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ABSTRACT

Existing disinfection robots are not intelligent enough to adapt their actions to
object surface materials for precise and effective disinfection. To address this
problem, a new framework is developed to enable the robot to recognize various
object surface materials and to adapt its disinfection methods to be compatible
with recognized object surface materials. Specifically, a new deep learning
network is proposed that integrates multi-level and multi-scale features to classify
the materials on contaminated surfaces requiring disinfection. The infection risk
of contaminated surfaces is computed to choose the appropriate disinfection
modes and parameters. The developed material recognition method
demonstrates state-of-the-art performance, achieving an accuracy of 92.24% and
91.84% on the Materials in Context Database (MINC) validation and test datasets,
respectively. The proposed method was also tested and evaluated in the context
of healthcare facilities, where the material classification achieved an accuracy of

1 INTRODUCTION

Hospitals, nursing homes, airports, and buildings are hotbeds
for pathogen colonization and transmission, resulting in a
massive number of infections among the people who occupy
these facilities (Lewis, 2021). Outbreaks of infectious diseases
lead to illness and death, imposing significant burdens on the
healthcare systems, reducing productivity, and leading to
enormous economic losses. For example, the COVID-19
pandemic has led to over 221 million confirmed cases and 4.4
million deaths (Dong et al., 2020). The number of infections
and deaths continues to increase with the emergence of more
infectious variants of COVID-19, increasing the fear of future
surging waves of infections. Healthcare facilities are
particularly of concern during the pandemic given the influx
of infected patients needing treatment. In healthcare
facilities, surfaces can be contaminated through hand
touching, respiratory droplets, or bodily secretions. This
contamination can cause cross-transmission among patients
and between patients and healthcare providers, jeopardizing

89.09%, and the adaptive robotic disinfection was successfully implemented.

people's health, and the normal operations of hospitals
(Leung, 2021). In fact, before the COVID-19 pandemic, the
United States Centers for Disease Control and Prevention
(CDC) estimated that nearly 1.7 million patients are infected
during hospitalization, resulting in 98,000 associated deaths
(Haque et al., 2018). This statistic highlights the urgency and
importance of proper surface disinfection to mitigate the
transmission of infectious bacteria and viruses and to reduce
the possibility and numbers of healthcare-acquired infections
(HAIs) (Donskey, 2013).

Many facilities still rely on physical labor to carry out
disinfection processes, such as using hydrogen peroxide and
ultraviolet disinfection, which is time-consuming, labor-
intensive, and poses an infection risk to the cleaning staff
(Choi et al.,, 2021). Furthermore, manual disinfection is
influenced by human behavioral factors, and real-world
practices are highly variable (Doll et al., 2018). For instance,
Rutala and Weber (2016) found that 10-50% of surfaces are
contaminated in the rooms of patients infected with C.
difficile, MRSA, and VRE. However, 51% of surfaces in patient
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rooms are found to not be thoroughly cleaned or disinfected,
which could lead to a 120% increase of infection probability
for future occupants of the room. There is a critical need for
intelligent robotic disinfection to reduce viral bioburdens on
contaminated surfaces, and thus prevent fomite-mediated
transmission of infectious pathogens.

The elevated concerns due to the COVID-19 pandemic have
increased the adoption of robotic technology for infection
control and environmental hygiene (Zemmar et al., 2020).
Existing robotic disinfection technologies are subject to two
main limitations. First, existing disinfection robots are
perceived as roaming bases with disinfection sources such as
UV lights for coarse disinfection. This requires the absence of
people in the rooms or buildings to be disinfected (Diab-El
Schahawi et al., 2021). Given the high volume of patients in
healthcare facilities needing treatments, these disinfection
robots are difficult to deploy. Second, healthcare facilities
harbor a variety of pathogens that colonize a wide spectrum
of surfaces made from different materials. The object surface
materials have significant impacts on pathogen colonization
and transmission, and thus require different disinfection
modes, parameters, and procedures to ensure complete and
efficient disinfection. For example, a recent study by Chin et
al. (2020) suggested that certain pathogens, such as SARS-
CoV-2, can stay infectious for as long as 7 days on metal and
plastic surfaces, while SARS-CoV-2 may survive for only 2 days
on fabric (2020). Furthermore, the transfer efficiency or
transmission rate of bacteria or viruses to hands from a
surface differs between materials (Lopez et al., 2013). For
example, the transfer efficiency of MS2 can reach 19.3% on
glass surfaces but only 0.3% on fabric surfaces under a relative
humidity of 15% to 32% (Lopez, et al., 2013). Therefore, the
materials of a contaminated object surfaces must be
considered for appropriate robotic disinfection to occur.
However, this research topic has not yet been investigated.

To address the challenges, a disinfection robot prototype was
proposed in our prior study (Hu et al., 2020a) and is under
continuous development, as presented in Figure 1. This robot,
with a mobile base, a six-degree-of-freedom robotic arm, and
sensors including LIDAR and RGB-D cameras, can navigate in
buildings, recognize and segment potentially contaminated
areas, and create 3D semantic maps for precise and intelligent
disinfection. A UV light disinfection source is mounted on the
robotic arm end-effector with a reflective shield. The end-
effector can be further customized with other disinfection
modes such as “spray” and “wipe”. To enable the adaptive
disinfection with multiple disinfection modes and to optimize
the disinfection parameters with respect to the object surface
materials that mediate the colonization and transmission of
varying pathogens, the robot needs to be endowed with a
robust capability to rapidly and accurately recognize the
materials of the contaminated object surface requiring

disinfection, and to computationally link the robotic
perceptions, i.e. material recognition, with robotic actions,

i.e. disinfection modes, procedures, and parameters.

FIGURE 1. lllustration of the proposed disinfection robot prototype

The objective of this study
computational process and deep-learning-based method to
enable the robot to recognize the material types of object
surfaces and to adapt disinfection modes and parameters to
achieve a complete and efficient disinfection. This study
features two contributions to the body of knowledge, with
the potential to transform the current paradigms of robotic
disinfection in infrastructure facilities.

is to develop a new

e First, a new deep-learning network is proposed to
classify the materials of object surfaces needing
disinfection. Our designed network innovatively
integrates multi-level Convolutional Neural Network
(CNN) features, multi-scale CNN features, and a texture
encoder network in an end-to-end learning fashion,
which has not been integrated by existing studies. The
multi-level CNN features can capture high-level abstract
representations of the material and low-level texture
and color information, which can enhance material
representation ability of the network. The multi-scale
features are captured by the Atrous Spatial Pyramid
Pooling (ASPP) with multiple resampling rates, allowing
the network to learn spatial repetitive features of
material textures. The texture encoder network can
capture texture details and local spatial information
from different The orderless features and
ordered spatial information are then balanced with a
bilinear model. The proposed network extracts rich
features for accurate material representation, achieving
state-of-the-art results on six public material datasets.

levels.

e Second, facilities such as hospitals are highly
heterogeneous with different types of units serving
distinct functionalities and characteristics, providing

habitats for various bacteria and viruses with different



HU AND LI

transmission and infection pathways. A new method
was proposed in this study to computationally link the
recognition of materials with the robotic disinfection
actions, completing the loop from robotic perception to
robotic actions. Our innovation lies in the computational
modeling of the interactions among surface materials,
pathogens, and disinfection modes and parameters to
adapt robotic disinfection actions, which has not been
achieved by existing studies and current systems. The
developed methods could lead to an intelligent robotic
disinfection paradigm that goes well beyond existing
systems that are perceived as roaming UV lights for
coarse disinfection. Intelligent and precise robotic
disinfection can be implemented in critical
infrastructure facilities such as hospitals, airports, school
buildings, and food processing plants to improve
environmental and public health.

2 BACKGROUND AND LITERATURE REVIEW

In this section, related studies on robotic disinfection and
material recognition are the existing
knowledge gaps are summarized.

reviewed, and

2.1 Related studies on robotic disinfection

Robotic disinfection has long been treated as a solution to
mitigating the spread of infectious diseases in infrastructure
facilities, which has been an active research area in recent
years. The disinfection mode of these disinfection robots can
be characterized by “UVC light”, “wipe,” and “spray”.

