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Abstract

Background. Quantifying cells in a defined region of biological tissue is critical

for many clinical and preclinical studies, especially in the fields of pathology,

toxicology, cancer and behavior. As part of a program to develop accurate,

precise and more e�cient automatic approaches for quantifying morphometric

changes in biological tissue, we have shown that both deep learning-based and

hand-crafted algorithms can estimate the total number of histologically stained

cells at their maximal profile of focus in extended depth of field (EDF) images.

Deep learning-based approaches show accuracy comparable to manual counts

on EDF images but significant enhancement in reproducibility, throughput ef-

ficiency and reduced error from human factors. However, a majority of the

automated counts are designed for single-immunostained tissue sections.

New Method. To expand the automatic counting methods to more complex

dual-staining protocols, we developed an adaptive method to separate stain

color channels on images from tissue sections stained by a primary immunostain

with secondary counterstain.

Comparison with Existing Methods. The proposed method overcomes the lim-

itations of the state-of-the-art stain-separation methods, like the requirement
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of pure stain color basis as a prerequisite or stain color basis learning on each

image.

Results. Experimental results are presented for automatic counts using deep

learning-based and hand-crafted algorithms for sections immunostained for neu-

rons (Neu-N) or microglial cells (Iba-1) with cresyl violet counterstain.

Conclusion. Our findings show more accurate counts by deep learning methods

compared to the handcrafted method. Thus, stain-separated images can func-

tion as input for automatic deep learning-based quantification methods designed

for single-stained tissue sections.

Keywords: Microscopy Images, Digital Stain Separation, Automatic Cell

Profile Counting, Extended Depth of Field (EDF) images, Deep Learning

1. Introduction

Automatic deep neural network-based methods have the potential to accel-

erate research through accurate, reproducible and e�cient analyses of stained

tissue sections. As part of our e↵ort to combine deep learning (DL) and unbiased

stereology methods, we have shown that digital frameworks involving extended5

depth of field (EDF) images created from 3D tissue volumes (”disector stacks”)

can be combined with hand-crafted and machine learning algorithms to enable

automated and semi-automated counts with high levels of accuracy, precision

and e�ciency compared to manual counting methods. (All of the cells in a

stack are in focus in an EDF image. EDF images are described in detail in10

subsection 3.2.1. ”Disector stacks” are z-axis image stacks from one x-y lo-

cation in tissue sections containing the anatomically defined region of interest

(reference volume). The term “disector” refers to the 3D virtual probe used for

thin-focal plane optical scanning in the z-axis for stereology-based cell counting,

e.g., physical disector ([1]), optical disector ([2]), optical fractionator ([3]); for15

detailed reviews of unbiased stereology, see [4, 5].) A majority of the automatic
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cell counting in ‘disector stacks’ approaches are designed for single immunos-

tained tissue sections ([6]; [7]; [8]; [9]). However, many histology protocols use

multiple histochemical stains, e.g., hematoxylin and eosin (H&E), combinations

of a diaminobenzidine (DAB)-based immunostain and a histochemical counter-20

stain. Stain separation can capacitate any of the available methods designed

for single immunostained cells to quantify distinct cell populations stained by

multiple dyes and techniques on the same tissue sections. Stain separation is

often performed as one of the initial steps in the automatic cell counting meth-

ods designed for multi-stained images as well ([10, 11, 12]) to remove the extra25

information from the multi-stained images thereby allowing the cell quantifying

methods to better focus on the objects of interest.

Alahmari et al. [7] presented an automatic counting framework for EDF

images from single-immunostained tissue sections using a combination of the

hand-crafted Adaptive Segmentation Algorithm (ASA) and a Deep Learned30

model (DL), hereafter ASA-DL. The present work extends the ASA-DL frame-

work to color images with dual staining, e.g., NeuN for neurons with cresyl

violet (CV) staining for Nissl substance. The motivation behind this work is

three-fold. First, the hand-crafted ASA method was designed for gray-scale

images of single-immunostained tissue sections. The ASA-DL framework uses35

this ASA approach to automatically generate ground truth masks on gray-scale

images for training a convolutional neural network (CNN) to make automatic

counts on EDF images. The advantage of the ASA step is a massive reduction

in the e↵ort required by an expert to manually generate ground truth masks by

outlining boundaries in the training data. The second purpose of this work is40

to convert the color images of the counterstained tissue sections to gray-scale

images to serve as input images to the deep learned (DL) model of the ASA-DL

framework. Though a new DL model can be designed to process the color images

instead of gray-scale images, this approach would require a substantial training

data because of the high amount of information carried by the color images; and,45

