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ABSTRACT 

Existing disinfection robots are not intelligent enough to adapt their actions to 

object surface materials for precise and effective disinfection. To address this 

problem, a new framework is developed to enable the robot to recognize various 

object surface materials and to adapt its disinfection methods to be compatible 

with recognized object surface materials. Specifically, a new deep learning 

network is proposed that integrates multi-level and multi-scale features to classify 

the materials on contaminated surfaces requiring disinfection. The infection risk 

of contaminated surfaces is computed to choose the appropriate disinfection 

modes and parameters. The developed material recognition method 

demonstrates state-of-the-art performance, achieving an accuracy of 92.24% and 

91.84% on the Materials in Context Database (MINC) validation and test datasets, 

respectively. The proposed method was also tested and evaluated in the context 

of healthcare facilities, where the material classification achieved an accuracy of 

89.09%, and the adaptive robotic disinfection was successfully implemented.

 

1 INTRODUCTION 

Hospitals, nursing homes, airports, and buildings are hotbeds 

for pathogen colonization and transmission, resulting in a 

massive number of infections among the people who occupy 

these facilities (Lewis, 2021). Outbreaks of infectious diseases 

lead to illness and death, imposing significant burdens on the 

healthcare systems, reducing productivity, and leading to 

enormous economic losses. For example, the COVID-19 

pandemic has led to over 221 million confirmed cases and 4.4 

million deaths (Dong et al., 2020). The number of infections 

and deaths continues to increase with the emergence of more 

infectious variants of COVID-19, increasing the fear of future 

surging waves of infections. Healthcare facilities are 

particularly of concern during the pandemic given the influx 

of infected patients needing treatment. In healthcare 

facilities, surfaces can be contaminated through hand 

touching, respiratory droplets, or bodily secretions. This 

contamination can cause cross-transmission among patients 

and between patients and healthcare providers, jeopardizing 

people's health, and the normal operations of hospitals 

(Leung, 2021). In fact, before the COVID-19 pandemic, the 

United States Centers for Disease Control and Prevention 

(CDC) estimated that nearly 1.7 million patients are infected 

during hospitalization, resulting in 98,000 associated deaths 

(Haque et al., 2018). This statistic highlights the urgency and 

importance of proper surface disinfection to mitigate the 

transmission of infectious bacteria and viruses and to reduce 

the possibility and numbers of healthcare-acquired infections 

(HAIs) (Donskey, 2013). 

Many facilities still rely on physical labor to carry out 

disinfection processes, such as using hydrogen peroxide and 

ultraviolet disinfection, which is time-consuming, labor-

intensive, and poses an infection risk to the cleaning staff 

(Choi et al., 2021). Furthermore, manual disinfection is 

influenced by human behavioral factors, and real-world 

practices are highly variable (Doll et al., 2018). For instance, 

Rutala and Weber (2016) found that 10-50% of surfaces are 

contaminated in the rooms of patients infected with C. 

difficile, MRSA, and VRE. However, 51% of surfaces in patient 
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rooms are found to not be thoroughly cleaned or disinfected, 

which could lead to a 120% increase of infection probability 

for future occupants of the room. There is a critical need for 

intelligent robotic disinfection to reduce viral bioburdens on 

contaminated surfaces, and thus prevent fomite-mediated 

transmission of infectious pathogens.  

The elevated concerns due to the COVID-19 pandemic have 

increased the adoption of robotic technology for infection 

control and environmental hygiene (Zemmar et al., 2020). 

Existing robotic disinfection technologies are subject to two 

main limitations. First, existing disinfection robots are 

perceived as roaming bases with disinfection sources such as 

UV lights for coarse disinfection. This requires the absence of 

people in the rooms or buildings to be disinfected (Diab-El 

Schahawi et al., 2021). Given the high volume of patients in 

healthcare facilities needing treatments, these disinfection 

robots are difficult to deploy. Second, healthcare facilities 

harbor a variety of pathogens that colonize a wide spectrum 

of surfaces made from different materials. The object surface 

materials have significant impacts on pathogen colonization 

and transmission, and thus require different disinfection 

modes, parameters, and procedures to ensure complete and 

efficient disinfection. For example, a recent study by Chin et 

al. (2020) suggested that certain pathogens, such as SARS-

CoV-2, can stay infectious for as long as 7 days on metal and 

plastic surfaces, while SARS-CoV-2 may survive for only 2 days 

on fabric (2020). Furthermore, the transfer efficiency or  

transmission rate of bacteria or viruses to hands from a 

surface differs between materials (Lopez et al., 2013). For 

example, the transfer efficiency of MS2 can reach 19.3% on 

glass surfaces but only 0.3% on fabric surfaces under a relative 

humidity of 15% to 32% (Lopez, et al., 2013). Therefore, the 

materials of a contaminated object surfaces must be 

considered for appropriate robotic disinfection to occur. 

However, this research topic has not yet been investigated. 

To address the challenges, a disinfection robot prototype was 

proposed in our prior study (Hu et al., 2020a) and is under 

continuous development, as presented in Figure 1. This robot, 

with a mobile base, a six-degree-of-freedom robotic arm, and 

sensors including LiDAR and RGB-D cameras, can navigate in 

buildings, recognize and segment potentially contaminated 

areas, and create 3D semantic maps for precise and intelligent 

disinfection. A UV light disinfection source is mounted on the 

robotic arm end-effector with a reflective shield. The end-

effector can be further customized with other disinfection 

modes such as “spray” and “wipe”. To enable the adaptive 

disinfection with multiple disinfection modes and to optimize 

the disinfection parameters with respect to the object surface 

materials that mediate the colonization and transmission of 

varying pathogens, the robot needs to be endowed with a 

robust capability to rapidly and accurately recognize the 

materials of the contaminated object surface requiring 

disinfection, and to computationally link the robotic 

perceptions, i.e. material recognition, with robotic actions, 

i.e. disinfection modes, procedures, and parameters.  

 

FIGURE 1. Illustration of the proposed disinfection robot prototype 

The objective of this study is to develop a new 

computational process and deep-learning-based method to 

enable the robot to recognize the material types of object 

surfaces and to adapt disinfection modes and parameters to 

achieve a complete and efficient disinfection. This study 

features two contributions to the body of knowledge, with 

the potential to transform the current paradigms of robotic 

disinfection in infrastructure facilities.  

• First, a new deep-learning network is proposed to 

classify the materials of object surfaces needing 

disinfection. Our designed network innovatively 

integrates multi-level Convolutional Neural Network 

(CNN) features, multi-scale CNN features, and a texture 

encoder network in an end-to-end learning fashion, 

which has not been integrated by existing studies. The 

multi-level CNN features can capture high-level abstract 

representations of the material and low-level texture 

and color information, which can enhance material 

representation ability of the network. The multi-scale 

features are captured by the Atrous Spatial Pyramid 

Pooling (ASPP) with multiple resampling rates, allowing 

the network to learn spatial repetitive features of 

material textures. The texture encoder network can 

capture texture details and local spatial information 

from different levels. The orderless features and 

ordered spatial information are then balanced with a 

bilinear model. The proposed network extracts rich 

features for accurate material representation, achieving 

state-of-the-art results on six public material datasets. 

• Second, facilities such as hospitals are highly 

heterogeneous with different types of units serving 

distinct functionalities and characteristics, providing 

habitats for various bacteria and viruses with different 
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transmission and infection pathways. A new method 

was proposed in this study to computationally link the 

recognition of materials with the robotic disinfection 

actions, completing the loop from robotic perception to 

robotic actions. Our innovation lies in the computational 

modeling of the interactions among surface materials, 

pathogens, and disinfection modes and parameters to 

adapt robotic disinfection actions, which has not been 

achieved by existing studies and current systems. The 

developed methods could lead to an intelligent robotic 

disinfection paradigm that goes well beyond existing 

systems that are perceived as roaming UV lights for 

coarse disinfection. Intelligent and precise robotic 

disinfection can be implemented in critical 

infrastructure facilities such as hospitals, airports, school 

buildings, and food processing plants to improve 

environmental and public health. 

2 BACKGROUND AND LITERATURE REVIEW 

In this section, related studies on robotic disinfection and 

material recognition are reviewed, and the existing 

knowledge gaps are summarized. 

2.1 Related studies on robotic disinfection 

Robotic disinfection has long been treated as a solution to 

mitigating the spread of infectious diseases in infrastructure 

facilities, which has been an active research area in recent 

years. The disinfection mode of these disinfection robots can 

be characterized by “UVC light”, “wipe,” and “spray”.  

A UV-disinfection robot offers a non-touch method, 

disinfecting surfaces from a distance using a UVC light. UVC 

light is an environmentally friendly disinfection method, as it 

does not leave any residues on surfaces. UV-disinfection 

robots are essentially mobile robots with UVC light columns 

mounted to their top. These robots are commonly integrated 

with a variety of sensors for navigation and object detection, 

such as cameras, LiDAR, and ultrasound. Gibson et al. (2017) 

deployed Xenon UV-disinfection robots in a hematopoietic 

stem cell transplant unit for three months and found the rate 

of HAI decreased to less than one per quarter.  In (Fleming et 

al., 2018), UV-disinfection robots were deployed facility-wide 

for terminal disinfection of the rooms that hospitalized 

patients infected with Clostridium difficile. Since the 

beginning of the COVID-19 pandemic, many UV-disinfection 

robots have been developed and tested. For example, the MIT 

UV robot consists of an Ava robotics’ mobile base and a 

customized UVC light fixture, and the robot’s disinfection 

capabilities were tested in a food bank (Gordon, 2020). The 

robot took around 30 minutes to cover 4,000-square-foot 

spaces with a speed of 0.22 mph. The power and the number 

of light columns could be customized based on the size of 

rooms and their disinfection requirements. However, since 

UVC lamps are powerful enough to cause harm to the skin and 

eyes, the rooms must be evacuated during disinfection. To 

overcome this limitation, McGinn et al. (2021) developed a 

prototype UV-disinfection robot called the “Violet robot 

platform”. A UVC reflectance shield was added to enclose the 

UVC lamp, thus reflecting the radiation emitted behind the 

robot. The authors claim that the Violet robot has the 

potential to work safely alongside human cleaners. In Hu, et 

al. (2020a), a UVC light wand was mounted onto a robotic arm 

with a mobile base to navigate in the built environment and 

to disinfect potentially contaminated surfaces. The major 

drawback of the existing UV-disinfection robots is that they 

cannot perceive object surface materials and adapt their 

disinfection parameters, which may lead to the incomplete 

disinfection of high-risk surfaces.  

Wiping with chemical disinfectants is the main disinfection 

method for decontamination of high-touch surfaces in 

infrastructure facilities. “Wipe” mode has also been 

integrated into robot systems to disinfect contaminated 

surfaces. Toyota developed a ceiling-mounted home robot to 

wipe surfaces with soft rubble mounted on the gripper 

(Vincent, 2020). The robot can travel on the ceiling to avoid 

the problems associated with navigating a cluttered floor. 

Ramalingam et al. (2020) proposed a disinfection robot 

prototype to automate the disinfection of doorhandles in 

infrastructure facilities. The authors designed a deep learning 

model to detect doorhandles in the image and to calculate the 

doorhandle location. More recently, the Fraunhofer Institute 

for Manufacturing Engineering and Automation proposed a 

prototype robot, called DeKonBot, to disinfect contaminated 

surfaces such as bedrails, light switches, and elevator buttons 

(NOVUS, 2021). The DeKonBot consists of a mobile base and 

a robotic arm that carries out a wipe disinfection mode. 

Material information is critical for the wipe-disinfection robot 

because wipe mode is not suitable for certain types of 

surfaces, such as fabric and paper. However, existing wipe-

disinfection robots have not been developed with the 

capability to recognize the material of the surfaces that 

require disinfection.  

The disinfectant spray is another important disinfection 

method that has been widely used in the COVID-19 pandemic. 