A UV-disinfection robot offers a non-touch method,
disinfecting surfaces from a distance using a UVC light. UVC
light is an environmentally friendly disinfection method, as it
does not leave any residues on surfaces. UV-disinfection
robots are essentially mobile robots with UVC light columns
mounted to their top. These robots are commonly integrated
with a variety of sensors for navigation and object detection,
such as cameras, LiDAR, and ultrasound. Gibson et al. (2017)
deployed Xenon UV-disinfection robots in a hematopoietic
stem cell transplant unit for three months and found the rate
of HAI decreased to less than one per quarter. In (Fleming et
al., 2018), UV-disinfection robots were deployed facility-wide
for terminal disinfection of the rooms that hospitalized
patients infected with Clostridium difficile. Since the
beginning of the COVID-19 pandemic, many UV-disinfection
robots have been developed and tested. For example, the MIT
UV robot consists of an Ava robotics’” mobile base and a
customized UVC light fixture, and the robot’s disinfection
capabilities were tested in a food bank (Gordon, 2020). The
robot took around 30 minutes to cover 4,000-square-foot
spaces with a speed of 0.22 mph. The power and the number
of light columns could be customized based on the size of
rooms and their disinfection requirements. However, since
UVC lamps are powerful enough to cause harm to the skin and

eyes, the rooms must be evacuated during disinfection. To
overcome this limitation, McGinn et al. (2021) developed a
prototype UV-disinfection robot called the “Violet robot
platform”. A UVC reflectance shield was added to enclose the
UVC lamp, thus reflecting the radiation emitted behind the
robot. The authors claim that the Violet robot has the
potential to work safely alongside human cleaners. In Hu, et
al. (2020a), a UVC light wand was mounted onto a roboticarm
with a mobile base to navigate in the built environment and
to disinfect potentially contaminated surfaces. The major
drawback of the existing UV-disinfection robots is that they
cannot perceive object surface materials and adapt their
disinfection parameters, which may lead to the incomplete
disinfection of high-risk surfaces.

Wiping with chemical disinfectants is the main disinfection
method for decontamination of high-touch surfaces in
infrastructure facilities. “Wipe” mode has also been
integrated into robot systems to disinfect contaminated
surfaces. Toyota developed a ceiling-mounted home robot to
wipe surfaces with soft rubble mounted on the gripper
(Vincent, 2020). The robot can travel on the ceiling to avoid
the problems associated with navigating a cluttered floor.
Ramalingam et al. (2020) proposed a disinfection robot
prototype to automate the disinfection of doorhandles in
infrastructure facilities. The authors designed a deep learning
model to detect doorhandles in the image and to calculate the
doorhandle location. More recently, the Fraunhofer Institute
for Manufacturing Engineering and Automation proposed a
prototype robot, called DeKonBot, to disinfect contaminated
surfaces such as bedrails, light switches, and elevator buttons
(NOVUS, 2021). The DeKonBot consists of a mobile base and
a robotic arm that carries out a wipe disinfection mode.
Material information is critical for the wipe-disinfection robot
because wipe mode is not suitable for certain types of
surfaces, such as fabric and paper. However, existing wipe-
disinfection robots have not been developed with the
capability to recognize the material of the surfaces that
require disinfection.

The disinfectant spray is another important disinfection
method that has been widely used in the COVID-19 pandemic.
For example, a smart prefabricated sanitizing chamber was
designed for COVID-19 to enable a uniform spraying of
sanitizing fluid onto healthcare workers (Abu-Zidan et al.,
2021). The spray mode has also been integrated with the
robotic system. Zhao et al. (2021) developed a smart
disinfection robot system that sprays disinfectants in the
operating theaters or the patients’ rooms in healthcare
facilities. The developed system primarily focused on the
integration of multiple technologies, such as the Internet of
Things (loT), SLAM, hand gesture recognition, and navigation.
Thakar et al. (2021) developed an area-coverage planning
algorithm for a spray-based disinfection robot to compute a
path for the nozzle to follow to completely disinfect surfaces.



HU AND LI

The remote operator needs to select the area to be
disinfected and extract the corresponding point cloud for
path calculation. These spray-based robots achieved good
results in controlled experiments. However, the disinfection
dose is not adaptable based on the surface materials, which
can lead to incomplete disinfection. Furthermore, spray-
based disinfection could damage paper surfaces. Therefore, it
is important for these spray-based robots to recognize surface
materials and to adapt disinfection modes and parameters.

2.2 Related Studies on material recognition

Material and texture recognition is challenging, and
numerous algorithms have been developed to address this
challenge. Traditional material recognition methods relied on
handcrafted features that are usually not robust and are
computationally intensive due to the high dimensions
(Caputo et al., 2005). To address these limitations, CNN-based
methods were applied to learn material features in images.
Compared to handcrafted features, automatically learned
features are found to be more robust in image classification
(Kang et al., 2018). In (Cimpoi et al., 2016), the CNN-based
feature extraction was demonstrated to be efficient for
material and texture recognition. In their method, CNN was
truncated at the level of the convolutional layer to obtain so-
called local image descriptors. Traditional orderless pooling
encoders (e.g., Fisher Vector (FV); Vector of Locally
Aggregated Descriptors (VLAD); BOW) were used to encode
CNN features to a feature vector for classification. The feature
vector was then passed to an SVM model to predict the
material labels. A combination of FV and CNN (FV-CNN)
achieved superior results in image classification. In a follow-
up study by Song et al. (2017), the output from FV-CNN was
further refined through learnable locally connected layers.
There are two major drawbacks of this method. First, the
method needs a large disk space to store the features
extracted from CNN. Second, each step is trained separately,
which means the training of the material classifiers cannot
update CNN model weights, comprising both training
efficiency and accuracy.

With the advancement of computational power, many
advanced CNN methods have been developed for
applications in different research fields, such as vehicle
detection (Arabi et al., 2020), human activity recognition (Luo
et al., 2020), pavement condition assessment (Hsieh et al.,
2021), and earthquake early warning systems (Rafiei and
Adeli, 2017). In the domain of material and texture
recognition, a variety of end-to-end CNN models have been
developed. For instance, Bell et al. (2015) investigated the
performance of three popular CNN architectures for material
recognition: AlexNet, VGG-16, and GoogleNet. The fine-
tuned AlexNet yielded good results on the Flickr Material
Database (FMD). In Xue et al. (Xue et al., 2017), a CNN-based

Differential Angular Imaging Network (DAIN) was developed
to integrate multi-view images to recognize outdoor
materials. Original and differential angular images were fed
into the network and their final prediction results were
combined. The results indicated that the prediction accuracy
was significantly increased with differential angular images.
However, typical CNNs with fully connected (FC) layers cannot
capture spatially invariant features on materials. To address
this issue, Zhang et al. (2017) developed the Deep Texture
Encoding Network (Deep-TEN) with an orderless feature
pooling encoder network. The encoding layer is integrated
into the CNN network to learn visual dictionary extracts from
CNN features. Building upon the Deep-TEN, Deep Encoding
Pooling Network (DEP) was designed to integrate high-level
spatial information and orderless features for the task of
material recognition (Xue et al., 2018). The DEP added a
pooling layer in combination with the texture encoder. A
bilinear model was then used to merge the outputs from the
pooling layer and texture encoding layer.

In recent years, Zhai et al. (2019) proposed a Deep Multiple-
Attribute-Perceived Network (MAPNet) to perceive multiple
visual attributes for texture recognition. The MAPNet was
based on a multi-branch architecture that allows for visual
texture attributes to be learned synergistically. The CNN
features from each branch are fed into a spatially adaptive
global average pooling for feature aggregation. In Zhai et al.
(2020), a Deep Structure-Revealed Network (DSRNet) was
developed by leveraging spatial dependency among the
captured primitives as structural representations. The DSRNet
devised a primitive capturing module to generate primitives
from different directional spatial contexts. The primitives
were fed into a dependence learning module to learn
structural representations for material recognition. Chen et
al. (2021) aggregated cross-layer statistical self-similarity
information as a feature aggregation module in their
CLASSNet network. Feature maps across different layers are
modeled as a dynamic process with self-similarity statistics.
The cross-layer statistics are characterized using a histogram
of cross-layer features based on differential box-counting.
This method achieved state-of-the-art performance for the
time on several public material datasets. The review of
material recognition methods demonstrates that CNN
methods are material
representation.

robust and powerful for

2.3 Knowledge gaps

Two main knowledge gaps are identified in the related studies
on robotic disinfection and material recognition. First, object
surface materials play a significant role in pathogen
persistence and transmission. It thus follows that there is a
need for material-specific disinfection parameters to ensure
complete and efficient disinfection. However, the existing
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robotic disinfection systems mentioned above have not yet
considered the object surface materials in guiding their
disinfection tasks. This could lead to two undesirable
consequences: (1) the robot may not completely disinfect
high-risk surfaces; (2) the disinfection mode may not be
suitable for certain object surfaces (e.g., a wipe-based robot
is not suitable for fabric and paper surfaces). There still lacks
a computational model that considers the interactions of
human-pathogen-fomite and links surface materials with
robotic disinfection modes and parameters.

