An Adaptive Digital Stain Separation Method for Deep
Learning-based Automatic Cell Profile Counts

Palak Dave®*, Saeed Alahmari®, Dmitry Goldgof*®, Lawrence O. Hall*, Hunter
Morera?, Peter R. Mouton®P

@ Department of Computer Science and Engineering, University of South Florida, Tampa,
Florida, 33620, USA
bSRC Biosciences, Tampa, Florida 33606, USA

Abstract

Background. Quantifying cells in a defined region of biological tissue is critical
for many clinical and preclinical studies, especially in the fields of pathology,
toxicology, cancer and behavior. As part of a program to develop accurate,
precise and more efficient automatic approaches for quantifying morphometric
changes in biological tissue, we have shown that both deep learning-based and
hand-crafted algorithms can estimate the total number of histologically stained
cells at their maximal profile of focus in extended depth of field (EDF) images.
Deep learning-based approaches show accuracy comparable to manual counts
on EDF images but significant enhancement in reproducibility, throughput ef-
ficiency and reduced error from human factors. However, a majority of the

automated counts are designed for single-immunostained tissue sections.

New Method. To expand the automatic counting methods to more complex
dual-staining protocols, we developed an adaptive method to separate stain
color channels on images from tissue sections stained by a primary immunostain

with secondary counterstain.

Comparison with Fxisting Methods. The proposed method overcomes the lim-

itations of the state-of-the-art stain-separation methods, like the requirement
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of pure stain color basis as a prerequisite or stain color basis learning on each

image.

Results. Experimental results are presented for automatic counts using deep
learning-based and hand-crafted algorithms for sections immunostained for neu-

rons (Neu-N) or microglial cells (Iba-1) with cresyl violet counterstain.

Conclusion. Our findings show more accurate counts by deep learning methods
compared to the handcrafted method. Thus, stain-separated images can func-
tion as input for automatic deep learning-based quantification methods designed
for single-stained tissue sections.

Keywords: Microscopy Images, Digital Stain Separation, Automatic Cell
Profile Counting, Extended Depth of Field (EDF) images, Deep Learning

1. Introduction

Automatic deep neural network-based methods have the potential to accel-
erate research through accurate, reproducible and efficient analyses of stained
tissue sections. As part of our effort to combine deep learning (DL) and unbiased
stereology methods, we have shown that digital frameworks involving extended
depth of field (EDF) images created from 3D tissue volumes (”disector stacks”)
can be combined with hand-crafted and machine learning algorithms to enable
automated and semi-automated counts with high levels of accuracy, precision
and efficiency compared to manual counting methods. (All of the cells in a
stack are in focus in an EDF image. EDF images are described in detail in
subsection ”Disector stacks” are z-axis image stacks from one x-y lo-
cation in tissue sections containing the anatomically defined region of interest
(reference volume). The term “disector” refers to the 3D virtual probe used for
thin-focal plane optical scanning in the z-axis for stereology-based cell counting,
e.g., physical disector ([1]), optical disector (|2]), optical fractionator ([3]); for

detailed reviews of unbiased stereology, see [4,[5].) A majority of the automatic
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cell counting in ‘disector stacks’ approaches are designed for single immunos-
tained tissue sections ([6]; [7]; [8]; [9]). However, many histology protocols use
multiple histochemical stains, e.g., hematoxylin and eosin (H&E), combinations
of a diaminobenzidine (DAB)-based immunostain and a histochemical counter-
stain. Stain separation can capacitate any of the available methods designed
for single immunostained cells to quantify distinct cell populations stained by
multiple dyes and techniques on the same tissue sections. Stain separation is
often performed as one of the initial steps in the automatic cell counting meth-
ods designed for multi-stained images as well ([10, 11} [12]) to remove the extra
information from the multi-stained images thereby allowing the cell quantifying
methods to better focus on the objects of interest.