For example, a smart prefabricated sanitizing chamber was 

designed for COVID-19 to enable a uniform spraying of 

sanitizing fluid onto healthcare workers (Abu-Zidan et al., 

2021). The spray mode has also been integrated with the 

robotic system. Zhao et al. (2021) developed a smart 

disinfection robot system that sprays disinfectants in the 

operating theaters or the patients’ rooms in healthcare 

facilities. The developed system primarily focused on the 

integration of multiple technologies, such as the Internet of 

Things (IoT), SLAM, hand gesture recognition, and navigation. 

Thakar et al. (2021) developed an area-coverage planning 

algorithm for a spray-based disinfection robot to compute a 

path for the nozzle to follow to completely disinfect surfaces. 
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The remote operator needs to select the area to be 

disinfected and extract the corresponding point cloud for 

path calculation. These spray-based robots achieved good 

results in controlled experiments. However, the disinfection 

dose is not adaptable based on the surface materials, which 

can lead to incomplete disinfection. Furthermore, spray-

based disinfection could damage paper surfaces. Therefore, it 

is important for these spray-based robots to recognize surface 

materials and to adapt disinfection modes and parameters. 

2.2 Related Studies on material recognition 

Material and texture recognition is challenging, and 

numerous algorithms have been developed to address this 

challenge. Traditional material recognition methods relied on 

handcrafted features that are usually not robust and are 

computationally intensive due to the high dimensions 

(Caputo et al., 2005). To address these limitations, CNN-based 

methods were applied to learn material features in images. 

Compared to handcrafted features, automatically learned 

features are found to be more robust in image classification 

(Kang et al., 2018).  In (Cimpoi et al., 2016), the CNN-based 

feature extraction was demonstrated to be efficient for 

material and texture recognition. In their method, CNN was 

truncated at the level of the convolutional layer to obtain so-

called local image descriptors. Traditional orderless pooling 

encoders (e.g., Fisher Vector (FV); Vector of Locally 

Aggregated Descriptors (VLAD); BOW) were used to encode 

CNN features to a feature vector for classification. The feature 

vector was then passed to an SVM model to predict the 

material labels. A combination of FV and CNN (FV-CNN) 

achieved superior results in image classification. In a follow-

up study by  Song et al. (2017), the output from FV-CNN was 

further refined through learnable locally connected layers. 

There are two major drawbacks of this method. First, the 

method needs a large disk space to store the features 

extracted from CNN. Second, each step is trained separately, 

which means the training of the material classifiers cannot 

update CNN model weights, comprising both training 

efficiency and accuracy. 

With the advancement of computational power, many 

advanced CNN methods have been developed for 

applications in different research fields, such as vehicle 

detection (Arabi et al., 2020), human activity recognition (Luo 

et al., 2020), pavement condition assessment (Hsieh et al., 

2021), and earthquake early warning systems (Rafiei and 

Adeli, 2017). In the domain of material and texture 

recognition, a variety of end-to-end CNN models have been 

developed. For instance, Bell et al. (2015) investigated the 

performance of three popular CNN architectures for material 

recognition: AlexNet, VGG-16, and GoogLeNet. The fine-

tuned AlexNet yielded good results on the Flickr Material 

Database (FMD). In Xue et al. (Xue et al., 2017), a CNN-based 

Differential Angular Imaging Network (DAIN) was developed 

to integrate multi-view images to recognize outdoor 

materials. Original and differential angular images were fed 

into the network and their final prediction results were 

combined. The results indicated that the prediction accuracy 

was significantly increased with differential angular images. 

However, typical CNNs with fully connected (FC) layers cannot 

capture spatially invariant features on materials. To address 

this issue, Zhang et al. (2017) developed the Deep Texture 

Encoding Network (Deep-TEN) with an orderless feature 

pooling encoder network. The encoding layer is integrated 

into the CNN network to learn visual dictionary extracts from 

CNN features. Building upon the Deep-TEN, Deep Encoding 

Pooling Network (DEP) was designed to integrate high-level 

spatial information and orderless features for the task of 

material recognition (Xue et al., 2018). The DEP added a 

pooling layer in combination with the texture encoder. A 

bilinear model was then used to merge the outputs from the 

pooling layer and texture encoding layer.  

In recent years, Zhai et al. (2019) proposed a Deep Multiple-

Attribute-Perceived Network (MAPNet) to perceive multiple 

visual attributes for texture recognition. The MAPNet was 

based on a multi-branch architecture that allows for visual 

texture attributes to be learned synergistically. The CNN 

features from each branch are fed into a spatially adaptive 

global average pooling for feature aggregation. In Zhai et al. 

(2020), a Deep Structure-Revealed Network (DSRNet) was 

developed by leveraging spatial dependency among the 

captured primitives as structural representations. The DSRNet 

devised a primitive capturing module to generate primitives 

from different directional spatial contexts. The primitives 

were fed into a dependence learning module to learn 

structural representations for material recognition. Chen et 

al. (2021) aggregated cross-layer statistical self-similarity 

information as a feature aggregation module in their 

CLASSNet network. Feature maps across different layers are 

modeled as a dynamic process with self-similarity statistics. 

The cross-layer statistics are characterized using a histogram 

of cross-layer features based on differential box-counting. 

This method achieved state-of-the-art performance for the 

time on several public material datasets. The review of 

material recognition methods demonstrates that CNN 

methods are robust and powerful for material 

representation. 

2.3 Knowledge gaps 

Two main knowledge gaps are identified in the related studies 

on robotic disinfection and material recognition. First, object 

surface materials play a significant role in pathogen 

persistence and transmission. It thus follows that there is a 

need for material-specific disinfection parameters to ensure 

complete and efficient disinfection. However, the existing 
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robotic disinfection systems mentioned above have not yet 

considered the object surface materials in guiding their 

disinfection tasks. This could lead to two undesirable 

consequences: (1) the robot may not completely disinfect 

high-risk surfaces; (2) the disinfection mode may not be 

suitable for certain object surfaces (e.g., a wipe-based robot 

is not suitable for fabric and paper surfaces). There still lacks 

a computational model that considers the interactions of 

human-pathogen-fomite and links surface materials with 

robotic disinfection modes and parameters.  

Second, recognizing materials is challenging due to a diverse 

range of appearances and spatially invariant features. Existing 

studies, such as Deep-Ten (Zhang, et al., 2017) and (Xue, et 

al., 2018), aim to capture spatially invariant features of 

materials with the integration of an orderless feature pooling 

layer in an end-to-end learning fashion. The DSRNet (Zhai, et 

al., 2020) is another network that periodically captures 

recurrent features by learning the inherent spatial 

dependency of multiple primitives from different directions. 

However, their networks cannot capture low-level texture 

and color information, which is important for material 

recognition tasks. In the latest study, CLASSNet (Chen, et al., 

2021) utilized the information from different layers which 

achieved state-of-the-art performance on material 

recognition, even though spatially invariant features were not 

captured. No study to our knowledge has utilized the multi-

scale features for material representations. Furthermore, 

there lacks a network to learn both multi-level and multi-scale 

features simultaneously and to encode these features in an 

orderless manner to capture spatially invariant features. 

3 METHODOLOGY 

The disinfection robot can navigate in a building and 

recognize potentially contaminated areas based on our 

developed method (Hu, et al., 2020a). The robot then moves 

to the proximity of the contaminated objects needing 

disinfection and adapts UVC light scanning trajectories. The 

limitation of the robot is the lack of capability in recognizing 

surface materials and computationally linking these materials 

to robotic disinfection parameters, which impacts its 

disinfection efficiency. This study aims to address this 

limitation by developing a new computational process and 

material recognition network to enable the robot to adapt its 

disinfection modes and parameters. Figure 2 presents an 

overview of the research framework of this paper. First, a 

deep learning network is proposed to recognize the object 

surface materials captured by the disinfection robot. The 

proposed network integrates multi-level CNN features, which 

leverages both low and high-level information to capture 

semantic and texture information. High-level features can 

capture semantic features, which are abstract 

representations of the material. Low-level features can 

capture more subtle details such as texture information. The 

Atrous Spatial Pyramid Pooling (ASPP) module can extract 

multiscale features by resampling feature maps at multiple 

rates. The ASPP module increases the size of the receptive 

field without compromising the feature map resolution. Our 

network further integrates an encoder component, which 

combines both orderless and local spatial feature pooling. The 

encoder can preserve texture and ordered spatial information 

from different layers, which can better capture spatially 

invariant features of materials.  

Second, a fomite transmission model considers fomite-

pathogen-human interactions to compute the risk of infection 

from object surfaces given the recognized material. The 

estimated infection risk is then used to determine the log10 

reduction needed to reduce viral bioburden on the object 

surface to below safety target levels. The required log10 

reduction in bioburden is used to optimize the disinfection 

parameters (i.e., exposure time, distance, and irradiance) for 

the robot to implement. Finally, experiments are conducted 

in three parts. First, disinfection mode and parameters for 

different object surfaces are analyzed. Second, the proposed 

material recognition network is evaluated on the Material in 

Context Database (MINC) and an additional material dataset 

collected in the context of healthcare facilities. The network 

is then compared to other state-of-the-art methods followed 

by an ablation study to evaluate the effectiveness of each 

module in the network. Third, the adaptive robotic 

disinfection framework is implemented in a fully modeled 

patient room. 

 

FIGURE 1. Overall research framework of this paper 
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FIGURE 3. Flowchart of the proposed network

3.1 Material recognition network 

Material recognition is needed to determine a suitable 

disinfection method for a surface. A deep learning-based 

classification network is proposed to recognize the materials 

of contaminated surfaces. Figure 3 presents an illustration of 

the proposed network, which is composed of four 

components: the backbone, a multi-level feature fusion, 

Atrous Spatial Pyramid Pooling (ASPP), and an encoder. Each 

component is detailed below.  

Backbone. The classification model is designed based on the 

EfficientNet-B4 network proposed in Tan and Le (2019). The 

EfficientNet-B4 network is small and fast on inference. The 

input is first fed into a 3X3 convolution, batch normalization, 

and activation layer. The outputs are then fed into 7 inverted 

residual blocks, also known as MBConv blocks (Tan and Le, 

2019), optimized by the squeeze-and-excitation method (Hu 

et al., 2020b). MBConv[N] represents an MBConv with an 

expansion factor of N. MBConv1 is a depth wise separation 

block without the expansion operation. The MBConv6 block is 

the inverted residual block with an expansion factor of 6. The 

number of sub-blocks for the 7 MBConv blocks are 2, 4, 4, 6, 

6, 8, and 2, respectively.  

Multi-feature integration. The multi-level features are 

innovatively extracted in this study to capture the low-level 

texture and color information and the high-level semantic 

information. Specifically, the outputs from the last three 

MBConv blocks are extracted and separately fed into the 

ASPP component. The multi-level CNN features are extracted 

to utilize features from different layers of the EfficientNet-B4 

network. The reason for multi-layer feature fusion is that 

texture details learned from the shallow layers tend to vanish 

with going deeper into the layer . The texture details learned 

from the low-level features are important for material 

recognition. The features from multiple layers can capture 

complementary information and a combination of these 

features can improve performance. 

ASPP. The ASPP is used to obtain multi-scale context 

information (Chen et al., 2018). The outputs from the last 

three MBConv blocks are separately fed into the three ASPP 

layers. The ASPP layer consists of three Atrous convolutions 

with rates of 1, 4, and 8 and one global average pooling layer. 

Different rates of Atrous convolution have different sizes for 

their receptive fields. Since material textures are typically 

translationally invariant, a larger size for the receptive field 

can better capture spatial repetition features. The ASPP layer 

can extract multi-scale features while preserving the 

resolution of the features. The features extracted from 

multiple rates and the pooling layer are fused as the global 

features. The kernel sizes for Atrous convolutions are 1×1, 

3×3, and 3×3. Atrous convolution is a generalized standard 

convolution and expands the window size to capture large 

features without adding computational cost by inserting zero-

values into the convolution kernels. The outputs of the ASPP 

layer are then fed into a 3×3 convolutional layer with batch 

normalization. 

