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Abstract—In this paper, we study an estimation problem under
the local differential privacy (LDP) framework: There is an
ordered list of d values (e.g., real numbers); a set of n users,
where each user observes an element from this list and each
value in the list is observed by at least one user; and an untrusted
server, who wants to estimate the values that the users possess,
without learning (in the sense of LDP) the actual value that each
user has and its corresponding index in the list. Towards this,
we propose two LDP estimation schemes: The first one is under
the assumption that the server knows the number of users that
observe each value; and the second one is for the general scenario,
in which the server does not have this prior information. We show
that the minimax risk decreases with the total number of users
under a very mild condition on the number of users observing
each value.

I. INTRODUCTION

Differential privacy (DP) [1] has become a standard defini-

tion of privacy in privacy-preserving data analysis. DP ensures

that the participation of a single person in a database does not

change the probability of an outcome by much. In this paper,

we focus on a variant of DP, called local differential privacy

(LDP), in which the data is distributed among multiple users,

and an aggregator wants to compute a statistic on the users’

data privately [2], [3]. LDP provides a method in which each

user gives a privatized-version of its data to the aggregator so

that it can compute the desired statistic without compromising

the privacy of individual user’s data. LDP has received a

considerable amount of attention both in academia [4]–[6] as

well as in industrial applications [7], [8]. A classic example

of an LDP mechanism is randomized response [9].

We consider a novel estimation problem under differential

privacy constraints: There is an ordered list of d values (e.g.,

real numbers); a set of n users, each holding an element from

this list and each value is held by at least one user; and an

untrusted server, who wants to estimate the list, in a manner

that the actual values that users possess from the list as well

as their corresponding indices are hidden from the server in

the sense of LDP. We study the privacy-utility trade-offs for

this private estimation problem. To the best of our knowledge,

this problem has not been studied before. This model may be

useful in several scenarios. In an academic campus, multiple

students move from time to time across different classrooms.

Suppose there is an administrator who wants to know the

number of students present in different classrooms at any given
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time, maybe to control the temperature of the classrooms.

Note that students have a good (or maybe exact) estimate

of the number of students present in their classrooms, but

may not have much idea of other classrooms. Now, if the

students share their raw observation with the administrator,

they reveal their locations on the campus, which they may be

uncomfortable sharing. Hence, it raises an intriguing question:

How can the administrator have a good estimate of the number

of students present in each classroom, while preserving privacy

of students’ locations on the campus?

We study it in the LDP framework, where each user perturbs

its own data (independent of other users) and provides it to

the server, with the guarantee that any change to the data of

a single user leads to a small change in the probability of the

outcome of the algorithm. Hence, the untrusted server cannot

infer the private data of an individual user from observing the

output of the LDP mechanism.

Our contributions. Apart from the problem formulation, our

contributions can be summarized as follows.

• We first formulate a minimax risk for the above-described

problem under LDP contraints.

• Under the assumption that the server knows the number

of users that observe each element of the (unknown) list, we

propose an LDP mechanism for each user, and characterize

the privacy-utility trade-offs of our proposed mechanism for

different loss functions. We show that minimax risk decreases

as the number of users n increases under the condition that the

number of users that observe any value from the list increase

as ω(
√
n).

• We develop an LDP mechanism for the general case, when

the server does not have the above prior knowledge about the

frequency of each element of the list. Our proposed mechanism

consists of two stages: In the first stage, the server estimates

the number of users that observe each value of the list; in the

second stage, the server estimates the list of d values given the

estimated values from the first stage. We analyze the privacy-

utility trade-offs, and prove that the minimax risk converges

with the same order as in the case when the server knows the

number of users that observes each value from the list. Lower

bounds for this formulation is part of (ongoing) future work.