Alahmari et al. [7] presented an automatic counting framework for EDF
images from single-immunostained tissue sections using a combination of the
hand-crafted Adaptive Segmentation Algorithm (ASA) and a Deep Learned
model (DL), hereafter ASA-DL. The present work extends the ASA-DL frame-
work to color images with dual staining, e.g., NeuN for neurons with cresyl
violet (CV) staining for Nissl substance. The motivation behind this work is
three-fold. First, the hand-crafted ASA method was designed for gray-scale
images of single-immunostained tissue sections. The ASA-DL framework uses
this ASA approach to automatically generate ground truth masks on gray-scale
images for training a convolutional neural network (CNN) to make automatic
counts on EDF images. The advantage of the ASA step is a massive reduction
in the effort required by an expert to manually generate ground truth masks by
outlining boundaries in the training data. The second purpose of this work is
to convert the color images of the counterstained tissue sections to gray-scale
images to serve as input images to the deep learned (DL) model of the ASA-DL
framework. Though a new DL model can be designed to process the color images
instead of gray-scale images, this approach would require a substantial training
data because of the high amount of information carried by the color images; and,
training data is typically limited in many biomedical applications. Furthermore,

stain color variation within and between laboratories is inevitable. A study by
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Tellez et al. [13] on Whole Slide Images (WSI) regarding effects of stain color
normalization on CNNs found that converting the color images to grayscale is
the best performing method of stain color normalization among classical meth-
ods; that is, the color-to-gray conversion suppresses the effect of stain color
variation on CNNs. As, a deep learning model trained with color information
would not be generic for different stain types, we propose a digital stain separa-
tion approach using an adaptive method for color-to-gray transformation. Here
we show that our ASA-DL framework achieves superior results to ASA alone,
that isolation of the immunostain channel from immunostained/counterstained
color images gives comparable counts to immunostained color images and that
this approach works for different immunostains and multiple cell types (neu-
rons, microglia cells). Though this study focuses on automatic counts of cells
at their maximal plane of focus in synthetic EDF images created from 3-D vol-
umes of digital images, i.e., disector stacks, the second phase of this work (to be
published separately) uses the same color separation approach in combination
with slice-wise analysis of each image in the disector stack to make automatic
estimates of the total number of immunostained cells using the unbiased optical
fractionator method [3].

In the ASA-DL framework, the color images of single-stain tissue sections
were converted to grayscale using the conventional BT.601-7 (studio encoding
parameters for digital television) Equation |1} [14]. In Equation |1} R, G, and B
are the intensity values of the red, green, and blue channels respectively. Y is the
gray scale intensity value. If the color images of counter-stained tissue sections
are converted to grayscale using the conventional BT.601-7 transformation or
an advanced method like correlation based color to gray conversion proposed
by [15], both stains become so similar in appearance it becomes difficult for a
human observer to discriminate between them. Figure [1| shows an example of
such conversions. This approach entails a pre-processing step to first digitally

separate the information about two stains present in one image into two separate
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(a) Color image of counter- (b) Gray scale image con- (¢) Gray scale image con-
stained tissue section (NeuN- verted using BT.601-7, [14]  verted using CorrC2G
DAB&CV) method, [I5]

Figure 1: Example of color to gray conversion using existing methods.

images. This process is referred as stain separation.

Y = 0.2989 % R+ 0.5870 G + 0.1140 * B (1)

2. Related Work

Stain color normalization is a process of digitally standardizing image ap-
pearance in histology, [16]. presented a detailed study of stain color nor-
malization methods published in the past two decades. These methods use two
major approaches: 1. Global color normalization like histogram specification;
and, 2. Color normalization after stain separation by supervised or unsuper-
vised methods. The goal of stain separation is to obtain a separate image called
a stain density map corresponding to each stain in the input image. The inten-
sity at each pixel of a stain density map represents an estimated amount of the
corresponding stain present at that location. The qualitative and quantitative
results of the study published in find the Structure-Preserving Color Nor-
malization (SPCN) method presented by [16] to be the best performing method.
The major advantage of using this method is that it incorporates stain mixing.
The work in our present approach uses the principal stain density map as a
gray-scale image input to the ASA-DL framework for automatic counts of cell
profiles from dual-stained tissue sections.

