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Abstract

We study stochastic gradient descent (SGD) with

local iterations in the presence of Byzantine

clients, motivated by the federated learning. The

clients, instead of communicating with the server

in every iteration, maintain their local models,

which they update by taking several SGD itera-

tions based on their own datasets and then com-

municate the net update with the server, thereby

achieving communication-efficiency. Further-

more, only a subset of clients communicates with

the server at synchronization times. The Byzan-

tine clients may collude and send arbitrary vectors

to the server to disrupt the learning process. To

combat the adversary, we employ an efficient high-

dimensional robust mean estimation algorithm at

the server to filter-out corrupt vectors; and to an-

alyze the outlier-filtering procedure, we develop

a novel matrix concentration result that may be

of independent interest. We provide convergence

analyses for both strongly-convex and non-convex

smooth objectives in the heterogeneous data set-

ting. We believe that ours is the first Byzantine-

resilient local SGD algorithm and analysis with

non-trivial guarantees. We corroborate our theo-

retical results with preliminary experiments for

neural network training.

1. Introduction

In the federated learning (FL) paradigm (Konecný, 2017;

Konecný et al., 2016; McMahan et al., 2017; Mohri et al.,

2019), several clients (e.g., mobiles devices, organizations,

etc.) collaboratively learn a machine learning model, where

the training process is facilitated by the data held by the par-

ticipating clients (without data centralization) and is coordi-

nated by a central server (e.g., the service provider). Due to

its many advantages over the traditional centralized learning
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(Dean et al., 2012) (e.g., training a machine learning model

without collecting the clients’ data, which, in addition to

reducing the communication load on the network, provides

a basic level of privacy to clients’ data), FL has emerged as

an active area of research recently; see (Kairouz et al., 2019)

for a detailed survey. Stochastic gradient descent (SGD)

has become a de facto standard in optimization for train-

ing machine learning models at such a large scale (Bottou,

2010; Kairouz et al., 2019; McMahan et al., 2017), where

clients iteratively communicate the gradient updates with

the central server, which aggregates the gradients, updates

the learning model, and sends the aggregated gradient back

to the clients. The promise of FL comes with its own set of

challenges (Kairouz et al., 2019): (i) optimizing with hetero-

geneous data at different clients – the local datasets at clients

may be “non-i.i.d.”, i.e., can be thought of as being gener-

ated from different underlying distributions; (ii) slow and

unreliable network connections between server and clients,

so communication in every iteration may not be feasible;

(iii) availability of only a subset of clients for training at a

given time (maybe due to low connectivity, as clients may

be in different geographic locations); and (iv) robustness

against malicious/Byzantine clients who may send incorrect

gradient updates to the server to disrupt the training process.

In this paper, we propose and analyze an SGD algorithm

that simultaneously addresses all these challenges. First we

setup the problem, put our work in context with the related

work, and then summarize our contributions.

We consider an empirical risk minimization problem, where

data is stored at R clients, each having a different dataset

(with no probabilistic assumption on data generation); client

r ∈ [R] has dataset Dr. Let Fr : R
d → R denote the

local loss function associated with the dataset Dr, which

is defined as Fr(x) , Ei∈U [nr][Fr,i(x)], where nr = |Dr|,

i is uniformly distributed over [nr] , {1, 2, . . . , nr}, and

Fr,i(x) is the loss associated with the i’th data point at

client r with respect to (w.r.t.) x. Our goal is to solve the

following minimization problem:

argmin
x∈C

(

F (x) ,
1

R

R
∑

r=1

Ei∈U [nr][Fr,i(x)]
)

, (1)

where C ⊆ R
d denotes the parameter space that is either

equal to R
d or a compact and convex set.
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In the absence of the above-mentioned FL challenges, we

can minimize (1) using distributed vanilla SGD, where in

any iteration, server broadcasts the current model parame-

ters to all clients, each of them then samples a stochastic

gradient from its local dataset and sends it back to the server,

who aggregates the received gradients and updates the global

model. However, this simple solution does not satisfy the

FL challenges, as every client communicates with the server

(i.e., no sampling of clients) in every SGD iteration (i.e., no

local iterations), and furthermore, this solution breaks down

even with a single malicious client (Blanchard et al., 2017).

Related work. Recent work have proposed variants of the

above-described vanilla SGD that address some of the FL

challenges. The algorithms in (Basu et al., 2019; Haddad-

pour & Mahdavi, 2019; Haddadpour et al., 2019; Karim-

ireddy et al., 2020; Khaled et al., 2020; Li et al., 2020; Sahu

et al., 2020; Yu et al., 2019b) work under different hetero-

geneity assumptions but do not provide any robustness to

malicious clients. On the other hand, (Alistarh et al., 2018;

Blanchard et al., 2017; Chen et al., 2017; Data & Diggavi,

2020b; Su & Xu, 2019; Xie et al., 2019b; Yin et al., 2018;

2019) provide robustness, but with no local iterations or

sampling of clients; furthermore, they assume homogeneous

(either same or i.i.d.) data across all clients. A different line

of work (Chen et al., 2018; Data & Diggavi, 2019; 2020a;

Data et al., 2019; 2021; Ghosh et al., 2019; Li et al., 2019a;

Rajput et al., 2019) provide robustness with heterogeneous

data, but without local iterations or sampling of clients:

Chen et al. (2018), Rajput et al. (2019), Data et al. (2019;

2021) use coding across datasets, which is hard to imple-

ment in FL; Li et al. (2019a) change the objective function

and adds a regularizer term to combat the adversary; Ghosh

et al. (2019) effectively reduce the heterogeneous problem

to a homogeneous problem by clustering, and then learning

happens within each cluster having homogeneous data; and

Data & Diggavi (2020a) studied SGD with heterogeneous

data under the same assumptions as ours, but without local

iterations or client sampling. Incorporating local iterations

with Byzantine adversaries makes it significantly more chal-

lenging as it requires deriving a new matrix concentration

bound (see Theorem 2) and different convergence analyses.

Xie et al. (2019a) also analyzed SGD in the FL setting, but

the approximation error (even in the Byzantine-free setting)

of their solution could be as large asO(D2 +G2), where G
is the gradient bound and D is the diameter of the parameter

space that contains the optimal parameters x∗ and all the

local parameters xt
r ever emerged at any client r ∈ [R] in

any iteration t ∈ [T ]; this, in our opinion, makes their bound

vacuous. In optimization, one would ideally like to have

convergence rates depend on D with a factor that decays

with the number of iterations, e.g., with 1
T or 1√

T
, as also in

Theorem 1. In Section 4, we also empirically demonstrate

the poor learning performance of their algorithm.

Our contributions. In this paper, we tackle heterogeneity

assuming that the gradient dissimilarity among local datasets

is bounded (see (6)), and propose and analyze a Byzantine-

resilient SGD algorithm (Algorithm 1) with local iterations

and client sampling under the bounded variance assumption

for SGD (see (2)). We provide convergence analyses for

strongly-convex and non-convex smooth objectives.

For strongly-convex objectives, our algorithm can find ap-

proximate optimal parameters exponentially (in T
H ) fast, and

for non-convex objectives, it can reach to an approximate

stationary point with a speed of 1
T/H . See Theorem 1 for

convergence results. The approximation error in the opti-

mization solution comprises of two terms, one is because

to the stochasticity in gradients (due to SGD) and is equal

to zero if we work with full-batch gradients, and the other

term arises because of heterogeneity in local datasets. See

a detailed discussion in Section 2.2 on the approximation

error analysis and the convergence rates, and also for the

reason behind obtaining rates that are off by a factor of H
when compared to vanilla SGD – looking ahead, the reason

is working with weak assumptions.

To tackle the malicious behavior of Byzantine clients, we

borrow tools from recent advances in high-dimensional ro-

bust statistics (Diakonikolas & Kane, 2019; Diakonikolas

et al., 2019; Lai et al., 2016; Steinhardt et al., 2018); in par-

ticular, we use the polynomial-time outlier-filtering proce-

dure from (Diakonikolas et al., 2019), which was developed

for robust mean estimation in high dimensions. In order to

use their algorithm (described in Algorithm 2) in our setting

that combines Byzantine resilience with local iterations, we

develop a novel matrix concentration result (see Theorem 2),

which may be of independent interest. As far as we know,

this is the first concentration result for stochastic gradients

with local iterations on heterogeneous data.

We believe that ours is the first work that combines local

iterations with Byzantine-resilience for SGD and achieves

non-trivial results. Not only that, we also analyze our algo-

rithm on heterogeneous data and allow sampling of clients.

Note that the earlier work that provide robustness (without

local iterations or sampling of clients) either assume homo-

geneous data across clients (Alistarh et al., 2018; Blanchard

et al., 2017; Chen et al., 2017; Data & Diggavi, 2020b; Su &

Xu, 2019; Yin et al., 2018; 2019) or require strong assump-

tions, such as the bounded gradient assumption on local

functions (Xie et al., 2019b); more on this on page 3.

Paper organization. We describe our algorithm and state

the convergence results in Section 2. In Section 3, we de-

scribe our main technical tool, a new matrix concentration

result for analyzing the robust accumulated gradient esti-

mation procedure. We provide empirical evaluation of our

method in Section 4. Omitted details/proofs are given in

appendices, provided as part of the supplementary material.



Byzantine-Resilient High-Dimensional SGD with Local Iterations on Heterogeneous Data

2. Problem Setup and Our Results

In this section, we state our assumptions, describe the ad-

versary model and our algorithm, and state our convergence

results followed by important remarks about them.

Assumption 1 (Bounded local variances). The stochastic

gradients sampled from any local dataset have uniformly

bounded variance over C for all clients, i.e., there exists a

finite σ, such that for all x ∈ C, r ∈ [R], we have

Ei∈U [nr]‖∇Fr,i(x)−∇Fr(x)‖2 ≤ σ2. (2)

It will be helpful to formally define mini-batch stochastic

gradients, where instead of computing stochastic gradients

based on just one data point, each client samples b ≥ 1
data points (without replacement) from its local dataset and

computes the average of b gradients. For any x ∈ R
d, r ∈

[R], b ∈ [nr], consider the following set

F⊗b
r (x) :=

{
1

b

∑

i∈Hb

∇Fr,i(x) : Hb ∈
(
[nr]

b

)}
. (3)

Note that gr(x) ∈U F⊗b
r (x) is a mini-batch stochastic

gradient with batch size b at client r. It is not hard to see the

following, which hold for all x ∈ C, r ∈ [R]:

E [gr(x)] = ∇Fr(x), (4)

E ‖gr(x)−∇Fr(x)‖2 ≤ σ2/b. (5)

Assumption 2 (Bounded gradient dissimilarity). The differ-

ence of the local gradients∇Fr(x), r ∈ [R] and the global

gradient∇F (x) = 1
R

∑R
r=1∇Fr(x) is uniformly bounded

over Rd for all clients, i.e., there exists a finite κ, such that

‖∇Fr(x)−∇F (x)‖2 ≤ κ2, ∀x ∈ C, r ∈ [R]. (6)

Assumption 1 has been standard in SGD literature. Assump-

tion 2 has also been used earlier to bound heterogeneity in

datasets; see, for example, (Li et al., 2019b; Yu et al., 2019a),

which study decentralized SGD with momentum (without

adversaries). Note that when clients compute full-batch gra-

dients, we have σ = 0 in Assumption 1; similarly, when all

clients have access to the same dataset as in (Alistarh et al.,

2018; Blanchard et al., 2017), we have κ = 0 in Assump-

tion 2. Note that (6) can be seen as a deterministic condition

on local datasets, under which we derive our results.

A note on Assumption 2. In the presence of Byzantine

adversaries, since we do not know which ǫR clients are

corrupt, we have to make some structural assumption on the

data that can provide relationships among gradients sampled

at different nodes for reliable decoding, and Assumption 2

is a natural way to achieve that. There are many alternatives

to establish this relationship, e.g., by assuming homoge-

neous (same or i.i.d.) data across clients (Alistarh et al.,

2018; Blanchard et al., 2017; Chen et al., 2017; Data &

Diggavi, 2020b; Su & Xu, 2019; Yin et al., 2018; 2019)

or by explicitly introducing redundancy in the system via

coding-theoretic solutions (Chen et al., 2018; Data et al.,

2021; Rajput et al., 2019); however, these approaches fall

short of in the FL setting.

Assuming bounded gradients of local functions (i.e.,

‖∇Fr(x)‖ ≤ G for some finite G) is a common assump-

tion in literature with heterogeneous data; see, for example,

(Li et al., 2020; Yu et al., 2019b, without adversaries) and

(Xie et al., 2019b, with adversaries). Note that under this

assumption, we can trivially bound the heterogeneity among

local datasets by ‖∇Fr(x)−∇Fs(x)‖ ≤ 2G. So, assum-

ing bounded gradients not only simplifies the analysis but

also obscures the effect of heterogeneity on the convergence

bounds, which Assumption 2 clearly brings out.1

Bounds on σ2 and κ2 in the statistical heterogeneous

model. Since all our results (matrix concentration and

convergence) are given in terms of σ and κ, to show the

clear dependence of our results on the dimensionality of

the problem, we bound these quantities in the statistical

heterogeneous data model under different distributional as-

sumptions on local gradients; see Appendix E for more de-

tails, where we prove the following: For the SGD variance

bound, we show that if local gradients have sub-Gaussian

distribution, then σ = O(
√
d log(d)). For the gradient

dissimilarity bound, we show that if either the local gra-

dients have sub-exponential distribution and each worker

has at least n = Ω(d log(nd)) data points or local gradi-

ents have sub-Gaussian distribution and n ∈ N is arbitrary,

then κ ≤ κmean + O(
√

d log(nd)/n), where κmean denotes

the distance of the expected local gradients from the global

gradient. Note that we make distributional assumptions on

data generation only to derive bounds on σ, κ; otherwise, all

our results hold for arbitrary datasets satisfying (5), (6).

Adversary model. Throughout the paper, we assume that ǫ
denotes the fraction of the K communicating clients that are

corrupt, i.e., at most ǫK (out of K) clients that communicate

with the server at synchronization indices may be corrupt,

where K ≤ R is the number of clients chosen at synchro-

nization indices. This translates to, in the worst case, having
ǫK
R fraction (i.e., a total of ǫK) of corrupt nodes in the entire

system, as in the worst-case, all the corrupt nodes can be

selected in a communication round; however, in practice,

due to several constraints, such as the unreliable network

connection (for which the adversary has no control over), we

cannot expect that the server will select all corrupt nodes in

all iterations. The corrupt clients may collude and arbitrarily

1See (Khaled et al., 2020) for a detailed discussion on the inap-
propriateness of making bounded gradient assumption in heteroge-
neous data settings and how it obscures the effect of heterogeneity
on convergence rates (even without robustness).
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Algorithm 1 Byzantine-Resilient SGD with Local Iterations

1: Initialize. Set t := 0, x0
r := 0, ∀r ∈ [R], and x := 0.

Here, x denotes the global model and x0
r denotes the

local model at client r at time 0. Fix a constant step-size

η and a mini-batch size b.
2: while (t ≤ T ) do

3: Server selects an arbitrary subset K ⊆ [R] of |K| =
K clients and sends x to all clients in K.

4: All clients r ∈ K do in parallel:

5: Set xt
r = x.

6: while (true) do

7: Take a mini-batch stochastic gradient gr(x
t
r) ∈U

F⊗b(xt
r) and update the local model:

xt+1
r ← xt

r − ηgr(x
t
r)); t← (t+ 1).

8: if (t ∈ IT ) then

9: Let x̃
t
r = xt

r, if client r is honest, otherwise can

be an arbitrary vector in R
d.

10: Send x̃
t
r to the server and break the inner while

loop.

11: end if

12: end while

13: At Server:

14: Receive {x̃r, r ∈ K} from the clients in K.

15: For every r ∈ K, let g̃r,accu := (x̃r − x)/η.

16: Apply the decoding algorithm RAGE (see Algo-

rithm 2) on {g̃r,accu, r ∈ K}. Let

ĝaccu := RAGE(g̃r,accu, r ∈ K).
17: Update the global model x← ΠC(x−ηĝaccu), where

ΠC denotes the projection operator onto the set C.

18: end while

deviate from their pre-specified programs: at synchroniza-

tion indices, instead of sending the true stochastic gradients

(or local models), corrupt clients may send adversarially

chosen vectors to the server.

2.1. Main Results

Let IT = {t1, t2, . . . , tk, . . .}, with t1 = 0, denote the set

of synchronization indices (where maxi≥1 |ti+1− ti| = H)

when the server arbitrarily selects a subset of K ≤ R clients

(denoted by K ⊆ [R]) and sends the global model (denoted

by x) to them; each client r ∈ K updates its local model xr

by taking SGD steps based on its local dataset until the next

synchronization time, when all clients in K send their local

models to the server. Note that some of these clients may

be corrupt and may send arbitrary vectors.2 Server employs

2Note that the only disruption that the corrupt clients can cause
in the training process is during the gradient aggregation at syn-
chronization indices by sending adversarially chosen vectors to
the server, and we give unlimited power to the adversary for that.

a decoding RAGE and update the global model x based

on that. We present our Byzantine-resilient SGD algorithm

with local iterations in Algorithm 1.

Our convergence results are for both strongly-convex and

non-convex smooth objectives, and we state them in the

following theorem. Since our main focus in this paper is

on combining Byzantine resilience with local iterations, to

avoid the technical complications arising due to the projec-

tion operator (in line 17), we prove our results assuming

that the parameter space C is equal to R
d. The analysis

involving the projection can be done using the techniques

in (Yin et al., 2018).

Theorem 1 (Mini-Batch Local Stochastic Gradient De-

scent). Let Kt denote the set of K clients that are active

at any given time t ∈ [0 : T ] and ǫ denote the fraction

of corrupt clients in Kt. For a global objective function

F : Rd → R, let Algorithm 1 generate a sequence of iter-

ates {xt
r : t ∈ [0 : T ], r ∈ Kt} when running with a fixed

step-size η = 1
8HL . Fix any constant ǫ′ > 0. If ǫ ≤ 1

3 − ǫ′,

then with probability 1− T
H exp(− ǫ′2(1−ǫ)K

16 ), the sequence

of average iterates {xt = 1
K

∑
r∈Kt

xt
r : t ∈ [0 : T ]}

satisfy the following convergence guarantees:

• Strongly-convex: If F is L-smooth for L ≥ 0,3 and

µ-strongly convex for µ > 0,4 we get:

E
∥∥xT − x∗∥∥2 ≤

(
1− µ

16HL

)T ∥∥x0 − x∗∥∥2 + 13

µ2
Γ.

• Non-convex: If F is L-smooth for L ≥ 0, we get:

1

T

T∑

t=0

E
∥∥∇F (xt)

∥∥2 ≤
[
E[F (x0)]− E[F (x∗)]

]

T/16HL
+

9

2
Γ.

