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Abstract—We consider a distributed empirical risk minimiza-
tion (ERM) optimization problem with communication efficiency
and privacy requirements, motivated by the federated learning
(FL) framework [1]. Unique challenges to the traditional ERM
problem in the context of FL include (i) need to provide privacy
guarantees on clients’ data, (i) compress the communication
between clients and the server, since clients might have low-
bandwidth links, (iii) work with a dynamic client population at
each round of communication between the server and the clients,
as a small fraction of clients are sampled at each round. To
address these challenges we develop (optimal) communication-
efficient schemes for private mean estimation for several /,
spaces, enabling efficient gradient aggregation for each iteration
of the optimization solution of the ERM. We also provide
lower and upper bounds for mean estimation with privacy and
communication constraints for arbitrary /¢, spaces. To get the
overall communication, privacy, and optimization performance
operation point, we combine this with privacy amplification
opportunities inherent to this setup. Our solution takes advantage
of the inherent privacy amplification provided by client sampling
and data sampling at each client (through Stochastic Gradient
Descent) as well as the recently developed privacy framework
using anonymization, which effectively presents to the server
responses that are randomly shuffled with respect to the clients.
Putting these together, we demonstrate that one can get the same
privacy, optimization-performance operating point developed
in recent methods that use full-precision communication, but
at a much lower communication cost, i.e., effectively getting
communication efficiency for “free”.

I. INTRODUCTION

In this paper we consider a federated learning (FL) frame-
work [1]-[3], where the data is generated across m clients.
The server wants to learn a machine learning model that
minimizes a certain objective function using the m local
datasets, without collecting the data at the central server due
to privacy considerations. Specifically, each client ¢ has a local
dataset D; = {d;1,...,d;r} C " comprising r data points,
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where G is the set from which all clients data is from.' The
server wants to solve the following empirical risk minimization
problem:
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Here, C C R? is a closed convex set, and F;(9) is a local
loss function dependent on the local dataset D, at client ¢
evaluated at the model parameters 6 € R%; see Figure 1 for a
pictorial representation of the setting and Section III for more
details on the problem setup. In order to generate a learning
model using (1), the commonly used mechanism is Stochastic
Gradient Descent (SGD) [4]. Federated learning (FL) introduces
several unique challenges to this traditional model that cause
tension with the objective in (1): (i) we need to provide privacy
guarantees on the locally residing data D; at client 4, as the data
not only needs to remain at the clients but additionally needs
to be kept private according to certain requirements/guarantees;
(i) compress (as efficiently as possible) the communication
between clients and the server, since the clients may connect
with low-bandwidth (wireless) links; and (iii) work with a
dynamic client population in each round of communication
between the server and the clients. This happens due to scale
(e.g., tens of millions of devices) and only a small fraction of
clients are sampled at each communication round depending
on their availability.

These requirements make the problem challenging, especially
when one wants to give strong privacy guarantees while training
models that give good learning performance. Since we need
to give privacy to the local data residing at the clients, the
traditional framework to give guarantees is through the notion
of local differential privacy, where the server is itself untrusted.
The challenge is that traditional approaches to learning under
local differential privacy (LDP) [5]-[9] are known to give poor
learning performance [7], [9], [10].

In recent works, a new privacy framework using anonymiza-
tion has been proposed in the so-called shuffling model [11]-
[19]. This model enables significantly better privacy-utility
performance by amplifying privacy (scaling with number of
clients as —— with respect to LDP) through this anonymization,
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which effectively presents the central server with responses

I'The data could be images with labels, e.g., 8 X 8 pixel blocks with labels,
where each pixel is represented by 32 bits and each label is represented
by an integer from {1...,10}, in which case & = F%4 x G, where F =
{1,...,256} and G = {1, ...,10}. Another example is the text represented
by words, in which case & = W*, where W is the language alphabet and &
are strings of letters from the alphabet.



which are randomly shuffled with respect to the clients,
providing additional privacy. Another mechanism to amplify
privacy is through randomized sampling [9], [20], [21]. This
naturally arises in the considered SGD framework, since clients
do mini-batch sampling of local data and also there is sampling
of clients themselves in each iteration, as in the federated
learning framework [1]-[3].

In this paper, we enable privacy amplification for the FL
problem using both forms of amplification: shuffling and
sampling (data and clients). Note that privacy amplification by
subsampling (both data and clients) happens automatically?,
and we quantify that in this paper, while the secure shuffling
(anonymization) is performed explicitly which adds an addi-
tional layer of privacy that allows transferring the local privacy
guarantees to central privacy guarantees.

Another important aspect is that of requiring communication
efficiency instantiated through compression of the gradients
computed by each active client. There has been significant re-
cent progress in this topic (see [22]-[30] and references therein).
However, there has been less work in combining privacy and
compression in the optimization/learning framework of (1),
with the notable exception of [31], which we will elaborate on
soon. One question that arises is whether one pays a price to
do compression in terms of the privacy-performance trade-off;
a question we address in this paper.

In this paper we (partially) solve the main problem of
privately learning a model with compressed communication,
with good learning performance while giving strong guarantees
on privacy. We believe that this is the first result that analyses
the optimization performance with schemes devised using
compressed gradient exchange, mini-batch SGD while giving
data privacy guarantees for clients using a shuffled framework.
Our main contributions are as follows:

e We analyze the convergence-privacy trade-offs of the
proposed CLDP-SGD algorithm for Lipschitz convex function
under several ¢, geometries (See [32, Chapter 4] for the
relevance of £, geometries in optimization)3. We prove that one
can get communication efficiency “for free” by demonstrating
schemes that use O(logd) bits per client for several cases) to
obtain the same privacy-performance operating point achieved
by full precision gradient exchange.* We do this using the
shuffled privacy model and amplification by sampling (client
data through mini-batch SGD and clients themselves in
federated sampling).

e One ingredient of our main result is showing that we can
compose amplification by sampling (client data through mini-
batch SGD and clients themselves in federated sampling) along
with amplification by shuffling. Note that sampling of clients

2In this paper, we use an abstraction for the federated learning model, where
clients are sampled randomly. In practice, there are many more complicated
considerations for sampling, including availability, energy usage, time-of-day
etc., which we do not model in this work. Also in the terminology of [1], we
focus on cross devices, i.e., where we have individual clients and not siloed
scenarios where institutions are collaborating.

3See also a simple example illustrated in Appendix A-D. Such £, constraints
on the gradient also arise practically when one does gradient clipping according
to an £, geometry.

4Our work focuses on symmetric, private-randomness mechanisms. We do
not assume the existence of public randomness in this work as we use the
shuffling model.

and data points together give overall non-uniform sampling of
data points, so we cannot use the existing results on privacy
amplification by subsampling, necessitating our privacy proof,
of Lemma 7 in Appendix B, that composes sampling and
shuffling techniques.

e At each round of the iterative optimization, one needs to
privately aggregate the gradients in a communication efficient
manner. To do this, we develop new private, compressed mean
estimation techniques in a minimax estimation framework, that
are (order optimal) under several £, geometries for the vectors.
We develop both lower bounds and matching schemes for this
problem. These results may also be of independent interest
(see Section V).

We will put our contributions in context to the existing
literature next.

Related Work

Among several main challenges in the recently developed
FL framework (see [1] and references therein), we focus in
this paper on the combination of privacy and communication
efficiency, and examining its impact on model learning. We
briefly review some of the main developments in related papers
on these topics below.

1) Communication-Privacy Trade-offs: Distributed mean
estimation and its use in training learning models has been
studied extensively in the literature (see [22], [33]-[35] and
references therein). In [33], the authors have proposed a
communication efficient scheme for estimating the mean of
set a of vectors distributed over multiple clients. In [36],
Acharya et. al. studied the discrete distribution estimation
under LDP. They proposed a randomized mechanism based
on Hadamard coding which is optimal for all privacy regime
and requires O (log (d)) bits per client, where d denotes the
support size of the discrete distribution. In [37], the authors
consider both private and public coin mechanisms, and show
that the Hadamard mechanism is near optimal in terms of
communication for both distribution and frequency estimation.
Recently, [38] proposed a communication efficient scheme for
mean estimation under local differential privacy constraints.
This work is is done concurrently and independently of our
work. Furthermore, it focuses on mean estimation for bounded
fo-norm vectors, in contrast to our optimization approach,
privacy amplification through sampling and shuffling. Also,
this work considers the existence of public randomness, while
we do not need public randomness.

LDP mechanisms suffer from the utility degradation that
motivates other work to find alternative techniques to improve
the utility under LDP. One of new developments in privacy
is the use of anonymization to amplify the privacy by using
secure shuffler. In [17]-[19], the authors studied the mean
estimation problem under LDP with secure shuffler, where
they show that the shuffling provides better utility than the
LDP framework without shuffling.

2) Private Optimization: In [39], Chaudhuri et al. studied
centralized privacy-preserving machine learning algorithms for
convex optimization problem. The authors proposed a new idea
of perturbing the objective function to preserve privacy of the



training dataset. In [40], Bassily et al. derived lower bounds
on the empirical risk minimization under central differential
privacy constraints. Furthermore, they proposed a differential
privacy SGD algorithm that matches the lower bound for convex
functions. In [41], the authors have generalized the private
SGD algorithm proposed in [40] for non-convex optimization
framework. In addition, the authors have proposed a new
analysis technique, called moment accounting, to improve
on the strong composition theorems to compute the central
differential privacy guarantee for iterative algorithms. However,
the works mentioned, [39]-[41], assume that there exists a
trusted server that collects the clients’ data. This motivates other
works to design a distributed SGD algorithms, where each client
perturbs her own data without needing a trusted server. For this,
the natural privacy framework is local differential privacy or
LDP (e.g., see [5]-[7], [42]). However, it is well understood that
LDP does not give good performance guarantees as it requires
significant local randomization to give privacy guarantees
[7]1, [9], [10]. In this paper, we use the strong composition
theorem [43, Theorem 3.20] to analyze the differential privacy
of the proposed algorithm. The strong composition is a generic
composition method and does not take into account the specific
noise distribution under consideration to bound the privacy loss.
In [41], the authors have proposed a different technique for
keeping track of the privacy loss by computing the Renyi
differential privacy of the iterative algorithm. This method
provides tighter bounds for the case when we add Gaussian
noise to gradients for achieving differential privacy [41], [44].
Therefore, analyzing the Renyi differential privacy of the
shuffled model can improve the privacy parameters of the
iterative algorithms. However, computing (or even bounding
non-trivially) the Renyi divergence in the shuffled model
appears to be challenging — the different properties of Renyi
divergence do not seem to help in bounding it, and if one tries
to do a direct calculation, the problem is combinatorial in nature
and blows up even with moderate values of the parameters
involved. This is an interesting open question of future interest;
see also a discussion on this open question in recent parallel
independent (unpublished) work [45]. The two most related
papers to our work are [31], [46] which we describe below.

In [46], the authors have proposed a distributed local-
differential-privacy gradient descent algorithm, where each
client has one sample. In their proposed algorithm, each client
perturbs the gradient of her sample using an LDP mechanism.
To improve upon the LDP performance guarantees, they use
the newly proposed anonymization/shuffling framework [18].
Therefore in their work, gradients of all clients are passed
through a secure shuffler that eliminates the identities of the
clients to amplify the central privacy guarantee. However, their
proposed algorithm is not communication efficient, where
each client has to send the full-precision gradient without
compression. Our work is different from [46], as we propose a
communication efficient mechanism for each client that requires
O(logd) bits per client, which can be significant for large d.
Furthermore, our algorithm consider multiple data samples at
client, which is accessed through a mini-batch random sampling
at each iteration of the optimization. This requires a careful
combination of compression and privacy analysis in order

6" = arg minF(6,)
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Fig. 1: We have m clients, each having a dataset D; of r

samples. The clients are connected to a central server to learn
a global model # under privacy and communication constraints.

to preserve the variance reduction of mini-batch as well as
privacy.’ In addition we obtain a gain in privacy by using the
fact that (anonymized) clients are sampled (i.e., not all clients
are selected at each iteration) as motivated by the federated
learning framework.

Agarwal et. al. proposed in [31] a communication-efficient
algorithm for learning models with central differential privacy.
Let n be the number of clients per round and d be the
dimensionality of the parameter space. They proposed cp-sgd,
a communication efficient algorithm, where clients need to
send O(log(1 + £€2) + loglog log “4) bits of communication
per coordinate i.e., O (d{log(1+ %62) + loglog log % )
bits per round to achieve the same local differential privacy
guarantees of €y as the Gaussian mechanism. Their algorithm
is based on a Binomial noise addition mechanism and secure
aggregation. In contrast, we propose a generic framework to
convert any LDP algorithm to a central differential privacy
guarantee and further use recent results on amplification by
shuffling, that also achieves better compression in terms of
number of bits per client.