The majority of the stain color normalization methods [[18]; [19]; [20]], in-
cluding SPCN ([16]), use Equation [2] derived from Equations [3| and [4] for stain
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separation. Equation (3| represents the Beer-Lambert law as a non-linear re-
lationship between a pixel intensity and stain density. Due to the non-linear
relationship between image intensity and the stain density, it is inconvenient to
work in the image intensity space to estimate the stain density maps. If m x n
is the image dimension, let I of dimensions 3 x mn be the RGB pixel intensi-
ties normalized in the range of [0,1] and r be the number of stains. C is the
stain color basis (3 x r), where each column is essentially a wavelength specific
(R,G and B) absorptivity coefficient vector of a stain. D is the stain density
map with dimensions 7 x mn. Optical density, O (3 x mn), is defined as the
logarithm of normalized intensity as shown in Equation [d Equation [2] shows a
linear relationship between Optical density (O) and stain density (D). Hence, it
is convenient to work in the O space, instead of intensity space, to estimate the
D maps. The stain color normalization methods mentioned earlier [[18]; [19];

[20]; [16]] work in the O space.

OxCD (2)
I=e P (3)
O =—log, I (4)

A widely used method for stain separation is called color deconvolution
([18]). O is an observation available from an image and a fixed deconvolution
matrix or stain color basis (C') is computed from control images of tissue sec-
tions with one pure stain at a time. D is estimated using Equation |2} However,
variations in stain appearance are highly frequent in histology due to protocol
variations from stain concentration and duration of staining. Also, while the
biological structures like nuclei or cytoplasm bind tightly with either the princi-
pal or counter stain, they also absorb some amount of the other stain ([16]). As
a result, stain color basis computed using pure stain images would not be ac-
curate. Moreover, chemical staining-destaining of a tissue section to get control

images may not be feasible or practical for every new stain.
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An unsupervised stain separation method using Non-negative Matrix Factor-
ization (NMF) was proposed by [19] to learn an image specific stain color basis.
A non-negative constraint was imposed on C' and D based on the fact that stain
color basis and stain density cannot be negative. However, this method may get

to a local optimum solution because it attempts a joint non-convex optimization
(Equation [5)) ([16]).
min 1||O — CD|?
C,D 2 (5)
st. C,D>=0

[16] presented a Sparse Non-negative Matrix Factorization (SNMF) method
for unsupervised stain separation. This method added a sparsity constraint in
the objective function of the NMF method and alternately optimized only one
of the two variables C' and D at a time by keeping the other fixed. We use
this method with a few modifications (different value of a hyper-parameter and
using a fixed stain color basis as described in section |3|) for this work.

[21] proposed a digital stain separation method in RGB and HSV color space
instead of O space. However, this method requires customization for type of
stain and number of stains. The method proposed here is generic for any stain
type and the number of stains is a parameter (r) to be supplied.

It should be noted that DAB stain is not a true absorber of light but rather
scatters light and hence, does not follow the Beer-Lambert law [22]. This means
that the relationship between stain density (D) and its Optical Density (O) is
non-linear. This suggests that O of DAB is not suitable to accurately quantify
the stain intensity. However, as mentioned by [22], DAB can be successfully
unmixed from a counterstained stain image. This means, it can be used for
counting applications, but not for applications that rely on accurate quantifica-

tion of the stain.
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3. Methods

An overview of the complete automatic counting system with an example of
a microglia image stack is presented in Figure The details are discussed in

the following subsections.
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Figure 2: An overview of the automatic counting system

8.1. Color to Gray Conversion using Stain Separation

The proposed stain separation method based on SNMF for color to gray

conversion and its application on 3D stacks is discussed in this section.