In both the bounds above, Γ =
(
3Υ 2

H + 11Hσ2

b +

36Hκ2
)

with Υ 2 = O
(
σ2
0(ǫ+ ǫ′)

)
, where σ2

0 =
25H2σ2

bǫ′

(
1 + 3d

2K

)
+28H2κ2, and expectation is taken over

the sampling of mini-batch stochastic gradients.

We prove the strongly-convex part of Theorem 1 in Ap-

pendix B and the non-convex part in Appendix C. In addi-

tion to other complications arising due to handling Byzan-

tine clients together with local iterations, our proof deviates

from the standard proofs for local SGD: We need to show

two recurrences, which arise because at synchronization

indices, server performs decoding to filter-out the corrupt

clients, while at other indices there is no decoding, as there

is no communication. The proof of the first recurrence is

significantly more involved than that of the other one.

Because of this and for the purpose of analysis, we can assume,
without loss of generality, that in between the synchronization
indices, the corrupt clients sample stochastic gradients and update
their local parameters honestly.

3F (y) ≤ F (x)+〈∇F (x),y−x〉+ L
2
‖x−y‖2, ∀x,y ∈ R

d.
4F (y) ≥ F (x)+〈∇F (x),y−x〉+ µ

2
‖x−y‖2, ∀x,y ∈ R

d.
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2.2. Important Remarks About Theorem 1

Failure probability. The failure probability of our algo-

rithm is at most T
H exp(− ǫ′2(1−ǫ)K

16 ), which though scales

linearly with T , also goes down exponentially with K. As a

result, in settings such as federated learning, where number

of clients could be large (e.g., in tens/hundreds of millions)

and server samples tens of thousands of them, we can get

a very small probability of error, even if run our algorithm

for a long time.5 Note that the error probability is due to

the stochastic sampling of gradients, and if we want a “zero”

probability of error, we can run full-batch GD (yielding an

error of Γ = O(Hκ2)); we analyze that in Appendix D

with a much simplified analysis than that of Theorem 1.

Analysis of the approximation error. In Theorem 1, the

approximation error Γ essentially consists of two types of

error terms: Γ1 = O
(

Hσ2

bǫ′

(
1 + 3d

2K

)
(ǫ+ ǫ′)

)
and Γ2 =

O(Hκ2), where Γ1 arises due to stochastic sampling of

gradients and Γ2 arises due to dissimilarity in the local

datasets. Observe that Γ1 decreases as we increase the batch

size b of stochastic gradients and becomes zero if we take

full-batch gradients (which implies σ = 0), as is the case

in Theorem 4 in Appendix D. Note that even though the

variance (and gradient dissimilarity) of accumulation of H
gradients blows up by a factor of H2, still both Γ1 and Γ2

have a linear dependence on the number of local iterations

H . Observe that since we are working with heterogeneous

datasets, the presence of gradient dissimilarity bound κ2

(which captures the heterogeneity) in the approximation

error is inevitable, and will always show up when bounding

the deviation of the true “global” gradient from the decoded

one in the presence of Byzantine clients, even when H = 1.

Convergence rates. In the strongly-convex case, Algo-

rithm 1 approximately finds the optimal parameters x∗

(within Γ error) with
(
1− µ

16HL

)T
speed. Note that(

1− µ
16HL

)T ≤ exp−
µ

16L
T
H , which implies an exponen-

tially fast (in T/H) convergence rate. In the non-convex

case, Algorithm 1 reaches to a stationary point (within Γ er-

ror) with a speed of 1
T/H . Note that the convergence rates of

vanilla SGD (i.e., without local iterations and in Byzantine-

free settings) are exponential (in T ) and 1
T for strongly-

convex and non-convex objectives, respectively; whereas,

our convergence rates are affected by the number of local

iterations H . The reason for this is precisely because we

5As a concrete scenario, say the total number of devices is
R = 10 million and the server selects K = 10, 000 of them.
Then, even if we want robustness against one million malicious
clients, the total probability of failure of our algorithm would
still be less than T

H
e−30, which even if T = 106 and H = 1,

would still be less than 10−7. Note that the bound on probability
of error in Theorem 1 is a worst-case bound, and in practice,
our algorithm succeeds with moderate parameter values; see, for
example, Section 4 for our experimental setup and the results.

need η ≤ 1
8HL to bound the drift in local parameters across

clients; see Lemma 2. Instead, if we had assumed a stronger

bounded gradient assumption (which trivially bound the het-

erogeneity, as explained on page 3), then Lemma 2 would

hold for a constant step-size (e.g., η = 1
2L would suffice),

which would lead to vanilla SGD like convergence rates.

3. Robust Accumulated Gradient Estimation

In this section, first we discuss the inadequacy of traditional

methods (such as coordinate-wise median and trimmed-

mean) for filtering corrupt gradients in our setting, and then

we motivate and describe the robust accumulated gradient

estimation (RAGE) procedure that we use in Algorithm 1

as a subroutine at every synchronization index. Then we

prove our new matrix concentration result that is required

to establish the performance guarantee of RAGE.

Inadequacy of median and trimmed-mean: Coordinate-

wise median (med) and trimmed-mean (trimmean) are the

two widely used robust estimation procedures that are easy

to describe and implement, and they have been employed

earlier for robust gradient aggregation in distributed opti-

mization; see, for example, (Yin et al., 2018; 2019, i.i.d. data

setting) and (Xie et al., 2019a, FL setting). Below we argue

that these methods give poor performance in FL settings

for learning high-dimensional models; we also validate this

claim through experiments in Section 4.

• For the simple task of robust mean estimation with inputs

coming a unit covariance distribution, med and trimmean

have an error that scales with the dimension as
√
d (Di-

akonikolas et al., 2019; Lai et al., 2016); when we apply

these methods in each SGD iteration, this error translates to

a large sub-optimality gap in the convergence rate.

• The adversary may corrupt samples in a way that they pre-

serve the norm of the original uncorrupted samples, but have

different adversarially chosen directions (these are called

directional attacks); since the performance of these methods

are based on the magnitude of the samples, they cannot

distinguish between the corrupt and uncorrupt samples.

•When taking coordinate-wise median, for estimating each

coordinate, we use only a single sample and discard the rest.

This is not a good idea in large-scale settings with non-i.i.d.

data, such as FL, where there are potentially millions of

clients, and if we somehow are able to use samples from all

(or most of the) honest clients, we could get a significant

reduction in variance of stochastic gradients. In med, we do

not take advantage of this variance reduction, which leads

to a performance degradation, which may be detrimental

for performance due to heterogeneity in data. The same rea-

son also applies to the robust gradient aggregation method

(KRUM) adopted in (Blanchard et al., 2017), which also

uses only one of the input gradients and discards the rest,

giving poor performance.
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Robust mean estimation: The above limitations of tradi-

tional methods motivate us to employ modern tools from

high-dimensional robust statistics (Diakonikolas & Kane,

2019; Diakonikolas et al., 2019; Lai et al., 2016). In particu-

lar, we use the polynomial-time outlier-filtering procedure

for high-dimensional robust mean estimation (RME) from

(Diakonikolas et al., 2019) for robust gradient aggregation in

Algorithm 1. For clear exposition of the ideas behind their

algorithm, we use a version of their algorithm as described

in Algorithm 2, which is from (Li, 2019). The crucial obser-

vation in these RME algorithms is that if the empirical mean

of the samples is far from their true mean, then the empirical

covariance matrix has high largest eigenvalue. So, the idea

is to iteratively filter out samples that have large projection

on the principal eigenvector of the empirical covariance

matrix, and keep on doing it until the largest eigenvalue of

the empirical covariance matrix becomes sufficiently small

(line 7). This is done via a soft-removal method, where

we assign weights (confidence score) to the samples and

down-weighting those that have large projection (line 10)

– in each iteration t, at least one sample (whose projection

τ
(t)
i is the maximum) gets 0 weight. In the end, take the

weighted average of the surviving samples.6

The RME algorithms overcome most of the above-

mentioned limitations of traditional methods, except for

that their guarantees are not directly applicable to our set-

ting. This is because the error guarantee of RME algorithms

are given in terms of concentration of the good samples

around their sample mean, which is easy to bound if good

samples come from the same distribution. Note that our

setup significantly deviates from this, where not only the

input samples (which are accumulated gradients) come from

different distributions (as clients have heterogeneous data),

but each of them is also a sum of H stochastic gradients (due

to local iterations). Since local iterations cause local param-

eters to drift from each other, bounding the concentration of

good samples requires bounding this drift.

To this end, we develop a novel matrix concentration in-

equality that first shows an existence of a large subset of un-

corrupted accumulated stochastic gradients and then bounds

their concentration around the sample mean; see (7) in The-

orem 2 below. As far as we know, this is the first matrix

concentration result in an FL setting.

First we setup the notation. Let Algorithm 1 generate a

sequence of iterates {xt
r : t ∈ [0 : T ], r ∈ Kt} when

6Note that the outlier-filtering procedure described in Algo-
rithm 2 is intuitive and easy to understand. There are better algo-
rithms that are also more efficient and can achieve better guaran-
tees; see, for example, (Dong et al., 2019). All these algorithms
require the same bounded matrix concentration assumption that
we show in Theorem 2, thus making them applicable to use as a
subroutine in Algorithm 1 without requiring any modification in
our analysis.

Algorithm 2 Robust Accumulated Gradient Estimation

(RAGE) (Diakonikolas et al., 2019; Li, 2019)

1: Input: K vectors g1, g2, . . . , gK ∈ R
d such

that there is a subset of them S ⊂ [K]
with |S| ≥ 2K

3 having bounded covariance

λmax

(
1
|S|
∑

i∈S (gi − gS) (gi − gS)
T
)
≤ σ2

0 , where

gS = 1
|S|
∑

i∈S gi.

2: For any w ∈ [0, 1]K with ‖w‖1 > 0, define

µ(w) =

K∑

i=1

wi

‖w‖1
gi

Σ(w) =

K∑

i=1

wi

‖w‖1
(gi − µ(w))(gi − µ(w))T

3: Let w(0) = [ 1K , . . . , 1
K ] be a length K vector.

4: Let C ≥ 11 be a universal constant.

5: Let Σ(0) = Σ(w(0)).
6: Let t = 0.

7: while λmax(Σ(w(t))) > Cσ2
0 do

8: Let v(t) be the principal eigenvector of Σ(w(t)).

9: For i ∈ [K], define τ
(t)
i =

〈
v(t), gi − µ(w(t))

〉2
.

10: For i ∈ [K], compute w
(t+1)
i =

(
1 − τ

(t)
i

τ
(t)
max

)
w

(t)
i ,

where τ
(t)
max = max

i:w
(t)
i >0

τ
(t)
i .

11: t = t+ 1
12: end while

13: return ĝ =
∑K

i=1
w

(t)
i

‖w(t)‖1
gi.

running with a fixed step-size η ≤ 1
8HL , where Kt denotes

the set of K clients that are active at time t ∈ [0 : T ]. Take

any two consecutive synchronization indices tk, tk+1 ∈ IT .

Note that |tk+1 − tk| ≤ H . For an honest client r ∈ Ktk ,

let g
tk,tk+1
r,accu :=

∑tk+1−1
t=tk

gr(x
t
r) denote the sum of local

mini-batch stochastic gradients sampled by client r between

time tk and tk+1, where gr(x
t
r) ∈U F⊗b

r (xt
r) satisfies (4),

(5). At iteration tk+1, every honest client r ∈ Ktk reports its

local model x
tk+1
r to the server, from which server computes

g
tk,tk+1
r,accu (see line 15 of Algorithm 1), whereas, the corrupt

clients may report arbitrary and adversarially chosen vectors

in R
d. Server does not know the identities of the corrupt

clients, and its goal is to produce an estimate ĝ
tk,tk+1

accu of the

average accumulated gradients from honest clients.

Theorem 2 (Matrix concentration). Suppose an ǫ fraction

of K clients that communicate with the server are corrupt.

In the setting described above, suppose we are given K ≤
R accumulated gradients g̃

tk,tk+1

r,accu , r ∈ Ktk in R
d, where

g̃
tk,tk+1

r,accu = g
tk,tk+1
r,accu if r’th client is honest, otherwise can

be arbitrary. For any ǫ′ > 0, if (ǫ + ǫ′) ≤ 1
3 , then with

probability 1− exp(− ǫ′2(1−ǫ)K
16 ), there exists a subset S ⊆
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Ktk of uncorrupted gradients of size (1− (ǫ+ ǫ′))K s.t.

λmax

( 1

|S|
∑

i∈S
(gi − gS) (gi − gS)

T
)

≤ 25H2σ2

bǫ′

(
1 +

3d

2K

)
+ 28H2κ2, (7)

where, for i ∈ S, gi = g
tk,tk+1

i,accu , gS = 1
|S|
∑

i∈S g
tk,tk+1

i,accu ,

and λmax denotes the largest eigenvalue.

Theorem 2 establishes the concentration results required for

the RME algorithm (described in Algorithm 2) that we em-

ploy in Algorithm 1. This RME algorithm takes a collection

of vectors as input, out of which an unknown large subset

(at least a 2
3 -fraction) is promised to be well-concentrated

around its sample mean, and outputs an estimate of the

sample mean. The formal guarantee is given as follows:

Theorem 3 (Outlier-filtering algorithm (Diakonikolas et al.,

2019)). Under the same setting and notation of Theorem 2,

we can find an estimate ĝ of gS in polynomial-time with

probability 1, such that ‖ĝ − gS‖ ≤ O
(
σ0

√
ǫ+ ǫ′

)
, where

σ2
0 = 25H2σ2

bǫ′

(
1 + 3d

2K

)
+ 28H2κ2.

Note that, instead of the RME algorithm, if we use med or

trimmean, we would get an extra multiplicative factor of√
d in the upper-bound on ‖ĝ − gS‖ above.

3.1. Proof-sketch of Theorem 2 – Matrix Concentration

In order to prove Theorem 2, we use the following result

from (Data & Diggavi, 2020a, Lemma 1):

Lemma 1 ((Data & Diggavi, 2020a, Lemma 1)). Suppose

there are m independent distributions p1, p2, . . . , pm in

R
d such that Ey∼pi

[y] = µi, i ∈ [m] and each pi has

a bounded variance in all directions, i.e., Ey∼pi
[〈y −

µi,v〉2] ≤ σ2
pi
, ∀v ∈ R

d, ‖v‖ = 1. Take any ǫ′ >
0. Then, given m independent samples y1,y2, . . . ,ym,

where yi ∼ pi, with probability 1 − exp(−ǫ′2m/16),
there is a subset S of (1 − ǫ′)m points such that

λmax

(
1
|S|
∑

i∈S (yi − µi) (yi − µi)
T ) ≤ 4σ2

pmax

ǫ′

(
1 +

d
(1−ǫ′)m

)
, where σ2

pmax
= maxi∈[m] σ

2
pi

.

Lemma 1 shows that if we have m independent distributions

each having bounded variance, and we take one sample from

each of them, then there exists a large subset of these sam-

ples that has bounded variance as well. The important thing

to note here is that the m samples come from different distri-

butions, which makes it distinct from existing results, such

as (Charikar et al., 2017, Proposition B.1), which shows

concentration of i.i.d. samples.

Now we give a proof-sketch of Theorem 2 with the help of

Lemma 1. A complete proof is provided in Appendix A.

Let tk, tk+1 ∈ IT be any two consecutive synchronization

indices. For i ∈ Ktk corresponding to an honest client, let

Y tk
i , Y tk+1

i , . . . , Y
tk+1−1
i be a sequence of (tk+1 − tk) ≤

H (dependent) random variables, where for any t ∈ [tk :
tk+1 − 1], the random variable Y t

i is distributed as

Y t
i ∼ Unif

(
F⊗b

i

(
xt
i

(
xtk
i , Y tk

i , . . . , Y t−1
i

)))
. (8)

Here, Y t
i corresponds to the mini-batch stochastic gradi-

ent sampled from the set F⊗b
i

(
xt
i

(
xtk
i , Y tk

i , . . . , Y t−1
i

))
,

which itself depends on the local parameters xtk
i (which is

a deterministic quantity) at the last synchronization index

and the past realizations of Y tk
i , . . . , Y t−1

i . This is because

the evolution of local parameters xt
i depends on xtk

i and the

choice of gradients in between time indices tk and t − 1.

Now define Yi :=
∑tk+1−1

t=tk
Y t
i . Let pi be the distribution

of Yi, which we will take when using Lemma 1.

It is not hard to show that for any honest client i ∈ Ktk ,

we have E‖Yi − E[Yi]‖2 ≤ H2σ2

b . It is also easy to see

that the hypothesis of Lemma 1 is satisfied with µi =

E[Yi], σ
2
pi

= H2σ2

b for all honest clients i ∈ Ktk , i.e., we

have Eyi∼pi
[〈yi−E[yi],v〉2] ≤ H2σ2

b , ∀v ∈ R
d, ‖v‖ = 1.

We are given K different accumulated gradients (each is a

summation of H gradients), out of which at least (1− ǫ)K
are according to the correct distribution. By considering

only the uncorrupted gradients (i.e., taking m = (1− ǫ)K),

we have from Lemma 1 that there exists a subset S ⊆ Ktk

of size (1 − ǫ′)(1 − ǫ)K ≥ (1 − (ǫ + ǫ′))K ≥ 2K
3 that

satisfies (in the following, ỹi = yi − E[yi])

λmax

( 1

|S|
∑

i∈S
ỹiỹ

T
i

)
≤ σ̂2

0 :=
4H2σ2

bǫ′

(
1 +

3d

2K

)
. (9)

Note that (9) bounds the deviation of the points in S from

their respective means E[yi]. However, in (7), we need to

bound the deviation of the points in S from their sample

mean 1
|S|
∑

i∈S yi. As it turns out, due to heterogeneity

in data and our use of local iterations, this extension is

non-trivial and requires some technical work, given next.

From the alternate definition of the largest eigenvalue of

symmetric matrices A ∈ R
d×d, we have λmax(A) =

sup
v∈Rd,‖v‖=1 v

T
Av. With this, (9) is equivalent to

sup
v∈Rd:‖v‖=1

1

|S|
∑

i∈S
〈yi − E[yi],v〉2 ≤ σ̂2

0 . (10)

Define yS := 1
|S|
∑

i∈S yi to be the sample mean of points

in S. Take an arbitrary unit vector v ∈ R
d. Using some

algebraic manipulations provided in Appendix A, we get

1

|S|
∑

i∈S
〈yi − yS ,v〉2 ≤ 6σ̂2

0+

4

|S|
∑

i∈S

1

|S|
∑

j∈S

∥∥E[yj ]− E[yi]
∥∥2 (11)
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Using the gradient dissimilarity bound and the L-

smoothness of F , we can show that for honest

clients r, s ∈ Ktk , we have ‖E[yr]− E[ys]‖2 ≤
H
∑tk+1−1

t=tk

(
6κ2 + 3L2

E‖xt
r − xt

s‖2
)
. Using this bound

in (11) together with some algebraic manipulations, we get

1

|S|
∑

i∈S
〈yi − yS ,v〉2 ≤ 6σ̂2

0 + 24H2κ2

+
12HL2

|S|
∑

i∈S

1

|S|
∑

j∈S

tk+1−1∑

t=tk

E‖xt
r − xt

s‖2 (12)

Now we bound the last term of (12), which is the drift in

local parameters at different clients in between any two

synchronization indices.