Second, recognizing materials is challenging due to a diverse
range of appearances and spatially invariant features. Existing
studies, such as Deep-Ten (Zhang, et al., 2017) and (Xue, et
al., 2018), aim to capture spatially invariant features of
materials with the integration of an orderless feature pooling
layer in an end-to-end learning fashion. The DSRNet (Zhai, et
al., 2020) is another network that periodically captures
recurrent features by learning the spatial
dependency of multiple primitives from different directions.
However, their networks cannot capture low-level texture
and color information, which is important for material
recognition tasks. In the latest study, CLASSNet (Chen, et al.,
2021) utilized the information from different layers which
achieved state-of-the-art performance on material
recognition, even though spatially invariant features were not
captured. No study to our knowledge has utilized the multi-
scale features for material representations. Furthermore,
there lacks a network to learn both multi-level and multi-scale
features simultaneously and to encode these features in an
orderless manner to capture spatially invariant features.

inherent

3 METHODOLOGY

The disinfection robot can navigate in a building and
recognize potentially contaminated areas based on our
developed method (Hu, et al., 2020a). The robot then moves
to the proximity of the contaminated objects needing
disinfection and adapts UVC light scanning trajectories. The
limitation of the robot is the lack of capability in recognizing
surface materials and computationally linking these materials
to robotic disinfection parameters, which impacts its

Step 1. Material recognition

I Camera view
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FIGURE 1. Overall research framework of this paper

disinfection efficiency. This study aims to address this
limitation by developing a new computational process and
material recognition network to enable the robot to adapt its
disinfection modes and parameters. Figure 2 presents an
overview of the research framework of this paper. First, a
deep learning network is proposed to recognize the object
surface materials captured by the disinfection robot. The
proposed network integrates multi-level CNN features, which
leverages both low and high-level information to capture
semantic and texture information. High-level features can
capture  semantic  features, which are abstract
representations of the material. Low-level features can
capture more subtle details such as texture information. The
Atrous Spatial Pyramid Pooling (ASPP) module can extract
multiscale features by resampling feature maps at multiple
rates. The ASPP module increases the size of the receptive
field without compromising the feature map resolution. Our
network further integrates an encoder component, which
combines both orderless and local spatial feature pooling. The
encoder can preserve texture and ordered spatial information
from different layers, which can better capture spatially
invariant features of materials.

Second, a fomite transmission model considers fomite-
pathogen-human interactions to compute the risk of infection
from object surfaces given the recognized material. The
estimated infection risk is then used to determine the logio
reduction needed to reduce viral bioburden on the object
surface to below safety target levels. The required logio
reduction in bioburden is used to optimize the disinfection
parameters (i.e., exposure time, distance, and irradiance) for
the robot to implement. Finally, experiments are conducted
in three parts. First, disinfection mode and parameters for
different object surfaces are analyzed. Second, the proposed
material recognition network is evaluated on the Material in
Context Database (MINC) and an additional material dataset
collected in the context of healthcare facilities. The network
is then compared to other state-of-the-art methods followed
by an ablation study to evaluate the effectiveness of each
module in the network. Third, the adaptive robotic
disinfection framework is implemented in a fully modeled
patient room.

Step 2. Material to disinfection  Step 3. Experiments
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FIGURE 3. Flowchart of the proposed network

3.1 Material recognition network

Material recognition is needed to determine a suitable
disinfection method for a surface. A deep learning-based
classification network is proposed to recognize the materials
of contaminated surfaces. Figure 3 presents an illustration of
the proposed network, which is composed of four
components: the backbone, a multi-level feature fusion,
Atrous Spatial Pyramid Pooling (ASPP), and an encoder. Each
component is detailed below.

Backbone. The classification model is designed based on the
EfficientNet-B4 network proposed in Tan and Le (2019). The
EfficientNet-B4 network is small and fast on inference. The
input is first fed into a 3X3 convolution, batch normalization,
and activation layer. The outputs are then fed into 7 inverted
residual blocks, also known as MBConv blocks (Tan and Le,
2019), optimized by the squeeze-and-excitation method (Hu
et al.,, 2020b). MBConv[N] represents an MBConv with an
expansion factor of N. MBConvl is a depth wise separation
block without the expansion operation. The MBConv6 block is
the inverted residual block with an expansion factor of 6. The
number of sub-blocks for the 7 MBConv blocks are 2, 4, 4, 6,
6, 8, and 2, respectively.

Multi-feature integration. The multi-level features are
innovatively extracted in this study to capture the low-level
texture and color information and the high-level semantic
information. Specifically, the outputs from the last three
MBConv blocks are extracted and separately fed into the
ASPP component. The multi-level CNN features are extracted
to utilize features from different layers of the EfficientNet-B4
network. The reason for multi-layer feature fusion is that

texture details learned from the shallow layers tend to vanish
with going deeper into the layer . The texture details learned
from the low-level features are important for material
recognition. The features from multiple layers can capture
complementary information and a combination of these
features can improve performance.

ASPP. The ASPP is used to obtain multi-scale context
information (Chen et al., 2018). The outputs from the last
three MBConv blocks are separately fed into the three ASPP
layers. The ASPP layer consists of three Atrous convolutions
with rates of 1, 4, and 8 and one global average pooling layer.
Different rates of Atrous convolution have different sizes for
their receptive fields. Since material textures are typically
translationally invariant, a larger size for the receptive field
can better capture spatial repetition features. The ASPP layer
can extract multi-scale features while preserving the
resolution of the features. The features extracted from
multiple rates and the pooling layer are fused as the global
features. The kernel sizes for Atrous convolutions are 1x1,
3x3, and 3x3. Atrous convolution is a generalized standard
convolution and expands the window size to capture large
features without adding computational cost by inserting zero-
values into the convolution kernels. The outputs of the ASPP
layer are then fed into a 3x3 convolutional layer with batch
normalization.

Encoder. Since material properties are usually translationally
invariant, material recognition methods need to capture an
orderless measure encompassing some spatial repetition.
Previous studies have shown that orderless pooling, like the
Fisher Vector (FV), works better than order-sensitive pooling
in material recognition (Cimpoi, et al., 2016). The CNN
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combined with orderless pooling encoders, such as BOW, FV,
and Vector of Locally Aggregated Descriptors (VLAD), has
been demonstrated to be effective in material classification
(Cimpoi, et al., 2016). The proposed encoder module consists
of a texture encoding network (TEN) (Zhang, et al., 2017) and
local spatial pooling (LSP).

The TEN is used to build dictionary learning to extract visual
codewords. The TEN can encode CNN features in an orderless
manner, such as FV and VLAD, using a residual layer. The input
of the TEN component is the output from the ASPP module
with a shape of CxHxW, where C is the dimension and HxW
represents the size of the ASPP outputs. The feature map is
formed as a C-dimensional feature vector X = {xz, ... Xm}, where
m represents the feature number for each channel. The TEN
layer learns an inherent codebook C = {cy, ... ck} and smoothing
factors S ={sy, ... sk}. The definition of residual encoding vector
for the codeword ¢;is given in Eq. (1), where rjis the residual
vector calculated as rj = xi - ¢;. The TEN layer aggregates CNN
features into residual encoding vectors E = {ey, ... ex}. Note
that increasing the number of codewords has the potential to
capture more detailed texture information.

— \'m

Il
=SjllTij
e =Y — Tij (1)

sk g-salrinl” "
To capture spatial information, the outputs from the ASPP
module are fed into a 3x3 convolutional layer with a stride of
2 and a batch normalization operation to standardize the
outputs. A two-dimensional adaptive average pooling is then
applied over the outputs from the batch normalization. A fully
connected (FC) layer is used for feature dimension reduction.
A bilinear model is used to fuse outputs from the TEN and LSP
by multiplying their feature maps using the outer product.
The outer product captures the correlations of orderless
features and local spatial descriptors. The bilinear function is
given by Eqg. (2), where u € R is the output from the TEN

network, v € R%is the output from the LSP layer, f € R™ s the
output of the bilinear model.
f=u®v (2)

Table 1 displays the detailed architecture of the proposed
network. The input image size is 224x224x3. The outputs
dimension from the Efficientnet_B4 module is 448x7x7, which
is fed into the ASPP modules. The dimension of the outputs
from the ASPP1, ASPP2, and ASPP3 are 512x14x14, 1024x7x7,
and 1024x7x7, respectively. The channels of the outputs from
the ASPP modules are reduced to 384 using a convolutional
layer. The outputs are then passed to the Encoder modules,
which consist of the TEN and LSP layers. There are 8
codewords for the TEN layers. The feature dimensions from
the TEN is 1x3072, which is then fed into an FC layer to reduce
the feature dimension to 1x64. The LSP first applies a
convolutional and batch normalization operation, and then
the average pooling operation is conducted. An FC layer is

applied as a dimension reduction step for outputs from the
pooling layer. The dimensions of outputs from the TEN and
the LSP are both 1x64. The bilinear model is then used to fuse
the outputs from these two modules together, with an output
of 1x4096. The outputs from Encoderl, Encoder2, and
Encoder3 are concatenated together as a 1x12288 feature
vector. Note that L2 normalization is used for the outputs
from the TEN layer and the bilinear model. Finally, a fully
connected classifier is used to classify the image.

TABLE 1. Architecture of the proposed network. ‘KS’ is kernel
size; ‘OS’ is output size; ‘#CN’ is the number of channel; ‘#LN’
is the number of layer.