In our proposed algorithm for the general case, we propose

a new optimal LDP scheme for frequency estimation that is

different from the schemes proposed in [5], [6], [10]. Our

LDP frequency estimation scheme is designed such that each

user sends a binary bit with different mean depending on the



index of its value from the list. The simplicity of our proposed
scheme helps us to prove some properties of the frequency
estimators used in the main algorithm.
Related work: Statistical estimation under LDP has been stud-
ied extensively in different contexts in the literature. In [11]–
[13], the authors studied discrete distribution estimation under
LDP, wherein a service provider wants to learn a discrete dis-
tribution from users’ samples without learning the underlying
samples. The work in [14]–[16] studied differentially private
multi-party computation, where each party is interested in
computing a function of the entire dataset of all parties while
preserving privacy of its own data. In [17], [18], the authors
derived lower and upper bounds for estimation under LDP –
their work considers that all users observe i.i.d. samples from
the same distribution, and the goal for each user is to preserve
privacy of its raw sample. Our work is different from these
papers, in the sense that in our setup, there is no underlying
distribution from which users draw their data – there is an
arbitrary and ordered list of, say, real numbers, and each user
observes a different element from this list. The goal in our
work is to preserve (in addition to the actual data) privacy of
the index of the element that each user observes from the list.
We will see in Section II-A that in order to preserve privacy
of the index of the value that each user observes, it is required
to preserve privacy of both the index and the value. Hence,
our proposed LDP mechanisms give more private output in the
following sense: The adversary cannot infer from the output
of the algorithm not only the raw data but also the index of
the data (in the ordered list from which it is drawn) that each
user observes.
Paper organization. We formulate our problem with and
without the assumption that the server knows the frequency
of each element of the list in Section II. We state our
main results in Section III. We give our algorithm under the
above assumption in Section III-A and for the general case
in Section III-B. In Section III-C, we give our new LDP
mechanism for frequency estimation. Omitted proofs from this
paper can be found in the full version [19].

II. PROBLEM FORMULATION

Let Θ ⊆ R
d denote a set of ordered lists of d elements.

Consider an arbitrary element θθθ = (θ1, . . . , θd) from Θ. In our
problem, every user observes a value from θθθ. For i ∈ [n] :=
{1, . . . , n}, let the i-th user observe θai

for some ai ∈ [d]1.
Note that d < n. We can divide the n users into d disjoint
sets, {Sj}dj=1, where the users in Sj observe θj . Let αj :=

|Sj |
n

denote the fraction of users that observe θj . As mentioned in
Section I, we assume that each θj is observed by at least one
of the users. So, we have

∑d
j=1 αj = 1, where αj ≥ 1

n for
every j ∈ [d].

For given ααα = (α1, . . . , αd) such that
∑d

j=1 αj = 1 and
αj ≥ 1

n , j = 1, . . . , d, we define a set Aααα ⊂ [d]
n, where

1We assume that the i-th user knows the index ai of the element θai . In
our academic campus example, the student knows its location and the overall
list of locations enabling it to identify its index in the list.

Aααα = {a ∈ [d]
n

: |{i:ai=j}|
n = αj , ∀j ∈ [d]} denotes

the set of assignment vectors a = (a1, . . . , an) ∈ [d]
n such

that αjn users observe θj . The i-th user generates a private
output Yi as a function of θai . Then, the untrusted server
estimates the vector θθθ from observing the private outputs
Y n = (Y1, . . . , Yn).

A. Local Differential Privacy (LDP) Mechanisms

In order for the server to estimate θθθ, each user i ∈ [n]
shares information about its observed value θai

, while keeping
the index of its event ai private. In other words, from Yi,
the untrusted server should not learn whether the i-th user
observes θj or θj′ for any j, j′ ∈ [d]. For the i-th user, a
private mechanism Qi with input ai ∈ [d] and θai ∈ R is
used to generate a private output yi ∈ Yi. We consider private
mechanisms {Qi} that provide local differential privacy for
each user [3].

Definition 1. A private mechanism Q is said to satisfy ǫ-local
differential privacy (ǫ-LDP), if for every θθθ ∈ Θ and every pair
j, j′ ∈ [d], we have

sup
y∈Y

Q (y|θj , a = j)

Q (y|θj′ , a = j′)
≤ eǫ, (1)

where Q (y|θj , a = j) = Pr [Y = y|θj , a = j] and ǫ captures
the privacy level. The smaller the privacy level ǫ, the untrusted
server has more difficulty inferring whether ai = j or ai = j′

for any pair j, j′ ∈ [d].