Lemma 2. If η ≤ 1
8HL , we have

∑tk+1−1
t=tk

E ‖xt
r − xt

s‖
2 ≤ 7H3η2

(
σ2

b + 3κ2
)

.

Substituting this in (12) together with some algebraic ma-

nipulations provided in Appendix A, we get

1

|S|
∑

i∈S
〈yi − yS ,v〉2 ≤

25H2σ2

bǫ′

(
1 +

3d

2K

)
+ 28H2κ2.

Note that this bound holds for all unit vectors v ∈ R
d. Now

substituting g
tk,tk+1

i,accu = yi, g
tk,tk+1

S,accu = yS and using the

alternate definition of largest eigenvalue proves Theorem 2.

4. Experiments

In this section, we present preliminary numerical results on

a non-convex objective. Additional implementation details

can be found in Appendix F in the supplementary material.

Setup: We train a single layer neural network for image

classification on the MNIST handwritten digit (from 0-9)

dataset. The hidden layer has 25 nodes with ReLU acti-

vation function and the output has softmax function. The

dimension of the model parameter vector is 19, 885.7 All

clients compute stochastic gradients on a batch-size of 128
in each iteration and communicate the local parameter vec-

tors with the server after taking H = 7 local iterations.

For all the defense mechanisms, we start with a step-size

η = 0.08 and decrease its learning rate by a factor of 0.96
when the difference in the corresponding test accuracies in

the last 2 consecutive epochs is less than 0.001.

Heterogeneous datasets: The MNIST dataset has 60, 000
training images (with 6000 images of each label) and

10, 000 test images (each having 28 × 28 = 784 pixels),

7784× 25 = 19, 600 weights between the input and the first
layer, 25 bias terms (one for each node in the hidden layer), 25×
10 = 250 weights between the first layer and the output layer, and
10 bias terms (one for each node in the output layer).

and is distributed among the 200 clients in the following

heterogeneous manner: Each client takes a random permuta-

tion of the probability vector [0.8, 0.1, 0.1, 0, 0, 0, 0, 0, 0, 0].
Suppose it obtains a vector p such that pi = 0.8, pj =
0.1, pk = 0.1 for some distinct i, j, k ∈ [0 : 9] and pl = 0
for the rest of the indices, then it selects uniformly at random

800, 100, 100 training images with label i, j, k, respectively.

Adversarial attacks: We have 12.5% adversarial clients,

i.e., 25 out of 200 clients are corrupt, and the corrupt set

of clients may change in every iteration. We implement

six adversarial attacks: (i) the ‘random gradient attack’,

where local gradients at clients are replaced by indepen-

dent Gaussian random vectors having the same norm8 as

the corresponding gradients; (ii) the ‘reverse average gradi-

ent attack’, where corrupt clients send -ve of their average

local gradients; (iii) the ‘gradient shift attack’, where lo-

cal gradients of corrupt clients are shifted by a scaled (by

factor of 50) Gaussian random vector (same for all); (iv)

the ‘all ones attack’, where gradients of the corrupt clients

are replaced by the all ones vector; (v) the ‘Baruch attack’,

which was designed in (Baruch et al., 2019) specifically

for coordinate-wise trimmed mean (trimmean) (Yin et al.,

2018), Krum (Blanchard et al., 2017), and Bulyan (Mhamdi

et al., 2018) defenses; and (vi) the ‘reverse scaled average

gradient attack’, where corrupt clients compute the -ve of

their average local gradients, scale it by the factor of 50, and

then send it.

Performance: We train our neural network under all

the above-described adversarial attacks, and demonstrate

in Figure 1 the performance of our method (red color)

against four other methods for robust gradient aggregation,

namely, coordinate-wise trimmed-mean (black color) and

coordinate-wise median (green color), which were used in

(Xie et al., 2019a; Yin et al., 2018; 2019), Krum (magenta

color), which was proposed in (Blanchard et al., 2017), and

Bulyan (cyan color), which was proposed in (Mhamdi et al.,

2018). For reference, we also plot (in blue color) the per-

formance of Algorithm 1 with the same setup as above but

without adversaries and with no decoding. For each attack,

we plot two curves, one for training loss vs. number of

epochs and the other for test accuracy vs. number of epochs.

It can be seen from the comparison in Figure 1 that our

method consistently outperforms all these methods in all the

attacks that we have implemented.9 In particular, for attacks

8Note that changing the direction while keeping the norm same
is among the worst attacks as the corrupt gradients cannot be
filtered out just based on their norms.

9We found out that the Bulyan defense mechanism is signif-
icantly slower than all other mechanisms. Due to this, we only
implemented this for the Baruch-attack, which was specifically
designed against Krum/Bulyan algorithms. Since a basic building
block of Bulyan is Krum, and Krum performs the worst among all
the mechanisms that we implemented, we do not expect Bulyan
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Supplementary Material

A. Complete Proof of Theorem 2

Let tk, tk+1 ∈ IT be any two consecutive synchronization indices. For i ∈ Ktk corresponding to an honest client, let

Y tk
i , Y tk+1

i , . . . , Y
tk+1−1
i be a sequence of (tk+1−tk) ≤ H (dependent) random variables, where, for any t ∈ [tk : tk+1−1],

the random variable Y t
i is distributed as

Y t
i ∼ Unif

(
F⊗b

i

(
xt
i

(
xtk
i , Y tk

i , . . . , Y t−1
i

)))
. (13)

Here, Y t
i corresponds to the stochastic sampling of mini-batch gradients from the set F⊗b

i

(
xt
i

(
xtk
i , Y tk

i , . . . , Y t−1
i

))
, which

itself depends on the local parameters xtk
i (which is a deterministic quantity) at the last synchronization index and the

past realizations of Y tk
i , . . . , Y t−1

i . This is because the evolution of local parameters xt
i depends on xtk

i and the choice of

gradients in between time indices tk and t− 1. Now define Yi :=
∑tk+1−1

t=tk
Y t
i ; and let pi be the distribution of Yi. This is

the distribution pi we will take when using Lemma 1.

Claim 1. For any honest client i ∈ Ktk , we have E‖Yi − E[Yi]‖2 ≤ H2σ2

b , where expectation is taken over sampling

stochastic gradients by client i between the synchronization indices tk and tk+1.

Proof. Take an arbitrary honest client i ∈ Ktk .

E‖Yi − E[Yi]‖2 = E

∥∥∥∥∥

tk+1−1∑

t=tk

(
Y t
i − E[Y t

i ]
)
∥∥∥∥∥

2
(a)

≤ (tk+1 − tk)

tk+1−1∑

t=tk

E‖Y t
i − E[Y t

i ]‖2
(b)

≤ H2σ2

b
,

where (a) follows from the Jensen’s inequality; in (b) we used (tk+1 − tk) ≤ H and that E‖Y t
i − E[Y t

i ]‖2 ≤ σ2

b for all

j ∈ [H], which follows from the explanation below:

E‖Y t
i − E[Y t

i ]‖2 =
∑

y
tk
i ,...,yt−1

i

Pr
[
Y j
i = y

j
i , j ∈ [tk : t− 1]

]

× E

[
‖Y t

i − E[Y t
i ]‖2 |Y j

i = y
j
i , j ∈ [tk : t− 1]

]

(c)

≤
∑

y
tk
i ,...,yt−1

i

Pr
[
Y j
i = y

j
i , j ∈ [tk : t− 1]

]
· σ

2

b

=
σ2

b
.

Note that Y t
i ∼ Unif

(
F⊗b

i

(
xt
i

(
xtk
i , Y tk

i , . . . , Y t−1
i

)))
. So, when we fix the values Y tk

i = ytk
i , . . . , Y t−1

i = yt−1
i , the

parameter vector xt
i

(
xtk
i , Y tk

i . . . , Y t−1
i

)
becomes a deterministic quantity. Now we can use the variance bound (5) in order

to bound E

[
‖Y t

i − E[Y t
i ]‖2 |Y j

i = y
j
i , j ∈ [tk : t− 1]

]
≤ σ2

b . This is what we used in (c).

It is easy to see that the hypothesis of Lemma 1 is satisfied with µi = E[Yi], σ
2
pi

= H2σ2

b for all honest clients i ∈ Ktk (note

that pi is the distribution of Yi):

Eyi∼pi
[〈yi − E[yi],v〉2]

(d)

≤ E[‖yi − Eyi∼pi
[yi]‖2] · ‖v‖2

(e)

≤ H2σ2

b
,

where (d) follows from the Cauchy-Schwarz inequality and (e) follows from Claim 1 and ‖v‖ ≤ 1.

We are given K different (summations of H) gradients, out of which at least (1−ǫ)K are according to the correct distribution.

By considering only the uncorrupted gradients (i.e., taking m = (1 − ǫ)K), we have from Lemma 1 that there exists a
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subset S ⊆ Ktk of K gradients of size (1− ǫ′)(1− ǫ)K ≥ (1− (ǫ+ ǫ′))K ≥ 2K
3 (where in the last inequality we used

(ǫ+ ǫ′) ≤ 1
3 ) that satisfies

λmax

(
1

|S|
∑

i∈S
(yi − E[yi]) (yi − E[yi])

T

)
≤ 4H2σ2

bǫ′

(
1 +

3d

2K

)
. (14)

Note that (14) bounds the deviation of the points in S from their respective means E[yi]. However, in (7), we need to bound

the deviation of the points in S from their sample mean 1
|S|
∑

i∈S yi. As it turns out, due to our use of local iterations, this

will require a non-trivial amount of technical work.

From the alternate definition of the largest eigenvalue of symmetric matrices A ∈ R
d×d, we have

λmax(A) = sup
v∈Rd,‖v‖=1

vT
Av. (15)

Applying this with A = 1
|S|
∑

i∈S (yi − E[yi]) (yi − E[yi])
T

, we can equivalently write (14) as

sup
v∈Rd:‖v‖=1

(
1

|S|
∑

i∈S
〈yi − E[yi],v〉2

)
≤ σ̂2

0 :=
4H2σ2

bǫ′

(
1 +

3d

2K

)
. (16)

Define yS := 1
|S|
∑

i∈S yi to be the sample mean of the points in S . Take an arbitrary v ∈ R
d such that ‖v‖ = 1.

1

|S|
∑

i∈S
〈yi − yS ,v〉2 =

1

|S|
∑

i∈S
[〈yi − E[yi],v〉+ 〈E[yi]− yS ,v〉]2

≤ 2

|S|
∑

i∈S
〈yi − E[yi],v〉2 +

2

|S|
∑

i∈S
〈E[yi]− yS ,v〉2 (using (a+ b)2 ≤ 2a2 + 2b2)

Using (16) to bound the first term, we get

≤ 2σ̂2
0 +

2

|S|
∑

i∈S

〈
E[yi]−

1

|S|
∑

j∈S
yj ,v

〉2

= 2σ̂2
0 +

2

|S|
∑

i∈S

[ 1

|S|
∑

j∈S
〈yj − E[yi],v〉

]2

≤ 2σ̂2
0 +

2

|S|
∑

i∈S

1

|S|
∑

j∈S
〈yj − E[yi],v〉2 (using the Jensen’s inequality)

= 2σ̂2
0 +

2

|S|
∑

i∈S

1

|S|
∑

j∈S

[
〈yj − E[yj ],v〉+ 〈E[yj ]− E[yi],v〉

]2

≤ 2σ̂2
0 +

2

|S|
∑

i∈S

2

|S|
∑

j∈S
〈yj − E[yj ],v〉2 +

2

|S|
∑

i∈S

2

|S|
∑

j∈S
〈E[yj ]− E[yi],v〉2

(using (a+ b)2 ≤ 2a2 + 2b2)

≤ 2σ̂2
0 +

4

|S|
∑

j∈S
〈yj − E[yj ],v〉2 +

4

|S|
∑

i∈S

1

|S|
∑

j∈S
‖E[yj ]− E[yi]‖2

(using the Cauchy-Schwarz inequality and that ‖v‖ ≤ 1)

≤ 6σ̂2
0 +

4

|S|
∑

i∈S

1

|S|
∑

j∈S
‖E[yj ]− E[yi]‖2 (17)

Claim 2. For any r, s ∈ Ktk , we have

‖E[yr]− E[ys]‖2 ≤ H

tk+1−1∑

t=tk

(
6κ2 + 3L2

E‖xt
r − xt

s‖2
)
, (18)
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where expectations in E[yr] and E[ys] are taken over sampling stochastic gradients between the synchronization indices

tk, . . . , tk+1 by client r and client s, respectively.

Proof. Note that we can equivalently write E[yr] = E[Yr] and E[ys] = E[Ys].

‖E[Yr]− E[Ys]‖2 = ‖E[Yr]− E[Ys]‖2

=

∥∥∥∥∥

tk+1−1∑

t=tk

(
E[Y t

r ]− E[Y t
s ]
)∥∥∥∥∥

2

≤ (tk+1 − tk)

tk+1−1∑

t=tk

∥∥E[Y t
r ]− E[Y t

s ]
∥∥2 (19)

By definition of Y t
s from (13), we have Y t

s ∼ Unif
(
F⊗b

s

(
xt
s

(
xtk
s , Y tk

s , . . . , Y t−1
s

)))
, which implies using (4) that E[Y t

s ] =

E
[
∇Fs

(
xt
s

(
xtk
s , Y tk

s , . . . , Y t−1
s

))]
, where on the RHS, expectation is taken over (Y tk

s , . . . , Y t−1
s ). To make the notation

less cluttered, in the following, for any s ∈ Ktk , we write xt
s to denote xt

s

(
xtk
s , Y tk

s , . . . , Y t−1
s

)
with the understanding that

expectation is always taken over the sampling of stochastic gradients between tk and tk+1. With these substitutions, the t’th
term from (20) can be written as:

∥∥E[Y t
r ]− E[Y t

s ]
∥∥2 =

∥∥E
[
∇Fr(x

t
r)−∇Fs(x

t
s)
]∥∥2

(a)

≤ E
∥∥∇Fr

(
xt
r

)
−∇Fs

(
xt
s

)∥∥2 (20)

(b)

≤ 3E
∥∥∇Fr

(
xt
r

)
−∇F

(
xt
r

)∥∥2 + 3E
∥∥∇Fs

(
xt
s

)
−∇F

(
xt
s

)∥∥2

+ 3E
∥∥∇F

(
xt
r

)
−∇F

(
xt
s

)∥∥2

(c)

≤ 6κ2 + 3L2
E‖xt

r − xt
s‖2. (21)

Here, (a) and (b) both follow from the Jensen’s inequality. (c) used the gradient dissimilarity bound from (6) to bound the

first two terms11 and L-Lipschitzness of∇F to bound the last term. Substituting the bound from (21) back in (20) and using

(tk+1 − tk) ≤ H proves Claim 2.

Using the bound from (18) in (17) gives

1

|S|
∑

i∈S
〈yi − yS ,v〉2 ≤ 6σ̂2

0 +
4

|S|
∑

i∈S

1

|S|
∑

j∈S
H

tk+1−1∑

t=tk

(
6κ2 + 3L2

E‖xt
r − xt

s‖2
)

= 6σ̂2
0 + 24H2κ2 +

12HL2

|S|
∑

i∈S

1

|S|
∑

j∈S

tk+1−1∑

t=tk

E‖xt
r − xt

s‖2 (22)

Now we bound the last term of (22), which is the drift in local parameters at different clients in between any two

synchronization indices.

Lemma 3. For any r, s ∈ Ktk , if η ≤ 1
8HL , we have

tk+1−1∑

t=tk

E
∥∥xt

r − xt
s

∥∥2 ≤ 7H3η2
(
σ2

b
+ 3κ2

)
, (23)

where expectation is taken over sampling stochastic gradients at clients r, s between the synchronization indices tk and

tk+1.

11Note that though x
t
r’s are random quantities, we can still bound E

∥

∥∇Fr(x
t
r)−∇Fs(x

t
s)
∥

∥

2
≤ κ2 because the gradient dissimilarity

bound (6) holds uniformly over the entire domain.
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Proof. For any t ∈ [tk : tk+1 − 1] and r, s ∈ Ktk , define Dt
r,s = E ‖xt

r − xt
s‖

2
. Note that at synchronization time tk, all

clients in the active set Ktk have the same parameters, i.e., xtk
r = xtk for every r ∈ Ktk .

Dt
r,s = E

∥∥xt
r − xt

s

∥∥2 = E

∥∥∥∥∥∥


xtk

r − η

t−1∑

j=tk

gr(x
j
r)


−


xtk

s − η
t−1∑

j=tk

gs(x
j
s)



∥∥∥∥∥∥

2

= η2E

∥∥∥∥∥∥

t−1∑

j=tk

(
gr(x

j
r)− gs(x

j
s)
)
∥∥∥∥∥∥

2

(Since xtk
r = xtk , ∀r ∈ Ktk )

≤ η2(t− tk)
t−1∑

j=tk

E
∥∥gr(x

j
r)− gs(x

j
s)
∥∥2

≤ η2H

t−1∑

j=tk

(
3E
∥∥gr(x

j
r)−∇Fr(x

j
r)
∥∥2 + 3E

∥∥gs(x
j
s)−∇Fs(x

j
s)
∥∥2

+3E
∥∥∇Fr(x

j
r)−∇Fs(x

j
s)
∥∥2
)

(24)

To bound the first and the second terms we use the variance bound from (5).12 We can bound the third term in the same way

as we bounded it in (20) and obtained (21). This gives

Dt
r,s ≤ η2H

t−1∑

j=tk

(
6σ2

b
+ 18κ2 + 9L2

E‖xj
r − xj

s‖2
)

≤ 6H2σ2η2

b
+ 18H2η2κ2 + 9L2Hη2

t−1∑

j=tk

Dj
r,s (Since Dj

r,s = E
∥∥xj

r − xj
s

∥∥2)

Taking summation from t = tk to tk+1 − 1 gives

tk+1−1∑

t=tk

Dt
r,s ≤

tk+1−1∑

t=tk


6H2σ2η2

b
+ 18H2η2κ2 + 9L2Hη2

t−1∑

j=tk

Dj
r,s




≤ 6H3σ2η2

b
+ 18H3η2κ2 + 9L2H2η2

tk+1−1∑

t=tk

Dt
r,s.

After rearranging terms, we get

(1− 9L2H2η2)

tk+1−1∑

t=tk

Dt
r,s ≤

6H3σ2η2

b
+ 18H3η2κ2. (25)

If we take η ≤ 1
8HL , we get

(
1− 9η2L2H2

)
≥ 6

7 . Substituting this in the LHS of (25) yields
∑tk+1−1

t=tk
Dt

r,s ≤ 7H3σ2η2

b +

21H3η2κ2, which proves Lemma 3.