Paper organization. The paper is organized as follows. In
Section II, we set up the notation while giving preliminary
background results on composition of differentially-private
mechanisms, and privacy amplification through subsampling
and shuffling. In Section III, we formally define the problem, de-
scribe our algorithm, and give the overview of our approach and
the challenges faced. We provide the main results of the paper
in Section IV and also give some interpretations. In Section V,
we analyze private vector minimax mean estimation for various
geometrical constraints, applicable to gradient aggregation
for optimization, providing schemes and impossibility results.
In Section VI, we examine the communication-privacy and
optimization-performance trade-offs of our schemes, putting
together the results from Section V to give the proof of the main
theorem 1. We conclude with a brief discussion in Section VII.

II. PRELIMINARIES

In this section, we state some preliminary definitions that we
use throughout the paper; we give a more detailed exposition of
the background in Appendix A of the supplementary material.

Since we are interested in communication constrained privacy
of the client, we define a two parameter LDP with privacy and

5The naive method of quantizing the aggregated mini-batch gradient will
fail to preserve the required variance reduction.



communication budget; generalizing the standard LDP privacy
definition (see Definition 3 in Appendix A-A of supplementary
material).

Definition 1 (Local Differential Privacy with Communication
Budget - CLDP). For ¢g > 0 and b € N*, a randomized
mechanism R : X — Y is said to be (g, b)-communication-
limited-local differentially private (in short, (e, b)-CLDP), if
R(x) can be represented using b bits Va and for every pair
x,x’ € X, we have

Pr[R(z) = y] < exp(eo) Pr[R(z') =y, Vy €Y. ()

Here, €y captures the privacy level, lower the ¢, higher the
privacy. When we are not concerned about the communication
budget, we succinctly denote the corresponding (e, 00)-CLDP,
by its correspondence to the classical LDP as ¢y-LDP [9].

We define D = {x;,...,x,} and D' = {!,..., )} as
neighboring if they differ in one data point.

Definition 2 (Central Differential Privacy - DP [43]). For
€,0 > 0, a randomized mechanism M : X™ — ) is said to
be (¢, 0)-differentially private (in short, (e, d)-DP), if for all
neighboring datasets D, D’ € X™ and every subset £ C ), we
have

Pr[M (D) € £] < exp(e) Pr(M (D) € ] +6. (3)

We will propose an iterative algorithm to solve the optimiza-
tion problem (1) under privacy and communication constraints.
Hence, we need the strong composition theorem [47] (we
desribe it in detail in Appendix A-B for completeness) to
compute the final privacy guarantees of the proposed algorithm.
Furthermore, in order to overcome the poor performance
of LDP, we need to use privacy amplification provided by
subsampling (data and clients) as well as through the shuffled
model; both of which we briefly review next.

Consider a set of m clients, where client ¢ € [m] has a data
x; € X.Let R : X — )Y be an €3-LDP mechanism. The i-th
client applies R on her data x; to get y, = R(x;). In the
shuffled model of privacy, the shuffler H,, : Y™ — Y™ has
m messages (Yy,...,Y,,) as input and outputs a uniformly
random permutation of it. Lemma 12 in Appendix A-C2 in
supplementary material states that the shuffling amplifies the

) we
review the known results for privacy Amplification by uniform

subsampling in Appendix A-C1 of the supplementary material.

privacy of an LDP mechanism by a factor of O (

III. PROBLEM FORMULATION AND SOLUTION OVERVIEW

In this section, first we present the problem formulation and
describe our algorithm for solving the empirical risk minimiza-
tion problem under the constraints of privacy, communication,
and dynamic client population. Then we give an overview of
our approach to analyze this algorithm and briefly describe the
challenges faced. One of our main ingredients, in the proposed
compressed and private SGD algorithm, is a method of private
mean estimation using compressed updates, formulated in
Section III-D. We use this formulation to study the problem in
the minimax framework and derive upper and lower bounds in a
variety of settings. A summary of the notation used throughout
the paper is given in Table L.

[ Symbol Description
m Total number of clients in the system
r Total number of samples per client
k (< m) Number of clients chosen per iteration
s (< r) Number of samples chosen per client per iteration
n (= mr) Total number of samples in the dataset
q (= 7’%) Probability of a sample to be chosen at an iteration
D; Local dataset of client ¢ for ¢ € [m]
D (U™, D;) The entire dataset
€0 Local differential privacy parameter
€ Central differential privacy parameter
0 (€ R%) Model parameter vector
C (C R%) convex set of interest
D (= ||C||2) Diameter of the set C
L Lipschitz continuous parameter

Bg (a) £, norm ball of radius a

TABLE I: Notation used throughout the paper

A. Problem Formulation

We have a set of m clients, where each client has a local
dataset D; = {d;1,...,d;-} comprising r data points drawn
from a universe &. Let D = |J;"; D; denote the entire
dataset and n = mr denote the total number of data points
in the system (see Figure 1). The clients are connected to an
untrusted server in order to solve the following empirical risk
minimization (ERM) problem

) 1 m
min <F(6,D) = ;Fi(e,pi)> .

Here, C C R? is a closed convex set and F;(6,D;) =
%25:1 f(0,d;;) is a local loss function dependent on the
local dataset D; at client ¢ evaluated at the model parameters
0 eC.

As described in Section I, solving the ERM problem (4) in
the FL framework introduces several unique challenges, such
as the locally residing data {D;} at all clients need to kept
private, the low-bandwidth links between clients and the server
necessitates compressed communication exchange between
them, and only a small fraction of clients are sampled in
each round of communication. Our goal is to solve (4) while
preserving privacy on the training dataset D and minimizing
the total number of bits for communication between clients
and the server, while dealing with a dynamic client population
in each iteration.

“4)

B. Our Algorithm: CLDP-SGD

In order to solve (4) in the presence of the above challenges
in the FL setting, we propose CLDP-SGD, a differentially-
private SGD algorithm that works with compressed updates
and dynamic client population. The procedure is described in
Algorithm 1; also see Figure 2 for a pictorial description of
our algorithm.

In each step of CLDP-SGD, we choose uniformly at random
a set U; of k < m clients out of m clients. Each client 7 € Uf;
computes the gradient Vy, f (6;;d;;) for a random subset S;;
of s < r samples. The 7’th client clips the ¢,-norm of the
gradient Vg, f (64;d;;) for each j € S;; and applies the LDP-
compression mechanism R, where R, : B — {0,1}" is an
(€0, b)-CLDP mechanism when inputs come from an ¢,-norm



Algorithm 1 Agq4,: CLDP-SGD

I: Inputs: Datasets D = [, Di» where D; =
{di1,...,diy} for i € [m], loss function F (0) =
Lt > j=1 f (0;d;j), LDP privacy parameter €, gra-

mr
dient norm bound C, and learning rate schedule {n,}.

. Initialize: 6, € C
: for t € [T] do
A random set U, of k clients is chosen.
for clients i € U; do
Client ¢ chooses uniformly at random a set S;; of
s samples.

A e

7: for Samples j € S;; do

8 gt (dij) < Vo, f (0; dij)

0 & (dij) g (dij) / max {1, Ll Lo

10: a: (dij) < Rp (& (dij))

11: Client ¢ sends {q; (d;j;) : j € Sit} to the shuffler.
12: The shuffler randomly shuffles the elements in

{a(dij) : i € Uy, j € Sit} and sends them to the server.

= 1

13: 8t < T Dicu, 2ojesi, 9t (dij)

14: 0141 < [Ic (6 — m&;), where []. denotes the pro-
jection operator onto the set C.

15: Output: The model 7 and the privacy parameters €, 0

ball; we describe (eg, b)-CLDP mechanisms R, for several
values of p € [1, 00| in Section V. After that, each client ¢ sends
the set of s LDP-compressed gradients {R,, (g: (dij))}jes,, in
a communication-efficient manner to the secure shuffler. The
shuffler randomly shuffles (i.e., outputs a random permutation
of) the received ks gradients and sends them to the server.
Finally, the server takes the average of the received gradients
and updates the parameter vector.

C. Overview of Our Approach for Analyzing CLDP-SGD

CLDP-SGD has the following components, which need to
be analyzed together: (i) sampling of clients, necessitated by
FL; (ii) sampling of data at each client for mini-batch SGD;
(iii) compressing the gradients at each client for communication
efficiency; (iv) privatizing the gradients at each client to prevent
information leakage — the (compressed) gradients received
by the server my leak information about the datasets; and
(v) shuffling. The two main technical ingredients needed for
the analysis are (@) Privacy analysis of coupled sampling
and shuffling (b) Commununication efficient private mean
estimatioon.

Privacy of coupled sampling and shuffling: As explained
in Section I, client and data sampling as well as shuffling
contribute to privacy amplification. However, there are several
challenges in analyzing the overall privacy amplification: Firstly,
both types of sampling together induce non-uniform sampling

SNote that gradient clipping may not preserve unbiasedness of the stochastic
gradients. However for the case when the loss function f is L-Lipschitz,
this is not necessary for the following reason. If the loss function f is L-
Lipschitz (with respect to the model parameters) in the dual norm £4, where
1,1 _ . .
= 4 i 1,p,g > 1, then the norm of the gradients (with respect to some
fp—norm, for p > 1) is bounded, and hence we do not need to clip it.

1

r : —

Ry(ecldsn))

Fig. 2: An example of 5 clients, where each client has a
single data point. At the current iteration, 3 clients are chosen
at random to send the compressed and private gradients
{Rp (9¢ (di1))} to the secure shuffler that permutes the private
gradients before sending them to the server.

of data, so we cannot use the existing privacy amplification from
subsampling results (see Section A-C1) directly to analyze the
privacy gain’ in CLDP-SGD just by subsampling; and secondly,
the privacy amplification by shuffling has not been analyzed
together with that by subsampling. In this paper, we give one
unifying proof that analyzes the privacy amplification by both
types of subsampling (that induces non-uniform sampling of
data points) as well as shuffling; see Section VI-A, Lemma 7
and its proof in Appendix B, for more details.

Communication-efficient private mean estimation: For
compressing and privatizing the gradients, we design
communication-efficient local differentially private mechanisms
R, for p € [0, 00] to estimate the mean of a set of bounded
£p-norm gradients. These mechanisms R,’s are in fact more
generally applicable for private mean estimation of a set of
vectors, each having a bounded /,-norm and coming from a
different client in a communication efficient manner. We study
the mean estimation problem in the minimax framework and
derive matching lower and upper bounds on the minimax risk
for several ¢, geometries; see Section V. We can further save
on communication by having each client communicating the
histogram of its s compressed gradients (instead of separately
sending the s gradients) — in Algorithm 1 (line 11), we write
for simplicity that each client ¢ sends {q; (d;;) : j € S} to
the shuffler. In fact, sending the histogram of these |S;:| = s
elements will suffice for our purpose, thereby achieving further
savings on communication; see Section VI-B for more details.
This privacy mechanism is composed with the sampling
and shuffling to provide the overall privacy analysis. In the
next section, we formulate the compressed and private mean
estimation problem as of independent interest.

D. Compressed and Private Mean Estimation via Minimax
Risk

In this section, we formulate the generic mimimax estimation
framework for mean estimation of a given set of n vectors
that preserves privacy and is also communication-efficient. We
then apply that method at the server in each SGD iteration for
aggregating the gradients. We derive upper and lower bounds
for various £,, geometries for p > 1 including the ¢-norm.

The setup is illustrated in Figure 3. For any p > 1 and
d €N, let Bl (a) = {z € R? : |||/, < a} denote the p-

7We use privacy gain interchangeably with privacy amplification.
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X; € By(a)

Fig. 3: We have n clients, each observing a bounded ¢,-norm
vector ; € B, (a). A compressed and private mechanism Rl(f)
is applied to x;. The server wants to estimate the mean of

vectors &, ..., &, from the privatized vectors {Rl(f) (z)}.

norm ball with radius a centered at the origin in R%$ where
1/p
x|, = (Z?:l |:L~j|p) . Each client ¢ € [n] has an input
vector x; € Bg(a) and the server wants to estimate the mean
T = % >, ;. We have two constraints: (i) each client has
a communication budget of b bits to transmit the information
about its input vector to the server, and (ii) each client wants to
keep its input vector private from the server. Hence, client i €
[n] applies a private-quantization mechanism R}’ : By (q) —
{0, 11" on her input z; to obtain a private output y; = R\ (z;)
and sends it to the server. Upon receiving y" = [yy,. .., Y,
the server applies a decoding function Z : ({0, l}b)n — Bg

to estimate the mean vector T = % Z;L:l x;. Our objective is

to design (g, b)-CLDP mechanisms RZ(,Z) for all ¢ € [n] (see
Definition 4) and also a (stochastic) decoding function & to
minimize the worst-case expected error as follows
bipn(@) = if infsup  E[E-2(y")5,
(Ry7€Qugm)} ® {mi}eBi(a)

&)
where Q1) is the set of all (ep, b)-CLDP mechanisms, and
the expectation is taken over the randomness of {Rz(f) 21 € [nl}
and the estimator Z.