Let Qǫ denote the set of private mechanisms that satisfy ǫ-
LDP. Thus, each user chooses a private mechanism Qi ∈ Qǫ

to generate a private output Yi ∈ Yi for i ∈ [n].

B. Minimax Risk Estimation

We first formulate the minimax problem under the following
assumption. Then, we formulate the general problem without
this assumption.

Assumption 1. For a given (unknown) θθθ = (θ1, . . . , θd),
we assume that the server knows exactly the number of users
that observe each θj , i.e., it knows the frequency vector ααα.
However, it does not know the exact assignment vector a ∈
Aααα.

The server uses the users’ private outputs Y n =
(Y1, . . . , Yn) to estimate the vector θθθ = (θ1, . . . , θd). Let

θ̂θθ (Y n) =
(

θ̂1, . . . , θ̂d

)

denote the estimator of the server
that maps Y n to a vector in the space Θ. For given private
mechanisms Qn = [Q1, . . . , Qn], the performance of the
estimator θ̂θθ is measured by the expected loss:

sup
θθθ∈Θ

sup
a∈Aααα

E

[

ℓ
(

θθθ, θ̂θθ (Y n)
)]

,

where the expectation is taken over the randomness in the
outputs Y n, and ℓ : Rd×R

d → R
+ denotes the loss function.

Now we define the minimax problem under Assumption 1:

rℓ,α
αα

ǫ,n,d = inf
Qn∈Qǫ

inf
θ̂θθ

sup
θθθ∈Θ

sup
a∈Aααα

E

[

ℓ
(

θθθ, θ̂θθ (Y n)
)]

, (2)



where infθ̂θθ is to design the best estimator that minimizes the
expected risk, and infQn∈Qǫ

is to design an ǫ-LDP private
mechanism for users to minimize the expected risk.

Now we define the minimax risk when Assumption 1 is
not satisfied. In this case, the minimax risk problem can be
formulated as

rℓǫ,n,d = inf
Qn∈Qǫ

inf
θ̂θθ

sup
θθθ∈Θ

sup
a∈[d]n

E

[

ℓ
(

θθθ, θ̂θθ (Y n)
)]

. (3)

The difference between (2) and (3) is that, in (2) we take
supremum over the assignment vectors a ∈ Aααα, since the
server knows a prior knowledge that a ∈ Aααα, whereas, in (3)
we take the supremum over all possible assignment vectors
a ∈ [d]

n, since the server has no prior information about a.

Remark 1. (Deterministic vs probabilistic) In the above
problem formulation, we assume that the vector θθθ is deter-
ministic, where all users in Sj have access to the exact value
θj for j ∈ [d]. We refer to this model as a deterministic
model. We can extend our formulations to the probabilistic
model as follows. Let P be a set of distributions on a space
X = X1 × · · · × Xd ⊆ R

d. Let Pj denote the set of marginal
distributions on the sample space Xj ⊆ R. Let θθθ (P ) ∈ Θ be a
function mapping from P to Θ. Each user i ∈ [n] observes a
random sample Xai

∈ Xai
drawn from unknown distribution

Pai
∈ Pai

. For example, consider that the server wants to
estimate the mean θθθ from a family of normal distributions
P , {N

(

θθθ, σ2
Id

)

: θθθ ∈ Θ} with known variance σ2. In
this case, each user does not observe the exact event θai , and
hence, a private mechanism Q is said to satisfy ǫ-LDP if for
every x = (x1, . . . , xd) ∈ X and every pair j, j′ ∈ [d], we
have

sup
y∈Y

Q (y|xj , a = j)

Q (y|xj′ , a = j′)
≤ eǫ (4)

Furthermore, the minimax risk problem under Assumption 1
is formulated as

rℓ,α
αα

ǫ,n,d = inf
Qn∈Qǫ

inf
θ̂θθ

sup
P∈P

sup
a∈Aααα

EP,Qn

[

ℓ
(

θθθ, θ̂θθ (Y n)
)]

, (5)

where the expectation is taken over the randomness in Y n.
In this paper, we only present achievable schemes for the
deterministic model, with the understanding that it is possible
to extend our ideas to the probabilistic model as well.