Substituting the bound from (23) for the last term in (22) gives

1

|S|
∑

i∈S
〈yi − yS ,v〉2 ≤ 6σ̂2

0 + 24H2κ2 +
12HL2

|S|
∑

i∈S

1

|S|
∑

j∈S

(
7H3η2

(
σ2

b
+ 3κ2

))

= 6σ̂2
0 + 24H2κ2 + 84H4L2η2

(
σ2

b
+ 3κ2

)

12Note that xj
r’s are random quantities, however, since the variance bound (5) holds uniformly over the entire domain, we can bound

E
∥

∥gr(x
j
r)−∇Fr(x

j
r)
∥

∥

2

≤ σ2

b
.
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≤ 6σ̂2
0 + 28H2κ2 +

21H2σ2

16b
(Using η ≤ 1

8LH )

≤ 24H2σ2

bǫ′

(
1 +

3d

2K

)
+

21H2σ2

16b
+ 28H2κ2 (Since σ̂2

0 = 4H2σ2

bǫ′

(
1 + 3d

2K

)
)

≤ 25H2σ2

bǫ′

(
1 +

3d

2K

)
+ 28H2κ2. (26)

In the last inequality we used 21
16 ≤ 1

ǫ′ ≤ 1
ǫ′

(
1 + 3d

2K

)
, where the first inequality follows because ǫ′ ≤ 1

3 . Note that (26)

holds for every unit vector v ∈ R
d. Using this and substituting g

tk,tk+1

i,accu = yi, g
tk,tk+1

S,accu = yS in (26), we get

sup
v∈Rd:‖v‖=1

1

|S|
∑

i∈S

〈
g
tk,tk+1

i,accu − g
tk,tk+1

S,accu ,v
〉2
≤ 25H2σ2

bǫ′

(
1 +

3d

2K

)
+ 28H2κ2.

This, in view of the alternate definition of the largest eigenvalue given in (15), is equivalent to (7), which proves Theorem 2.

B. Convergence Proof of the Strongly-Convex Part of Theorem 1

Let IT := {t1, t2, . . . , tk, . . .} with t1 = 0 be the set of synchronization indices at which server selects a subset K ⊆ [R]
of K clients and sends the current global model parameters to them. Upon receiving that, clients in K performs local

SGD steps based on their own local datasets until the next synchronization index, at which they send their local model

parameters to the server. When server has received the updates from clients, it applies the outlier-filtering procedure RAGE

(see Algorithm 1) to robustly estimate the average of the uncorrupted accumulated gradients and then updates the global

model parameters. We assume that H = maxi≥1(ti+1 − ti).

At any iteration t ∈ [T ], let Kt ⊆ [R] denote the set of clients that are active at time t. Let xt := 1
K

∑
r∈Kt

xt
r denote the

average parameter vector of the clients in the active set Kt. Note that, for any ti ∈ IT , the clients in Kti remain active at all

time indices t such that t ∈ [ti : ti+1 − 1].

In the following, we denote the decoded gradient at the server at any synchronization time ti+1 by ĝ
ti,ti+1

accu , which is an

estimate of the average of the accumulated gradients between time ti and ti+1 of the honest clients in Kti , as in Theorem 2.

From Algorithm 1, we can write the parameter update rule for the global model at the synchronization indices as:

xti+1 = xti − ηĝti,ti+1

accu .

Note that at any synchronization index ti ∈ IT , when server selects a subset Kti of clients and sends the global parameter

vector xti , all clients in Kti set their local model parameters to be equal to the global model parameters, i.e., xti
r = xti

holds for every r ∈ Kti .

Now we proceed with proving the strongly-convex part of Theorem 1.

First we derive a recurrence relation for the synchronization indices and then later we extend the proof to all indices.

Consider the (i+ 1)’st synchronization index ti+1 ∈ IT .

xti+1 = xti − ηĝti,ti+1

accu

= xti − η
1

K

∑

r∈Kti

ti+1−1∑

t=ti

∇Fr(x
t
r)− η


ĝ

ti,ti+1

accu − 1

K

∑

r∈Kti

ti+1−1∑

t=ti

∇Fr(x
t
r)




For simplicity of notation, define E ,

(
ĝ
ti,ti+1

accu − 1
K

∑
r∈Kti

∑ti+1−1
t=ti

∇Fr(x
t
r)
)

. Substituting this in the above and using

xti = 1
K

∑
r∈Kti

xti
r gives

xti+1 =
1

K

∑

r∈Kti

xti
r − η

1

K

∑

r∈Kti

ti+1−1∑

t=ti

∇Fr(x
t
r)− ηE
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=
1

K

∑

r∈Kti

(
xti
r − η

ti+1−1∑

t=ti

∇Fr(x
t
r)

)
− ηE

=
1

K

∑

r∈Kti

(
xti+1−1
r − η∇Fr(x

ti+1−1
r )

)
− ηE

= xti+1−1 − η
1

K

∑

r∈Kti

∇Fr(x
ti+1−1
r )− ηE

= xti+1−1 − η∇F (xti+1−1) + η
1

K

∑

r∈Kti

(
∇F (xti+1−1)−∇Fr(x

ti+1−1
r )

)
− ηE (27)

Subtracting x∗ from both sides gives:

xti+1 − x∗ = xti+1−1 − x∗ − η∇F (xti+1−1)︸ ︷︷ ︸
=: u

+η
1

K

∑

r∈Kti

(
∇F (xti+1−1)−∇Fr(x

ti+1−1
r )

)

︸ ︷︷ ︸
=: v

−ηE (28)

This gives xti+1 − x∗ = u+ η(v − E). Taking norm on both sides and then squaring gives

∥∥xti+1 − x∗∥∥2 = ‖u‖2 + η2‖v − E‖2 + 2η〈u,v − E〉 (29)

Now we use a simple but powerful trick on inner-products together with the inequality 2〈a, b〉 ≤ ‖a‖2 + ‖b‖2 and get:

2η〈u,v − E〉 = 2

〈√
ηµ

2
u,

√
2η

µ
(v − E)

〉
≤ ηµ

2
‖u‖2 + 2η

µ
‖v − E‖2 (30)

Substituting this back in (29) gives

∥∥xti+1 − x∗∥∥2 ≤
(
1 +

ηµ

2

)
‖u‖2 + η

(
η +

2

µ

)
‖v − E‖2

≤
(
1 +

ηµ

2

)
‖u‖2 + 2η

(
η +

2

µ

)
‖v‖2 + 2η

(
η +

2

µ

)
‖E‖2

Substituting the values of u,v, E and taking expectation w.r.t. the stochastic sampling of gradients by clients in Kti between

iterations ti and ti+1 (while conditioning on the past) gives:

E
∥∥xti+1 − x∗∥∥2 ≤

(
1 +

µη

2

)
E
∥∥xti+1−1 − η∇F (xti+1−1)− x∗∥∥2

+ 2η

(
η +

2

µ

)
E

∥∥∥∥∥∥
1

K

∑

r∈Kti

(
∇F (xti+1−1)−∇Fr(x

ti+1−1
r )

)
∥∥∥∥∥∥

2

+ 2η

(
η +

2

µ

)
E

∥∥∥∥∥∥
ĝ
ti,ti+1

accu − 1

K

∑

r∈Kti

ti+1−1∑

t=ti

∇Fr(x
t
r)

∥∥∥∥∥∥

2

(31)

Now we bound each of the three terms on the RHS of (31) separately in Claim 3, Claim 4, and Claim 5, respectively.

Claim 3. For η < 1
L , we have

E
∥∥xti+1−1 − η∇F (xti+1−1)− x∗∥∥2 ≤ (1− µη)E

∥∥xti+1−1 − x∗∥∥2 . (32)

Proof. Expand the LHS.

E
∥∥xti+1−1 − x∗ − η∇F (xti+1−1)

∥∥2 = E
∥∥xti+1−1 − x∗∥∥2 + η2E

∥∥∇F (xti+1−1)
∥∥2
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+ 2ηE
〈
x∗ − xti+1−1,∇F (xti+1−1)

〉
(33)

We can bound the second term on the RHS using L-smoothness of F , which implies that ‖∇F (x)‖2 ≤ 2L(F (x)− F (x∗))
holds for every x ∈ R

d; see Fact 1 on page 23. We can bound the third term on the RHS using µ-strong convexity of F
as follows:

〈
x∗ − xti+1−1,∇F (xti+1−1)

〉
≤ F (x∗)− F (xti+1−1)− µ

2 ‖xti+1−1 − x∗‖2. Substituting these back in (33)

gives:

E
∥∥xti+1−1 − x∗ − η∇F (xti+1−1)

∥∥2 ≤ (1− µη)E
∥∥xti+1−1 − x∗∥∥2

− 2η(1− ηL)E
(
F (xti+1−1)− F (x∗)

)
(34)

Since η < 1
L , we have (1 − ηL) > 0. We also have F (xti+1−1) ≥ F (x∗). Using these together, we can ignore the last

term in the RHS of (34). This proves Claim 3.

Claim 4. For η ≤ 1
8HL , we have

E

∥∥∥∥∥∥
1

K

∑

r∈Kti

(
∇Fr(x

ti+1−1
r )−∇F (xti+1−1)

)
∥∥∥∥∥∥

2

≤ 2κ2 +
7H

32

(
σ2

b
+ 3κ2

)
. (35)

Proof. By definition, we have xti+1−1 = 1
K

∑
r∈Kti

xti+1−1.

E

∥∥∥∥∥∥
1

K

∑

r∈Kti

(
∇Fr(x

ti+1−1
r )−∇F (xti+1−1)

)
∥∥∥∥∥∥

2

≤ 1

K

∑

r∈Kti

E
∥∥∇Fr(x

ti+1−1
r )−∇F (xti+1−1)

∥∥2

≤ 2

K

∑

r∈Kti

(
E
∥∥∇Fr(x

ti+1−1
r )−∇F (xti+1−1

r )
∥∥2 + E

∥∥∇F (xti+1−1
r )−∇F (xti+1−1)

∥∥2
)

(a)

≤ 2

K

∑

r∈Kti

(
κ2 + L2

E
∥∥xti+1−1

r − xti+1−1
∥∥2
)

= 2κ2 +
2L2

K

∑

r∈Kti

E

∥∥∥xti+1−1
r − 1

K

∑

s∈Kti

xti+1−1
s

∥∥∥
2

≤ 2κ2 +
2L2

K

∑

r∈Kti

1

K

∑

s∈Kti

E
∥∥xti+1−1

r − xti+1−1
s

∥∥2 (36)

(b)

≤ 2κ2 +
2L2

K

∑

r∈Kti

1

K

∑

s∈Kti

(
7H3η2

(
σ2

b
+ 3κ2

))

= 2κ2 + 14L2H3η2
(
σ2

b
+ 3κ2

)
(c)

≤ 2κ2 +
7H

32

(
σ2

b
+ 3κ2

)

In (a) we used the gradient dissimilarity bound from (6) to bound the first term and L-Lipschitz gradient property of F to

bound the second term. For (b), note that we have already bounded
∑ti+1−1

t=ti
E ‖xt

r − xt
s‖

2 ≤ 7H3η2
(

σ2

b + 3κ2
)

in (23)

in Lemma 3. Since each term in the summation is trivially bounded by the same quantity, which we used in (b) to bound

E

∥∥∥xti+1−1
r − x

ti+1−1
s

∥∥∥
2

≤ 7H3η2
(

σ2

b + 3κ2
)

. In (c) we used η ≤ 1
8HL .

Claim 5. If η ≤ 1
8HL , then with probability at least 1− exp

(
− ǫ′2(1−ǫ)K

16

)
, we have

E

∥∥∥∥∥∥
ĝ
ti,ti+1

accu − 1

K

∑

r∈Kti

ti+1−1∑

t=ti

∇Fr(x
t
r)

∥∥∥∥∥∥

2

≤ 3Υ 2 +
8H2σ2

b
+ 30H2κ2, (37)

where Υ 2 = O
(
σ2
0(ǫ+ ǫ′)

)
and σ2

0 = 25H2σ2

bǫ′

(
1 + 3d

2K

)
+ 28H2κ2.
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Proof. Let S ⊆ Kti denote the subset of honest clients of size (1 − (ǫ + ǫ′))K, whose average accumulated gradient

between time ti and ti+1 that server approximates at time ti+1 in Theorem 2. Let the average accumulated gradient be

denoted by g
ti,ti+1

S,accu = 1
|S|
∑

r∈S g
ti,ti+1
r,accu , where g

ti,ti+1
r,accu =

∑ti+1−1
t=ti

gr(x
t
r), and server approximates it by ĝ

ti,ti+1

accu . Note

that S exists with probability at least 1− exp
(
− ǫ′2(1−ǫ)K

16

)
. To make the notation less cluttered, for every r ∈ Kti , define

∇F ti,ti+1
r :=

∑ti+1−1
t=ti

∇Fr(x
t
r).

E

∥∥∥∥∥∥
ĝ
ti,ti+1

accu − 1

K

∑

r∈Kti

∇F ti,ti+1
r

∥∥∥∥∥∥

2

≤ 3E

∥∥∥∥∥ĝ
ti,ti+1

accu − 1

|S|
∑

r∈S
g
ti,ti+1
r,accu

∥∥∥∥∥

2

3E

∥∥∥∥∥
1

|S|
∑

r∈S
g
ti,ti+1
r,accu −

1

|S|
∑

r∈S
∇F ti,ti+1

r

∥∥∥∥∥

2

+ 3E

∥∥∥∥∥∥
1

|S|
∑

r∈S
∇F ti,ti+1

r − 1

K

∑

s∈Kti

∇F ti,ti+1
s

∥∥∥∥∥∥

2

(38)

Now we bound each term on the RHS of (38).

Bounding the first term on the RHS of (38). We can bound this using the second part of Theorem 2 as follows (note

that given the first part of Theorem 2 is satisfied, the second part provides deterministic approximation guarantees, which

implies that it also holds in expectation):

E

∥∥∥∥∥ĝ
ti,ti+1

accu − 1

|S|
∑

r∈S
g
ti,ti+1
r,accu

∥∥∥∥∥

2

≤ Υ 2, (39)

where Υ 2 = O
(
σ2
0(ǫ+ ǫ′)

)
and σ2

0 = 25H2σ2

bǫ′

(
1 + 3d

2K

)
+ 28H2κ2.

Bounding the second term on the RHS of (38). We can bound this using the variance bound (5).

E

∥∥∥∥∥
1

|S|
∑

r∈S

(
g
ti,ti+1
r,accu −∇F ti,ti+1

r

)∥∥∥∥∥

2

= E

∥∥∥∥∥

ti+1−1∑

t=ti

1

|S|
∑

r∈S

(
gr(x

t
r)−∇Fr(x

t
r)
)
∥∥∥∥∥

2

(a)

≤ (ti+1 − ti)

ti+1−1∑

t=ti

E

∥∥∥∥∥
1

|S|
∑

r∈S

(
gr(x

t
r)−∇Fr(x

t
r)
)
∥∥∥∥∥

2

(b)

≤ H

ti+1−1∑

t=ti

1

|S|2E
∥∥∥∥∥
∑

r∈S

(
gr(x

t
r)−∇Fr(x

t
r)
)
∥∥∥∥∥

2

(c)
= H

ti+1−1∑

t=ti

1

|S|2
∑

r∈S
E
∥∥gr(x

t
r)−∇Fr(x

t
r)
∥∥2

(d)

≤ H

ti+1−1∑

t=ti

1

|S|
σ2

b

(e)

≤ 4H2σ2

3bK
. (40)

In (a) we used the Jensen’s inequality. In (b) used |ti+1− ti| ≤ H . In (c) we used (4) (which states that E[gr(x)] = ∇Fr(x)
holds for every honest client r ∈ [R] and x ∈ R

d) together with that the stochastic gradients at different clients are sampled

independently, and then we used the fact that the variance of independent random variables is equal to the sum of the

variances. Note that Var(gr(x
t
r)) = E ‖gr(x

t
r)−∇Fr(x

t
r)‖

2
. In (d) we used the variance bound (5). In (e) we used

|S| ≥ (1− (ǫ+ ǫ′))K ≥ 2K
3 , where the last inequality uses (ǫ+ ǫ′) ≤ 1

3 .
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Bounding the third term on the RHS of (38).

E

∥∥∥∥∥∥
1

|S|
∑

r∈S
∇F ti,ti+1

r − 1

K

∑

s∈Kti

∇F ti,ti+1
s

∥∥∥∥∥∥

2

= E

∥∥∥∥∥∥

ti+1−1∑

t=ti

( 1

|S|
∑

r∈S
∇Fr(x

t
r)−

1

K

∑

s∈Kti

∇Fs(x
t
s)
)
∥∥∥∥∥∥

2

(a)

≤ H

ti+1−1∑

t=ti

E

∥∥∥∥∥∥
1

|S|
∑

r∈S
∇Fr(x

t
r)−

1

K

∑

s∈Kti

∇Fs(x
t
s)

∥∥∥∥∥∥

2

(41)

In (a), first we used the Jensen’s inequality and then substituted |ti+1 − ti| ≤ H . In order to bound (41), it suffices to bound

E

∥∥∥ 1
|S|
∑

r∈S ∇Fr(x
t
r)− 1

K

∑
s∈Kti

∇Fs(x
t
s)
∥∥∥
2

for every t ∈ [ti : ti+1 − 1]. We bound this in the following. Take an

arbitrary t ∈ [ti : ti+1 − 1].