Now we extend the formulation in (5) to a probabilistic
model. Let Pg (a) denote the set of all probability density
functions on B (a). For every distribution g € Pg(a), let ”Z
denote its mean. Since the support of each distribution g € P,
is B (a) and £, is a norm, we have that p, € B(a). For a
given unknown distribution g € Pg(a), client i € [n] observes
x;, where x;,...,x, are ii.d. according to g, and the goal
for the server is to estimate p,, while satisfying the same
two constraints as above, i.e., only b bits of communication
is allowed from any client to the server while preserving the
privacy of clients’ inputs. Analogous to (5), we are interested
in characterizing the following quantity.

Rlﬁd

b (@) = inf inf sup E H“q — i(y”)”i ,

(R €Qom} T acPi(a)

(6)
where the expectation is taken over the randomness of the
output y™ and the estimator Z.

In this paper, we design private-quantization mechanisms
{Rl()l), . ,Rén)} such that they are symmetric (i.e., Rz(f)’s are

8 Assuming that the ball is centered at origin is without loss of generality;
otherwise, we can translate the ball to origin and work with that.

same for all ¢ € [n]) and any client uses only private source
of randomness that is not accessible by any other party in the
system.

IV. MAIN TECHNICAL RESULTS

In this section, we first state our results on convergence,
privacy, and communication bits of the proposed CLDP-SGD
algorithm. We also discuss their implications. Then, we present
the results on compressed and private mean estimation in
Section IV-B.

A. Optimization

In Theorem 1, we state the privacy guarantees, the commu-

nication cost per client, and the privacy-convergence trade-offs
for the CLDP-SGD Algorithm. We assume that the constraint
set C is closed convex set with diameter D,”. Furthermore, we
assume that the loss function f (6,.) is convex and L-Lipschitz
continuous with respect to the £4-norm which is the dual of
the ép—normlo. Let n = mr denote the total number of data
points in the dataset D. Observe that the probability that an
arbitrary data point d;; € D is chosen at time ¢ € [T] is given
by ¢ = %
Theorem 1. Let the set C be convex with diameter D and
the function f(6;.) : C — R be convex and L-Lipschitz
continuous with respect to the {4-norm, which is the dual of
the £y-norm. Let 0* = arg mingec F (0) denote the minimizer
of the problem (4). For s =1 and q = %, where n = mr, if
we run Algorithm Aciqp over T iterations, then we have

1) Privacy: For eg = O (1), Acap is (€, 6)-DP, where 6 > 0

is arbitrary, and

€:O<%¢ﬂhawﬂﬁbyﬂﬁ)' @

n

k
ESX

2) Communication: Our algorithm A.iq, requires
(log (e) + log (s*i#)) bits of communication in ex-

pectation'! per client per iteration, where expectation
is taken with respect to the sampling of clients. Here,
b=log(d)+1ifpe{l,oo} and b =d(log(e)+1)
otherwise.

3) Convergence: If we

rate  schedule 1 =

run  Acap with learning
_D_ 2 _
NG where G =

. 2
L2 max{d' 7,1} (1 +4 (;32) ) then

1 1
LDlog(T) max{d? 7,1}
VT

cd (e +1 )
gn \ e —1 '

9Diameter of a bounded set C C R? is defined as supg, yec llz — yll-

OFor any data point d € &, the function f : C — R is L-Lipschitz
continuous w.r.t. £4-norm if for every 01,02 € C, we have |f(01;d) —
f(62;d)| < L[[61 — O2]|g.

TA client communicates in an iteration only when that client is selected
(sampled) in that iteration.

EwwM—Fww<0<




[ [[ Communication | Minimax risk |

£1-norm log (d) +1 0 ( d2>
TLEO

£2-norm d(log(e) + 1) 0 ( d2)
neO

{s0-norm log (d) + 1 [ <,d22>
VLGO

TABLE II: Summary of private mean estimation results

where ¢ =4 if p € {1,000} and ¢ = 14 otherwise.

We prove Theorem 1 in Section VI. Observe that the privacy
results in Theorem 1 is stated for ¢ = O (1), where the results
for general ¢ is presented in Section VI-A.

Remark 1 (Arbitrary SGD mini-batch size s). The communi-
cation and convergence results in Theorem 1 are general and
hold for any s € [r]; however, the privacy result is stated for
s = 1, i.e., each client only samples a single data point in
each SGD iteration. Results for any mini-batch size s € [r]
are provided in Appendix B.

Remark 2 (Recovering the Result [46, ESA]). In [46], each
client has only one data point and all clients participate in
each iteration, and gradients have bounded /5-norm. If we put
p=2T=n/ logz(n), and ¢ = 1 in (8), we get the following
privacy-accuracy trade-off, which is the same as that in [46,
Theorem VI.1].

n efo — 1

o (60\/T10g (T/9) 10g(1/5))

E[F (67)] - F(#*) <O (LDlogQ(n)\/g <eeo Jrl))

n

©))
We want to emphasize that the above privacy-accuracy trade-off
in [46] is achieved by full-precision gradient exchange, whereas,
we can achieve the same trade-off with compressed gradients.
Moreover, our results are in more general setting, where clients’
local datasets have multiple data-points (no bound on that) and
we do two types of sampling, one of clients and other of data
for SGD.

Remark 3 (Optimality of CLDP-SGD for /3-norm case).
Suppose that our target is to achieve ¢ = O(1) and § < 1.
Substituting €¢g = e\/ , T = n/q, and
p =2 1in (8), we get

T Toa(24T/3) 108(2/5)

LDlog? (%) \/dlog (%)

E[F(0r)] - F(6") = 0O e

(10)
This matches the optimal excess risk of central differential
privacy presented in [40]. Note that the results in [40] are for
centralized SGD with full precision gradients, whereas, our
results are for federated learning (which is a distributed setup)
with compressed gradient exchange.

B. Compressed and Private Mean Estimation

In this subsection, we state our lower and upper bound
results on minimax risks both in the worst case model (see (5))

and the probabilistic model (see (6)). For the lower bounds, we

state our results when there is no communication constraints,

and for clarity, we denote the corresponding minimax risks by
d d

Teeon(a) and RES | (a).

Theorem 2. For any d,n > 1, a,e9 > 0, and p € [1,00], we
have the minimax risk in (6) satisfies

RE n(a)
Q a2min{1,n¥'ﬁl2}) if1<p<2,
> 0
“ ) Q(a2d'? min {17 %}) ifp>2.
n min{eg,ed }
Theorem 3. For any d,n > 1, a,eq > 0, and p € [1, 00|, the
minimax risk in (5) satisfies

e n (@)

Q anin{l,#‘iz}) if1<p<2,
0
Q(a2d'—% min{1, %}) ifp>2.
n min{eg,eg}

Theorem 4. For any private-randomness, symmetric mech-
anism R with communication budget b < log (d) bits per
client, and any decoding function g : {0,1}* — R?, when
z=21%" 9(R(z;)), we have

p,d
€0,b,n

(a) > a2 max{Ldl—%} . (11)
Remark 4. Note that Theorem 4 works only when the
estimator Z applies the decoding function g on individual
responses and then takes the average. We leave its extension
for arbitrary decoders as a future work.

We prove Theorem 4 in Section V-C.

Though our lower bound results are for arbitrary estimators
Z(y"™), for the minimax risk estimation problems (5) and (6),
we can show that the optimal estimator Z(y™) is a deferministic
function of y™. In other words, the randomized decoder does
not help in reducing the minimax risk. See Lemma 13 in
Appendix C.

Theorem 5 (¢;-norm). For any d,n > 1, a,ey > 0, we have

2 € 2
1.d a“d (e +1
€0,b,m (a’) < — ( )

n efo —1
4a2d (e +1 2
n eco —1) 7

Theorem 6 ({5-norm). For any d,n > 1, a,eg > 0, we have

r

1,d
R>

€0,b,n

(a) <

for b =log(d) + 1.

6a%d (e +1 2
2,d
reo,b,n (CL) < n (eeo _ 1)
14a2d (e +1\°
2.d
S < S (T)
n eo —1

for b= dlog(e) + 1.
Theorem 7 ({,,-norm). For any d,n > 1, a,€ey > 0, we have

a’d?® (e +1 2
n eo —1

co,d

Teo,b,n(a) S




4a2d? e +1\°
Roo d <
eobn()— n (6601> )

Sfor b =log(d) + 1.

Note that when ¢y = O(1), then the upper and lower bounds
on minimax risks match for p € [1,2]. Furthermore, when
€0 < 1, then they match for all p € [1, o0].

Now we give a general achievability result for any £,-norm
ball Bl(a) for any p € [1,00). For this, we use standard
inequalities between different norms, and probabilistically use
the mechanisms for ¢;-norm or ¢s-norm with expanded radius
of the corresponding ball. We assume that every work can pick
any mechanisms with the same probability p € [0, 1]. This
gives the following result, which we prove in Section V-G.

Corollary 1 (General ¢,-norm, p € [1,00)). Suppose clients
pick the mechanism for ¢;-norm with probability p € [0, 1].
Then, for any d,n > 1, a, ey > 0, we have:

o2

Tf(;flb,n(a) S d2 P él(flbn(a/)
+(1-p max{d » 1} Teobn(a)7 (12)

Ri)é,b n(a’) < ﬁd2_7 .Ri(;db n(a)
+ (1 —p)max {d'~ Z 1} R6 bn(a). (13)
for b = plog(d) + (1 — p)dlog(e) + 1. Note that this

communication is in expectation, which is taken over the
sampling of selecting ¢; or ¢, mechanisms.

We can recover Theorem 5 by setting p =1 and p = 1 and
Theorem 6 by setting p =2 and p = 0.

V. COMPRESSED AND PRIVATE MEAN ESTIMATION

In this section, we study the private mean-estimation problem
in the minimax framework given in Section III-D. Note that
in this section we focus on giving (eg,b)-CLDP) privacy-
communication guarantees for the mean-estimation problem
and give the performance of schemes in terms of the associated
minimax risk. This framework is applied at each round of the
optimization problem, and is then converted to the eventual
central DP privacy guarantees using the shuffling framework
in Section VI, yielding the main result Theorem 1 stated in
Section IV.

This section is divided into six subsections. We prove the
lower bound results (Theorems 2, 3) in the first two subsections
and the achievable results (Theorems 5, 6, 7, and Corollary 1)
in the last four subsections, respectively.

We prove lower bounds for private mechanisms with no
communication constraints, and for clarity, we denote such
mechanisms by (ep, 00)-CLDP mechanisms. Our achievable
schemes use finite amount of randomness.

For lower bounds, for simplicity, we assume that the inputs
come from an £,-norm ball of unit radius — the bounds will be
scaled by the factor of a? if inputs come from an £,,-norm ball of

radius a. For convenience, we denote B2 (1 ) Pd( )s f{;db A1),

and R dbn( ) by B, Pd,r pd - and R

1 Teg,b,n? €0,b,n’ respectively.

P,
A. Lower Bound on REO con

s Proof of Theorem 2
Theorem 2 states separate lower bounds on Rig; o
depending on whether p > 2 or p < 2 (at p = 2, both bounds
coincide), and we prove them below in Section V-Al and

Section V-A2, respectively.

1) Lower bound for p € [2,00]: The main idea of the
lower bound is to transform the problem to the private
mean estimation when the inputs are sampled from Bernoulli
distributions. Recall that Pg’ denote the set of all distributions
on the p-norm ball BY. Let PE" denote the set of Bernoulli

" ql/p

product of d independent Bernoulli distributions, one for each
coordinate. We first prove a lower bound on R60 ~o.n When the
input distribution belongs to Pgem.

distributions on {O L } , 1.e., any element of Pg‘?j" is a

Lemma 1. For any p € [2, 00|, we have

inf £ Ellp, —z 2
m;pfélg(eo,m)ni q;;gm g — 2 (¥,

Z Q <d1_127 min {1, d2}> .
nmin{eo, €5}

Proof. The proof is straightforward from the proof of Duchi
and Rogers [48, Corollary 3]. In their setting, PBem i

supported on {0 1}4, and they proved a lower bound of
Q (mln {1

(14)

: : Bern _
s nmm{eo = . In our setting, since Pp,d 18 sup

ported on {07 dl—/} , we can simply scale the elements in the

support of PB““ by a factor of 1 /dl/ ?_ which will also scale
the mean p, by the same factor. Note that the best estimator
z will be equal to the scaled version of the best estimator
from [48, Corollary 3] with the same value 1/d"/». This proves
Lemma 1. ]

In order to use Lemma 1, first observe that for every x €
Pgij", we have [z[|, < 1, which implies that & € Pg. Thus
we have Pgem C Pd Now our bound on Rfodoo " trivially
follows from the followmg inequalities:

Ry = inf

€0,00,M

inf sup IEHuq—i(y )Hz

{R;l)}EQ(eo,oo) x Epd

> inf f s E —z(y 2
P S e lsg =2 (u™)],

1—-2 . d
>Q(d Pmingl, ———= ¢ |,
nmin{eg, €5 }

where the last inequality follows from (14).