training data is typically limited in many biomedical applications. Furthermore,

stain color variation within and between laboratories is inevitable. A study by
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Tellez et al. [13] on Whole Slide Images (WSI) regarding e↵ects of stain color

normalization on CNNs found that converting the color images to grayscale is

the best performing method of stain color normalization among classical meth-50

ods; that is, the color-to-gray conversion suppresses the e↵ect of stain color

variation on CNNs. As, a deep learning model trained with color information

would not be generic for di↵erent stain types, we propose a digital stain separa-

tion approach using an adaptive method for color-to-gray transformation. Here

we show that our ASA-DL framework achieves superior results to ASA alone,55

that isolation of the immunostain channel from immunostained/counterstained

color images gives comparable counts to immunostained color images and that

this approach works for di↵erent immunostains and multiple cell types (neu-

rons, microglia cells). Though this study focuses on automatic counts of cells

at their maximal plane of focus in synthetic EDF images created from 3-D vol-60

umes of digital images, i.e., disector stacks, the second phase of this work (to be

published separately) uses the same color separation approach in combination

with slice-wise analysis of each image in the disector stack to make automatic

estimates of the total number of immunostained cells using the unbiased optical

fractionator method [3].65

In the ASA-DL framework, the color images of single-stain tissue sections

were converted to grayscale using the conventional BT.601-7 (studio encoding

parameters for digital television) Equation 1, [14]. In Equation 1, R, G, and B

are the intensity values of the red, green, and blue channels respectively. Y is the

gray scale intensity value. If the color images of counter-stained tissue sections70

are converted to grayscale using the conventional BT.601-7 transformation or

an advanced method like correlation based color to gray conversion proposed

by [15], both stains become so similar in appearance it becomes di�cult for a

human observer to discriminate between them. Figure 1 shows an example of

such conversions. This approach entails a pre-processing step to first digitally75

separate the information about two stains present in one image into two separate
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(a) Color image of counter-

stained tissue section (NeuN-

DAB&CV)

(b) Gray scale image con-

verted using BT.601-7, [14]

(c) Gray scale image con-

verted using CorrC2G

method, [15]

Figure 1: Example of color to gray conversion using existing methods.

images. This process is referred as stain separation.

Y = 0.2989 ⇤R+ 0.5870 ⇤G+ 0.1140 ⇤B (1)

2. Related Work

Stain color normalization is a process of digitally standardizing image ap-

pearance in histology, [16]. [17] presented a detailed study of stain color nor-80

malization methods published in the past two decades. These methods use two

major approaches: 1. Global color normalization like histogram specification;

and, 2. Color normalization after stain separation by supervised or unsuper-

vised methods. The goal of stain separation is to obtain a separate image called

a stain density map corresponding to each stain in the input image. The inten-85

sity at each pixel of a stain density map represents an estimated amount of the

corresponding stain present at that location. The qualitative and quantitative

results of the study published in [17] find the Structure-Preserving Color Nor-

malization (SPCN) method presented by [16] to be the best performing method.

The major advantage of using this method is that it incorporates stain mixing.90

The work in our present approach uses the principal stain density map as a

gray-scale image input to the ASA-DL framework for automatic counts of cell

profiles from dual-stained tissue sections.

