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Abstract—We consider a distributed empirical risk minimiza-
tion (ERM) optimization problem with communication efficiency
and privacy requirements, motivated by the federated learning
(FL) framework [1]. Unique challenges to the traditional ERM
problem in the context of FL include (i) need to provide privacy
guarantees on clients’ data, (ii) compress the communication
between clients and the server, since clients might have low-
bandwidth links, (iii) work with a dynamic client population at
each round of communication between the server and the clients,
as a small fraction of clients are sampled at each round. To
address these challenges we develop (optimal) communication-
efficient schemes for private mean estimation for several ℓp

spaces, enabling efficient gradient aggregation for each iteration
of the optimization solution of the ERM. We also provide
lower and upper bounds for mean estimation with privacy and
communication constraints for arbitrary ℓp spaces. To get the
overall communication, privacy, and optimization performance
operation point, we combine this with privacy amplification
opportunities inherent to this setup. Our solution takes advantage
of the inherent privacy amplification provided by client sampling
and data sampling at each client (through Stochastic Gradient
Descent) as well as the recently developed privacy framework
using anonymization, which effectively presents to the server
responses that are randomly shuffled with respect to the clients.
Putting these together, we demonstrate that one can get the same
privacy, optimization-performance operating point developed
in recent methods that use full-precision communication, but
at a much lower communication cost, i.e., effectively getting
communication efficiency for “free”.

I. INTRODUCTION

In this paper we consider a federated learning (FL) frame-

work [1]–[3], where the data is generated across m clients.

The server wants to learn a machine learning model that

minimizes a certain objective function using the m local

datasets, without collecting the data at the central server due

to privacy considerations. Specifically, each client i has a local

dataset Di = {di1, . . . , dir} ⊂ S
r comprising r data points,
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where S is the set from which all clients data is from.1 The

server wants to solve the following empirical risk minimization

problem:

argmin
θ∈C

(

F (θ) :=
1

m

m
∑

i=1

Fi(θ)

)

. (1)

Here, C ⊂ R
d is a closed convex set, and Fi(θ) is a local

loss function dependent on the local dataset Di at client i

evaluated at the model parameters θ ∈ R
d; see Figure 1 for a

pictorial representation of the setting and Section III for more

details on the problem setup. In order to generate a learning

model using (1), the commonly used mechanism is Stochastic

Gradient Descent (SGD) [4]. Federated learning (FL) introduces

several unique challenges to this traditional model that cause

tension with the objective in (1): (i) we need to provide privacy

guarantees on the locally residing data Di at client i, as the data

not only needs to remain at the clients but additionally needs

to be kept private according to certain requirements/guarantees;

(ii) compress (as efficiently as possible) the communication

between clients and the server, since the clients may connect

with low-bandwidth (wireless) links; and (iii) work with a

dynamic client population in each round of communication

between the server and the clients. This happens due to scale

(e.g., tens of millions of devices) and only a small fraction of

clients are sampled at each communication round depending

on their availability.

These requirements make the problem challenging, especially

when one wants to give strong privacy guarantees while training

models that give good learning performance. Since we need

to give privacy to the local data residing at the clients, the

traditional framework to give guarantees is through the notion

of local differential privacy, where the server is itself untrusted.

The challenge is that traditional approaches to learning under

local differential privacy (LDP) [5]–[9] are known to give poor

learning performance [7], [9], [10].

In recent works, a new privacy framework using anonymiza-

tion has been proposed in the so-called shuffling model [11]–

[19]. This model enables significantly better privacy-utility

performance by amplifying privacy (scaling with number of

clients as 1√
m

with respect to LDP) through this anonymization,

which effectively presents the central server with responses

1The data could be images with labels, e.g., 8× 8 pixel blocks with labels,
where each pixel is represented by 32 bits and each label is represented
by an integer from {1 . . . , 10}, in which case S = F64 × G, where F =

{1, . . . , 256} and G = {1, . . . , 10}. Another example is the text represented
by words, in which case S = W∗, where W is the language alphabet and S

are strings of letters from the alphabet.
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which are randomly shuffled with respect to the clients,

providing additional privacy. Another mechanism to amplify

privacy is through randomized sampling [9], [20], [21]. This

naturally arises in the considered SGD framework, since clients

do mini-batch sampling of local data and also there is sampling

of clients themselves in each iteration, as in the federated

learning framework [1]–[3].

In this paper, we enable privacy amplification for the FL

problem using both forms of amplification: shuffling and

sampling (data and clients). Note that privacy amplification by

subsampling (both data and clients) happens automatically2,

and we quantify that in this paper, while the secure shuffling

(anonymization) is performed explicitly which adds an addi-

tional layer of privacy that allows transferring the local privacy

guarantees to central privacy guarantees.

Another important aspect is that of requiring communication

efficiency instantiated through compression of the gradients

computed by each active client. There has been significant re-

cent progress in this topic (see [22]–[30] and references therein).

However, there has been less work in combining privacy and

compression in the optimization/learning framework of (1),

with the notable exception of [31], which we will elaborate on

soon. One question that arises is whether one pays a price to

do compression in terms of the privacy-performance trade-off;

a question we address in this paper.

In this paper we (partially) solve the main problem of

privately learning a model with compressed communication,

with good learning performance while giving strong guarantees

on privacy. We believe that this is the first result that analyses

the optimization performance with schemes devised using

compressed gradient exchange, mini-batch SGD while giving

data privacy guarantees for clients using a shuffled framework.

Our main contributions are as follows:

• We analyze the convergence-privacy trade-offs of the

proposed CLDP-SGD algorithm for Lipschitz convex function

under several ℓp geometries (See [32, Chapter 4] for the

relevance of ℓp geometries in optimization)3. We prove that one

can get communication efficiency “for free” by demonstrating

schemes that use O(log d) bits per client for several cases) to

obtain the same privacy-performance operating point achieved

by full precision gradient exchange.4 We do this using the

shuffled privacy model and amplification by sampling (client

data through mini-batch SGD and clients themselves in

federated sampling).

• One ingredient of our main result is showing that we can

compose amplification by sampling (client data through mini-

batch SGD and clients themselves in federated sampling) along

with amplification by shuffling. Note that sampling of clients

2In this paper, we use an abstraction for the federated learning model, where
clients are sampled randomly. In practice, there are many more complicated
considerations for sampling, including availability, energy usage, time-of-day
etc., which we do not model in this work. Also in the terminology of [1], we
focus on cross devices, i.e., where we have individual clients and not siloed
scenarios where institutions are collaborating.

3See also a simple example illustrated in Appendix A-D. Such ℓp constraints
on the gradient also arise practically when one does gradient clipping according
to an ℓp geometry.

4Our work focuses on symmetric, private-randomness mechanisms. We do
not assume the existence of public randomness in this work as we use the
shuffling model.

and data points together give overall non-uniform sampling of

data points, so we cannot use the existing results on privacy

amplification by subsampling, necessitating our privacy proof,

of Lemma 7 in Appendix B, that composes sampling and

shuffling techniques.

• At each round of the iterative optimization, one needs to

privately aggregate the gradients in a communication efficient

manner. To do this, we develop new private, compressed mean

estimation techniques in a minimax estimation framework, that

are (order optimal) under several ℓp geometries for the vectors.

We develop both lower bounds and matching schemes for this

problem. These results may also be of independent interest

(see Section V).

We will put our contributions in context to the existing

literature next.

Related Work

Among several main challenges in the recently developed

FL framework (see [1] and references therein), we focus in

this paper on the combination of privacy and communication

efficiency, and examining its impact on model learning. We

briefly review some of the main developments in related papers

on these topics below.

1) Communication-Privacy Trade-offs: Distributed mean

estimation and its use in training learning models has been

studied extensively in the literature (see [22], [33]–[35] and

references therein). In [33], the authors have proposed a

communication efficient scheme for estimating the mean of

set a of vectors distributed over multiple clients. In [36],

Acharya et. al. studied the discrete distribution estimation

under LDP. They proposed a randomized mechanism based

on Hadamard coding which is optimal for all privacy regime

and requires O (log (d)) bits per client, where d denotes the

support size of the discrete distribution. In [37], the authors

consider both private and public coin mechanisms, and show

that the Hadamard mechanism is near optimal in terms of

communication for both distribution and frequency estimation.

Recently, [38] proposed a communication efficient scheme for

mean estimation under local differential privacy constraints.

This work is is done concurrently and independently of our

work. Furthermore, it focuses on mean estimation for bounded

ℓ2-norm vectors, in contrast to our optimization approach,

privacy amplification through sampling and shuffling. Also,

this work considers the existence of public randomness, while

we do not need public randomness.

LDP mechanisms suffer from the utility degradation that

motivates other work to find alternative techniques to improve

the utility under LDP. One of new developments in privacy

is the use of anonymization to amplify the privacy by using

secure shuffler. In [17]–[19], the authors studied the mean

estimation problem under LDP with secure shuffler, where

they show that the shuffling provides better utility than the

LDP framework without shuffling.

2) Private Optimization: In [39], Chaudhuri et al. studied

centralized privacy-preserving machine learning algorithms for

convex optimization problem. The authors proposed a new idea

of perturbing the objective function to preserve privacy of the
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communication budget; generalizing the standard LDP privacy

definition (see Definition 3 in Appendix A-A of supplementary

material).

Definition 1 (Local Differential Privacy with Communication

Budget - CLDP). For ǫ0 ≥ 0 and b ∈ N
+, a randomized

mechanism R : X → Y is said to be (ǫ0, b)-communication-

limited-local differentially private (in short, (ǫ0, b)-CLDP), if

R(x) can be represented using b bits ∀x and for every pair

x,x′ ∈ X , we have

Pr[R(x) = y] ≤ exp(ǫ0) Pr[R(x′) = y], ∀y ∈ Y. (2)

Here, ǫ0 captures the privacy level, lower the ǫ0, higher the

privacy. When we are not concerned about the communication

budget, we succinctly denote the corresponding (ǫ0,∞)-CLDP,

by its correspondence to the classical LDP as ǫ0-LDP [9].

We define D = {x1, . . . ,xn} and D′ = {x′
1, . . . ,x

′
n} as

neighboring if they differ in one data point.

Definition 2 (Central Differential Privacy - DP [43]). For

ǫ, δ ≥ 0, a randomized mechanism M : Xn → Y is said to

be (ǫ, δ)-differentially private (in short, (ǫ, δ)-DP), if for all

neighboring datasets D,D′ ∈ Xn and every subset E ⊆ Y , we

have

Pr [M (D) ∈ E ] ≤ exp(ǫ) Pr [M (D′) ∈ E ] + δ. (3)

We will propose an iterative algorithm to solve the optimiza-

tion problem (1) under privacy and communication constraints.

Hence, we need the strong composition theorem [47] (we

desribe it in detail in Appendix A-B for completeness) to

compute the final privacy guarantees of the proposed algorithm.

Furthermore, in order to overcome the poor performance

of LDP, we need to use privacy amplification provided by

subsampling (data and clients) as well as through the shuffled

model; both of which we briefly review next.

Consider a set of m clients, where client i ∈ [m] has a data

xi ∈ X . Let R : X → Y be an ǫ0-LDP mechanism. The i-th
client applies R on her data xi to get yi = R(xi). In the

shuffled model of privacy, the shuffler Hm : Ym → Ym has

m messages (y1, . . . ,ym) as input and outputs a uniformly

random permutation of it. Lemma 12 in Appendix A-C2 in

supplementary material states that the shuffling amplifies the

privacy of an LDP mechanism by a factor of O
(

1√
m

)
. We

review the known results for privacy Amplification by uniform

subsampling in Appendix A-C1 of the supplementary material.

III. PROBLEM FORMULATION AND SOLUTION OVERVIEW

In this section, first we present the problem formulation and

describe our algorithm for solving the empirical risk minimiza-

tion problem under the constraints of privacy, communication,

and dynamic client population. Then we give an overview of

our approach to analyze this algorithm and briefly describe the

challenges faced. One of our main ingredients, in the proposed

compressed and private SGD algorithm, is a method of private

mean estimation using compressed updates, formulated in

Section III-D. We use this formulation to study the problem in

the minimax framework and derive upper and lower bounds in a

variety of settings. A summary of the notation used throughout

the paper is given in Table I.

Symbol Description

m Total number of clients in the system
r Total number of samples per client
k (≤ m) Number of clients chosen per iteration
s (≤ r) Number of samples chosen per client per iteration
n (= mr) Total number of samples in the dataset

q (= ks
mr

) Probability of a sample to be chosen at an iteration

Di Local dataset of client i for i ∈ [m]
D (

⋃m
i=1

Di) The entire dataset
ǫ0 Local differential privacy parameter
ǫ Central differential privacy parameter

θ (∈ R
d) Model parameter vector

C (⊂ R
d) convex set of interest

D (= ‖C‖2) Diameter of the set C
L Lipschitz continuous parameter

Bd
p (a) ℓp norm ball of radius a

TABLE I: Notation used throughout the paper

A. Problem Formulation

We have a set of m clients, where each client has a local

dataset Di = {di1, . . . , dir} comprising r data points drawn

from a universe S. Let D =
⋃m

i=1Di denote the entire

dataset and n = mr denote the total number of data points

in the system (see Figure 1). The clients are connected to an

untrusted server in order to solve the following empirical risk

minimization (ERM) problem

min
θ∈C

(
F (θ,D) := 1

m

m∑

i=1

Fi(θ,Di)

)
. (4)

Here, C ⊂ R
d is a closed convex set and Fi(θ,Di) =

1
r

∑r
j=1 f (θ, dij) is a local loss function dependent on the

local dataset Di at client i evaluated at the model parameters

θ ∈ C.