Module Operator KS (o} #CN #LN
Conv+BN+Swish 3x3 | 224x224 48 1
MBConv1l 3x3 | 112x112 24 2
MBConv6 3x3 | 112x112 32 4
EfficientN | MBConv6 5x5 56x56 56 4
et-B4 MBConv6 3x3 28x28 112 6
MBConv6 5x5 14x14 160 6
MBConvé 5x5 7x7 272 8
MBConvé 3x3 7x7 448 2
Atrous Convl 1x1 14x14 128 1
Atrous Conv2 3x3 14x14 128 1
ASPP1 AtI’O%,IS Conv3 3x3 14x14 128 1
:i:';?f’cmvw 1 | 144 | 128 1
Concatenate - 14x14 512 1
Conv+BN 1x1 14x14 384 1
Atrous Convl 1x1 7x7 256 1
Atrous Conv2 3x3 7x7 256 1
ASPP2 & Atrous Conv3 3x3 7x7 256 1
ASPP3 Pooling+Conv+B
N+Relu 1x1 7x7 256 1
Concatenate - 7x7 1024 1
Conv+BN 1x1 7x7 384 1
TEN - 1 3072 1
FC - 1 64 1
Conv+BN 3x3 6x6 192 1
Encoderl -
Pooling 6x6 1x1 192 1
FC - 1 64 1
Bilinear mapping - 1 4096 1
TEN - 1 3072 1
FC - 1 64 1
Encoder2 = VBN 3x3 | 3x3 192 1
SncoderB Pooling 3x3 1x1 192 1
FC - 1 64 1
Bilinear mapping - 1 4096 1
Concatenate - 1 12288 1
Classifier F — - ! 2°6 !
Classification - 1 9 1

3.2 From material to disinfection

In this section, we elaborate on how to enable the robot to
adapt its disinfection mode and parameters by utilizing the
material information. The fomite transmission risk for
different surfaces is critical in determining the disinfection

practice needed to prevent the spread of pathogens. For
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surfaces that have a higher infectivity risk, a higher
disinfection level is needed for complete disinfection.

The concentration of bacteria and viruses undergoes an
exponential decay in the survival period on different surfaces
(Guo et al., 2021). The concentration of bacteria and viruses
at different times is given in Eq. (3), where (Cp is the initial
concentration, t is the time in hours, and A is the inactivation
rate.

Ch=Coxe (3)

The parameter A can be estimated based on pathogen
survivability on surfaces. In Chin, et al. (2020), SARS-CoV-2
was found to not be detectable when the concentration was
smaller than 100 TCID50/mL, which is around 0.02% of the
initial concentration on wood surfaces. Therefore, 0.02% is
used as the survival fraction for pathogens at the end of the
survival periods shown in Table 2. The parameter A can be
calculated as In5000/st, where st is the survival time of the
pathogen.

A stochastic-mechanistic model developed by Pitol and Julian
(2021) is adapted in this study to estimate the infection risk
from contaminated surfaces with different materials. The
model is built based on surface-to-hand-to-mucous contact.
The transfer of a pathogen from surface-to-hand is first
calculated in Eq. (4), where Ch is the bacteria and virus
concentration on the surface at time h, c_PFU is the
conversion factor from Genome copies and Colony-forming
unit to the infectious virus in PFU, eff is the pathogen recovery
efficiency from surfaces, TEsn is the transfer efficiency of the
pathogen from surface to hand, a is logio reduction in the
number of bacteria and virus, and Chang is the concentration
on the hand.

[ 1
Chand = # X C_PFU X TESh X 10_(1 (4)

The transfer of the pathogen from hand-to-mucous can be
approximated by the concentration of pathogens on the hand
and the transfer efficiency, which is defined in Eq. (5), where
TEnm is the transfer efficiency from the hand to mucous, and
FSA represents the fractional surface area in contact with the
mucous membranes, and D is the infectious dose.

D = Chand X TEhm X FSA (5)

The infectious dose is then used to estimate the risk of
infection using Eq. (6), where k represents the dose-response
parameter.

P=1-¢*P (6)

The logio reduction of the viral bioburden on surfaces
represents the level of disinfection needed, with a greater
value representing a higher disinfection level. The risk
threshold is set to 10’6, which is the U.S. EPA threshold for
water quality, based on various representative infectious

diseases (Boehm, 2019). The robot needs to adapt
disinfection parameters to lower the infection risk below 10
® The required logio reduction is an input parameter to
calculate the disinfection parameters for our UV-disinfection
robot (Hu, et al., 2020a) with the applicable exposure time,
distance, and irradiance. The bacteria and virus decay when
exposed to UVC light can be estimated as a first-order decay
rate model (Kowalski, 2009), which is defined in Eq. (7), where
a is logio reduction needed to lower infection risk below 10°°.
p is the UVC inactivation rate (m>/J), Ep is the UVC exposure
dose (J/m?).

L _ gpxEp (7)

10%
The inactivate rate p is 0.0343 m?/J for coronavirus (Bouri and
Shatalov, 2020). The UVC exposure dose Ep is calculated in Eq.
(8), where I, (W/m?) is the UVCirradiance at 1cm, E¢ is the UVC
exposure time in seconds, and d represents the distance
between UVC light and object surfaces.

Ep=— X1, X E, (8)

4 EXPERIMENT AND RESULTS

This section details the analysis of disinfection mode and
parameters, evaluation on material recognition network, and
implementation.

4.1 Analysis of disinfection mode and parameters

4.1.1 Experiment settings

Healthcare facilities contain different types of units that serve
patients battling with different illnesses, providing habitats
and transmission pathways for various infectious pathogens.
In this study, SARS-CoV-2 and Escherichia coli (E. coli) are
selected as the representative examples to illustrate how to
transfer material information to disinfection practices. SARS-
CoV-2 continues to lead to outbreaks of COVID-19 in
healthcare facilities. E. coli has been identified as the major
cause of urinary tract infections in healthcare facilities
(Bergeron et al., 2012). Patients infected with SARS-CoV-2 and
E. coli are typically diagnosed in the pulmonology and urology
departments and are hospitalized in different patient rooms.
Therefore, the disinfection practices need to be adapted
according to the prevalent infectious pathogens present in
different types of hospital rooms.

Table 2 presents the survival time and transfer efficiency for
SARS-CoV-2 and E. coli on different surfaces. As indicated,
SARS-CoV-2 and E coli. can generally survive longer on hard
surfaces than on soft surfaces. For instance, SARS-CoV-2 can
stay active for 7 days on metal and plastic but only 3 hours on
paper (Chin, et al., 2020). Note that the survival time of SARS-
CoV-2 is used for each material except for ceramic. The
survivability of HCOV-229E, which is also a species of
coronavirus, on ceramic is used instead.
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TABLE 2. The survival time and transfer efficiency for SARS-CoV-2 and E. coli

X SARS-CoV-2 E. coli
Surface type Material - - — - - —
Survival time Transfer efficiency (%) Survival time Transfer efficiency (%)

Fabric 2 days [1] 0.73[2] 4 — 56 days [3] 5.32[2]

Soft Leather 1 day [4] 7.00[5] - -
Paper 3 hours [1] 0.55[2] 1-96 hours [6] 0.08[2]
Ceramic 5 days [7] 24.15(2] 14 days [8] 36.15[2]
Glass 4 days [1] 43.30[2] 1-14 days [3] 41.85[2]

Hard Metal 7 days [1] 21.95[2] 14 - 60 days [3] 28.95[2]
Plastic 7 days [1] 50.60[2] 24 h — 300 days [3] 47.00[2]
Polished stone 5 days [9] 20.10[2] - 21.9[2]
Wood 2 days [1] 31.50[10] 2h — 28 days [3] -

Note: [1,4,9] are sources of survival time for SARS-CoV-2 (Chin, et al., 2020; Anderson and Boehm, 2021; Virtanen et al., 2021). [7] provides the
survival time of HCOV-229E on ceramic (Warnes et al., 2015). [3] is sources of survival time for E. coli (WiBmann et al., 2021). [6] provides the survival
time of Francisella tularensis on paper (Richter et al., 2019). [8] is the survival time of Klebsiella pneumoniae on ceramic (Esteves et al., 2016). [2] is
the source of transfer efficiency for MS2 and E. coli (Lopez, et al., 2013). Refs. [5,10] are sources of transfer efficiency for MS2 (Anderson and Boehm,

2021; Castafio et al., 2021)

For fomite-to-hand transfer efficiency, data from MS2
coliphage are used due to the unavailability of SARS-CoV-2
transmission data. MS2 and SARS-CoV-2 are both single-
stranded RNA viruses, which have similar transfer
mechanisms from fomite to humans. Furthermore, MS2 has
been used as a surrogate to facilitate the investigation of
transmission and disinfection of SARS-CoV-2 (Castario, et al.,
2021). Table 2 also presents the survival time and transfer
efficiency used for E. coli. Note that for the survival time of E.
colion paper and ceramic, Francisella tularensis and Klebsiella
pneumoniae are used, as they are both gram-negative
bacteria like E. coli.