The majority of the stain color normalization methods [[18]; [19]; [20]], in-

cluding SPCN ([16]), use Equation 2 derived from Equations 3 and 4 for stain95
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separation. Equation 3 represents the Beer-Lambert law as a non-linear re-

lationship between a pixel intensity and stain density. Due to the non-linear

relationship between image intensity and the stain density, it is inconvenient to

work in the image intensity space to estimate the stain density maps. If m⇥ n

is the image dimension, let I of dimensions 3 ⇥mn be the RGB pixel intensi-100

ties normalized in the range of [0,1] and r be the number of stains. C is the

stain color basis (3⇥ r), where each column is essentially a wavelength specific

(R,G and B) absorptivity coe�cient vector of a stain. D is the stain density

map with dimensions r ⇥ mn. Optical density, O (3 ⇥ mn), is defined as the

logarithm of normalized intensity as shown in Equation 4. Equation 2 shows a105

linear relationship between Optical density (O) and stain density (D). Hence, it

is convenient to work in the O space, instead of intensity space, to estimate the

D maps. The stain color normalization methods mentioned earlier [[18]; [19];

[20]; [16]] work in the O space.

O / CD (2)

I = e
�CD (3)

O = � log10 I (4)

A widely used method for stain separation is called color deconvolution110

([18]). O is an observation available from an image and a fixed deconvolution

matrix or stain color basis (C) is computed from control images of tissue sec-

tions with one pure stain at a time. D is estimated using Equation 2. However,

variations in stain appearance are highly frequent in histology due to protocol

variations from stain concentration and duration of staining. Also, while the115

biological structures like nuclei or cytoplasm bind tightly with either the princi-

pal or counter stain, they also absorb some amount of the other stain ([16]). As

a result, stain color basis computed using pure stain images would not be ac-

curate. Moreover, chemical staining-destaining of a tissue section to get control

images may not be feasible or practical for every new stain.120
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An unsupervised stain separation method using Non-negative Matrix Factor-

ization (NMF) was proposed by [19] to learn an image specific stain color basis.

A non-negative constraint was imposed on C and D based on the fact that stain

color basis and stain density cannot be negative. However, this method may get

to a local optimum solution because it attempts a joint non-convex optimization125

(Equation 5) ([16]).

min
C,D

1

2
||O � CD||2

s.t. C,D >= 0

(5)

[16] presented a Sparse Non-negative Matrix Factorization (SNMF) method

for unsupervised stain separation. This method added a sparsity constraint in

the objective function of the NMF method and alternately optimized only one

of the two variables C and D at a time by keeping the other fixed. We use130

this method with a few modifications (di↵erent value of a hyper-parameter and

using a fixed stain color basis as described in section 3) for this work.

[21] proposed a digital stain separation method in RGB and HSV color space

instead of O space. However, this method requires customization for type of

stain and number of stains. The method proposed here is generic for any stain135

type and the number of stains is a parameter (r) to be supplied.

It should be noted that DAB stain is not a true absorber of light but rather

scatters light and hence, does not follow the Beer-Lambert law [22]. This means

that the relationship between stain density (D) and its Optical Density (O) is

non-linear. This suggests that O of DAB is not suitable to accurately quantify140

the stain intensity. However, as mentioned by [22], DAB can be successfully

unmixed from a counterstained stain image. This means, it can be used for

counting applications, but not for applications that rely on accurate quantifica-

tion of the stain.
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3. Methods145

An overview of the complete automatic counting system with an example of

a microglia image stack is presented in Figure 2. The details are discussed in

the following subsections.

Figure 2: An overview of the automatic counting system

3.1. Color to Gray Conversion using Stain Separation

The proposed stain separation method based on SNMF for color to gray150

conversion and its application on 3D stacks is discussed in this section.

3.1.1. Stain Separation using SNMF

As mentioned in the previous section, we used SNMF with a few modifica-

tions for the stain separation. [16] proposed a Sparse Non-negative Matrix Fac-

torization (SNMF) formulation (Equation 6) by adding an l1 sparsity constraint155

in the NMF formulation and solved the non-convex optimization problem by al-

ternately optimizing over one variable while keeping the other constant, [16].

The sparsity constraint is to incorporate stain mixing and was derived from the

fact that each biological structure (like nuclei or cytoplasm) can bind to both

the stains (principal and counter stain) and not only to a pure stain. Selection160

of SNMF for stain separation in this work is also supported by the qualitative

and quantitative comparison results of the study performed by [17].