III. MAIN RESULTS

In this section we present the main results of this paper. We
present two ǫ-LDP algorithms and characterize the minimax
risks rℓ,α

αα
ǫ,n,d (which is under Assumption 1) in Theorem 1 and

rℓǫ,n,d for the general case in Theorem 2.
Let Θ = [Cmin : Cmax]

d, i.e., Cmin ≤ θj ≤ Cmax for all
j ∈ [d], where Cmin, Cmax are global constants known to all
parties and Cmin < Cmax. Define b := Cmax − Cmin.

A. An ǫ-LDP Algorithm and its Bounded Minimax Risk under

Assumption 1

In this section, we present an algorithm DIST-EST-AS

under Assumption 1, and prove that it is ǫ-LDP and has
bounded minimax risks.

Theorem 1. Fix an arbitrary ααα = (α1, . . . , αd) such that
∑d

j=1 αj = 1 and αj ≥ 1
n for j ∈ [d]. Let ǫ = O (1). Consider

an arbitrary θθθ ∈ Θ. For any assignment vector a ∈ Aααα, DIST-

EST-AS is an ǫ-LDP algorithm that achieves the following

bounds for estimating θθθ ∈ Θ:

r
ℓ22,ααα
ǫ,n,d = E

[

||θ̂θθ − θθθ||22
]

= O





b2

ǫ2n

d
∑

j=1

1

α2
j



 (6)

rℓ1,α
αα

ǫ,n,d = E

[

||θ̂θθ − θθθ||1
]

= O





√

√

√

√

db2

ǫ2n

d
∑

j=1

1

α2
j



 (7)

rℓ∞,ααα
ǫ,n,d = E

[

max
j∈[d]
|θ̂j − θj |

]

= O
(

b

ǫα∗

√

log (d)

n

)

, (8)

where α∗ = min
j∈[d]

αj .

Algorithm 1 DIST-EST-AS: ǫ-LDP distributed estimation
under Assumption 1

1: Inputs: Frequencies ααα ≻ 0, vector assignment a ∈ Aααα,
event vector θθθ ∈ Θ, and privacy level ǫ.

2: for user i = 1 to n do

3: user i generates vector Yi = [Yi1, . . . , Yid] ∈ R
d

4: for j = 1 to d do

5: Zij ∼ Lap
(

2b
ǫ

)

6: if ai 6= j then

7: Yij = Cmin + Zij

8: else

9: Yij = θj + Zij

10: end if

11: end for

12: end for

13: Server computes Y = 1
n

∑n
i=1 Yi

14: θ̂θθ ←
(

Y − (1−ααα)Cmin

)

⊘ ααα, where for any two
vectors x = (x1, . . . , xd), y = (y1, . . . , yd), x ⊘ y :=
(

x1

y1
, . . . , xd

yd

)

is defined as the component-wise division.

We prove Theorem 1 in Section IV. Theorem 1 implies
that if the frequencies satisfy 1/α2

j ∈ o (n) (which can be
equivalently written as nαj = ω(

√
n)), then the minimax risk

goes to zero as the number of users become arbitrarily large.
The main idea of our proposed algorithm (Algorithm 1)2 is
that the i-th user generates a vector of d Laplace random
variables, where the ai-th random variable has mean θai , while
the other random variables have mean Cmin. The variance of
the noise is chosen to preserve privacy of the output. The
server aggregates the response of all users for each event.
Hence, for the j-th value θj , there are nαj Laplace random
variables with mean θj , while there are (1− αj)n Laplace
random variables with mean Cmin. As a result, the server can

2Note that Algorithm 1 represents the ǫ-LDP mechanisms of all users as
well as the estimator of the server, where each user has only access to her
observation θai .



estimate θθθ from knowing the frequencies ααα and Cmin without
disclosing the identity of the users that observe this event.

Now we state our main result for the general case.