Data collected at different surfaces indicated that the
concentration of SARS-CoV-2 varied from 0.1 to 102.4 gc/cm”
(Harvey et al., 2020; Abrahdo et al., 2021). For E. coli, the
concentration varied from 0.1 to 15.8 CFU/cm’ (Trindade et
al., 2014; Cinar and Onba$l, 2021) on contaminated surfaces.
In this study, the initial concentration of SARS-CoV-2 and E.
coli are assumed to be 100 gc/cm2 and 10 CFU/cmZ,
respectively. Table 3 gives the input parameters and their
distributions used to estimate required logio reduction.

TABLE 3. Input parameters

Parameter Unit SARS-CoV-2 E. coli
TEpm unitless Normal (0.20, 0.06) [a]

FSA cm? Uniform (4, 6) [b, c]

k PFU™ Triangle (0.00107, 0.00246, 0.00680) [d]
eff unitless Normal (0.6, 0.266)[e]

¢ PFU Unitless Uniform Uniform

(0.01,0.001) [d] (0.01,0.05) [f]
Note: [a] is ref. (Pitol et al., 2017); [b] is ref. (AuYeung et al., 2008); [c] is
ref. (Pitol and Julian, 2021); [d] is ref. (Kraay et al., 2018); [e] is ref.
(Harvey, et al., 2020); [f] is ref. (Mudgal et al., 2006).

4.1.2 Analysis of results

The Monte Carlo simulation is used to estimate the infection
risk by incorporating the input parameters’ distributions. The
model is simulated 50,000 times and the median risk values
are reported. The survival time of E. coli is assumed to be a
uniform distribution within the range. Figure 4 shows the

estimated infection risk for different surfaces and the
required logio reduction to lower risk to below 10°°. The
results indicate that infection risks of SARS-CoV-2 and E. coli
for plastic, glass, metal, ceramic, and polished stone are
higher than 10™* within 12 hours. Soft surfaces, such as leather
and plastic, have a lower infection risk compared to hard
surfaces, such as plastic, glass, and metal. In addition, paper

surfaces show a low infection risk, which is smaller than 10°®.

In cleaning and disinfection practices, the disinfection dose
should be higher than needed to meet the disinfection
requirements (Collivignarelli et al., 2018). Therefore, the logio
reduction is rounded up to an integer to ensure the object
surfaces are completely disinfected. As indicated in Figure 4,
the required logio reduction is decreasing over time for both
SARS-CoV-2 and E. coli. However, the decreasing trend for E.
coli is much smaller than that of SARS-CoV-2 due to its long
persistence period. The results indicate that fabric and leather
surfaces contaminated with SARS-CoV-2 need no logio
reduction after 11 hours. A 2 logio reduction would result in a
risk of less than 10 for leather when the infection risk is
relatively high for the first several hours. For fabric, logio
reductions of 1 and 2 are needed to achieve an infection risk
of less than 10°® for SARS-CoV-2 and E. coli, respectively. For
ceramic, glass, metal, plastic, and polished stone, a 3 logio
reduction is needed to lower the infection risk below 107 for
SARS-CoV-2 and E. coli. Note that paper doesn’t require
disinfection because of its infection risk of below 10°® for both
SARS-CoV-2 and E. coli. To be conservative, a 0.5 logio
reduction of bioburden is used for the paper surfaces.

The disinfection methods used in infrastructure facilities
typically consist of UVC light, spray mode, and wipe mode.
Each mode has its advantages and disadvantages and
selecting the suitable mode depends upon the type and
condition of the contaminated surfaces. Table 4 provides the
disinfection mode and required logio reduction to lower the
risk below 10° for different surfaces. Note that logio
reductions for SARS-CoV-2 and E. coli in Table 4 were
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obtained within the first several hours when the risk was high.
The wipe disinfection mode is not suitable for fabric and
paper. For paper materials, the spray mode is also not
applicable. For leather and hard surfaces, all disinfection
methods are considered to be applicable modes. The
disinfection level has different implementation methods for
each disinfection mode. For UVC light, the disinfection level
can be achieved by changing the distance, irradiance level,
and exposure time. For wipe mode, the variables include wipe
force, contact time, and disinfectant concentration. The spray
mode can change the disinfectant concentration and amount
to achieve different disinfection levels.

Figure 5 gives an example of the disinfection parameters for
plastic and fabric surfaces contaminated by SARS-CoV-2. To
reduce the infection risk below 10'6, log1o reductions of 3 and
1 are needed for plastic and fabric, respectively. The UVClight
irradiance varies from 100 to 1000 W/m2. The exposure time
is set from 1 to 60 seconds. The minimum distance from the
UVC light to the contaminated surfaces is 1 cm. The robot can
then select suitable disinfection parameters for efficient
disinfection.

3 3.0
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25 fabric
107 glass
= =
2 220 leather
é 5 _% metal
210 5 1.5 paper
° o .
~ %-—6 o plastic
=10 ® -~ stone
05 wood
.
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FIGURE 4. Risk of infection variation over time. (a) SARS-CoV-2; (b) E. coli
TABLE 4. Disinfection mode and level for different materials
Surface type Material . Disinfection mode . Logio reduction .
Wipe Spray UVC light SARS-CoV-2 E. coli
Fabric - v N 1 2
Soft Leather N y v 2 -
Paper - - V 0.5 0.5
Ceramic N v N 3 3
Glass v \/ \/ 3 3
Hard Metal N v v 3 3
Plastic N y v 3 3
Polished stone v v v 3 -
Wood \/ \/ \/ 3 -
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FIGURE 5. UV disinfection parameters for SARS-CoV-2. (a) Fabric; (b) plastic.

4.2 Evaluation on material recognition network

4.2.1 Dataset

The training dataset is prepared using the Materials in
Context Database (MINC), which is a large dataset collected
from a variety of contexts (Bell, et al., 2015). The MINC
contains 2,996,674 single point clicks across 436,749 images,
and each click is associated with one of 23 material classes.
This study aims to recognize the materials needing
disinfection in infrastructure facilities. Some materials like
skin and sky in the MINC are not applicable and are discarded
for this study. In total, we select 9 types of materials that are
commonly seen in infrastructure facilities. These material
classes are fabric, leather, paper, ceramic, glass, metal,
plastic, polished stone, and wood. To train the CNN model,
square image patch data was extracted from the original
images. The patch center is defined as the click point, and the
size of the patch is 362x362. In many cases, patch areas may
go beyond the border of images. Out-of-image pixels were

Paper Plastic
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filled with RGB (0,0,0). Note that if the out-of-image pixels
number are greater than 262 at any of the two directions, the
patch will be removed from the dataset. The patch counts for
each material class are shown in Table 5. The training,
validation, and test datasets are obtained from the provided
train/validation/test splits, which include 1,208,285, 86,228,
and 142,857 patches, respectively. Figure 6 presents example
patches for each material.

TABLE 5. Sample counts for each material in train, validate
and test sets

Material Train Validate test

Fabric 299,929 21,270 36,254
Leather 62,372 4,480 7,313
Paper 17,797 1,242 2,173
Ceramic 21,644 1,571 2,747
Glass 153,492 10,958 17,910
Metal 137,998 9,897 15,850
Plastic 31,282 2,146 3,661
Polished stone 85,196 6,054 9,855

Wood 39,8575 28,610 47,094

Polished stone

FIGURE 6. Example patches from all 9 material classes with context. Note that the patch center is the associated material (not necessarily the entire

patch)
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4.2.2 Implementation details

The models were trained using the PyTorch backend (Paszke
et al., 2019) with Dual NVIDIA Quadro P5000. The Stochastic
Gradient Descent (SGD) optimizer was used with a learning
rate of 0.002. The learning rate is divided by 10 for every
epoch. The batch size is 128, the weight decay is 0.0001, and
the momentum is 0.9. The pretrained weights on ImageNet of
the EfficientNet-B4 backbone were used. The model that
achieved the best score on the validation dataset is saved and
used to further evaluate on the test dataset. Following the
precedent set by existing literature (Zhang, et al., 2017; Xue,
etal., 2018), the patches are first resized to 256x256. Training
samples were augmented by taking random crops measuring
224x224 out of the total 256x256. Horizontal and vertical
mirror flips are applied to improve the generalization
capability of the network.

