.e., allowing the evaluation of the likelihood of a small set of the most promising

candidate structures.

Beam search. At each iteration during training, instead of getting one best circuit based on heuristics, we maintain

β best circuits to apply the split operation to, where β is called beam width. If β = 1, beam search is reduced to greedy

search; with an infinite β, it explores every possible circuit structures and is identical to breadth-first search (BFS).

Given a set of β PCs Bt = {Ct
1
,Ct

2
, ...Ct

β
} at iteration t, we create Bt+1 in the following way. First, for each PC Ct

i

where i ∈ {1, 2, ...β}, we select from all possible next step PCs and pick the best β candidates with the top heuristic

scores to form Bt+1
i

. Then we have
⋃β

i=1
Bt+1

i
, which is a set with maximum size β2. Note that Bt+1

i
and Bt+1

j
(i , j)

may have exactly the same PCs, for example, they may come from the same ancestor and split on the same edges and

variables but with different sequences. Finally we need to pick the best β PCs from
⋃k

i=1 B
t+1
i

. It is not reasonable

to compare the heuristic scores directly as they come from different ancestors. Therefore, as a fair comparison, we

evaluate the PCs’ log-likelihoods (for upto β2 PCs) from which we pick the top β to form Bt+1.

The entire beam search algorithm pseudocode performed by Strudel is listed in Algorithm 6.

4.4. LearnPsdd And Its Limitations

LearnPsdd performs a local search over the space of possible structured-decomposable PCs, given a vtree as input.

To learn a vtree from data, a hierarchical clustering step is performed over the RVs discovering some independence

relationships: they are recursively grouped bottom up (or split top down) so as to maximize their pairwise mutual

information. Next, local search starts from a fully-factorized PC, that is, one where all RVs are considered to be

independent, reshaped to conform to the learned vtree. Each search iteration locally changes the circuit while preserv-

ing its semantics and structural properties of smoothness, determinism and structured decomposability. To propose

candidates, LearnPsdd consistently applies two structural transformations ± split and clone ± to all possible nodes in

the circuits. These candidates are then ranked by their log-likelihood score, penalized by their circuit size.

We highlight the following shortcomings of LearnPsdd: (i) vtree learning as a separate pre-processing step has

a limited effect on structure learning, which starts from a fully-factorized distribution, discarding the dependencies

discovered in vtree learning. Moreover, while circuit flows speed up likelihood computation in deterministic circuits,

(ii) using likelihood to score candidate structures drastically slows down learning, especially in large data regimes. As

a result, when employed in mixture models LearnPsdd has not been able to scale beyond tens of components.

To overcome these shortcomings, we propose to: (i) extract a vtree structure from the best graphical model that

can be learned in tractable time, and then compile it into a structured-decomposable PC, which provides a more

informative starting point, (ii) dramatically reduce learning time by employing a greedier local/beam search using a

single transformation, split, and (iii) effectively use circuit flows, CPU, and GPU parallelism to speed up parameter

learning and likelihood computation. The resulting algorithm is a simpler, faster structure learning scheme, yet
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Algorithm 6: StrudelBeamSearch(D, X, β)

Input : a datasetD over RVs X, beam width β

Output : a structured-decomposable PC C

1 T ← LearnCLT(D,X)

2 V ← getVTree(T )

3 C ← compileCLT(T ,V)

4 B ← {C}

5 while C is not overfitting do

6 foreach C ∈ B do

7 E ← edges(C)

8 foreach k ∈ 1 : β do

9 e∗
i, j
← argmaxei, j∈E scoreeFLOW(ei, j;C,D)

10 E ← E − ei,k

11 X∗ ← argmaxXk∈ϕ(Ci)
scorevMI(Xk;C,D)

12 C ← SplitOperation(C, e∗
i, j
, X∗;D)

13 B ← B + C

14 B← topk(B, k = β, by = loglikelihood)

15 C← argmaxC∈B loglikelihood(C)

16 return C

yielding competitively accurate PCs and enabling fast learning of large mixtures. We name it Strudel: a STRUctured-

DEcomposable Learner.