2) Lower bound for p € [1,2]: Fix an arbitrary p € [1,2].
Note that ||z||, < [l/;, which implies that Bf C B¢, and
therefore, we have P{ C Pg. These imply that the lower bound
derived for P{ also holds for P¢, i.e., RP:4 > RL4 | holds
for any p € [1,2]. So, in the f0110w1ng, we only lower-bound
R! Odoo »- The main idea of the lower bound is to transform the
problem to the private discrete distribution estimation when the
inputs are sampled from a discrete distribution taken from a
simplex in d dimensions. Recall that P{ denotes all probability
density functions g over the 1-norm ball B¢. Note that ¢ may

be a continuous distribution supported over all of B{. Let

15)




7/511 denote a set of all discrete distributions g
the d standard basis vectors ey, ..., ey, ie., the distribution
has support on {ey,...,eq}. Since {ey,... ed} C B¢, we
have P¢ C Pg. Moreover, since any q € 771 is a discrete
distribution, by abusing notation, we describe ¢ through a
d—dimensional vector q of its probability mass function. Note
that, for any q € 731, the average over this distribution
is pg, = Eq[U], where E4[-] denotes the expectation over
the distribution g for a discrete random variable U ~ g,
where we denote ¢; = Pr[U = e;]. Therefore we have
f =
My = Dol Gi€i = (q1,--.,94)T = q, for every q € 731
Let Ay denote the probability simplex in d dimensions. Since
the discrete distribution g € 771 is representable as g € Ay,
we have an 1som0rphlsm between A, and ’Pl, i.e., we can
equivalently thlnk of P& = Ay. Fix arbitrary (o, 00)-CLDP
mechanisms {R : 4 € [n]} and an estimator Z. Using the
above notations and observations, we have:

supported over

sup Bl q — @ ("), > sup Bl ~ 2 (")l
qEP{i qeP 1 (16)
= sup Ellg— 2 (y")[l3-
qepy

Using 7311 = Ay, and taking the infimum in (16) over all
(€9, 00)-CLDP mechanisms {Rg) : i € [n]} and estimators Z,
we get

inf inf sup E H[,Lq —z(
(RY )€Q(c 000} z qeP{

v,
> inf inf sup E|g -2 (y")|5-
{R(”GQ(F o)} Z geAy
Girgis et al. [49, Theorem 1] lower-bounded the RHS
of (17) in the context of characterizing a privacy-
utility-randomness tradeoff in LDP. When specializing
to our setting, where we are not concerned about
the amount of randomness used, their lower bound re-

L ) ~ 2
sult gives mf{Ré”eQm,m)} infz supgen, Ellg — 2 (y")[|5 >

2 (min {1, 75 })

A7)

. Substituting this in (17) gives

d
R >Q (min {1, 2}) . (18)
neg
B. Lower Bound on rp’ n: Proof of Theorem 3
Similar to Section V- A we prove the lower bound on rsodoo n

separately depending on whether p > 2 or p < 2 (at p = 2,
both bounds coincide) below in Section V-B1 and Section V-B2,
respectively. In both the proofs, the main idea is to transform
the worst-case lower bound to the average case lower bound
and then use relation between different norms.

1) Lower bound for p € [2,00]: Fix arbitrary (eg,00)-
CLDP mechanisms {Rg) : ¢ € [n]} and an estimator x. It
follows from (15) that there exists a distribution g € P¢,

such that if we sample m(q) ~ q, ii.d. for all ¢ e [n ] and
letting vi = R (2?), we would have E g — 2 ( H2

Q (d1 b mm{l _d }) We have

> nmin{ep,e2}
1
+ 2 :wl(q)
n-
i=1

1 — N
i=1

sup E
{zi}eBg

2

® 1 PR 1 &
z iEH“qfw(y )Hz*E ﬁZwEQ) Hq (19)
i=1

© d dl’;

R e e
nmin{eo, €5} n

@ s d

>0 < » min {1, ——~ }) (20)
nmin{eo, €5}

In the LHS of (a), the ex ectatlon is taken over the randomness
of the mechanisms {R;’ } and the estimator Z; whereas, in
the RHS of (a), in addition, the expectation is also taken over
sampling x;’s from the distribution q. Moreover (a) holds
since the LHS is supremum {z;} € B¢ and the RHS of
(a) takes expectation w.r.t. a distribution over Bz‘f and hence
lower-bounds the LHS. The inequality (b) follows from the
Jensen’s inequality 2||ul|3 + 2||v||3 > |lu + VH% by setting
u=15" 29 _Fy)adv=p, - 13" 2 In

2
(c) we used E H% Sral? - uqH "7 which we show

<d_r
below. In (d), we assume min{eg, €5} < (’)( ).
Note that for any vector u € RY, we have |ull
7l||u||p, for any p > 2. Since each z'? e B4, which
implies ||; q)|| < 1, we have that ||:c(q Iz < d*~v. Hence,
]E||alc(q)||2 < d1 » holds for all ¢ € [n]. Now, since x;’s are
iid. with IE[ ; ] = p4, We have

iiwz(_q) _

(d)l n 1 n d17’2
2 2B e SR
n n

i=1

where (a) uses E|lxz — E[z]||3 < E|x
random vector .

Taking supremum in (20) over all (eo7 00)-CLDP mecha-
nisms {R € [n]} and estimators Z, we get

d
pd > qo(d imindl,— 2 1),
Teo,00m = ( " "nmin{eg, €2}

2) Lower bound for p € |1, 2]
given in Section V-A2, since r?
p € [1 2] €0,00,n*

Fix arbitrary (e, 00)-CLDP mechanisms {R'” : i € [n]}
and an estimator Z. It follows from (18) that there exists a
distribution ¢ € P¢, such that if we sample :cl(q ~ q, i.i.d.

for all i € [n] and letting y; = Ry (z'?)

2
wgq) B N‘IH2

21

2, which holds for any

(22)

Similar to the argument
> rld  holds for any

600’”,7 €0,00,N

it suffices to lower-bound r¢

, we would have

E Hp,q - i(y")“i >0 (min 1, T(:Z . Now, by the same
reasoning using which we obtained (19), we have
n 2
sup Ef|= ) x;—x(y")
{xz;}eBd n i—1 9
1 1 < ’
= () |12 (@) (23)
> 5E|lig =2 (), ~E (=D 2~ p
i=1 2

(a) (b)
>0 (min{l,%}) — 1 >Q (min{l, d2}>
neg n neg



In (a) we used

< (24)

1
n’

2

which can be obtained by first noting that for any u € R?,
we have ||ulls < |Ju||, for p € [1,2], and then using this in
the set of inequalities which give (21). In (b), we assume
€0 < O(Vd). Taking supremum in (20) over all (e, 00)-
CLDP mechamsms {’R Ve [n]} and estimators x, we
get 1l >Q(m1n{l,#ig})

eooon

C. Lower Bound on r? : Proof of Theorem 4

Let M = 2% < d be the total number of possible outputs
of the mechanism R. Let {01, 02,...,0p} be the set of M
possible outputs of R. For every i € [M], let ¢; = g(0;).
We can write the M possible outputs of R as columns of a
d x M matrix Q = [q1,...,qnm]. Since M < d, the rank of
the matrix @ is at most M. Let € R? be a vector in the
null space of the matrix @, i.e., z7g; = 0 for all j € [M].
Then, we set the sample of each client by =; = = ﬁ for
all i € [n], and hence, ; € BY. Observe that the estimator
&==L3" g(R(x;)) is in the column space of the matrix
Q. Thus we get

- 130w
2 ol + 2|1 3 (R )

where step (a) follows from the fact that & is in the null space
of @), while the estimator & is in the column space of . This
completes the proof of Theorem 4.

ebn

2
pd
eg,bn—

2

2
H > max {1,d17%}
2

D. Achievability for {1-norm Ball: Proof of Theorem 5

In this section, we propose an €;-LDP mechanism that
requires O (log(d))-bits of communication per client using
private randomness and 1-bit of communication per client
using public randomness. In other words we can guarantee
(€0, O (log(d)))-CLDP with private randomness and (e, 1)-
CLDP using public randomness. The proposed mechanism
is based on the Hadamard matrix and is inspired from the
Hadamard mechanism proposed by Acharya et al. [36]. We
assume that d is a power of 2. Let H; denote the Hadamard
matrix of order d, which can be constructed by the following
recursive mechanism:

H
= [ i

Client i has an input =; € B¢(a). It computes y;, =
L H,x;. Note that each coordinate of y, lies in the interval
[—a/vd, a/vd). Client i selects j ~ Unif [d] and quantize y; ; pri-
vately according to (25) and obtains z; € { +aHqy(j )(@gﬂ )}
which can be represented using only 1-bit. Here, Hy(j) denotes
the j-th column of the Hadamard matrix Hy. Server receives

the n messages {z1, ..., 2z, from the clients and outputs their

Hd/g}

H =
~H., !

average % >, z;. We present this mechanism in Algorithm 2
— we only present the client-side part of the algorithm, as server
only averages the messages received from the clients.

Algorithm 2 ¢;-MEAN-EST (R;: the client-side algorithm)

1: Input: Vector = € B¢ (a), and local privacy level ¢y > 0.

2: Construct y = fHdsc
3: Sample j ~ Unif[d] and quantize y; as follows:
) taHa () (:Egi) w.p. 5 + \gfj ZZEH
z= —aH . e 041 1 \fy] e —
akig (]) ec0—1 W.p. 3 2a e‘0+1
(25)
4: Return z.

Lemma 2. The mechanism R presented in Algorithm 2
satisfies the following properties, where ey > 0:

1) Ry is (eg,log (d) + 1)-CLDP and requires only 1-bit of
communication using public randomness.

2) 'Ri is unbiased and has bounded variance, i.e., for every

x € B¢ (a), we have E[R, (z)] = = and

60 + 1
eco — 1)

We prove Lemma 2 in Appendix D-A. Now we are ready to
prove Theorem 5. Let R () denote the output of Algorithm 2
on input x. As mentioned above, the server employs a simple
estimator that simply averages the n received messages, i.e.,
the server outputs Z(z") = 23" | z; =1 3" Ri(x;). In
the followmg, first we show the bound on 7'61 db ,, (@) and then
on R™ (a) for b =log(d) + 1. Forr6 bn(a):

€0,b,m
2
")l

E|[R: (2) - o] < an(

sup E|xz—%(z

{zi}eBi(a)

1 n
= sup E —Z(a‘, = Ra(x:))
{z:}€BY(a) ni3 2
@ <>a2d e +1\2
@ sup ZE ||sz Rl(wz)||2 > € — 1 ’
{z:}eBia) " ¢

(26)
where (a) uses the fact that all clients use independent private
randomness (which makes the random variables x; — R1(x;)
independent for different ¢’s and also that R is unbiased. (b)
uses that R, has bounded variance. Taking infimum in (26)
over all (eg, b)-CLDP mechanisms (where b = log(d) ;— 1) and

2 € .
estimators Z, we have that r b (@) < “—d (6 0+1> , which

€0—1
is O (Teg) when ¢y = O(1). For Ri dbn( ):

sup E H“q —z(

geP{(a)

(©

< sup
q€P{(a)

@ 262 2a2d e +1\2
<+
- n n efo — 1

2|

2E |1y - @ll; + 2E 7 - 3(z")115]  27)




In the LHS of (c), for any q € P{ (a), first we generate n
i.i.d. samples x1,...,x, and then compute z; = Rq(x;) for
all i € [n]. We use the Jensen’s inequality in (c). We used
E||p, — |2 < % (see (24)) in (d). Taking infimum in (27)
over all (g, b)-CLDP mechanisms (where b = log(d) + 1) ang
estimators Z, we have that RF b (a) < % + 2“726! (221‘}) ,

which is O (?) when ey = O(1). This completes the proof
0
of Theorem 5.

E. Achievability for {5-norm Ball: Proof of Theorem 6

In this section, we propose an e;-LDP mechanism that
requires O (d)-bits of communication per client using private
randomness. Our proposed mechanism is a combination of the
private-mechanism Priv of Duchi et al. [50, Section 4.2.3] and
the non-private quantization mechanism Quan of Mayekar and
Tyagi [35, Section 4.2]. For completeness, we describe both
these mechanisms in Algorithm 4 and Algorithm 5, respectively,
and our proposed mechanism in Algorithm 3. Each client ¢ first
privatize its input z; € B¢ (a) using Priv and then quantize
the privatized result using Quan and sends the final result
z; = Quan(Priv(x;)) to the server, which outputs the average
of all the received n messages. Since the server is only taking
an average of the received messages, we only present the client
side of our mechanism in Algorithm 3.

Algorithm 3 /5-MEAN-EST (Rs: the client-side algorithm)

1: Input: Vector & € BY (a), and local privacy level ey > 0.
2: Apply the randomized mechanism y = Priv (x).
3: Return z = Quan (y).

Algorithm 4 Priv (a private mechanism from [50])

1: Input: Vector = € B¢ (a), and local privacy level ¢y > 0.