Encoder. Since material properties are usually translationally 

invariant, material recognition methods need to capture an 

orderless measure encompassing some spatial repetition. 

Previous studies have shown that orderless pooling, like the 

Fisher Vector (FV), works better than order-sensitive pooling 

in material recognition (Cimpoi, et al., 2016). The CNN 
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combined with orderless pooling encoders, such as BOW, FV, 

and Vector of Locally Aggregated Descriptors (VLAD), has 

been demonstrated to be effective in material classification 

(Cimpoi, et al., 2016). The proposed encoder module consists 

of a texture encoding network (TEN) (Zhang, et al., 2017) and 

local spatial pooling (LSP).  

The TEN is used to build dictionary learning to extract visual 

codewords. The TEN can encode CNN features in an orderless 

manner, such as FV and VLAD, using a residual layer. The input 

of the TEN component is the output from the ASPP module 

with a shape of C×H×W, where C is the dimension and H×W 

represents the size of the ASPP outputs. The feature map is 

formed as a C-dimensional feature vector X = {x1, … xm}, where 

m represents the feature number for each channel. The TEN 

layer learns an inherent codebook C = {c1, … ck} and smoothing 

factors S = {s1, … sk}. The definition of residual encoding vector 

for the codeword cj is given in Eq. (1), where rij is the residual 

vector calculated as rij = xi - cj. The TEN layer aggregates CNN 

features into residual encoding vectors E = {e1, … ek}. Note 

that increasing the number of codewords has the potential to 

capture more detailed texture information. 

𝑒𝑗 = ∑
𝑒

−𝑠𝑗‖𝑟𝑖𝑗‖
2

∑ 𝑒−𝑠𝑛‖𝑟𝑖𝑛‖
2

𝑘
𝑛=1

𝑟𝑖𝑗
𝑚
𝑖=1                         (1)            

To capture spatial information, the outputs from the ASPP 

module are fed into a 3×3 convolutional layer with a stride of 

2 and a batch normalization operation to standardize the 

outputs. A two-dimensional adaptive average pooling is then 

applied over the outputs from the batch normalization. A fully 

connected (FC) layer is used for feature dimension reduction.  

A bilinear model is used to fuse outputs from the TEN and LSP 

by multiplying their feature maps using the outer product. 

The outer product captures the correlations of orderless 

features and local spatial descriptors. The bilinear function is 

given by Eq. (2), where u  Rd is the output from the TEN 

network, v  R
d
 is the output from the LSP layer, f  R

dxd
 is the 

output of the bilinear model. 

𝒇 = 𝒖 ⨂ 𝐯                                    (2) 

Table 1 displays the detailed architecture of the proposed 

network. The input image size is 224x224x3. The outputs 

dimension from the Efficientnet_B4 module is 448x7x7, which 

is fed into the ASPP modules. The dimension of the outputs 

from the ASPP1, ASPP2, and ASPP3 are 512x14x14, 1024x7x7, 

and 1024x7x7, respectively. The channels of the outputs from 

the ASPP modules are reduced to 384 using a convolutional 

layer. The outputs are then passed to the Encoder modules, 

which consist of the TEN and LSP layers. There are 8 

codewords for the TEN layers. The feature dimensions from 

the TEN is 1x3072, which is then fed into an FC layer to reduce 

the feature dimension to 1x64. The LSP first applies a 

convolutional and batch normalization operation, and then 

the average pooling operation is conducted. An FC layer is 

applied as a dimension reduction step for outputs from the 

pooling layer. The dimensions of outputs from the TEN and 

the LSP are both 1x64. The bilinear model is then used to fuse 

the outputs from these two modules together, with an output 

of 1x4096. The outputs from Encoder1, Encoder2, and 

Encoder3 are concatenated together as a 1x12288 feature 

vector. Note that L2 normalization is used for the outputs 

from the TEN layer and the bilinear model. Finally, a fully 

connected classifier is used to classify the image. 

TABLE 1. Architecture of the proposed network. ‘KS’ is kernel 

size; ‘OS’ is output size; ‘#CN’ is the number of channel; ‘#LN’ 

is the number of layer. 

Module Operator KS OS #CN #LN 

EfficientN

et-B4 

Conv+BN+Swish 3x3 224x224 48 1 

MBConv1 3x3 112x112 24 2 

MBConv6 3x3 112x112 32 4 

MBConv6 5x5 56x56 56 4 

MBConv6 3x3 28x28 112 6 

MBConv6 5x5 14x14 160 6 

MBConv6 5x5 7x7 272 8 

MBConv6 3x3 7x7 448 2 

ASPP1 

Atrous Conv1 1x1 14x14 128 1 

Atrous Conv2 3x3 14x14 128 1 

Atrous Conv3 3x3 14x14 128 1 

Pooling+Conv+B

N+Relu 
1x1 14x14 128 1 

Concatenate - 14x14 512 1 

 Conv+BN 1x1 14x14 384 1 

ASPP2 & 

ASPP3 

Atrous Conv1 1x1 7x7 256 1 

Atrous Conv2 3x3 7x7 256 1 

Atrous Conv3 3x3 7x7 256 1 

Pooling+Conv+B

N+Relu 
1x1 7x7 256 1 

Concatenate - 7x7 1024 1 

 Conv+BN 1x1 7x7 384 1 

Encoder1 

TEN - 1 3072 1 

FC - 1 64 1 

Conv+BN 3x3 6x6 192 1 

Pooling 6x6 1x1 192 1 

FC - 1 64 1 

Bilinear mapping - 1 4096 1 

Encoder2 

& 

Encoder3 

TEN - 1 3072 1 

FC - 1 64 1 

Conv+BN 3x3 3x3 192 1 

Pooling 3x3 1x1 192 1 

FC - 1 64 1 

Bilinear mapping - 1 4096 1 

 Concatenate - 1 12288 1 

Classifier 
FC - 1 256 1 

Classification - 1 9 1 

3.2 From material to disinfection 

In this section, we elaborate on how to enable the robot to 

adapt its disinfection mode and parameters by utilizing the 

material information. The fomite transmission risk for 

different surfaces is critical in determining the disinfection 

practice needed to prevent the spread of pathogens. For 
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surfaces that have a higher infectivity risk, a higher 

disinfection level is needed for complete disinfection.  

The concentration of bacteria and viruses undergoes an 

exponential decay in the survival period on different surfaces 

(Guo et al., 2021). The concentration of bacteria and viruses 

at different times is given in Eq. (3), where C0 is the initial 

concentration, t is the time in hours, and λ is the inactivation 

rate. 

𝐶ℎ = 𝐶0 × 𝑒−𝜆𝑡                                    (3) 

The parameter λ can be estimated based on pathogen 

survivability on surfaces. In Chin, et al. (2020), SARS-CoV-2 

was found to not be detectable when the concentration was 

smaller than 100 TCID50/mL, which is around 0.02% of the 

initial concentration on wood surfaces. Therefore, 0.02% is 

used as the survival fraction for pathogens at the end of the 

survival periods shown in Table 2. The parameter λ can be 

calculated as ln5000/st, where st is the survival time of the 

pathogen. 

A stochastic-mechanistic model developed by Pitol and Julian 

(2021) is adapted in this study to estimate the infection risk 

from contaminated surfaces with different materials. The 

model is built based on surface-to-hand-to-mucous contact. 

The transfer of a pathogen from surface-to-hand is first 

calculated in Eq. (4), where Ch is the bacteria and virus  

concentration on the surface at time h, c_PFU is the 

conversion factor from Genome copies and Colony-forming 

unit to the infectious virus in PFU, eff is the pathogen recovery 

efficiency from surfaces, TEsh is the transfer efficiency of the 

pathogen from surface to hand, α is log10 reduction in the 

number of bacteria and virus, and Chand is the concentration 

on the hand. 

𝐶ℎ𝑎𝑛𝑑 =
𝐶ℎ

𝑒𝑓𝑓
× 𝑐_𝑃𝐹𝑈 × 𝑇𝐸𝑠ℎ ×

1

10𝛼               (4) 

The transfer of the pathogen from hand-to-mucous can be 

approximated by the concentration of pathogens on the hand 

and the transfer efficiency, which is defined in Eq. (5), where 

TEhm is the transfer efficiency from the hand to mucous, and 

FSA represents the fractional surface area in contact with the 

mucous membranes, and D is the infectious dose. 

𝐷 = 𝐶ℎ𝑎𝑛𝑑 × 𝑇𝐸ℎ𝑚 × 𝐹𝑆𝐴                           (5) 

The infectious dose is then used to estimate the risk of 

infection using Eq. (6), where k represents the dose-response 

parameter.  

𝑃 = 1 − 𝑒−𝑘𝐷                                   (6) 

The log10 reduction of the viral bioburden on surfaces 

represents the level of disinfection needed, with a greater 

value representing a higher disinfection level. The risk 

threshold is set to 10-6, which is the U.S. EPA threshold for 

water quality, based on various representative infectious 

diseases (Boehm, 2019). The robot needs to adapt 

disinfection parameters to lower the infection risk below 10-

6. The required log10 reduction is an input parameter to 

calculate the disinfection parameters for our UV-disinfection 

robot (Hu, et al., 2020a) with the applicable exposure time, 

distance, and irradiance. The bacteria and virus decay when 

exposed to UVC light can be estimated as a first-order decay 

rate model (Kowalski, 2009), which is defined in Eq. (7), where 

α is log10 reduction needed to lower infection risk below 10-6. 

ρ is the UVC inactivation rate (m
2
/J), ED is the UVC exposure 

dose (J/m2). 

1

10𝛼 = 𝑒−𝜌×𝐸𝐷                                       (7) 

The inactivate rate ρ is 0.0343 m2/J for coronavirus (Bouri and 

Shatalov, 2020). The UVC exposure dose ED is calculated in Eq. 

(8), where Ir (W/m
2
) is the UVC irradiance at 1cm, Et is the UVC 

exposure time in seconds, and d represents the distance 

between UVC light and object surfaces.  

𝐸𝐷 =
1

𝑑2 × 𝐼𝑟 × 𝐸𝑡                                      (8) 

4 EXPERIMENT AND RESULTS 

This section details the analysis of disinfection mode and 

parameters, evaluation on material recognition network, and 

implementation.  

4.1 Analysis of disinfection mode and parameters 

4.1.1 Experiment settings  

Healthcare facilities contain different types of units that serve 

patients battling with different illnesses, providing habitats 

and transmission pathways for various infectious pathogens. 

In this study, SARS-CoV-2 and Escherichia coli (E. coli) are 

selected as the representative examples to illustrate how to 

transfer material information to disinfection practices. SARS-

CoV-2 continues to lead to outbreaks of COVID-19 in 

healthcare facilities. E. coli has been identified as the major 

cause of urinary tract infections in healthcare facilities 

(Bergeron et al., 2012). Patients infected with SARS-CoV-2 and 

E. coli are typically diagnosed in the pulmonology and urology 

departments and are hospitalized in different patient rooms. 

Therefore, the disinfection practices need to be adapted 

according to the prevalent infectious pathogens present in 

different types of hospital rooms. 