In Equation 6, Optical Density (O) reflects the observations available from

an image, and C and D are estimated by learning. The additional constraint
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on C to have unit Euclidean norm for each color basis is to suppress multiple165

equivalent solutions of type (C/↵,↵D), ↵ > 0.

min
C,D

1

2
||O � CD||2 + �

rX

i=1

||D(i, :)||1

s.t. C,D >= 0,

||C(:, i)||22 = 1

(6)

SNMF has � as a sparsity and regularization coe�cient. This hyper-parameter

controls the amount of stain mixing incorporated during stain separation. [16]

recommended to use � = 0.1 based on sensitivity analysis of � on Hematoxylin

and Eosin (H&E) stains. During stain separation, it is desirable to preserve the170

small amount of stain present in the background for image color normalization

kinds of application, where an accurate quantification of the stains on the com-

plete image is required. On the contrary, presence of a small amount of stain

in the background is noise for other microscopy applications like cell counting.

In order to reduce this noise to a negligible level, a higher value of the sparsity175

coe�cient can be helpful. Usually, such hyperparameter value selection is goal

dependent and it is good to select a value based on cross-validation. However,

such cross-validation would require many expensive training steps in the target

application. In order to avoid that, we visually analyzed the contrast between

foreground and background in separated stain images using di↵erent values of180

�. The observed contrast was high and su�cient when � = 0.8, getting high

sparsity in the solution. Figure 3 shows DAB stain density maps computed with

� = 0.1 and � = 0.8.

3.1.2. Color to Gray Conversion

The result of stain separation provides separate stain density maps corre-185

sponding to each stain (DAB & CV). The DAB - principal stain density map

was used as gray-scale image input to the ASA-DL framework for automatic

counting ([7]). A fixed transformation is applied to map an admissible contin-

uous range of the stain density values to a discrete range of [0,255]. Figures 4b
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(a) Color image of a counter-

stained tissue section (DAB &

CV stains)

(b) DAB stain density map

using � = 0.1

(c) DAB stain density map us-

ing � = 0.8

Figure 3: Stain separation result using SNMF method with di↵erent values of �.

and 4c show density maps as gray-scale images after stain separation.190

3.2. Processing 3D Stacks

A method of representing 3D information distributed among a stack of im-

ages in a 2D image and a post-processing step to visually match such 2D images

of the counterstain dataset to that of the single stain dataset is discussed in this

section.195

3.2.1. 3D to 2D Conversion

The optical fractionator is commonly used in stereology to estimate the

number of cells in a 3-D optical disector volume, consisting here of a stack of

n images (ten 1µm images), by thin focal-plane optical scanning along the z-

axis then repeating in a known fraction of a defined reference volume [3]. This200

is explained in more detail in Section 3.4. Individual cells occur in optimal

focus in di↵erent images of a disector stack based on their physical location in

the tissue. Here all the images of a stack are first converted to stain density

maps. As the cell nuclei tightly bind to the principal stain (DAB), processing

only the DAB stain density maps is required for automatic counting. The 3D205

information distributed among the DAB density-map stack is represented in a

2D image by converting it to an Extended Depth of Field (EDF) image using an

over-complete discrete wavelet transform based algorithm proposed by [23]. All

of the cells in a stack are in focus in an EDF image. When working with EDF

images there is an over-projection issue that varies according to the degree of210
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(a) Color image of a counter-

stained tissue section (DAB &

CV stains)

(b) DAB stain density map (c) CV stain density map

(d) EDF, before post-

processing, of stack corre-

sponding to 4b

(e) EDF, after post-

processing, of stack corre-

sponding to 4b

Figure 4: Stain density maps after stain separation using SNMF with � = 0.8, EDF of

principal stain density maps before and after post-processing

overlap. We have used EDF images for our proof of concept studies such as the

present work, since human observers also cannot see fully obscured objects. Our

previous work with EDF images using hand-crafted automatic algorithms ([6])

and deep learning automatic algorithms ([7]) confirmed these approaches achieve

similar accuracy to human observers; however, applications of this approach to215

EDF images can lead to under-counts in the case of overlapping cells. A future

extension of the present approach to slice-by-slice cell counting in each disector

stack will ensure accurate counts in all scenarios (overlap versus non-overlap)

similar to thin focal-plane scanning with optical disectors.