E

∥∥∥∥∥∥
1

|S|
∑

r∈S
∇Fr(x

t
r)−

1

K

∑

s∈Kti

∇Fs(x
t
s)

∥∥∥∥∥∥

2

≤ 3E

∥∥∥∥∥
1

|S|
∑

r∈S

(
∇Fr(x

t
r)−∇F (xt

r)
)
∥∥∥∥∥

2

+ 3E

∥∥∥∥∥∥
1

|S|
∑

r∈S
∇F (xt

r)−
1

K

∑

s∈Kti

∇F (xt
s)

∥∥∥∥∥∥

2

+ 3E

∥∥∥∥∥∥
1

K

∑

s∈Kti

(
∇F (xt

s)−∇Fs(x
t
s)
)
∥∥∥∥∥∥

2

≤ 3

|S|
∑

r∈S
E
∥∥∇Fr(x

t
r)−∇F (xt

r)
∥∥2 + 3

K

∑

s∈Kti

E
∥∥∇F (xt

s)−∇Fr(x
t
r)
∥∥2

+ 3E

∥∥∥∥∥∥
1

|S|
∑

r∈S

(
∇F (xt

r)−∇F (xt)
)
− 1

K

∑

s∈Kti

(
∇F (xt

s)−∇F (xt)
)
∥∥∥∥∥∥

2

≤ 3κ2 + 3κ2 + 6E

∥∥∥∥∥
1

|S|
∑

r∈S
∇F (xt

r)−∇F (xt)

∥∥∥∥∥

2

+ 6E

∥∥∥∥∥∥
1

K

∑

s∈Kti

(
∇F (xt

s)−∇F (xt)
)
∥∥∥∥∥∥

2

≤ 6κ2 +
6

|S|
∑

r∈S
E
∥∥∇F (xt

r)−∇F (xt)
∥∥2 + 6

K

∑

s∈Kti

E
∥∥∇F (xt

s)−∇F (xt)
∥∥2

≤ 6κ2 +
6

|S|
∑

r∈S
L2

E
∥∥xt

r − xt
∥∥2 + 6

K

∑

s∈Kti

L2
E
∥∥xt

s − xt
∥∥2

= 6κ2 +
6L2

|S|
∑

r∈S
E

∥∥∥xt
r −

1

K

∑

s∈Kti

xt
s

∥∥∥
2

+
6L2

K

∑

r∈Kti

E

∥∥∥xt
r −

1

K

∑

s∈Kti

xt
s

∥∥∥
2

≤ 6κ2 +
6L2

|S|
∑

r∈S

1

K

∑

s∈Kti

E
∥∥xt

r − xt
s

∥∥2 + 6L2

K

∑

r∈Kti

1

K

∑

s∈Kti

E
∥∥xt

r − xt
s

∥∥2

Substituting this back in (41) gives:

E

∥∥∥∥∥∥
1

|S|
∑

r∈S
∇F ti,ti+1

r − 1

K

∑

s∈Kti

∇F ti,ti+1
s

∥∥∥∥∥∥

2

≤ H

ti+1−1∑

t=ti

6κ2

+H

ti+1−1∑

t=ti


6L2

|S|
∑

r∈S

1

K

∑

s∈Kti

E
∥∥xt

r − xt
s

∥∥2 + 6L2

K

∑

r∈Kti

1

K

∑

s∈Kti

E
∥∥xt

r − xt
s

∥∥2



(a)

≤ 6H2κ2 + 6HL2

(
7H3η2

(
σ2

b
+ 3κ2

))
+ 6HL2

(
7H3η2

(
σ2

b
+ 3κ2

))

= 6H2κ2 + 84L2H4η2
(
σ2

b
+ 3κ2

)
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(b)

≤ 10H2κ2 +
21H2σ2

16b
. (42)

In (a) we used ti+1 − ti ≤ H and the bound
∑ti+1−1

t=ti
E ‖xt

r − xt
s‖

2 ≤ 7H3η2
(

σ2

b + 3κ2
)

, which holds when η ≤ 1
8HL ;

we have already shown this in (23) in Lemma 3. In (b) we used η ≤ 1
8HL .

Substituting the bounds from (39), (40), (42) in (38) gives

E

∥∥∥∥∥∥
ĝ
ti,ti+1

accu − 1

K

∑

r∈Kti

∇F ti,ti+1
r

∥∥∥∥∥∥

2

≤ 3Υ 2 +
4H2σ2

bK
+ 3

(
10H2κ2 +

21H2σ2

16b

)

≤ 3Υ 2 +
4H2σ2

bK
+ 30H2κ2 +

4H2σ2

b

= 3Υ 2 +
8H2σ2

b
+ 30H2κ2,

where Υ 2 = O
(
σ2
0(ǫ+ ǫ′)

)
and σ2

0 = 25H2σ2

bǫ′

(
1 + 3d

2K

)
+ 28H2κ2.

This completes the proof of Claim 5.

Using the bounds from (32), (35), (37) in (31) and using
(
1 + µη

2

)
(1− µη) ≤

(
1− µη

2

)
for the first term gives

E
∥∥xti+1 − x∗∥∥2 ≤

(
1− µη

2

)
E
∥∥xti+1−1 − x∗∥∥2 + 2η

(
η +

2

µ

)(
2κ2 +

7H

32

(
σ2

b
+ 3κ2

))

+ 2η

(
η +

2

µ

)(
3Υ 2 +

8H2σ2

b
+ 30H2κ2

)

≤
(
1− µη

2

)
E
∥∥xti+1−1 − x∗∥∥2 + 6η

µ

(
3Υ 2 +

9H2σ2

b
+ 33H2κ2

)
, (43)

where Υ 2 = O
(
σ2
0(ǫ+ ǫ′)

)
and σ2

0 = 25H2σ2

bǫ′

(
1 + 3d

2K

)
+28H2κ2. In the last inequality (43) we used η ≤ 1

8LH ≤ 1
L ≤ 1

µ ,

which implies (η + 2
µ ) ≤ 3

µ . Note that (43) holds with probability at least 1− exp
(
− ǫ′2(1−ǫ)K

16

)
.

Note that above recurrence in (43) holds only at the synchronization indices ti ∈ IT for i = 1, 2, 3, . . .. However, in order

to establish a recurrence that we can use to prove convergence, we need to show a recurrence relation for all t. Now we give

a recurrence at non-synchronization indices.

Take an arbitrary t ∈ [T ] and let ti ∈ IT be such that t ∈ [ti : ti+1 − 1]; when H ≥ 2, such t’s exist. Note that

xt = 1
K

∑
r∈Kti

xt
r.

xt+1 = xt − η
1

K

∑

r∈Kti

gr(x
t
r)

= xt − η
1

K

∑

r∈Kti

∇Fr(x
t
r)− η


 1

K

∑

r∈Kti

gr(x
t
r)−

1

K

∑

r∈Kti

∇Fr(x
t
r)




= xt − η∇F (xt) +
η

K

∑

r∈Kti

(
∇F (xt)−∇Fr(x

t
r)
)
− η

K

∑

r∈Kti

(
gr(x

t
r)−∇Fr(x

t
r)
)

(44)

Now, subtracting x∗ from both sides and following the same steps as in from (28) to (31), we get (in the following,

expectation is taken w.r.t. the stochastic sampling of gradients at the t’th iteration while conditioning on the past):

E
∥∥xt+1 − x∗∥∥2 ≤

(
1 +

µη

2

)
E
∥∥xt − x∗ − η∇F (xt)

∥∥2

+ 2η

(
η +

2

µ

)
E

∥∥∥∥∥∥
1

K

∑

r∈Kti

(
∇F (xt)−∇Fr(x

t
r)
)
∥∥∥∥∥∥

2
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+ 2η

(
η +

2

µ

)
E

∥∥∥∥∥∥
1

K

∑

r∈Kti

(
gr(x

t
r)−∇Fr(x

t
r)
)
∥∥∥∥∥∥

2

(45)

We can bound the first and the second terms on the RHS of (45) using (32) and (35), respectively,

as E ‖xt − η∇F (xt)− x∗‖2 ≤ (1− µη)E ‖xt − x∗‖2 and E

∥∥∥ 1
K

∑
r∈Kti

(∇F (xt)−∇Fr(x
t
r))
∥∥∥
2

≤ 2κ2 +

7H
32

(
σ2

b + 3κ2
)

. To bound the third term on the RHS of (45), we use the fact that variance of the sum of indepen-

dent random variables is equal to the sum of the variances and that clients sample stochastic gradients gr(x
t
r) independent of

each other; using this fact and (5), we can bound E

∥∥∥ 1
K

∑
r∈Kti

(gr(x
t
r)−∇Fr(x

t
r))
∥∥∥
2

≤ σ2

bK . Substituting these in (45)

and using
(
1 + µη

2

)
(1− µη) ≤

(
1− µη

2

)
for the first term and (η + 2

µ ) ≤ 3
µ (which follows because η ≤ 1

8HL ≤ 1
L ≤ 1

µ )

give

E
∥∥xt+1 − x∗∥∥2 ≤

(
1− µη

2

)
E
∥∥xt − x∗∥∥2 + 6η

µ

(
2κ2 +

7H

32

(
σ2

b
+ 3κ2

)
+

σ2

bK

)

≤
(
1− µη

2

)
E
∥∥xt − x∗∥∥2 + 6η

µ

(
3Hκ2 +

2Hσ2

b

)
(46)

Note that (46) holds with probability 1.

Now we have a recurrence at the synchronization indices given in (43) and at non-synchronization indices given in (46). Let

α =
(
1− µη

2

)
, β1 =

(
3Υ 2 + 9H2σ2

b + 33H2κ2
)

, and β2 =
(
3Hκ2 + 2Hσ2

b

)
. Substituting these and using (43) for the

synchronization indices and (46) for the rest of the indices, we get:

E
∥∥xT − x∗∥∥2 ≤ αT

∥∥x0 − x∗∥∥2 + 6η

µ




T/H∑

i=0

H−1∑

j=1

αiH+jβ2 +

T/H∑

i=0

αiHβ1


 (47)

≤ αT
∥∥x0 − x∗∥∥2 + 6η

µ

( ∞∑

i=0

αiβ2 +

∞∑

i=0

αiHβ1

)

= αT
∥∥x0 − x∗∥∥2 + 6η

µ

(
1

1− α
β2 +

1

1− αH
β1

)
(48)

Since α =
(
1− µη

2

)
, we have αH =

(
1− µη

2

)H (a)

≤ exp(−µηH
2 )

(b)

≤ 1− µηH
2 +

(
µηH
2

)2 (c)

≤ 1− µηH
2 + 1

16
µηH
2 = 1− 15

16
µηH
2 .

In (a) we used the inequality (1− 1
x )

x ≤ 1
e which holds for any x > 0; in (b) we used exp(−x) ≤ 1− x+ x2 which holds

for any x ≥ 0; in (c) we used η ≤ 1
8HL and µ ≤ L, which together imply µηH

2 ≤ 1
16 . Substituting these in (48) gives

E
∥∥xT − x∗∥∥2 ≤

(
1− µη

2

)T ∥∥x0 − x∗∥∥2 + 6η

µ

(
2

µη
β2 +

32

15µηH
β1

)

≤
(
1− µη

2

)T ∥∥x0 − x∗∥∥2 + 6× 32

15µ2

(
15

16
β2 +

1

H
β1

)

≤
(
1− µη

2

)T ∥∥x0 − x∗∥∥2 + 13

µ2

(
3Υ 2

H
+

11Hσ2

b
+ 36Hκ2

)
(49)

Note that the last term on the RHS of (49) is independent of η, which together with the dependence of η on the first term

implies that bigger the η, faster the convergence. Since we need η ≤ 1
8HL for Claim 4 and Claim 5 to hold, we choose

η = 1
8HL . Substituting this in (49) yields the convergence rate in the strongly-convex part of Theorem 1.

Error probability analysis. Note that (43) holds with probability at least 1 − exp
(
− ǫ′2(1−ǫ)K

16

)
and (46) holds with

probability 1. Since to arrive at (47) (which leads to our final bound (49)), we used (43) T
H times and (46)

(
T − T

H

)
times;

as a consequence, by union bound, we have that (49) holds with probability at least 1− T
H exp

(
− ǫ′2(1−ǫ)K

16

)
, which is at

least (1− δ), for any δ > 0, provided we run our algorithm for at most T ≤ δH exp( ǫ
′2(1−ǫ)K

16 ) iterations.
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This concludes the proof of the strongly-convex part of Theorem 1.

Fact 1. Let F : Rd → R be an L-smooth function with a global minimizer x∗. Then, for every x ∈ R
d, we have

‖∇F (x)‖2 ≤ 2L(F (x)− F (x∗)).

Proof. By definition of L-smoothness, we have F (y) ≤ F (x) + 〈∇F (x),y−x〉+ L
2 ‖y−x‖2 holds for every x,y ∈ R

d.

Fix an arbitrary x ∈ R
d and take infimum over y on both sides:

inf
y

F (y) ≤ inf
y

(
F (x) + 〈∇F (x),y − x〉+ L

2
‖y − x‖2

)

(a)
= inf

v:‖v‖=1
inf
t

(
F (x) + t〈∇F (x),v〉+ Lt2

2

)

(b)
= inf

v:‖v‖=1

(
F (x)− 1

2L
〈∇F (x),v〉2

)

(c)
=

(
F (x)− 1

2L
‖∇F (x)‖2

)

The value of t that minimizes the RHS of (a) is t = − 1
L 〈∇F (x),v〉, this implies (b); (c) follows from the Cauchy-Schwarz

inequality: 〈u,v〉 ≤ ‖u‖‖v‖, where equality is achieved whenever u = v. Now, substituting inf
y

F (y) = F (x∗) yields the

result.

C. Convergence Proof of the Non-Convex Part of Theorem 1

Let Kt ⊆ [R] denote the subset of clients of size |Kt| = K sampled at the t’th iteration. For any t ∈ [ti : ti+1 − 1], let

xt = 1
K

∑
k∈Kti

xt
k denote the average of the local parameters of clients in the sampling set Kti .

Similar to the proof given in Appendix B for the strongly-convex part of Theorem 1, here also, first we derive a recurrence

for the synchronization indices and then for non-synchronization indices.

For the synchronization indices t1, t2, . . . , tk, . . . ∈ IT , from (27), we have

xti+1 = xti+1−1 − η∇F (xti+1−1) + ηC (50)

where

C =
1

K

∑

r∈Kti

(
∇F (xti+1−1)−∇Fr(x

ti+1−1
r )

)
−


ĝ

ti,ti+1

accu − 1

K

∑

r∈Kti

ti+1−1∑

t=ti

∇Fr(x
t
r)


 . (51)

Now, using the definition of L-smoothness in (50), we have

F (xti+1) ≤ F (xti+1−1) +
〈
∇F (xti+1−1),xti+1 − xti+1−1

〉
+

L

2

∥∥xti+1 − xti+1−1
∥∥2

= F (xti+1−1)− η
〈
∇F (xti+1−1),∇F (xti+1−1)− C

〉
+

η2L

2

∥∥∇F (xti+1−1)− C
∥∥2

= F (xti+1−1)− η
∥∥∇F (xti+1−1)

∥∥2 + η
〈
∇F (xti+1−1), C

〉
+

η2L

2

∥∥∇F (xti+1−1)− C
∥∥2

(a)

≤ F (xti+1−1)− η
∥∥∇F (xti+1−1)

∥∥2 + η

(∥∥∇F (xti+1−1)
∥∥2

4
+ ‖C‖2

)

+
η2L

2

∥∥∇F (xti+1−1)− C
∥∥2

(b)

≤ F (xti+1−1)− 3η

4

∥∥∇F (xti+1−1)
∥∥2 + η‖C‖2 + η2L

(∥∥∇F (xti+1−1)
∥∥2 + ‖C‖2

)
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= F (xti+1−1)− η

(
3

4
− ηL

)∥∥∇F (xti+1−1)
∥∥2 + η (1 + ηL) ‖C‖2 (52)

In (a), we used the inequality 2〈a, b〉 ≤ τ‖a‖2 + 1
τ ‖b‖2, which holds for every τ > 0, and we used τ = 1

2 in (a). In (b),

we used the inequality ‖a + b‖2 ≤ 2(‖a‖2 + ‖b‖2). For η ≤ 1
8HL ≤ 1

8L , we have (3/4 − ηL) ≥ 1/2 and (1 + ηL) ≤ 9
8 .

Substituting these in (52) and taking expectation w.r.t. the stochastic sampling of gradients at clients inKit between iterations

ti and ti+1 (while conditioning on the past) gives:

E[F (xti+1)] ≤ E[F (xti+1−1)]− η

2
E
∥∥∇F (xti+1−1)

∥∥2 + 9η

8
E‖C‖2. (53)

Now we bound E‖C‖2. Substituting the value of C from (51) gives:

E‖C‖2 ≤ 2E

∥∥∥∥∥∥
1

K

∑

r∈Kti

(
∇F (xti+1−1)−∇Fr(x

ti+1−1
r )

)
∥∥∥∥∥∥

2

+ 2E

∥∥∥∥∥∥
ĝ
ti,ti+1

accu − 1

K

∑

r∈Kti

ti+1−1∑

t=ti

∇Fr(x
t
r)

∥∥∥∥∥∥

2

≤ 2

(
2κ2 +

7H

32

(
σ2

b
+ 3κ2

))
+ 2

(
3Υ 2 +

8H2σ2

b
+ 30H2κ2

)

≤ 2

(
3Υ 2 +

9H2σ2

b
+ 33H2κ2

)
(54)

Here, the first inequality used ‖a+ b‖2 ≤ 2(‖a‖2 + ‖b‖2) and the second inequality used the bounds from (35) and (37).

Substituting the bound from (54) into (53) gives

E[F (xti+1)] ≤ E[F (xti+1−1)]− η

2
E
∥∥∇F (xti+1−1)

∥∥2 + 9η

4

(
3Υ 2 +

9H2σ2

b
+ 33H2κ2

)
(55)

where Υ 2 = O
(
σ2
0(ǫ+ ǫ′)

)
and σ2

0 = 25H2σ2

bǫ′

(
1 + 3d

2K

)
+ 28H2κ2. Note that (55) holds with probability at least

1− exp
(
− ǫ′2(1−ǫ)K

16

)
.

Note that the above recurrence in (55) holds only at the synchronization indices ti ∈ IT for i = 1, 2, 3, . . .. Now we give a

recurrence at non-synchronization indices.

We have done a similar calculation in the proof of the strongly-convex part of Theorem 1 in Appendix B.

Take an arbitrary t ∈ [T ] and let ti ∈ IT be such that t ∈ [ti : ti+1 − 1]; when H ≥ 2, such t’s exist. Note that

xt = 1
K

∑
r∈Kti

xt
r.

From (44), we have xt+1 = xt − η∇F (xt) + ηD, where

D =
1

K

∑

r∈Kti

(
∇F (xt)−∇Fr(x

t
r)
)
− 1

K

∑

r∈Kti

(
gr(x

t
r)−∇Fr(x

t
r)
)
.

Using L-smoothness of F , and then performing similar algebraic manipulations that we used in order to arrive at (53), we

get:

E[F (xt+1)] ≤ E[F (xt)]− η

2
E
∥∥∇F (xt)

∥∥2 + 9η

8
E‖D‖2 (56)

Now we bound E‖D‖2:

E‖D‖2 ≤ 2E

∥∥∥∥∥∥
1

K

∑

r∈Kti

(
∇F (xt)−∇Fr(x

t
r)
)
∥∥∥∥∥∥

2

+ 2E

∥∥∥∥∥∥
1

K

∑

r∈Kti

(
gr(x

t
r)−∇Fr(x

t
r)
)
∥∥∥∥∥∥

2

≤ 2

(
2κ2 +

7H

32

(
σ2

b
+ 3κ2

)
+

σ2

bK

)
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≤ 2

(
3Hκ2 +

2Hσ2

b

)
(57)

Here, the second inequality used the same bounds on both the quantities on the RHS of the first inequality that we used to go

from (45) to (46).