5. Fast Mixtures with Strudel

Learning mixtures of PCs greatly improves their performance as density estimators [47, 48, 49, 50].

Issues in learning structured-decomposable mixtures. Building a mixture of several PCs results in a joint

non-deterministic PC, as it introduces a sum node marginalizing a latent variable. While such a PC would not allow

exact MAP inference, it could still be used for queries requiring structured decomposability. However, to answer

complex queries like the expectation of predictive models [7], one would require a structured-decomposable mixture

of PCs, i.e., an ensemble whose components are structured-decomposable and share the same vtree. To force such a

constraint, while preserving the mixture expressiveness or containing its circuit size, is a non-trivial research question.

Consider learning several PCs with Strudel while requiring them to share the same vtree. If we learn each component

from a different CLT, compiling them to PCs while enforcing a unique vtree might lead to an exponential blow-up in

the size of some PCs. Alternatively, enforcing Algorithm 7 to output a CLT that can be compactly compiled according

to a vtree, would result in losing the algorithm’s optimality guarantee.

Shared-structure mixtures. We propose a simpler and faster ensembling strategy which proves to be very effec-

tive in practice. We build ensembles of PCs sharing the same structure, concretely the structure learned by Strudel

for single models on that data, while letting each mixture component have different parameters. This has a number of

advantages: we (i) need to perform structure learning only once, (ii) materialize a single flow fM once (as identical

structures will generate the same flow), and (ii) can evaluate the likelihood of the whole mixture efficiently, as shown

in Eq. 2.

This strategy is compatible with classical ensembling schemes such as expectation-maximization (EM), bagging

and boosting. All these scenarios, e.g., each M step in EM, reduce to learning each mixture component parameters on

a weighted version of the original data.

We briefly review how EM operates in our ensembling scenario. In each E step, the log-likelihoods of mixtures

are evaluated as in Equation 2. And in each M step, we have a weighted data set for each component, the weight for
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sample x and component c is the probability of this sample x selecting component c from all components:

Pr(c|x) =
Pr(x, c)

Pr(x)

The numerator is cached from Equation 2 since we can compute the log-probability Pr(x, c) for each component via

fM(x)T · log(Θ) and the denominator is just normalizing all components in it. Therefore, we can learn the parameters

for each component in closed form as in Equation 3, except that we use expected aggregate circuit flows:

eac(i, j;D) =
∑|D|

h=1
Pr(c|D[h]) · FM(D)[h, k]

Instead of counting the samples, it sums all sample weights flow through. Finally, we update the combination weights

w with Pr(c) for every c ∈ M.

6. Parallel Computing on CPU and GPU

From Section 3 and Section 5, we can see that most of the arithmetic computation in learning, such as evaluating

the log-likelihood and estimating the parameters, is closely related to circuit flows and is computed by matrix manipu-

lation. Moreover, if two nodes appear in the same ‘layer’ of the PC, their value can be computed independently given

the previous layer. Therefore, it is natural to additionally speed up our algorithms by parallel computation, using CPU

multi-threading, CPU SIMD instructions, and GPU parallelism.

Efficient data structures for PCs. The most intuitive way to encode PCs is by a linked node data structure.

Then the inference and learning algorithms would require iterating over the nodes of the PC either in a feedforward

(children to parents) or backward (parents to children) fashion. However, this representation makes computations

sparse, thus it is harder to leverage parallelism. To optimize performance during inference and learning, we translate

the PCs’ DAG into a layered computational graph [20, 51]. The nodes of a PC are cached in a layered vector by some

unique identifiers. We also explicitly cache the mapping from parents to children for forward traversal and children to

parents for backward traversal.

Parallel computation. Since the computations on the nodes in the same layer are cached in one large vector, we

can simultaneously parallelize our computation over the nodes in the layer on the one hand, and training examples

or inference task data on the other hand. Such parallelism is most useful in fast mixtures. As discussed in Section 5,

the core bottleneck operation there is parameter learning, i.e., efficiently computing flows, evaluating the PCs and

estimating their parameters. Concretely, when training the mixtures using the EM algorithm, we only need to compute

the flows once at all, since they are not changed during training; and then for each iteration, we perform the expectation

step by Equation 2 and the maximization step by Equation 3.