8.1.1. Stain Separation using SNMF

As mentioned in the previous section, we used SNMF with a few modifica-
tions for the stain separation. [16] proposed a Sparse Non-negative Matrix Fac-
torization (SNMF) formulation (Equation@ by adding an I sparsity constraint
in the NMF formulation and solved the non-convex optimization problem by al-
ternately optimizing over one variable while keeping the other constant, [16].
The sparsity constraint is to incorporate stain mixing and was derived from the
fact that each biological structure (like nuclei or cytoplasm) can bind to both
the stains (principal and counter stain) and not only to a pure stain. Selection
of SNMF for stain separation in this work is also supported by the qualitative
and quantitative comparison results of the study performed by [17].

In Equation @ Optical Deunsity (O) reflects the observations available from

an image, and C' and D are estimated by learning. The additional constraint
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on C to have unit Euclidean norm for each color basis is to suppress multiple

equivalent solutions of type (C/a, aD), a > 0.

1 T
min  =||O —CDI|*> + X D(i,:
&, 5l I ;ll (2,:)l1x

s.t. C,D>=0, (6)

1CC DI =1
SNMF has )\ as a sparsity and regularization coefficient. This hyper-parameter

controls the amount of stain mixing incorporated during stain separation. [16]
recommended to use A = 0.1 based on sensitivity analysis of A on Hematoxylin
and Eosin (H&E) stains. During stain separation, it is desirable to preserve the
small amount of stain present in the background for image color normalization
kinds of application, where an accurate quantification of the stains on the com-
plete image is required. On the contrary, presence of a small amount of stain
in the background is noise for other microscopy applications like cell counting.
In order to reduce this noise to a negligible level, a higher value of the sparsity
coefficient can be helpful. Usually, such hyperparameter value selection is goal
dependent and it is good to select a value based on cross-validation. However,
such cross-validation would require many expensive training steps in the target
application. In order to avoid that, we visually analyzed the contrast between
foreground and background in separated stain images using different values of
A. The observed contrast was high and sufficient when A = 0.8, getting high
sparsity in the solution. Figure[3]shows DAB stain density maps computed with
A=0.1and A =0.8.

3.1.2. Color to Gray Conversion

The result of stain separation provides separate stain density maps corre-
sponding to each stain (DAB & CV). The DAB - principal stain density map
was used as gray-scale image input to the ASA-DL framework for automatic
counting ([7]). A fixed transformation is applied to map an admissible contin-

uous range of the stain density values to a discrete range of [0,255]. Figures
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(a) Color image of a counter- (b) DAB stain density map (c) DAB stain density map us-
stained tissue section (DAB & using A = 0.1 ing A =0.8
CV stains)

Figure 3: Stain separation result using SNMF method with different values of A.

and [dc| show density maps as gray-scale images after stain separation.

8.2. Processing 3D Stacks

A method of representing 3D information distributed among a stack of im-
ages in a 2D image and a post-processing step to visually match such 2D images
of the counterstain dataset to that of the single stain dataset is discussed in this

section.

3.2.1. 3D to 2D Conversion

The optical fractionator is commonly used in stereology to estimate the
number of cells in a 3-D optical disector volume, consisting here of a stack of
n images (ten 1pm images), by thin focal-plane optical scanning along the z-
axis then repeating in a known fraction of a defined reference volume [3]. This
is explained in more detail in Section Individual cells occur in optimal
focus in different images of a disector stack based on their physical location in
the tissue. Here all the images of a stack are first converted to stain density
maps. As the cell nuclei tightly bind to the principal stain (DAB), processing
only the DAB stain density maps is required for automatic counting. The 3D
information distributed among the DAB density-map stack is represented in a
2D image by converting it to an Extended Depth of Field (EDF) image using an
over-complete discrete wavelet transform based algorithm proposed by [23]. All
of the cells in a stack are in focus in an EDF image. When working with EDF

images there is an over-projection issue that varies according to the degree of

10
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Figure 4: Stain density maps after stain separation using SNMF with A = 0.8, EDF of

principal stain density maps before and after post-processing

overlap. We have used EDF images for our proof of concept studies such as the
present work, since human observers also cannot see fully obscured objects. Our
previous work with EDF images using hand-crafted automatic algorithms ([6])
and deep learning automatic algorithms ([7]) confirmed these approaches achieve
similar accuracy to human observers; however, applications of this approach to
EDF images can lead to under-counts in the case of overlapping cells. A future
extension of the present approach to slice-by-slice cell counting in each disector
stack will ensure accurate counts in all scenarios (overlap versus non-overlap)

similar to thin focal-plane scanning with optical disectors.