Substituting the bound on E‖D‖2 from (57) into (56) gives

E[F (xt+1)] ≤ E[F (xt)]− η

2
E
∥∥∇F (xt)

∥∥2 + 9η

4

(
3Hκ2 +

2Hσ2

b

)
(58)

Note that (58) holds with probability 1.

Now we have a recurrence at synchronization indices given in (55) and at non-synchronization indices given in (58). Adding

(55) and (58) from t = 0 to T (use (55) for the synchronization indices and (58) for the rest of the indices) gives:

T∑

t=0

E[F (xt+1)] ≤
T∑

t=0

E[F (xt)]− η

2

T∑

t=0

E
∥∥∇F (xt)

∥∥2 + 9η

4

[
T

H

(
3Υ 2 +

9H2σ2

b
+ 33H2κ2

)

+

(
T − T

H

)(
3Hκ2 +

2Hσ2

b

)]
(59)

We can simplifying the constant term in the RHS of (59) as follows:

1

H

(
3Υ 2 +

9H2σ2

b
+ 33H2κ2

)
+

(
1− 1

H

)(
3Hκ2 +

2Hσ2

b

)

≤ 1

H

(
3Υ 2 +

9H2σ2

b
+ 33H2κ2

)
+

(
3Hκ2 +

2Hσ2

b

)

≤ 3Υ 2

H
+

11Hσ2

b
+ 36Hκ2

Substituting this in (59) and then rearranging, we get:

1

T

T∑

t=0

E
∥∥∇F (xt)

∥∥2 ≤ 2

ηT

[
E[F (x0)]− E[F (xT+1)]

]
+

9

2

(
3Υ 2

H
+

11Hσ2

b
+ 36Hκ2

)
(60)

Note that the last term in (60) is a constant. So, it would be best to take the step-size η to be as large as possible such that it

satisfies η ≤ 1
8HL . We take η = 1

8HL . Substituting this in (60) and using F (xT+1) ≥ F (x∗) gives

1

T

T∑

t=0

E
∥∥∇F (xt)

∥∥2 ≤ 16HL

T

[
E[F (x0)]− E[F (x∗)]

]
+

9

2

(
3Υ 2

H
+

11Hσ2

b
+ 36Hκ2

)
, (61)

where Υ 2 = O
(
σ2
0(ǫ+ ǫ′)

)
and σ2

0 = 25H2σ2

bǫ′

(
1 + 3d

2K

)
+28H2κ2. Note that (61) is the convergence rate in the non-convex

part of Theorem 1.

Error probability analysis. Note that (55) holds with probability at least 1 − exp
(
− ǫ′2(1−ǫ)K

16

)
and (58) holds with

probability 1. Since to arrive at (59) (which leads to our final bound (61)), we used (55) T
H times and (58)

(
T − T

H

)
times;

as a consequence, by union bound, we have that (61) holds with probability at least 1− T
H exp

(
− ǫ′2(1−ǫ)K

16

)
, which is at

least (1− δ), for any δ > 0, provided we run our algorithm for at most T ≤ δH exp( ǫ
′2(1−ǫ)K

16 ) iterations.

This concludes the proof of the non-convex part of Theorem 1.

D. Results on Full-Batch Local Gradient Descent

In this section, we focus on the case when in each local iteration clients compute full-batch gradients (instead of computing

mini-batch stochastic gradients) in Algorithm 1. Our main result for full-batch gradient descent with local iteration is given

below:
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Theorem 4 (Full-Batch Local Gradient Descent). In the same setting as that of Theorem 1, except for that we running

Algorithm 1 with a fixed step-size η = 1
5HL , and in any iteration, instead of sampling mini-batch stochastic gradients, every

honest client takes full-batch gradients from their local datasets. If ǫ ≤ 1
3 , then with probability 1, the sequence of average

iterates {xt = 1
K

∑
r∈Kt

xt
r : t ∈ [0 : T ]} satisfy the following convergence guarantees:

• Strongly-convex: If F is L-smooth for L ≥ 0 and µ-strongly convex for µ > 0, we get:

‖xT − x∗‖2 ≤
(
1− µ

10HL

)T
‖x0 − x∗‖2 + 14

µ2
ΓGD. (62)

• Non-convex: If F is L-smooth for L ≥ 0, we get:

1

T

T∑

t=0

∥∥∇F (xt)
∥∥2 ≤ 10HL

T

[
F (x0)− F (x∗)

]
+

24

5
ΓGD. (63)

In (62), (63), ΓGD =
2Υ 2

GD

H + 25Hκ2, where ΥGD = O (Hκ
√
ǫ).

The rest of this section is devoted to proving Theorem 4.

Note that the robust accumulated gradient estimation (RAGE) result of Theorem 2 (which is for stochastic gradients) is one

of the main ingredients behind the convergence analyses of Theorem 1. So, in order to prove Theorem 4, first we need to

show a RAGE result for full-batch gradients. Note that we can obtain such a result by substituting σ = 0 in both the parts of

Theorem 2; however, this would give a loose bound on the approximation error in the second part. In the following, we get a

tighter bound (both for RAGE and the convergence rates in Theorem 4) by working directly with full-batch gradients. To get

a RAGE result for full-batch gradients, we do a much simplified analysis than what we did before to prove Theorem 2, and

the resulting result is stated and proved below in Theorem 5.

Note that, in order to prove Theorem 2, we showed an existence of a subset S of honest clients (from the set K of clients

who communicate with the server) from whom the accumulated stochastic gradients are well-concentrated, as stated in

form of a matrix concentration bound (7) in Theorem 2. It turns out that for full-batch gradients, an analogous result can

be proven directly (as there is no randomness due to stochastic gradients); and below we provide such a result. Note that

Theorem 2 is a probabilistic statement, where we show that with high probability, there exists a large subset S ⊆ K of

honest clients whose stochastic accumulated gradients are well-concentrated. In contrast, in the following result, we can

deterministically take the set of all honest clients in K to be that subset for which we can directly show the concentration.

First we setup the notation to state our main result on RAGE for full-batch gradients. LetKt ⊆ [R] denote the subset of clients

of size K that are active at any time t ∈ [0 : T ]. Let Algorithm 1 generate a sequence of iterates {xt
r : t ∈ [0 : T ], r ∈ Kt}

when run with a fixed step-size η satisfying η ≤ 1
5HL while minimizing a global objective function F : Rd → R, where in

any iteration, instead of sampling mini-batch stochastic gradients, every honest client takes full-batch gradients from their

local datasets. Take any two consecutive synchronization indices tk, tk+1 ∈ IT . Note that |tk+1 − tk| ≤ H . For an honest

client r ∈ Ktk , let ∇F tk,tk+1
r,accu :=

∑tk+1−1
t=tk

∇Fr(x
t
r) denote the sum of local full-batch gradients taken by client r between

time tk and tk+1. Note that at iteration tk+1, every honest client r ∈ Ktk reports its local parameters x
tk+1
r to the server,

from which server can compute∇F tk,tk+1
r,accu , whereas, corrupt clients may report arbitrary and adversarially chosen vectors in

R
d. The goal of the server is to produce an estimate ∇F̂ tk,tk+1

accu of the average accumulated gradients from honest clients as

best as possible.

Theorem 5 (Robust Accumulated Gradient Estimation for Full-Batch Gradient Descent). Suppose an ǫ fraction of clients

who communicate with the server are corrupt. In the setting and notation described above, suppose we are given K ≤ R
accumulated full-batch gradients ∇F̃ tk,tk+1

r,accu , r ∈ Ktk in R
d, where ∇F̃ tk,tk+1

r,accu = ∇F tk,tk+1
r,accu if the r’th client is honest,

otherwise can be arbitrary. Let S ⊆ Ktk be the subset of all honest clients in Ktk and∇F tk,tk+1

S,accu := 1
|S|
∑

i∈S ∇F
tk,tk+1

i,accu

be the sample average of uncorrupted full-batch gradients. If ǫ ≤ 1
3 , then with probability 1, we can find an estimate

∇F̂ tk,tk+1
accu of ∇F tk,tk+1

S,accu in polynomial-time, such that

∥∥∥∇F̂ tk,tk+1
accu −∇F tk,tk+1

S,accu

∥∥∥ ≤ O (Hκ
√
ǫ).

Proof. First we prove that

λmax

(
1

|S|
∑

i∈S

(
∇F tk,tk+1

i,accu −∇F tk,tk+1

S,accu

)(
∇F tk,tk+1

i,accu −∇F tk,tk+1

S,accu

)T
)
≤ 11H2κ2. (64)
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In view of the alternate characterization the largest eigenvalue given in (15), this is equivalent to showing

sup
v∈Rd:‖v‖=1

1

|S|
∑

i∈S

〈
∇F tk,tk+1

i,accu −∇F tk,tk+1

S,accu ,v
〉2
≤ 11H2κ2, (65)

which we prove below. Define F
tk,tk+1
accu :=

∑tk+1−1
t=tk

F (xt), where xt = 1
K

∑
r∈Ktk

xt
r for any t ∈ [tk : tk+1 − 1]. Take

an arbitrary unit vector v ∈ R
d.

1

|S|
∑

i∈S

〈
∇F tk,tk+1

i,accu −∇F tk,tk+1

S,accu ,v
〉2

=
1

|S|
∑

i∈S

[〈
∇F tk,tk+1

i,accu −∇F tk,tk+1
accu +∇F tk,tk+1

accu −∇F tk,tk+1

S,accu ,v
〉]2

≤ 2

|S|
∑

i∈S

〈
∇F tk,tk+1

i,accu −∇F tk,tk+1
accu ,v

〉2
+

2

|S|
∑

i∈S

〈
∇F tk,tk+1

S,accu −∇F
tk,tk+1
accu ,v

〉2

(Using ‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2)

=
2

|S|
∑

i∈S

〈
∇F tk,tk+1

i,accu −∇F tk,tk+1
accu ,v

〉2
+ 2

〈
∇F tk,tk+1

S,accu −∇F
tk,tk+1
accu ,v

〉2

=
2

|S|
∑

i∈S

〈
∇F tk,tk+1

i,accu −∇F tk,tk+1
accu ,v

〉2
+ 2

[
1

|S|
∑

i∈S

〈
∇F tk,tk+1

i,accu −∇F tk,tk+1
accu ,v

〉]2

≤ 2

|S|
∑

i∈S

〈
∇F tk,tk+1

i,accu −∇F tk,tk+1
accu ,v

〉2
+

2

|S|
∑

i∈S

〈
∇F tk,tk+1

i,accu −∇F tk,tk+1
accu ,v

〉2

=
4

|S|
∑

i∈S

〈
∇F tk,tk+1

i,accu −∇F tk,tk+1
accu ,v

〉2

≤ 4

|S|
∑

i∈S

∥∥∥∇F tk,tk+1

i,accu −∇F tk,tk+1
accu

∥∥∥
2

(Using Cauchy-Schwarz inequality 〈u,v〉 ≤ ‖u‖‖v‖ and that ‖v‖ = 1)

=
4

|S|
∑

i∈S

∥∥∥∥∥

tk+1−1∑

t=tk

(
∇Fi(x

t
i)−∇F (xt)

)
∥∥∥∥∥

2

(Since F
tk,tk+1
accu =

∑tk+1−1
t=tk

F (xt))

≤ 4

|S|
∑

i∈S
(tk+1 − tk)

tk+1−1∑

t=tk

∥∥∇Fi(x
t
i)−∇F (xt)

∥∥2 (Using Jensen’s inequality)

≤ 4H

|S|
∑

i∈S

tk+1−1∑

t=tk

(
2
∥∥∇Fi(x

t
i)−∇F (xt

i)
∥∥2 + 2

∥∥∇F (xt
i)−∇F (xt)

∥∥2
)

(a)

≤ 4H

|S|
∑

i∈S

tk+1−1∑

t=tk

(
2κ2 + 2L2

∥∥xt
i − xt

∥∥2
)

≤ 8H2κ2 + 8HL2

tk+1−1∑

t=tk

1

|S|
∑

i∈S

∥∥∥xt
i −

1

K

∑

j∈Ktk

xt
j

∥∥∥
2

(Since xt = 1
K

∑
j∈Ktk

xt
j)

≤ 8H2κ2 + 8HL2

tk+1−1∑

t=tk

1

|S|
∑

i∈S

1

K

∑

j∈Ktk

∥∥xt
i − xt

j

∥∥2 (66)

The last inequality follows from the Jensen’s inequality. In (a) we used (6) to bound ‖∇Fi(x
t
i)−∇F (xt

i)‖
2 ≤ κ2 and

L-Lipschitz gradient property of F to bound ‖∇F (xt
i)−∇F (xt)‖ ≤ L‖xt

i − xt‖.
Now we bound the last term of (66).
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Lemma 4. For any r, s ∈ Ktk , if η ≤ 1
5HL , we have

tk+1−1∑

t=tk

∥∥xt
r − xt

s

∥∥2 ≤ 7η2H3κ2. (67)

Proof. Note that we have shown a similar result (but, in expectation) in Lemma 3 (on page 14), which is for stochastic

gradients. We will simplify that proof to prove Lemma 4, which is for full-batch deterministic gradients.

Take an arbitrary t ∈ [tk : tk+1 − 1]. Following the proof of Lemma 3 until (24) and removing the factor of 3 inside the

summation (the factor of 3 appeared because we applied the Jensen’s inequality earlier to separate the deterministic gradient

term and the stochastic gradient terms) would give

∥∥xt
r − xt

s

∥∥2 ≤ η2H
t−1∑

j=tk

∥∥∇Fr(x
j
r)−∇Fs(x

j
s)
∥∥2 . (68)

Following the remaining proof of Lemma 3 from (24) until the end and substituting σ = 0 gives the desired result.

Substituting the bound from (67) into (66) gives

1

|S|
∑

i∈S

〈
∇F tk,tk+1

i,accu −∇F tk,tk+1

S,accu ,v
〉2
≤ 8H2κ2 + 56H4L2η2κ2

≤ 8H2κ2 +
56

25
H2κ2 (Substituting η ≤ 1

5HL )

≤ 11H2κ2. (69)

Note that (69) holds for an arbitrary unit vector v ∈ R
d, implying that (65) holds true. Since (65) and (64) are equivalent,

we have thus shown (64).

Now apply Theorem 3 with S being the set of all honest clients, and g
tk,tk+1

i,accu = ∇F tk,tk+1

i,accu , g
tk,tk+1

S,accu = ∇F tk,tk+1

S,accu

ĝ
tk,tk+1

accu = ∇F̂ tk,tk+1
accu , ǫ′ = 0, and σ2

0 = 11H2κ2. We would get that we can find an estimate ∇F̂ tk,tk+1
accu of ∇F tk,tk+1

S,accu in

polynomial-time, such that

∥∥∥∇F̂ tk,tk+1
accu −∇F tk,tk+1

S,accu

∥∥∥ ≤ O (Hκ
√
ǫ) holds with probability 1.

Theorem 4 can be proved with appropriate modifications in the proof of Theorem 1, and for completeness, we prove it

below.

D.1. Convergence Proof of the Strongly-Convex Part of Theorem 4

Let Kt ⊆ [R] denote the subset of clients of size |Kt| = K that are active at the t’th iteration. For any t ∈ [ti : ti+1 − 1], let

xt = 1
K

∑
k∈Kti

xt
k denote the average of the local parameters of clients in the sampling set Kti .

Following the proof of the strongly-convex part of Theorem 1 given in Appendix B until (31) gives

∥∥xti+1 − x∗∥∥2 ≤
(
1 +

µη

2

)∥∥xti+1−1 − η∇F (xti+1−1)− x∗∥∥2

+ 2η

(
η +

2

µ

)∥∥∥∥∥∥
1

K

∑

r∈Kti

(
∇F (xti+1−1)−∇Fr(x

ti+1−1
r )

)
∥∥∥∥∥∥

2

+ 2η

(
η +

2

µ

)∥∥∥∥∥∥
F̂

ti,ti+1
accu − 1

K

∑

r∈Kti

ti+1−1∑

t=ti

∇Fr(x
t
r)

∥∥∥∥∥∥

2

(70)

We have already bounded the first term in Claim 3 (on page 17) by

∥∥xti+1 − η∇F (xti+1−1)− x∗∥∥2 ≤ (1− ηµ)
∥∥xti+1−1 − x∗∥∥2 . (71)
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In order to bound the second term, we follow the proof of Claim 4 exactly until (36), and then to bound∥∥∥xti+1−1
r − x

ti+1−1
s

∥∥∥
2

for every r, s ∈ Kti , we use the bound from (67) in Lemma 4 and use η ≤ 1
5HL , which gives

∥∥∥∥∥∥
1

K

∑

r∈Kti

(
∇Fr(x

ti+1−1)−∇Fr(x
ti+1−1
r )

)
∥∥∥∥∥∥

2

≤ 3Hκ2. (72)

To bound the third term in the RHS of (70), we can simplify the proof of Claim 5: Firstly, note that with full-batch gradients,

the variance σ2 becomes zero; secondly, as shown in Theorem 5, the robust estimation of accumulated gradients holds with

probability 1. Following the proof of Claim 5 with these changes and using η ≤ 1
5HL , we get

∥∥∥∥∥∥
F̂

ti,ti+1
accu − 1

K

∑

r∈Kti

ti+1−1∑

t=ti

∇Fr(x
t
r)

∥∥∥∥∥∥

2

≤ 2Υ 2
GD + 20H2κ2, (73)

where ΥGD = O (Hκ
√
ǫ). Substituting all these bounds from (71)-(73) into (70) and simplifying further using(

1 + µη
2

)
(1− µη) ≤

(
1− µη

2

)
and

(
η + 2

µ

)
≤ 3

µ gives

∥∥xti+1 − x∗∥∥2 ≤
(
1− µη

2

)∥∥xti+1−1 − x∗∥∥2 + 6η

µ

(
2Υ 2

GD + 23H2κ2
)

(74)

Note that (74) gives a recurrence at the synchronization indices. Now we give a recurrence at non-synchronization indices.

Take an arbitrary t ∈ [T ] and let ti ∈ IT be such that t ∈ [ti : ti+1 − 1]; when H ≥ 2, such t’s exist. Following the steps

that we used to arrive at (45), we get the following (note that the last term on the RHS of (45) is zero, as gr(x
t
r) = ∇Fr(x

t
r)

holds for every r ∈ [R] and t ∈ [T ]; this will also save us the factor of 2 in the previous term as we don’t have to use the

Jensen’s inequality to get to (45)):

∥∥xt+1 − x∗∥∥2 ≤
(
1 +

µη

2

)∥∥xt − x∗ − η∇F (xt)
∥∥2 + η

(
η +

2

µ

)∥∥∥∥∥
1

K

∑

r∈Kt

(
∇F (xt)−∇Fr(x

t
r)
)
∥∥∥∥∥

2

(75)

Substituting the bounds from (71) and (72) into (75) and simplifying the coefficients as above, we get

∥∥xt+1 − x∗∥∥2 ≤
(
1− µη

2

)∥∥xt − x∗∥∥2 + 3η

µ
(3Hκ2) (76)

Now we have a recurrence at the synchronization indices given in (74) and at non-synchronization indices given in (76). Let

α =
(
1− µη

2

)
, β1 =

(
2Υ 2

GD + 23H2κ2
)
, and β2 =

(
3
2Hκ2

)
. Following the same steps that we used to arrive at (48) gives:

∥∥xT − x∗∥∥2 ≤ αT
∥∥x0 − x∗∥∥2 + 6η

µ

(
1

1− α
β2 +

1

1− αH
β1

)
(77)

Since α =
(
1− µη

2

)
, we have αH =

(
1− µη

2

)H (a)

≤ exp(−µηH
2 )

(b)

≤ 1− µηH
2 +

(
µηH
2

)2 (c)

≤ 1− µηH
2 + 1

10
µηH
2 = 1− 9

10
µηH
2 .