We use customized kernels to accelerate computation on both CPUs and GPUs (using SIMD and CUDA kernels

respectively). Experiments show that CPU parallelism gives significant speed-ups, which even become an order of

magnitude faster with GPU parallelism, all using the same underlying data structures.

7. Experiments

In this section, we rigorously evaluate Strudel empirically. We implement our learning algorithms in the open-

source Juice library for probabilistic circuits [52]. The natural competitor for Strudel is LearnPsdd, as they both aim

to learn PCs with the same structural properties (cf. Section 4). We evaluate both learners as density estimators on

a series of 20 standard benchmark datasets. Specifically, we aim to answer the following research questions: (Q1)

What is the effect of initializing structure learning with a CLT? (Q2) How is the splitting heuristic in Strudel affecting

structure learning? (Q3) How does the beam search strategy improve the greedy search structure learning? (Q4) How

do single PCs learned by Strudel compare to those learned by LearnPsdd? (Q5) Are ensembles of PCs learned by

Strudel competitive with LearnPsdd? (Q6) Is our inference approach based on circuit flows speeding up likelihood

computations on ensembles of PCs? (Q7) How do CPU parallelism and GPU parallelism help speed up training of

mixtures? (Q8) Are ensembles of PCs learned by Strudel helpful for advanced probabilistic queries?
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dataset LearnPsdd Strudel Strudel selSPN seaSPN

Greedy Beam

nltcs -6.03 -6.07 -6.06 -6.03↓ -6.07↑

msnbc -6.04 -6.05 -6.05 -6.04↓ -6.06↑

kdd -2.17 -2.17 -2.16 -2.16↑ -2.16↑

plants -13.49 -13.95 -13.78 -12.97↓ -13.12↓

audio -41.51 -42.29 -42.17 -41.23↓ -40.13↓

jester -54.63 -55.23 -55.21 -54.38↓ -53.08↓

netflix -58.53 -58.66 -58.59 -57.98↓ -56.91↓

accidents -28.29 -29.63 -29.41 -26.88↓ -30.02↑

retail -10.92 -10.90 -10.90 -10.88↓ -10.97↑

pumsb-star -25.40 -26.11 -25.70 -22.66↓ -28.69↑

dna -83.02 -87.20 -86.68 -80.44↓ -81.76↓

kosarek -10.99 -10.98 -10.87 -10.85↑ -11.00↑

msweb -9.93 -10.19 -10.13 -9.93↓ -10.25↑

book -36.06 -35.80 -35.76 -36.01↑ -34.91↓

eachmovie -55.41 -60.49 -59.69 -55.73↓ -53.28↓

webkb -161.42 -159.95 -159.90 -158.52↑ -157.88↓

routers-52 -93.30 -91.82 -91.73 -88.48↓ -86.38↓

20news-grp -160.43 -160.77 -160.67 -158.68↓ -153.63↓

bbc -260.24 -260.15 -258.35 -259.35↑ -253.13↓

ad -20.13 -16.52 -16.40 -16.94↑ -16.77↑

Table 1: Density estimation benchmarks: single models. Average test log-

likelihood for Strudel and LearnPsdd models. The bold values indicate

Strudel is better than or statistically equivalent with (cf. Appendix C.3)

LearnPsdd. On the right other state-of-the-art structure learners, which

are not targeting structured-decomposable circuits (see text). ↑ (resp. ↓)

indicates that Strudel is more accurate (resp. less accurate).