8.2.2. Visually Matching Counterstain Images to Single-stain Images

To reuse the ASA-DL framework, designed and developed for the single-
immunostained neuron images as presented by [7], a post-processing step is
performed on the EDF image of DAB stain density maps (Figure @[) to visu-
ally match it with that of a single-immunostained neuron image dataset. The

major difference between single-immunostained EDF and DAB-EDF image of

11
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the counterstain dataset is that the pixel intensity within cells is homogeneous
and darker in single stain. In DAB-EDF, there is a large change in intensity (a
very dark spot) within the cell due to high stain density in that part of the cell.
To get rid of such dark spots and make the within cell intensity homogeneous,
all foreground (< 255) intensities below 150 are truncated to 150. The cut-
off threshold for truncation can be automatically computed by comparing the
statistics of the histograms of EDFs from counterstained and single immunos-
tained neuron datasets. The value of 150 was chosen by visual comparison of
the EDFs for both datasets in this study as a proof-of-concept. This step is fol-
lowed by Gaussian smoothing with standard deviation of 2. The smoothing is
performed to overcome the zero stain density of some pixels within a cell. Such
zero stain density pixels within a cell occur due to a high sparsity coefficient
value (which helps in reducing background noise) in SNMF. The smoothing can
potentially increase the size of the cells by a few pixels. However, such a change
in cell size by a few pixels is not significant because, in consistency with the
ASA-DL method, the minimum size of a cell is expected to be at least 250 pix-
els in the post-processing step depicted in Figure The smoothed image is
then gamma-corrected with gamma = 1.5 to improve the image’s overall dark-
ness. Figures and [de show an example of an EDF and post-processed EDF
of the stack corresponding to the sample image shown in Figure

3.8. Fizing Stain Color Basis

During stain separation, a minima of the objective function (Equation @
of SNMF is estimated by applying unsupervised learning on each image. The
objective is to minimize the cost over the complete image. However, in some
images, the two stains are present in largely imbalanced proportion. In such
images, two different shades of a dominant stain are learnt as two different stains,
leading to erroneous stain separation. To eliminate this problem, a fixed stain
color basis is used for a given stain. The fixed stain color basis is computed using
a subset of the dataset. From the five mice in the NeulN counterstain dataset

(described in Section [3.4), we randomly selected three mice, two sections per

12
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mouse, one stack per section, and two images per stack. SNMF based stain
separation was performed on each image of this subset of twelve images under
manual observation. A human observer can accept or reject the results of stain
separation on each of the twelve images. This requires less than 30 minutes of
human observer time. The stain color bases of accepted images are averaged,
and this average value is used as a fixed stain color basis for stain separation
on complete NeuN counterstain and IBA1 counterstain datasets (described in
Section . It is noteworthy that averaging of the accepted stain color bases
can potentially violate the unit Euclidean norm constraint on columns of C' in
Equation [f] Practically, the values of the accepted stain color bases are very
close and hence, the constraint violation is minor. Further, this violation would
not be fundamentally problematic for stain separation in the target application
since the constraint was used just to suppress multiple equivalent solutions. This
fixed stain color basis shows satisfactory results on the images from mice not
present in the learning subset and on a dataset of a different cell type (Microglia-
IBA1) with the same stains. Moreover, the fixed stain color basis speeds up the
stain separation process as well by eliminating the stain basis learning step on

each image.