In (a) we used the inequality (1− 1
x )

x ≤ 1
e which holds for any x > 0; in (b) we used exp(−x) ≤ 1− x+ x2 which holds

for any x ≥ 0; in (c) we used η ≤ 1
5HL and µ ≤ L, which imply µηH

2 ≤ 1
10 . Substituting these in (77) gives

∥∥xT − x∗∥∥2 ≤
(
1− µη

2

)T ∥∥x0 − x∗∥∥2 + 6η

µ

(
2

µη
β2 +

20

9µηH
β1

)

≤
(
1− µη

2

)T ∥∥x0 − x∗∥∥2 + 6× 20

9µ2

(
9

10
β2 +

1

H
β1

)

≤
(
1− µη

2

)T ∥∥x0 − x∗∥∥2 + 14

µ2

(
2Υ 2

GD

H
+ 25Hκ2

)
, (78)

where ΥGD = O (Hκ
√
ǫ). Substituting the value of η = 1

5HL yields the convergence rate (62) in the strongly-convex part of

Theorem 4. Note that (78) holds with probability 1.
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D.2. Convergence Proof of the Non-Convex Part of Theorem 4

Following the proof of the non-convex part of Theorem 1 given in Appendix C until (53) and using η ≤ 1
5HL gives:

F (xti+1) ≤ F (xti+1−1)− η

2

∥∥∇F (xti+1−1)
∥∥2 + 6η

5
‖C‖2, (79)

where C = 1
K

∑
r∈Kti

(
∇F (xti+1−1)−∇Fr(x

ti+1−1
r )

)
−
(
F̂

ti,ti+1
accu − 1

K

∑
r∈Kti

∑ti+1−1
t=ti

∇Fr(x
t
r)
)

.

Using the bounds from (72) and (73), together with the Jensen’s inequality, we can bound ‖C‖2 as follows:

‖C‖2 ≤ 2(3Hκ2) + 2(2Υ 2
GD + 20H2κ2) ≤ 2(2Υ 2

GD + 23H2κ2) (80)

Substituting the bound from (80) into (79) gives:

F (xti+1) ≤ F (xti+1−1)− η

2

∥∥∇F (xti+1−1)
∥∥2 + 12η

5

(
2Υ 2

GD + 23H2κ2
)
, (81)

where ΥGD = O (Hκ
√
ǫ).

Note that above recurrence in (81) holds only at the synchronization indices. Now we give a recurrence at non-

synchronization indices.

We have done a similar calculations in the non-convex part of Theorem 1 in Appendix C.

Take an arbitrary t ∈ [T ] and let ti ∈ IT be such that t ∈ [ti : ti+1 − 1]; when H ≥ 2, such t’s exist. Following the same

steps until (56) and using η ≤ 1
5HL gives:

F (xt+1) ≤ F (xt)− η

2

∥∥∇F (xt)
∥∥2 + 6η

5
‖D‖2, (82)

where D = 1
K

∑
r∈Kti

(∇F (xt)−∇Fr(x
t
r)).

Using the bound from (72), we have ‖D‖2 ≤ 3Hκ2. Substituting this in (82) gives:

F (xt+1) ≤ F (xt)− η

2

∥∥∇F (xt)
∥∥2 + 6η

5
(3Hκ2) (83)

Now we have a recurrence at the synchronization indices given in (81) and at non-synchronization indices given in (83).

Adding (81) and (83) from t = 0 to T (use (81) for the synchronization indices and (83) for the rest of the indices) gives:

T∑

t=0

F (xt+1) ≤
T∑

t=0

F (xt)− η

2

T∑

t=0

∥∥∇F (xt)
∥∥2 + 12η

5

[
T

H

(
2Υ 2

GD + 23H2κ2
)
+

(
T − T

H

)(
3

2
Hκ2

)]
(84)

After rearranging and simplifying the last constant terms, we get:

1

T

T∑

t=0

∥∥∇F (xt)
∥∥2 ≤ 2

ηT

[
F (x0)− F (xT+1)

]
+

24

5

(
2Υ 2

GD

H
+ 25Hκ2

)
(85)

Note that the last term in (85) is a constant. So, it would be best to take the step-size η to be as large as possible such that it

satisfies η ≤ 1
5HL . We take η = 1

5HL . Substituting this in (85) and using F (xT+1) ≥ F (x∗) gives

1

T

T∑

t=0

∥∥∇F (xt)
∥∥2 ≤ 10HL

T

[
F (x0)− F (x∗)

]
+

24

5

(
2Υ 2

GD

H
+ 25Hκ2

)
, (86)

where ΥGD = O (Hκ
√
ǫ). This yields the convergence rate (63) in the non-convex part of Theorem 4. Note that (86) holds

with probability 1.

This concludes the proof of Theorem 4.
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E. Bounding Local Variances and Gradient Dissimilarity in the Statistical Heterogeneous Model

In this section, we bound the gradient dissimilarity κ2 (from (6)) and local variance σ2 (from (2)) in the statistical model in

heterogeneous setting, where different clients may have local data generated from potentially different distributions. The

purpose of this section is to provide upper bounds on κ and σ in the statistical model.

Let q1, q2, . . . , qR denote the R probability distributions from which the local data samples at the clients are drawn.

Specifically, the data samples at any client r are drawn from qr in an i.i.d. fashion and independently from other clients.

For r ∈ [R], let Qr denote the alphabet over which qr is distributed. For r ∈ [R], let fr : Qr × C → R denote the local

loss function at client r, where fr(z,x) is the loss associated with the sample z ∈ Qr w.r.t. the model parameters x ∈ C
and C ⊂ R

d is a bounded subset of Rd. Linear regression is a classic example of this, where, if z = (w, y) denote the

pair of a feature vector w ∈ R
d and the response y ∈ R, then fr(z,x) =

1
2 (〈w,x〉 − y)2. For each client r ∈ [R], we

assume that for any fixed z ∈ Qr, the local loss function fr(z,x) is L-smooth w.r.t. x, i.e., for any z ∈ Qr, we have

‖∇fr(z,x)−∇fr(z,y)‖ ≤ L‖x− y‖, ∀x,y ∈ C.

Let µr(x) := Ez∼qr [fr(z,x)] denote the expected value of fr(z,x), when z is sampled from Qr according to qr. For any

x ∈ C, let µ(x) := 1
R

∑R
r=1 µr(x) denote the average value of µr(x), r ∈ [R].

We are given nr i.i.d. samples zr,1, zr,2, . . . , zr,nr at the r’th client from qr. Fix an arbitrary parameter vector x ∈ C. Let

f̄r(x) :=
1
nr

∑nr

i=1 fr(zr,i,x) denote the average loss at client r on the nr samples zr,1, . . . , zr,nr w.r.t. x. Let f̄(x) :=
1
R

∑r
r=1 f̄r(x) denote the average loss across all clients. The analogues of (6) and (2) in this statistical heterogeneous

model are the following:

∥∥∇f̄r(x)−∇f̄(x)
∥∥2 ≤ κ2, ∀x ∈ C, (87)

Ei∈U [nr]

∥∥∇fr(zr,i,x)−∇f̄r(x)
∥∥2 ≤ σ2, ∀x ∈ C. (88)

We need to find good upper bounds on κ and σ that hold for all r ∈ [R],x ∈ C with high probability. We provide two

bounds on κ, one when the local gradients at clients are assumed to be sub-exponential random vectors, and other when

they are sub-Gaussian random vectors. We provide a bound on σ assuming that the local gradients are sub-Gaussian

random vectors. These are standard assumptions on gradients in statistical models, where data at all clients are sampled

from the same distribution in an i.i.d. fashion (Chen et al., 2017; Su & Xu, 2019; Yin et al., 2019), which is in contrast

to our heterogeneous data setting, where data at different clients may be sampled from different distributions. Note that

these works minimize the population risk with full batch gradient descent, whereas, we minimize the empirical risk with

stochastic gradient descent. In particular, (Chen et al., 2017; Su & Xu, 2019) make sub-exponential gradient assumption and

give convergence guarantees only for strong-convex objectives. On the other hand, (Yin et al., 2019) gives convergence

guarantees for non-convex objectives, but under a stricter condition of sub-Gaussian distribution on gradients. In this paper,

we provide convergence guarantees for both strongly-convex and non-convex objectives. Moreover, as opposed to (Chen

et al., 2017; Su & Xu, 2019; Yin et al., 2019), our results are in a more general heterogeneous data model. Note that we

need sub-Gaussian assumption only to bound the variance, which occurs because clients sample stochastic gradients. In

case of full batch gradient descent, we only need sub-exponential assumption, as the variance is zero.

Now we state the distributional assumptions on local gradients. We defer the definitions of sub-exponential/sub-Gaussian

random variables/vectors and their concentration inequalities that we will use in this section to Section E.3.

Assumption 3 (Sub-exponential local gradients). For every x ∈ C, the local gradient vectors at any client r ∈ [R] are

sub-exponential random vectors, i.e., there exist non-negative parameters (ν, α) such that

sup
v∈Rd:‖v‖=1

Ez∼qr [exp (λ 〈∇fr(z,x)−∇µr(x),v〉)] ≤ exp
(
λ2ν2/2

)
, ∀|λ| < 1

α
. (89)

Assumption 4 (Sub-Gaussian local gradients). For every x ∈ C, the local gradient vectors at any client r ∈ [R] are

sub-Gaussian random vectors, i.e., there exists a non-negative parameter σg such that

sup
v∈Rd:‖v‖=1

Ez∼qr [exp (λ 〈∇fr(z,x)−∇µr(x),v〉)] ≤ exp
(
λ2σ2

g/2
)
, ∀λ ∈ R. (90)

Though, as stated above in both the assumptions, local gradients at all clients have the same parameters ((ν, α) for

sub-exponential and σg for sub-Gaussian), this is without loss of generality. In case they have different parameters
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((νr, αr), r ∈ [R] for sub-exponential and σr, r ∈ [R] for sub-Gaussian), we can take the final parameters to be the

maximum of the respective local parameters – for sub-exponential, we can take ν = maxr∈[R] νr and α = maxr∈[R] αr,

and for sub-Gaussian, we can take σg = maxr∈[R] σr.

E.1. Bounding the gradient dissimilarity κ

In this section, we provide an upper bound on
∥∥∇f̄r(x)−∇f̄(x)

∥∥.

∥∥∇f̄r(x)−∇f̄(x)
∥∥ ≤

∥∥∇f̄r(x)−∇µr(x)
∥∥+ ‖∇µr(x)−∇µ(x)‖+

∥∥∇f̄(x)−∇µ(x)
∥∥

≤
∥∥∇f̄r(x)−∇µr(x)

∥∥+ ‖∇µr(x)−∇µ(x)‖+
1

R

R∑

r=1

∥∥∇f̄r(x)−∇µr(x)
∥∥ , (91)

where for the third term, we used f̄(x) = 1
R

∑R
r=1 f̄r(x) and µ(x) = 1

R

∑R
r=1 µr(x), and applied the triangle in-

equality. It follows from (91) that in order to bound
∥∥∇f̄r(x)−∇f̄(x)

∥∥ uniformly over x ∈ C, it suffices to bound

‖∇µr(x)−∇µ(x)‖ and
∥∥∇f̄r(x)−∇µr(x)

∥∥ , ∀r ∈ [R] uniformly over x ∈ C.

Bounding ‖∇µr(x)−∇µ(x)‖. Note that ∇µr(x) = Ez∼qr [∇fr(z,x)] is a property of the distribution qr from

which the data samples have been drawn and so is ∇µ(x) = 1
R

∑R
r=1∇µr(x) the property of q1, . . . , qR. Note that

‖∇µr(x)−∇µ(x)‖ captures heterogeneity among distributions through their expected values, and is equal to zero in

the i.i.d. homogeneous data setting of (Chen et al., 2017; Su & Xu, 2019; Yin et al., 2018; 2019). In order to get a

meaningful bound for κ, it is reasonable to assume that this heterogeneity is bounded. We assume a uniform bound on the

‖∇µr(x)−∇µ(x)‖ for every x ∈ C.

Assumption 5. For every client r ∈ [R], the population mean of the local gradients has a uniformly bounded deviation

from the population mean of the global gradient, i.e.,

‖∇µr(x)−∇µ(x)‖ ≤ κmean, ∀x ∈ C. (92)

Bounding
∥∥∇f̄r(x)−∇µr(x)

∥∥. Now we bound the difference between the sample mean and the true mean under both

sub-exponential and sub-Gaussian distributional assumptions on local gradients.

Let D = max{‖x− x′‖ : x,x′ ∈ C} be the diameter of C. Note that C is contained in BdD/2, which is the Euclidean ball of

radius D
2 in d dimensions that contains C. Note that D = Ω(

√
d), and we assume that D can grow at most polynomially in

d.

Below we state two lemmas, each of which uniformly bounds
∥∥∇f̄r(x)−∇µr(x)

∥∥ over all x ∈ C under different

distributional assumptions on gradients.

Lemma 5 (Sub-exponential gradients). Suppose Assumption 3 holds. Take an arbitrary r ∈ [R]. Let nr ∈ N be sufficiently

large such that nr = Ω(d log(nrd)). Then, with probability at least 1− 1
(1+nrLD)d

, we have

∥∥∇f̄r(x)−∇µr(x)
∥∥ ≤ 3ν

√
8d log(1 + nrLD)

nr
, ∀x ∈ C. (93)

Lemma 6 (Sub-Gaussian gradients). Suppose Assumption 4 holds. Take an arbitrary r ∈ [R]. For any nr ∈ N, with

probability at least 1− 1
(1+nrLD)d

, we have

∥∥∇f̄r(x)−∇µr(x)
∥∥ ≤ 3σg

√
8d log(1 + nrLD)

nr
, ∀x ∈ C. (94)

We prove Lemma 5 in Appendix E.4 and Lemma 6 in Appendix E.5.

Now we state our main result on bounding the gradient dissimilarity, which we will prove with the help of the above two

lemmas. For notational convenience, we state for the case when all clients have the same number of data samples.
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Theorem 6 (Gradient dissimilarity). Suppose n := nr, ∀r ∈ [R], and Assumption 5 holds. Then, the gradient dissimilarity

bound under different distributional assumptions is as follows:

1. Sub-exponential: Suppose Assumption 3 holds. Let n ∈ N be sufficiently large such that n = Ω(d log(nd)). Then, with

probability at least 1− R
(1+nLD)d

, the following bound holds for all r ∈ [R]:

∥∥∇f̄r(x)−∇f̄(x)
∥∥ ≤ κmean +O

(√
d log(nd)

n

)
, ∀x ∈ C. (95)

2. Sub-Gaussian: Suppose Assumption 4 holds. For every n ∈ N, with probability at least 1− R
(1+nLD)d

, the following

bound holds for all r ∈ [R]:

∥∥∇f̄r(x)−∇f̄(x)
∥∥ ≤ κmean +O

(√
d log(nd)

n

)
, ∀x ∈ C. (96)

Remark 1. Note that under Assumption 3 (sub-exponential), the gradient dissimilarity bound (95) holds only when each

client has sufficiently large number of samples n = Ω(d log(nd)). On the other hand, under Assumption 4 (sub-Gaussian),

the gradient dissimilarity bound (96) holds for every n ∈ N.

Proof of Theorem 6. In order to prove Theorem 6, we need to show two bounds, one (stated in (95)) under the sub-

exponential gradient assumption, and the other (stated in (96)) under the sub-Gaussian assumption. We can show (95) using

Lemma 5 and (96) using Lemma 6. Here we only show (95); and (96) can be shown similarly.

Using Assumption 5 (i.e., ‖∇µr(x)−∇µ(x)‖ ≤ κmean, ∀x ∈ C) in (91) gives

∥∥∇f̄r(x)−∇f̄(x)
∥∥ ≤

∥∥∇f̄r(x)−∇µr(x)
∥∥+ κmean +

1

R

R∑

r=1

∥∥∇f̄r(x)−∇µr(x)
∥∥ . (97)

Note that (93) holds for any fixed client r ∈ [R]. By the union bound, we have that with probability at least 1− R
(1+nrLD)d

,

for every r ∈ [R], we have
∥∥∇f̄r(x)−∇µr(x)

∥∥ ≤ 3ν
√

8d log(1+nrLD)
nr

, ∀x ∈ C.

Let nr = n, ∀r ∈ [R]. Using these in (97), we get that with probability at least 1 − R
(1+nrLD)d

, for every client r ∈ [R],

we have
∥∥∇f̄r(x)−∇f̄(x)

∥∥ ≤ κmean + O
(√

d log(nd)
n

)
, ∀x ∈ C, which proves (95). This completes the proof of

Theorem 6.

E.2. Bounding the local variances

The local variance bound at the r’th client is Ei∈U [nr]

∥∥∇fr(zr,i,x)−∇f̄r(x)
∥∥2 ≤ σ2 (from (88)). We simplify the LHS:

Ei∈U [nr]

∥∥∇fr(zr,i,x)−∇f̄r(x)
∥∥2 ≤ 2Ei∈U [nr] ‖∇fr(zr,i,x)−∇µr(x)‖2

+ 2Ei∈U [nr]

∥∥∇f̄r(x)−∇µr(x)
∥∥2

(a)
= 2 ‖∇fr(zr,1,x)−∇µr(x)‖2 + 2

∥∥∇f̄r(x)−∇µr(x)
∥∥2

(b)

≤ 4 ‖∇fr(zr,1,x)−∇µr(x)‖2 (98)

For the first term on the RHS of (a), we used that zr,i, i ∈ [nr] are i.i.d., and the second term follows because it is

independent of i ∈ [nr]. Inequality (b) follows because
∥∥∇f̄r(x)−∇µr(x)

∥∥2 ≤ ‖∇fr(zr,1,x)−∇µr(x)‖2, since the

average of i.i.d. samples gives tighter concentration in comparison to if we use just one sample.

Note that bounding ‖∇fr(zr,1,x)−∇µr(x)‖ is equivalent to bounding ‖∇fr(z,x)−∇µr(x)‖ for a random z ∼ qr.