dataset LearnPSDD Strudel LearnPSDD Strudel

EM EM BEM BEM

nltcs -6.03↓ -6.07 -5.99↓ -6.06

msnbc -6.04↑ -6.04 -6.04↑ -6.04

kdd -2.12↓ -2.14 -2.11↓ -2.13

plants -13.79↑ -13.22 -13.02↑ -12.98

audio -41.98↑ -41.20 -39.94↓ -41.50

jester -53.47↓ -54.24 -51.29↓ -55.03

netflix -58.41↑ -57.93 -55.71↓ -58.69

accidents -33.64↑ -29.05 -30.16↑ -28.73

retail -10.81↓ -10.83 -10.72↓ -10.81

pumsb-star -33.67↑ -24.39 -26.12↑ -24.12

dna -92.67↑ -87.15 -88.01↑ -86.22

kosarek -10.81↑ -10.70 -10.52↓ -10.68

msweb -9.97↑ -9.74 -9.89↑ -9.71

book -34.97↑ -34.49 -34.97↓ -34.99

eachmovie -58.01↑ -53.72 -58.01↑ -53.67

webkb -161.09↑ -154.83 -161.09↑ -155.33

routers-52 -89.61↑ -86.35 -89.61↑ -86.22

20news-grp -160.09↑ -153.87 -155.97↑ -154.47

bbc -253.19↓ -256.53 -253.19↓ -254.41

ad -31.78↑ -16.52 -31.78↑ -16.38

Table 2: Density estimation benchmarks: ensembles. Average test

log-likelihood for Strudel and LearnPsdd models. Two versions

of ensembles (EM vs. BEM) are compared separately, ↑ (resp. ↓)

indicates that Strudel is more accurate (resp. less accurate). Bold

values indicates the best on certain dataset over 4 methods.

in LearnPsdd-(B)EM are allowed to take arbitrary structures and update the structures for each component during

learning. As expected, Strudel drastically reduces the learning times of large mixtures, as single PCs can be learned

much faster, and mixtures can be learned in a fraction of the time by virtue of shared flows (cf. Section 3).

(Q6) Effectiveness of flows. The efficiency from classical circuit evaluation to our circuit flow approach on

a single circuit comes from that computing conjunction and disjunction of bit-vectors is much more efficient than

computing sum or product of floating point numbers. Experiment shows that the speed-up is around 3 times.

The speed-up is more significant in mixtures. Figure 6 (left) shows timings for evaluating the circuitscomputing

mixture likelihoods on the ‘plants‘ dataset. The circuit flow approach is orders of magnitude faster (around 102±103),

and up to 4591 times faster on the ‘msnbc’ dataset. Table D.8 in Appendix D reports the detailed timings for all

datasets.

(Q7) Effectiveness of parallel computing. We compare the effectiveness of the naive circuit flow approach, CPU

parallel computing and GPU parallel computing for learning mixtures. Figure 6 (right) reports the seconds it takes

to perform one expectation-maximization step while learning mixtures on the ‘plants‘ dataset. We can see that CPU

parallelism gives significant speed-ups, which even become an order of magnitude faster with GPU parallelism, all

using the same underlying data structure. Table E.9 in Appendix D reports the detailed timings for all datasets.

7.3. Application of Structured-decomposable Probabilistic Circuits

(Q8) Advanced probabilistic queries. Finally, we evaluate how PCs learned with Strudel can be exploited for

advanced inference scenarios requiring structured decomposability. We adopt the experimental setting of [7] aiming to

compute the expected predictions of a regressor r w.r.t. a generative model represented as a structured-decomposable

PC sharing the same vtree of r in the challenging scenario of predicting a real target variable in the presence of missing

values over the input features. Specifically, on 4 different real-world regression benchmarks, Abalone, Delta, Elevators

and Insurance, we first learn either a structured-decomposable PC with Strudelor a mixture learned by Strudel-BEM

with 5 bags and a number of EM components cross-validated in {5, 10, 15, 20}. Then, we learn a regression circuit

sharing the same vtree as the learned generative model by employing the learning algorithm of [7]. Figure 7 shows

the root mean squared error (RMSE) of our models for different percentages of missing values, when compared to a
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[19] L. Mattei, D. Soares, A. Antonucci, D. Mauà, A. Facchini, Exploring the space of probabilistic sentential decision diagrams, in: 3rd Workshop

of Tractable Probabilistic Modeling, 2019.

[20] A. Vergari, N. Di Mauro, F. Esposito, Visualizing and understanding sum-product networks, Machine Learning Journal.