4.2.3 Results of material recognition

Figure 7 presents the confusion matrix and Barnes-Hut t-SNE
visualization of the material classifications on the validation
and test datasets. The trained model achieves high overall
accuracy on the validation and test sets, measuring 92.24%
and 91.84%, respectively. However, since the validation and
test datasets are both imbalanced, recall is a better metric to
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(a) Validation

evaluate the model. Therefore, the confusion matrix is
normalized so that diagonal values represent recall for each
class. Recall is calculated as the ratio of correctly predicted
positives to true positive elements. This is used to measure
the model’s predictive accuracy for the positive class. The
material wood and fabric achieve a high recall score of 95%
on both validation and test sets. The glass and polished stone
achieve the second-highest score at 92%. A high recall score
indicates the predictive power of the trained model on these
classes. Plastic has the lowest recall score, 71%, and 10% of
plastics are falsely classified as metal. Misclassifying plastic as
metal will not cause a change in the disinfection level because
both plastic and metal require 3 logio reductions to reduce
infection risk to below 10°. Furthermore, plastic and metal
are both suitable for the wipe, spray, and UVC light
disinfection modes. Therefore, plastic classified as metal will
not pose a health risk. However, 12% of leathers are
misclassified as fabric, which does have an impact on the
disinfection level. This is because fabric requires a logio
reduction of 1 to reduce infection risk to target safety level,
but a logio reduction of 2 is required for leather surfaces. As a
result, this will potentially cause an incomplete disinfection of
the leather surface.
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FIGURE 7. The confusion matrix and Barnes-Hut t-SNE visualization of our method. For confusion matrix, rows are actual classes and columns are
predictions; for Barnes-Hut t-SNE, 1110 images for each material class were randomly selected. Each point is associated with an image. The feature

map before the classifier was extracted and used for t-SNE visualization
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The Barnes-Hut t-SNE (Van der Maaten and Hinton, 2008)
algorithm is adopted to visualize CNN feature maps in 2D,
which is a tool to visualize high-dimensional features. The t-
SNE algorithm assigns a high probability to similar objects and
a low probability for dissimilar objects to construct a
probability distribution over pairs of high-dimensional data.
The T-SNE also constructs a probability distribution over pairs
in the low-dimensional map. The location of the points in the
map is determined by minimizing the Kullback-Leibler
divergence between two distributions. In this study, Principal
Component Analysis (PCA) (Wold et al., 1987) is first applied
to the feature map to reduce its dimension to 50. The outputs
of PCA are then fed into the t-SNE algorithm. The t-SNE
algorithm converts the data into a 2D matrix. A relatively large
perplexity value of 150 is used in the t-SNE to capture the
global structure of the data (Kobak and Berens, 2019).

Figure 7 shows a two-dimensional (2D) representation of the
CNN feature map extracted from the layer before the last FC
layer. The inputs for the t-SNE visualization are the material
class and extracted CNN features. The CNN feature is 1x1 pixel
size only, but with 256 channels. These 256 numbers are
essentially all the features that the network extracted from
the input image. For both validation and test sets, 1110
images are randomly selected from each class for
visualization. Each point is associated with an image, and the
distance between points approximates the original Euclidean
distance in the high-dimensional features. If two image
features are similar to each other, they will stay close in the
resulting projection in the 2D map. The point color represents
its related material classes. The t-SNE plots indicate that
points from the same class are organized into clusters, which
is an indicator of good differentiation between images of

different classes using features before the last fully connected
layer. The separated clusters indicate that the proposed
network can understand the material data and its classes and
is able to differentiate them. The results also highlight the
relation between the clusters (i.e., connected clusters
indicate there are some semantic relations between
materials). For example, the material clusters leather and
fabric are connected to each other. These two materials are
similar to each other compared to other materials in real life.
This is because leather and fabric are both soft materials, and
they are popular materials for furniture upholstery.
Therefore, it is more challenging for the network to
differentiate between these two materials.

To further evaluate the model performance in the context of
healthcare facilities, we manually labeled 1,173 patches
consisting of 9 material classes. Hospital images were first
downloaded from Google Images. These images contained
different rooms at hospitals, such as the operating room, the
consulting room, the intensive care unit, hallways, day rooms,
the ward, and restrooms. We then collected clicks (i.e., single
points) in images and assigned material labels to each point.
To increase the accuracy of our labels, we only collected clicks
with explicit materials. Table 6 presents sample counts for
each material. Figure 8 presents example labeled patches for
each material in the context of healthcare facilities.

TABLE 6. Sample counts for each material in hospital dataset

Material Count Material Count
Fabric 176 Metal 127
Leather 100 Plastic 100
Paper 100 Polished stone 100
Ceramic 135 Wood 142
Glass 193

Plastic

Paper

Polished stone Wood

FIGURE 8. Example patches from all 9 material classes at hospitals. Note that the patch center is the associated material
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Figure 9 presents the results of the model evaluation on the
hospital material dataset. The overall accuracy of the trained
model is 89.09%. The confusion matrix indicates that plastic
has the smallest recall score at 60%. The recall of plasticis also
the smallest on the MINC validation and test sets. This may be
attributed to relatively small number of plastic samples in the
training set, and the fact that plastic features are similar to
other materials like metal and ceramic. The top three false
negatives for plastic are leather, ceramic, and metal.

Misclassifying plastic as leather will lead to a smaller logio
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(a) Confusion matrix

reduction, which potentially cause inadequate disinfection.
The recall score for leather is 87%, which 13% of the leather
samples falsely classified as fabric. Other materials achieve
high recall scores, demonstrating the efficiency of the trained
model. The t-SNE plot shows the same materials are clustered
together. The fabric and leather clusters are found to be close
to each other. Figure 10 presents correct and incorrect
predictions on the hospital material dataset with high
confidence.

Ceramic
Fabric
Glass
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Metal
Paper
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P_stone
Wood

b) t-SNE plot
( p

FIGURE 9. The confusion matrix and Barnes-Hut t-SNE visualization of our method on hospital dataset

Wood (99%)

T: Leather
P: Fabric (62%)

Metal (98%) Glass (98%)

T: Plastic
P: Metal (50%)

FIGURE 10. Samples with high confidence predictions in hospital material dataset. The first row is correct predictions, and the
second row is incorrect predictions (T: actual material, P: predicted). The percentages shown are at least this confident
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4.2.4 Comparison to the state-of-the-art methods

We further evaluated the proposed network by comparing it
to state-of-the-art methods on six material/texture datasets.
These datasets are described as follows. (a) A subset of
Material in Context Database (MINC) (Bell, et al., 2015)
datasets called MINC-2500 contains 23 material classes and
2,500 images per class. (b) Flicker Material Dataset (FMD)
(Sharan et al., 2014) contains a total of 1000 images that are
equally distributed across 10 material categories, which has
been used as an evaluation benchmark. (c) Ground Terrain in
Outdoor Scenes Dataset (GTOS) (Xue, et al., 2018) contains
more than 30,000 images with 40 material classes. (d) GTOS-
Mobile (Xue, et al., 2018) is a ground terrain dataset captured
by mobile phones that consists of 93,945 training images and
6,066 testing images. (e) Describable Textures Database
(DTD) (Cimpoi et al., 2014) is a texture database consisting of
5640 images covering 47 classes. Each class consists of 120
images. (f) KTH-TIPS-2b (KTH) (Mallikarjuna et al., 2006) is a
material dataset, which is composed of 11 material classes
with four samples per class. Each sample contains 108 images.

For a fair comparison with other methods (Zhai, et al., 2019;
Zhai, et al., 2020; Chen, et al., 2021), the evaluation is based
on the provided train-test random splits for MINC-2500, DTD,
GTOS-Mobile, and GTOS datasets. As for FMD, the dataset is
randomly split into a train-test split in each run with 90 images
per class used for training and 10 images used for testing. For
KTH, three samples are randomly picked for training and the
rest for testing in each run. The results are based on the 5-
time run statistics for all the datasets. The learning rate is 0.01
and decays by a factor of 0.1 for every 10 epochs on MINC-
2500. For FMD, GTOS, GTOS-Mobile, DTD, and KTH, the
learning rate is set to 0.01. The network is trained using
momentum of 0.9, weight decay of 0.0001. The training is
finished in 30 epochs.

The performance of the proposed method is compared with
the Fisher Vector CNN (FV-CN) with a VGG-VD backbone
(Cimpoi, et al., 2016), Bilinear-CNN (B-CNN) (Lin and Maji,
2016), Locally-Transferred Fisher Vectors (LFV) (Song, et al.,
2017), First and Second-Order information fusion Network

(FASON) (Dai et al., 2017), Deep Texture Encoding Network
(Deep-TEN) (Zhang, et al., 2017), Deep Encoding Pooling
Network (DEP) (Xue, et al., 2018), Deep Multiple-Attribute-
Perceived Network (MAPNet) (Zhai, et al., 2019), Multi-level
Texture Encoding and Representation Network (MuLTER) (Hu
et al., 2019), Deep Structure-Revealed Network (DSRNet)
(Zhai, et al., 2020), and Cross-Layer Aggregation of Statistical
Self-similarity (CLASSNet) (Chen, et al.,, 2021). Table 7
presents the comparison results with these state-of-the-art
methods. It should be noted that data distribution is different
across the six datasets, which leads to varied performance. In
addition, the dataset size and the material categories are also
different among different datasets, which could also influence
the model performance. Our method has the highest accuracy
on the six datasets compared to the other texture/material
recognition methods. Specifically, our method showed an
improvement of 1.9%/2.2%/0.5%/1.4%/0.3%/0.2% in mean
accuracy on MINC-2500, FMD, GTOS, GTOS-Mobile, DTD, and
KTH compared to state-of-the-art methods, respectively. The
comparison with the state-of-the-art methods demonstrates
the robustness and accuracy of our methods for the task of
material recognition.