3.4. Dataset

The staining protocols for dual stains are one immunostain (NeuN or Iba-1)
each with cresyl violet counterstain, i.e., NeuN/CV, Iba-1/CV. Staining proto-
cols were conventional immunostaining with primary and secondary antibodies
and DAB-based colorization followed by standard counterstaining in a 2% cresyl
violet (CV) solution, as we have previously detailed ([24]). We collected Z-axis
stacks of images (disector stacks) using the Stereologer system consisting of an
Olympus microscope equipped with automatic stepping motors. Disector stacks
were acquired using systematic-random sampling, starting at a random X-Y lo-
cation in the upper left quadrant of neocortex in the first section, proceeding in
a systematic manner at intervals of 1200 pm x 1200 pm, and repeating on 8-12

sections through the entire mouse neocortex. This sampling approach provides
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for low sampling error as evidenced by coefficient of error (CE) ~ 0.10 (CE
~ 10%), as shown by [25]. The number of animals for this study was five for
the NeuN and eight for the IBA1 dataset.

As mentioned above, the images for this study were collected using the fol-
lowing sampling hierarchy. First, a total of about 8 to 12 tissue sections were
collected by systematic-random sampling through the entire neocortex of the
mouse brain. Second, a total of about 10 to 12 disector probe locations (re-
ferred to as ’stacks’) were collected in a systematic-random manner from each
section. Finally, at each disector probe location, a series of 10 images at differ-
ent focal planes along the z-axis were captured at each disector probe location.
In other words, a systematic-random sample of z-axis images (disector stacks)
representing a known fraction of the reference space was created, i.e., similar to
the disector volumes analyzed by the ordinary optical fractionator method used
to make total number estimates for cells in an anatomically defined reference
space. Gundersen’s unbiased counting rules (J26]) were applied to avoid edge
effects when counting in a 3D stack of z-axis images (i.e., disector stack) as
shown in Figures @(c) and @(f) That is, profiles were included that fell within
the disector volume or touched one of the top, upper or right-side inclusion
planes in 3D. Profiles were excluded that fell outside the disector volume or
touched either the bottom, lower or left-side exclusion planes.

The sum of profiles counted in all disector stacks sampled in a systematic-
random manner through the reference space is referred as the ”Ground Truth
(GT) count” in this work. The Ground Truth count was obtained manually
using disector videos. As part of the development of our automatic optical
fractionator, we have improved the efficiency of collecting GT counts by con-
verting disector stacks into optical disector videos. For these manual GT counts,
the user counts (clicks) on cells of interest while the disector video moves at a
user-controlled variable speed through the z-stack of disector planes. In our
experience, this substantially reduces the number of keyboard clicks per brain,
leading to higher efficiency, as well as less tedium and fatigue for GT counts,

without a loss of accuracy and precision (reproducibility) as compared to counts
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by conventional manual focusing through the same disector stacks.

It is noteworthy that our work involves two levels of ground truth (GT). The
first is the cell count GT that requires a click on each cell. This cell count GT is
performed at the individual focal planes using videos as described above. The
second GT is mask with each counted cell profile outlined; these masks are then
used for training the deep learning model; these GT masks are obtained by the
process explained in Figure

Two datasets with two types of brain cells, neurons (NeuN) and microglia
cells (Iba-1), with the same colorization and counterstaining methods (DAB and
CV, respectively) were used for the experiments presented in Section The
NeuN dataset has five mice and the IBA1 dataset has eight mice. A summary
of the datasets is provided in Tables [1| and Here, the column 'Number of
Images’ refers to the number of stacks after each stack is converted to an EDF

image.

Mouse ID  Number of Images Ground Truth Count

PI3-18 68 044
PI3-19 103 955
PI3-20 98 1009
PI3-21 97 1207
PI3-22 62 579

Table 1: Summary of neuron (NeuN) counterstain dataset

4. Experimental Results

In this section, experimental results from applying ASA-DL approach on

stain separated images by the proposed method are discussed.