[21] R. Peharz, S. Lang, A. Vergari, K. Stelzner, A. Molina, M. Trapp, G. V. d. Broeck, K. Kersting, Z. Ghahramani, Einsum networks: Fast and

scalable learning of tractable probabilistic circuits, in: Proceedings of the 37th International Conference on Machine Learning (ICML), 2020.

[22] H. Chan, A. Darwiche, On the robustness of most probable explanations, in: Proceedings of the 22nd Conference on Uncertainty in Artificial

Intelligence (UAI), 2006.

[23] A. Darwiche, Modeling and reasoning with Bayesian networks, Cambridge University Press, 2009.

[24] N. Di Mauro, A. Vergari, F. Esposito, Learning accurate cutset networks by exploiting decomposability, in: AI*IA 2015, Advances in

Artificial Intelligence, 2015.

[25] R. Peharz, R. Gens, P. Domingos, Learning selective sum-product networks, in: Workshop on Learning Tractable Probabilistic Models, 2014.

[26] K. Pipatsrisawat, A. Darwiche, New compilation languages based on structured decomposability., in: Proceedings of the 23rd AAAI Confer-

ence on Artificial Intelligence, 2008.

[27] R. Dechter, R. Mateescu, And/or search spaces for graphical models, Artificial Intelligence.

[28] U. Oztok, A. Darwiche, A top-down compiler for sentential decision diagrams, in: Proceedings of the 24th International Joint Conference on

Artificial Intelligence (IJCAI), 2015.

[29] Y. Choi, A. Darwiche, G. Van den Broeck, Optimal feature selection for decision robustness in bayesian networks, in: Proceedings of the

26th International Joint Conference on Artificial Intelligence (IJCAI), 2017.

[30] P. Khosravi, A. Vergari, Y. Choi, Y. Liang, G. Van den Broeck, Handling missing data in decision trees: A probabilistic approach, in: The Art

of Learning with Missing Values Workshop at ICML (Artemiss), 2020.

[31] Y. Liang, G. Van den Broeck, Learning logistic circuits, in: Proceedings of the 33rd Conference on Artificial Intelligence, 2019.

[32] H. Zhao, M. Melibari, P. Poupart, On the Relationship between Sum-Product Networks and Bayesian Networks, in: Proceedings of the 32th

International Conference on Machine Learning (ICML), 2015.

[33] R. Peharz, Foundations of sum-product networks for probabilistic modeling, Ph.D. thesis, Graz University of Technology, SPSC (2015).

[34] A. Darwiche, Modeling and Reasoning with Bayesian Networks, Cambridge University Press, 2009.

[35] R. Peharz, S. Tschiatschek, F. Pernkopf, P. Domingos, On theoretical properties of sum-product networks, The Journal of Machine Learning

Research.

[36] H. Zhao, T. Adel, G. Gordon, B. Amos, Collapsed variational inference for sum-product networks, in: In Proceedings of the 33rd International

Conference on Machine Learning (ICML), 2016.

17



[37] H. Zhao, P. Poupart, G. J. Gordon, A unified approach for learning the parameters of sum-product networks, in: Advances in Neural Infor-

mation Processing Systems 29 (NeurIPS), 2016.

[38] S. Kowshik, Y. Liang, G. Van den Broeck, IL-Strudel: Independence-based learning of structured-decomposable probabilistic circuit ensem-

bles, in: The 4th Workshop on Tractable Probabilistic Modeling (TPM), 2021.

[39] R. L. Geh, D. D. MauÂa, Learning probabilistic sentential decision diagrams under logic constraints by sampling and averaging, in: Proceedings

of the 37th Conference on Uncertainty in Artificial Intelligence (UAI), 2021.

[40] N. D. Mauro, G. Gala, M. Iannotta, T. M. Basile, Random probabilistic circuits, in: Proceedings of the 37th Conference on Uncertainty in

Artificial Intelligence (UAI), 2021.

[41] A. Shih, D. Sadigh, S. Ermon, HyperSPNs: Compact and expressive probabilistic circuits, in: The 4th Workshop on Tractable Probabilistic

Modeling (TPM), 2021.

[42] A. Liu, G. Van den Broeck, Tractable regularization of probabilistic circuits, in: The 4th Workshop on Tractable Probabilistic Modeling

(TPM), 2021.