3.2.2. Visually Matching Counterstain Images to Single-stain Images220

To reuse the ASA-DL framework, designed and developed for the single-

immunostained neuron images as presented by [7], a post-processing step is

performed on the EDF image of DAB stain density maps (Figure 4d) to visu-

ally match it with that of a single-immunostained neuron image dataset. The

major di↵erence between single-immunostained EDF and DAB-EDF image of225
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the counterstain dataset is that the pixel intensity within cells is homogeneous

and darker in single stain. In DAB-EDF, there is a large change in intensity (a

very dark spot) within the cell due to high stain density in that part of the cell.

To get rid of such dark spots and make the within cell intensity homogeneous,

all foreground (< 255) intensities below 150 are truncated to 150. The cut-230

o↵ threshold for truncation can be automatically computed by comparing the

statistics of the histograms of EDFs from counterstained and single immunos-

tained neuron datasets. The value of 150 was chosen by visual comparison of

the EDFs for both datasets in this study as a proof-of-concept. This step is fol-

lowed by Gaussian smoothing with standard deviation of 2. The smoothing is235

performed to overcome the zero stain density of some pixels within a cell. Such

zero stain density pixels within a cell occur due to a high sparsity coe�cient

value (which helps in reducing background noise) in SNMF. The smoothing can

potentially increase the size of the cells by a few pixels. However, such a change

in cell size by a few pixels is not significant because, in consistency with the240

ASA-DL method, the minimum size of a cell is expected to be at least 250 pix-

els in the post-processing step depicted in Figure 5d. The smoothed image is

then gamma-corrected with gamma = 1.5 to improve the image’s overall dark-

ness. Figures 4d and 4e show an example of an EDF and post-processed EDF

of the stack corresponding to the sample image shown in Figure 4b.245

3.3. Fixing Stain Color Basis

During stain separation, a minima of the objective function (Equation 6)

of SNMF is estimated by applying unsupervised learning on each image. The

objective is to minimize the cost over the complete image. However, in some

images, the two stains are present in largely imbalanced proportion. In such250

images, two di↵erent shades of a dominant stain are learnt as two di↵erent stains,

leading to erroneous stain separation. To eliminate this problem, a fixed stain

color basis is used for a given stain. The fixed stain color basis is computed using

a subset of the dataset. From the five mice in the NeuN counterstain dataset

(described in Section 3.4), we randomly selected three mice, two sections per255
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mouse, one stack per section, and two images per stack. SNMF based stain

separation was performed on each image of this subset of twelve images under

manual observation. A human observer can accept or reject the results of stain

separation on each of the twelve images. This requires less than 30 minutes of

human observer time. The stain color bases of accepted images are averaged,260

and this average value is used as a fixed stain color basis for stain separation

on complete NeuN counterstain and IBA1 counterstain datasets (described in

Section 3.4). It is noteworthy that averaging of the accepted stain color bases

can potentially violate the unit Euclidean norm constraint on columns of C in

Equation 6. Practically, the values of the accepted stain color bases are very265

close and hence, the constraint violation is minor. Further, this violation would

not be fundamentally problematic for stain separation in the target application

since the constraint was used just to suppress multiple equivalent solutions. This

fixed stain color basis shows satisfactory results on the images from mice not

present in the learning subset and on a dataset of a di↵erent cell type (Microglia-270

IBA1) with the same stains. Moreover, the fixed stain color basis speeds up the

stain separation process as well by eliminating the stain basis learning step on

each image.