Table 2 presents the survival time and transfer efficiency for 

SARS-CoV-2 and E. coli on different surfaces. As indicated, 

SARS-CoV-2 and E coli. can generally survive longer on hard 

surfaces than on soft surfaces. For instance, SARS-CoV-2 can 

stay active for 7 days on metal and plastic but only 3 hours on 

paper (Chin, et al., 2020). Note that the survival time of SARS-

CoV-2 is used for each material except for ceramic. The 

survivability of HCOV-229E, which is also a species of 

coronavirus, on ceramic is used instead.  
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TABLE 2. The survival time and transfer efficiency for SARS-CoV-2 and E. coli 

Surface type Material 
SARS-CoV-2 E. coli 

Survival time Transfer efficiency (%) Survival time Transfer efficiency (%) 

Soft 

Fabric 2 days [1] 0.73[2] 4 – 56 days [3] 5.32[2] 

Leather 1 day [4] 7.00[5] - - 

Paper 3 hours [1] 0.55[2] 1 – 96 hours [6] 0.08[2] 

Hard 

Ceramic 5 days [7] 24.15[2] 14 days [8] 36.15[2] 

Glass 4 days [1] 43.30[2] 1 – 14 days [3] 41.85[2] 

Metal 7 days [1] 21.95[2] 14 – 60 days [3] 28.95[2] 

Plastic 7 days [1] 50.60[2] 24 h – 300 days [3] 47.00[2] 

Polished stone  5 days [9] 20.10[2] - 21.9[2] 

Wood 2 days [1] 31.50[10] 2h – 28 days [3] - 

Note: [1,4,9] are sources of survival time for SARS-CoV-2 (Chin, et al., 2020; Anderson and Boehm, 2021; Virtanen et al., 2021). [7] provides the 

survival time of HCOV-229E on ceramic (Warnes et al., 2015). [3] is sources of survival time for E. coli (Wißmann et al., 2021). [6] provides the survival 

time of Francisella tularensis on paper (Richter et al., 2019). [8] is the survival time of Klebsiella pneumoniae on ceramic (Esteves et al., 2016). [2] is 

the source of transfer efficiency for MS2 and E. coli (Lopez, et al., 2013). Refs. [5,10] are sources of transfer efficiency for MS2 (Anderson and Boehm, 

2021; Castaño et al., 2021)

For fomite-to-hand transfer efficiency, data from MS2 

coliphage are used due to the unavailability of SARS-CoV-2 

transmission data. MS2 and SARS-CoV-2 are both single-

stranded RNA viruses, which have similar transfer 

mechanisms from fomite to humans. Furthermore, MS2 has 

been used as a surrogate to facilitate the investigation of 

transmission and disinfection of SARS-CoV-2 (Castaño, et al., 

2021). Table 2 also presents the survival time and transfer 

efficiency used for E. coli. Note that for the survival time of E. 

coli on paper and ceramic, Francisella tularensis and Klebsiella 

pneumoniae are used, as they are both gram-negative 

bacteria like E. coli.  

Data collected at different surfaces indicated that the 

concentration of SARS-CoV-2 varied from 0.1 to 102.4 gc/cm
2
 

(Harvey et al., 2020; Abrahão et al., 2021). For E. coli, the 

concentration varied from 0.1 to 15.8 CFU/cm2 (Trindade et 

al., 2014; Cinar and OnbaŞI, 2021) on contaminated surfaces. 

In this study, the initial concentration of SARS-CoV-2 and E. 

coli are assumed to be 100 gc/cm2 and 10 CFU/cm2, 

respectively. Table 3 gives the input parameters and their 

distributions used to estimate required log10 reduction. 

TABLE 3. Input parameters 

Parameter Unit SARS-CoV-2 E. coli 

TEhm unitless Normal (0.20, 0.06) [a] 
FSA cm2 Uniform (4, 6) [b, c]  
k PFU-1 Triangle (0.00107, 0.00246, 0.00680) [d]  
eff unitless Normal (0.6, 0.266)[e]  

c_PFU unitless 
Uniform 

(0.01,0.001) [d]  
Uniform 

(0.01,0.05) [f]  

Note: [a] is ref. (Pitol et al., 2017); [b] is ref. (AuYeung et al., 2008); [c] is 

ref. (Pitol and Julian, 2021); [d] is ref. (Kraay et al., 2018); [e] is ref. 

(Harvey, et al., 2020); [f] is ref. (Mudgal et al., 2006). 

4.1.2 Analysis of results  

The Monte Carlo simulation is used to estimate the infection 

risk by incorporating the input parameters’ distributions. The 

model is simulated 50,000 times and the median risk values 

are reported. The survival time of E. coli is assumed to be a 

uniform distribution within the range. Figure 4 shows the 

estimated infection risk for different surfaces and the 

required log10 reduction to lower risk to below 10-6. The 

results indicate that infection risks of SARS-CoV-2 and E. coli 

for plastic, glass, metal, ceramic, and polished stone are 

higher than 10-4 within 12 hours. Soft surfaces, such as leather 

and plastic, have a lower infection risk compared to hard 

surfaces, such as plastic, glass, and metal. In addition, paper 

surfaces show a low infection risk, which is smaller than 10
-6

.  

In cleaning and disinfection practices, the disinfection dose 

should be higher than needed to meet the disinfection 

requirements (Collivignarelli et al., 2018). Therefore, the log10 

reduction is rounded up to an integer to ensure the object 

surfaces are completely disinfected. As indicated in Figure 4, 

the required log10 reduction is decreasing over time for both 

SARS-CoV-2 and E. coli. However, the decreasing trend for E. 

coli is much smaller than that of SARS-CoV-2 due to its long 

persistence period. The results indicate that fabric and leather 

surfaces contaminated with SARS-CoV-2 need no log10 

reduction after 11 hours. A 2 log10 reduction would result in a 

risk of less than 10-6 for leather when the infection risk is 

relatively high for the first several hours. For fabric, log10 

reductions of 1 and 2 are needed to achieve an infection risk 

of less than 10-6 for SARS-CoV-2 and E. coli, respectively. For 

ceramic, glass, metal, plastic, and polished stone, a 3 log10 

reduction is needed to lower the infection risk below 10-6 for 

SARS-CoV-2 and E. coli. Note that paper doesn’t require 

disinfection because of its infection risk of below 10-6 for both 

SARS-CoV-2 and E. coli. To be conservative, a 0.5 log10 

reduction of bioburden is used for the paper surfaces. 

The disinfection methods used in infrastructure facilities 

typically consist of UVC light, spray mode, and wipe mode. 

Each mode has its advantages and disadvantages and 

selecting the suitable mode depends upon the type and 

condition of the contaminated surfaces. Table 4 provides the 

disinfection mode and required log10 reduction to lower the 

risk below 10-6 for different surfaces. Note that log10 

reductions for SARS-CoV-2 and E. coli in Table 4 were 
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obtained within the first several hours when the risk was high. 

The wipe disinfection mode is not suitable for fabric and 

paper. For paper materials, the spray mode is also not 

applicable. For leather and hard surfaces, all disinfection 

methods are considered to be applicable modes. The 

disinfection level has different implementation methods for 

each disinfection mode. For UVC light, the disinfection level 

can be achieved by changing the distance, irradiance level, 

and exposure time. For wipe mode, the variables include wipe 

force, contact time, and disinfectant concentration. The spray 

mode can change the disinfectant concentration and amount 

to achieve different disinfection levels. 

Figure 5 gives an example of the disinfection parameters for 

plastic and fabric surfaces contaminated by SARS-CoV-2. To 

reduce the infection risk below 10-6, log10 reductions of 3 and 

1 are needed for plastic and fabric, respectively. The UVC light 

irradiance varies from 100 to 1000 W/m2. The exposure time 

is set from 1 to 60 seconds. The minimum distance from the 

UVC light to the contaminated surfaces is 1 cm. The robot can 

then select suitable disinfection parameters for efficient 

disinfection.

 

FIGURE 4. Risk of infection variation over time. (a) SARS-CoV-2; (b) E. coli

TABLE 4. Disinfection mode and level for different materials 

Surface type Material 
Disinfection mode Log10 reduction 

Wipe Spray UVC light SARS-CoV-2 E. coli 

Soft 

Fabric -   1 2 

Leather    2 - 

Paper - -  0.5 0.5 

Hard 

Ceramic    3 3 
Glass    3 3 
Metal    3 3 
Plastic    3 3 
Polished stone     3 - 
Wood    3 - 
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FIGURE 5. UV disinfection parameters for SARS-CoV-2. (a) Fabric; (b) plastic.

4.2 Evaluation on material recognition network 

4.2.1 Dataset 

The training dataset is prepared using the Materials in 

Context Database (MINC), which is a large dataset collected 

from a variety of contexts (Bell, et al., 2015). The MINC 

contains 2,996,674 single point clicks across 436,749 images, 

and each click is associated with one of 23 material classes. 

This study aims to recognize the materials needing 

disinfection in infrastructure facilities. Some materials like 

skin and sky in the MINC are not applicable and are discarded 

for this study. In total, we select 9 types of materials that are 

commonly seen in infrastructure facilities. These material 

classes are fabric, leather, paper, ceramic, glass, metal, 

plastic, polished stone, and wood. To train the CNN model, 

square image patch data was extracted from the original 

images. The patch center is defined as the click point, and the 

size of the patch is 362x362. In many cases, patch areas may 

go beyond the border of images. Out-of-image pixels were 

filled with RGB (0,0,0). Note that if the out-of-image pixels 

number are greater than 262 at any of the two directions, the 

patch will be removed from the dataset. The patch counts for 

each material class are shown in Table 5. The training, 

validation, and test datasets are obtained from the provided 

train/validation/test splits, which include 1,208,285, 86,228, 

and 142,857 patches, respectively. Figure 6 presents example 

patches for each material. 

TABLE 5. Sample counts for each material in train, validate 

and test sets 

Material Train Validate test 

Fabric 299,929 21,270 36,254 
Leather 62,372 4,480 7,313 
Paper 17,797 1,242 2,173 
Ceramic 21,644 1,571 2,747 
Glass 153,492 10,958 17,910 
Metal 137,998 9,897 15,850 
Plastic 31,282 2,146 3,661 
Polished stone 85,196 6,054 9,855 
Wood 39,8575 28,610 47,094 

 

FIGURE 6. Example patches from all 9 material classes with context. Note that the patch center is the associated material (not necessarily the entire 

patch)
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4.2.2 Implementation details 

The models were trained using the PyTorch backend (Paszke 

et al., 2019) with Dual NVIDIA Quadro P5000. The Stochastic 

Gradient Descent (SGD) optimizer was used with a learning 

rate of 0.002. The learning rate is divided by 10 for every 

epoch. The batch size is 128, the weight decay is 0.0001, and 

the momentum is 0.9. The pretrained weights on ImageNet of 

the EfficientNet-B4 backbone were used. The model that 

achieved the best score on the validation dataset is saved and 

used to further evaluate on the test dataset. Following the 

precedent set by existing literature (Zhang, et al., 2017; Xue, 

et al., 2018), the patches are first resized to 256x256. Training 

samples were augmented by taking random crops measuring 

224x224 out of the total 256x256. Horizontal and vertical 

mirror flips are applied to improve the generalization 

capability of the network. 

4.2.3 Results of material recognition 

Figure 7 presents the confusion matrix and Barnes-Hut t-SNE 

visualization of the material classifications on the validation 

and test datasets. The trained model achieves high overall 

accuracy on the validation and test sets, measuring 92.24% 

and 91.84%, respectively. However, since the validation and 

test datasets are both imbalanced, recall is a better metric to 

evaluate the model. Therefore, the confusion matrix is 

normalized so that diagonal values represent recall for each 

class. Recall is calculated as the ratio of correctly predicted 

positives to true positive elements. This is used to measure 

the model’s predictive accuracy for the positive class. The 

material wood and fabric achieve a high recall score of 95% 

on both validation and test sets. The glass and polished stone 

achieve the second-highest score at 92%. A high recall score 

indicates the predictive power of the trained model on these 

classes. Plastic has the lowest recall score, 71%, and 10% of 

plastics are falsely classified as metal. Misclassifying plastic as 

metal will not cause a change in the disinfection level because 

both plastic and metal require 3 log10 reductions to reduce 

infection risk to below 10-6. Furthermore, plastic and metal 

are both suitable for the wipe, spray, and UVC light 

disinfection modes. Therefore, plastic classified as metal will 

not pose a health risk. However, 12% of leathers are 

misclassified as fabric, which does have an impact on the 

disinfection level. This is because fabric requires a log10 

reduction of 1 to reduce infection risk to target safety level, 

but a log10 reduction of 2 is required for leather surfaces. As a 

result, this will potentially cause an incomplete disinfection of 

the leather surface. 