[43] C. K. Chow, C. N. Liu, Approximating discrete probability distributions with dependence trees, IEEE Transactions on Information Theory.

[44] A. Choi, D. Kisa, A. Darwiche, Compiling probabilistic graphical models using sentential decision diagrams, in: Proceedings of the 12th

European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU), 2013.

[45] S. Holtzen, G. Van den Broeck, T. Millstein, Scaling exact inference for discrete probabilistic programs, Proc. ACM Program. Lang. (OOP-

SLA).

[46] D. Lowd, P. Domingos, Learning arithmetic circuits, in: Proceedings of the 24th Conference in Uncertainty in Artificial Intelligence (UAI),

2008.

[47] A. Vergari, N. Di Mauro, F. Esposito, Simplifying, Regularizing and Strengthening Sum-Product Network Structure Learning, in: Joint

European Conference on Machine Learning and Knowledge Discovery in Databases (ECML-PKDD), 2015.

[48] N. Di Mauro, A. Vergari, T. M. Basile, Learning bayesian random cutset forests, in: International Symposium on Methodologies for Intelligent

Systems (ISMIS), 2015.

[49] N. Di Mauro, A. Vergari, T. M. Basile, F. Esposito, Fast and accurate density estimation with extremely randomized cutset networks, in: Joint

European Conference on Machine Learning and Knowledge Discovery in Databases (ECML-PKDD), 2017.

[50] T. Rahman, V. Gogate, Learning ensembles of cutset networks, in: Proceedings of the 30th AAAI Conference on Artificial Intelligence, 2016.

[51] R. Peharz, A. Vergari, K. Stelzner, A. Molina, X. Shao, M. Trapp, K. Kersting, Z. Ghahramani, Random sum-product networks: A simple but

effective approach to probabilistic deep learning, in: Proceedings of The 35th Uncertainty in Artificial Intelligence Conference (UAI), 2019.

[52] M. Dang, P. Khosravi, Y. Liang, A. Vergari, G. Van den Broeck, Juice: A julia package for logic and probabilistic circuits, in: Proceedings of

the 35th AAAI Conference on Artificial Intelligence (Demo Track), 2021.

[53] A. Dennis, D. Ventura, Greedy Structure Search for Sum-product Networks, in: Proceedings of the 24th International Joint Conference on

Artificial Intelligence (IJCAI), 2015.

[54] G. Van den Broeck, A. Lykov, M. Schleich, D. Suciu, On the tractability of SHAP explanations, in: Proceedings of the 35th AAAI Conference

on Artificial Intelligence, 2021.

[55] Y. Choi, M. Dang, G. Van den Broeck, Group fairness by probabilistic modeling with latent fair decisions, in: Proceedings of the 35th AAAI

Conference on Artificial Intelligence, 2021.

18



Appendix A. Learning a Chow-Liu Tree

We list the algorithm for learning Chow-Liu Trees [43] and sub-routines sumNodes to help compiling a CLT here.

Algorithm 7: LearnCLT(D, X, α)

Input : a datasetD over RVs, X = {Xi}
n
i=1

, Laplace smoothing factor α

Output : a Chow-Liu tree model ⟨T , θ = {θi|Pai
}n
i=1
⟩ estimating p(X)

1 MI← 0n×n

2 foreach Xi, X j ∈ X do

3 MIi j ← estimateMI(D, Xi, X j, α)

4 end

5 T ← maximumSpanningTree(MI)

6 T ← traverseTree(T )

7 θ ← {θi,Pai
← estimateCPT(D, Xi, XPai

, α)}

8 return ⟨T , θ⟩

Algorithm 8: sumNodes(ns, X)

Input : list of sub-circuits ns with length two, RV X

Output : sum nodes with children ns, parameterized by p(X) or p(X|XPa)

1 sums← ∅

2 nl, nr ← ns

3 if X is root in CLT then

4 θ ← p(X = 1)

5 append(sums, θ · nl

⊕
(1 − θ) · nr)

6 else

7 for xPa ∈ XPa do

8 θ ← p(X = 1|XPa = xPa)