3.4. Dataset

The staining protocols for dual stains are one immunostain (NeuN or Iba-1)275

each with cresyl violet counterstain, i.e., NeuN/CV, Iba-1/CV. Staining proto-

cols were conventional immunostaining with primary and secondary antibodies

and DAB-based colorization followed by standard counterstaining in a 2% cresyl

violet (CV) solution, as we have previously detailed ([24]). We collected Z-axis

stacks of images (disector stacks) using the Stereologer system consisting of an280

Olympus microscope equipped with automatic stepping motors. Disector stacks

were acquired using systematic-random sampling, starting at a random X-Y lo-

cation in the upper left quadrant of neocortex in the first section, proceeding in

a systematic manner at intervals of 1200 µm ⇥ 1200 µm, and repeating on 8-12

sections through the entire mouse neocortex. This sampling approach provides285
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for low sampling error as evidenced by coe�cient of error (CE) ⇠ 0.10 (CE

⇠ 10%), as shown by [25]. The number of animals for this study was five for

the NeuN and eight for the IBA1 dataset.

As mentioned above, the images for this study were collected using the fol-

lowing sampling hierarchy. First, a total of about 8 to 12 tissue sections were290

collected by systematic-random sampling through the entire neocortex of the

mouse brain. Second, a total of about 10 to 12 disector probe locations (re-

ferred to as ’stacks’) were collected in a systematic-random manner from each

section. Finally, at each disector probe location, a series of 10 images at di↵er-

ent focal planes along the z-axis were captured at each disector probe location.295

In other words, a systematic-random sample of z-axis images (disector stacks)

representing a known fraction of the reference space was created, i.e., similar to

the disector volumes analyzed by the ordinary optical fractionator method used

to make total number estimates for cells in an anatomically defined reference

space. Gundersen’s unbiased counting rules ([26]) were applied to avoid edge300

e↵ects when counting in a 3D stack of z-axis images (i.e., disector stack) as

shown in Figures 6(c) and 6(f). That is, profiles were included that fell within

the disector volume or touched one of the top, upper or right-side inclusion

planes in 3D. Profiles were excluded that fell outside the disector volume or

touched either the bottom, lower or left-side exclusion planes.305

The sum of profiles counted in all disector stacks sampled in a systematic-

random manner through the reference space is referred as the ”Ground Truth

(GT) count” in this work. The Ground Truth count was obtained manually

using disector videos. As part of the development of our automatic optical

fractionator, we have improved the e�ciency of collecting GT counts by con-310

verting disector stacks into optical disector videos. For these manual GT counts,

the user counts (clicks) on cells of interest while the disector video moves at a

user-controlled variable speed through the z-stack of disector planes. In our

experience, this substantially reduces the number of keyboard clicks per brain,

leading to higher e�ciency, as well as less tedium and fatigue for GT counts,315

without a loss of accuracy and precision (reproducibility) as compared to counts

14



by conventional manual focusing through the same disector stacks.

It is noteworthy that our work involves two levels of ground truth (GT). The

first is the cell count GT that requires a click on each cell. This cell count GT is

performed at the individual focal planes using videos as described above. The320

second GT is mask with each counted cell profile outlined; these masks are then

used for training the deep learning model; these GT masks are obtained by the

process explained in Figure 5a.

Two datasets with two types of brain cells, neurons (NeuN) and microglia

cells (Iba-1), with the same colorization and counterstaining methods (DAB and325

CV, respectively) were used for the experiments presented in Section 4.1. The

NeuN dataset has five mice and the IBA1 dataset has eight mice. A summary

of the datasets is provided in Tables 1 and 2. Here, the column ’Number of

Images’ refers to the number of stacks after each stack is converted to an EDF

image.330

Mouse ID Number of Images Ground Truth Count

PI3-18 68 544

PI3-19 103 955

PI3-20 98 1009

PI3-21 97 1207

PI3-22 62 579

Table 1: Summary of neuron (NeuN) counterstain dataset

4. Experimental Results

In this section, experimental results from applying ASA-DL approach on

stain separated images by the proposed method are discussed.