Now we provide a uniform bound on ‖∇fr(z,x)−∇µr(x)‖ for a random z ∼ qr using the sub-Gaussian gradient

assumption.
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Bounding ‖∇fr(z,x)−∇µr(x)‖ for a random z ∼ qr. To bound this, we need sub-Gaussian assumption on local

gradients (we can also bound this using sub-exponential assumption, but that will give a bound that scales as Ω̃(d) as opposed

to Ω̃(
√
d)). Note that Lemma 6 holds for any nr ∈ N. In particular, it also holds for nr = 1. So, under Assumption 4, with

probability at least 1− 1
(1+nrLD)d

, we have

‖∇fr(z,x)−∇µr(x)‖ ≤ 3σg

√
8d log(1 + LD), ∀x ∈ C, (99)

where z ∼ qr, and probability is over the randomness due to the sub-Gaussian distribution of local gradients. So, with

probability at least 1− 1
(1+nrLD)d

, we have

Ei∈U [nr]

∥∥∇fr(zr,i,x)−∇f̄r(x)
∥∥2 ≤ 288σ2

gd log(1 + LD), ∀x ∈ C. (100)

Note that (100) holds for a fixed client r ∈ [R]. By taking the union bound over all clients r ∈ [R] proves our variance

bound, which we state below.

Theorem 7 (Variance bound). Suppose n := nr, ∀r ∈ [R], and Assumption 4 holds. Then, with probability at least

1− R
(1+nLD)d

, the following bound holds for all r ∈ [R]:

Ei∈U [n]

∥∥∇fr(zr,i,x)−∇f̄r(x)
∥∥2 ≤ O (d log(d)) , ∀x ∈ C. (101)

Remark 2 (Sub-Gaussian vs. sub-exponential assumption). Note that, we needed sub-Gaussian assumption on local

gradients because we wanted to uniformly bound Ei∈[nr] ‖∇fr(zr,i,x)−∇µr(x)‖2, which is the case when we use only

one data sample in each SGD iteration. In this paper, we use mini-batch SGD with a variable batch size (to control the

approximation error of our solution; see the approximation error analysis in Section 2.2). So, when the batch-size b is

sufficiently large and satisfies b = Ω(d log(bd)), we can work with the sub-exponential gradient assumption because the

large batch size gives a concentration similar to sub-Gaussian. This would give a bound of O
(

d log(bd)
b

)
on variance.

E.3. Definitions of sub-exponential/sub-Gaussian distributions and concentration inequalities

In this section, we give formal definitions of sub-exponential/sub-Gaussian random variables/vectors and the concentration

inequalities for them that we will use later on to prove Lemma 5 and Lemma 6.

Definition 1 (Sub-exponential distribution). A random variable Z with mean µ = E[Z] is sub-exponential if there are

non-negative parameters (ν, α) such that

E [exp (λ(Z − µ))] ≤ exp
(
λ2ν2/2

)
, ∀|λ| < 1

α
.

A random vector Z with mean µ = E[Z] is sub-exponential if its projection on every unit vector is sub-exponential, i.e.,

there are non-negative parameters (ν, α) such that

sup
v∈Rd:‖v‖=1

E [exp (λ〈Z − µ,v〉)] ≤ exp
(
λ2ν2/2

)
, ∀|λ| < 1

α
.

Now we state a concentration inequality for sums of independent sub-exponential random variables.

Fact 2 (Sub-exponential concentration inequality). Suppose X1, X2, . . . , Xn are independent random variables, where

for every i ∈ [n], Xi is sub-exponential with parameters (νi, αi) and mean µi. Then
∑n

i=1 Xi is sub-exponential with

parameters (ν, α), where ν2 =
∑n

i=1 ν
2
i and α = max1≤i≤n αi. Moreover, we have

Pr

[
n∑

i=1

(Xi − µi) ≥ t

]
≤ exp

(
−1

2
min

{
t2

ν2
,
t

α

})
, ∀t ≥ 0 (102)

Definition 2 (Sub-Gaussian distribution). A random variable Z with mean µ = E[Z] is sub-Gaussian if there is a non-

negative parameter σg such that

E [exp (λ(Z − µ))] ≤ exp
(
λ2σ2

g/2
)
, ∀λ ∈ R.
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A random vector Z with mean µ = E[Z] is sub-Gaussian if its projection on every unit vector is sub-Gaussian, i.e., there is

a non-negative parameter σg such that

sup
v∈Rd:‖v‖=1

E [exp (λ〈Z − µ,v〉)] ≤ exp
(
λ2σ2

g/2
)
, ∀λ ∈ R.

Now we state a concentration inequality for sums of independent sub-Gaussian random variables.

Fact 3 (Sub-Gaussian concentration inequality). Suppose X1, X2, . . . , Xn are independent random variables, where for

every i ∈ [n], Xi is sub-Gaussian with parameter σi > 0 and mean µi. Then
∑n

i=1 Xi is sub-Gaussian with parameter

σg =
√∑n

i=1 σ
2
i . Moreover, we have

Pr

[
n∑

i=1

(Xi − µi) ≥ t

]
≤ exp

(
−t2/2σ2

g

)
, ∀t ≥ 0. (103)

E.4. Proof of Lemma 5 (sub-exponential gradients)

We prove Lemma 5 with the help of the following result, which holds for any fixed x ∈ C. Then we extend this bound to all

x ∈ C using an ǫ-net argument. These are standard calculations and have appeared in literature (Chen et al., 2017; Yin et al.,

2019).

Lemma 7. Suppose Assumption 3 holds. Take an arbitrary r ∈ [R]. For any δ ∈ (0, 1) and nr ∈ N, define ∆ =
√
2ν
√

d log 5+log(1/δ)
nr

. If nr is such that ∆ ≤ ν2

α , then, for any fixed x ∈ C, with probability at least 1− δ, we have

∥∥∇f̄r(x)−∇µr(x)
∥∥ ≤ 2

√
2ν

√
d log 5 + log(1/δ)

nr
, (104)

where randomness is due to the sub-exponential distribution of local gradients.

Proof. Let Bd = {v ∈ R
d : ‖v‖ ≤ 1}. Let V = {v1,v2, . . . ,vN1/2

} denote an 1
2 -net of Bd, which implies that for every

v ∈ Bd, there exists a v′ ∈ V such that ‖v − v′‖ ≤ 1
2 . We have from (Vershynin, 2010, Lemma 5.2) that N1/2 = |V| ≤ 5d.

Fix an arbitrary x ∈ C. Note that there exists a v∗ ∈ Bd (namely, v∗ = ∇f̄r(x)−∇µr(x)

‖∇f̄r(x)−∇µr(x)‖ ) such that∥∥∇f̄r(x)−∇µr(x)
∥∥ =

〈
∇f̄r(x)−∇µr(x),v

∗〉. By the property of V , there exists an index i∗ ∈ [N1/2] such that

‖v∗ − vi∗‖ ≤ 1
2 . Now we bound

∥∥∇f̄r(x)−∇µr(x)
∥∥.

∥∥∇f̄r(x)−∇µr(x)
∥∥ =

〈
∇f̄r(x)−∇µr(x),v

∗〉

=
〈
∇f̄r(x)−∇µr(x),vi∗

〉
+
〈
∇f̄r(x)−∇µr(x),v

∗ − vi∗
〉

≤
〈
∇f̄r(x)−∇µr(x),vi∗

〉
+
∥∥∇f̄r(x)−∇µr(x)

∥∥ ‖v∗ − vi∗‖

≤
〈
∇f̄r(x)−∇µr(x),vi∗

〉
+

1

2

∥∥∇f̄r(x)−∇µr(x)
∥∥

≤ max
v∈V

〈
∇f̄r(x)−∇µr(x),v

〉
+

1

2

∥∥∇f̄r(x)−∇µr(x)
∥∥

By collecting similar terms together, we get

∥∥∇f̄r(x)−∇µr(x)
∥∥ ≤ 2max

v∈V

〈
∇f̄r(x)−∇µr(x),v

〉
(105)

Note that the RHS of (105) is a non-negative number (because LHS is). Note also that, since V ⊂ Bd, for every v ∈ V , we

have ‖v‖ ≤ 1. This implies that maxv∈V
〈
∇f̄r(x)−∇µr(x),v

〉
≤ maxv∈V

〈
∇f̄r(x)−∇µr(x),

v

‖v‖

〉
. Using this in

(105), we get

∥∥∇f̄r(x)−∇µr(x)
∥∥ ≤ 2max

v∈V

〈
∇f̄r(x)−∇µr(x),

v

‖v‖

〉
. (106)
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Fix any v ∈ V . It follows from Assumption 3 that
〈
∇fr(z,x)−∇µr(x),

v

‖v‖

〉
, where z ∼ qr, is a sub-

exponential random variable (with mean zero) with parameters (ν, α). From Fact 2 (stated on page 34), we have that
∑nr

i=1

〈
∇fr(zr,i,x)−∇µr(x),

v

‖v‖

〉
(where zr,i ∼ qr, i ∈ [nr] are i.i.d.) is a sub-exponential random variable with

parameters (
√
nrν, α).

Now, apply the concentration bound from (102) with t = nr∆. Substituting this and the parameters (
√
nrν, α), the bound

becomes exp(− 1
2 min{n

2
r∆

2

nrν2 ,
nr∆
α })

(a)
= exp(− 1

2
nr∆

2

ν2 ), where (a) follows because ∆ ≤ ν2

α . This gives

Pr

[
nr∑

i=1

〈
∇fr(zr,i,x)−∇µr(x),

v

‖v‖

〉
≥ nr∆

]
≤ exp

(
−nr∆

2

2ν2

)
. (107)

Note that
∑nr

i=1

〈
∇fr(zr,i,x)−∇µr(x),

v

‖v‖

〉
= nr

〈
∇f̄r(x)−∇µr(x),

v

‖v‖

〉
. Using this in (107) yields

Pr

[〈
∇f̄r(x)−∇µr(x),

v

‖v‖

〉
≥ ∆

]
≤ exp

(
−nr∆

2

2ν2

)
(108)

This implies that

Pr

[
max
v∈V

〈
∇f̄r(x)−∇µr(x),

v

‖v‖

〉
≥ ∆

]
≤
∑

v∈V
Pr

[〈
∇f̄r(x)−∇µr(x),

v

‖v‖

〉
≥ ∆

]

≤ |V| exp
(
−nr∆

2

2ν2

)
≤ 5d exp

(
−nr∆

2

2ν2

)

= exp

(
−nr∆

2

2ν2
+ d log 5

)
(109)

Together with (106), which implies that

Pr
[∥∥∇f̄r(x)−∇µr(x)

∥∥ ≥ t
]
≤ Pr

[
2max

v∈V

〈
∇f̄r(x)−∇µr(x),

v

‖v‖

〉
≥ t

]

holds for every t > 0, (109) gives

Pr
[∥∥∇f̄r(x)−∇µr(x)

∥∥ ≥ 2∆
]
≤ exp

(
−nr∆

2

2ν2
+ d log 5

)
≤ δ, (110)

where in the last inequality we used ∆ =
√
2ν
√

d log 5+log(1/δ)
nr

.

This completes the proof of Lemma 7.

Proof of Lemma 5. We have from Lemma 7 that for each fixed x ∈ C, with probability at least 1− δ, we have

∥∥∇f̄r(x)−∇µr(x)
∥∥ ≤ 2ν

√
2d log 5 + 2 log(1/δ)

nr
. (111)

To extend this argument uniformly over the entire set C, we use another covering argument. Recall that D is the diameter of C.

Note that C is contained in BdD/2, which is the Euclidean ball of radius D
2 in d dimensions that contains C. For some δ0 > 0,

let Cδ0 = {x0,x2, . . . ,xNδ0
} be the δ0-net of C. It follows from (Vershynin, 2010, Lemma 5.2) that Nδ0 ≤

(
1 + D

δ0

)d
.

Applying the union bound in (111), we get that with probability at least 1− δ, we have for all xi ∈ Cδ0 ,

∥∥∇f̄r(xi)−∇µr(xi)
∥∥ ≤ 2ν

√√√√2d log 5 + 2 log
(

Nδ0

δ

)

nr
. (112)
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We want to bound
∥∥∇f̄r(x)−∇µr(x)

∥∥ for all x ∈ C. Take any x ∈ C. Since Cδ0 is a δ0-net of C, there exists an x′ ∈ Cδ0
such that ‖x− x′‖ ≤ δ0.

∥∥∇f̄r(x)−∇µr(x)
∥∥ =

∥∥∇f̄r(x)−∇f̄r(x′) +∇f̄r(x′)−∇µr(x) +∇µr(x
′)−∇µr(x

′)
∥∥

≤
∥∥∇f̄r(x)−∇f̄r(x′)

∥∥
︸ ︷︷ ︸

=: T1

+ ‖∇µr(x)−∇µr(x
′)‖︸ ︷︷ ︸

=: T2

+
∥∥∇f̄r(x′)−∇µr(x

′)
∥∥ (113)

Now we bound each term on the RHS of (113).

T1 =

∥∥∥∥∥
1

nr

nr∑

i=1

(∇fr(zr,i,x)−∇fr(zr,i,x
′))

∥∥∥∥∥ ≤
1

nr

nr∑

i=1

‖∇fr(zr,i,x)−∇fr(zr,i,x
′)‖

≤ L‖x− x′‖ ≤ Lδ0

T2 = ‖Ez∼qr [∇fr(z,x)−∇fr(z,x; )]‖ ≤ Ez∼qr ‖∇fr(z,x)−∇fr(z,x; )‖
≤ Ez∼qrL‖x− x′‖ ≤ Lδ0

Substituting the above bounds on T1, T2 in (113) and bounding the third term of (113) using (112) gives

∥∥∇f̄r(x)−∇µr(x)
∥∥ ≤ 2Lδ0 + 2ν

√√√√2d log 5 + 2 log
(

Nδ0

δ

)

nr
. (114)

Note that Nδ0 ≤
(
1 + D

δ0

)d
. Take δ = 1/

(
1 + D

δ0

)d
. If we take δ0 = 1

nrL
, which implies δ = 1

(1+nrLD)d
, we would get

2d log 5 + 2 log
(

Nδ0

δ

)
≤ 4d+ 4d log(1 + nrLD) ≤ 8d log(1 + nrLD). Substituting these in above gives

∥∥∇f̄r(x)−∇µr(x)
∥∥ ≤ 2

nr
+

2ν√
nr

√
8d log(1 + nrLD). (115)

When nr ≥ 1
2ν2d log(1+nrLD) (which is a very small number less than 1), with probability at least 1− 1

(1+nrLD)d
, we have

∥∥∇f̄r(x)−∇µr(x)
∥∥ ≤ 3ν

√
8d log(1 + nrLD)

nr
, ∀x ∈ C. (116)

Lower bound on nr. Note that Lemma 7 requires ∆ ≤ ν2

α , where ∆ =
√
2ν
√

d log 5+log(1/δ)
nr

. Substituting the value of

δ = 1
(1+nrLD)d

gives nr ≥ 2α2

ν2 (d log 5 + d log(1 + nrLD)), which is Ω(d log(nrLD)) for constant α, ν. Treating the

smoothness parameter L a constant, we get nr = Ω(d log(nrd)) to be requirement on the sample size at the r’th client for

the bound in Lemma 5 to hold.

This completes the proof of Lemma 5.

E.5. Proof of Lemma 6 (sub-Gaussian gradients)

We prove Lemma 6 with the help of the following result, which holds for any fixed x ∈ C.

Lemma 8. Suppose Assumption 4 holds. Take an arbitrary r ∈ [R]. For any δ ∈ (0, 1) and nr ∈ N, with probability at

least 1− δ, we have for any fixed x ∈ C:

∥∥∇f̄r(x)−∇µr(x)
∥∥ ≤ 2

√
2σg

√
d log 5 + log(1/δ)

nr
, (117)

where randomness is due to the sub-Gaussian distribution of local gradients.
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Proof. Follow the proof of Lemma 7 exactly until (106). Then instead of the sub-exponential assumption, use the sub-

Gaussian assumption (Assumption 4) on local gradients. Then apply the concentration bound from (103) with t = nr∆.

This gives that for any fixed v ∈ V and any ∆ ≥ 0, we have

Pr

[〈
∇f̄r(x)−∇µr(x),

v

‖v‖

〉
≥ ∆

]
≤ exp

(
−nr∆

2

2σ2
g

)
. (118)

Now following the proof of Lemma 7 from (108) to (110) gives

Pr
[∥∥∇f̄r(x)−∇µr(x)

∥∥ ≥ 2∆
]
≤ exp

(
−nr∆

2

2σ2
g

+ d log 5

)
≤ δ, (119)

where in the last inequality we used ∆ =
√
2σg

√
d log 5+log(1/δ)

nr
.

We can extend the bound from Lemma 8 to all x ∈ C (and prove Lemma 6) using an ǫ-net argument exactly in the same way

as used in the proof of Lemma 5. So, to avoid repetition, we do not show this extension here.

F. Additional Experimental Details

There are some implementation issues about the decoding algorithm (as described in Algorithm 2) that could be important

in the deployment of the algorithm. In the following, we describe these issues and also explain our approach in the

implementation to address them.

• Note that the stopping criterion (see line 7) in our decoding algorithm described in Algorithm 2 requires the matrix

concentration bound σ2
0 that we show in Theorem 2 in terms of the SGD variance bound σ2 (see (2)) and the bounded

gradient dissimilarity κ2 (see (6)). Since these are properties of the local datasets stored at clients, which is challenging

to determine in a adversarial federated learning setting. In order to mitigate this, we observe two things:

1. the only place where Algorithm 2 uses this matrix concentration bound is in the stopping criterion (in line 7); and

2. in each iteration of the while loop, at least one sample gets its weight reduced to zero.

Since we know an upper bound on the fraction of corrupt samples, these two observations suggest replacing the

stopping condition in line 7 with the condition that break the while loop when the number of samples whose weights

become zero is more than the number of corrupt samples. This is what we used as a stopping criterion (in line 7) in our

implementation of Algorithm 2.

• Note that each iteration of the while loop (line 7) of Algorithm 2 requires computing the principal eigenvector of the

covariance matrix (line 8), which can be done using the singular value decomposition (SVD) algorithm. This, however,

could be computationally expensive. To mitigate this, we choose uniformly at random 1024 coordinates from the all

gradient vectors (same 1024 random coordinates from all the gradients), and run the decoding algorithm only on them.

Suppose A denotes the set of indices of the surviving gradients (i.e., whose weight are not zero when the filtering

algorithm terminates), then we will discard all those full gradients whose indices are outside the set A.

Furthermore, we observed performance boost when replacing the line 13 of Algorithm 2 (i.e., ĝ =
∑K

i=1
w

(t)
i

‖w(t)‖1
gi) with

ĝ =
∑

i∈A
1

|A|gi, where A contains the identities of the surviving samples; in other words, we replaced the weighted

average with the uniform average.