B. An ǫ-LDP Algorithm and its Bounded Minimax Risk for

the General Case

In this section, we present an algorithm for the general case
(where the server does not have any prior information about
the frequency vector ααα), and prove that it is ǫ-LDP and has
bounded minimax risks.

As mentioned in Section II, we assume, without loss of
generality, that αj ≥ 1

n , i.e., each value θj is observed by at
least one user. To be concrete, assume that all frequencies are
bounded by αj ≥ δ, j = 1, 2, . . ., for some δ ≥ 1

n . Here δ can
be treated as a confidence bound known to all parties.

Theorem 2. Let ǫ = O (1). Consider an arbitrary θθθ ∈ Θ
and δ > 0. Let αj ≥ δ for all j ∈ [d]. Then DIST-EST is

an ǫ-LDP algorithm that achieves the following bounds for

estimating θθθ ∈ Θ:

r
ℓ22
ǫ,n,d = sup

ααα
O





b2

ǫ2n

d
∑

j=1

1

α2
j



 = O
(

db2

δ2ǫ2n

)

(9)

rℓ1ǫ,n,d = sup
ααα
O





√

√

√

√

db2

ǫ2n

d
∑

j=1

1

α2
j



 = O
(
√

d2b2

δ2ǫ2n

)

(10)

Algorithm 2 DIST-EST: ǫ-LDP distributed estimation

1: Inputs: Confidence bound δ > 0, vector assignment a ∈
[d]

n such that αj ≥ δ for j ∈ [d], event vector θθθ ∈ Θ, and
privacy level ǫ.

2: α̂αα ← FREQ-EST (a, δ, ǫ/2) (run Algorithm 3 to obtain
the estimate α̂αα)

3: θ̂θθ ← DIST-EST-AS (α̂αα,a, θ, ǫ/2) (run Algorithm 1 to
obtain the estimate θ̂θθ)

To prove Theorem 2, we propose an ǫ-LDP scheme that
consists of two stages. In the first stage, the server estimates
the frequencies ααα using LDP frequency estimation scheme
FREQ-EST proposed in Section III-C. In the second stage, the
server estimates the vector θθθ given the estimated frequencies
from the first stage. The main challenge here is to analyse
how the error in estimating frequencies ααα affects the error
in estimating the event vector θθθ. Observe that for fixed
frequencies ααα, the minimax risk for the general case given
in Theorem 2 has the same order as the minimax risk given
in Theorem 1, which is for the case when the server knows
the frequencies ααα. To obtain this result, we fist prove some
properties of FREQ-EST (See Theorems 4 in Section III-C).
These properties help us to prove that the error in privately
estimating the frequencies ααα does not hurt the minimax risk
of estimating θθθ. Observe that once 1/δ2 ∈ o (n), the minimax
risk of estimating the d events goes to zero as the number
of users is arbitrary large (n → ∞). We prove Theorem 2 in
Section IV.

C. Frequency Estimation under LDP

In this section, we present a new LDP mechanism FREQ-

EST for estimating the frequencies ααα = (α1, . . . , αd) while
preserving the privacy of each user. As mentioned in Section I,
the frequency estimation under an LDP constraint has been
studied before, and a number of schemes have been proposed
[5], [6], [10] so far. Our algorithm FREQ-EST is designed
such that each user sends a binary bit with different mean
depending on the index of the value it has. Our algorithm
is arguably simpler than the ones in [5], [6], [10], and this
simplicity helps us to prove some properties which we used
in the main algorithm DIST-EST of this paper.

Our private frequency estimator FREQ-EST is described
in Algorithm 3. We assume an input parameter δ ≥ 0, which
denotes a confidence bound representing a prior information
about the frequencies, such that αj ≥ δ for all j ∈ [d]. Let

Algorithm 3 FREQ-EST: ǫ-LDP frequency estimation

1: Inputs: Vector assignment a ∈ [d]
n, Confidence bound

δ ≥ 0, and privacy level ǫ.
2: for u doser i = 1 to n
3: user i generates vector Yi = [Yi1, . . . , Yid] of d bits
4: for j = 1 to d do

5: if ai 6= j then

6: Yij ∼ Bern
(

1
eǫ/2+1

)

7: else

8: Yij ∼ Bern
(

eǫ/2

eǫ/2+1

)

9: end if

10: end for

11: end for

12: Server computes Y = 1
n

∑n
i=1 Yi.