As described in Section I, solving the ERM problem (4) in

the FL framework introduces several unique challenges, such

as the locally residing data {Di} at all clients need to kept

private, the low-bandwidth links between clients and the server

necessitates compressed communication exchange between

them, and only a small fraction of clients are sampled in

each round of communication. Our goal is to solve (4) while

preserving privacy on the training dataset D and minimizing

the total number of bits for communication between clients

and the server, while dealing with a dynamic client population

in each iteration.

B. Our Algorithm: CLDP-SGD

In order to solve (4) in the presence of the above challenges

in the FL setting, we propose CLDP-SGD, a differentially-

private SGD algorithm that works with compressed updates

and dynamic client population. The procedure is described in

Algorithm 1; also see Figure 2 for a pictorial description of

our algorithm.

In each step of CLDP-SGD, we choose uniformly at random

a set Ut of k ≤ m clients out of m clients. Each client i ∈ Ut
computes the gradient ∇θtf (θt; dij) for a random subset Sit
of s ≤ r samples. The i’th client clips the ℓp-norm of the

gradient ∇θtf (θt; dij) for each j ∈ Sit and applies the LDP-

compression mechanism Rp, where Rp : Bdp → {0, 1}b is an

(ǫ0, b)-CLDP mechanism when inputs come from an ℓp-norm
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Communication Minimax risk

ℓ1-norm log (d) + 1 θ

(

d
nǫ20

)

ℓ2-norm d (log (e) + 1) θ

(

d
nǫ20

)

ℓ∞-norm log (d) + 1 θ

(

d2

nǫ20

)

TABLE II: Summary of private mean estimation results

where c = 4 if p ∈ {1,∞} and c = 14 otherwise.

We prove Theorem 1 in Section VI. Observe that the privacy

results in Theorem 1 is stated for ǫ0 = O (1), where the results

for general ǫ0 is presented in Section VI-A.

Remark 1 (Arbitrary SGD mini-batch size s). The communi-

cation and convergence results in Theorem 1 are general and

hold for any s ∈ [r]; however, the privacy result is stated for

s = 1, i.e., each client only samples a single data point in

each SGD iteration. Results for any mini-batch size s ∈ [r]
are provided in Appendix B.

Remark 2 (Recovering the Result [46, ESA]). In [46], each

client has only one data point and all clients participate in

each iteration, and gradients have bounded ℓ2-norm. If we put

p = 2, T = n/ log2(n), and q = 1 in (8), we get the following

privacy-accuracy trade-off, which is the same as that in [46,

Theorem VI.1].

E [F (θT )]− F (θ∗) ≤ O
(
LD log2(n)

√
d

n

(
eǫ0 + 1

eǫ0 − 1

))

ǫ = O
(
ǫ0

√
T log (T/δ) log (1/δ)

n

)

(9)

We want to emphasize that the above privacy-accuracy trade-off

in [46] is achieved by full-precision gradient exchange, whereas,

we can achieve the same trade-off with compressed gradients.

Moreover, our results are in more general setting, where clients’

local datasets have multiple data-points (no bound on that) and

we do two types of sampling, one of clients and other of data

for SGD.

Remark 3 (Optimality of CLDP-SGD for ℓ2-norm case).

Suppose that our target is to achieve ǫ = O(1) and δ ≪ 1.

Substituting ǫ0 = ǫ
√

n
qT log(2qT/δ) log(2/δ) , T = n/q, and

p = 2 in (8), we get

E [F (θT )]− F (θ∗) = O



LD log

3
2
(
n
δ

)√
d log

(
1
δ

)

nǫ


 .

(10)

This matches the optimal excess risk of central differential

privacy presented in [40]. Note that the results in [40] are for

centralized SGD with full precision gradients, whereas, our

results are for federated learning (which is a distributed setup)

with compressed gradient exchange.

B. Compressed and Private Mean Estimation

In this subsection, we state our lower and upper bound

results on minimax risks both in the worst case model (see (5))

and the probabilistic model (see (6)). For the lower bounds, we

state our results when there is no communication constraints,

and for clarity, we denote the corresponding minimax risks by

rp,dǫ0,∞,n(a) and Rp,d
ǫ0,∞,n(a).

Theorem 2. For any d, n ≥ 1, a, ǫ0 > 0, and p ∈ [1,∞], we

have the minimax risk in (6) satisfies

Rp,d
ǫ0,∞,n(a)

≥




Ω
(
a2 min

{
1, d

nǫ20

})
if 1 ≤ p ≤ 2,

Ω
(
a2d1−

2
p min

{
1, d

nmin{ǫ0,ǫ20}

})
if p ≥ 2.

Theorem 3. For any d, n ≥ 1, a, ǫ0 > 0, and p ∈ [1,∞], the

minimax risk in (5) satisfies

rp,dǫ0,∞,n(a)

≥




Ω
(
a2 min

{
1, d

nǫ20

})
if 1 ≤ p ≤ 2,

Ω
(
a2d1−

2
p min

{
1, d

nmin{ǫ0,ǫ20}

})
if p ≥ 2.

Theorem 4. For any private-randomness, symmetric mech-

anism R with communication budget b < log (d) bits per

client, and any decoding function g : {0, 1}b → R
d, when

x̂ = 1
n

∑n
i=1 g (R (xi)), we have

rp,dǫ0,b,n
(a) > a2 max

{
1, d1−

2
p

}
. (11)

Remark 4. Note that Theorem 4 works only when the

estimator x̂ applies the decoding function g on individual

responses and then takes the average. We leave its extension

for arbitrary decoders as a future work.

We prove Theorem 4 in Section V-C.

Though our lower bound results are for arbitrary estimators

x̂(yn), for the minimax risk estimation problems (5) and (6),

we can show that the optimal estimator x̂(yn) is a deterministic

function of yn. In other words, the randomized decoder does

not help in reducing the minimax risk. See Lemma 13 in

Appendix C.

Theorem 5 (ℓ1-norm). For any d, n ≥ 1, a, ǫ0 > 0, we have

r1,dǫ0,b,n
(a) ≤ a2d

n

(
eǫ0 + 1

eǫ0 − 1

)2

R1,d
ǫ0,b,n

(a) ≤ 4a2d

n

(
eǫ0 + 1

eǫ0 − 1

)2

,

for b = log(d) + 1.

Theorem 6 (ℓ2-norm). For any d, n ≥ 1, a, ǫ0 > 0, we have

r2,dǫ0,b,n
(a) ≤ 6a2d

n

(
eǫ0 + 1

eǫ0 − 1

)2

R2,d
ǫ0,b,n

(a) ≤ 14a2d

n

(
eǫ0 + 1

eǫ0 − 1

)2

,

for b = d log(e) + 1.

Theorem 7 (ℓ∞-norm). For any d, n ≥ 1, a, ǫ0 > 0, we have

r∞,d
ǫ0,b,n

(a) ≤ a2d2

n

(
eǫ0 + 1

eǫ0 − 1

)2
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R∞,d
ǫ0,b,n

(a) ≤ 4a2d2

n

(
eǫ0 + 1

eǫ0 − 1

)2

,

for b = log(d) + 1.

Note that when ǫ0 = O(1), then the upper and lower bounds

on minimax risks match for p ∈ [1, 2]. Furthermore, when

ǫ0 ≤ 1, then they match for all p ∈ [1,∞].

Now we give a general achievability result for any ℓp-norm

ball Bdp(a) for any p ∈ [1,∞). For this, we use standard

inequalities between different norms, and probabilistically use

the mechanisms for ℓ1-norm or ℓ2-norm with expanded radius

of the corresponding ball. We assume that every work can pick

any mechanisms with the same probability p̄ ∈ [0, 1]. This

gives the following result, which we prove in Section V-G.

Corollary 1 (General ℓp-norm, p ∈ [1,∞)). Suppose clients

pick the mechanism for ℓ1-norm with probability p̄ ∈ [0, 1].
Then, for any d, n ≥ 1, a, ǫ0 > 0, we have:

rp,dǫ0,b,n
(a) ≤ p̄ d2−

2
p · r1,dǫ0,b,n

(a)

+ (1− p̄)max
{
d1−

2
p , 1
}
· r2,dǫ0,b,n

(a), (12)

Rp,d
ǫ0,b,n

(a) ≤ p̄ d2−
2
p ·R1,d

ǫ0,b,n
(a)

+ (1− p̄)max
{
d1−

2
p , 1
}
·R2,d

ǫ0,b,n
(a). (13)

for b = p̄ log(d) + (1 − p̄)d log(e) + 1. Note that this

communication is in expectation, which is taken over the

sampling of selecting ℓ1 or ℓ2 mechanisms.

We can recover Theorem 5 by setting p = 1 and p̄ = 1 and

Theorem 6 by setting p = 2 and p̄ = 0.

V. COMPRESSED AND PRIVATE MEAN ESTIMATION

In this section, we study the private mean-estimation problem

in the minimax framework given in Section III-D. Note that

in this section we focus on giving (ǫ0, b)-CLDP) privacy-

communication guarantees for the mean-estimation problem

and give the performance of schemes in terms of the associated

minimax risk. This framework is applied at each round of the

optimization problem, and is then converted to the eventual

central DP privacy guarantees using the shuffling framework

in Section VI, yielding the main result Theorem 1 stated in

Section IV.

This section is divided into six subsections. We prove the

lower bound results (Theorems 2, 3) in the first two subsections

and the achievable results (Theorems 5, 6, 7, and Corollary 1)

in the last four subsections, respectively.

We prove lower bounds for private mechanisms with no

communication constraints, and for clarity, we denote such

mechanisms by (ǫ0,∞)-CLDP mechanisms. Our achievable

schemes use finite amount of randomness.

For lower bounds, for simplicity, we assume that the inputs

come from an ℓp-norm ball of unit radius – the bounds will be

scaled by the factor of a2 if inputs come from an ℓp-norm ball of

radius a. For convenience, we denote Bdp(1),Pd
p (1), r

p,d
ǫ0,b,n

(1),

and Rp,d
ǫ0,b,n

(1) by Bdp ,Pd
p , r

p,d
ǫ0,b,n

, and Rp,d
ǫ0,b,n

, respectively.

A. Lower Bound on Rp,d
ǫ0,∞,n: Proof of Theorem 2

Theorem 2 states separate lower bounds on Rp,d
ǫ0,∞,n

depending on whether p ≥ 2 or p ≤ 2 (at p = 2, both bounds

coincide), and we prove them below in Section V-A1 and

Section V-A2, respectively.

1) Lower bound for p ∈ [2,∞]: The main idea of the

lower bound is to transform the problem to the private

mean estimation when the inputs are sampled from Bernoulli

distributions. Recall that Pd
p denote the set of all distributions

on the p-norm ball Bdp . Let PBern
p,d denote the set of Bernoulli

distributions on
{
0, 1

d1/p

}d

, i.e., any element of PBern
p,d is a

product of d independent Bernoulli distributions, one for each

coordinate. We first prove a lower bound on Rp,d
ǫ0,∞,n when the

input distribution belongs to PBern
p,d .

Lemma 1. For any p ∈ [2,∞], we have

inf
{R(i)

p }∈Q(ǫ0,∞)

inf
x̂

sup
q∈PBern

p,d

E
∥∥µ

q
− x̂ (yn)

∥∥2
2

≥ Ω

(
d1−

2
p min

{
1,

d

nmin{ǫ0, ǫ20}

})
.

(14)

Proof. The proof is straightforward from the proof of Duchi

and Rogers [48, Corollary 3]. In their setting, PBern
p,d is

supported on {0, 1}d, and they proved a lower bound of

Ω
(
min

{
1, d

nmin{ǫ0,ǫ20}

})
. In our setting, since PBern

p,d is sup-

ported on
{
0, 1

d1/p

}d

, we can simply scale the elements in the

support of PBern
p,d by a factor of 1/d1/p, which will also scale

the mean µ
q

by the same factor. Note that the best estimator

x̂ will be equal to the scaled version of the best estimator

from [48, Corollary 3] with the same value 1/d1/p. This proves

Lemma 1. �

In order to use Lemma 1, first observe that for every x ∈
PBern
p,d , we have ‖x‖p ≤ 1, which implies that x ∈ Pd

p . Thus

we have PBern
p,d ⊂ Pd

p . Now our bound on Rp,d
ǫ0,∞,n trivially

follows from the following inequalities:

Rp,d
ǫ0,∞,n = inf

{R(i)
p }∈Q(ǫ0,∞)

inf
x̂

sup
q∈Pd

p

E
∥∥µ

q
− x̂ (yn)

∥∥2
2

≥ inf
{R(i)

p }∈Q(ǫ0,∞)

inf
x̂

sup
q∈PBern

p,d

E
∥∥µ

q
− x̂ (yn)

∥∥2
2

≥ Ω

(
d1−

2
p min

{
1,

d

nmin{ǫ0, ǫ20}

})
, (15)

where the last inequality follows from (14).