 

FIGURE 7. The confusion matrix and Barnes-Hut t-SNE visualization of our method. For confusion matrix, rows are actual classes and columns are 

predictions; for Barnes-Hut t-SNE, 1110 images for each material class were randomly selected. Each point is associated with an image. The feature 

map before the classifier was extracted and used for t-SNE visualization 
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The Barnes-Hut t-SNE (Van der Maaten and Hinton, 2008) 

algorithm is adopted to visualize CNN feature maps in 2D, 

which is a tool to visualize high-dimensional features. The t-

SNE algorithm assigns a high probability to similar objects and 

a low probability for dissimilar objects to construct a 

probability distribution over pairs of high-dimensional data. 

The T-SNE also constructs a probability distribution over pairs 

in the low-dimensional map. The location of the points in the 

map is determined by minimizing the Kullback-Leibler 

divergence between two distributions. In this study, Principal 

Component Analysis (PCA) (Wold et al., 1987) is first applied 

to the feature map to reduce its dimension to 50. The outputs 

of PCA are then fed into the t-SNE algorithm. The t-SNE 

algorithm converts the data into a 2D matrix. A relatively large 

perplexity value of 150 is used in the t-SNE to capture the 

global structure of the data (Kobak and Berens, 2019). 

Figure 7 shows a two-dimensional (2D) representation of the 

CNN feature map extracted from the layer before the last FC 

layer. The inputs for the t-SNE visualization are the material 

class and extracted CNN features. The CNN feature is 1×1 pixel 

size only, but with 256 channels. These 256 numbers are 

essentially all the features that the network extracted from 

the input image. For both validation and test sets, 1110 

images are randomly selected from each class for 

visualization. Each point is associated with an image, and the 

distance between points approximates the original Euclidean 

distance in the high-dimensional features. If two image 

features are similar to each other, they will stay close in the 

resulting projection in the 2D map. The point color represents 

its related material classes. The t-SNE plots indicate that 

points from the same class are organized into clusters, which 

is an indicator of good differentiation between images of 

different classes using features before the last fully connected 

layer. The separated clusters indicate that the proposed 

network can understand the material data and its classes and 

is able to differentiate them. The results also highlight the 

relation between the clusters (i.e., connected clusters 

indicate there are some semantic relations between 

materials). For example, the material clusters leather and 

fabric are connected to each other. These two materials are 

similar to each other compared to other materials in real life. 

This is because leather and fabric are both soft materials, and 

they are popular materials for furniture upholstery. 

Therefore, it is more challenging for the network to 

differentiate between these two materials. 

To further evaluate the model performance in the context of 

healthcare facilities, we manually labeled 1,173 patches 

consisting of 9 material classes. Hospital images were first 

downloaded from Google Images. These images contained 

different rooms at hospitals, such as the operating room, the 

consulting room, the intensive care unit, hallways, day rooms, 

the ward, and restrooms. We then collected clicks (i.e., single 

points) in images and assigned material labels to each point. 

To increase the accuracy of our labels, we only collected clicks 

with explicit materials. Table 6 presents sample counts for 

each material. Figure 8 presents example labeled patches for 

each material in the context of healthcare facilities. 

TABLE 6. Sample counts for each material in hospital dataset 

Material Count Material Count 

Fabric 176 Metal 127 
Leather 100 Plastic 100 
Paper 100 Polished stone 100 
Ceramic 135 Wood 142 
Glass 193   

 

FIGURE 8. Example patches from all 9 material classes at hospitals. Note that the patch center is the associated material  
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Figure 9 presents the results of the model evaluation on the 

hospital material dataset. The overall accuracy of the trained 

model is 89.09%. The confusion matrix indicates that plastic 

has the smallest recall score at 60%. The recall of plastic is also 

the smallest on the MINC validation and test sets. This may be 

attributed to relatively small number of plastic samples in the 

training set, and the fact that plastic features are similar to 

other materials like metal and ceramic. The top three false 

negatives for plastic are leather, ceramic, and metal. 

Misclassifying plastic as leather will lead to a smaller log10 

reduction, which potentially cause inadequate disinfection. 

The recall score for leather is 87%, which 13% of the leather 

samples falsely classified as fabric. Other materials achieve 

high recall scores, demonstrating the efficiency of the trained 

model. The t-SNE plot shows the same materials are clustered 

together. The fabric and leather clusters are found to be close 

to each other. Figure 10 presents correct and incorrect 

predictions on the hospital material dataset with high 

confidence. 

 

FIGURE 9. The confusion matrix and Barnes-Hut t-SNE visualization of our method on hospital dataset  

 

FIGURE 10. Samples with high confidence predictions in hospital material dataset. The first row is correct predictions, and the 

second row is incorrect predictions (T: actual material, P: predicted). The percentages shown are at least this confident 
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4.2.4 Comparison to the state-of-the-art methods 

We further evaluated the proposed network by comparing it 

to state-of-the-art methods on six material/texture datasets. 

These datasets are described as follows. (a) A subset of 

Material in Context Database (MINC) (Bell, et al., 2015) 

datasets called MINC-2500 contains 23 material classes and 

2,500 images per class. (b) Flicker Material Dataset (FMD) 

(Sharan et al., 2014) contains a total of 1000 images that are 

equally distributed across 10 material categories, which has 

been used as an evaluation benchmark. (c) Ground Terrain in 

Outdoor Scenes Dataset (GTOS) (Xue, et al., 2018) contains 

more than 30,000 images with 40 material classes. (d) GTOS-

Mobile (Xue, et al., 2018) is a ground terrain dataset captured 

by mobile phones that consists of 93,945 training images and 

6,066 testing images. (e) Describable Textures Database 

(DTD) (Cimpoi et al., 2014) is a texture database consisting of 

5640 images covering 47 classes. Each class consists of 120 

images. (f) KTH-TIPS-2b (KTH) (Mallikarjuna et al., 2006) is a 

material dataset, which is composed of 11 material classes 

with four samples per class. Each sample contains 108 images. 

For a fair comparison with other methods (Zhai, et al., 2019; 

Zhai, et al., 2020; Chen, et al., 2021), the evaluation is based 

on the provided train-test random splits for MINC-2500, DTD, 

GTOS-Mobile, and GTOS datasets. As for FMD, the dataset is 

randomly split into a train-test split in each run with 90 images 

per class used for training and 10 images used for testing. For 

KTH, three samples are randomly picked for training and the 

rest for testing in each run. The results are based on the 5-

time run statistics for all the datasets. The learning rate is 0.01 

and decays by a factor of 0.1 for every 10 epochs on MINC-

2500. For FMD, GTOS, GTOS-Mobile, DTD, and KTH, the 

learning rate is set to 0.01. The network is trained using 

momentum of 0.9, weight decay of 0.0001. The training is 

finished in 30 epochs.  

The performance of the proposed method is compared with 

the Fisher Vector CNN (FV-CN) with a VGG-VD backbone 

(Cimpoi, et al., 2016), Bilinear-CNN (B-CNN) (Lin and Maji, 

2016), Locally-Transferred Fisher Vectors (LFV) (Song, et al., 

2017), First and Second-Order information fusion Network 

(FASON) (Dai et al., 2017), Deep Texture Encoding Network 

(Deep-TEN) (Zhang, et al., 2017), Deep Encoding Pooling 

Network (DEP) (Xue, et al., 2018), Deep Multiple-Attribute-

Perceived Network (MAPNet) (Zhai, et al., 2019), Multi-level 

Texture Encoding and Representation Network (MuLTER) (Hu 

et al., 2019), Deep Structure-Revealed Network (DSRNet) 

(Zhai, et al., 2020), and Cross-Layer Aggregation of Statistical 

Self-similarity (CLASSNet) (Chen, et al., 2021). Table 7 

presents the comparison results with these state-of-the-art 

methods. It should be noted that data distribution is different 

across the six datasets, which leads to varied performance. In 

addition, the dataset size and the material categories are also 

different among different datasets, which could also influence 

the model performance. Our method has the highest accuracy 

on the six datasets compared to the other texture/material 

recognition methods. Specifically, our method showed an 

improvement of 1.9%/2.2%/0.5%/1.4%/0.3%/0.2% in mean 

accuracy on MINC-2500, FMD, GTOS, GTOS-Mobile, DTD, and 

KTH compared to state-of-the-art methods, respectively. The 

comparison with the state-of-the-art methods demonstrates 

the robustness and accuracy of our methods for the task of 

material recognition. 

The method performance is further compared to the Deep 

Encoding Pooling Network (DEP), which is the newest model 

available for our testing. This comparison aims to understand 

what kind of image features lead to misclassification by DEP, 

while our method can correctly recognize. The MINC-2500 

and DTD are selected for our comparison. Figure 11 shows 

some example images that are correctly classified by our 

method and misclassified by the DEP. There are two major 

challenging in the material/texture classification for these 

example images. First, some of these images are smooth and 

featureless. Second, some images show spatially invariant 

features. Our proposed method can capture both the low-

level texture and color information and the high-level 

semantic information, thus benefitting images with 

insignificant features. Furthermore, ASPP and the orderless 

encoder allow the network to learn the spatial repetitive 

features of material and textures.

TABLE 7. Comparison to state-of-the-art methods on six material/textures dataset 

Method 
MINC-2500 FMD GTOS GTOS-Mobile DTD KTH 

mean std mean std mean std mean std mean std mean std 

FV-CNN (VGG-VD) (2015)  - - 79.8 1.8 77.1 - - - 72.3 1.0 75.4 1.5 
B-CNN (2016)  - - 77.8 1.9 - - 75.43 - 69.6 0.7 75.1 2.8 
LFV (2017)  - - 82.1 1.9 - - - - 73.8 1.0 82.6 2.6 
FASON (2017)  - - - - - - - - 72.3 0.6 76.5 2.3 
Deep-TEN (2017)  81.3 - 80.2 0.9 84.5 2.9 76.12 - 69.6 - - - 
DEP (2018)  82.0 - - - - - - - 73.2 - - - 
MAPNet (2019)  - - 85.2 0.7 84.7 2.2 86.6 1.5 76.1 0.6 84.5 1.3 
MuLTER (2019)  82.2 - - - - - 78.2 - - - - - 
DSRNet (2020)  - - 86.0 0.8 85.3 2.0 87.0 1.5 77.6 0.6 85.9 1.3 
CLASSNet (2021)  84.0 0.6 86.2 0.9 85.6 2.2 85.7 1.4 74.0 0.5 87.7 1.3 
Ours 85.9 0.4 88.4 1.8 86.1 0.5 88.4 0.6 77.9 0.4 87.9 2.4 
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FIGURE 11. Example images in MINC-2500 and DTD that are misclassified by DEP while correctly classified by our method. T is the true class; P is the 
predicted class by DEP 

 

4.2.5 Ablation study 

To evaluate the proposed network, we study three 
components - the multi-level feature integration (ML), ASPP, 
and encoder (EC) - and summarize their effects on the model 
performance. The baseline model is generated by removing 
the integration of the three components, which becomes an 
EfficientNet-B4 network. The experiment is designed as 
follows. The effectiveness of each ML, ASPP, and EC 
component is evaluated by individually integrating them to 
the baseline model. A combination of either of the two 
components is also evaluated based on the accuracy metric. 
The performance is evaluated on the DTD and FMD. The 
results are listed in Table 8 for comparison. The results 
reported in the table represent the accuracy in the form of 
“mean ± s.t.d.%”. The experiment results are detailed below. 

Multi-level feature integration. In this part, we study the 
effects of multi-level feature integration, which is proposed to 
capture the low-level texture and color information and the 
high-level semantic information. As shown in Table 8, the 
multi-level feature significantly improves the model 
performance on DTD and FMD by 3.2% and 6%, respectively 
(baseline→baseline+ML). We also conduct experiments on a 
combination of ML with either of the ASPP and EC 
components. In detail, ML+ASPP and ML+EC combinations are 
evaluated, and the results indicate an improvement 
compared with only ML integration on DTD and FMD. The ML 
has the highest improvement compared to ASPP and EC, 
which highlights the effectiveness of multi-level features in 
material representation. 