13: T← eǫ/2+1
eǫ/2−1

(

Y − 1
eǫ/2+1

)

14: α̂αα← 〈T〉δ

X ∼ Bern (p) denote a Bernoulli random variable such that
X = 1 with probability p and X = 0 with probability 1− p.
For vector x, the operation 〈x〉δ denotes elementwise trunca-
tion from below δ. In Algorithm 3, the i-th user generates a
vector of d binary random variables, where the ai-th bit is a
Bernoulli random variable with parameter eǫ/2

eǫ/2+1
, while the

other bits are Bernoulli random variable with p = 1
eǫ/2+1

.

Theorem 3. Let ǫ = O (1). For any assignment vector

a ∈ [d]
n

, FREQ-EST is an ǫ-LDP algorithm that achieves

the following bounds for estimating the frequency vector ααα:

r
ℓ22
ǫ,n,d = E

[

||α̂αα−ααα||22
]

= O
(

d

ǫ2n

)

(11)

rℓ1ǫ,n,d = E [||α̂αα−ααα||1] = O
(
√

d2

ǫ2n

)

(12)

rℓ∞ǫ,n,d = E

[

max
j∈[d]
|α̂j − αj |

]

= O
(

1

ǫ

√

log (d)

n

)

(13)



Theorem 3 is valid even when δ = 0. Observe that FREQ-

EST is order optimal for heavy hitter estimation for the ℓ∞
loss, matching the bounds in [6], [10].

In the following we bound the expectation E

[

1
α̂2

j

]

for given

confidence bound δ > 0. In addition, we also bound the

expectation E

[

(

α̂j−αj

α̂j

)2
]

. These two values will be used

in the proof of Theorem 2 to analyze the performance of
Algorithm 2 DIST-EST.

Theorem 4. For δ > 0, let αj ≥ δ for j ∈ [d]. We have

E

[

1

α̂2
j

]

≤ 4

α2
j

+ C1e
−2n

(

eǫ/2−1

eǫ/2+1

)

2
αj

2

4

,

E

[

1

α̂4
j

]

≤ 16

α4
j

+ C2e
−2n

(

eǫ/2−1

eǫ/2+1

)

2
αj

2

4

,

E

[

(

α̂j − αj

α̂j

)2
]

≤ Cǫ,n

√

√

√

√

(

16

α4
j

+ Ce
−2n

(

eǫ/2−1

eǫ/2+1

)2 αj
2

4

)

,

where C1 = 1
δ2 − 4

9 , C2 = 1
δ4 − 16

81 are global constants,

and Cǫ,n =

√

(

(eǫ/2)
4
+eǫ/2

(eǫ/2−1)
4
(eǫ/2+1)n3

)

. The bound in the third

inequality is O
(

1
α2

jǫ
2n3/2

)

.

IV. PROOF OUTLINES

In this section, we give prove outlines of our main theorems
and defer the complete proofs to the full version [19].

Proof of Theorem 1. Proof of ǫ-LDP. Consider an arbitrary
user i ∈ [n]. Let y = (y1, . . . , yd) ∈ R

d be one of the outputs
of the i-th user. Let f (y) = ǫ

4be
−

ǫ|y|
2b denote the probability

density function of the Laplace distribution with zero mean
and variance 2b

ǫ . Thus, we get

Q (y|θj , ai = j)

Q (y|θj′ , ai = j′)
=

f (yj − θj) f (yj′ − Cmin)

f (yj − Cmin) f (yj′ − θj′)

= exp
( ǫ

2b
(|yj − Cmin| − |yj − θj |)

)

×

exp
( ǫ

2b
(|yj′ − θj′ | − |yj′ − Cmin|)

)

≤ exp
( ǫ

2b
(|θj − Cmin|+ |θj′ − Cmin|)

)

≤ eǫ.