2) Lower bound for p ∈ [1, 2]: Fix an arbitrary p ∈ [1, 2].
Note that ‖x‖p ≤ ‖x‖1, which implies that Bd1 ⊂ Bd

p , and

therefore, we have Pd
1 ⊂ Pd

p . These imply that the lower bound

derived for Pd
1 also holds for Pd

p , i.e., Rp,d
ǫ0,∞,n ≥ R1,d

ǫ0,∞,n holds

for any p ∈ [1, 2]. So, in the following, we only lower-bound

R1,d
ǫ0,∞,n. The main idea of the lower bound is to transform the

problem to the private discrete distribution estimation when the

inputs are sampled from a discrete distribution taken from a

simplex in d dimensions. Recall that Pd
1 denotes all probability

density functions q over the 1-norm ball Bd1 . Note that q may

be a continuous distribution supported over all of Bd1 . Let
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P̂d
1 denote a set of all discrete distributions q supported over

the d standard basis vectors e1, . . . , ed, i.e., the distribution

has support on {e1, . . . , ed}. Since {e1, . . . , ed} ⊂ Bd1 , we

have P̂d
1 ⊂ Pd

1 . Moreover, since any q ∈ P̂d
1 is a discrete

distribution, by abusing notation, we describe q through a

d−dimensional vector q of its probability mass function. Note

that, for any q ∈ P̂d
1 , the average over this distribution

is µ
q

= Eq[U], where Eq[·] denotes the expectation over

the distribution q for a discrete random variable U ∼ q,

where we denote qi = Pr[U = ei]. Therefore we have

µ
q
=
∑d

i=1 qiei = (q1, . . . , qd)
T = q, for every q ∈ P̂d

1 .

Let ∆d denote the probability simplex in d dimensions. Since

the discrete distribution q ∈ P̂d
1 is representable as q ∈ ∆d,

we have an isomorphism between ∆d and P̂d
1 , i.e., we can

equivalently think of P̂d
1 = ∆d. Fix arbitrary (ǫ0,∞)-CLDP

mechanisms {R(i)
p : i ∈ [n]} and an estimator x̂. Using the

above notations and observations, we have:

sup
q∈Pd

1

E
∥∥µ

q
− x̂ (yn)

∥∥2
2
≥ sup

q∈P̂d
1

E
∥∥µ

q
− x̂ (yn)

∥∥2
2

= sup
q∈P̂d

1

E ‖q − x̂ (yn)‖22 .
(16)

Using P̂d
1 = ∆d, and taking the infimum in (16) over all

(ǫ0,∞)-CLDP mechanisms {R(i)
p : i ∈ [n]} and estimators x̂,

we get

inf
{R(i)

p ∈Q(ǫ,∞)}
inf
x̂

sup
q∈Pd

1

E
∥∥µ

q
− x̂ (yn)

∥∥2
2

≥ inf
{R(i)

p ∈Q(ǫ,∞)}
inf
x̂

sup
q∈∆d

E ‖q − x̂ (yn)‖22 .
(17)

Girgis et al. [49, Theorem 1] lower-bounded the RHS

of (17) in the context of characterizing a privacy-

utility-randomness tradeoff in LDP. When specializing

to our setting, where we are not concerned about

the amount of randomness used, their lower bound re-

sult gives inf{R(i)
p ∈Q(ǫ0,∞)}

inf x̂ sup
q∈∆d

E ‖q − x̂ (yn)‖22 ≥
Ω
(
min

{
1, d

nǫ20

})
. Substituting this in (17) gives

R1,d
ǫ0,∞,n ≥ Ω

(
min

{
1,

d

nǫ20

})
. (18)

B. Lower Bound on rp,dǫ0,∞,n: Proof of Theorem 3

Similar to Section V-A, we prove the lower bound on rp,dǫ0,∞,n

separately depending on whether p ≥ 2 or p ≤ 2 (at p = 2,

both bounds coincide) below in Section V-B1 and Section V-B2,

respectively. In both the proofs, the main idea is to transform

the worst-case lower bound to the average case lower bound

and then use relation between different norms.
1) Lower bound for p ∈ [2,∞]: Fix arbitrary (ǫ0,∞)-

CLDP mechanisms {R(i)
p : i ∈ [n]} and an estimator x̂. It

follows from (15) that there exists a distribution q ∈ Pd
p ,

such that if we sample x
(q)
i ∼ q, i.i.d. for all i ∈ [n] and

letting yi = R
(i)
p (x

(q)
i ), we would have E

∥∥µ
q
− x̂ (yn)

∥∥2
2
≥

Ω
(
d1−

2
p min

{
1, d

nmin{ǫ0,ǫ20}

})
. We have

sup
{xi}∈Bd

p

E

∥∥∥∥∥
1

n

n∑

i=1

xi − x̂ (yn)

∥∥∥∥∥

2

2

(a)

≥ E

∥∥∥∥∥
1

n

n∑

i=1

x
(q)
i − x̂ (yn)

∥∥∥∥∥

2

2

(b)

≥ 1

2
E
∥∥µ

q
− x̂ (yn)

∥∥2
2
− E

∥∥∥∥∥
1

n

n∑

i=1

x
(q)
i − µ

q

∥∥∥∥∥

2

2

(19)

(c)

≥ Ω

(
d1−

2
p min

{
1,

d

nmin{ǫ0, ǫ20}

})
− d1−

2
p

n
(d)

≥ Ω

(
d1−

2
p min

{
1,

d

nmin{ǫ0, ǫ20}

})
(20)

In the LHS of (a), the expectation is taken over the randomness

of the mechanisms {R(i)
p } and the estimator x̂; whereas, in

the RHS of (a), in addition, the expectation is also taken over

sampling xi’s from the distribution q. Moreover (a) holds

since the LHS is supremum {xi} ∈ Bdp and the RHS of

(a) takes expectation w.r.t. a distribution over Bdp and hence

lower-bounds the LHS. The inequality (b) follows from the

Jensen’s inequality 2‖u‖22 + 2‖v‖22 ≥ ‖u + v‖22 by setting

u = 1
n

∑n
i=1 x

(q)
i − x̂(yn) and v = µ

q
− 1

n

∑n
i=1 x

(q)
i . In

(c) we used E

∥∥∥ 1
n

∑n
i=1 x

(q)
i − µ

q

∥∥∥
2

2
≤ d

1− 2
p

n , which we show

below. In (d), we assume min{ǫ0, ǫ20} ≤ O(d).
Note that for any vector u ∈ R

d, we have ‖u‖2 ≤
d

1
2− 1

p ‖u‖p, for any p ≥ 2. Since each x
(q)
i ∈ Bdp , which

implies ‖x(q)
i ‖p ≤ 1, we have that ‖x(q)

i ‖2 ≤ d
1
2− 1

p . Hence,

E‖x(q)
i ‖22 ≤ d1−

2
p holds for all i ∈ [n]. Now, since xi’s are

i.i.d. with E[x
(q)
i ] = µ

q
, we have

E

∥∥∥∥∥
1

n

n∑

i=1

x
(q)
i − µ

q

∥∥∥∥∥

2

2

=
1

n2

n∑

i=1

E

∥∥∥x(q)
i − µ

q

∥∥∥
2

2

(a)

≤ 1

n2

n∑

i=1

E

∥∥∥x(q)
i

∥∥∥
2

2
≤ 1

n2

n∑

i=1

d1−
2
p =

d1−
2
p

n
,

(21)

where (a) uses E‖x− E[x]‖22 ≤ E‖x‖22, which holds for any

random vector x.

Taking supremum in (20) over all (ǫ0,∞)-CLDP mecha-

nisms {R(i)
p : i ∈ [n]} and estimators x̂, we get

rp,dǫ0,∞,n ≥ Ω

(
d1−

2
p min

{
1,

d

nmin{ǫ0, ǫ20}

})
. (22)

2) Lower bound for p ∈ [1, 2]: Similar to the argument

given in Section V-A2, since rp,dǫ0,∞,n ≥ r1,dǫ0,∞,n holds for any

p ∈ [1, 2], it suffices to lower-bound r1,dǫ0,∞,n.

Fix arbitrary (ǫ0,∞)-CLDP mechanisms {R(i)
p : i ∈ [n]}

and an estimator x̂. It follows from (18) that there exists a

distribution q ∈ Pd
p , such that if we sample x

(q)
i ∼ q, i.i.d.

for all i ∈ [n] and letting yi = R(i)
p (x

(q)
i ), we would have

E
∥∥µ

q
− x̂ (yn)

∥∥2
2
≥ Ω

(
min

{
1, d

nǫ20

})
. Now, by the same

reasoning using which we obtained (19), we have

sup
{xi}∈Bd

p

E

∥∥∥∥∥
1

n

n∑

i=1

xi − x̂ (yn)

∥∥∥∥∥

2

2

≥ 1

2
E
∥∥µ

q
− x̂ (yn)

∥∥2
2
− E

∥∥∥∥∥
1

n

n∑

i=1

x
(q)
i − µ

q

∥∥∥∥∥

2

2

(a)

≥ Ω

(
min

{
1,

d

nǫ20

})
− 1

n

(b)

≥ Ω

(
min

{
1,

d

nǫ20

})

(23)
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In (a) we used

E

∥∥∥∥∥
1

n

n∑

i=1

x
(q)
i − µ

q

∥∥∥∥∥

2

2

≤ 1

n
, (24)

which can be obtained by first noting that for any u ∈ R
d,

we have ‖u‖2 ≤ ‖u‖p for p ∈ [1, 2], and then using this in

the set of inequalities which give (21). In (b), we assume

ǫ0 ≤ O(
√
d). Taking supremum in (20) over all (ǫ0,∞)-

CLDP mechanisms {R(i)
p : i ∈ [n]} and estimators x̂, we

get r1,dǫ0,∞,n ≥ Ω
(
min

{
1, d

nǫ20

})
.

C. Lower Bound on rp,dǫ0,b,n
: Proof of Theorem 4

Let M = 2b < d be the total number of possible outputs

of the mechanism R. Let {o1, o2, . . . , oM} be the set of M
possible outputs of R. For every i ∈ [M ], let qi = g(oi).
We can write the M possible outputs of R as columns of a

d ×M matrix Q = [q1, . . . , qM ]. Since M < d, the rank of

the matrix Q is at most M . Let x ∈ R
d be a vector in the

null space of the matrix Q, i.e., xT qj = 0 for all j ∈ [M ].
Then, we set the sample of each client by xi = x = x

‖x‖p
for

all i ∈ [n], and hence, xi ∈ Bdp . Observe that the estimator

x̂ = 1
n

∑n
i=1 g (R (xi)) is in the column space of the matrix

Q. Thus, we get

rp,dǫ0,b,n
≥ E

∥∥∥∥x−
1

n

n∑

i=1

g (R (xi))

∥∥∥∥
2

2

(a)
= ‖x‖22 + E

∥∥∥∥
1

n

n∑

i=1

g (R (xi))

∥∥∥∥
2

2

≥ max
{
1, d1−

2
p

}

where step (a) follows from the fact that x is in the null space

of Q, while the estimator x̂ is in the column space of Q. This

completes the proof of Theorem 4.

D. Achievability for ℓ1-norm Ball: Proof of Theorem 5

In this section, we propose an ǫ0-LDP mechanism that

requires O (log(d))-bits of communication per client using

private randomness and 1-bit of communication per client

using public randomness. In other words we can guarantee

(ǫ0,O (log(d)))-CLDP with private randomness and (ǫ0, 1)-
CLDP using public randomness. The proposed mechanism

is based on the Hadamard matrix and is inspired from the

Hadamard mechanism proposed by Acharya et al. [36]. We

assume that d is a power of 2. Let Hd denote the Hadamard

matrix of order d, which can be constructed by the following

recursive mechanism:

Hd =

[
Hd/2 Hd/2

Hd/2 −Hd/2

]
H1 =

[
1
]

Client i has an input xi ∈ Bd1 (a). It computes yi =
1√
d
Hdxi. Note that each coordinate of yi lies in the interval

[−a/
√
d, a/

√
d]. Client i selects j ∼ Unif [d] and quantize yi,j pri-

vately according to (25) and obtains zi ∈
{
±aHd(j)

(
eǫ0+1
eǫ0−1

)}
,

which can be represented using only 1-bit. Here, Hd(j) denotes

the j-th column of the Hadamard matrix Hd. Server receives

the n messages {z1, . . . , zn} from the clients and outputs their

average 1
n

∑n
i=1 zi. We present this mechanism in Algorithm 2

– we only present the client-side part of the algorithm, as server

only averages the messages received from the clients.

Algorithm 2 ℓ1-MEAN-EST (R1: the client-side algorithm)

1: Input: Vector x ∈ Bd1 (a), and local privacy level ǫ0 > 0.

2: Construct y = 1√
d
Hdx

3: Sample j ∼ Unif[d] and quantize yj as follows:

z =





+aHd (j)
(

eǫ0+1
eǫ0−1

)
w.p. 1

2 +
√
dyj

2a
eǫ0−1
eǫ0+1

−aHd (j)
(

eǫ0+1
eǫ0−1

)
w.p. 1

2 −
√
dyj

2a
eǫ0−1
eǫ0+1

(25)

4: Return z.

Lemma 2. The mechanism R1 presented in Algorithm 2

satisfies the following properties, where ǫ0 > 0:

1) R1 is (ǫ0, log (d) + 1)-CLDP and requires only 1-bit of

communication using public randomness.

2) R1 is unbiased and has bounded variance, i.e., for every

x ∈ Bd1 (a), we have E [R1 (x)] = x and

E‖R1 (x)− x‖22 ≤ a2d

(
eǫ0 + 1

eǫ0 − 1

)2

.