9 append(sums, θ · nl

⊕
(1 − θ) · nr)

10 return sums

Figure A.8 illustrates the compilation progress of CLT in Figure 1.
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Figure A.8: Compilation progress of CLT into its corresponding PC. (A.8a) compiles literal nodes for RV X1 (line 4-6 in Algorithm 3). For parent

configuration X3 = 1, (A.8b) introduce sum node selecting values of X1 with edge parameterized by conditional probability P(X1 |X3 = 1). (A.8b)

and (A.8c) represent P(X1 |X3)) (line 7-8 in Algorithm 3). (A.8d) compiles P(X2 |X3) following the same rule, and (A.8e) connects two sum nodes

with a product node representing that X1 and X2 are independent conditioned on X3; the product node is colored as its corresponding vtree node in

Figure 1. (A.8f) add one layer sum nodes to maintain semantic properties (line 17-18 in Algorithm 3). (A.8g) and (A.8h) create two sub-circuits

under conditions X4 = 1 and X4 = 0 separately (line 19-20 in Algorithm 3). (A.8i) finishes the whole algorithm.

Appendix B. Subroutines of Split Operation

We list subroutines conjoin and partialCopy for split operation here. Given a smooth PC, algorithm conjoin returns

a circuit with the logical formula conjoined with a given literal constraint. There is a similar implementation for the

disjoin algorithm. Algorithm partialCopy recursively creates a copy of a circuit up to a certain depth, and circuit

structures beyond that depth are reused in the new copy.
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Algorithm 9: conjoin(G, X = x)

Input : a smooth PC structure G, a random variable X ∈ ϕ(G) and its assignment x

Output : the PC structure G with logical formula conjoined with X = x

1 old2new(n)← ∅ for every n ∈ G // map old sub-circuits to new ones

2 // iterate children before parents

3 foreach n ∈ G do

4 if n is a literal node then

5 if variable(n) = X and literal(n)! = x then

6 old2new(n)← ∅

7 else

8 old2new(n)← n

9 else

10 ch← old2new(c) for every c ∈ ch(n)

11 if n is a product node then

12 if ∅ ∈ ch then

13 old2new(n)← ∅

14 else

15 old2new(n)←
⊕

(ch)

16 else

17 if c is ∅ for every c ∈ ch then

18 old2new(n)← ∅

19 else

20 remove ∅ from ch

21 old2new(n)←
⊗

(ch)

22 return old2new(r) for PC root r

Algorithm 10: partialCopy(G, depth, old2new = {})

Input : a smooth PC structure G, a certain depth depth to create the copy, a dictionary old2new mapping

from old circuits to new circuits

Output : a copy of the PC structure to the certain depth

1 n← root of G

2 if depth is 0 or n is a leaf then

3 return G

4 else if n ∈ old2new then

5 return old2new[n]

6 else

7 ch← partialCopy(c, depth − 1, old2new) for c ∈ ch(n)

8 if n is product node then

9 n∗ ← conjoin(ch)

10 else

11 n∗ ← disjoin(ch)

12 old2new(n)← n∗

13 return graph rooted at n∗

21
















	Introduction
	Probabilistic Circuits
	Representation
	Inference
	Structured-Decomposable PCs

	Circuit Flows: Fast Inference and Parameter Learning
	Definition and Computation
	Fast Inference
	Parameter Learning

	Strudel: Learning Structured-Decomposable Probabilistic Circuits
	From Chow-Liu Trees to Structured-Decomposable PCs
	How And What to Split
	From Greedy Search to Beam Search
	LearnPsdd And Its Limitations

	Fast Mixtures with Strudel
	Parallel Computing on CPU and GPU
	Experiments
	Evaluation of Single Models
	Evaluation of Mixtures
	Application of Structured-decomposable Probabilistic Circuits

	Conclusions
	Learning a Chow-Liu Tree
	Subroutines of Split Operation
	Single Models with Strudel
	Circuit Sizes
	Learning Times
	Statistical Tests
	Initializations
	Heuristics

	Circuit Flows for Fast Inference
	Parallelism Computation