ASPP. The ASPP component is used to capture multi-scale 
information, which can learn spatial repetitive features in 
material textures. Compared to the baseline, the integration 
of ASPP component improves the performance of the 
network by 1.1% and 3%, respectively 
(baseline→baseline+ASPP). ASPP+EC is found to be better 
than baseline+ASPP, which has an improvement of 1.3% and 
4% on DTD and FMD, respectively. 
Encoder. In this section, we evaluate the effectiveness of the 

encoder component, which is designed to capture both 

texture and local spatial information. As shown in table 8, the 

performance is improved by 1.6% and 5% 

(baseline→baseline+EC) on DTD and FMD, respectively. This 

comparison indicates that the EC component can improve 

model performance. As mentioned above, a combination of 

EC with ML or ASPP can further improve performance. 

TABLE 8. Ablation study on DTD and FMD. ‘ML’ is multi-level 
feature integration. ‘EC’ is the encoder 

Model ML ASPP EC DTD FMD 

Baseline    72.7±0.5 80.3±1.5 

 √   75.9±0.3 86.3±1.5 

  √  73.8±0.3 83.3±2.1 

   √ 74.3±0.4 85.3±1.5 

 √ √  76.5±0.3 87.0±1.0 

 √  √ 77.6±0.7 87.6±1.5 

  √ √ 75.1±0.9 87.3±2.3 
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Proposed √ √ √ 77.9±0.4 88.4±1.8 

4.3 Implementation 

The material-aware disinfection robot is tested in a virtual 

environment built based on a patient room at a healthcare 

facility. The room is used to hospitalize patients with COVID-

19. The disinfection robot equipped with UV light is used as 

an illustration. The disinfection robot first moves to 

potentially contaminated objects requiring disinfection. The 

images captured by the camera are then be fed into the CNN 

network to classify the surface materials. The disinfection 

robot can adapt the disinfection mode and the parameters 

according to the surface material. Figure 12 shows some 

example results on the disinfection of the overbed table, a 

door handle, a book, the seat of a chair, a sofa, and a vase in 

the patient room. The results indicate the proposed material 

recognition network can recognize the materials of the object 

surfaces needing disinfection, which can be leveraged to 

provide the disinfection mode and parameters for the 

disinfection robot. 

Figure 13 presents an implementation of robot disinfection 

using UVC light with suitable distance, irradiance, and 

exposure time. Note that the exposure time is only for the 

contaminated areas approximately under the UVC light 

reflective shield. For the entire object surfaces, the robotic 

arm will first identify waypoints to cover contaminated areas, 

and then plan its trajectory to each waypoint for disinfection. 

reported for each dataset.  

 

FIGURE 12. Example results of material classification on images captured by the robot. P: predicted material (confidence value 

in parentheses); D: disinfection dosage; M: disinfection mode; W: wipe; S: spray; U: UVC light 
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FIGURE 13. Implementation of robot disinfection with suitable parameter 

5 DISCUSSIONS 

Cleaning and disinfecting object surfaces in infrastructure 

facilities is critical to mitigating the spread of infectious 

pathogens and reducing the number of infections. The idea 

behind this work is to develop methods to recognize surface 

materials and to computationally link recognized materials 

with robotic disinfection modes and parameters. To this end, 

we first developed a new deep learning-based network to 

recognize the materials of object surfaces needing 

disinfection. Then, we proposed a computational model to 

calculate the required log10 reduction for the recognized 

material and linked it to the applicable robotic disinfection 

mode and parameters. The developed method has the 

potential to transform current surface disinfection practices 

to intelligent robotic disinfection with material-adaptive 

disinfection parameters. The following sections discuss the 

robustness of the material recognition method, uncertainty 

and sensitivity, applicability of robotic disinfection, and 

limitations and future studies.  

5.1 Robustness of material recognition method 

This section discusses the potential influence of illumination 

conditions and the robustness of the proposed approach to 

illumination. Illumination is related to lighting and weather 

conditions. Illumination variation is a significant influencing 

factor for the image classification task. In this experiment, the 

gamma correction method is adapted to change the 

illuminance of the image based on the Power-Law Transform 

function (Poynton, 2012). The image is darker when the 

gamma values are smaller than 1, and the image is lighter 

when the gamma values are greater than 1. Gamma values of 

0.5, 1.5, 2, 2.5 are investigated in the experiment. Figure 14 

presents the material prediction results for wood, fabric, and 

leather surfaces under varied illumination conditions. The 

wood surface can be recognized under different illuminations, 

while the prediction confidence decreases with increasing 

gamma values. The fabric surface is recognized with high 

confidence under all investigated illumination conditions. The 

leather surface is misclassified as fabric when the gamma 

values are 2 and 2.5. The incorrect predictions stem from the 

following reasons. First, the prediction confidence is 43% for 

the original image, which is relatively low compared to wood 

and fabric. Second, leather surface features are close to fabric 

surface features, as indicated in Figure 9. The prediction can 

be improved with more leather material data in various 

illumination conditions. The illumination conditions have an 

impact on the performance of our network, particularly for 

bright images. The network can accurately predict materials 

in the image under different illumination conditions when the 

prediction confidence is high for original images. For 

prediction with a low confidence (e.g., leather), the network 

also works for slightly brighter and darker conditions. 

Therefore, our material recognition network can be viewed as 

robust and reliable regarding illumination variation. 

 

FIGURE 14. Material recognition performance under varied illumination conditions. Predicted material (confidence value in parentheses) 
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5.2   Uncertainty and sensitivity analysis 

In this part, the sensitivity and the uncertainty of the model 

used to estimate the required log10 reduction are analyzed. 

Monte Carlo simulations are used to incorporate uncertainty 

and variability of the input parameters in the risk 

characterization. A ceramic surface contaminated with SARS-

CoV-2 is selected as an illustration. Convergence is tested for 

the model by running 1000, 5,000, 10,000, 20,000, 50,000, 

and 100,000 simulations five times. The model estimation 

becomes stable after 50,000 runs, as indicated in Figure 15. 

Therefore, our study simulated a total of 50,000 runs for all 

the models.  

 

FIGURE 15. Median log10 reduction vs. number of Monte Carlo 

simulations. The results are based on five runs 

The distribution of the disinfection dose for different surfaces 

is further evaluated with SARS-CoV-2 persisting on the surface 

after 6 hours. The required log10 reduction distribution is 

shown in Figure 16. Note that the infection risk for paper is 

lower than 10-6, which does not require disinfection to control 

its risk. For fabric and leather, a 2 log10 reduction is found to 

be sufficient to lower the infection risk. For other materials, 

the median log10 reduction is between 2 and 3. In some 

scenarios, required log10 reduction could go beyond 3. 

 

FIGURE 16. Boxplot of log10 reduction for different surface materials 
contaminated by SARS-CoV-2 

Spearman correlation coefficients are used to examine  the 

relationship between the model input parameters and the 

disinfection dosage. The SARS-CoV-2 is selected for the 

sensitivity analysis. The transfer efficiency and survival time 

of SARS-CoV-2 are assumed to be uniformly distributed in the 

range given in Table 2. In addition, SARS-CoV-2 concentration 

after 6 hours is used for analysis. A total of 50,000 simulations 

are conducted. Figure 17 presents the Spearman’s correlation 

coefficients for the input parameters of the model. According 

to the sensitivity analysis, the model input parameters that 

mostly influence the required log10 reduction are the transfer 

efficiency between surface and the hand and the survival time 

of the pathogen, which are both positively related to the 

disinfection dosage. These two parameters are material-

specific parameters, which further confirms the importance 

of the material information for disinfection. The pathogen 

recovery efficiency is negatively correlated with the 

disinfection dosage. The correlation was positive for all other 

modeled parameters. 

 

FIGURE 17. Spearman’s correlation coefficients for the parameters 

used in estimating required disinfection dosage. Parameters are 

abbreviated as follows: c_PFU = conversion factor from Genome copies 

to the infectious virus in PFU; TEhm = = transfer efficiency of viruses 

from hand to mucous; k = dose-response parameter; FSA = fractional 

surface area; eff = pathogen recovery efficiency; TEsh = transfer 

efficiency of viruses from surface to hand; st = survival time of 

pathogen 

5.3 Applicability of the robotic disinfection 

Our proposed robotic disinfection system was successfully 

implemented in a fully modeled hospital room. The proposed 

material recognition method achieved an overall accuracy of 

89.09% on the dataset collected in the context of healthcare 

facilities. The processing time for material recognition is 

around 0.04 seconds for a single image. The processing speed 

can be enhanced by increasing the batch size in the inference. 

For example, by setting the inference batch size to 64, a 

processing time of 0.12 seconds is sufficient to predict all the 

images. The promising results of our method demonstrated 

its accuracy and efficiency to provide the material information 
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for the disinfection robot. The recognized materials are 

computationally linked to robotic disinfection modes and 

parameters, considering fomite-pathogen-human 

interactions. Compared to manual disinfection, the adaptive 

system has the potential to not only ensure complete 

disinfection of contaminated surfaces, but also to improve the 

disinfection efficiency by lowering the exposure time and the 

disinfection dose for low-risk surfaces. The proposed 

material-adaptive robotic disinfection framework can lead to 

an intelligent robotic disinfection paradigm that goes well 

beyond existing systems that are perceived as roaming UV 

lights for coarse disinfection.  

The disinfection robot market was valued at $493 million in 

2020 and is expected to reach $3.31 billion  by 2026, with a 

compound annual growth rate (CAGR) of 36.4% (Mordor, 

2021). Many disinfection robots have already been deployed 

in infrastructure facilities like hospitals and schools. However, 

no disinfection robots to our knowledge possess the material 

recognition capabilities to adapt disinfection modes and 

parameters, which largely restricts their disinfection 

efficiency. Our proposed framework can be integrated with 

existing disinfection robot platforms to improve their 

performance. For instance, in Hu et al. (2020a), the UV light 

wand was used as an end-effector of a robotic arm to disinfect 

contaminated surfaces in the built environment. With our 

newly developed framework, UV light parameters can be 

adapted based on the object surface materials with 

appropriate exposure time, distance, and irradiance. As such, 

surfaces can be thoroughly disinfected and free of pathogens 

in sufficient numbers to prevent disease transmission. 

There still exists some obstacles from the concrete 

operationalization of the proposed robotic disinfection 

system in the real world. First, controlled experiments need 

to be conducted to evaluate the effectiveness of the robot by 

measuring the surface pathogen concentration before and 

after disinfection. In addition, there still lacks evidence about 

how much contamination could lead to infection in humans. 

Second, the disinfection robot needs to be endowed with 

human activity recognition capability in the future to be able 

to conduct disinfection tasks in the presence of humans. 

Finally, there needs to be a validated, reproducible, and 

documented disinfection protocol for the robot. The 

development of such a protocol needs to have a close 

collaboration with the end-users, such as hospitals. As such, 

the robot design and protocol can be updated based on their 

feedbacks.  

5.4 Limitation and future studies 

This study suffers from several limitations that deserve future 

studies. First, despite the overall high performance of the 

material recognition network, the performance on plastic 

surfaces achieved a lower accuracy compared to other 

material categories. This underperformance was caused by a 

relatively small number of plastic samples in the training 

dataset when compared to other materials. In addition, the 

overall accuracy of the material classification model is smaller 

for the hospital material dataset than the accuracy for the 

MINC validation and test sets. The relatively lower accuracy 

stems from a lack of surface materials collected at hospitals in 

the training dataset. In the future, more surface material data 

needs to be collected in the healthcare facilities to fine-tune 

the network, especially for materials with fewer samples. In 

addition, other sensory data, such as thermal and time-of-

flight depth cameras, could be integrated into the deep 

learning network to create a more robust model. Second, our 

work primarily focuses on recognizing materials in context, 

which does not differentiate the interface between different 

materials. A semantic segmentation approach is needed to 

classify materials at a pixel level. However, the segmentation 

task requires pixel-level annotations, which is expensive and 

time-consuming. In future research, material segmentation 

would be an interesting area to explore when more data 

becomes available.  