We prove Lemma 2 in Appendix D-A. Now we are ready to

prove Theorem 5. Let R1(x) denote the output of Algorithm 2

on input x. As mentioned above, the server employs a simple

estimator that simply averages the n received messages, i.e.,

the server outputs x̂(zn) = 1
n

∑n
i=1 zi =

1
n

∑n
i=1R1(xi). In

the following, first we show the bound on r1,dǫ0,b,n
(a) and then

on R1,d
ǫ0,b,n

(a) for b = log(d) + 1. For r1,dǫ0,b,n
(a):

sup
{xi}∈Bd

1 (a)

E ‖x− x̂(zn)‖22

= sup
{xi}∈Bd

1 (a)

E

∥∥∥∥∥
1

n

n∑

i=1

(xi −R1(xi))

∥∥∥∥∥

2

2

(a)
= sup

{xi}∈Bd
1 (a)

1

n2

n∑

i=1

E ‖xi −R1(xi)‖22
(b)

≤ a2d

n

(
eǫ0 + 1

eǫ0 − 1

)2

,

(26)

where (a) uses the fact that all clients use independent private

randomness (which makes the random variables xi −R1(xi)
independent for different i’s and also that R1 is unbiased. (b)

uses that R1 has bounded variance. Taking infimum in (26)

over all (ǫ0, b)-CLDP mechanisms (where b = log(d)+ 1) and

estimators x̂, we have that r1,dǫ0,b,n
(a) ≤ a2d

n

(
eǫ0+1
eǫ0−1

)2
, which

is O
(

a2d
nǫ20

)
when ǫ0 = O(1). For R1,d

ǫ0,b,n
(a):

sup
q∈Pd

1 (a)

E
∥∥µ

q
− x̂(zn)

∥∥2
2

(c)

≤ sup
q∈Pd

1 (a)

[
2E
∥∥µ

q
− x

∥∥2
2
+ 2E ‖x− x̂(zn)‖22

]

(d)

≤ 2a2

n
+

2a2d

n

(
eǫ0 + 1

eǫ0 − 1

)2

(27)
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In the LHS of (c), for any q ∈ Pd
1 (a), first we generate n

i.i.d. samples x1, . . . ,xn and then compute zi = R1(xi) for

all i ∈ [n]. We use the Jensen’s inequality in (c). We used

E
∥∥µ

q
− x

∥∥2
2
≤ a2

n (see (24)) in (d). Taking infimum in (27)

over all (ǫ0, b)-CLDP mechanisms (where b = log(d)+ 1) and

estimators x̂, we have that R1,d
ǫ0,b,n

(a) ≤ 2a2

n + 2a2d
n

(
eǫ0+1
eǫ0−1

)2
,

which is O
(

a2d
nǫ20

)
when ǫ0 = O(1). This completes the proof

of Theorem 5.

E. Achievability for ℓ2-norm Ball: Proof of Theorem 6

In this section, we propose an ǫ0-LDP mechanism that

requires O (d)-bits of communication per client using private

randomness. Our proposed mechanism is a combination of the

private-mechanism Priv of Duchi et al. [50, Section 4.2.3] and

the non-private quantization mechanism Quan of Mayekar and

Tyagi [35, Section 4.2]. For completeness, we describe both

these mechanisms in Algorithm 4 and Algorithm 5, respectively,

and our proposed mechanism in Algorithm 3. Each client i first

privatize its input xi ∈ Bd2 (a) using Priv and then quantize

the privatized result using Quan and sends the final result

zi = Quan(Priv(xi)) to the server, which outputs the average

of all the received n messages. Since the server is only taking

an average of the received messages, we only present the client

side of our mechanism in Algorithm 3.

Algorithm 3 ℓ2-MEAN-EST (R2: the client-side algorithm)

1: Input: Vector x ∈ Bd2 (a), and local privacy level ǫ0 > 0.

2: Apply the randomized mechanism y = Priv (x).
3: Return z = Quan (y).

Algorithm 4 Priv (a private mechanism from [50])

1: Input: Vector x ∈ Bd2 (a), and local privacy level ǫ0 > 0.

2: Compute x̃ =

{
+a x

‖x‖2
w.p. 1

2 + ‖x‖2

2a

−a x

‖x‖2
w.p. 1

2 −
‖x‖2

2a

3: Sample U ∼ Bernoulli
(

eǫ0

eǫ0+1

)

4: M , a
√
π
2

Γ( d−1
2 +1)

Γ( d
2+1)

eǫ0+1
eǫ0−1

5: z =

{
Unif

(
y : yT

x̃ > 0, ‖y‖2 = M
)

if U = 1

Unif
(
y : yT

x̃ ≤ 0, ‖y‖2 = M
)

if U = 0
6: Return z.

Lemma 3 ( [50, Appendix I.2]). The mechanism Priv pre-

sented in Algorithm 4 is unbiased and outputs a bounded length

vector, i.e., for every x ∈ Bd2 (a), we have E[Priv(x)] = x and

‖Priv(x)‖22 = M2 ≤ a2d

(
3
√
π

4

eǫ0 + 1

eǫ0 − 1

)2

.

Lemma 4 ( [35, Theorem 4.2]). The mechanism Quan

presented in Algorithm 5 is unbiased and has bounded variance,

i.e., for every x ∈ Bd2(a), we have

E[Quan(x)] = x and E‖Quan(x)−x‖22 ≤ 2‖x‖2 ≤ 2a2.

Algorithm 5 Quan (a quantization mechanism from [35])

1: Input: Vector x ∈ Bd2 (a), where a is the radius of the

ball.

2: Compute x̃ =

{
x

‖x‖1
w.p. 1

2 + ‖x‖1

2a
√
d

− x

‖x‖1
w.p. 1

2 −
‖x‖1

2a
√
d

3: Generate a discrete distribution µ = (|x̃1|, . . . , |x̃d|) where

Pr[µ = i] = |x̃i|.
4: Construct a d-dimensional vector y by sampling yj ∼ µ

for j ∈ [d]

5: Return z = 1
d

∑d
j=1

(
a
√
d · sgn(x̃yj

) · eyj

)
.

Furthermore, it requires d (log(e) + 1)-bits to represent its

output.

Note that the radius a in Lemma 4 is equal to the length of

any output of Priv, which is M (see line 4 of Algorithm 4).

Lemma 5. The mechanism R2 presented in Algorithm 3

satisfies the following properties, where ǫ0 > 0:

1) R2 is (ǫ0, d(log(e) + 1))-CLDP.

2) R2 is unbiased and has bounded variance, i.e., for every

x ∈ Bd2 (a), we have E [R2 (x)] = x and

E‖R2 (x)− x‖22 ≤ 6a2d

(
eǫ0 + 1

eǫ0 − 1

)2

.

We prove Lemma 5 in Appendix D-B. Now we are

ready to prove Theorem 6. In order to bound r2,dǫ0,b,n
(a)

for b = d(log(e) + 1), we follow exactly the same steps

that we used to bound r1,dǫ0,b,n
(a) and arrived at (26). This

would give r2,dǫ0,b,n
(a) ≤ 6a2d

n

(
eǫ0+1
eǫ0−1

)2
, which is O

(
a2d
nǫ20

)

when ǫ0 = O(1). To bound R2,d
ǫ0,b,n

(a), first note that

when x1, . . . ,xn ∈ Bd2 (a), then we have from (24) that

E
∥∥µ

q
− x

∥∥2
2
≤ a2

n . Here q ∈ Pd
2 (a) and x1, . . . ,xn are

sampled from q i.i.d. Now, following exactly the same steps that

we used to bound R1,d
ǫ0,b,n

(a) and arrived at (27). This would

give R2,d
ǫ0,b,n

(a) ≤ 2a2

n + 12a2d
n

(
eǫ0+1
eǫ0−1

)2
for b = d(log(e)+1).

Note that R2,d
ǫ0,b,n

(a) = O
(

a2d
nǫ20

)
when ǫ0 = O(1). This

completes the proof of Theorem 6.

F. Achievability for ℓ∞-norm Ball: Proof of Theorem 7

In this section, we propose an ǫ0-LDP mechanism that

requires O (log (d))-bits per client using private randomness

and 1-bit of communication per client using public random-

ness. Each client i has an input xi ∈ Bd∞ (a). It selects

j ∼ Unif[d] and quantize xi,j according to (28) and obtains

zi ∈
{
± ad

(
eǫ0+1
eǫ0−1

)
ej

}
, which can be represented using

only 1 bit, where ej is the j’th standard basis vector in

R
d. Client i sends zi to the server. Server receives the n

messages {z1, . . . , zn} from the clients and outputs their

average 1
n

∑n
i=1 zi. We present this mechanism in Algorithm 6

– we only present the client-side part of the algorithm, as server

only averages the messages received from the clients.

Lemma 6. The mechanism R∞ presented in Algorithm 6

satisfies the following properties, where ǫ0 > 0:
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Algorithm 6 ℓ∞-MEAN-EST (R∞: the client-side algorithm)

1: Input: Vector x ∈ Bd∞ (a), and local privacy level ǫ0 > 0.

2: Sample j ∼ Unif[d] and quantize xj as follows:

z =





+ad
(

eǫ0+1
eǫ0−1

)
ej w.p. 1

2 +
xj

2a
eǫ0−1
eǫ0+1

−ad
(

eǫ0+1
eǫ0−1

)
ej w.p. 1

2 −
xj

2a
eǫ0−1
eǫ0+1

(28)

where ej is the j’th standard basis vector in R
d

3: Return z.

1) R∞ is (ǫ0, log (d) + 1)-CLDP and requires only 1-bit

of communication using public randomness.

2) R∞ is unbiased and has bounded variance, i.e., for every

x ∈ Bd∞ (a), we have E [R∞ (x)] = x and

E‖R∞ (x)− x‖22 ≤ a2d2
(
eǫ0 + 1

eǫ0 − 1

)2

.

We prove Lemma 6 in Appendix D-C. Now we are ready to

prove Theorem 7. In order to bound r∞,d
ǫ0,b,n

(a) for b = log (d)+
1, we follow exactly the same steps that we used to bound

r1,dǫ0,b,n
(a) and arrived at (26). This would give r∞,d

ǫ0,b,n
(a) ≤

a2d2

n

(
eǫ0+1
eǫ0−1

)2
, which isO

(
a2d2

nǫ20

)
when ǫ0 = O(1). To bound

R∞,d
ǫ0,b,n

(a), first note that when x1, . . . ,xn ∈ Bd∞ (a), then we

have from (21) (by substituting p =∞) that E
∥∥µ

q
− x

∥∥2
2
≤

a2d
n . Here q ∈ Pd

∞ (a) and x1, . . . ,xn are sampled from q

i.i.d. Now, following exactly the same steps that we used

to bound R1,d
ǫ0,b,n

(a) and arrived at (27). This would give

R∞,d
ǫ0,b,n

(a) ≤ 2a2d
n + 2a2d2

n

(
eǫ0+1
eǫ0−1

)2,d
for b = log (d) + 1.

Note that R∞,d
ǫ0,b,n

(a) = O
(

a2d2

nǫ20

)
when ǫ0 = O(1). This

completes the proof of Theorem 7.

G. Achievability for ℓp-norm Ball for p ∈ [1,∞): Proof of

Corollary 1

In this section, first we propose two ǫ0-LDP mechanisms for

ℓp-norm ball Bdp(a) for p ∈ [1,∞) based on the inequalities

between different norms, and our final mechanism will be

chosen probabilistically from these two. The first mechanism,

which we denote by R(1)
p , is based on the private mechanism

R1 (presented in Algorithm 2) that requires O (log (d)) bits

per client. The second mechanism, which we denote by R(2)
p is

based on the private mechanism R2 (presented in Algorithm 3)

that requires O (d) bits per client. Observe that for any 1 ≤ p ≤
q ≤ ∞, using the relation between different norms (‖u‖q ≤
‖u‖p ≤ d

1
p− 1

q ‖u‖q), we have

Bdq (a) ⊆ Bdp (a) ⊆ Bdq
(
ad

1
p− 1

q

)
. (29)

1) Description of the private mechanism R(1)
p : Each client

has a vector xi ∈ Bdp (a) ⊆ Bd1
(
ad1−

1
p

)
. Thus, each client

runs the private mechanism R1 (xi) presented in Algorithm 2

with radius ad1−
1
p . Thus, the mechanism R(1)

p for p ∈ [1,∞)
satisfies the following properties, where ǫ0 > 0:

• R(1)
p is (ǫ0, log (d) + 1)-CLDP and requires only 1-bit of

communication using public randomness.

• R(1)
p is unbiased and has bounded variance, i.e., for every

x ∈ Bdp (a), we have E

[
R(1)

p (x)
]
= x and

E‖R(1)
p (x)− x‖22 ≤ a2d3−

2
p

(
eǫ0 + 1

eǫ0 − 1

)2

.

2) Description of the private mechanism R(2)
p : Each client

has a vector xi ∈ Bdp (a) ⊆ Bd2
(
amax{d 1

2− 1
p , 1}

)
. Thus,

each client runs the private mechanism R2 (xi) presented in

Algorithm 3 with radius amax{d 1
2− 1

p , 1}. Thus, the mecha-

nism R(2)
p for p ∈ [1,∞) satisfies the following properties,

where ǫ0 > 0:

• R(2)
p is (ǫ0, d (log (e) + 1))-CLDP.

• R(2)
p is unbiased and has bounded variance, i.e., for every

x ∈ Bdp (a), we have E

[
R(2)

p (x)
]
= x and

E‖R(2)
p (x)− x‖22 ≤ 6a2 max{d2− 2

p , d}
(
eǫ0 + 1

eǫ0 − 1

)2

.