Proof of bounded minimax risks. First, observe that θ̂j =
1
αj

(

yj − (1− αj)Cmin

)

, where yj = 1
n

∑n
i=1 yij . Thus,

E

[

θ̂j

]

= θj . Hence, the error to estimate θθθ under ℓ22 loss
is bounded by

E

[

||θ̂θθ − θθθ||22
]

=

d
∑

j=1

E

[

(

θ̂j − θj

)2
]

=

d
∑

j=1

1

α2
j

E

[

(

yj − E
(

yj
))2
]

=

d
∑

j=1

1

α2
j

∑n
i=1 Var (Zij)

n2

=

d
∑

j=1

1

α2
j

8b2

ǫ2n
= O





b2

ǫ2n

d
∑

j=1

1

α2
j





We can easily get the results in (7) for the ℓ1 loss

from the inequality E

[

||θ̂θθ − θθθ||1
]

≤ E

[

√

d||θ̂θθ − θθθ||22
]

≤
√

d E

[

||θ̂θθ − θθθ||22
]

, where the last inequality obtained from

Jensen’s inequality and concavity of the function f (x) =
√
x.

Now, we prove the results in (8). Observe that
(

θ̂j − θj

)

=
1

αjn

n
∑

i=1

(Yij − E [Yij ]) =
1

αjn

n
∑

i=1

Zij ,

where Zij ∼ Lap
(

2b
ǫ

)

. Thus, Zij is a sub-exponential random
variable with parameter λ = 4b

ǫ and its moment generating
function is E

[

esZij
]

≤ es
2λ2/2 for |s| ≤ 1/λ. Thus, we get

E

[

e
s 1
αjn

∑n
i=1

Zij
]

=

n
∏

i=1

E

[

e
s

αjn
Zij
]

≤
n
∏

i=1

e
s2

α2
j
n2

4b2

ǫ2 = e
s2

α2
j
n

4b2

ǫ2 , ∀ | s

αjn
| ≤ ǫ

4b

(14)

The remaining of the proof follows similar steps as [20,
Theorem 1.14] and is provided in [19]. �

Proof of Theorem 2. Proof of ǫ-LDP. Observe that Algo-
rithm 2 DIST-EST first runs FREQ-EST with the privacy
parameter ǫ/2, which is ǫ/2-LDP, and then it runs DIST-

EST-AS with the privacy parameter ǫ/2, which is ǫ/2-LDP.
Furthermore, these two mechanisms are independent. Hence,
from the composition theorem [21], DIST-EST is ǫ-LDP.
Proof of bounded minimax risks. First, observe that θ̂j =
1
α̂j

(

yj − (1− α̂j)Cmin

)

, where yj = 1
n

∑n
i=1 yij , and α̂j is

the estimate of αj obtained from Algorithm 3. Thus, the error
in estimating θθθ under ℓ22 loss is given by

E

[

||θ̂θθ − θθθ||22
]

=

d
∑

j=1

E

[

(

θ̂j − θj

)2
]

=

d
∑

j=1

E

[

1

α̂2
j

(

yj − E
(

yj
)

− (α̂j − αj) (θj − Cmin)
)2

]

≤
d
∑

j=1

E

[

1

α̂2
j

]

∑n
i=1 Var (Zij)

n2
+ b2E

[

(

α̂j − αj

α̂j

)2
]

=

d
∑

j=1

E

[

1

α̂2
j

]

8b2

ǫ2n
+ b2E

[

(

α̂j − αj

α̂j

)2
]

(a)

≤ O





b2

ǫ2n

d
∑

j=1

1

α2
j



+O





b2

ǫ2n3/2

d
∑

j=1

1

α2
j



 ,

where step (a) follows from Theorem 4. We can obtain the
results in (10) for the ℓ1 loss from the inequality E‖θ̂θθ−θθθ‖1 ≤
E

√

d‖θ̂θθ − θθθ‖22 ≤
√

d E‖θ̂θθ − θθθ‖22, where the last inequality ob-
tained from Jensen’s inequality and concavity of the function
f (x) =

√
x. This completes the proof of Theorem 2. �
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