The third limitation is that this paper investigates a particular 

pathogen on surfaces to demonstrate the computational 

feasibility and the complete loop from robotic perception to 

robotic actions. However, many pathogens can cohabit on the 

same surfaces in healthcare facilities. In this case, the 

proposed method needs to be adapted for a multi-pathogen 

infectious disease system, which requires more research 

regarding pathogen dependency. Furthermore, for 

transmission risk, as types and frequencies of human 

activities and the diversity of environmental surfaces differs 

between settings, social and environmental contexts are of 

great importance in assessing the infection risk through 

fomite transmission. More advanced methods, such as the 

Environmental Infection Transmission System (EITS) modeling 

framework proposed in (Li et al., 2009), could be explored to 

model more complex scenarios. Lastly, the disinfection dose 

and mode are determined solely based on the surface 

materials. However, other factors, such as the type of 

equipment, surface geometry, human touch frequency, and 

location, are also important considerations for the 

disinfection practice. Future studies are needed to develop 

more comprehensive disinfection guidance by integrating 

these critical factors. 

6 CONCLUSIONS 

This study proposed a new computational process and deep 

learning-based material recognition network to classify object 

surface materials and to adapt disinfection modes and 

parameters to disinfect surfaces thoroughly and efficiently. 

The deep learning network integrated multi-level and multi-

scale CNN features, as well as a texture encoder to achieve 
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material recognition with high accuracy. The trained network 

was evaluated on MINC validation and test dataset, and the 

results achieved an accuracy of 92.24% and 91.84%, 

respectively. The network achieved an accuracy of 89.09% on 

a small material dataset containing 1,173 samples collected in 

the context of healthcare facilities. Furthermore, the 

proposed material recognition network achieved state-of-

the-art results compared to other texture/material 

recognition methods. The fomite transmission model was 

adapted to estimate the infection risk for different surfaces 

and to quantitate the log10 reduction needed to reach the 

safety target levels. The results indicated that hard surfaces, 

such as plastic and metal, require a higher disinfection level 

compared to soft surfaces, such as paper and fabric. The 

disinfection level was combined with the applicable mode to 

calculate disinfection parameters for the robot to implement. 

The adaptive robotic disinfection was successfully 

implemented in the context of healthcare facilities. 

ACKNOWLEDGMENT 
This research was funded by the US National Science Foundation 
(NSF) via Grant numbers: 2026719, 1952140, and 2038967. This 
research also received support from the Science Alliance at the 
University of Tennessee Knoxville (UTK) via the Joint Directed 
Research and Development Program. The authors gratefully 
acknowledge support from NSF and UTK. Any opinions, findings, 
recommendations, and conclusions in this paper are those of the 
authors and do not necessarily reflect the views of NSF and UTK. 

REFERENCES 
Abrahão, J. S., Sacchetto, L., Rezende, I. M., Rodrigues, R. A. L., Crispim, A. P. 

C., Moura, C., Mendonça, D. C., Reis, E., Souza, F. & Oliveira, G. F. G. 
(2021), Detection of Sars-Cov-2 Rna on Public Surfaces in a Densely 
Populated Urban Area of Brazil: A Potential Tool for Monitoring the 
Circulation of Infected Patients, Science of The Total Environment, 766, 
142645. 

Abu-Zidan, Y., Nguyen, K., Mendis, P., Setunge, S. & Adeli, H. (2021), Design 
of a Smart Prefabricated Sanitising Chamber for Covid-19 Using 
Computational Fluid Dynamics, Journal of Civil Engineering and 
Management, 27(2), 139-148. 

Anderson, C. E. & Boehm, A. B. (2021), Transfer Rate of Enveloped and Non-
Enveloped Viruses between Fingerpads and Surfaces, Applied and 
Environmental Microbiology. 

Arabi, S., Haghighat, A. & Sharma, A. (2020), A Deep‐Learning‐Based 
Computer Vision Solution for Construction Vehicle Detection, 

Computer‐Aided Civil and Infrastructure Engineering, 35(7), 753-767. 
AuYeung, W., Canales, R. A. & Leckie, J. O. (2008), The Fraction of Total Hand 

Surface Area Involved in Young Children's Outdoor Hand-to-Object 
Contacts, Environmental Research, 108(3), 294-299. 

Bell, S., Upchurch, P., Snavely, N. & Bala, K. (2015), Material Recognition in 
the Wild with the Materials in Context Database, 2015 IEEE Conference 
on Computer Vision and Pattern Recognition (CVPR), IEEE. 

Bergeron, C. R., Prussing, C., Boerlin, P., Daignault, D., Dutil, L., Reid-Smith, R. 
J., Zhanel, G. G. & Manges, A. R. (2012), Chicken as Reservoir for 
Extraintestinal Pathogenic Escherichia Coli in Humans, Canada, Emerging 
infectious diseases, 18(3), 415. 

Boehm, A. B. (2019), Risk-Based Water Quality Thresholds for Coliphages in 
Surface Waters: Effect of Temperature and Contamination Aging, 

Environmental Science: Processes & Impacts, 21(12), 2031-2041. 
Bouri, N. & Shatalov, V. (2020), Uvgi Scientific Calculator, arXiv. 
Caputo, B., Hayman, E. & Mallikarjuna, P. (2005), Class-Specific Material 

Categorisation, Tenth IEEE International Conference on Computer Vision 
(ICCV'05) Volume 1, IEEE. 

Castaño, N., Cordts, S. C., Kurosu Jalil, M., Zhang, K. S., Koppaka, S., Bick, A. 
D., Paul, R. & Tang, S. K. Y. (2021), Fomite Transmission, Physicochemical 

Origin of Virus–Surface Interactions, and Disinfection Strategies for 
Enveloped Viruses with Applications to Sars-Cov-2, ACS Omega, 6(10), 
6509-6527. 

Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F. & Adam, H. (2018), Encoder-
Decoder with Atrous Separable Convolution for Semantic Image 
Segmentation, Computer Vision – ECCV 2018, Springer International 
Publishing, pp. 833-851. 

Chen, Z., Li, F., Quan, Y., Xu, Y. & Ji, H. (2021), Deep Texture Recognition Via 
Exploiting Cross-Layer Statistical Self-Similarity, Proceedings of the 
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 
5231-5240. 

Chin, A. W. H., Chu, J. T. S., Perera, M. R. A., Hui, K. P. Y., Yen, H.-L., Chan, M. 
C. W., Peiris, M. & Poon, L. L. M. (2020), Stability of Sars-Cov-2 in Different 
Environmental Conditions, The Lancet Microbe, 1(1), e10. 

Choi, H., Chatterjee, P., Lichtfouse, E., Martel, J. A., Hwang, M., Jinadatha, C. 
& Sharma, V. K. (2021), Classical and Alternative Disinfection Strategies 
to Control the Covid-19 Virus in Healthcare Facilities: A Review, 
Environmental Chemistry Letters, 1-7. 

Cimpoi, M., Maji, S., Kokkinos, I., Mohamed, S. & Vedaldi, A. (2014), 
Describing Textures in the Wild, 2014 IEEE Conference on Computer 
Vision and Pattern Recognition, IEEE. 

Cimpoi, M., Maji, S., Kokkinos, I. & Vedaldi, A. (2016), Deep Filter Banks for 
Texture Recognition, Description, and Segmentation, International 

Journal of Computer Vision, 118(1), 65-94. 
Cinar, A. & OnbaŞI, E. (2021), Monitoring Environmental Microbiological 

Safety in a Frozen Fruit and Vegetable Plant, Food Science and 
Technology, 41(1), 232-237. 

Collivignarelli, M. C., Abbà, A., Benigna, I., Sorlini, S. & Torretta, V. (2018), 
Overview of the Main Disinfection Processes for Wastewater and 
Drinking Water Treatment Plants, Sustainability, 10(1), 86. 

Dai, X., Ng, J. Y.-H. & Davis, L. S. (2017), Fason: First and Second Order 
Information Fusion Network for Texture Recognition, 2017 IEEE 
Conference on Computer Vision and Pattern Recognition (CVPR), IEEE. 

Diab-El Schahawi, M., Zingg, W., Vos, M., Humphreys, H., Lopez-Cerero, L., 
Fueszl, A., Zahar, J. R. & Presterl, E. (2021), Ultraviolet Disinfection Robots 
to Improve Hospital Cleaning: Real Promise or Just a Gimmick?, 
Antimicrobial Resistance & Infection Control, 10(1), 1-3. 

Doll, M., Stevens, M. & Bearman, G. (2018), Environmental Cleaning and 
Disinfection of Patient Areas, International Journal of Infectious Diseases, 
67, 52-57. 

Dong, E., Du, H. & Gardner, L. (2020), An Interactive Web-Based Dashboard 
to Track Covid-19 in Real Time, The Lancet Infectious Diseases, 20(5), 533-
534. 

Donskey, C. J. (2013), Does Improving Surface Cleaning and Disinfection 
Reduce Health Care-Associated Infections?, American Journal of Infection 
Control, 41(5), S12-S19. 

Esteves, D. C., Pereira, V. C., Souza, J. M., Keller, R., Simões, R. D., 
Winkelstroter Eller, L. K. & Rodrigues, M. V. P. (2016), Influence of 
Biological Fluids in Bacterial Viability on Different Hospital Surfaces and 
Fomites, American Journal of Infection Control, 44(3), 311-314. 

Fleming, M., Patrick, A., Gryskevicz, M., Masroor, N., Hassmer, L., Shimp, K., 
Cooper, K., Doll, M., Stevens, M. & Bearman, G. (2018), Deployment of a 
Touchless Ultraviolet Light Robot for Terminal Room Disinfection: The 
Importance of Audit and Feedback, American Journal of Infection Control, 
46(2), 241-243. 

Gibson, D., Kendrick, S., Simpson, E., Costello, D., Davis, R., Szetela, A., 
McCreary, M. & Schriber, J. (2017), Implementation of Xenon Ultraviolet-
C Disinfection Robot to Reduce Hospital Acquired Infections in 
Hematopoietic Stem Cell Transplant Population, Biology of Blood and 
Marrow Transplantation, 23(3), S472. 

Gordon, R. (2020). "Csail Robot Disinfects Greater Boston Food Bank." 
Retrieved November 8, 2021, from https://news.mit.edu/2020/csail-
robot-disinfects-greater-boston-food-bank-covid-19-0629. 

Guo, L., Yang, Z., Guo, L., Chen, L., Cheng, Z., Zhang, L. & Long, E. (2021), Study 
on the Decay Characteristics and Transmission Risk of Respiratory Viruses 
on the Surface of Objects, Environmental Research, 194, 110716. 

Haque, M., Sartelli, M., McKimm, J. & Bakar, M. A. (2018), Health Care-
Associated Infections–an Overview, Infection and Drug Resistance, 11, 
2321. 

Harvey, A. P., Fuhrmeister, E. R., Cantrell, M. E., Pitol, A. K., Swarthout, J. M., 
Powers, J. E., Nadimpalli, M. L., Julian, T. R., Pickering, A. J. J. E. S. & 
Letters, T. (2020), Longitudinal Monitoring of Sars-Cov-2 Rna on High-
Touch Surfaces in a Community Setting, Environmental Science & 
Technology Letters, 8(2), 168-175. 

https://news.mit.edu/2020/csail-robot-disinfects-greater-boston-food-bank-covid-19-0629
https://news.mit.edu/2020/csail-robot-disinfects-greater-boston-food-bank-covid-19-0629


22  HU  AND LI 

 

Hsieh, Y. A., Yang, Z. & James Tsai, Y. C. (2021), Convolutional Neural Network 
for Automated Classification of Jointed Plain Concrete Pavement 

Conditions, Computer ‐ Aided Civil and Infrastructure Engineering, 
36(11), 1382-1397. 

Hu, D., Zhong, H., Li, S., Tan, J. & He, Q. (2020a), Segmenting Areas of 
Potential Contamination for Adaptive Robotic Disinfection in Built 
Environments, Building and Environment, 184, 107226. 