Note that R(1)
p requires low communication and has high

variance, whereas, R(2)
p requires high communication and has

low variance: R(2)
p requires exponentially more communication

than R(1)
p , whereas, R(1)

p has a factor of d more variance

than R(2)
p . To define our final mechanism Rp for any norm

p ∈ [1,∞), we choose R(1)
p with probability p̄ and R(2)

p with

probability (1 − p̄), where p̄ is any number in [0, 1]. Note

that Rp is ǫ0-LDP and requires p̄ log(d) + (1− p̄)d log(e) + 1
expected communication, where expectation is taken over the

sampling of choosing R(1)
p or R(2)

p . We have the following

bounds on rp,dǫ0,b,n
(a) and Rp,d

ǫ0,b,n
(a):

rp,dǫ0,b,n
(a)

≤ p̄ d2−
2
p r1,dǫ0,b,n

(a) + (1− p̄)max{d1− 2
p , 1}r2,dǫ0,b,n

(a)

Rp,d
ǫ0,b,n

(a)

≤ p̄ d2−
2
pR1,d

ǫ0,b,n
(a) + (1− p̄)max{d1− 2

p , 1}R2,d
ǫ0,b,n

(a)

This completes the proof of Corollary 1.

VI. OPTIMIZATION: PRIVACY, COMMUNICATION, AND

CONVERGENCE ANALYSES

In this section, we establish the privacy, communication, and

convergence guarantees of Algorithm 1 and prove Theorem 1.

We show these three results on privacy, communication, and

convergence separately in the next three subsections.

A. Proof of Theorem 1: Privacy

Recall from Algorithm 1 that each client applies the

compressed LDP mechanism Rp (hereafter denoted by R, for

simplicity) with privacy parameter ǫ0 on each gradient. This

implies that the mechanism Acldp guarantees local differential

privacy ǫ0 for each sample dij per epoch. Thus, it remains to

analyze the central DP of the mechanism Acldp.

Fix an iteration number t ∈ [T ]. Let Mt (θt,D) denote

the private mechanism at time t that takes the dataset D and
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an auxiliary input θt (which is the parameter vector at the

t’th iteration) and generates the parameter θt+1 as an output.

Recall that the input dataset at client i ∈ [m] is denoted by

Di = {di1, di2, . . . , dir} ∈ S
r and D =

⋃m
i=1Di denotes the

entire dataset. Thus, the mechanism Mt on any input dataset

D =
⋃m

i=1Di ∈ S
n can be defined as:

Mt(θt;D) = Hks ◦ sampm,k (G1, . . . ,Gm) , (30)

where Gi = sampr,s (R(xt
i1), . . . ,R(xt

ir)) and x
t
ij =

∇θtf(θt; dij), ∀i ∈ [m], j ∈ [r]. Here, Hks denotes the

shuffling operation on ks elements and sampm,k denotes the

sampling operation for choosing a random subset of k elements

from a set of m elements.

For convenience, in the rest of the proof, we suppress the

auxiliary input θt and simply denote Mt(θt;D) by Mt(D).
We can do this because θt only affects the gradients, and the

analysis in this section is for an arbitrary set of gradients.

In the following lemma, we state the privacy guarantee of

the mechanism Mt for each t ∈ [T ].

Lemma 7. Let s = 1 and q = k
mr . Suppose R is an ǫ0-

LDP mechanism, where ǫ0 ≤
log(qn/ log(1/δ̃))

2 and δ̃ > 0
is arbitrary. Then, for any t ∈ [T ], the mechanism Mt is(
ǫ, δ
)
-DP, where ǫ = ln(1 + q(eǫ̃ − 1)), δ = qδ̃ with ǫ̃ =

O
(
min{ǫ0, 1}eǫ0

√
log(1/δ̃)

qn

)
. In particular, if ǫ0 = O (1),

we get ǫ = O
(
ǫ0

√
q log(1/δ̃)

n

)
.

We prove Lemma 7 in Appendix B. In the statement

of Lemma 7, we are amplifying the privacy by using the

subsampling as well as shuffling ideas.

Observe that the shuffler first chooses uniformly at random

k clients of the available m clients. Then, each client samples

her local dataset Di by choosing uniformly at random s = 1
data points out of the available r data points. This two-steps

sampling procedure is not the same as choosing uniformly

at random ks data points from the entire dataset D12. So,

we cannot directly apply the amplification by subsampling

result stated in Lemma 11. Thus, we derive a new privacy

proof to compute the privacy parameters of the mechanism

Mt under non-uniform sampling. Conisder two neighboring

datasets D =
⋃m

i=1Di, D′ = D′
1

⋃⋃m
i=2Di that are differerent

only in the first data point at the first client d11. The main idea

of the proof is to split the probability distribution of the output

of the mechaism Mt into a summation of four conditional

probabilities dependeing on the event whether the first client

is picked or not and the first client pick the first data point

or not (Please, see (41)). We use the biparite graph to get the

relation between these events, where each vertix corresponds

to one of the possible outputs of the sampling procedure, and

each edge connects two neighboring vertices. See Appendix B

for more details.

12For example, when s = 1, the probability to observe two data points from
the same cleint is zero in our sampling procedure, while observing these two
data pointw has non-zero probability in the uniform sampling of the entire
dataset D.

Note that the Algorithm Acldp is a sequence of T adaptive

mechanisms M1, . . . ,MT , where each Mt for t ∈ [T ]
satisfies the privacy guarantee stated in Lemma 7. Now, we

invoke the strong composition stated in Lemma 10 to obtain

the privacy guarantee of the algorithm Acldp. We can conclude

that for any δ′ > 0, Acldp is (ǫ, δ)-DP for

ǫ =
√

2T log (1/δ′)ǫ+ Tǫ
(
eǫ − 1

)
, δ = qT δ̃ + δ′,

where ǫ is from Lemma 7. We have from Lemma 10 that

if ǫ = O
(√

log(1/δ′)
T

)
, then ǫ = O

(
ǫ
√

T log (1/δ′)
)

.

If ǫ0 = O(1), then we can satisfy this condition on ǫ

by choosing ǫ0 = O
(√

n log(1/δ′)

qT log(1/δ̃)

)
. By substituting the

bound on ǫ = O
(
ǫ0

√
q log(1/δ̃)

n

)
from Lemma 7, we

have ǫ = O
(
ǫ0

√
qT log(1/δ̃) log(1/δ′)

n

)
. By setting δ̃ = δ

2qT

and δ′ = δ
2 , we get ǫ0 = O

(√
n log(2/δ)

qT log(2qT/δ)

)
and ǫ =

O
(
ǫ0

√
qT log(2qT/δ) log(2/δ)

n

)
. This completes the proof of

the privacy part of Theorem 1.

B. Proof of Theorem 1: Communication

The (ǫ0, b)-CLDP mechanism Rp : X → Y used in

Algorithm 1 has output alphabet Y = {1, 2, . . . , B = 2b}.
So, the output of Rp on any input can be represented by b
bits. Therefore, the naı̈ve scheme for any client to send the s
compressed and private gradients requires sb bits per iteration.

We can reduce this communication cost by using the histogram

trick from [35] which was applied in the context of non-private

quantization. The idea is as follows. Since any client applies the

same randomized mechanism Rp to the s gradients, the output

of these s identical mechanisms can be represented accurately

using the histogram of the s outputs, which takes value from

the set As
B = {(n1, . . . , nB) :

∑B
j=1 nj = s and nj ≥

0, ∀j ∈ [B]}. Since the cardinality of this set is
(
s+B−1

s

)
≤(

e(s+B−1)
s

)s
, it requires at most s

(
log (e) + log

(
s+B−1

s

))

bits to send the s compressed gradients. Since the probability

that the client is chosen at any time t ∈ [T ] is given by k
m ,

the expected number of bits per client in Algorithm Acldp

is given by k
m × T × s

(
log (e) + log

(
s+B−1

s

))
bits, where

expectation is taken over the sampling of k out of m clients

in all T iterations.

This completes the proof of the second part of Theorem 1.

C. Proof of Theorem 1 : Convergence

At iteration t ∈ [T ] of Algorithm 1, server averages the

ks received compressed and privatized gradients and obtains

gt =
1
ks

∑
i∈Ut

∑
j∈Sit

qt(dij) (line 12 of Algorithm 1) and

then updates the parameter vector as θt+1 ←
∏

C (θt − ηtgt).
Here, qt(dij) = Rp (∇θtf(θt; dij)). Since the randomized

mechanism Rp is unbiased, the average gradient gt is also

unbiased, i.e., we have E [gt] = ∇θtF (θt), where expectation

is taken with respect to the random sampling of clients and

the data points as well as the randomness of the mechanism

Rp. Now we show that gt has a bounded second moment.
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Lemma 8. For any d ∈ S, if the function f (θ; .) : C → R is

convex and L-Lipschitz continuous with respect to the ℓg-norm,

which is the dual of ℓp-norm, then we have

E‖gt‖22 ≤ L2 max{d1− 2
p , 1}

(
1 +

cd

qn

(
eǫ0 + 1

eǫ0 − 1

)2
)
, (31)

where c is a global constant: c = 4 if p ∈ {1,∞} and c = 14
if p /∈ {1,∞}.

Proof. Under the conditions of the lemma, we have from [32,

Lemma 2.6] that ‖∇θf (θ; d) ‖ ≤ L for all d ∈ S, which

implies that ∇θF (θ) ≤ L. Thus, we have

E‖gt‖22 = ‖E [gt] ‖22 + E‖gt − E [gt] ‖22
(a)

≤ max{d1− 2
p , 1}L2 + E‖gt − E [gt] ‖22

(b)

≤ max{d1− 2
p , 1}L2 +

cL2 max{d2− 2
p , d}

ks

(
eǫ0 + 1

eǫ0 − 1

)2

(c)
= max{d1− 2

p , 1}L2 +
cL2 max{d2− 2

p , d}
qn

(
eǫ0 + 1

eǫ0 − 1

)2

,

where c is a global constant, and c = 4 if p ∈ {1,∞} and

c = 14 if p /∈ {1,∞}. Step (a) follows from the fact that

‖∇θtF (θt) ‖ ≤ L together with the norm inequality ‖u‖q ≤
‖u‖p ≤ d

1
p− 1

q ‖u‖q for 1 ≤ p ≤ q ≤ ∞. Step (b) follows

from Corollary 1 with p = 1, i.e., for any p-norm, we use

the mechanism for ℓ2-norm ball only (together with norm

inequality) which gives the smallest variance. Step (c) uses

q = ks
n . �

Now, we can use standard SGD convergence results for

convex functions. In particular, we use the following result

from [51].

Lemma 9 (SGD Convergence [51]). Let F (θ) be a convex

function, and the set C has diameter D. Consider a stochastic

gradient descent algorithm θt+1 ←
∏

C (θt − ηtgt), where gt

satisfies E [gt] = ∇θtF (θt) and E‖gt‖22 ≤ G2. By setting

ηt =
D

G
√
t
, we get

E [F (θT )]−F (θ∗) ≤ 2DG
2 + log (T )√

T
= O

(
DG

log (T )√
T

)
.

(32)

As shown in Lemma 8 and above that Algorithm 1 satisfies

the premise of Lemma 9. Now, using the bound on G2 from

Lemma 8, we have that the output θT of Algorithm 1 satisfies

E [F (θT )]− F (θ∗) ≤ O
(
LD log(T )max{d 1

2− 1
p , 1}√

T
(
1 +

√
cd

qn

(
eǫ0 + 1

eǫ0 − 1

)))
,

(33)

where we used the inequality

√
1 + cd

qn

(
eǫ0+1
eǫ0−1

)2
≤

(
1 +

√
cd
qn

(
eǫ0+1
eǫ0−1

))
.

Note that if
√

cd
qn

(
eǫ0+1
eǫ0−1

)
≤ O(1), then we recover the

convergence rate of vanilla SGD without privacy. So, the

interesting case is when
√

cd
qn

(
eǫ0+1
eǫ0−1

)
≥ Ω(1), which gives

E [F (θT )]− F (θ∗) ≤ O
(
LD log(T )max{d 1

2− 1
p , 1}√

T
√

cd

qn

(
eǫ0 + 1

eǫ0 − 1

))
.

This completes the proof of the third part of Theorem 1.

VII. DISCUSSION

In this paper we have developed a compressed, private

optimization solution for a problem motivated by federated

learning, where distributed clients jointly build a common

learning model. The main technical contributions were devel-

oping order-optimal schemes for private mean-estimation and

combining them with privacy amplification by sampling (of

data and clients) as well as shuffling. We demonstrated that

iterative application of this enables us to get the same privacy,

optimization performance operating point as reported in [46],

while obtaining order-wise improvement in the number of bits

required, per iteration, thereby getting these communication

gains for “free”. Moreover, when the functions are L-Lipschitz

with respect to the ℓ2-norm, our scheme obtains the optimal

excess risk of the central differential privacy obtained in [40],

while operating in a distributed manner.

There are several open questions which are part of ongoing

investigations. These include sharper privacy analyses for these

schemes, which can improve the constants associated with the

performance parameters. For example, suppose that we train

a machine learning model on a dataset having 60000 clients,

where each client has a single sample. After running our CLDP-

SGD algorithm over T = 1000 iteration with ǫ0 = 1, δ = 10−5,

and sampling k = 5000 clients at each iteration, we get a

privacy parameter ǫ ≈ 2. We believe that the privacy parameters

can be improved by analyzing the Renyi differential privacy

of the shuffled model, which is an important open question

of ongoing investigation. Extending these ideas to non-convex

functions and examining their numerical performance for large-

scale neural network models, is also of future interest.
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Supplementary Material

APPENDIX A

BACKGROUND TOOLS

In this section, we state some preliminary definitions that we use throughout the paper and also state some results from

literature. We state the formal definitions of (local) differential privacy (DP) in Section A-A and strong composition theorem

for DP in Section A-B. As mentioned in Section I, we use subsampling and shuffling techniques for privacy amplification and

we describe them in Section A-C.

A. Differential Privacy

In this section, we formally define local differential privacy (LDP) and (central) differential privacy (DP). First we recall the

standard definition of LDP [9].