_ ta 2 wp. Ly l2lz
2: Compute « = ]2 p ? ”i«ﬁQ
Tzl VP32~ "2

3: Sample U ~ Bernoulli ( €0+1

e, VaEL(EE D) o
4 M = a r(Li1) eo-1
S a Unif (y: 972 > 0,[lyll. = M) ifU=1

CT | Unif(yyTz <0, ||yl = M) ifU=0

6: Return z.

Lemma 3 ( [50, Appendix [.2]). The mechanism Priv pre-
sented in Algorithm 4 is unbiased and outputs a bounded length
vector, ie., for every © € BY (a), we have E[Priv(z)] = = and

2
3 0 +1
>@=wﬂgam(*ﬁe'+)

Priv
[|Priv(z T

Lemma 4 ( [35, Theorem 4.2]). The mechanism Quan
presented in Algorithm 5 is unbiased and has bounded variance,
i.e., for every x € B(a), we have

ElQuan(z)] =z and E|Quan(z)—z|3 < 2|z|? < 24

Algorithm 5 Quan (a quantization mechanism from [35])

1: Input: Vector = € BY (a), where a is the radius of the

ball. 1, el
x 1 x|
2: Compute & = Tel  WP-2 1 2aﬂ
: = wop. L [l 1
7Tl P .
3: Generate a discrete distribution g = (|x1 ., |Z4|) where

Prlp = i] = |7,
4: Construct a d-dimensional vector y by sampling y; ~
for j € [d]

5: Return z = 52?21 (a d-sgn(z,,) - ey].).

Furthermore, it requires d (log(e) + 1)-bits to represent its
output.

Note that the radius a in Lemma 4 is equal to the length of
any output of Priv, which is M (see line 4 of Algorithm 4).

Lemma S. The mechanism Ry presented in Algorithm 3
satisfies the following properties, where ey > 0:
1) Ry is (eg,d(log(e) + 1))-CLDP.
2) Ro is unbiased and has bounded variance, i.e., for every
x € B (a), we have E[Ry (z)] = = and

041
1

We prove Lemma 5 in Appendix D-B. Now we are
ready to prove Theorem 6. In order to bound rE bn (a)
for b = d(log(e) + 1), we follow exactly the same steps
that we used to bound 7’ (a) and arrived at (26). This

EW%()—wb<6fd<

€0 bn
. 2
would give r>% (a) < Ga2d (e(‘jﬂ) , which is O (%)
0
when ¢ = O(1). To bound R6 bn(a), first note that
when x1,...,x, 6 B4 (a), then we have from (24) that
]EH;Lq—wHQ < % Here ¢ € P§(a) and @1,...,x, are

sampled from q i.i.d. Now, following exactly the same steps that
we used to bound R>% () and arrived at (27). This would

€0,b,n
. 2
give RE(J b (@) < 2%-%% (gﬁt}) for b = d(log(e)+1).
Note that Rf dbn(a) =0 (%) when ¢y = O(1). This
0

completes the proof of Theorem 6.

E Achievability for {~.-norm Ball: Proof of Theorem 7

In this section, we propose an €y-LDP mechanism that
requires O (log (d))-bits per client using private randomness
and 1-bit of communication per client using public random-
ness. Each client i has an input x; € B (a). It selects
j ~ Unif[d] and quantize z; ; according to (28) and obtains
zi € { £ ad(%th)e;}, which can be represented using
only 1 bit, where e; is the j’th standard basis vector in
R<. Client 7 sends z; to the server. Server receives the n
messages {zi,...,2,} from the clients and outputs their
average % >, z;. We present this mechanism in Algorithm 6
— we only present the client-side part of the algorithm, as server
only averages the messages received from the clients.

Lemma 6. The mechanism R, presented in Algorithm 6
satisfies the following properties, where €y > 0:



Algorithm 6 /,.-MEAN-EST (R

1: Input: Vector z € BZ (a), and local privacy level ey > 0.
2: Sample j ~ Unif[d] and quantize z; as follows:

: the client-side algorithm)

e041

i e€0
+ad $aie—l

W.D.

e
efo—1 J 2a e€0+1

z= e041 1 Tj e0—1 (28)
7ad 0 —1 €j Wp 5 %eeﬂ—‘rl

where e; is the j’th standard basis vector in R?
3: Return z.

1) Roo is (€g,log (d) + 1)-CLDP and requires only 1-bit
of communication using public randomness.

2) Reo is unbiased and has bounded variance, i.e., for every
x € BL (a), we have E[R., (z)] = x and

€0+1 2
E|Rco x| <a?d® | E
[Roc () — 2 < o (

We prove Lemma 6 in Appendix D- C Now we are ready to
prove Theorem 7. In order to bound 7 " pn (@) for b =log (d)+
1, we follow exactly the same steps that we used to bound

r:(;flbm (a) and arrived at (26). This would give rfi’ﬁn (a) <
# (iﬁi}) whichis O ( ) when eg = O(1). To bound

.d
Reo:,b,n x, € BL (a), then we

(a), first note that when x, ...,
have from (21) (by substituting p = co) that E ||/1,q — 5“2 <
%. Here q € Pgo (a) and @y, ...,x, are sampled from g
i.i.d. Now, following exactly the same steps that we used
to bound R6 bn( a) and arrived at (27). This would give

2,d
e0+1

R (a) < 224 4 2020 (<02 1)™ gor b — log (d) + 1.
Note that R:ogn(a) =0 :j;) when ¢y = O(1). This

completes the proof of Theorem 7.

G. Achievability for {,-norm Ball for p € [1,00): Proof of
Corollary 1

In this section, first we propose two €y-LDP mechanisms for
{p-norm ball B%(a) for p € [1,00) based on the inequalities
between different norms, and our final mechanism will be
chosen probabilistically from these two. The first mechanism,
which we denote by Rél), is based on the private mechanism
R1 (presented in Algorithm 2) that requires O (log (d)) bits
per client. The second mechanism, which we denote by R, i
based on the private mechanism Ry (presented in Algorithm 3)
that requires O (d) bits per client. Observe that for any 1 < p <
g < oo, using the relation between different norms (||u||, <
lull, < d» =4 [ul,), we have

B% (a) C BY (a) C B (ad%*%) : (29)

1) Description of the private mechanism R](Dl): Each client
has a vector z; € B2 (a) C BY (ad'~

runs the private mechanism R, (x;) presented in Algorithm 2
with radius ad'~ M) for p e [1,00)

%). Thus, each client

1
». Thus, the mechanism R}
satisfies the following properties, where €y > 0:

. Rg,l) is (eg,log (d) + 1)-CLDP and requires only 1-bit of
communication using public randomness.
. 7'\’,,(,1) is unbiased and has bounded variance, i.e., for every

x € BY (a), we have E [R;l) (m)] =z and

a2 fe°+1 2
BIRY) (@) —alf <t (S 51)

2) Description of the private mechanism R,(F): Each client
has a vector @; € Bl (a) C BY arnax{d%_%,l} . Thus,
each client runs the private mechanism R (x;) presented in
Algorithm 3 with radius amax{d%_%, 1}. Thus, the mecha-

nism R,(f) for p € [1,00) satisfies the following properties,
where €5 > 0:

e R is (eo,d (log (¢) + 1))-CLDP.

o R,(,Q) is unbiased and has bounded variance, i.e., for every

x € BY (a), we have E {RI(,Q) (w)} = x and

E|RY (2) — |3 < 6a% max{d®~7 d}( 0*1)
Note that R;,l) requires low communication and has high
variance, whereas, R,(,Q) requires high communication and has
low vanance R;, ) requires exponentially more communication
than R ), whereas, R( ) has a factor of d more variance
than R,g: ). To define our final mechanism ‘R, for any norm
p € [1,00), we choose Rg) with probability p and R,@ with
probability (1 — p), where p is any number in [0, 1]. Note
that R, is €o-LDP and requires plog(d) + (1 — p)dlog(e) + 1
expected communication, where expectation is taken over the
sampling of choosing Rp or R](f) We have the following

bounds on reodb (@) and Rf(; bn(a):

Tf(;dbn(a)
< pd2 T dbn( )+ (11— )max{dl ’ 1}T60 bn(a)
R, (a)

< pd* PRYY (a) + (1 - p)max{d' ¥, 1} R, ()

This completes the proof of Corollary 1.

VI. OPTIMIZATION: PRIVACY, COMMUNICATION, AND
CONVERGENCE ANALYSES

In this section, we establish the privacy, communication, and
convergence guarantees of Algorithm 1 and prove Theorem 1.
We show these three results on privacy, communication, and
convergence separately in the next three subsections.

A. Proof of Theorem 1: Privacy

Recall from Algorithm 1 that each client applies the
compressed LDP mechanism R,, (hereafter denoted by R, for
simplicity) with privacy parameter ¢y on each gradient. This
implies that the mechanism A, guarantees local differential
privacy € for each sample d;; per epoch. Thus, it remains to
analyze the central DP of the mechanism Acqp.

Fix an iteration number ¢ € [T]. Let M, (6;,D) denote
the private mechanism at time ¢ that takes the dataset D and



an auxiliary input 6; (which is the parameter vector at the
t’th iteration) and generates the parameter 6,11 as an output.
Recall that the input dataset at client ¢ € [m] is denoted by
Di = {dﬂ,dig, ey d”n} € G&" and D = U:il Dl denotes the
entire dataset. Thus, the mechanism M, on any input dataset
D =|J", D; € 6" can be defined as:

Mt(et; D) =Hys o Samp,, (g17 ey gm) 5

where G; = samp, , (R(x},),...,R(x},)) and x};, =
Vo, f(0::dij),Vi € [m],j € [r]. Here, Hys denotes the
shuffling operation on ks elements and samp,,, ;, denotes the
sampling operation for choosing a random subset of £ elements
from a set of m elements.

For convenience, in the rest of the proof, we suppress the
auxiliary input 6; and simply denote M, (6;; D) by My(D).
We can do this because 6; only affects the gradients, and the
analysis in this section is for an arbitrary set of gradients.

In the following lemma, we state the privacy guarantee of
the mechanism M, for each ¢ € [T7].

(30)

K

Lemma 7. Let s = 1 and q = . Suppose R is an -
LDP mechanism, where ¢y < w and 5 > 0
is arbitrary. Then, for any t € [T, the mechanism M is
(€¢,0)-DP. where € = In(1 + q(¢® — 1)),6 = q6 with ¢ =

O (min{eo7 1}ecoy/ loggiil/&) . In particular, if ¢¢ = O (1),

n

we get € = QO (eo

We prove Lemma 7 in Appendix B. In the statement
of Lemma 7, we are amplifying the privacy by using the
subsampling as well as shuffling ideas.

Observe that the shuffler first chooses uniformly at random
k clients of the available m clients. Then, each client samples
her local dataset D; by choosing uniformly at random s = 1
data points out of the available r data points. This two-steps
sampling procedure is not the same as choosing uniformly
at random ks data points from the entire dataset D'2. So,
we cannot directly apply the amplification by subsampling
result stated in Lemma 11. Thus, we derive a new privacy
proof to compute the privacy parameters of the mechanism
M under non-uniform sampling. Conisder two neighboring
datasets D = |-, D;, D' = Dy |J ., D; that are differerent
only in the first data point at the first client d;;. The main idea
of the proof is to split the probability distribution of the output
of the mechaism M, into a summation of four conditional
probabilities dependeing on the event whether the first client
is picked or not and the first client pick the first data point
or not (Please, see (41)). We use the biparite graph to get the
relation between these events, where each vertix corresponds
to one of the possible outputs of the sampling procedure, and
each edge connects two neighboring vertices. See Appendix B
for more details.

12For example, when s = 1, the probability to observe two data points from
the same cleint is zero in our sampling procedure, while observing these two
data pointw has non-zero probability in the uniform sampling of the entire
dataset D.

Note that the Algorithm A4, is a sequence of 1" adaptive
mechanisms My, ..., My, where each M; for t € [T]
satisfies the privacy guarantee stated in Lemma 7. Now, we
invoke the strong composition stated in Lemma 10 to obtain
the privacy guarantee of the algorithm .A;4,. We can conclude
that for any ¢’ > 0, Ay is (€, 6)-DP for

e=+/2Tlog(1/8")e+Te(e—1), &=qTd+7,
where € is from Lemma 7. We have from Lemma 10 that

if e = O/l O (ey/Tlog (1/7)).

, then ¢ =

If ¢¢ = O(1), then we can satisfy this condition on €
. o nlog(1/d’) sl

by choosing ¢y = (’)( 7qT10g(1~/5)>' By substituting the

bound on € = O M from Lemma 7, we

have ¢ — O (60\/qu«;@(1/<;) 1og(1/5/)>. By setting 5= %%
_ 9 _ nlog(2/9) —

and5’—§,wegeteo—0( m) and € =

O € \/qT log(2qT/6) log(2/6)

n

. This completes the proof of
the privacy part of Theorem 1.