4.1. Experimental Results
The post-processed EDF images (as described in Section are used as
input to the ASA-DL framework shown in Figure

15
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Figure 5: The automatic counting framework (ASA-DL) proposed by [7]
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Mouse ID  Number of Images Ground Truth Count

PI3-27 129 324
PI3-28 148 392
PI3-29 143 254
PI3-31 147 166
PI3-32 105 261
PI3-33 114 271
PI3-34 147 160
PI3-35 160 172

Table 2: Summary of microglia (IBA1) counterstain dataset

Augmentation by rotation and elastic transformation was performed on
training images to obtain a larger and more diverse training set to enhance
the performance of the deep learning model. As discussed by [7], we used the
U-Net deep learning architecture for segmentation consisting of convolution lay-
ers for encoding and then decoding to learn features and localize the learned
features in the original input image for segmentation. U-Net was trained us-
ing Keras and Tensorflow frameworks for 100 epochs using the Adam optimizer
and learning rate of le=* ([27]; [28]; [29]). The U-Net model training occurs
automatically primarily using computer time rather than time from an expert.
The training time depends on the number of disector samples in the training
set, hardware capacity, learning parameters etc. It takes ~30 hours for 28080
disector samples (after augmentation) in the training set. Once the training was
underway, no human observation was required. Finally, the training time is a
one-time investment of resources for a particular stain type. Once the model is
trained, the time to analyze new (“test”) images on disector stacks is less than
30 minutes per reference space (=100 disector stacks).

Results of automatic counting using the handcrafted algorithm ASA and

using the ASA-DL approach are reported in Tables [3] and [4] for the NeuN and
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ASA-DL

Ground Truth ASA Error
ASA Count ASA-DL Count Error
Test Mouse ID  #Images Count Rate(%) .
(A) [G— A+100 (L) Rate(%)
(@) =) (\C,LL\*IDO)
G
PI3-18 68 544 412 24.26 531 2.39
PI3-19 103 955 852 10.79 939 1.68
PI13-20 98 1009 817 19.03 846 16.15
PI3-21 97 1207 1014 15.99 1029 14.75
PI3-22 62 579 499 13.82 535 7.60
Average Error Rate (%) 16.78 8.51

Table 3: Automatic counting results on stain-separated NeuN counterstain dataset using ASA
and ASA-DL. Where, the last column refers to % error; and, the last row refers to the Mean

% error for all mice analyzed.

IBA1 dataset, respectively. The error rate is computed as a percentage of the
absolute difference of automatic count with respect to ground truth count. A
5-fold cross validation experiment using a “one-subject-left-out” strategy was
performed on the five mice NeulN dataset using ASA-DL approach. That is,
the deep learning model was trained on image data (stacks) from four mice,
with image data from one mouse left out for subsequent use as a test dataset,
i.e., images not previously used for training the model. Therefore, the model’s
performance is validated based on unseen images not used for training the model
(note- the model is expected to perform well on the images used for training
the model). Since each of the five mice is left out once for testing in one of the
five folds, this approach allows for cross validating the performance of the deep
learning model on previously unseen images, therefore, a fair basis for validating
the model’s performance. A 3-fold cross validation was performed on the eight
mice IBA1 dataset. Here, two of the folds had data from three mice and one
fold had data from two mice left out as test set. It should be noted that the
stain color basis learned using the procedure mentioned in Section from a
subset of images from the NeulN dataset, was used for both the NeuN and Ibal

datasets. Visualization of samples from both datasets is shown in Figure [6]
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Ground Truth ASA Error
ASA Count ASA-DL Count Error
Test Mouse ID  #Images Count Rate(%) .
(A) [G— A+100 (L) Rate(%)
(@) (=) (\C,LL\*IDO)
G
PI3-27 129 324 249 23.15 356 9.88
PI3-28 148 392 299 23.72 401 2.30
PI13-29 143 254 182 28.35 241 5.12
PI3-31 147 166 129 22.29 159 4.22
PI3-32 105 261 207 20.69 273 4.60
PI3-33 114 271 209 22.88 301 11.07
PI3-34 147 160 121 24.38 145 9.38
PI3-35 160 172 148 13.95 166 3.49
Average Error Rate (%) 22.43 6.26

Table 4: Automatic counting results on stain-separated IBA1 counterstain dataset using ASA
and ASA-DL. Where, the last column refers to % error; and, the last row refers to the Mean

% error for all mice analyzed.