Definition 3 (Local Differential Privacy - LDP [9]). For ǫ0 ≥ 0, a randomized mechanism R : S→ Y is said to be ǫ0-local

differentially private (in short, ǫ0-LDP), if for every pair of inputs x,x′ ∈ S, we have

Pr[R(x) ∈ S] ≤ exp(ǫ0) Pr[R(x′) ∈ S], ∀S ⊂ Y. (34)

In our problem formulation, since each client has a communication budget on what it can send in each SGD iteration while

keeping its data private, it would be convenient for us to define two parameter LDP with privacy and communication budget.

Definition 4 (Local Differential Privacy with Communication Budget - CLDP). For ǫ0 ≥ 0 and b ∈ N
+ := {1, 2, 3, . . .},

a randomized mechanism R : S → Y is said to be (ǫ0, b)-communication-limited-local differentially private (in short,

(ǫ0, b)-CLDP), if for every pair of inputs x,x′ ∈ S, we have

Pr[R(x) = y] ≤ exp(ǫ0) Pr[R(x′) = y], ∀y ∈ Y. (35)

Furthermore, the output of R can be represented using b bits.

Here, ǫ0 captures the privacy level, lower the ǫ0, higher the privacy. When we are not concerned about the communication

budget, we succinctly denote the corresponding (ǫ0,∞)-CLDP, by its correspondence to the classical LDP as ǫ0-LDP [9].

Let D = {x1, . . . ,xn} denote a dataset comprising n points from S. We say that two datasets D = {x1, . . . ,xn} and

D′ = {x′
1, . . . ,x

′
n} are neighboring if they differ in one data point. In other words, D and D′ are neighboring if there exists

an index i ∈ [n] such that xi 6= x
′
i and xj = x

′
j for all j 6= i.

Definition 5 (Central Differential Privacy - DP [43], [52]). For ǫ, δ ≥ 0, a randomized mechanism M : Sn → Y is said to be

(ǫ, δ)-differentially private (in short, (ǫ, δ)-DP), if for all neighboring datasets D,D′ ∈ S
n and every subset E ⊆ Y , we have

Pr [M (D) ∈ E ] ≤ exp(ǫ) Pr [M (D′) ∈ E ] + δ. (36)

Remark 5. For any ǫ0-LDP mechanism R : S→ Y , it is easy to verify that the randomized mechanism M : Sn → Y defined

by M (x1, . . . ,xn) := (R (x1) , . . . ,R (xn)) is (ǫ0, 0)-DP.

Remark 6. Note that in this paper we make a clear distinction between the notation used for central differential privacy,

denoted by (ǫ, δ)-DP (see Definition 5), local differential privacy ǫ0-LDP (see definition 3) and communication limited local

differential privacy, denoted by (ǫ0, b)-CLDP (see Definition 4).

The main objective of this paper is to make SGD differentially private and communication-efficient, suitable for federated

learning. For that we compress and privatize gradients in each SGD iteration. Since the parameter vectors in any iteration

depend on the previous iterations, so do the gradients, which makes this procedure a sequence of many adaptive DP mechanisms.

We can calculate the final privacy guarantees achieved at the end of this procedure by using composition theorems.

B. Strong Composition [47]

Let M1 (I1,D) , . . . ,MT (IT ,D) be a sequence of T adaptive DP mechanisms, where Ii denotes the auxiliary input to the

ith mechanism, which may depend on the previous mechanisms’ outputs and the auxiliary inputs {(Ij ,Mj(Ij ,D)) : j < i}.
There are different composition theorems in literature to analyze the privacy guarantees of the composed mechanism

M(D) = (M1 (I1,D) , . . . ,MT (IT ,D)) (see [47], [53] and references therein).

Dwork et al. [47] provided a strong composition theorem (which is stronger than the basic composition theorem in which the

privacy parameters scale linearly with T ) where the privacy parameter of the composition mechanism scales as
√
T with some

loss in δ. Below, we provide a formal statement of that result from [43].
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Lemma 10 (Strong Composition [43, Theorem 3.20]). Let M1, . . . ,MT be T adaptive (ǫ, δ)-DP mechanisms, where ǫ, δ ≥ 0.

Then, for any δ′ > 0, the composed mechanism M = (M1, . . . ,MT ) is (ǫ, δ)-DP, where

ǫ =
√
2T log (1/δ′)ǫ+ Tǫ

(
eǫ − 1

)
, δ = Tδ + δ′.

In particular, when ǫ = O
(√

log(1/δ′)
T

)
, we have ǫ = O

(
ǫ
√
T log (1/δ′)

)
.

Note that training large-scale machine learning models (e.g., in deep learning) typically requires running SGD for millions of

iterations, as the dimension of the model parameter is quite large. We can make it differentially private by adding noise to the

gradients in each iteration, and appeal to the strong composition theorem to bound the privacy loss of the entire process (which

in turn dictates the amount of noise to be added in each iteration).

C. Privacy Amplification

In this section, we describe the techniques that can be used for privacy amplification. The first one amplifies privacy by

subsampling the data (to compute stochastic gradients) as well as the clients (as in FL), and the other one amplifies privacy by

shuffling.

1) Privacy Amplification by Subsampling: Suppose we have a dataset D′ = {U1, . . . , Ur1} ∈ S
r1 consisting of r1 elements

from a universe S. A subsampling procedure takes a dataset D′ ∈ S
r1 and subsamples without replacement a subset from it as

formally defined below.

Definition 6 (Subsampling). The subsampling operation sampr1,r2 : Sr1 → S
r2 takes a dataset D′ ∈ S

r1 as input and selects

uniformly at random a subset D′′ of r2 ≤ r1 elements from D′. Note that each element of D′ appears in D′′ with probability

q = r2
r1

.

The following result states that the above subsampling procedure amplifies the privacy guarantees of a DP mechanism.

Lemma 11 (Amplification by Subsampling [9]). Let M : Sr2 → V be an (ǫ, δ)-DP mechanism. Then, the mechanism

M′ : Sr1 → V defined by M′ =M◦ sampr1,r2 is (ǫ′, δ′)-DP, where ǫ′ = log(1 + q(eǫ − 1)) and δ′ = qδ with q = r2
r1

. In

particular, when ǫ < 1, M′ is (O(qǫ), qδ)-DP.

Note that in the case of subsampling the data for computing stochastic gradients, where client i selects a mini-batch of size s
from its local dataset Di that has r data points, we take D′ = Di, r1 = r, and r2 = s. In the case of subsampling the clients,

k clients are randomly selected from the m clients, we take D′ = {1, 2, . . . ,m}, r1 = m, and r2 = k. An important point

is that such a sub-sampling is not uniform overall (i.e., this does not imply that any subset of ks data points is chosen with

equal probability) and we cannot directly apply the above result. We need to revisit the proof of Lemma 11 to adapt it to our

case, and we do it in Lemma 7, which is proved in Appendix B. In fact, the proof of Lemma 7 is more general than just

adapting the amplification by subsampling to our setting, it also incorporates the amplification by shuffling, which is crucial for

obtaining strong privacy guarantees. We describe it next.

2) Privacy Amplification by Shuffling: Consider a set of m clients, where client i ∈ [m] has a data xi ∈ S. Let R : S→ Y
be an ǫ0-LDP mechanism. The i-th client applies R on her data xi to get a private message yi = R(xi). There is a secure

shuffler Hm : Ym → Ym that receives the set of m messages (y1, . . . ,ym) and generates the same set of messages in a

uniformly random order.

The following lemma states that the shuffling amplifies the privacy of an LDP mechanism by a factor of 1√
m

.

Lemma 12 (Amplification by Shuffling). Let R be an ǫ0-LDP mechanism. Then, the mechanism M(x1, . . . ,xm) := Hm ◦
(R(x1), . . . ,R(xm)) satisfies (ǫ, δ)-differential privacy, where

1) [18, Corollary 5.3.1]. If ǫ0 ≤ log(m/ log(1/δ))
2 , then for any δ > 0, we have

ǫ = O
(
min{ǫ0, 1}eǫ0

√
log(1/δ)

m

)
.

2) [11, Corollary 9]. If ǫ0 < 1
2 , then for any δ ∈ (0, 1

100 ) and m ≥ 1000, we have ǫ = 12ǫ0

√
log(1/δ)

m .

In our proposed algorithm, only k ≤ m clients send messages and each client sends a mini-batch of s gradients. So, in

total, shuffler applies the shuffling operation on ks gradients. In our algorithm, though sampling and shuffling are applied one

after another (first k clients are sampled, then each client samples s data points, and then shuffling of these ks data points

is performed), we analyze the privacy amplification we get using both of these techniques by analyzing them together; see

Lemma 7 proved in Appendix B.
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D. ℓp Geometry in Optimization

In this section, we give an example showing that why it is important to analyse the convergence of the SGD algorithm for

Lipschitz convex function under several ℓp geometries.

Example 1. Let z = (x, y) be a data point and θ ∈ R
d+1 represent the model parameters to be discovered in the learning

process. We can define a mapping function of the data point by φ(z) = [x, y], where x ∈ R
d is a feature vector and y is a scalar,

resulting in a feature map in the dimension of Rd+1. For a linear model, θTφ(z), we can observe that |θTφ(z)| ≤ ‖θ‖q‖φ(z)‖p
from Holder’s inequality, where ℓp is the dual norm of ℓq, i.e., 1

q + 1
p = 1 . Now suppose, as an example, the dataset has

bounded ℓp-norm, i.e., maxz ‖φ(z)‖p ≤ L1. Thus, the function g(θ, z) = θTφ(z) is L1-Lipschitz continuous with respect to

ℓq-norm. To show this, observe that

|g(θ1, z)− g(θ2, z)| = |(θ1 − θ2)
Tφ(z)| ≤ ‖φ(z)‖p‖θ1 − θ2‖q ≤ L1‖θ1 − θ2‖q

Suppose our loss function is in the form f(θ, z) = h(g(θ, z)) = h(θTφ(z)), where the function h : R → R is L2-Lipschitz

continuous. Thus, the loss function f(θ, z) is L2L1-Lipschitz continuous with respect to ℓq-norm. For example, if the dataset

has bounded ℓ∞ norm, then the loss function will be Lipschitz continuous with respect to ℓ1 norm, and hence, the gradient of

the loss function has bounded ℓ∞ norm. Observe that the class of the functions of the form f(θ, z) = h(g(θ, z)) contains the

soft-max loss and hinge loss function. Thus, it is relevant to work with the general ℓp spaces.

APPENDIX B

PROOF OF LEMMA 7

Recall that the input dataset at client i ∈ [m] is denoted by Di = {di1, di2, . . . , dir} ∈ S
r and D =

⋃m
i=1Di denotes the

entire dataset. Recall from (30) that the mechanism Mt on input dataset D can be defined as:

Mt(D) = Hks ◦ sampm,k (G1, . . . ,Gm) , (37)

where Gi = sampr,s (R(xt
i1), . . . ,R(xt

ir)) and x
t
ij = ∇θtf(θt; dij), ∀i ∈ [m], j ∈ [r]. We define a mechanism Z

(
D(t)

)
=

Hks (R (xt
1) , . . . ,R (xt

ks)) which is a shuffling of ks outputs of local mechanism R, where D(t) denotes an arbitrary set

of ks data points and we index x
t
i’s from i = 1 to ks just for convenience. From the amplification by shuffling result [18,

Corollary 5.3.1] (also see Lemma 12), the mechanism Z is (ǫ̃, δ̃)-DP, where δ̃ > 0 is arbitrary, and, if ǫ0 ≤
log(ks/ log(1/δ̃))

2 ,

then

ǫ̃ = O


min{ǫ0, 1}eǫ0

√√√√ log
(
1/δ̃
)

ks


 . (38)

Furthermore, when ǫ0 = O (1), we get ǫ̃ = O
(
ǫ0

√
log(1/δ̃)

ks

)
.

Let T ⊆ {1, . . . ,m} denote the identities of the k clients chosen at iteration t, and for i ∈ T , let Ti ⊆ {1, . . . , r}
denote the identities of the s data points chosen at client i at iteration t.13 For any T ∈

(
[m]
k

)
and Ti ∈

(
[r]
s

)
, i ∈ T , define

T = (T , Ti, i ∈ T ), DTi = {dj : j ∈ Ti} for i ∈ T , and DT = {DTi : i ∈ T }. Note that T and Ti, i ∈ T are random sets,

where randomness is due to the sampling of clients and of data points, respectively. The mechanism Mt can be equivalently

written as Mt = Z(DT ).
Observe that our sampling strategy is different from subsampling of choosing a uniformly random subset of ks data points

from the entire dataset D. Thus, we revisit the proof of privacy amplification by subsampling (see, for example, [21]) – which

is for uniform sampling – to compute the privacy parameters of the mechanism Mt, where sampling is non-uniform. Define a

dataset D′ = (D′
1)
⋃
(∪mi=2Di) ∈ S

n, where D′
1 = {d′11, d12, . . . , d1r} is different from the dataset D1 in the first data point

d11. Note that D and D′ are neighboring datasets – where, we assume, without loss of generality, that the differing elements

are d11 and d′11.

In order to show that Mt is (ǫ, δ)-DP, we need show that for an arbitrary subset S of the range of Mt, we have

Pr [Mt (D) ∈ S] ≤ eǫ Pr [Mt (D′) ∈ S] + δ (39)

Pr [Mt (D′) ∈ S] ≤ eǫ Pr [Mt (D) ∈ S] + δ (40)

Note that both (39) and (40) are symmetric, so it suffices to prove only one of them. We prove (39) below.