B. Proof of Theorem 1: Communication

The (ep,b)-CLDP mechanism R, : X — Y used in
Algorithm 1 has output alphabet J = {1,2,...,B = 2°}.
So, the output of R, on any input can be represented by b
bits. Therefore, the naive scheme for any client to send the s
compressed and private gradients requires sb bits per iteration.
We can reduce this communication cost by using the histogram
trick from [35] which was applied in the context of non-private
quantization. The idea is as follows. Since any client applies the
same randomized mechanism R, to the s gradients, the output
of these s identical mechanisms can be represented accurately
using the histogram of the s outputs, which takes value from
the set A% = {(n1,...,np) : Zle n; = sand n; >
0,Vj € [B]}. Since the cardinality of this set is (*"7~") <

(SJrfl?s, it requires at most s (log (e) + log (+£=1))
bits to send the s compressed gradients. Since the probability
that the client is chosen at any time ¢ € [T] is given by %
the expected number of bits per client in Algorithm A4y
is given by £ x T x s (log (e) + log (£2=1)) bits, where
expectation is taken over the sampling of k£ out of m clients
in all T iterations.

This completes the proof of the second part of Theorem 1.

C. Proof of Theorem 1 : Convergence

At iteration ¢ € [T] of Algorithm 1, server averages the
ks received compressed and privatized gradients and obtains
8 = & Yiew > ies,, Ai(dij) (line 12 of Algorithm 1) and
then updates the parameter vector as 0y 1 < [[. (0: — 7:&;).
Here, q;(d;j) = Rp(Va, f(6:;d;;)). Since the randomized
mechanism R, is unbiased, the average gradient g, is also
unbiased, i.e., we have E [g,] = Vg, F (6;), where expectation
is taken with respect to the random sampling of clients and
the data points as well as the randomness of the mechanism
Rp. Now we show that g, has a bounded second moment.



Lemma 8. For any d € G, if the function f(0;.):C — R is
convex and L-Lipschitz continuous with respect to the {4-norm,
which is the dual of {,-norm, then we have

2 d (e +1 2
Ellg, |2 < L? A1+ & 31
I3 < L2 max(a' =1} (14 20 (S2255) )L 6

where c is a global constant: ¢ =4 if p € {1,000} and ¢ = 14
if p & {1,00}.

Proof. Under the conditions of the lemma, we have from [32,
Lemma 2.6] that |Vyf (8;d)|| < L for all d € &, which
implies that Vo F(6) < L. Thus, we have

Ellg,)3 = IE[&] I +Elg, — Eg] 3
(@) _2 _ —
< max{d' "7, 1}L* + E|g, — E[g] |I3

(b) 2 2-3 € 2
2 max{dt—3, 1312 4 LmaddTr, d) (e T 1)

ks e —1
¢ L2 > r,d) (e +1)°
(__) Inax{dl_%, 1}L2 + C maX{ ) } (e + ) ,
qn efo —1

where ¢ is a global constant, and ¢ = 4 if p € {1,000} and
c =14 if p ¢ {1,00}. Step (a) follows from the fact that
IVo,F (6:) || < L together with the norm inequality |lul||, <
Jull, < drallull, for 1 < p < q < co. Step (b) follows
from Corollary 1 with p = 1, i.e., for any p-norm, we use
the mechanism for ¢s-norm ball only (together with norm
inequality) which gives the smallest variance. Step (c) uses
q= % |

Now, we can use standard SGD convergence results for
convex functions. In particular, we use the following result
from [51].

Lemma 9 (SGD Convergence [51]). Let F (6) be a convex
function, and the set C has diameter D. Consider a stochastic
gradient descent algorithm 0,11 < ], (0: — neg:), where g,
satisfies E[g;] = Vo, F (0;) and E||g;||3 < G?. By setting
= GL\/{, we get

2 +log (T')
VT

log (T')
VT

E[F (67)]-F () < 2DG -0 (DG
(32)

As shown in Lemma 8 and above that Algorithm 1 satisfies
the premise of Lemma 9. Now, using the bound on G? from
Lemma 8, we have that the output 07 of Algorithm 1 satisfies

LDlog(T) max{d? 7,1}
VT

(12 (52))

2
cd [ e0+1
1 + qn (650—1) S

EW@M—F@ﬂgO(
(33)

where we used the

(1+ /2 (=4)).

inequality

Note that if ,/“—d ngl) < O(1), then we recover the
gn \ e 1

convergence rate of vanilla SGD without privacy. So, the
interesting case is when /<4 (eo—“) > Q(1), which gives
gn \ ec0—1

LDlog(T) max{d?#,1}
VT

ﬂ e +1
qn \ e —1 '

This completes the proof of the third part of Theorem 1.

E[F (07)] - F(67) < O (

VII. DISCUSSION

In this paper we have developed a compressed, private
optimization solution for a problem motivated by federated
learning, where distributed clients jointly build a common
learning model. The main technical contributions were devel-
oping order-optimal schemes for private mean-estimation and
combining them with privacy amplification by sampling (of
data and clients) as well as shuffling. We demonstrated that
iterative application of this enables us to get the same privacy,
optimization performance operating point as reported in [46],
while obtaining order-wise improvement in the number of bits
required, per iteration, thereby getting these communication
gains for “free”. Moreover, when the functions are L-Lipschitz
with respect to the ¢5-norm, our scheme obtains the optimal
excess risk of the central differential privacy obtained in [40],
while operating in a distributed manner.

There are several open questions which are part of ongoing
investigations. These include sharper privacy analyses for these
schemes, which can improve the constants associated with the
performance parameters. For example, suppose that we train
a machine learning model on a dataset having 60000 clients,
where each client has a single sample. After running our CLDP-
SGD algorithm over 7" = 1000 iteration with ¢g = 1, § = 1073,
and sampling £ = 5000 clients at each iteration, we get a
privacy parameter € ~ 2. We believe that the privacy parameters
can be improved by analyzing the Renyi differential privacy
of the shuffled model, which is an important open question
of ongoing investigation. Extending these ideas to non-convex
functions and examining their numerical performance for large-
scale neural network models, is also of future interest.
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Supplementary Material

APPENDIX A
BACKGROUND TOOLS

In this section, we state some preliminary definitions that we use throughout the paper and also state some results from
literature. We state the formal definitions of (local) differential privacy (DP) in Section A-A and strong composition theorem
for DP in Section A-B. As mentioned in Section I, we use subsampling and shuffling techniques for privacy amplification and
we describe them in Section A-C.

A. Differential Privacy

In this section, we formally define local differential privacy (LDP) and (central) differential privacy (DP). First we recall the
standard definition of LDP [9].

Definition 3 (Local Differential Privacy - LDP [9]). For ¢y > 0, a randomized mechanism R : & — ) is said to be ¢jp-local
differentially private (in short, eg-LDP), if for every pair of inputs x, ' € &, we have

Pr[R(z) € S] < exp(eo) Pr[R(z) € S], VS c . (34)

In our problem formulation, since each client has a communication budget on what it can send in each SGD iteration while
keeping its data private, it would be convenient for us to define two parameter LDP with privacy and communication budget.

Definition 4 (Local Differential Privacy with Communication Budget - CLDP). For ¢p > 0 and b € N* := {1,2,3,...},
a randomized mechanism R : & — Y is said to be (e, b)-communication-limited-local differentially private (in short,
(€0, b)-CLDP), if for every pair of inputs x,x’ € &, we have

Pr[R(z) = y] < exp(eg) Pr[R(z’) = y], Yy e . (35)
Furthermore, the output of R can be represented using b bits.

Here, ¢, captures the privacy level, lower the ¢y, higher the privacy. When we are not concerned about the communication
budget, we succinctly denote the corresponding (e, 00)-CLDP, by its correspondence to the classical LDP as €,-LDP [9].

Let D = {x1,...,2,} denote a dataset comprising n points from &. We say that two datasets D = {x1,...,z,} and
D' = {x},..., 2]} are neighboring if they differ in one data point. In other words, D and D’ are neighboring if there exists
an index i € [n] such that z; # x; and x; = x’; for all j # i.

Definition 5 (Central Differential Privacy - DP [43], [52]). For ¢,6 > 0, a randomized mechanism M : G™ — ) is said to be
(¢, 0)-differentially private (in short, (¢, d)-DP), if for all neighboring datasets D, D’ € &™ and every subset £ C ), we have

Pr[M (D) € €] < exp(e) Pr[M (D) € €] +6. (36)

Remark 5. For any €p-LDP mechanism R : & — ), it is easy to verify that the randomized mechanism M : &” — ) defined
by M (x1,...,2,) = (R(x1),...,R(xy)) is (€, 0)-DP.

Remark 6. Note that in this paper we make a clear distinction between the notation used for central differential privacy,
denoted by (e, d)-DP (see Definition 5), local differential privacy e;-LDP (see definition 3) and communication limited local
differential privacy, denoted by (eg, b)-CLDP (see Definition 4).

The main objective of this paper is to make SGD differentially private and communication-efficient, suitable for federated
learning. For that we compress and privatize gradients in each SGD iteration. Since the parameter vectors in any iteration
depend on the previous iterations, so do the gradients, which makes this procedure a sequence of many adaptive DP mechanisms.
We can calculate the final privacy guarantees achieved at the end of this procedure by using composition theorems.

B. Strong Composition [47]

Let My (Z1,D), ..., M1 (Z7,D) be a sequence of T' adaptive DP mechanisms, where Z; denotes the auxiliary input to the
ith mechanism, which may depend on the previous mechanisms’ outputs and the auxiliary inputs {(Z;, M;(Z;,D)) : j < i}.
There are different composition theorems in literature to analyze the privacy guarantees of the composed mechanism
M(D) = (M1 (Z4,D), ..., Mz (Zp,D)) (see [47], [53] and references therein).

Dwork et al. [47] provided a strong composition theorem (which is stronger than the basic composition theorem in which the
privacy parameters scale linearly with 7') where the privacy parameter of the composition mechanism scales as v/7' with some
loss in §. Below, we provide a formal statement of that result from [43].
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Lemma 10 (Strong Composition [43, Theorem 3.20]). Let My, ..., Mg be T adaptive (¢,5)-DP mechanisms, where €, > 0.
Then, for any ¢' > 0, the composed mechanism M = (My, ..., M) is (¢,0)-DP, where

e=+/2Tlog (1/8")e+Te(ec—1), 6=T0+¢"
In particular, when € = O ( log(;ﬁs’))’ we have ¢ = O <€\/Tlog (1/5’)).

Note that training large-scale machine learning models (e.g., in deep learning) typically requires running SGD for millions of
iterations, as the dimension of the model parameter is quite large. We can make it differentially private by adding noise to the
gradients in each iteration, and appeal to the strong composition theorem to bound the privacy loss of the entire process (which
in turn dictates the amount of noise to be added in each iteration).

C. Privacy Amplification

In this section, we describe the techniques that can be used for privacy amplification. The first one amplifies privacy by
subsampling the data (to compute stochastic gradients) as well as the clients (as in FL), and the other one amplifies privacy by
shuffling.

1) Privacy Amplification by Subsampling: Suppose we have a dataset D' = {Uy,...,U,, } € 8™ consisting of r; elements
from a universe &. A subsampling procedure takes a dataset D' € &™* and subsamples without replacement a subset from it as
formally defined below.

Definition 6 (Subsampling). The subsampling operation samp,. ,., : 6™ — &' takes a dataset D' € &"* as input and selects
uniformly at random a subset D" of ro < r; elements from D’. Note that each element of D’ appears in D" with probability

qg=12
The following result states that the above subsampling procedure amplifies the privacy guarantees of a DP mechanism.

Lemma 11 (Amplification by Subsampling [9]). Let M : &™2 — V be an (€,0)-DP mechanism. Then, the mechanism
M': 8™ =V defined by M' = M osamp,, ., is (¢',0')-DP, where € = log(1 + g(e® — 1)) and ¢ = q6 with ¢ = 2. In
particular, when ¢ < 1, M’ is (O(ge), qd)-DP.

Note that in the case of subsampling the data for computing stochastic gradients, where client ¢ selects a mini-batch of size s
from its local dataset D; that has r data points, we take D’ = D;, r; = r, and ro = s. In the case of subsampling the clients,
k clients are randomly selected from the m clients, we take D' = {1,2,...,m}, r; = m, and 72 = k. An important point
is that such a sub-sampling is not uniform overall (i.e., this does not imply that any subset of ks data points is chosen with
equal probability) and we cannot directly apply the above result. We need to revisit the proof of Lemma 11 to adapt it to our
case, and we do it in Lemma 7, which is proved in Appendix B. In fact, the proof of Lemma 7 is more general than just
adapting the amplification by subsampling to our setting, it also incorporates the amplification by shuffling, which is crucial for
obtaining strong privacy guarantees. We describe it next.