5. Discussion and Conclusion

An adaptive method is proposed to digitally separate two colors in images
from dual stained tissue sections. The proposed method overcomes the limita-
tions of the state-of-the-art methods, color deconvolution (requirement of fixed
and pure stain color basis as a prerequisite) and SNMF (stain color basis learn-
ing on each image and dependency on the stain distribution in the image). A
fixed stain color basis is learned on a subset of a NeuN counterstain dataset
under a one-time manual observation. When applied as an automatic counting
method on the stain separated images, the ASA-DL approach shows substan-
tially higher performance than a hand-crafted automatic ASA method alone as
evidenced by lower average error rates on both datasets with two different cell
types.

The proposed method is an adaptive technique for color-to-gray conversion,
where information related to only the object of interest, i.e., DAB-based im-
munostaining for neurons (NeuN) or microglial cells (Iba-1), is preserved while
color related to the general counterstain (CV) is eliminated. Gray-scale images

obtained through this method are used with the ASA-DL framework initially
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Figure 6: (a) Sample neuron (NeuN immunopositive) image with counterstain; (b) Conversion
to single stain gray EDF image using proposed stain separation on (a); (¢) Automatic counts
of NeuN cell profiles on (b); (d) Sample microglia (Iba-1 immunopositive) image with counter
stain; (e) Conversion to single stain gray image using stain separation on (d); (f) Automatic
microglia counts on (e). The unbiased counting frame includes left and lower exclusion lines
(red) and upper and right inclusion lines (green)(lines convert to planes in 3D). In Figures
(c) and (f), the red outline around cell profiles represent automatic detection, green and blue

markings are GT.

designed and developed for a single-immunostained image dataset. Initial ex-
periments show promising results for automatic counting on five mice of the
NeuN and eight mice of the Iba-1 immunostained with counterstain datasets.
[7] presented automatic counting results using the ASA-DL framework for a
single immunostained NeulN dataset of 9 mice. In order to compare the current
results on NeuN counterstain dataset with the published result, an experiment
done with a subset of 5 randomly chosen mice from the 9 mice showed an av-
erage ASA error rate of 9.42% and average ASA-DL error rate of 4.67%. The
average ASA-DL error rate for the same 5 mice in the published results (when

the deep learner was trained on 9 mice) is 2.67% ([7]). Following the trend of the
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published results, the average error rate using ASA-DL is approximately half or
less compared to that using ASA for both the counterstain datasets. Moreover,
the lower error rate (2.67%) with 9 mice NeuN single immunostained dataset
shows that performance for the counterstain images can be further improved by
using a larger dataset.

Our proposed method is applied to dual staining with DAB-based immunos-
tains as primary stains for neurons (NeuN) and microglial cells (Iba-1) with CV
as the common counterstain. The stain separation approach is independent of
these specific immunostains and counterstains. As such, it can be used as a pre-
processing step in the ASA-DL framework and applied to any immunostained
target object in a dual stain combination with any counterstain. Furthermore,
beside automatic cell counting the proposed stain separation method is poten-
tially applicable to other applications for automating estimation of other stere-
ology parameters, e.g., total length estimation using the Space Balls method
([]); total surface area using the Virtual Cycloids method ([30]). The value of
the sparsity coefficient parameter can be chosen as best suited for the dataset
and application.

In conclusion, this study provides a novel proof-of-concept for automatic
deep learning-based counting of cell profiles in synthetic EDF images created
from 3-D volumes, i.e., disector stacks. Though useful for demonstrating our
stain separation method, a limitation of EDF images is the potential for un-
dercounting due to overlapping of smaller cells by larger cells in the z-axis of
disector stacks. To eliminate these undercounts, our future studies will focus
on automatic counting of each cell in the disector stack using a slice-wise DL
approach, thereby allowing for automatic thin focal plane scanning in the z-axis
as required for unbiased stereology counts using the optical disector and optical
fractionator methods. Thus, the present color separation approach will support
automatic unbiased stereology counts of the total number of immunostained

cells on dual-stained tissue sections.
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