Let q = ks
mr . We define conditional probabilities as follows:

A11 = Pr
[
Z(DT ) ∈ S|1 ∈ T and 1 ∈ T1

]

13Though T and Ti, i ∈ T may be different at different iteration t, for notational convenience, we suppress the dependence on t here.
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A′
11 = Pr

[
Z(D′T ) ∈ S|1 ∈ T and 1 ∈ T1

]
(41)

A10 = Pr
[
Z(DT ) ∈ S|1 ∈ T and 1 6∈ T1

]
= Pr

[
Z(D′T ) ∈ S|1 ∈ T and 1 6∈ T1

]

A0 = Pr
[
Z(DT ) ∈ S|1 6∈ T

]
= Pr

[
Z(D′T ) ∈ S|1 6∈ T

]

Let q1 = k
m and q2 = s

r , and hence q = q1q2. Thus, we have

Pr [Mt (D) ∈ S] = qA11 + q1 (1− q2)A10 + (1− q1)A0

Pr [Mt (D′) ∈ S] = qA′
11 + q1 (1− q2)A10 + (1− q1)A0

Note that the mechanism Z is (ǫ̃, δ̃)-DP. Therefore, we have

A11 ≤ eǫ̃A′
11 + δ̃ (42)

A11 ≤ eǫ̃A10 + δ̃ (43)

Here (42) is straightforward, but proving (43) requires a combinatorial argument, which we give at the end of this proof.

We prove (39) separately for two cases, first when s = 1 and other when s > 1; k is arbitrary in both cases.

A. For s = 1 and arbitrary k ∈ [m]

Since the mechanism Z is (ǫ̃, δ̃)-DP, in addition to (42)-(43), since s = 1, we also have the following inequality:

A11 ≤ eǫ̃A0 + δ̃ (44)

Similar to (43), proving (44) requires a combinatorial argument, which we will give at the end of this proof. Note that (44)

only holds for s = 1 and may not hold for arbitrary s.

Inequalities (42)-(44) together imply A11 ≤ eǫ̃ min{A′
11, A10, A0} + δ̃. Now we prove (39) for ǫ = ln(1 + q(eǫ̃ − 1) and

δ = qδ̃. Note that when s = 1, we have q1 = k
m , q2 = 1

r , and q = k
mr .

Pr [Mt (D) ∈ S] = qA11 + q1 (1− q2)A10 + (1− q1)A0

≤ q
(
eǫ̃ min{A′

11, A10, A0}+ δ̃
)
+ q1 (1− q2)A10 + (1− q1)A0

= q
(
(eǫ̃ − 1)min{A′

11, A10, A0}+min{A′
11, A10, A0}

)
+ q1 (1− q2)A10 + (1− q1)A0 + qδ̃

(a)

≤ q(eǫ̃ − 1)min{A′
11, A10, A0}+ qA′

11 + q1 (1− q2)A10 + (1− q1)A0 + qδ̃
(b)

≤ q(eǫ̃ − 1) (qA′
11 + q1(1− q2)A10 + (1− q1)A0)) + (qA′

11 + q1 (1− q2)A10 + (1− q1)A0) + qδ̃

=
(
1 + q

(
eǫ̃ − 1

))
(qA′

11 + q1 (1− q2)A10 + (1− q1)A0) + qδ̃

= eln(1+q(eǫ̃−1)) Pr [Mt (D′) ∈ S] + qδ̃.

Here, (a) follows from min{A′
11, A10, A0} ≤ A′

11, and (b) follows from the fact that minimum is upper-bounded by the

convex combination. By substituting the value of ǫ̃ from (38) and using ks = qn, we get that for ǫ0 = O (1), we have

ǫ = O
(
ǫ0

√
q log(1/δ̃)

n

)
.

B. For s > 1 and arbitrary k ∈ [m]

Note that (42)-(43) together imply A11 ≤ eǫ̃ min{A′
11, A10}+ δ̃. Now we prove (39) for ǫ = ln(1 + q2(e

ǫ̃ − 1)) and δ = qδ̃.

Pr [Mt (D) ∈ S] = qA11 + q1(1− q2)A10 + (1− q1)A0

≤ q
(
eǫ̃ min{A′

11, A10}+ δ̃
)
+ q1(1− q2)A10 + (1− q1)A0

= q
(
(eǫ̃ − 1)min{A′

11, A10}+min{A′
11, A10}

)
+ q1(1− q2)A10 + (1− q1)A0 + qδ̃

(a)

≤ q
(
eǫ̃ − 1)min{A′

11, A10}
)
+ qA′

11 + q1(1− q2)A10 + (1− q1)A0 + qδ̃
(b)

≤ q
(
(eǫ̃ − 1)(q2A

′
11 + (1− q2)A10)

)
+ (qA′

11 + q1(1− q2)A10 + (1− q1)A0) + qδ̃

= q2
(
(eǫ̃ − 1)(q1q2A

′
11 + q1(1− q2)A10)

)
+ (qA′

11 + q1(1− q2)A10 + (1− q1)A0) + qδ̃
(c)

≤ q2
(
(eǫ̃ − 1)(qA′

11 + q1(1− q2)A10) + (1− q1)A0

)
+ (qA′

11 + q1(1− q2)A10 + (1− q1)A0) + qδ̃

=
(
1 + q2

(
(eǫ̃ − 1)

)
(qA′

11 + q1(1− q2)A10) + (1− q1)A0

)
+ qδ̃
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= eln(1+q2(e
ǫ̃−1)) Pr [Mt (D′) ∈ S] + qδ̃

Here, (a) follows from min{A′
11, A10} ≤ A′

11, (b) follows from the fact that minimum is upper-bounded by the convex

combination, and (c) holds because (1− q1)A0 ≥ 0. By substituting the value of ǫ̃ from (38) and using ks = qn, we get that

for ǫ0 = O (1), we have ǫ = O
(
ǫ0

√
q2 log(1/δ̃)

q1n

)
. Note that when q1 = 1 (i.e., we select all the clients in each iteration), then

this gives the desired privacy amplification of q = q2.

The proof of Lemma 7 is complete, except for that we have to prove (43) and (44). Before proving (43) and (44), we state

an important remark about the privacy amplification in both the cases.

Remark 7. Note that when s = 1 and ǫ0 = O(1), we have ǫ = ln(1 + q(eǫ̃ − 1)) = O(qǫ̃). So we get a privacy amplification

by a factor of q = ks
mr – the sampling probability of each data point from the entire dataset. Here, we get a privacy amplification

from both types of sampling, of clients as well of data points.

On the other hand, when s > 1 and ǫ0 = O(1), we have ǫ = ln(1 + q2(e
ǫ̃ − 1)) = O(q2ǫ̃), which, unlike the case of s = 1,

only gives the privacy amplification by a factor of q2 = s
r – the sampling probability of each data point from a client. So,

unlike the case of s = 1, here we only get a privacy amplification from sampling of data points, not from sampling of clients.

Note that when k = m and any s ∈ [r] (which implies q1 = 1 and q = q2), we have ǫ = O
(
ǫ0

√
q2 log(1/δ̃)

n

)
, which gives the

desired amplification when we select all the clients in each iteration.

Proof of (43). First note that the number of subsets T1 ⊂ [r] such that |T1| = s, 1 ∈ T1 is equal to
(
r−1
s−1

)
and the number of

subsets T1 ⊂ [r] such that |T1| = s, 1 /∈ T1 is equal to
(
r−1
s

)
. It is easy to verify that (r − s)

(
r−1
s−1

)
= s
(
r−1
s

)
.

Consider the following bipartite graph G = (V1 ∪ V2, E), where the left vertex set V1 has
(
r−1
s−1

)
vertices, one for each

configuration of T1 ⊂ [r] such that |T1| = s, 1 ∈ T1, the right vertex set V2 has
(
r−1
s

)
vertices, one for each configuration

of T1 ⊂ [r] such that |T1| = s, 1 /∈ T1, and the edge set E contains all the edges between neighboring vertices, i.e., if

(u,v) ∈ V1 × V2 is such that u and v differ in only one element, then (u,v) ∈ E. Observe that each vertex of V1 has (r − s)
neighbors in V2 – the neighbors of T1 ∈ V1 will be {(T1 \ {1}) ∪ {i} : i ∈ [m] \ T1} ⊂ V2. Similarly, each vertex of V2 has s
neighbors in V1 – the neighbors of T1 ∈ V2 will be {(T1 \ {i}) ∪ {1} : i ∈ T1} ⊂ V1.

Now, fix any T ∈
(
[m]
k

)
s.t. 1 ∈ T , and for i ∈ T \ {1}, fix any Ti ∈

(
[r]
s

)
, and consider an arbitrary (u,v) ∈ E. Since the

mechanism Z is (ǫ̃, δ̃)-DP, we have

Pr
[
Z(DT ) ∈ S|1 ∈ T , T1 = u, Ti, i ∈ T \ {1}

]
≤ eǫ̃ Pr

[
Z(DT ) ∈ S|1 ∈ T , T1 = v, Ti, i ∈ T \ {1}

]
+ δ̃. (45)

Now we are ready to prove (43).

A11 = Pr
[

Z(DT ) ∈ S|1 ∈ T and 1 ∈ T1

]

=
∑

T ∈([m]
k ):1∈T

T1∈([r]s ):1∈T1

Ti∈([r]s ) for i∈T \{1}

Pr[T , Ti, i ∈ T |1 ∈ T and 1 ∈ T1] Pr[Z(DT ) ∈ S|T , T1, . . . , Tm]

(a)
=

∑

T ∈([m]
k ):1∈T

Ti∈([r]s ) for i∈T \{1}

Pr[T , Ti, i ∈ T \ {1}|1 ∈ T ]
∑

T1∈([r]s ):1∈T1

Pr[T1|1 ∈ T1] Pr[Z(DT ) ∈ S|T , T1, . . . , Tm]

=
∑

T ∈([m]
k ):1∈T

Ti∈([r]s ) for i∈T \{1}

Pr[T , Ti, i ∈ T \ {1}|1 ∈ T ]
1

(r − s)
(

r−1

s−1

)

∑

T1∈([r]s ):1∈T1

(r − s) Pr[Z(DT ) ∈ S|T , T1, . . . , Tm]

=
∑

T ∈([m]
k ):1∈T

Ti∈([r]s ) for i∈T \{1}

Pr[T , Ti, i ∈ T \ {1}|1 ∈ T ]
1

s
(

r−1

s

)

∑

T1∈([r]s ):1∈T1

(r − s) Pr[Z(DT ) ∈ S|T , T1, . . . , Tm]

(b)

≤
∑

T ∈([m]
k ):1∈T

Ti∈([r]s ) for i∈T \{1}

Pr[T , Ti, i ∈ T \ {1}|1 ∈ T ]
1

s
(

r−1

s

)

∑

T1∈([r]s ):1/∈T1

s
(

eǫ̃ Pr[Z(DT ) ∈ S|T , T1, . . . , Tm] + δ̃
)

=
∑

T ∈([m]
k ):1∈T

Ti∈([r]s ) for i∈T \{1}

Pr[T , Ti, i ∈ T \ {1}|1 ∈ T ]
∑

T1∈([r]s ):1/∈T1

Pr[T1|1 /∈ T1]
(

eǫ̃ Pr[Z(DT ) ∈ S|T , T1, . . . , Tm] + δ̃
)
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(c)
=

∑

T ∈([m]
k ):1∈T

T1∈([r]s ):1/∈T1

Ti∈([r]s ) for i∈T \{1}

Pr[T , Ti, i ∈ T |1 ∈ T and 1 /∈ T1]
(

eǫ̃ Pr[Z(DT ) ∈ S|T , T1, . . . , Tm] + δ̃
)

≤ eǫ̃ Pr
[

Z(DT ) ∈ S|1 ∈ T and 1 /∈ T1

]

+ δ̃

= eǫ̃A10 + δ̃.

Here, (a) and (c) follow from the fact that clients sample the data points independent of each other, and (b) follows from (45)

together with the fact that there are (r − s)
(
r−1
s−1

)
= s
(
r−1
s

)
edges in the bipartite graph G = (V1 ∪ V2, E), where degree of

vertices in V1 is (r − s) and degree of vertices in V2 is s.

Proof of (44). First note that the number of subsets T ∈ [m] such that |T | = k, 1 ∈ T is equal to
(
m−1
k−1

)
and the number of

subsets T ⊂ [m] such that |T | = k, 1 /∈ T is equal to
(
m−1
k

)
. It is easy to verify that (m− k)

(
m−1
k−1

)
= k

(
m−1
k

)
.

Consider the following bipartite graph G = (V1 ∪ V2, E), where the left vertex set V1 has
(
m−1
k−1

)
rk−1 vertices, one for

each configuration of (T , Ti : i ∈ T ) such that T ⊂ [m], |T | = k, 1 ∈ T and T1 = 1, the right vertex set V2 has
(
m−1
k

)
rk

vertices, one for each configuration of (T , Ti : i ∈ T ) such that T ⊂ [m], |T | = k, 1 /∈ T , and the edge set E contains all the

edges between neighboring vertices, i.e., if (u,v) ∈ V1 × V2 is such that u and v differ in only one element, then (u,v) ∈ E.

Observe that each vertex of V1 has r(m− k) neighbors in V2. Similarly, each vertex of V2 has k neighbors in V1.