4.1. Experimental Results

The post-processed EDF images (as described in Section 3.2) are used as335

input to the ASA-DL framework shown in Figure 5.
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Figure 5: The automatic counting framework (ASA-DL) proposed by [7]
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Mouse ID Number of Images Ground Truth Count

PI3-27 129 324

PI3-28 148 392

PI3-29 143 254

PI3-31 147 166

PI3-32 105 261

PI3-33 114 271

PI3-34 147 160

PI3-35 160 172

Table 2: Summary of microglia (IBA1) counterstain dataset

Augmentation by rotation and elastic transformation was performed on

training images to obtain a larger and more diverse training set to enhance

the performance of the deep learning model. As discussed by [7], we used the

U-Net deep learning architecture for segmentation consisting of convolution lay-340

ers for encoding and then decoding to learn features and localize the learned

features in the original input image for segmentation. U-Net was trained us-

ing Keras and Tensorflow frameworks for 100 epochs using the Adam optimizer

and learning rate of 1e�4 ([27]; [28]; [29]). The U-Net model training occurs

automatically primarily using computer time rather than time from an expert.345

The training time depends on the number of disector samples in the training

set, hardware capacity, learning parameters etc. It takes ⇡30 hours for 28080

disector samples (after augmentation) in the training set. Once the training was

underway, no human observation was required. Finally, the training time is a

one-time investment of resources for a particular stain type. Once the model is350

trained, the time to analyze new (“test”) images on disector stacks is less than

30 minutes per reference space (⇡100 disector stacks).

Results of automatic counting using the handcrafted algorithm ASA and

using the ASA-DL approach are reported in Tables 3 and 4 for the NeuN and
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Test Mouse ID #Images

Ground Truth

Count

(G)

ASA Count

(A)

ASA Error

Rate(%)

( |G�A|⇤100
G )

ASA-DL Count

(L)

ASA-DL

Error

Rate(%)

( |G�L|⇤100
G )

PI3-18 68 544 412 24.26 531 2.39

PI3-19 103 955 852 10.79 939 1.68

PI3-20 98 1009 817 19.03 846 16.15

PI3-21 97 1207 1014 15.99 1029 14.75

PI3-22 62 579 499 13.82 535 7.60

Average Error Rate (%) 16.78 8.51

Table 3: Automatic counting results on stain-separated NeuN counterstain dataset using ASA

and ASA-DL. Where, the last column refers to % error; and, the last row refers to the Mean

% error for all mice analyzed.

IBA1 dataset, respectively. The error rate is computed as a percentage of the355

absolute di↵erence of automatic count with respect to ground truth count. A

5-fold cross validation experiment using a “one-subject-left-out” strategy was

performed on the five mice NeuN dataset using ASA-DL approach. That is,

the deep learning model was trained on image data (stacks) from four mice,

with image data from one mouse left out for subsequent use as a test dataset,360

i.e., images not previously used for training the model. Therefore, the model’s

performance is validated based on unseen images not used for training the model

(note- the model is expected to perform well on the images used for training

the model). Since each of the five mice is left out once for testing in one of the

five folds, this approach allows for cross validating the performance of the deep365

learning model on previously unseen images, therefore, a fair basis for validating

the model’s performance. A 3-fold cross validation was performed on the eight

mice IBA1 dataset. Here, two of the folds had data from three mice and one

fold had data from two mice left out as test set. It should be noted that the

stain color basis learned using the procedure mentioned in Section 3.3, from a370

subset of images from the NeuN dataset, was used for both the NeuN and Iba1

datasets. Visualization of samples from both datasets is shown in Figure 6.
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Test Mouse ID #Images

Ground Truth

Count

(G)

ASA Count

(A)

ASA Error

Rate(%)

( |G�A|⇤100
G )

ASA-DL Count

(L)

ASA-DL

Error

Rate(%)

( |G�L|⇤100
G )

PI3-27 129 324 249 23.15 356 9.88

PI3-28 148 392 299 23.72 401 2.30

PI3-29 143 254 182 28.35 241 5.12

PI3-31 147 166 129 22.29 159 4.22

PI3-32 105 261 207 20.69 273 4.60

PI3-33 114 271 209 22.88 301 11.07

PI3-34 147 160 121 24.38 145 9.38

PI3-35 160 172 148 13.95 166 3.49

Average Error Rate (%) 22.43 6.26

Table 4: Automatic counting results on stain-separated IBA1 counterstain dataset using ASA

and ASA-DL. Where, the last column refers to % error; and, the last row refers to the Mean

% error for all mice analyzed.