2) Privacy Amplification by Shuffling: Consider a set of m clients, where client ¢ € [m] has adata x; € S. Let R : 6 — Y
be an €o-LDP mechanism. The i-th client applies R on her data x; to get a private message y, = R(x;). There is a secure
shuffler H,,, : Y™ — Y™ that receives the set of m messages (y,,...,¥y,,) and generates the same set of messages in a
uniformly random order.

The following lemma states that the shuffling amplifies the privacy of an LDP mechanism by a factor of \/%

Lemma 12 (Amplification by Shuffling). Letr R be an eo-LDP mechanism. Then, the mechanism M(x1, ..., &m) = Hp o
(R(x1), ..., R(xm)) satisfies (e, d)-differential privacy, where

1) [18, Corollary 5.3.1]. If ¢g < '8/ 150/ " thop for any § > 0, we have

e=0 <min{eo7 1}e0y/ log(nll/é)).
2) [11, Corollary 9]. If g < %, then for any ¢ € (0, ﬁ) and m > 1000, we have € = 12¢g4/ W'

In our proposed algorithm, only &k < m clients send messages and each client sends a mini-batch of s gradients. So, in
total, shuffler applies the shuffling operation on ks gradients. In our algorithm, though sampling and shuffling are applied one
after another (first k£ clients are sampled, then each client samples s data points, and then shuffling of these ks data points
is performed), we analyze the privacy amplification we get using both of these techniques by analyzing them together; see
Lemma 7 proved in Appendix B.



D. {, Geometry in Optimization

In this section, we give an example showing that why it is important to analyse the convergence of the SGD algorithm for
Lipschitz convex function under several ¢, geometries.

Example 1. Let z = (x,y) be a data point and 6§ € R?*! represent the model parameters to be discovered in the learning
process. We can define a mapping function of the data point by ¢(z) = [z, y], where = € R¢ is a feature vector and y is a scalar,
resulting in a feature map in the dimension of R?*1. For a linear model, 67 ¢(z), we can observe that |07 ¢(2)| < [|0]|,]l¢(2)]l,
from Holder’s inequality, where £, is the dual norm of /4, i.e., % +1=1.Now suppose, as an example, the dataset has
bounded ¢,-norm, i.e., max, ||¢(z)||, < Li. Thus, the function g(6, 2) = 67 ¢(z) is L;-Lipschitz continuous with respect to
£4-norm. To show this, observe that

19(61,2) — g(02, 2)| = (01 — 62)" 6(2)| < 6(2)lIp |01 — O2llq < Lall6r — 2],

Suppose our loss function is in the form f(0,z) = h(g(0, z)) = (07 ¢(z)), where the function h : R — R is La-Lipschitz
continuous. Thus, the loss function f(6, z) is Ly L;-Lipschitz continuous with respect to ¢,-norm. For example, if the dataset
has bounded /., norm, then the loss function will be Lipschitz continuous with respect to £; norm, and hence, the gradient of
the loss function has bounded /., norm. Observe that the class of the functions of the form f(6,z) = h(g(0, z)) contains the
soft-max loss and hinge loss function. Thus, it is relevant to work with the general ¢, spaces.

APPENDIX B
PROOF OF LEMMA 7

Recall that the input dataset at client i € [m] is denoted by D; = {d;1,d;2,...,d;r} € 6" and D = |J[-, D; denotes the
entire dataset. Recall from (30) that the mechanism M; on input dataset D can be defined as:

Mt(D) = Hgs 0 SaIp,, (gla ceey gm) ) 37
where G; = samp, , (R(x},),...,R(=},)) and xj; = Vy, f(0s;di;),Vi € [m],j € [r]. We define a mechanism Z (D®) =
His (R(x}),...,R(xL,)) which is a shuffling of ks outputs of local mechanism R, where D®) denotes an arbitrary set
of ks data points and we index x!’s from i = 1 to ks just for convenience. From the amplification by shuffling result (18,
Corollary 5.3.1] (also see Lemma 12), the mechanism Z is (¢, 5)—DP, where 6 > 0 is arbitrary, and, if ¢, < w,
then

log (1 / S)
F— O . 1V eco 38
é min{eg, 1}e — (38)
~ log(l/g)
Furthermore, when ¢y = O (1), we get € = O | ¢ = .
Let T C {1,...,m} denote the identities of the k clients chosen at iteration ¢, and for ¢ € T, let 7; C {1,...,7}
denote the identities of the s data points chosen at client 7 at iteration ¢.!3 For any T € ([’]’CL]) and T; € ([g]),i € 7T, define

T=(T,T;,ieT),DTi ={d; :j € T;} fori € T, and D7 = {D7: : i € T}. Note that T and T;,i € T are random sets,
where randomness is due to the sampling of clients and of data points, respectively. The mechanism M; can be equivalently
written as M; = Z(D7).

Observe that our sampling strategy is different from subsampling of choosing a uniformly random subset of ks data points
from the entire dataset D. Thus, we revisit the proof of privacy amplification by subsampling (see, for example, [21]) — which
is for uniform sampling — to compute the privacy parameters of the mechanism M;, where sampling is non-uniform. Define a
dataset D' = (D}) U (UsD;) € &7, where D] = {d};,d12,...,d1,} is different from the dataset D; in the first data point
dy1. Note that D and D’ are neighboring datasets — where, we assume, without loss of generality, that the differing elements
are dy; and df;.

In order to show that M, is (€, 5)-DP, we need show that for an arbitrary subset S of the range of M, we have

Pr[M; (D) € S] <e“Pr[M;(D') € S]+6 (39)
Pr[M; (D) € S] < e“Pr[M; (D) € S|+ 6 (40)
Note that both (39) and (40) are symmetric, so it suffices to prove only one of them. We prove (39) below.
Let ¢ = % We define conditional probabilities as follows:

Ay = Pr [Z(D?) eSleTadleT;

BThough T and 77,7 € T may be different at different iteration ¢, for notational convenience, we suppress the dependence on ¢ here.
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Al =Pr [Z(D TyeS[leTand 1€ 7'1} 1)

A = Pr [Z(zﬁ) €S[leTand1¢ 7'1} =Pr [Z(zﬁ) €SleTand1¢ Tl}
Ao =Pr[Z(DT) eS¢ T| =Pr[2(DT) eS¢ T]|
Let ¢; = % and go = 2, and hence ¢ = q1¢2. Thus, we have
PrM; (D) € S]=qAii+ a1 (1 —q2) Ao+ (1 —q1) Ao
Pr(M; (D) € 8] = qA}; + @1 (1 — q2) Ao + (1 —q1) Ao
Note that the mechanism Z is (¢,)-DP. Therefore, we have
A11 S t’:’gA/ll —‘y—g (42)
An <€A+ 43)

Here (42) is straightforward, but proving (43) requires a combinatorial argument, which we give at the end of this proof.
We prove (39) separately for two cases, first when s = 1 and other when s > 1; k is arbitrary in both cases.

A. For s =1 and arbitrary k € [m]
Since the mechanism Z is (€, 5)-DP, in addition to (42)-(43), since s = 1, we also have the following inequality:
Ay <efAg+4 (44)

Similar to (43), proving (44) requires a combinatorial argument, which we will give at the end of this proof. Note that (44)
only holds for s = 1 and may not hold for arbltrary S.
Inequalities (42)-(44) together imply A;; < e‘min{ A}, AlO,AO} + 4. Now we prove (39) for € = In(1 + g(e® — 1) and
5 = gd. Note that when s = 1, we have ¢; = m, q2 = 1 ,and g = W
Pr(M; (D) € S] = qA11 + q1 (1 — q2) Ao+ (1 — q1) Ao
<q (eg min{ A}y, Ao, Ao} + 5) +q1 (1 —g2) Ao+ (1 —q1) Ao
=g ((ef — 1) min{A},, A9, Ao} + min{A};, A1o, Ao}) + 1 (1 — g2) A1o + (1 — q1) Ap + 0
(@) - ~
< (e = 1) min{A};, Ayo, Ao} + AT + a1 (1 —g2) Ao + (1 —q1) Ao + ¢

® N
< qle*=1) (gAY + 1 (1 = @2) Ao + (1 — q1)Ao)) + (¢AT + 1 (1 — q2) Aro + (1 — q1) Ao) + ¢0

= (1 +q (eg — 1)) (qAT + a1 (1 — q2) Ao + (1 — 1) Ao) + q0
= (FaE =) pr M, (D) € 8] + ¢b.

Here, (a) follows from min{A},, 4109, Ao} < Aj;, and (b) follows from the fact that minimum is upper-bounded by the
convex combination. By substituting the value of ¢ from (38) and using ks = gn, we get that for ¢¢ = O (1), we have

=0 (60 qlog(l/g)

n

B. For s > 1 and arbitrary k € [m)]
Note that (42)-(43) together imply A;; < e min{A};, Ao} + 5. Now we prove (39) for € = In(1 + g2(e — 1)) and 0 = q0.
PrM; (D) € S] =qAn +¢1(1 —g2) A0+ (1 —q1)Ao
<q (6 min{ A}, Ao} + 5) +q1(1—q2)A10+ (1 —q1)Ap

=q ( e —1)min{A4};, Ao} + mln{AH,Alo}) +q1(1—q2)A10+ (1 —q1)Ap + q5
S (e — 1)min{A};, Aio}) + gAl + a1 (1 — g2)Aro + (1 — q1) Ao + )

) ~
S q ((e° — 1) (q2Al; + (1 — g2)A10)) + (gAY + @1 (1 — g2) A1 + (1 — q1)Ao) + ¢o
=4q2 ( €

—_
o
N4

)
C— D (q1geAl; + q1(1 = g2)Ao)) + (¢Ah + a1 (1 — g2) Ao + (1 — q1) Ag) + ¢d
)

—1)(qA}; + q1(1 — g2)A10) + (1 — 1) Ao) + (¢451 + @1 (1 — g2) Aro + (1 — q1) Ao) + ¢0
((e° — 1)) (gA} + @1 (1 — g2) A1) + (1 — q1)Ag) + )

INA
—_
—_ N
*Q
§ ™
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— a0 pria, (D) € 8]+ ¢b

Here, (a) follows from min{ A, Ao} < A}, (b) follows from the fact that minimum is upper-bounded by the convex
combination, and (c) holds because (1 — ¢q1)Ap > 0. By substituting the value of € from (38) and using ks = gn, we get that

q2 log(1/6)
qin

for g = O (1), we have e = O . Note that when ¢; = 1 (i.e., we select all the clients in each iteration), then

this gives the desired privacy amplification of ¢ = gs.
The proof of Lemma 7 is complete, except for that we have to prove (43) and (44). Before proving (43) and (44), we state
an important remark about the privacy amplification in both the cases.

Remark 7. Note that when s = 1 and ¢y = O(1), we have € = In(1 + ¢(ef — 1)) = O(gé). So we get a privacy amplification
by a factor of ¢ = % — the sampling probability of each data point from the entire dataset. Here, we get a privacy amplification
from both types of sampling, of clients as well of data points.

On the other hand, when s > 1 and €y = O(1), we have € = In(1 + g2(e€ — 1)) = O(q2€), which, unlike the case of s = 1,
only gives the privacy amplification by a factor of g2 = £ — the sampling probability of each data point from a client. So,
unlike the case of s = 1, here we only get a privacy amplification from sampling of data points, not from sampling of clients.

q2 log(l/g)
n

Note that when & = m and any s € [r] (which implies ¢; = 1 and ¢ = ¢2), we have € = O , which gives the

desired amplification when we select all the clients in each iteration.

Proof of (43). First note that the number of subsets 7; C [r] such that |71| = s,1 € 77 is equal to (Z:}) and the number of

subsets 71 C [r] such that [T1| = s,1 ¢ Ty is equal to (Tgl). It is easy to verify that (r — s)(ij) = s(rgl).

Consider the following bipartite graph G = (V3 U V4, E), where the left vertex set V7 has (Zj) vertices, one for each
configuration of 7; C [r] such that |7;| = s,1 € Ty, the right vertex set V5 has ("_') vertices, one for each configuration
of 71 C [r] such that |T;| = s,1 ¢ 71, and the edge set E contains all the edges between neighboring vertices, i.e., if
(u,v) € Vi x V4 is such that w and v differ in only one element, then (u,v) € E. Observe that each vertex of V] has (r — s)
neighbors in V; — the neighbors of 7; € V4 will be {(71 \ {1}) U {i} : 4 € [m] \ T1} C V2. Similarly, each vertex of V5 has s
neighbors in V; — the neighbors of 77 € Vo will be {(7; \ {i}) U{1}:i e T1} C V1.

Now, fix any 7 € ([T,’Z]) st.1€7T,and forie T\ {1}, fixany 7; € ([:]), and consider an arbitrary (u,v) € E. Since the

mechanism Z is (€, d)-DP, we have
Pr [Z(zﬁ) eESLeT. Ti=uT,icT\ {1}] < Pr [Z(zﬁ) €ESNLeT, Ti=v,TieT\ {1}} +5. @s)
Now we are ready to prove (43).