The method performance is further compared to the Deep
Encoding Pooling Network (DEP), which is the newest model
available for our testing. This comparison aims to understand
what kind of image features lead to misclassification by DEP,
while our method can correctly recognize. The MINC-2500
and DTD are selected for our comparison. Figure 11 shows
some example images that are correctly classified by our
method and misclassified by the DEP. There are two major
challenging in the material/texture classification for these
example images. First, some of these images are smooth and
featureless. Second, some images show spatially invariant
features. Our proposed method can capture both the low-
level texture and color information and the high-level
semantic information, thus benefitting images with
insignificant features. Furthermore, ASPP and the orderless
encoder allow the network to learn the spatial repetitive
features of material and textures.

TABLE 7. Comparison to state-of-the-art methods on six material/textures dataset

MINC-2500 FMD GTOS GTOS-Mobile DTD KTH
Method

mean std | mean std | mean std mean std mean std mean  std
FV-CNN (VGG-VD) (2015) - - 79.8 1.8 77.1 - - - 72.3 1.0 75.4 1.5
B-CNN (2016) - - 77.8 1.9 - - 75.43 - 69.6 0.7 75.1 2.8
LFV (2017) - - 82.1 1.9 - - - - 73.8 1.0 82.6 2.6
FASON (2017) - - - - - - - - 72.3 0.6 76.5 2.3
Deep-TEN (2017) 81.3 - 80.2 0.9 84.5 2.9 | 76.12 - 69.6 - - -
DEP (2018) 82.0 - - - - - - - 73.2 - - -
MAPNet (2019) - - 85.2 0.7 84.7 2.2 86.6 1.5 76.1 0.6 84.5 1.3
MULTER (2019) 82.2 - - - - - 78.2 - - - - -
DSRNet (2020) - - 86.0 0.8 85.3 2.0 87.0 1.5 77.6 0.6 85.9 1.3
CLASSNet (2021) 84.0 0.6 | 86.2 0.9 85.6 2.2 85.7 1.4 74.0 0.5 87.7 1.3
Ours 85.9 0.4 | 88.4 1.8 86.1 0.5 88.4 0.6 77.9 0.4 87.9 2.4
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T: Leather
P: Metal

T: Paper

T: Blotchy
P: Stained

T: Freckled T: Fnlly

P: Flecked

T: Flecked
P: Studded

T: Ceramic
P: Painted

P: Plastic

P: Pleated

| T Fabric
|| P: Wallpaper

T: Wood
P: Wallpaper

T: Crystalline ¥
P: Bubbly 3

T: Grooved
P: Lined

| P: Wrinkled

(b) DTD

FIGURE 11. Example images in MINC-2500 and DTD that are misclassified by DEP while correctly classified by our method. T is the true class; P is the

predicted class by DEP

4.2.5 Ablation study

To evaluate the proposed network, we study three
components - the multi-level feature integration (ML), ASPP,
and encoder (EC) - and summarize their effects on the model
performance. The baseline model is generated by removing
the integration of the three components, which becomes an
EfficientNet-B4 network. The experiment is designed as
follows. The effectiveness of each ML, ASPP, and EC
component is evaluated by individually integrating them to
the baseline model. A combination of either of the two
components is also evaluated based on the accuracy metric.
The performance is evaluated on the DTD and FMD. The
results are listed in Table 8 for comparison. The results
reported in the table represent the accuracy in the form of
“mean t5.t.d.%". The experiment results are detailed below.

Multi-level feature integration. In this part, we study the
effects of multi-level feature integration, which is proposed to
capture the low-level texture and color information and the
high-level semantic information. As shown in Table 8, the
multi-level feature significantly improves the model
performance on DTD and FMD by 3.2% and 6%, respectively
(baseline—>baseline+ML). We also conduct experiments on a
combination of ML with either of the ASPP and EC
components. In detail, ML+ASPP and ML+EC combinations are
evaluated, and the results indicate an improvement
compared with only ML integration on DTD and FMD. The ML
has the highest improvement compared to ASPP and EC,
which highlights the effectiveness of multi-level features in
material representation.

ASPP. The ASPP component is used to capture multi-scale
information, which can learn spatial repetitive features in
material textures. Compared to the baseline, the integration
of ASPP component improves the performance of the
network by 1.1% and 3%, respectively
(baseline—>baseline+ASPP). ASPP+EC is found to be better
than baseline+ASPP, which has an improvement of 1.3% and
4% on DTD and FMD, respectively.

Encoder. In this section, we evaluate the effectiveness of the
encoder component, which is designed to capture both
texture and local spatial information. As shown in table 8, the
performance is improved by 1.6% and 5%
(baseline>baseline+EC) on DTD and FMD, respectively. This
comparison indicates that the EC component can improve
model performance. As mentioned above, a combination of
EC with ML or ASPP can further improve performance.

TABLE 8. Ablation study on DTD and FMD. ‘ML’ is multi-level
feature integration. ‘EC’ is the encoder

Model ML ASPP EC DTD FMD
Baseline 72.7+0.5 80.3£1.5
v 75.9+0.3 86.3+1.5
v 73.8+0.3 83.3+2.1
v 74.3+0.4 85.3+1.5
v v 76.540.3 87.0£1.0
77.6£0.7 87.6x1.5
v v 75.1#0.9 87.342.3
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Proposed v v v 77.9+0.4 88.4+1.8

4.3 Implementation

The material-aware disinfection robot is tested in a virtual
environment built based on a patient room at a healthcare
facility. The room is used to hospitalize patients with COVID-
19. The disinfection robot equipped with UV light is used as
an illustration. The disinfection robot first moves to
potentially contaminated objects requiring disinfection. The
images captured by the camera are then be fed into the CNN
network to classify the surface materials. The disinfection
robot can adapt the disinfection mode and the parameters
according to the surface material. Figure 12 shows some
example results on the disinfection of the overbed table, a
reported for each dataset.

P: Wood (96%)

P: Leather (43%)
D: 2 logl0
M: W;8; U

door handle, a book, the seat of a chair, a sofa, and a vase in
the patient room. The results indicate the proposed material
recognition network can recognize the materials of the object
surfaces needing disinfection, which can be leveraged to
provide the disinfection mode and parameters for the
disinfection robot.

Figure 13 presents an implementation of robot disinfection
using UVC light with suitable distance, irradiance, and
exposure time. Note that the exposure time is only for the
contaminated areas approximately under the UVC light
reflective shield. For the entire object surfaces, the robotic
arm will first identify waypoints to cover contaminated areas,
and then plan its trajectory to each waypoint for disinfection.

P: Ceramic (60%)
D: 3 logl0
M: W: S; U

FIGURE 12. Example results of material classification on images captured by the robot. P: predicted material (confidence value
in parentheses); D: disinfection dosage; M: disinfection mode; W: wipe; S: spray; U: UVC light

-

d: 2cm
' 1,: 400W/m?
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FIGURE 13. Implementation of robot disinfection with suitable parameter

5 DISCUSSIONS

Cleaning and disinfecting object surfaces in infrastructure
facilities is critical to mitigating the spread of infectious
pathogens and reducing the number of infections. The idea
behind this work is to develop methods to recognize surface
materials and to computationally link recognized materials
with robotic disinfection modes and parameters. To this end,
we first developed a new deep learning-based network to
recognize the materials of object surfaces needing
disinfection. Then, we proposed a computational model to
calculate the required logio reduction for the recognized
material and linked it to the applicable robotic disinfection
mode and parameters. The developed method has the
potential to transform current surface disinfection practices
to intelligent robotic disinfection with material-adaptive
disinfection parameters. The following sections discuss the
robustness of the material recognition method, uncertainty
and sensitivity, applicability of robotic disinfection, and
limitations and future studies.

5.1 Robustness of material recognition method

This section discusses the potential influence of illumination
conditions and the robustness of the proposed approach to
illumination. Illumination is related to lighting and weather
conditions. Illlumination variation is a significant influencing
factor for the image classification task. In this experiment, the
gamma correction method is adapted to change the

0.5 Original

Wood (52%)

"Eabric (97%)

illuminance of the image based on the Power-Law Transform
function (Poynton, 2012). The image is darker when the
gamma values are smaller than 1, and the image is lighter
when the gamma values are greater than 1. Gamma values of
0.5, 1.5, 2, 2.5 are investigated in the experiment. Figure 14
presents the material prediction results for wood, fabric, and
leather surfaces under varied illumination conditions. The
wood surface can be recognized under different illuminations,
while the prediction confidence decreases with increasing
gamma values. The fabric surface is recognized with high
confidence under all investigated illumination conditions. The
leather surface is misclassified as fabric when the gamma
values are 2 and 2.5. The incorrect predictions stem from the
following reasons. First, the prediction confidence is 43% for
the original image, which is relatively low compared to wood
and fabric. Second, leather surface features are close to fabric
surface features, as indicated in Figure 9. The prediction can
be improved with more leather material data in various
illumination conditions. The illumination conditions have an
impact on the performance of our network, particularly for
bright images. The network can accurately predict materials
in the image under different illumination conditions when the
prediction confidence is high for original images. For
prediction with a low confidence (e.g., leather), the network
also works for slightly brighter and darker conditions.
Therefore, our material recognition network can be viewed as
robust and reliable regarding illumination variation.