5. Discussion and Conclusion

An adaptive method is proposed to digitally separate two colors in images

from dual stained tissue sections. The proposed method overcomes the limita-375

tions of the state-of-the-art methods, color deconvolution (requirement of fixed

and pure stain color basis as a prerequisite) and SNMF (stain color basis learn-

ing on each image and dependency on the stain distribution in the image). A

fixed stain color basis is learned on a subset of a NeuN counterstain dataset

under a one-time manual observation. When applied as an automatic counting380

method on the stain separated images, the ASA-DL approach shows substan-

tially higher performance than a hand-crafted automatic ASA method alone as

evidenced by lower average error rates on both datasets with two di↵erent cell

types.

The proposed method is an adaptive technique for color-to-gray conversion,385

where information related to only the object of interest, i.e., DAB-based im-

munostaining for neurons (NeuN) or microglial cells (Iba-1), is preserved while

color related to the general counterstain (CV) is eliminated. Gray-scale images

obtained through this method are used with the ASA-DL framework initially
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Figure 6: (a) Sample neuron (NeuN immunopositive) image with counterstain; (b) Conversion

to single stain gray EDF image using proposed stain separation on (a); (c) Automatic counts

of NeuN cell profiles on (b); (d) Sample microglia (Iba-1 immunopositive) image with counter

stain; (e) Conversion to single stain gray image using stain separation on (d); (f) Automatic

microglia counts on (e). The unbiased counting frame includes left and lower exclusion lines

(red) and upper and right inclusion lines (green)(lines convert to planes in 3D). In Figures

(c) and (f), the red outline around cell profiles represent automatic detection, green and blue

markings are GT.

designed and developed for a single-immunostained image dataset. Initial ex-390

periments show promising results for automatic counting on five mice of the

NeuN and eight mice of the Iba-1 immunostained with counterstain datasets.

[7] presented automatic counting results using the ASA-DL framework for a

single immunostained NeuN dataset of 9 mice. In order to compare the current

results on NeuN counterstain dataset with the published result, an experiment395

done with a subset of 5 randomly chosen mice from the 9 mice showed an av-

erage ASA error rate of 9.42% and average ASA-DL error rate of 4.67%. The

average ASA-DL error rate for the same 5 mice in the published results (when

the deep learner was trained on 9 mice) is 2.67% ([7]). Following the trend of the
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published results, the average error rate using ASA-DL is approximately half or400

less compared to that using ASA for both the counterstain datasets. Moreover,

the lower error rate (2.67%) with 9 mice NeuN single immunostained dataset

shows that performance for the counterstain images can be further improved by

using a larger dataset.

Our proposed method is applied to dual staining with DAB-based immunos-405

tains as primary stains for neurons (NeuN) and microglial cells (Iba-1) with CV

as the common counterstain. The stain separation approach is independent of

these specific immunostains and counterstains. As such, it can be used as a pre-

processing step in the ASA-DL framework and applied to any immunostained

target object in a dual stain combination with any counterstain. Furthermore,410

beside automatic cell counting the proposed stain separation method is poten-

tially applicable to other applications for automating estimation of other stere-

ology parameters, e.g., total length estimation using the Space Balls method

([4]); total surface area using the Virtual Cycloids method ([30]). The value of

the sparsity coe�cient parameter can be chosen as best suited for the dataset415

and application.

In conclusion, this study provides a novel proof-of-concept for automatic

deep learning-based counting of cell profiles in synthetic EDF images created

from 3-D volumes, i.e., disector stacks. Though useful for demonstrating our

stain separation method, a limitation of EDF images is the potential for un-420

dercounting due to overlapping of smaller cells by larger cells in the z-axis of

disector stacks. To eliminate these undercounts, our future studies will focus

on automatic counting of each cell in the disector stack using a slice-wise DL

approach, thereby allowing for automatic thin focal plane scanning in the z-axis

as required for unbiased stereology counts using the optical disector and optical425

fractionator methods. Thus, the present color separation approach will support

automatic unbiased stereology counts of the total number of immunostained

cells on dual-stained tissue sections.
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