Ay =Pr [Z(D?) €S[leTand1e 7'1]
= 3 Pr[T,T;,i € TIL € T and 1 € Ti|Pr[Z(D7) € S|T, T, ..., Ton)

TE([T,:]):IET
ﬂE([Z]):IETl
Tie() forieT\ {1}
@ > PrT,Tiie T\{1}1eT] > Pl € Ti|P(Z(D])€SIT,Ti,..., Tu]
Te(m)aer Te(I)1enn
Tie() forieT\ {1}

S P ThieT\{1}1¢€ ﬂﬁ S s PUZ(D)ESIT, T, ..., Tl
Te(MhaeT "N Tie(M)1emn
Tie(I) forieT\{1}
3 Pr[T,%,ieT\{l}HeT]ﬁ S -9 PUEDT) ESIT, R, .., Tl
Te(Mhaer s Tie(M)1emn
Tie(I) forieT\{1}
3 Pr[T,Ti,ieT\{l}HeT]ﬁ So s (PO €SIT T Tl +9)
S
s T1€

TE(%;”):IET ([;]):1¢7’1
Tie() forieT\ {1}

> PTTieT\{MeT] Y PTll ¢ Tl (¢ PE(DT) € SIT, T, o, Tl +9)
Te(mh)aer Tie(gn
Tie(I) forieT\ {1}
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© $ Pr[T,Tiic TILe T and 1 ¢ T (é PrZ(DT) € S|IT, Ta, ..., Tl + 5)

< egpr [Z(DT) €SlleTand1¢ Tl] +6
= €€A10 —|—S

Here, (a) and (c) follow from the fact that clients sample the data points independent of each other, and (b) follows from (45)
together with the fact that there are (r — s)(’~ }) = s(tl) edges in the bipartite graph G = (V3 U Vi, E'), where degree of
vertices in V] is (r — s) and degree of vertices in V5 is s.

Proof of (44). First note that the number of subsets 7 € [m] such that |[T| =k,1 € T is equal to ( ~}) and the number of
subsets 7 C [m] such that |T| =k, 1 ¢ T is equal to (™, 1) It is easy to verify that (m — k) ('}~ ) = ( )

Consider the following bipartite graph G = (V7 U Vi, E), where the left vertex set V; has ( ) B Vertlces, one for
each configuration of (7,7;:¢ € T) such that 7 C [m], =k,1 €T and T; = 1, the right vertex set V5 has (" ")r*
vertices, one for each configuration of (7,7; : i € T) such that T C [m], |T| =k,1 ¢ T, and the edge set E contains all the
edges between neighboring vertices, i.e., if (u,v) € V; x V3 is such that w and v differ in only one element, then (u,v) € E.
Observe that each vertex of V; has r(m — k) neighbors in V5. Similarly, each vertex of V5 has k neighbors in V.

Consider an arbitrary edge (u,v) € E. By construction, there exists 7 € ([2"‘]) with 1 € T and 7; € [r],i € T such that
u=(T,T,:i€T)and T’ € ([’IZ]) with 1 ¢ 7" and 7 € [r],i € T’ such that v = (7', 7 : i € T'). Note that, since
(u,v) € E, (T;:i€T)and (T :i € T') have k — 1 elements common. Now, since the mechanism Z is (¢,4)-DP, we have

Pr[2(DT) €SIT, Tni e T| < e Pr[2(DT) e SIT. T i € T'] +4. (46)

Now we are ready to prove (44).
Ay =Pr [Z(zﬁ) €S|1eT and T; = 1]

= 3 Pr[T, T, i € TIL €T and T = 1]Pr[Z(D7) € 8|T. Ti,i € T)
Te()aeT
Ti€r] for i€T:T1=1

= % Z PT[Z(D?) € SIT, Ti,i € T]

(m 1) k—1
k—1 TE( m]) 1eT
Ti€[r] for i€ T:T1=1

1 _
= Ok > r(m—k)Pr[Z(D7) € S|T, Ti,i € T|
(m - )(k_l)r Te(P)aeT
Ti€lr] for i€T:T1=1
@ 1 = )
WO > r(m —k)Pr[Z(D7) € S|T, T;,i € T]
k Te("ph)1eT
Ti€lr] fori€T:T1=1
(®) 1 - . .
< GG 3 k(eepr[za) )eS|T,7§,ze7’]+5)
k Te()1gT
Ti€[r] for i€T
1 = -
= > (¢PEDT) eSIT. Tie T]+39)

m—1\ &
(") Te(m)aeT
Ti€lr] for ieT
= Y PUT TLieT|L¢T) (eE Pr[2(D7) € S|T, Tiyi € T] + 8)
Te(Mrh)agT
Ti€[r] for i€T
= ¢“Pr [Z(D?) eS|l ¢ T} +4
= eng + 5
Here, (a) uses (m — k)(77)) = k(™.'), and (b) follows from (46) together with the fact that there are
r(m — k)(p-)rkt = k(™ 1)7"’“ edges in the bipartite graph G = (V; U Vi, E), where degree of vertices in V; is
r(m — k) and degree of vertices in V5 is k.
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This completes the proof of Lemma 7.

APPENDIX C
MINIMAX RISK ESTIMATION

Lemma 13. For the minimax problems (5) and (6), the optimal estimator T (y™) is a deterministic function. In other words,
the randomized decoder does not help in reducing the minimax risk.

Proof. Towards a contradiction, suppose that the optimal estimator & is a randomized decoder defined as follows. For given
clients’ responses y", let the probabilistic estimator generate an estimate Z (y™) whose mean and trace of the covariance matrix

y=E {Hﬁ (Y") — By Hz |Y"} , respectively, where expectation is taken with
—  SanN2],,n [ —_ S (an 2 n
E[l@—a "3 |y =B || - nawn + man —2 @) lv
’2

] 2
, ly"| +E [Hﬂa(yn) -z (y")H2 \y"}

are given by pigyny = E [®(y")] and C’%(yn

respect to the randomization of the decoder, conditioned of Y.

+2E <f — Hz(yn), Bg(yn) — z(y") |yn>

+ U%(yn)

> E HE — /,Li(yn)

In (a), we used that piz(,.) = E[Z(y")] to eliminate the last term. Similarly, we can prove that E |||, — & (y") 13|y"] >
E [||uq = Hyn I3|y"]. Hence, the deterministic estimator Z (y™) = pz(yn) has a lower minimax risk than the probabilistic
estimator. u

APPENDIX D
COMPRESSED AND PRIVATE MEAN ESTIMATION

A. Achievability for ¢1-norm Ball: Proof of Theorem 5
Lemma (Restating Lemma 2). The mechanism R presented in Algorithm 2 satisfies the following properties:
1) Ry is (eo,log (d) + 1)-LDP and requires only 1-bit of communication using public-randomness.
2) R is unbiased and has bounded variance, i.e., for every x € B‘f (a), we have
e +1\°
e — 1) '

E[Ri(x)] =« and E|R;(x)—z|3 <d (

Proof. We show these properties one-by-one below.

1) Observe that the output of the mechanism R can be represented using the index j € [d] and one bit of the sign of
{£aH, (j) ( %=+ ) }. Hence, it requires only log (d)+1 bits for communication. Furthermore, the randomness j ~ Unif [d]
is independent of the input x. Thus, if the client has access to a public randomness 7, then the client needs only to send one
bit to represent its sign. Now, we show that the mechanism RR; is €p-LDP. Let Z = { +aHg4(j) (Egﬂ) i =12,..., d}
denote all possible 2d outputs of the mechanism ;. We get

1 \~d 1 Vdly;l eo—1
Pr[Rq(x) = 2] 125=1 (5 + 2" Z<0+1)
Sup  SUp 5,7 < Sup
z,x'€B¢(a) 2EZ Pr[Rl (:13 ) = Z] z,x'€B¢(a) 1 NNd (1 _ \/3|y;| 8‘01>
d j=11\ 2 2a ec0+41

(ale +1) + Vgl (e — 1))
wareBi@ 139 (a(eEO +1) — Valy) (e — 1))

= sup

@ 2qe

< = e,
2a

where (a) uses the fact that for every j € [d], we have |y;| < ¢/Vd and [y}| < /va.
2) Fix an arbitrary = € B¢ (a).

d €0 . efo
Unbiasedness: E[R; (x)] = %ZaHd ) (e + 1) (\/gyg e 1)
j=1

e —1 a e9+1
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d d
_1 : ®» 1 N A S
= g;Hd () Vdy; = -> Ha(HH{(Gz =
where (b) uses y = %Hdm and (c) uses ijl H,(j)HI (j) = HyHY = d1,.

Bounded variance: E||R; () — |2 < E||Ry(x)|]? = E[Ry(x)T Ri(x)]

d 2
1 9 AT L fev+1
== H H
3 B L) (55)
9, (€ +1 2 T :
=a’d prr— (Since Hy(j)" Hy(j) = d,Vj € [d])
This completes the proof of Lemma 2. |

B. Achievability for {y-norm Ball: Proof of Theorem 6

Lemma (Restating Lemma 5). The mechanism Ro presented in Algorithm 3 satisfies the following properties, where €y > 0:
1) RQ is (eo,d(log(e) + 1))-LDP
2) Ro is unbiased and has bounded variance, i.e., for every x € Bg (a), we have

E[R;(x)] =2 and E|R:(z)— x|l < 6a 2al(eoJ—rD

Proof. We prove these properties one-by-one below.

1) It was shown by Duchi et al. [50, Section 4.2.3] that Priv is an ¢;-LDP mechanism. Now, since Ro = Quan o Priv is a
post-processing of a differentially-private mechanism Priv and post-processing preserves differential privacy, we have that
R is also €p-LDP. The claim that Ry uses d(log(e) + 1) bits of communication follows because Ry outputs the result
of Quan, which produces an output which can be represented using d(log(e) + 1) bits; see [35].

2) Unbiasedness of Ry follows because Ro = Quan o Priv and both Priv and Quan are unbiased. To prove that variance is
bounded, fix an = € BY (a).

E[Rq(x) — x| = E[Quan (Priv(z)) — |3

= [E||Quan (Priv(z)) — Priv(zx) + Priv(z) — x|

@ E||Quan (Priv(z)) — Priv(z)||2 + E||Priv(z) — |2
)

g 2||Priv(z)||* + E||Priv(z)||?

e€o
< 3)Privia) |2 < 6d< i 1)
In (a) we used the fact that Quan and Priv are unbiased, which implies that the cross multiplication term is zero. In (b)
we used Lemma 4 to write E||Quan (Priv(z)) — Priv(z)||3 < 2||Priv(z)||? and used the unbiasedness of Priv together
with the fact that variance is bounded by the second moment to write E||Priv(z) — «||3 < E||Priv(z)||3. In (c) we used
that the length of Priv on any input remains fixed, i.e., E||Priv(z)||? = ||Priv(x)||> = M? (where M is from the line 4
of Algorithm 4) holds for any = € B¢(a). In (d) we used the bound on ||Priv(z)||2 from Lemma 3.

This completes the proof of Lemma 5. ]

C. Achievability for {.,-norm Ball: Proof of Theorem 7
Lemma (Restating Lemma 6). The mechanism R, presented in Algorithm 6 satisfies the following properties:

1) R is (eo,log (d) 4+ 1)-LDP and requires only 1-bit of communication using public-randomness.
2) Reo is unbiased and has bounded variance, i.e., for every x € Bgo (a), we have

€0 2
E[Rw (z)] =2 and E|Ro(x)— |3 < a’d’ (Zeo i_ 1)

Proof. We prove these properties one-by-one below.

1) Observe that the output of the mechanism R, can be represented using the index j € [d] and one bit for the sign of
{ +ad(%:%1)e; }. Hence, it requires only log (d) + 1 bits for communication. Furthermore, the randomness j ~ Unif [d]
is independent of the input @. Thus, if the client has access to a public randomness j, then the client needs only to send
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one bit for its sign. Now, we show that the mechanism R is €p-LDP. Let Z = { £ ad(%55)
denote all possible 2d outputs of the mechanism R... We get

1 d |zj] e0—1
PriRo (@) =2 _ Ivd, (3+ e

sup  sup
z,x’' €BI (a) 2EZ Pr [R (113)

N

=~ , d \70 \ €
] xz,z’' B (a) 521‘:1 (7 - W 953+i)
YL (ale +1) + ] (e — 1))
( (

= sup 1 d ,

saest 100, (aleo +1) = faf (e — 1))
@) 2ge

2

where in (a) we used the fact that for every j € [d], we have |z;| < a and |x;| <a.
2) Fix an arbitrary x € BL.

1 41 eco — 1
Unbiasedness: E[Rq ()] = p Zejad <Z€0 j 1) <Zj 260 n 1)

I
™
D
MH

Bounded variance: E[Roo () — /|5 < E[|[Roo(®)]|? = E[Roo ()T Roo ()]
d 2
1 90 f€°+1
= & Z;a d (eEO — 1)
j:

. 2
:a2d2 <60+1>
e —1

This completes the proof of Lemma 6.

e j=12,...

(47)

(48)

(49)