Hu, J., Shen, L., Albanie, S., Sun, G. & Wu, E. (2020b), Squeeze-and-Excitation 
Networks, IEEE Transactions on Pattern Analysis and Machine 
Intelligence, 42(8), 2011-2023. 

Hu, Y., Long, Z. & AlRegib, G. (2019), Multi-Level Texture Encoding and 
Representation (Multer) Based on Deep Neural Networks, 2019 IEEE 
International Conference on Image Processing (ICIP), IEEE. 

Kang, J., Park, Y.-J., Lee, J., Wang, S.-H. & Eom, D.-S. (2018), Novel Leakage 
Detection by Ensemble Cnn-Svm and Graph-Based Localization in Water 
Distribution Systems, IEEE Transactions on Industrial Electronics, 65(5), 
4279-4289. 

Kobak, D. & Berens, P. (2019), The Art of Using T-Sne for Single-Cell 
Transcriptomics, Nature Communications, 10(1). 

Kowalski, W. (2009), Mathematical Modeling of Uv Disinfection, Ultraviolet 
Germicidal Irradiation Handbook, Springer, pp. 51-72. 

Kraay, A. N. M., Hayashi, M. A. L., Hernandez-Ceron, N., Spicknall, I. H., 
Eisenberg, M. C., Meza, R. & Eisenberg, J. N. S. (2018), Fomite-Mediated 
Transmission as a Sufficient Pathway: A Comparative Analysis across 
Three Viral Pathogens, BMC Infectious Diseases, 18(1). 

Leung, N. H. (2021), Transmissibility and Transmission of Respiratory Viruses, 
Nature Reviews Microbiology, 1-18. 

Lewis, D. (2021), Why Indoor Spaces Are Still Prime Covid Hotspots, Nature, 
592(7852), 22-25. 

Li, S., Eisenberg, J. N., Spicknall, I. H. & Koopman, J. S. (2009), Dynamics and 
Control of Infections Transmitted from Person to Person through the 
Environment, American journal of epidemiology, 170(2), 257-265. 

Lin, T.-Y. & Maji, S. (2016), Visualizing and Understanding Deep Texture 
Representations, 2016 IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR), IEEE. 

Lopez, G. U., Gerba, C. P., Tamimi, A. H., Kitajima, M., Maxwell, S. L. & Rose, 
J. B. (2013), Transfer Efficiency of Bacteria and Viruses from Porous and 
Nonporous Fomites to Fingers under Different Relative Humidity 
Conditions, Applied and Environmental Microbiology, 79(18), 5728-5734. 

Luo, X., Li, H., Yu, Y., Zhou, C. & Cao, D. (2020), Combining Deep Features and 
Activity Context to Improve Recognition of Activities of Workers in 

Groups, Computer‐Aided Civil and Infrastructure Engineering, 35(9), 
965-978. 

Mallikarjuna, P., Targhi, A. T., Fritz, M., Hayman, E., Caputo, B. & Eklundh, J.-
O. (2006), The Kth-Tips2 Database, Computational Vision Active 
Perception Laboratory, Stockholm, Sweden, pp. 1-10. 

McGinn, C., Scott, R., Donnelly, N., Roberts, K. L., Bogue, M., Kiernan, C. & 
Beckett, M. (2021), Exploring the Applicability of Robot-Assisted Uv 
Disinfection in Radiology, Frontiers in Robotics and AI, 7. 

Mordor, I. (2021). "Disinfectant Robot Market - Growth, Trends, Covid-19 
Impact, and Forecasts (2021 - 2026)." Retrieved November 8, 2021, from 
https://www.mordorintelligence.com/industry-reports/disinfectant-
robot-market. 

Mudgal, P., Breidt, F., Lubkin, S. R. & Sandeep, K. P. (2006), Quantifying the 
Significance of Phage Attack on Starter Cultures: A Mechanistic Model for 
Population Dynamics of Phage and Their Hosts Isolated from Fermenting 
Sauerkraut, Applied and Environmental Microbiology, 72(6), 3908-3915. 

NOVUS (2021). "Intelligent Robots for Targeted Combating of Viruses and 
Bacteria." Retrieved October 4, 2021, from 
https://www.novuslight.com/intelligent-robots-for-targeted-combating-
of-viruses-and-bacteria_N11323.html. 

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., 
Lin, Z., Gimelshein, N. & Antiga, L. (2019), Pytorch: An Imperative Style, 
High-Performance Deep Learning Library, Advances in neural information 
processing systems, 32, 8026-8037. 

Pitol, A. K., Bischel, H. N., Kohn, T. & Julian, T. R. (2017), Virus Transfer at the 
Skin–Liquid Interface, Environmental Science & Technology, 51(24), 
14417-14425. 

Pitol, A. K. & Julian, T. R. (2021), Community Transmission of Sars-Cov-2 by 
Surfaces: Risks and Risk Reduction Strategies, Environmental Science & 
Technology Letters, 8(3), 263-269. 

Poynton, C. (2012), Digital Video and Hd: Algorithms and Interfaces, Elsevier. 

Rafiei, M. H. & Adeli, H. (2017), Neews: A Novel Earthquake Early Warning 
Model Using Neural Dynamic Classification and Neural Dynamic 
Optimization, Soil Dynamics and Earthquake Engineering, 100, 417-427. 

Ramalingam, B., Yin, J., Rajesh Elara, M., Tamilselvam, Y. K., Mohan Rayguru, 
M., Muthugala, M. & Félix Gómez, B. (2020), A Human Support Robot for 
the Cleaning and Maintenance of Door Handles Using a Deep-Learning 
Framework, Sensors, 20(12), 3543. 

Richter, W. R., Sunderman, M. M., Wendling, M. Q. S., Serre, S., Mickelsen, L., 
Rupert, R., Wood, J., Choi, Y., Willenberg, Z. & Calfee, M. W. (2019), 
Evaluation of Altered Environmental Conditions as a Decontamination 
Approach for Nonspore‐Forming Biological Agents, Journal of Applied 
Microbiology, 128(4), 1050-1059. 

Rutala, W. A. & Weber, D. J. (2016), Monitoring and Improving the 
Effectiveness of Surface Cleaning and Disinfection, American Journal of 
Infection Control, 44(5), e69-e76. 

Sharan, L., Rosenholtz, R. & Adelson, E. H. (2014), Accuracy and Speed of 
Material Categorization in Real-World Images, Journal of Vision, 14(9), 
12-12. 

Song, Y., Zhang, F., Li, Q., Huang, H., O'Donnell, L. J. & Cai, W. (2017), Locally-
Transferred Fisher Vectors for Texture Classification, 2017 IEEE 
International Conference on Computer Vision (ICCV), IEEE. 

Tan, M. & Le, Q. (2019), Efficientnet: Rethinking Model Scaling for 
Convolutional Neural Networks, International Conference on Machine 
Learning, PMLR, pp. 6105-6114. 

Thakar, S., Malhan, R. K., Bhatt, P. M. & Gupta, S. K. (2021), Area-Coverage 
Planning for Spray-Based Surface Disinfection with a Mobile Manipulator, 
Robotics and Autonomous Systems, 103920. 

Trindade, S. N. C., Pinheiro, J. S., de Almeida, H. G., Pereira, K. C. & Sobrinho, 
P. d. S. C. (2014), Bacteriological Quality and Food Safety in a Brazilian 
School Food Program, Nutricion hospitalaria, 29(1), 80-87. 

Van der Maaten, L. & Hinton, G. (2008), Visualizing Data Using T-Sne, Journal 
of machine learning research, 9(11). 

Vincent, J. (2020). "Toyota’s Robot Butler Prototype Hangs from the Ceiling 
Like a Bat." Retrieved October 4, 2021, from 
https://www.theverge.com/2020/10/1/21496692/toyota-robots-tri-
research-institute-home-helping-gantry-ceiling-machine. 

Virtanen, J., Aaltonen, K., Kivistö, I. & Sironen, T. (2021), Survival of Sars-Cov-
2 on Clothing Materials, Advances in Virology, 2021, 1-5. 

Warnes, S. L., Little, Z. R. & Keevil, C. W. (2015), Human Coronavirus 229e 
Remains Infectious on Common Touch Surface Materials, mBio, 6(6). 

Wißmann, J. E., Kirchhoff, L., Brüggemann, Y., Todt, D., Steinmann, J. & 
Steinmann, E. (2021), Persistence of Pathogens on Inanimate Surfaces: A 
Narrative Review, Microorganisms, 9(2), 343. 

Wold, S., Esbensen, K. & Geladi, P. (1987), Principal Component Analysis, 
Chemometrics and Intelligent Laboratory Systems, 2(1-3), 37-52. 

Xue, J., Zhang, H. & Dana, K. (2018), Deep Texture Manifold for Ground 
Terrain Recognition, 2018 IEEE/CVF Conference on Computer Vision and 
Pattern Recognition, IEEE. 

Xue, J., Zhang, H., Dana, K. & Nishino, K. (2017), Differential Angular Imaging 
for Material Recognition, 2017 IEEE Conference on Computer Vision and 
Pattern Recognition (CVPR), IEEE. 

Zemmar, A., Lozano, A. M. & Nelson, B. J. (2020), The Rise of Robots in 
Surgical Environments During Covid-19, Nature Machine Intelligence, 
2(10), 566-572. 

Zhai, W., Cao, Y., Zha, Z.-J., Xie, H. & Wu, F. (2020), Deep Structure-Revealed 
Network for Texture Recognition, Proceedings of the IEEE/CVF 
Conference on Computer Vision and Pattern Recognition, pp. 11010-
11019. 

Zhai, W., Cao, Y., Zhang, J. & Zha, Z.-J. (2019), Deep Multiple-Attribute-
Perceived Network for Real-World Texture Recognition, 2019 IEEE/CVF 
International Conference on Computer Vision (ICCV), IEEE. 

Zhang, H., Xue, J. & Dana, K. (2017), Deep Ten: Texture Encoding Network, 
2017 IEEE Conference on Computer Vision and Pattern Recognition 
(CVPR), IEEE. 

Zhao, Y.-L., Huang, H.-P., Chen, T.-L., Chiang, P.-C., Chen, Y.-H., Yeh, J.-H., 
Huang, C.-H., Lin, J.-F. & Weng, W.-T. (2021), A Smart Sterilization Robot 
System with Chlorine Dioxide for Spray Disinfection, IEEE Sensors Journal. 

 

https://www.mordorintelligence.com/industry-reports/disinfectant-robot-market
https://www.mordorintelligence.com/industry-reports/disinfectant-robot-market
https://www.novuslight.com/intelligent-robots-for-targeted-combating-of-viruses-and-bacteria_N11323.html
https://www.novuslight.com/intelligent-robots-for-targeted-combating-of-viruses-and-bacteria_N11323.html
https://www.theverge.com/2020/10/1/21496692/toyota-robots-tri-research-institute-home-helping-gantry-ceiling-machine
https://www.theverge.com/2020/10/1/21496692/toyota-robots-tri-research-institute-home-helping-gantry-ceiling-machine

	1 INTRODUCTION
	2 BACKGROUND AND LITERATURE REVIEW
	2.1 Related studies on robotic disinfection
	2.2 Related Studies on material recognition
	2.3 Knowledge gaps

	3 METHODOLOGY
	3.1 Material recognition network
	3.2 From material to disinfection

	4 EXPERIMENT AND RESULTS
	4.1 Analysis of disinfection mode and parameters
	4.1.1 Experiment settings
	4.1.2 Analysis of results
	4.2 Evaluation on material recognition network
	4.2.1 Dataset
	4.2.2 Implementation details
	4.2.3 Results of material recognition
	4.2.4 Comparison to the state-of-the-art methods
	4.2.5 Ablation study
	4.3 Implementation

	5 DISCUSSIONS
	5.1 Robustness of material recognition method
	5.2   Uncertainty and sensitivity analysis
	5.3 Applicability of the robotic disinfection
	5.4 Limitation and future studies

	6 CONCLUSIONS