Wood (34%) ‘ Wood (33%) ‘

Fabric (96%) Fabric (94%)

’

FIGURE 14. Material recognition performance under varied illumination conditions. Predicted material (confidence value in parentheses)
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5.2 Uncertainty and sensitivity analysis

In this part, the sensitivity and the uncertainty of the model
used to estimate the required logio reduction are analyzed.
Monte Carlo simulations are used to incorporate uncertainty
and variability of the input parameters
characterization. A ceramic surface contaminated with SARS-
CoV-2 is selected as an illustration. Convergence is tested for
the model by running 1000, 5,000, 10,000, 20,000, 50,000,
and 100,000 simulations five times. The model estimation
becomes stable after 50,000 runs, as indicated in Figure 15.
Therefore, our study simulated a total of 50,000 runs for all
the models.
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FIGURE 15. Median logy reduction vs. number of Monte Carlo
simulations. The results are based on five runs

The distribution of the disinfection dose for different surfaces
is further evaluated with SARS-CoV-2 persisting on the surface
after 6 hours. The required logio reduction distribution is
shown in Figure 16. Note that the infection risk for paper is
lower than 10'6, which does not require disinfection to control
its risk. For fabric and leather, a 2 logio reduction is found to
be sufficient to lower the infection risk. For other materials,
the median logio reduction is between 2 and 3. In some

scenarios, required logio reduction could go beyond 3.
4.0

3.5 T

3.0

iy =8y

logag reduction

0.5

0.0

Surface material

FIGURE 16. Boxplot of log;o reduction for different surface materials
contaminated by SARS-CoV-2

Spearman correlation coefficients are used to examine the
relationship between the model input parameters and the
disinfection dosage. The SARS-CoV-2 is selected for the
sensitivity analysis. The transfer efficiency and survival time
of SARS-CoV-2 are assumed to be uniformly distributed in the
range given in Table 2. In addition, SARS-CoV-2 concentration
after 6 hours is used for analysis. A total of 50,000 simulations
are conducted. Figure 17 presents the Spearman’s correlation
coefficients for the input parameters of the model. According
to the sensitivity analysis, the model input parameters that
mostly influence the required logio reduction are the transfer
efficiency between surface and the hand and the survival time
of the pathogen, which are both positively related to the
disinfection dosage. These two parameters are material-
specific parameters, which further confirms the importance
of the material information for disinfection. The pathogen
recovery efficiency is negatively correlated with the
disinfection dosage. The correlation was positive for all other
modeled parameters.

0.5

0.4

0.31

0.2

0.1

0.0 1

Spearman correlation coefficients

c PFU TEhm k  FSA  eff TEsh st

Model Parameters

FIGURE 17. Spearman’s correlation coefficients for the parameters
used in estimating required disinfection dosage. Parameters are
abbreviated as follows: c_PFU = conversion factor from Genome copies
to the infectious virus in PFU; TEhm = = transfer efficiency of viruses
from hand to mucous; k = dose-response parameter; FSA = fractional
surface area; eff = pathogen recovery efficiency; TEsh = transfer
efficiency of viruses from surface to hand; st = survival time of
pathogen

5.3 Applicability of the robotic disinfection

Our proposed robotic disinfection system was successfully
implemented in a fully modeled hospital room. The proposed
material recognition method achieved an overall accuracy of
89.09% on the dataset collected in the context of healthcare
facilities. The processing time for material recognition is
around 0.04 seconds for a single image. The processing speed
can be enhanced by increasing the batch size in the inference.
For example, by setting the inference batch size to 64, a
processing time of 0.12 seconds is sufficient to predict all the
images. The promising results of our method demonstrated
its accuracy and efficiency to provide the material information
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for the disinfection robot. The recognized materials are
computationally linked to robotic disinfection modes and
parameters, considering fomite-pathogen-human
interactions. Compared to manual disinfection, the adaptive
system has the potential to not only ensure complete
disinfection of contaminated surfaces, but also to improve the
disinfection efficiency by lowering the exposure time and the
disinfection dose for low-risk surfaces. The proposed
material-adaptive robotic disinfection framework can lead to
an intelligent robotic disinfection paradigm that goes well
beyond existing systems that are perceived as roaming UV
lights for coarse disinfection.

The disinfection robot market was valued at $493 million in
2020 and is expected to reach $3.31 billion by 2026, with a
compound annual growth rate (CAGR) of 36.4% (Mordor,
2021). Many disinfection robots have already been deployed
in infrastructure facilities like hospitals and schools. However,
no disinfection robots to our knowledge possess the material
recognition capabilities to adapt disinfection modes and
parameters, which largely restricts their disinfection
efficiency. Our proposed framework can be integrated with
existing disinfection robot platforms to improve their
performance. For instance, in Hu et al. (2020a), the UV light
wand was used as an end-effector of a robotic arm to disinfect
contaminated surfaces in the built environment. With our
newly developed framework, UV light parameters can be
adapted based on the object surface materials with
appropriate exposure time, distance, and irradiance. As such,
surfaces can be thoroughly disinfected and free of pathogens
in sufficient numbers to prevent disease transmission.

There still exists some obstacles from the concrete
operationalization of the proposed robotic disinfection
system in the real world. First, controlled experiments need
to be conducted to evaluate the effectiveness of the robot by
measuring the surface pathogen concentration before and
after disinfection. In addition, there still lacks evidence about
how much contamination could lead to infection in humans.
Second, the disinfection robot needs to be endowed with
human activity recognition capability in the future to be able
to conduct disinfection tasks in the presence of humans.
Finally, there needs to be a validated, reproducible, and
documented disinfection protocol for the robot. The
development of such a protocol needs to have a close
collaboration with the end-users, such as hospitals. As such,
the robot design and protocol can be updated based on their
feedbacks.

5.4 Limitation and future studies

This study suffers from several limitations that deserve future
studies. First, despite the overall high performance of the
material recognition network, the performance on plastic
surfaces achieved a lower accuracy compared to other

material categories. This underperformance was caused by a
relatively small number of plastic samples in the training
dataset when compared to other materials. In addition, the
overall accuracy of the material classification model is smaller
for the hospital material dataset than the accuracy for the
MINC validation and test sets. The relatively lower accuracy
stems from a lack of surface materials collected at hospitals in
the training dataset. In the future, more surface material data
needs to be collected in the healthcare facilities to fine-tune
the network, especially for materials with fewer samples. In
addition, other sensory data, such as thermal and time-of-
flight depth cameras, could be integrated into the deep
learning network to create a more robust model. Second, our
work primarily focuses on recognizing materials in context,
which does not differentiate the interface between different
materials. A semantic segmentation approach is needed to
classify materials at a pixel level. However, the segmentation
task requires pixel-level annotations, which is expensive and
time-consuming. In future research, material segmentation
would be an interesting area to explore when more data
becomes available.

The third limitation is that this paper investigates a particular
pathogen on surfaces to demonstrate the computational
feasibility and the complete loop from robotic perception to
robotic actions. However, many pathogens can cohabit on the
same surfaces in healthcare facilities. In this case, the
proposed method needs to be adapted for a multi-pathogen
infectious disease system, which requires more research
regarding pathogen dependency. Furthermore, for
transmission risk, as types and frequencies of human
activities and the diversity of environmental surfaces differs
between settings, social and environmental contexts are of
great importance in assessing the infection risk through
fomite transmission. More advanced methods, such as the
Environmental Infection Transmission System (EITS) modeling
framework proposed in (Li et al., 2009), could be explored to
model more complex scenarios. Lastly, the disinfection dose
and mode are determined solely based on the surface
materials. However, other factors, such as the type of
equipment, surface geometry, human touch frequency, and
location, are also important considerations for the
disinfection practice. Future studies are needed to develop
more comprehensive disinfection guidance by integrating
these critical factors.

6 CONCLUSIONS

This study proposed a new computational process and deep
learning-based material recognition network to classify object
surface materials and to adapt disinfection modes and
parameters to disinfect surfaces thoroughly and efficiently.
The deep learning network integrated multi-level and multi-
scale CNN features, as well as a texture encoder to achieve
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material recognition with high accuracy. The trained network
was evaluated on MINC validation and test dataset, and the
results achieved an accuracy of 92.24% and 91.84%,
respectively. The network achieved an accuracy of 89.09% on
a small material dataset containing 1,173 samples collected in
the context of healthcare facilities. Furthermore, the
proposed material recognition network achieved state-of-
the-art results compared to other texture/material
recognition methods. The fomite transmission model was
adapted to estimate the infection risk for different surfaces
and to quantitate the logio reduction needed to reach the
safety target levels. The results indicated that hard surfaces,
such as plastic and metal, require a higher disinfection level
compared to soft surfaces, such as paper and fabric. The
disinfection level was combined with the applicable mode to
calculate disinfection parameters for the robot to implement.
The adaptive robotic disinfection was successfully
implemented in the context of healthcare facilities.
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