Consider an arbitrary edge (u,v) ∈ E. By construction, there exists T ∈
(
[m]
k

)
with 1 ∈ T and Ti ∈ [r], i ∈ T such that

u = (T , Ti : i ∈ T ) and T ′ ∈
(
[m]
k

)
with 1 /∈ T ′ and T ′

i ∈ [r], i ∈ T ′ such that v = (T ′, T ′
i : i ∈ T ′). Note that, since

(u,v) ∈ E, (Ti : i ∈ T ) and (T ′
i : i ∈ T ′) have k − 1 elements common. Now, since the mechanism Z is (ǫ̃, δ̃)-DP, we have

Pr
[
Z(DT ) ∈ S|T , Ti, i ∈ T

]
≤ eǫ̃ Pr

[
Z(DT ′

) ∈ S|T ′, T ′
i , i ∈ T ′

]
+ δ̃. (46)

Now we are ready to prove (44).

A11 = Pr
[
Z(DT ) ∈ S|1 ∈ T and T1 = 1

]

=
∑

T ∈([m]
k ):1∈T

Ti∈[r] for i∈T :T1=1

Pr[T , Ti, i ∈ T |1 ∈ T and T1 = 1]Pr[Z(DT ) ∈ S|T , Ti, i ∈ T ]

=
1(

m−1
k−1

)
rk−1

∑

T ∈([m]
k ):1∈T

Ti∈[r] for i∈T :T1=1

Pr[Z(DT ) ∈ S|T , Ti, i ∈ T ]

=
1

(m− k)
(
m−1
k−1

)
rk

∑

T ∈([m]
k ):1∈T

Ti∈[r] for i∈T :T1=1

r(m− k) Pr[Z(DT ) ∈ S|T , Ti, i ∈ T ]

(a)
=

1

k
(
m−1
k

)
rk

∑

T ∈([m]
k ):1∈T

Ti∈[r] for i∈T :T1=1

r(m− k) Pr[Z(DT ) ∈ S|T , Ti, i ∈ T ]

(b)

≤ 1

k
(
m−1
k

)
rk

∑

T ∈([m]
k ):1/∈T

Ti∈[r] for i∈T

k
(
eǫ Pr[Z(DT ) ∈ S|T , Ti, i ∈ T ] + δ̃

)

=
1(

m−1
k

)
rk

∑

T ∈([m]
k ):1/∈T

Ti∈[r] for i∈T

(
eǫ Pr[Z(DT ) ∈ S|T , Ti, i ∈ T ] + δ̃

)

=
∑

T ∈([m]
k ):1/∈T

Ti∈[r] for i∈T

Pr[T , Ti, i ∈ T |1 /∈ T ]
(
eǫ Pr[Z(DT ) ∈ S|T , Ti, i ∈ T ] + δ̃

)

= eǫ̃ Pr
[
Z(DT ) ∈ S|1 /∈ T

]
+ δ̃

= eǫ̃A0 + δ̃

Here, (a) uses (m − k)
(
m−1
k−1

)
= k

(
m−1
k

)
, and (b) follows from (46) together with the fact that there are

r(m − k)
(
m−1
k−1

)
rk−1 = k

(
m−1
k

)
rk edges in the bipartite graph G = (V1 ∪ V2, E), where degree of vertices in V1 is

r(m− k) and degree of vertices in V2 is k.
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This completes the proof of Lemma 7.

APPENDIX C

MINIMAX RISK ESTIMATION

Lemma 13. For the minimax problems (5) and (6), the optimal estimator x̂ (yn) is a deterministic function. In other words,

the randomized decoder does not help in reducing the minimax risk.

Proof. Towards a contradiction, suppose that the optimal estimator x̂ is a randomized decoder defined as follows. For given

clients’ responses y
n, let the probabilistic estimator generate an estimate x̂ (yn) whose mean and trace of the covariance matrix

are given by µ
x̂(yn) = E [x̂(yn)] and σ2

x̂(yn) = E

[∥∥x̂ (yn)− µx̂(yn)

∥∥2
2

∣∣Y n
]
, respectively, where expectation is taken with

respect to the randomization of the decoder, conditioned of Y n.

E

[
‖x− x̂ (yn)‖22

∣∣yn
]
= E

[∥∥∥x− µ
x̂(yn) + µ

x̂(yn) − x̂ (yn)
∥∥∥
2

2

∣∣yn

]

= E

[∥∥∥x− µ
x̂(yn)

∥∥∥
2

2

∣∣yn

]
+ E

[∥∥∥µx̂(yn) − x̂ (yn)
∥∥∥
2

2

∣∣yn

]

+ 2E
〈
x− µ

x̂(yn),µx̂(yn) − x̂ (yn)
∣∣yn
〉

(a)
= E

[∥∥∥x− µ
x̂(yn)

∥∥∥
2

2

∣∣yn

]
+ σ2

x̂(yn)

> E

[∥∥∥x− µ
x̂(yn)

∥∥∥
2

2

∣∣yn

]

In (a), we used that µ
x̂(yn) = E [x̂(yn)] to eliminate the last term. Similarly, we can prove that E

[
‖µq − x̂ (yn) ‖22

∣∣yn
]
>

E
[
‖µq − µ

yn‖22
∣∣yn
]
. Hence, the deterministic estimator x̂ (yn) = µx̂(yn) has a lower minimax risk than the probabilistic

estimator. �

APPENDIX D

COMPRESSED AND PRIVATE MEAN ESTIMATION

A. Achievability for ℓ1-norm Ball: Proof of Theorem 5

Lemma (Restating Lemma 2). The mechanism R1 presented in Algorithm 2 satisfies the following properties:

1) R1 is (ǫ0, log (d) + 1)-LDP and requires only 1-bit of communication using public-randomness.

2) R1 is unbiased and has bounded variance, i.e., for every x ∈ Bd1 (a), we have

E [R1 (x)] = x and E‖R1 (x)− x‖22 ≤ d

(
eǫ0 + 1

eǫ0 − 1

)2

.

Proof. We show these properties one-by-one below.

1) Observe that the output of the mechanism R1 can be represented using the index j ∈ [d] and one bit of the sign of

{±aHd (j)
(

eǫ0+1
eǫ0−1

)
}. Hence, it requires only log (d)+1 bits for communication. Furthermore, the randomness j ∼ Unif [d]

is independent of the input x. Thus, if the client has access to a public randomness j, then the client needs only to send one

bit to represent its sign. Now, we show that the mechanism R1 is ǫ0-LDP. Let Z =
{
±aHd(j)

(
eǫ0+1
eǫ0−1

)
: j = 1, 2, . . . , d

}

denote all possible 2d outputs of the mechanism R1. We get

sup
x,x′∈Bd

1 (a)

sup
z∈Z

Pr[R1(x) = z]

Pr[R1(x′) = z]
≤ sup

x,x′∈Bd
1 (a)

1
d

∑d
j=1

(
1
2 +

√
d|yj |
2a

eǫ0−1
eǫ0+1

)

1
d

∑d
j=1

(
1
2 −

√
d|y′

j |
2a

eǫ0−1
eǫ0+1

)

= sup
x,x′∈Bd

1 (a)

1
d

∑d
j=1

(
a(eǫ0 + 1) +

√
d|yj |(eǫ0 − 1)

)

1
d

∑d
j=1

(
a(eǫ0 + 1)−

√
d|y′j |(eǫ0 − 1)

)

(a)

≤ 2aeǫ0

2a
= eǫ0 ,

where (a) uses the fact that for every j ∈ [d], we have |yj | ≤ a/
√
d and |y′j | ≤ a/

√
d.

2) Fix an arbitrary x ∈ Bd1 (a).

Unbiasedness: E [R1 (x)] =
1

d

d∑

j=1

aHd (j)

(
eǫ0 + 1

eǫ0 − 1

)(√
dyj
a

eǫ0 − 1

eǫ0 + 1

)
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=
1

d

d∑

j=1

Hd (j)
√
dyj

(b)
=

1

d

d∑

j=1

Hd (j)H
T
d (j)x

(c)
= x

where (b) uses y = 1√
d
Hdx and (c) uses

∑d
j=1 Hd(j)H

T
d (j) = HdH

T
d = dId.

Bounded variance: E‖R1 (x)− x‖22 ≤ E‖R1(x)‖2 = E[R1(x)
TR1(x)]

=
1

d

d∑

j=1

a2Hd(j)
THd(j)

(
eǫ0 + 1

eǫ0 − 1

)2

= a2d

(
eǫ0 + 1

eǫ0 − 1

)2

(Since Hd(j)
THd(j) = d, ∀j ∈ [d])

This completes the proof of Lemma 2. �

B. Achievability for ℓ2-norm Ball: Proof of Theorem 6

Lemma (Restating Lemma 5). The mechanism R2 presented in Algorithm 3 satisfies the following properties, where ǫ0 > 0:

1) R2 is (ǫ0, d(log(e) + 1))-LDP.

2) R2 is unbiased and has bounded variance, i.e., for every x ∈ Bd2 (a), we have

E [R2 (x)] = x and E‖R2 (x)− x‖22 ≤ 6a2d

(
eǫ0 + 1

eǫ0 − 1

)2

.

Proof. We prove these properties one-by-one below.

1) It was shown by Duchi et al. [50, Section 4.2.3] that Priv is an ǫ0-LDP mechanism. Now, since R2 = Quan ◦ Priv is a

post-processing of a differentially-private mechanism Priv and post-processing preserves differential privacy, we have that

R2 is also ǫ0-LDP. The claim that R2 uses d(log(e) + 1) bits of communication follows because R2 outputs the result

of Quan, which produces an output which can be represented using d(log(e) + 1) bits; see [35].

2) Unbiasedness of R2 follows because R2 = Quan ◦Priv and both Priv and Quan are unbiased. To prove that variance is

bounded, fix an x ∈ Bd2 (a).

E‖R2(x)− x‖22 = E‖Quan (Priv(x))− x‖22
= E‖Quan (Priv(x))− Priv(x) + Priv(x)− x‖22
(a)
= E‖Quan (Priv(x))− Priv(x)‖22 + E‖Priv(x)− x‖22
(b)

≤ 2‖Priv(x)‖2 + E‖Priv(x)‖2
(c)

≤ 3‖Priv(x)‖2
(d)

≤ 6d

(
eǫ0 + 1

eǫ0 − 1

)2

.

In (a) we used the fact that Quan and Priv are unbiased, which implies that the cross multiplication term is zero. In (b)

we used Lemma 4 to write E‖Quan (Priv(x))− Priv(x)‖22 ≤ 2‖Priv(x)‖2 and used the unbiasedness of Priv together

with the fact that variance is bounded by the second moment to write E‖Priv(x)− x‖22 ≤ E‖Priv(x)‖22. In (c) we used

that the length of Priv on any input remains fixed, i.e., E‖Priv(x)‖2 = ‖Priv(x)‖2 = M2 (where M is from the line 4

of Algorithm 4) holds for any x ∈ Bd2(a). In (d) we used the bound on ‖Priv(x)‖22 from Lemma 3.

This completes the proof of Lemma 5. �

C. Achievability for ℓ∞-norm Ball: Proof of Theorem 7

Lemma (Restating Lemma 6). The mechanism R∞ presented in Algorithm 6 satisfies the following properties:

1) R∞ is (ǫ0, log (d) + 1)-LDP and requires only 1-bit of communication using public-randomness.

2) R∞ is unbiased and has bounded variance, i.e., for every x ∈ Bd∞ (a), we have

E [R∞ (x)] = x and E‖R∞ (x)− x‖22 ≤ a2d2
(
eǫ0 + 1

eǫ0 − 1

)2

.

Proof. We prove these properties one-by-one below.

1) Observe that the output of the mechanism R∞ can be represented using the index j ∈ [d] and one bit for the sign of{
± ad

(
eǫ0+1
eǫ0−1

)
ej

}
. Hence, it requires only log (d) + 1 bits for communication. Furthermore, the randomness j ∼ Unif [d]

is independent of the input x. Thus, if the client has access to a public randomness j, then the client needs only to send
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one bit for its sign. Now, we show that the mechanism R∞ is ǫ0-LDP. Let Z =
{
± ad

(
eǫ0+1
eǫ0−1

)
ej : j = 1, 2, . . . , d

}

denote all possible 2d outputs of the mechanism R∞. We get

sup
x,x′∈Bd

∞
(a)

sup
z∈Z

Pr [R∞ (x) = z]

Pr [R∞ (x) = z]
≤ sup

x,x′∈Bd
∞

(a)

1
d

∑d
i=1

(
1
2 +

|xj |
2a

eǫ0−1
eǫ0+1

)

1
d

∑d
i=1

(
1
2 −

|x′

j |
2a

eǫ0−1
eǫ0+1

) (47)

= sup
x,x′∈Bd

∞

1
d

∑d
i=1 (a(e

ǫ0 + 1) + |xj |(eǫ0 − 1))
1
d

∑d
i=1

(
a(eǫ0 + 1)− |x′

j |(eǫ0 − 1)
) (48)

(a)

≤ 2aeǫ0

2a
= eǫ0 , (49)

where in (a) we used the fact that for every j ∈ [d], we have |xj | ≤ a and |x′
j | ≤ a.

2) Fix an arbitrary x ∈ Bd∞.

Unbiasedness: E [R∞ (x)] =
1

d

d∑

j=1

ejad

(
eǫ0 + 1

eǫ0 − 1

)(
xj

a

eǫ0 − 1

eǫ0 + 1

)

=

d∑

j=1

ejxj

= x

Bounded variance: E‖R∞(x)− x‖22 ≤ E‖R∞(x)‖2 = E[R∞(x)TR∞(x)]

=
1

d

d∑

j=1

a2d2
(
eǫ0 + 1

eǫ0 − 1

)2

= a2d2
(
eǫ0 + 1

eǫ0 − 1

)2

This completes the proof of Lemma 6. �


