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Abstract

We study stochastic gradient descent (SGD) with
local iterations in the presence of Byzantine
clients, motivated by the federated learning. The
clients, instead of communicating with the server
in every iteration, maintain their local models,
which they update by taking several SGD itera-
tions based on their own datasets and then com-
municate the net update with the server, thereby
achieving communication-efficiency. Further-
more, only a subset of clients communicates with
the server at synchronization times. The Byzan-
tine clients may collude and send arbitrary vectors
to the server to disrupt the learning process. To
combat the adversary, we employ an efficient high-
dimensional robust mean estimation algorithm at
the server to filter-out corrupt vectors; and to an-
alyze the outlier-filtering procedure, we develop
a novel matrix concentration result that may be
of independent interest. We provide convergence
analyses for both strongly-convex and non-convex
smooth objectives in the heterogeneous data set-
ting. We believe that ours is the first Byzantine-
resilient local SGD algorithm and analysis with
non-trivial guarantees. We corroborate our theo-
retical results with preliminary experiments for
neural network training.

1. Introduction

In the federated learning (FL) paradigm (Konecny, 2017;
Konecny et al., 2016; McMahan et al., 2017; Mohri et al.,
2019), several clients (e.g., mobiles devices, organizations,
etc.) collaboratively learn a machine learning model, where
the training process is facilitated by the data held by the par-
ticipating clients (without data centralization) and is coordi-
nated by a central server (e.g., the service provider). Due to
its many advantages over the traditional centralized learning
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(Dean et al., 2012) (e.g., training a machine learning model
without collecting the clients’ data, which, in addition to
reducing the communication load on the network, provides
a basic level of privacy to clients’ data), FL has emerged as
an active area of research recently; see (Kairouz et al., 2019)
for a detailed survey. Stochastic gradient descent (SGD)
has become a de facto standard in optimization for train-
ing machine learning models at such a large scale (Bottou,
2010; Kairouz et al., 2019; McMahan et al., 2017), where
clients iteratively communicate the gradient updates with
the central server, which aggregates the gradients, updates
the learning model, and sends the aggregated gradient back
to the clients. The promise of FL. comes with its own set of
challenges (Kairouz et al., 2019): (i) optimizing with hetero-
geneous data at different clients — the local datasets at clients
may be “non-i.i.d.”, i.e., can be thought of as being gener-
ated from different underlying distributions; (ii) slow and
unreliable network connections between server and clients,
SO communication in every iteration may not be feasible;
(iii) availability of only a subset of clients for training at a
given time (maybe due to low connectivity, as clients may
be in different geographic locations); and (iv) robustness
against malicious/Byzantine clients who may send incorrect
gradient updates to the server to disrupt the training process.
In this paper, we propose and analyze an SGD algorithm
that simultaneously addresses all these challenges. First we
setup the problem, put our work in context with the related
work, and then summarize our contributions.

We consider an empirical risk minimization problem, where
data is stored at R clients, each having a different dataset
(with no probabilistic assumption on data generation); client
r € [R] has dataset D,. Let F,. : R? — R denote the
local loss function associated with the dataset D,., which
is defined as Fy.(x) £ E;c, s, 1[Fri(x)], where n, = |D, |,
i is uniformly distributed over [n,] = {1,2,...,n,}, and
F, ;(x) is the loss associated with the i’th data point at
client r with respect to (w.r.t.) . Our goal is to solve the
following minimization problem:

. L1 E
agmin (Fl) 2 7 > Eicupn Fa@)]). (1)

where C C R? denotes the parameter space that is either
equal to R? or a compact and convex set.
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In the absence of the above-mentioned FL challenges, we
can minimize (1) using distributed vanilla SGD, where in
any iteration, server broadcasts the current model parame-
ters to all clients, each of them then samples a stochastic
gradient from its local dataset and sends it back to the server,
who aggregates the received gradients and updates the global
model. However, this simple solution does not satisfy the
FL challenges, as every client communicates with the server
(i.e., no sampling of clients) in every SGD iteration (i.e., no
local iterations), and furthermore, this solution breaks down
even with a single malicious client (Blanchard et al., 2017).

Related work. Recent work have proposed variants of the
above-described vanilla SGD that address some of the FL
challenges. The algorithms in (Basu et al., 2019; Haddad-
pour & Mahdavi, 2019; Haddadpour et al., 2019; Karim-
ireddy et al., 2020; Khaled et al., 2020; Li et al., 2020; Sahu
et al., 2020; Yu et al., 2019b) work under different hetero-
geneity assumptions but do not provide any robustness to
malicious clients. On the other hand, (Alistarh et al., 2018;
Blanchard et al., 2017; Chen et al., 2017; Data & Diggavi,
2020b; Su & Xu, 2019; Xie et al., 2019b; Yin et al., 2018;
2019) provide robustness, but with no local iterations or
sampling of clients; furthermore, they assume homogeneous
(either same or i.i.d.) data across all clients. A different line
of work (Chen et al., 2018; Data & Diggavi, 2019; 2020a;
Data et al., 2019; 2021; Ghosh et al., 2019; Li et al., 2019a;
Rajput et al., 2019) provide robustness with heterogeneous
data, but without local iterations or sampling of clients:
Chen et al. (2018), Rajput et al. (2019), Data et al. (2019;
2021) use coding across datasets, which is hard to imple-
ment in FL; Li et al. (2019a) change the objective function
and adds a regularizer term to combat the adversary; Ghosh
et al. (2019) effectively reduce the heterogeneous problem
to a homogeneous problem by clustering, and then learning
happens within each cluster having homogeneous data; and
Data & Diggavi (2020a) studied SGD with heterogeneous
data under the same assumptions as ours, but without local
iterations or client sampling. Incorporating local iterations
with Byzantine adversaries makes it significantly more chal-
lenging as it requires deriving a new matrix concentration
bound (see Theorem 2) and different convergence analyses.

Xie et al. (2019a) also analyzed SGD in the FL setting, but
the approximation error (even in the Byzantine-free setting)
of their solution could be as large as O(D? + G?), where G
is the gradient bound and D is the diameter of the parameter
space that contains the optimal parameters * and all the
local parameters x'. ever emerged at any client r € [R] in
any iteration ¢ € [T']; this, in our opinion, makes their bound
vacuous. In optimization, one would ideally like to have
convergence rates depend on D with a factor that decays
with the number of iterations, e.g., with & or ﬁ, as also in
Theorem 1. In Section 4, we also empirically demonstrate
the poor learning performance of their algorithm.

Our contributions. In this paper, we tackle heterogeneity
assuming that the gradient dissimilarity among local datasets
is bounded (see (6)), and propose and analyze a Byzantine-
resilient SGD algorithm (Algorithm 1) with local iterations
and client sampling under the bounded variance assumption
for SGD (see (2)). We provide convergence analyses for
strongly-convex and non-convex smooth objectives.

For strongly-convex objectives, our algorithm can find ap-
proximate optimal parameters exponentially (in %) fast, and
for non-convex objectives, it can reach to an approximate
stationary point with a speed of T/% See Theorem 1 for
convergence results. The approximation error in the opti-
mization solution comprises of two terms, one is because
to the stochasticity in gradients (due to SGD) and is equal
to zero if we work with full-batch gradients, and the other
term arises because of heterogeneity in local datasets. See
a detailed discussion in Section 2.2 on the approximation
error analysis and the convergence rates, and also for the
reason behind obtaining rates that are off by a factor of H
when compared to vanilla SGD — looking ahead, the reason
is working with weak assumptions.

To tackle the malicious behavior of Byzantine clients, we
borrow tools from recent advances in high-dimensional ro-
bust statistics (Diakonikolas & Kane, 2019; Diakonikolas
et al., 2019; Lai et al., 2016; Steinhardt et al., 2018); in par-
ticular, we use the polynomial-time outlier-filtering proce-
dure from (Diakonikolas et al., 2019), which was developed
for robust mean estimation in high dimensions. In order to
use their algorithm (described in Algorithm 2) in our setting
that combines Byzantine resilience with local iterations, we
develop a novel matrix concentration result (see Theorem 2),
which may be of independent interest. As far as we know,
this is the first concentration result for stochastic gradients
with local iterations on heterogeneous data.

We believe that ours is the first work that combines local
iterations with Byzantine-resilience for SGD and achieves
non-trivial results. Not only that, we also analyze our algo-
rithm on heterogeneous data and allow sampling of clients.
Note that the earlier work that provide robustness (without
local iterations or sampling of clients) either assume homo-
geneous data across clients (Alistarh et al., 2018; Blanchard
etal., 2017; Chen et al., 2017; Data & Diggavi, 2020b; Su &
Xu, 2019; Yin et al., 2018; 2019) or require strong assump-
tions, such as the bounded gradient assumption on local
functions (Xie et al., 2019b); more on this on page 3.

Paper organization. We describe our algorithm and state
the convergence results in Section 2. In Section 3, we de-
scribe our main technical tool, a new matrix concentration
result for analyzing the robust accumulated gradient esti-
mation procedure. We provide empirical evaluation of our
method in Section 4. Omitted details/proofs are given in
appendices, provided as part of the supplementary material.
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2. Problem Setup and Our Results

In this section, we state our assumptions, describe the ad-
versary model and our algorithm, and state our convergence
results followed by important remarks about them.

Assumption 1 (Bounded local variances). The stochastic
gradients sampled from any local dataset have uniformly
bounded variance over C for all clients, i.e., there exists a
finite o, such that for all x € C,r € [R], we have

E VF,i(x) — VF.(z)|* < o®. (2)

1€y [Ny

It will be helpful to formally define mini-batch stochastic
gradients, where instead of computing stochastic gradients
based on just one data point, each client samples b > 1
data points (without replacement) from its local dataset and
computes the average of b gradients. For any x € R?,r €
[R],b € [n,], consider the following set

f,@b(w) = {11) Z VE, (x):Hpy € <[TZ]) } . 3

i€Hy

Note that g,.(z) €y F®°(x) is a mini-batch stochastic
gradient with batch size b at client r. It is not hard to see the

following, which hold for all x € C,r € [R]:

Elg.(2)] = VF (), )
E|g,(z) - VF.(2)|* < o*/b. (5)

Assumption 2 (Bounded gradient dissimilarity). The differ-
ence of the local gradients VF,(x),r € [R] and the global
gradient VF(x) = % Zle V F,.(x) is uniformly bounded
over R4 for all clients, i.e., there exists a finite Kk, such that

|VF.(x) — VF(x)||* < k% VxeC,rec|[R]. (6)
Assumption 1 has been standard in SGD literature. Assump-
tion 2 has also been used earlier to bound heterogeneity in
datasets; see, for example, (Li et al., 2019b; Yu et al., 2019a),
which study decentralized SGD with momentum (without
adversaries). Note that when clients compute full-batch gra-
dients, we have 0 = 0 in Assumption 1; similarly, when all
clients have access to the same dataset as in (Alistarh et al.,
2018; Blanchard et al., 2017), we have x = 0 in Assump-
tion 2. Note that (6) can be seen as a deterministic condition
on local datasets, under which we derive our results.

A note on Assumption 2. In the presence of Byzantine
adversaries, since we do not know which eR clients are
corrupt, we have to make some structural assumption on the
data that can provide relationships among gradients sampled
at different nodes for reliable decoding, and Assumption 2
is a natural way to achieve that. There are many alternatives
to establish this relationship, e.g., by assuming homoge-
neous (same or i.i.d.) data across clients (Alistarh et al.,

2018; Blanchard et al., 2017; Chen et al., 2017; Data &
Diggavi, 2020b; Su & Xu, 2019; Yin et al., 2018; 2019)
or by explicitly introducing redundancy in the system via
coding-theoretic solutions (Chen et al., 2018; Data et al.,
2021; Rajput et al., 2019); however, these approaches fall
short of in the FL setting.

Assuming bounded gradients of local functions (i.e.,
|[VF,.(z)| < G for some finite ) is a common assump-
tion in literature with heterogeneous data; see, for example,
(Li et al., 2020; Yu et al., 2019b, without adversaries) and
(Xie et al., 2019b, with adversaries). Note that under this
assumption, we can trivially bound the heterogeneity among
local datasets by ||V F,.(x) — VFs(x)|| < 2G. So, assum-
ing bounded gradients not only simplifies the analysis but
also obscures the effect of heterogeneity on the convergence
bounds, which Assumption 2 clearly brings out.'

Bounds on o2 and x? in the statistical heterogeneous
model. Since all our results (matrix concentration and
convergence) are given in terms of o and &, to show the
clear dependence of our results on the dimensionality of
the problem, we bound these quantities in the statistical
heterogeneous data model under different distributional as-
sumptions on local gradients; see Appendix E for more de-
tails, where we prove the following: For the SGD variance
bound, we show that if local gradients have sub-Gaussian
distribution, then 0 = O(y/dlog(d)). For the gradient
dissimilarity bound, we show that if either the local gra-
dients have sub-exponential distribution and each worker
has at least n = (dlog(nd)) data points or local gradi-
ents have sub-Gaussian distribution and n € N is arbitrary,
then kK < Kmean + O(y/2108(nd)/n), where Kpean denotes
the distance of the expected local gradients from the global
gradient. Note that we make distributional assumptions on
data generation only to derive bounds on o, k; otherwise, all
our results hold for arbitrary datasets satisfying (5), (6).

Adversary model. Throughout the paper, we assume that €
denotes the fraction of the K communicating clients that are
corrupt, i.e., at most e X' (out of K) clients that communicate
with the server at synchronization indices may be corrupt,
where K < R is the number of clients chosen at synchro-
nization indices. This translates to, in the worst case, having
% fraction (i.e., a total of e K') of corrupt nodes in the entire
system, as in the worst-case, all the corrupt nodes can be
selected in a communication round; however, in practice,
due to several constraints, such as the unreliable network
connection (for which the adversary has no control over), we
cannot expect that the server will select all corrupt nodes in
all iterations. The corrupt clients may collude and arbitrarily

!See (Khaled et al., 2020) for a detailed discussion on the inap-
propriateness of making bounded gradient assumption in heteroge-
neous data settings and how it obscures the effect of heterogeneity
on convergence rates (even without robustness).
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Algorithm 1 Byzantine-Resilient SGD with Local Iterations

1: Initialize. Set ¢ := 0, z¥ := 0,Vr € [R], and = := 0.
Here,  denotes the global model and azg denotes the
local model at client r at time 0. Fix a constant step-size
1 and a mini-batch size b.

2: while (t <T)do

3:  Server selects an arbitrary subset IC C [R] of |[K| =

K clients and sends « to all clients in K.

4:  All clients € C do in parallel:
50 Setz! = .
6:  while (true) do
7: Take a mini-batch stochastic gradient g,.(x%) €
F®b(xt) and update the local model:
e an —ng,(x)); t (t+1).
8: if (t € Zr) then
9: Let %i = !, if client r is honest, otherwise can
be an arbitrary vector in R%,
10: Send ii to the server and break the inner while
loop.
11: end if

12:  end while

13: At Server:

14:  Receive {z,,r € K} from the clients in .

15 Foreveryr € K, let g, ,oon := (Tr — ) /7.

16:  Apply the decoding aigorithm RAGE (see Algo-
rithm 2) on {g,. ,ccy, 7 € K}. Let

gaccu = RAGE(gr,accu’ re IC)

17:  Update the global model « <— Il¢(x—1g,., ), Where
II¢ denotes the projection operator onto the set C.
18: end while

deviate from their pre-specified programs: at synchroniza-
tion indices, instead of sending the true stochastic gradients
(or local models), corrupt clients may send adversarially
chosen vectors to the server.

2.1. Main Results

Let Zr = {t1,ta,...,tk, ...}, with t; = 0, denote the set
of synchronization indices (where max;>1 [tit1 —t;| = H)
when the server arbitrarily selects a subset of K < R clients
(denoted by K C [R)]) and sends the global model (denoted
by x) to them; each client r € IC updates its local model ,
by taking SGD steps based on its local dataset until the next
synchronization time, when all clients in /C send their local
models to the server. Note that some of these clients may
be corrupt and may send arbitrary vectors.” Server employs

2Note that the only disruption that the corrupt clients can cause
in the training process is during the gradient aggregation at syn-
chronization indices by sending adversarially chosen vectors to
the server, and we give unlimited power to the adversary for that.

a decoding RAGE and update the global model x based
on that. We present our Byzantine-resilient SGD algorithm
with local iterations in Algorithm 1.

Our convergence results are for both strongly-convex and
non-convex smooth objectives, and we state them in the
following theorem. Since our main focus in this paper is
on combining Byzantine resilience with local iterations, to
avoid the technical complications arising due to the projec-
tion operator (in line 17), we prove our results assuming
that the parameter space C is equal to R?. The analysis
involving the projection can be done using the techniques
in (Yin et al., 2018).

Theorem 1 (Mini-Batch Local Stochastic Gradient De-
scent). Let K; denote the set of K clients that are active
at any given time t € [0 : T) and € denote the fraction
of corrupt clients in IC;. For a global objective function
F :R* — R, let Algorithm I generate a sequence of iter-
ates {xl : t € [0: T|,r € Ki} when running with a fixed
step-size n = g Fix any constant € > 0. Ife < 3 — €,

then with probability 1 — L exp(—elz(llige)l(), the sequence

of average iterates {x' = %Zre)ct zl ct e 0: T}
satisfy the following convergence guarantees:

e Strongly-convex: If F is L-smooth for L > 0,° and
u-strongly convex for p > 0,* we get:

|2 poN\T
E[a" — 2| SO‘@) ="

e Non-convex: If F' is L-smooth for L > 0, we get:

2 13

[E[F(z°)] — E[F(z")]]

I
T/16HL

+
| ©

1 T
7 2 E[VFE| <

t=0

In both the bounds above, I' = % + % +

36HkK?) with T2 = O (od(e+¢€)), where of =
25];:,"2 (1 + %) +28H2k2, and expectation is taken over
the sampling of mini-batch stochastic gradients.

We prove the strongly-convex part of Theorem 1 in Ap-
pendix B and the non-convex part in Appendix C. In addi-
tion to other complications arising due to handling Byzan-
tine clients together with local iterations, our proof deviates
from the standard proofs for local SGD: We need to show
two recurrences, which arise because at synchronization
indices, server performs decoding to filter-out the corrupt
clients, while at other indices there is no decoding, as there
is no communication. The proof of the first recurrence is
significantly more involved than that of the other one.

Because of this and for the purpose of analysis, we can assume,
without loss of generality, that in between the synchronization
indices, the corrupt clients sample stochastic gradients and update
their local parameters honestly.
*F(y) < F(z)+(VF(z),y—a)+ 5 |lz—y|? Ve, y € R
‘F(y) > F(x)+(VF(2),y—a)+5llz—y|* vz, y € R".
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2.2. Important Remarks About Theorem 1

Failure probability. The failure probability of our algo-
rithm is at most = exp(— 60(11786)]() which though scales
linearly with T, also goes down exponentially with K. As a
result, in settings such as federated learning, where number
of clients could be large (e.g., in tens/hundreds of millions)
and server samples tens of thousands of them, we can get
a very small probability of error, even if run our algorithm
for a long time.> Note that the error probability is due to
the stochastic sampling of gradients, and if we want a “zero”
probability of error, we can run full-batch GD (yielding an
error of I' = O(Hk?)); we analyze that in Appendix D
with a much simplified analysis than that of Theorem 1.

Analysis of the approximation error. In Theorem 1, the
approximation error I" essentially consists of two types of
error terms: [y = O (’%2’,2 (14 22) (e+ e’)) and I =
O(Hk?), where I arises due to stochastic sampling of
gradients and I» arises due to dissimilarity in the local
datasets. Observe that I decreases as we increase the batch
size b of stochastic gradients and becomes zero if we take
full-batch gradients (which implies o = 0), as is the case
in Theorem 4 in Appendix D. Note that even though the
variance (and gradient dissimilarity) of accumulation of I/
gradients blows up by a factor of H?, still both I'; and I
have a linear dependence on the number of local iterations
H. Observe that since we are working with heterogeneous
datasets, the presence of gradient dissimilarity bound x?2
(which captures the heterogeneity) in the approximation
error is inevitable, and will always show up when bounding
the deviation of the true “global” gradient from the decoded
one in the presence of Byzantine clients, even when H = 1.

Convergence rates. In the strongly-convex case, Algo-
rithm 1 approximately finds the optimal parameters x*

(within " error) with (1 — —=4—)" speed. Note that

(1- 16%)71 < exp~T6C 77, which implies an exponen-
tially fast (in 7/H) convergence rate. In the non-convex
case, Algorithm 1 reaches to a stationary point (within I" er-
ror) with a speed of ﬁ Note that the convergence rates of
vanilla SGD (i.e., without local iterations and in Byzantine-
free settings) are exponential (in 7°) and % for strongly-
convex and non-convex objectives, respectively; whereas,
our convergence rates are affected by the number of local
iterations H. The reason for this is precisely because we

3As a concrete scenario, say the total number of devices is
R = 10 million and the server selects K = 10,000 of them.
Then, even if we want robustness against one million malicious
clients, the total probability of failure of our algorithm would
still be less than S e~*°, which even if 7 = 10° and H = 1,
would still be less than 10~7. Note that the bound on probability
of error in Theorem 1 is a worst-case bound, and in practice,
our algorithm succeeds with moderate parameter values; see, for
example, Section 4 for our experimental setup and the results.

need n < SH% to bound the drift in local parameters across
clients; see Lemma 2. Instead, if we had assumed a stronger
bounded gradient assumption (which trivially bound the het-
erogeneity, as explained on page 3), then Lemma 2 would
hold for a constant step-size (e.g., n = i would suffice),

which would lead to vanilla SGD like convergence rates.

3. Robust Accumulated Gradient Estimation

In this section, first we discuss the inadequacy of traditional
methods (such as coordinate-wise median and trimmed-
mean) for filtering corrupt gradients in our setting, and then
we motivate and describe the robust accumulated gradient
estimation (RAGE) procedure that we use in Algorithm 1
as a subroutine at every synchronization index. Then we
prove our new matrix concentration result that is required
to establish the performance guarantee of RAGE.

Inadequacy of median and trimmed-mean: Coordinate-
wise median (med) and trimmed-mean (trimmean) are the
two widely used robust estimation procedures that are easy
to describe and implement, and they have been employed
earlier for robust gradient aggregation in distributed opti-
mization; see, for example, (Yin et al., 2018; 2019, i.i.d. data
setting) and (Xie et al., 2019a, FL setting). Below we argue
that these methods give poor performance in FL settings
for learning high-dimensional models; we also validate this
claim through experiments in Section 4.

o For the simple task of robust mean estimation with inputs
coming a unit covariance distribution, med and trimmean
have an error that scales with the dimension as v/d (Di-
akonikolas et al., 2019; Lai et al., 2016); when we apply
these methods in each SGD iteration, this error translates to
a large sub-optimality gap in the convergence rate.

e The adversary may corrupt samples in a way that they pre-
serve the norm of the original uncorrupted samples, but have
different adversarially chosen directions (these are called
directional attacks); since the performance of these methods
are based on the magnitude of the samples, they cannot
distinguish between the corrupt and uncorrupt samples.

e When taking coordinate-wise median, for estimating each
coordinate, we use only a single sample and discard the rest.
This is not a good idea in large-scale settings with non-i.i.d.
data, such as FL, where there are potentially millions of
clients, and if we somehow are able to use samples from all
(or most of the) honest clients, we could get a significant
reduction in variance of stochastic gradients. In med, we do
not take advantage of this variance reduction, which leads
to a performance degradation, which may be detrimental
for performance due to heterogeneity in data. The same rea-
son also applies to the robust gradient aggregation method
(KrUM) adopted in (Blanchard et al., 2017), which also
uses only one of the input gradients and discards the rest,
giving poor performance.
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Robust mean estimation: The above limitations of tradi-
tional methods motivate us to employ modern tools from
high-dimensional robust statistics (Diakonikolas & Kane,
2019; Diakonikolas et al., 2019; Lai et al., 2016). In particu-
lar, we use the polynomial-time outlier-filtering procedure
for high-dimensional robust mean estimation (RME) from
(Diakonikolas et al., 2019) for robust gradient aggregation in
Algorithm 1. For clear exposition of the ideas behind their
algorithm, we use a version of their algorithm as described
in Algorithm 2, which is from (Li, 2019). The crucial obser-
vation in these RME algorithms is that if the empirical mean
of the samples is far from their true mean, then the empirical
covariance matrix has high largest eigenvalue. So, the idea
is to iteratively filter out samples that have large projection
on the principal eigenvector of the empirical covariance
matrix, and keep on doing it until the largest eigenvalue of
the empirical covariance matrix becomes sufficiently small
(line 7). This is done via a soft-removal method, where
we assign weights (confidence score) to the samples and
down-weighting those that have large projection (line 10)
—in each iteration ¢, at least one sample (whose projection

( ) is the maximum) gets 0 weight. In the end, take the
welghted average of the surviving samples.

The RME algorithms overcome most of the above-
mentioned limitations of traditional methods, except for
that their guarantees are not directly applicable to our set-
ting. This is because the error guarantee of RME algorithms
are given in terms of concentration of the good samples
around their sample mean, which is easy to bound if good
samples come from the same distribution. Note that our
setup significantly deviates from this, where not only the
input samples (which are accumulated gradients) come from
different distributions (as clients have heterogeneous data),
but each of them is also a sum of H stochastic gradients (due
to local iterations). Since local iterations cause local param-
eters to drift from each other, bounding the concentration of
good samples requires bounding this drift.

To this end, we develop a novel matrix concentration in-
equality that first shows an existence of a large subset of un-
corrupted accumulated stochastic gradients and then bounds
their concentration around the sample mean; see (7) in The-
orem 2 below. As far as we know, this is the first matrix
concentration result in an FL setting.

First we setup the notation. Let Algorithm 1 generate a
sequence of iterates {x’ : t € [0 : T],r € K;} when

SNote that the outlier-filtering procedure described in Algo-
rithm 2 is intuitive and easy to understand. There are better algo-
rithms that are also more efficient and can achieve better guaran-
tees; see, for example, (Dong et al., 2019). All these algorithms
require the same bounded matrix concentration assumption that
we show in Theorem 2, thus making them applicable to use as a
subroutine in Algorithm 1 without requiring any modification in
our analysis.

Algorithm 2 Robust Accumulated Gradient Estimation
(RAGE) (Diakonikolas et al., 2019; Li, 2019)

1: Input: K vectors g;,9g,,...,9x € R? such
that there is a subset of them & C [K]
with |S| > 2K having bounded covariance

T
Amax (ﬁ ZiGS (9, —9s)(9; —gs) ) < 03, where
1
ST IS 2ies 9

2: For any w € [0, 1]¥ with ||w]|; > 0, define

2wl
Letw® = [L,..., %] bealength K vector.
Let C' > 11 be a universal constant.

Let (0 = 2 (w®),

Lett =0.

while )., (Z(w®)) > Co? do
Let v(® be the principal eigenvector of (w®).
For i € [K], define 7" = (v, g, — p(w (t))>2-

R A A

e
10:  Fori € [K], compute w{™") = (1 — )w(t),

Tmax v
t )
where Tr(n;x = max, (t)>0 Z( .

11: t=t+1
12: end while
w'®

Iy K (
13: returng = ), Twtoy; i

running with a fixed step-size n < g H T+, where Ky denotes
the set of K clients that are active at time ¢ € [0 : T']. Take
any two consecutive synchronization indices ty, tx+1 € Zr.
Note that |t41 — tx| < H. For an honest client € Ky, ,
let gi’fz{ctc’“u“ = i’;i_l g, (L) denote the sum of local
mini-batch stochastic gradients sampled by client r between
time t and tj4 1, where g,.(x!) € F2(x!) satisfies (4),
(5). Atiteration ¢ 1, every honest client r € s, reports its
local model :ar:ff“+1 to the server, from which server computes
gikz{ctéu“ (see line 15 of Algorithm 1), whereas, the corrupt
clients may report arbitrary and adversarially chosen vectors
in R?. Server does not know the identities of the corrupt
clients, and its goal is to produce an estimate §a§gﬁ"+ ! of the
average accumulated gradients from honest clients.

Theorem 2 (Matrix concentration). Suppose an € fraction
of K clients that communicate with the server are corrupt.
In the setting described above, suppose we are given K <
R accumulated gradients g':;!5+1 1 e K, in R, where

T,accu

it it )
Gl = grtica " if 7'th client is honest, otherwise can

be arbitrary. For any € > 0, if (e + €') < 1, then with

3)
probability 1 — exp(—ez(lligdK), there exists a subset S C
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KCt,, of uncorrupted gradients of size (1 — (e + ¢')) K s.t.
1 T
Amax(? Z (9: —95)(9: — 9s) )
1517

25 H?52 d
< BH 0™ (1 n 3—) F28H%K2, (7)
be’
tro k41

2K
where, fori € S’ g9, = gz accu 198 = ﬁ ZieSg
and A\ ax denotes the largest eigenvalue.

thyllt1
i,accu

Theorem 2 establishes the concentration results required for
the RME algorithm (described in Algorithm 2) that we em-
ploy in Algorithm 1. This RME algorithm takes a collection
of vectors as input, out of which an unknown large subset
(at least a %—fraction) is promised to be well-concentrated
around its sample mean, and outputs an estimate of the
sample mean. The formal guarantee is given as follows:
Theorem 3 (Outlier-filtering algorithm (Diakonikolas et al.,
2019)). Under the same setting and notation of Theorem 2,
we can find an estimate g of gg in polynomial-time with
probability 1, such that ||g — gs|| < O (c0Ve + €'), where
03 = B (14 24) + 28H2x2,

Note that, instead of the RME algorithm, if we use med or
trimmean, we would get an extra multiplicative factor of
V/d in the upper-bound on ||g — g s|| above.

3.1. Proof-sketch of Theorem 2 — Matrix Concentration

In order to prove Theorem 2, we use the following result
from (Data & Diggavi, 2020a, Lemma 1):

Lemma 1 ((Data & Diggavi, 2020a, Lemma 1)). Suppose
there are m independent distributions pi,pa,...,Dm in
R such that Ey.p,[y] = p;,i € [m] and each p; has
a bounded variance in all directions, i.e., By, [(y —
pi,v)?] < o2, Yo € R |jv|| = 1. Take any € >
0. Then, given m independent samples Y,,Ys, - -, Y,
where y, ~ p;, with probability 1 — exp(—¢>m/16),
there is a subset S of (1 — €)m points such that

1 T 407
AmaX(ﬁzl‘es(yi*Hi)(yz*Hi) ) < %(lJr

d 2 _ X 2
(1—6')771)’ Where Upmax - maxle[m] Upi'

Lemma 1 shows that if we have m independent distributions
each having bounded variance, and we take one sample from
each of them, then there exists a large subset of these sam-
ples that has bounded variance as well. The important thing
to note here is that the m samples come from different distri-
butions, which makes it distinct from existing results, such
as (Charikar et al., 2017, Proposition B.1), which shows
concentration of i.i.d. samples.

Now we give a proof-sketch of Theorem 2 with the help of
Lemma 1. A complete proof is provided in Appendix A.

Let ty,tr+1 € Zr be any two consecutive synchronization
indices. For ¢ € K, corresponding to an honest client, let

Yit’“,Yf"'H, .. ,Yit’“’ﬁ1 be a sequence of (tr11 — tg) <
H (dependent) random variables, where for any ¢ € [t

tg+1 — 1], the random variable Yf is distributed as
YD) ®

Here, Y;! corresponds to the mini-batch stochastic gradi-
ent sampled from the set 727 (zf (zf*, Y%, ..., Y1),
which itself depends on the local parameters :cf" (which is
a deterministic quantity) at the last synchronization index
and the past realizations of Yit’“, e Yit_l. This is because
the evolution of local parameters x! depends on x}* and the
choice of gradients in between time indices ¢ and ¢t — 1.
Now define Y; := S fh+11 Y. Let p; be the distribution

t=t
of Y;, which we will takek when using Lemma 1.

v Unif(FE (al (@l Y

It is not hard to show that for any honest client ¢ € X, ,

we have E||Y; — E[V}]||? < H2b"2. It is also easy to see
that the hypothesis of Lemma 1 is satisfied with pu; =

2 _2 . . .
E[Y;],02 = £ for all honest clients i € Ky, , i.e., we

TP
2 2
have Ey . [(y; —Ely,],v)%] < 57 Vo € R?, [|o| = 1.

We are given K different accumulated gradients (each is a
summation of H gradients), out of which at least (1 — €) K
are according to the correct distribution. By considering
only the uncorrupted gradients (i.e., taking m = (1 — €) K),
we have from Lemma 1 that there exists a subset S C ICy,
of size (1 —€¢)(1 - €)K > (1 - (e+¢))K > 2£ that

satisfies (in the following, ¥y, = y, — E[y,])
U 1) oo AH%0? 3d
Awas (7 DU ) <58 (1+22). ©
a |S|E8yﬂ“ %= 7 ITag) O

Note that (9) bounds the deviation of the points in S from
their respective means E[y;]. However, in (7), we need to
bound the deviation of the points in S from their sample
mean Fll > ics Yi- As it turns out, due to heterogeneity
in data and our use of local iterations, this extension is
non-trivial and requires some technical work, given next.

From the alternate definition of the largest eigenvalue of
symmetric matrices A € R?*? we have Apa(A) =
SUDyeRd, ||v]|=1 vT Av. With this, (9) is equivalent to

P Z

)2 <ag. (10)
vertilo—1 IS]

Define y5 := ﬁ > ics Yi to be the sample mean of points

in S. Take an arbitrary unit vector v € R?. Using some
algebraic manipulations provided in Appendix A, we get

i~ Ys,v)? <665+

~Ely]|° an
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Using the gradient dissimilarity bound and the L-
smoothness of F, we can show that for honest
clients r,s € K. we have ||E[y,]—E[y]|> <
Hzt’““_ (6k2 + 3L2E||x! — «!||?). Using this bound
in (11) together with some algebraic manipulations, we get

S| Z

€S

—yg,v)? <655 + 24H?K?

12HL bega 1

168 jES t=ty

Now we bound the last term of (12), which is the drift in
local parameters at different clients in between any two
synchronization indices.

I o0 < SH%, we
zt||? <7H32( +3m)

Lemma 2. have

thp1—1
i Bl -
Substituting this in (12) together with some algebraic ma-
nipulations provided in Appendix A, we get

25H252 (1 3d

1 2 2 2
< H*k
8] - Z< TUs V) S g QK) 28

Note that this bound holds for all unit vectors v € R%. Now
substituting g/*)5 1 = yz,gfs’“;m’;jl = ys and using the

alternate definition of largest elgenvalue proves Theorem 2.

4. Experiments

In this section, we present preliminary numerical results on
a non-convex objective. Additional implementation details
can be found in Appendix F in the supplementary material.

Setup: We train a single layer neural network for image
classification on the MNIST handwritten digit (from 0-9)
dataset. The hidden layer has 25 nodes with ReLU acti-
vation function and the output has softmax function. The
dimension of the model parameter vector is 19, 885.7 All
clients compute stochastic gradients on a batch-size of 128
in each iteration and communicate the local parameter vec-
tors with the server after taking H = 7 local iterations.
For all the defense mechanisms, we start with a step-size
1n = 0.08 and decrease its learning rate by a factor of 0.96
when the difference in the corresponding test accuracies in
the last 2 consecutive epochs is less than 0.001.

Heterogeneous datasets: The MNIST dataset has 60, 000
training images (with 6000 images of each label) and
10,000 test images (each having 28 x 28 = 784 pixels),

7784 x 25 = 19, 600 weights between the input and the first
layer, 25 bias terms (one for each node in the hidden layer), 25 x
10 = 250 weights between the first layer and the output layer, and
10 bias terms (one for each node in the output layer).

and is distributed among the 200 clients in the following
heterogeneous manner: Each client takes a random permuta-
tion of the probability vector [0.8,0.1,0.1,0,0,0, 0,0, 0, 0].
Suppose it obtains a vector p such that p; = 0.8,p; =
0.1, px = 0.1 for some distinct 4, j,k € [0: 9] and p; = 0
for the rest of the indices, then it selects uniformly at random
800, 100, 100 training images with label , 7, k, respectively.

Adversarial attacks: We have 12.5% adversarial clients,
i.e., 25 out of 200 clients are corrupt, and the corrupt set
of clients may change in every iteration. We implement
six adversarial attacks: (i) the ‘random gradient attack’,
where local gradients at clients are replaced by indepen-
dent Gaussian random vectors having the same norm® as
the corresponding gradients; (ii) the ‘reverse average gradi-
ent attack’, where corrupt clients send -ve of their average
local gradients; (iii) the ‘gradient shift attack’, where lo-
cal gradients of corrupt clients are shifted by a scaled (by
factor of 50) Gaussian random vector (same for all); (iv)
the ‘all ones attack’, where gradients of the corrupt clients
are replaced by the all ones vector; (v) the ‘Baruch attack’,
which was designed in (Baruch et al., 2019) specifically
for coordinate-wise trimmed mean (trimmean) (Yin et al.,
2018), Krum (Blanchard et al., 2017), and Bulyan (Mhamdi
et al., 2018) defenses; and (vi) the ‘reverse scaled average
gradient attack’, where corrupt clients compute the -ve of
their average local gradients, scale it by the factor of 50, and
then send it.

Performance: We train our neural network under all
the above-described adversarial attacks, and demonstrate
in Figure 1 the performance of our method (red color)
against four other methods for robust gradient aggregation,
namely, coordinate-wise trimmed-mean (black color) and
coordinate-wise median (green color), which were used in
(Xie et al., 2019a; Yin et al., 2018; 2019), Krum (magenta
color), which was proposed in (Blanchard et al., 2017), and
Bulyan (cyan color), which was proposed in (Mhamdi et al.,
2018). For reference, we also plot (in blue color) the per-
formance of Algorithm 1 with the same setup as above but
without adversaries and with no decoding. For each attack,
we plot two curves, one for training loss vs. number of
epochs and the other for test accuracy vs. number of epochs.

It can be seen from the comparison in Figure 1 that our
method consistently outperforms all these methods in all the
attacks that we have implemented.” In particular, for attacks

8Note that changing the direction while keeping the norm same
is among the worst attacks as the corrupt gradients cannot be
filtered out just based on their norms.

“We found out that the Bulyan defense mechanism is signif-
icantly slower than all other mechanisms. Due to this, we only
implemented this for the Baruch-attack, which was specifically
designed against Krum/Bulyan algorithms. Since a basic building
block of Bulyan is Krum, and Krum performs the worst among all
the mechanisms that we implemented, we do not expect Bulyan
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Figure 1. We compare the performance of our method (red) against four methods for robust gradient aggregation, namely, coordinate-wise
trimmed-mean (black), coordinate-wise median (green), Krum (magenta), and Bulyan (cyan) under several adversarial attacks, and plot
training loss and test accuracy against number of epochs. The plot in blue corresponds to running Algorithm 1 with no adversaries and no
decoding. In the legends, 7L denotes that we are taking I = 7 local iterations. See also Footnotes 9, 10.

(i), (iii), (iv), (vi), our method (with adversaries) achieves
similar performance for both training loss and test accuracy
as that of running SGD with local iterations but without any
adversaries and defense mechanism at the server; and for
attacks (i), (v), the performance difference (test accuracy)
is around 0.1 at epoch 40, which is still significantly better
than all other methods. ! This conforms to the inadequacy
of using these methods in our setting, as described in Sec-
tion 3. Note that the experiments presented in (Xie et al.,
2019a; Yin et al., 2018) only implemented a benign ‘label-
flipping’ attack, which is a data poisoning attack. This is
not a dynamic attack as, unlike gradient attacks, it does not
adapt to the learning process over iterations. In contrast, in

to perform significantly better than Krum in other attacks as well —
note that both Krum and Bulyan are the worst performing defense
mechanisms against the Baruch-attack.

10We plot the Krum performance in the training loss vs. number
of epochs figures only for the attacks (ii), (v); because in all other
attacks, the Krum training loss became very high (above 100)
even before epoch 40 and would have prevented observing other
methods’ performance if we had plotted it.

all our attacks, corrupt clients send adversarial gradients in
every iteration, making them significantly more malicious
than just flipping the labels. As we have mentioned in the
related work (on page 2), and we want to emphasize again,
that though (Xie et al., 2019a) also studied the same prob-
lem as ours, but employed ‘coordinate-wise trimmed mean’
for robust gradient aggregation, their convergence bound,
in our opinion, are vacuous, as the sub-optimality gap in
their bounds always scales linearly with the diameter of
the parameter space. As far as we know, ours is the first
theoretical result that combines Byzantine-resilience with
local iterations for high-dimensional distributed training on
heterogeneous datasets with good empirical performance.
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Supplementary Material

A. Complete Proof of Theorem 2

Let tx,tx+1 € Zr be any two consecutive synchronization indices. For ¢ € K;, corresponding to an honest client, let
Y;tk , Yf’““, el Y;t’““ “'hea sequence of (tx1—tx) < H (dependent) random variables, where, for any ¢t € [ty : t11—1],
the random variable Y;! is distributed as

v Unif (FE2 (ol (alt, Y%, V). (13)

Here, Y;! corresponds to the stochastic sampling of mini-batch gradients from the set 7 (x (x!*, Y, ..., Y/~!)), which
itself depends on the local parameters ZB?C (which is a deterministic quantity) at the last synchronization index and the
past realizations of Y;'*, ..., Y;’~'. This is because the evolution of local parameters x! depends on x.* and the choice of
gradients in between time indices ¢, and ¢ — 1. Now define Y; := i’;;*l Yit; and let p; be the distribution of Y;. This is
the distribution p; we will take when using Lemma 1.

Claim 1. For any honest client i € K;,, we have E||Y; — E[Y;]||> < sz"z, where expectation is taken over sampling
stochastic gradients by client i between the synchronization indices ty, and tj 1.

Proof. Take an arbitrary honest client ¢ € ICy, .

2

) ot @ ot o 1o ® H202
E||Y; —EM]|* =E|| > (¥ -EN)| < (teea—te) Y EIY —EN|° < ——,
t=ty, t=ty,

where (a) follows from the Jensen’s inequality; in (b) we used (t;+1 — tx) < H and that E||Y;! — E[Y}!]||? < "—; for all
j € [H], which follows from the explanation below:

BV -EYAIP= Y Pr[Y/=yljelt:t—1]
y;’ﬂ...,y;fl
XE ||V BN Y7 =yl € st — 1]

© i o’
< ¥ Pr{}/i:yi,je[tk:t—l]}-?

Note that Y ~ Unif(.FL@b CHEL SN ,Yit_l))). So, when we fix the values Y;'* = yi* ... V™! = ¢!, the
parameter vector x! (mf’“ YR Yfﬁl) becomes a deterministic quantity. Now we can use the variance bound (5) in order
to bound E {HY} —EYH|? Y =yl,j €ty t— 1]] < U—: This is what we used in (c). O

2 H?%o2
0pi = 71

It is easy to see that the hypothesis of Lemma 1 is satisfied with g, = E[Y}] for all honest clients 7 € Ky, (note

that p; is the distribution of Y;):

(d © HZ2g?
Eymop (i = Elyil, 0)°] < Ellly; — By, mp [yilI7] - 0l* < ——,

where (d) follows from the Cauchy-Schwarz inequality and (e) follows from Claim 1 and |lv|| < 1.

We are given K different (summations of H) gradients, out of which at least (1 —¢€) K are according to the correct distribution.
By considering only the uncorrupted gradients (i.e., taking m = (1 — €) K), we have from Lemma 1 that there exists a
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subset S C Ky, of K gradients of size (1 — ¢/)(1 — €)K > (1 — (e+¢/))K > 2K (where in the last inequality we used

(e + €) < 3) that satisfies
2\ 4H252 3d
- . < — .
max( ] E Ely,]) ) S e I+ 5K (14)

i€S

Note that (14) bounds the deviation of the points in S from their respective means E[y,]. However, in (7), we need to bound
the deviation of the points in S from their sample mean ﬁ Zl cs Yi- As it turns out, due to our use of local iterations, this
will require a non-trivial amount of technical work.

From the alternate definition of the largest eigenvalue of symmetric matrices A € R4*¢, we have

Amax(A) = sup vl Aw. (15)
vERY ||v]|=1

Applying this with A = @ Yies Wi —Ely,]) (y; — Ely,])”, we can equivalently write (14) as
4]‘1’2 2 3d
0)? | <52 (1+>. (16)
S, \|u\| 1 <|3| ZEZS ) 0T e 2K

Define yg := Fll > ies Yi to be the sample mean of the points in S. Take an arbitrary v € R? such that [Jv]| = 1.

E —Ys, v E > + <E[yz] —Ys, ’U>]2
|5| |5|
€S €S
§ § 2 i b)? < 2a% + 20
= 18] 2 P (s (o £ 0= 20200

Using (16) to bound the first term, we get

JO+ |S|Z< Y, é|zyj’v>2

i€S
2

|S| Z [\S| 2 >}
| S| Z Z ,v)? (using the Jensen’s inequality)
|5| T s Z 1) + (Ely;] — Ely, v)]”

zES jES
S Z 21, BSE Z Z vl v)*

zES ]ES

(using (a + b)? < 2a? + 2b°)

4 g Sl B+ g 3 o S 8l ~ Bl

JES €S jGS
(using the Cauchy-Schwarz inequality and that ||v|| < 1)

g Z 2 I[Ely;) - Elyil | (17)
zGS jGS
Claim 2. Foranyr,s € Ky, , we have

t),;+171
Bly,] - Ely)I* <H > (65" +3L°E|a} —a}|?), (18)

t=ty
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where expectations in Ely,| and Ely,] are taken over sampling stochastic gradients between the synchronization indices
ti,...,tgy1 by client r and client s, respectively.

Proof. Note that we can equivalently write E[y,] = E[Y,] and E[y,] = E[Y}].

||E[Yr] - E[YS]HQ = ||E[Yr] - E[YS]HQ
'S (- Ep)
< (terr — t) +Z_ B - B (19)

By definition of Y/ from (13), we have Y} ~ Unif(}'?b (wf (e, Ve, Ystfl))> , which implies using (4) that E[Y] =
E [VF, (! (xt, Y+, ..., Y 1))], where on the RHS, expectation is taken over (Y/*,...,Y/™1). To make the notation
less cluttered, in the following, for any s € Ky, , we write 2, to denote @’ (x*, Y%, ..., Y ™) with the understanding that

expectation is always taken over the sampling of stochastic gradients between ¢ and ¢5.1. With these substitutions, the ¢’th
term from (20) can be written as:

B[] - B = ([ [VF ) - VE()]|
(a) 2
<E|VF, (z}) - VF, (z})| (20)
S 3E||VF, (2L) — VF (21| + 3E |V F. () - VF (1)
+3E||VF (at) - VF (1) |

©
< 6K? + 3L7E|jz! — x| 1)

Here, (a) and (b) both follow from the Jensen’s inequality. (c) used the gradient dissimilarity bound from (6) to bound the
first two terms'! and L-Lipschitzness of VF to bound the last term. Substituting the bound from (21) back in (20) and using
(tg+1 — tr) < H proves Claim 2. O

Using the bound from (18) in (17) gives

tpy1—1
1
5T Wi s )’ < mZ Z > (65 +3L%E||2L — 21|
1€S t=ty
tpy1—1
:68§+24H2m2+12|gf Z Z > Elal -zl (22)

zES jES t=ty

Now we bound the last term of (22), which is the drift in local parameters at different clients in between any two
synchronization indices.

Lemma 3. Foranyr,s € K, if n < we have

SHL’

try1—1 02
> Ellat - al|" < 7%y (b + 3/-/2) : (23)

t=ty
where expectation is taken over sampling stochastic gradients at clients r, s between the synchronization indices tj, and
lgt1.

""Note that though x%.’s are random quantities, we can still bound E H VE.(zl) — VFs(x}) H2 < k2 because the gradient dissimilarity
bound (6) holds uniformly over the entire domain.
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Proof. Forany t € [ty : tpy1 — 1] and 7, s € Ky, define D, = E ||z, — x, || Note that at synchronization time ¢, all
clients in the active set K, have the same parameters, i.e., :cﬁk = x'* forevery r € Kt -

2
t—1 -1
Df",s:Ewa’_wgnzzE mf"k _TIZQT(mi) - mik _77295(933;)
J=tk j=tg
2
t—1
=7’RE Z (9,.(zl) — g () (Since zl* = ' Vr € K;,)
J=tk
t—1 ' -
<n*(t—tx) > Ellg.(x]) — g,
J=tk
<n%f§j®EMT ) — VE(ad)||* +3E ||g, () — VF. ()]
J=tk
+$EHVFNwD——VE}@%MF) (24)

To bound the first and the second terms we use the variance bound from (5).'> We can bound the third term in the same way
as we bounded it in (20) and obtained (21). This gives

t—1
602 . )
D, <iHY. (Cb’ +18k2 + 9L2E||z? — a;g,||2)
J=tk
t—1
2 2 2 277, 2 j : j j 1|2
+ 18H*n"k* +9L"Hn ZD%S (SmceDi)S:EHwi—ang )
J=tk

6H202n2
< _
- b

Taking summation from ¢ = #j, to t541 — 1 gives

try1—1 try1—1 t—1

Y i< Y WTJ” + 18Pk + 9L Hi? 3 D,

t=ty t=ty =tk

6H302n? o1 =1
< # +18HYPR? + L H Y Db,

t=ty
After rearranging terms, we get

tey1—1

(1-9L*H?y%) Y DL, <

t=ty

6H3 2.2
2T L 18 H32R2. (25)

If we take ) < g7, we get (1 — 9> L2H?) > &. Substituting this in the LHS of (25) yields tk“ ! Dj < W +
21 H3n?k?2, which proves Lemma 3. O

Substituting the bound from (23) for the last term in (22) gives
12HL?
Z —ys,v)? <65 + 24H” + > Z<H32( +3/{>>
18] - T8I & 181 & b
2
= 662 + 24H?k2 + S4H* L2 (O;) + 3&2)

2Note that a:i’s are random quantities, however, since the variance bound (5) holds uniformly over the entire domain, we can bound
. Y 2
E||g,(x1) — VF.(2h)|” < .
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21H?%0?
< 657 + 28H?K? + — - (Using 7 < 5777)
24H?0? 3d 21H?0? 9 g 4H o
_bcl<1+2K>+16b+28Hm (Since 6% = (1+ 3%
25H%0? 3d
< (14— | + 28H%K%. 26
S ( +3 K) + K (26)
In the last inequality we used 21 < 1 1 (1 + 3 3d ) where the first inequality follows because ¢’ < . Note that (26)
holds for every unit vector v € Rd Usmg th1s and substltutmg gz"a’cc’;“ Yi, gg" L — g in (26), we get

1 tetor: ot N2 _ 25H?0? 3d ) s
sup” 1|S|§<gi7accu ~ 95 accu ,v> ST 1+ﬁ + 28H*k*.

vER?:||v||=

This, in view of the alternate definition of the largest eigenvalue given in (15), is equivalent to (7), which proves Theorem 2.

B. Convergence Proof of the Strongly-Convex Part of Theorem 1

Let Zy := {t1,t2, ..., tk, ...} with t; = 0 be the set of synchronization indices at which server selects a subset X C [R)
of K clients and sends the current global model parameters to them. Upon receiving that, clients in K performs local
SGD steps based on their own local datasets until the next synchronization index, at which they send their local model
parameters to the server. When server has received the updates from clients, it applies the outlier-filtering procedure RAGE
(see Algorithm 1) to robustly estimate the average of the uncorrupted accumulated gradients and then updates the global
model parameters. We assume that H = max;>1(¢i41 — t;).

At any iteration ¢ € [T], let KC; C [R] denote the set of clients that are active at time ¢. Let 2" := - >_, . @ denote the
average parameter vector of the clients in the active set /C;. Note that, for any ¢; € Zr, the clients in K;, remain active at all
time indices ¢ such that t € [t; : ;41 — 1].

In the following, we denote the decoded gradient at the server at any synchronization time ¢; 1 by gié’cff“ which is an

estimate of the average of the accumulated gradients between time ¢; and ¢,41 of the honest clients in K;,, as in Theorem 2.
From Algorithm 1, we can write the parameter update rule for the global model at the synchronization indices as:
ti _ tutl
G :E - ngdcqurl
Note that at any synchronization index ¢; € Zr, when server selects a subset K;, of clients and sends the global parameter
vector x'i, all clients in K;, set their local model parameters to be equal to the global model parameters, i.e., ¢t = x'i
holds for every r € Ky,.

Now we proceed with proving the strongly-convex part of Theorem 1.

First we derive a recurrence relation for the synchronization indices and then later we extend the proof to all indices.
Consider the (i 4 1)’st synchronization index t; 1 € Zy.

t ~tiytit1

xht =gl — M9 accu
tit1— 1 tigp1—1
tl)tl
= - 777 Z Z VF -n gdccu+1 - E Z Z VFT(wvt”)
T‘EICt t=t; TE’Cti t=t;
For simplicity of notation, define & £ (ﬁﬁé;u‘“ +3 K., ”17 VFE.(x )) Substituting this in the above and using

t; — 1 ti of
xh = ZTE,C% xli gives

tit1—

fi1 = Zm—n—z ZVF n&

T'EIC{ TEK{ t=t;
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= Z ( '—nlilwr )—ng

relCt
1
== 3 (@ VR e ) - a8
TEICt
— ptiti—1 tiv1—l
=zl nK Y VE(@i ) —nE
relCt
1
:Scti‘*'l_l—??vF(mt”l_l)‘f'nE Z (VF(thl—l) VF( tit1— 1)) _775 27
TG’Ct,i

Subtracting =* from both sides gives:

1
xhitt —g* = ghivt™! —x* — V(2 + 1) 4 e Z (VF(x+1 D — VE (xfi+1 ™ 1)) —né& (28)
relt,

=:u

= v

This gives '+ — x* = u + n(v — &). Taking norm on both sides and then squaring gives
2+ = || = ull? + nllv - ] + 2n(u,v — ) 29)

Now we use a simple but powerful trick on inner-products together with the inequality 2(a, b) < ||a||? + ||b||* and get:

2
v — € —2<\/’7“ nel > Ll + 22 o - &1 (30)

Substituting this back in (29) gives
ot = o< (14 22l 4 (4 2 ) o - €l
< (0+ %)l 2 (2 ) ol 20 (n+ 2 ) el

Substituting the values of u, v, £ and taking expectation w.r.t. the stochastic sampling of gradients by clients in /C;, between
iterations ¢; and ¢;4; (while conditioning on the past) gives:

E [t —2*|” < (1+7)EHW“ B A Bl
2
+2n <n+2)E = 3 (VE@ )~ VE (k)
K rely;
2 1 i i
+ 21 <n+)]E Guas™ =6 D D VE() 31)
H TG}Cti t=t;

Now we bound each of the three terms on the RHS of (31) separately in Claim 3, Claim 4, and Claim 5, respectively.
Claim 3. Forn < %, we have

E ||a:ti+1*1 —nVEF(xh+~1) - a:*||2 <(1—wunE ||a:t"+1*1 - a:*HQ . (32)

Proof. Expand the LHS.

E Hwt”l_l —x* - 77VF(:B’5”1_1)H2 =FE Hw““_l s +n°E HVF(:E““‘I)H2
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+ 2K (x* — 2"+ VF(zh 7)) (33)

We can bound the second term on the RHS using L-smoothness of F', which implies that | VF(z)|?* < 2L(F(z) — F(z*))
holds for every € R%; see Fact 1 on page 23. We can bound the third term on the RHS using p-strong convexity of F'
as follows: (z* — @'+ 71 VF(zt+171)) < F(z*) — F(ah+ 1) — &||zt+1~! — z*||2. Substituting these back in (33)
gives:

E Hw““_l —x" - nVF(:ct"“_l)HZ <(1—unE Hw““_l s
—2n(1 —nL)E (F(z"+ ') — F(z*)) (34)
Since n < +, we have (1 — L) > 0. We also have F(z'+1~!) > F(z*). Using these together, we can ignore the last
term in the RHS of (34). This proves Claim 3. ]
Claim 4. Forn < w%, we have
2
1 1 b1 TH (o2 9
E?Z(VF( A=l VRt )| < 242 + 55 (3 T3 (35)
rEICti
Proof. By definition, we have zi+1~! = L ZTEICti pti+1—1,
2
1 1
E|l = Y (VE@+ ) - VF@+ )| <= Y E||VE (i) - VR
K K
TEK:ti TEK:t
2
< 2 3 (B F @) - VR 4 E[Rai ) - TRt
relCti
@ 2
C2 3 (et )
TGICti
? tip—1 1 tip—1]]?
— 20 4+ = 3 E[at - = 3 al H
’I“G’Cti sGICti
212 1 2
2 tip1—1 tip1—1
<2k +7 Z d ZEHJ}T+ —alit | (36)

a2 1 (e (7))

reER:; SEIC

2 © TH
— 2 + ULPH ) (2 4362 ) <26 + 352
K™+ Ui b + 3K K™+ 32 b +
In (a) we used the gradient dissimilarity bound from (6) to bound the first term and L-Lipschitz gradient property of F' to
bound the second term. For (b), note that we have already bounded Zlf“ "E|xt — xt ||2 < TH37n? (%2 + 3/€2> in (23)
in Lemma 3. Since each term in the summation is trivially bounded by the same quantity, which we used in (b) to bound

2
E waf“_l — w?“_IH < TH3p? (%2 + 3K ) In (c) we used < g7+ O

Claim 5. Ifn < SHL, then with probability at least 1 — exp (76/2(117?)1(), we have

2
tiy1—1

E|glt+ — — vE)| <312+ ST L gom,e 37
DYDY < 3T+ = + 30H%, (37)

rElCt t=t;

where T2 = O (o} (e + €')) and o3 = 25H o (14 22) +28H%k%
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Proof. Let S C K, denote the subset of honest clients of size (1 — (e + ¢')) K, whose average accumulated gradient
between time ¢; and ¢, that server appr0x1mates at time ¢;41 in Theorem 2. Let the average accumulated gradient be
tit1—1 ~tiytita

tistivy:1 1 tistiy1 tistiv1 + . .
denoted by gsycci = a7 Y res Graca » Where grlicar . g.(x}), and server approximates it by g, *'. Note

that S exists with probability at least 1 — exp (—%) . To make the notation less cluttered, for every r € K;,, define
titi tig1—1
VE 7 = s VE,.(xt).

2
Stisti 1 isti ~ti,ti titit1
E gfmcﬁ“ - E Z VF:“tH—l < 3E gzcci“ - |S| Zgrdcct
reky, res
2
Z gl ZVFWH
|S‘ res ‘S| res
2
1 4
+3E || ZVFWH — 5 D VErm (38)
resS SEK:,;

Now we bound each term on the RHS of (38).

Bounding the first term on the RHS of (38). We can bound this using the second part of Theorem 2 as follows (note
that given the first part of Theorem 2 is satisfied, the second part provides deterministic approximation guarantees, which
implies that it also holds in expectation):

2
<7 (39)

~titir . 1 titita
Gaccu |S‘ gr,accu

where 2 = O (08(e + ¢)) and 03 = 25[5"2 (1+ 22) + 28H%K2.

Bounding the second term on the RHS of (38). We can bound this using the variance bound (5).

2 tip1—1 ?
(g,,tndiqctl _ Ft,i’ti+1) Z Z g7 (m:))
res TGS
(a) bt 2
(tig1 — Z E |S\ Z 9,(@;) (a:i))
res
tiy1—1 ?
Cm Z E|>_ (g-(2}) — VE (@)
res
(©) H—l_l 2
90 Y g LBl - VR )]
t=t; res
tigt1—1 2 (e 2 .2
@H 1o (<) 4H“o 40)

=04 S T K

In (a) we used the Jensen’s inequality. In (b) used |¢;11 —t;| < H. In (c) we used (4) (which states that E[g,.(x)] = VF,.(x)
holds for every honest client r € [R] and € R?) together with that the stochastic gradients at different clients are sampled
independently, and then we used the fact that the variance of independent random variables is equal to the sum of the
variances. Note that Var(g, (z!)) = E||g,(x.) — VF,(x.)|>. In (d) we used the variance bound (5). In (e) we used
IS| > (1= (e +€¢))K > 2X, where the last inequality uses (¢ + €') < 1.
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Bounding the third term on the RHS of (38).

2 2
1 ot 1
VE bt — — VEL it VE,( - VEF,(z!)
ke X ? 2 s Z g 3T
@ et 1 ’
<H Y E ZVF — ) VFE(!) (41)
t=t; |S‘ res K SEK:,

In (a), first we used the Jensen’s inequality and then substituted |¢;+; — ¢;| < H. In order to bound (41), it suffices to bound

E H‘?ﬂ Z'r'es VFT@” - % ngl(jti VFG(mi)
arbitrary ¢ € [t; : t;41 — 1].

2
forevery t € [t; : t;11 — 1]. We bound this in the following. Take an

2

2
1 t t
IS‘ZVF N > VF(x!)| <3E \SIZ (VE( VF(z!))
resS sEKZti res
2 2
+3E || ZVF % > VF(xl)|| +3E % > (VF(=!) - VF(x}))
| |reS sER, sEK:;
3
< S S E(|VE(@ ~VE@)|"+ = Y E|VF(el) - VE(@))|"
res SER:,
2
+3E || Z (VF(z!) — VF(2")) —% > (VF(=!) - VF(z"))
| |r€5 sEICti
P 2
< 3k + 3k + 6E éZVF(mﬁ)—VF(a:t) + 6E % > (VF(=!) - VF(z"))
res SEK:,

< 6K% + @ S E||VE(atl) - VF(!)||* + % S E|VF@!) - VF@!)|
res SG}Cti

< 6k2 +EZL2EH$ —th —I—— Z LQEHa‘,’;—thQ

resS selCti
_ L ¢||? @ ‘ ¢ 1 ¢||?
= 6K + S| Z ) x| + % T;E x, KS;’C#:BS
t L2 1 t t|2
< 6K> +EZ ZEH:E —w” ZEZEHIBT—:L'SH
res Se)Cf TG)Cf,i sEICti
Substituting this back in (41) gives:
1 b
3 ZVF“’““ % 2 VFS“’““ <H > 6x
‘ |r€8 SEK:; t=t;
tigp1—1 )
+H Z ‘3|Z ZEH“: _th +7Z Z]Eer_wZH
t=t; res sER, rely,; éEICt

(a)
< 6H2K? + GHL? (7H3 2 ( — +3x )) 4 6HL? (7H3 2<b + 3k )>

= 6H?*k? + 84L2H*? ( ; + 3k >
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21H?02

(b) 9 9
< 10H?*k? + o (42)

In (a) we used ¢;,1 — t; < H and the bound Zi:tli_l E @t — ot|® < TH3p? (L; + 3/12), which holds when n < o+

we have already shown this in (23) in Lemma 3. In (b) we used n <

1
8HL"
Substituting the bounds from (39), (40), (42) in (38) gives

2
2 .2

b b 1 . 4H*oc 21H?0?
B gl — = S0 VRSt | <1 2o 4 (10H%2+16b )
reky,

4H?5? 4H?5?

<37+ + 30H?%K% +

_3r2 SH?2g?2

+ 30H2k2,

where 72 = O (08 (e + €')) and 0§ = 25[5"2 (14 224) +28H%K2.

This completes the proof of Claim 5.

Using the bounds from (32), (35), (37) in (31) and using (1 + ”2—") (1—pn) < (1 — ”2—") for the first term gives
2 H 2
Elot —a|* < (1- 5 Ellat— =" + 2 <77 + > <2I<52 i <Ub + 3&2))
I

2 8H20?
+2 <n+ u) (3T2 + bo +30H2/€2>

9H22

6
< (1 - %) E |zt — 2| + <3T2 + + 33H2n2) : (43)
1

where 72 = O (03 (e + €')) and 0§ = 2515‘72 (14 24)+28H?x2. In the last inequality (43) we used n < 7 < + < %,
2

which implies (n + %) < % Note that (43) holds with probability at least 1 — exp (—%)

Note that above recurrence in (43) holds only at the synchronization indices ¢; € Z fori = 1,2, 3, . ... However, in order

to establish a recurrence that we can use to prove convergence, we need to show a recurrence relation for all t. Now we give
a recurrence at non-synchronization indices.

Take an arbitrary ¢ € [T] and let t; € Zr be such that t € [t;
zt =12 x!
T K Zoreky, Tre

1
t+1 _ .t t
x =T — 77? Z gr(wr)

: tiv1 — 1]; when H > 2, such t’s exist. Note that

rely,;
—at = Y VE@E) -0 (= 3 g - = 3 VA
K T [ K Is r K T e
relCti relCti TEICti
n n
=z' —VF(z') + 2 ; (VF(a) — VF,(al)) — e ; (g,(z!) — VF,.(x)) (44)

Now, subtracting * from both sides and following the same steps as in from (28) to (31), we get (in the following,
expectation is taken w.r.t. the stochastic sampling of gradients at the ¢’th iteration while conditioning on the past):

Efe*! —a'|* < (1+5]) E||a* - 2" — 5V F@")’

+ 27 (n + Z) E % > (VF(z') — VF.(zl))

TEK‘i
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2

+2n<n+i)E = 2 (g.(a) - VE () (45)

reky,

We can bound the first and the second terms on the RHS of (45) using (32) and (35), respectively,
2
as Bl —nVF(@)—a'[* < (1-m)Ela’ | and E|£ 5,0, (VP@) - V@) < 262 +

rekly,

32
dent random variables is equal to the sum of the variances and that clients sample stochastic gradients g,.(x%) independent of

™ (" + 3K > To bound the third term on the RHS of (45), we use the fact that variance of the sum of indepen-

2
each other; using this fact and (5), we can bound E H + Yorek, (g,(xh) = VE.(2!)) H < % Substituting these in (45)

and using (1 + &7) (1 — un) < (1 — 42) for the first term and (1) + %) 3 .+ (which follows because 7 < 7z <1< i
give
t+1 o x|2 (_M) t_ x|+ 6n 2, TH o’
EH:D a:H < (1 > EH:I: :c|| p 2K 32 b —|—3 bK
2
< (1-5)Ellet -2 +%7 <3H/~@2 + 2}@0— ) (46)

Note that (46) holds with probability 1.

Now we have a recurrence at the synchronization indices given in (43) and at non-synchronization indices given in (46). Let
a= (1 — %) b1 = (3T2 + % + 33H2m2), and 8y = <3H/<;2 + #) Substituting these and using (43) for the
synchronization indices and (46) for the rest of the indices, we get:

T/H H—1 T/H

EHCET—:B* |2§OZTH$O_$* 2 ZZQZH+JB +ZO¢1H,61 (47)
=0 j=1
SCVTHCBO—CE* +<Za252+za”{ﬁl>
=0
L2 6m 1 1
=a’ ||z° — 27| +N<1_a62+1_aHﬁl> (48)
Since o = (1 — 41, we have o = (1 — 1) (gexp( H)(gl—%-&-(“y[) <1 ‘"’H+T16’";H—1 Lot

In (a) we used the inequality (1 — 2)® < 1 which holds for any z > 0; in (b) we used exp(—x) < 1 — z + x* which holds
and p < L, which together imply % < %. Substituting these in (48) gives

for any z > 0; in (c) we used < g7

HL
T2 Ty oz, O (2 32
Ella” —ar < (1) a* —a7] T (unﬂ2+15unHﬁ1>
LN T Lz, 6x32
<(1-F) I =+ < - ﬂ>
2
<(1-5) lot ot 3 (O M o)

Note that the last term on the RHS of (49) is independent of 1, which together with the dependence of 7 on the first term
implies that bigger the 7), faster the convergence. Since we need < g1 H + for Claim 4 and Claim 5 to hold, we choose
n=3 H . Substituting this in (49) yields the convergence rate in the strongly-convex part of Theorem 1.

Error probability analysis. Note that (43) holds with probability at least 1 — exp (—6/2(117;6)[() and (46) holds with
probability 1. Since to arrive at (47) (which leads to our final bound (49)), we used (43) % times and (46) (T - %) times;

as a consequence, by union bound, we have that (49) holds with probability at least 1 — % exp (—5/2(117_66)1(), which is at

?(1-e)K

least (1 — ), for any § > 0, provided we run our algorithm for at most T’ < 6 H exp(“—75

) iterations.
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This concludes the proof of the strongly-convex part of Theorem 1.

Fact 1. Let F : R? — R be an L-smooth function with a global minimizer x*. Then, for every & € R%, we have

IVF(z)|* < 2L(F(x) — F(z")).

Proof. By definition of L-smoothness, we have F'(y) < F(z) + (VF(z),y — ) + % |ly — || holds for every =,y € R%.
Fix an arbitrary € R and take infimum over y on both sides:

inf Fl(y) < inf (F<w> H(VP(@).y—a) + Sy - w||2)

- n in T ),V L7t2
0 e it (P49 0+ 1)
LY o L O rie) o
_v=\|v\f:1 <F( ) 2L<VF( )7’U>)

© <F(az) - 21L||VF(9”>|2)

The value of ¢ that minimizes the RHS of (a) is t = —%(VF (x), v), this implies (b); (c) follows from the Cauchy-Schwarz
inequality: (u,v) < ||u||||v||, where equality is achieved whenever uw = v. Now, substituting inf F'(y) = F(x*) yields the
y

result. O

C. Convergence Proof of the Non-Convex Part of Theorem 1

Let K; C [R] denote the subset of clients of size |K;| = K sampled at the ¢’th iteration. For any ¢ € [¢; : t;41 — 1], let
!t = % Dok Kr ! denote the average of the local parameters of clients in the sampling set Ky,.

Similar to the proof given in Appendix B for the strongly-convex part of Theorem 1, here also, first we derive a recurrence
for the synchronization indices and then for non-synchronization indices.

For the synchronization indices ¢1, %o, ..., tx, ... € L7, from (27), we have
glivt = ghini=! )V F(zli+ ) 4O (50)
where
C= = Z (VF(wti“_l) - VF, (iﬁt”l_l)) g - L Z ti§1VF (x!) 5D
K reky, o Jace K reky, t=t; )

Now, using the definition of L-smoothness in (50), we have
F(th»l) < F(a.:twrl*l) 4 <VF(wti+1*1),a:ti+1 _ wti+1*1> 4 g Hwti+1 _ wti+1*1||2
2
= Pt )~ (VE@' ), VE@ ) - 0) + L [vFEta ) - o
tig1—1 tig1—11(]2 tiy1—1 n*L tiy1—1 2
=F(z'+ ") —||VF@E" |  +n(VF(="+"),C) + - |[VF@'+ ") -

a F(gtiti—1)||?
(s)F(w““—U—nHVF<wti+1—1>H2+n(”V - +||0||2>

2
+ L vr@sn ) o

(b)
S P = 2@ o) + L (|[VFE ) + o))



Byzantine-Resilient High-Dimensional SGD with Local Iterations on Heterogeneous Data

. 3 o
= Pt = (§ a2 ) [VFG P 4 n 1+ )2 (52)

In (a), we used the inequality 2(a, b) < 7|la||? + 2|/b||%, which holds for every 7 > 0, and we used 7 = 1 in (a). In (b),
we used the inequality [|a + b||? < 2(||al|® + ||b]|?). For n < g < g7, we have (3/a — L) > 1/2and (1 + L) < 3.
Substituting these in (52) and taking expectation w.r.t. the stochastic sampling of gradients at clients in K;, between iterations
t; and ¢;41 (while conditioning on the past) gives:

9
E[F ()] < E[F (o' ~1)] - 2 |[VF(@"+)|* + ZE|C|P”. (53)
Now we bound E||C||%. Substituting the value of C' from (51) gives:
1 i 1 i i
2 tiv1—1 tiv1—1 ~ti,t; t
E”CH < 2E ? Z (VF(m i )7 VFr(mrJrl )) +2E gaccuJrl - ? Z Z VFT(CCT)
ek, rell:, t=t:
o, TH (o? 9 , 8H?o? 9 9
<2124+ — | —+ 3k +2 (37 + + 30H"k
32 \ b b
H2 2
<2 (3T2 A 33H2n2) (54)

Here, the first inequality used |la + b||? < 2(||a||? + ||b]|?) and the second inequality used the bounds from (35) and (37).
Substituting the bound from (54) into (53) gives

H2 2
E[F(z'+)] < E[F(x'+ )] — gIE HVF(a:ti“’l)HQ + %77 <3T2 + ) b” + 33H252> (55)

where 72 = O (a2(e + ¢)) and 03 = 2H70° (1 4 34) 4 98F2k2. Note that (55) holds with probability at least
1—exp (76/2(117%6)[().

Note that the above recurrence in (55) holds only at the synchronization indices ¢; € Zp for¢ = 1,2, 3, .... Now we give a
recurrence at non-synchronization indices.

We have done a similar calculation in the proof of the strongly-convex part of Theorem 1 in Appendix B.

Take an arbitrary ¢ € [T] and let t; € Zr be such that ¢t € [t; : t;4+1 — 1]; when H > 2, such t’s exist. Note that
xt = % ZTEKti CII:

From (44), we have !t = ' — )V F(x!) + nD, where

D=— Y (VF(z') - VF(zl)) - % > (g.(xh) = VF(x))) .

rGICti TE}Cti

Using L-smoothness of F', and then performing similar algebraic manipulations that we used in order to arrive at (53), we
get:

9
E[F ()] < E[F(")] - JE | VF@)[* + ZEIDI? (56)
Now we bound E|| D||2:
2 2
1 1
2 t t t t

TH (o2 o2
< 2 — [ — 2 PR
2(2/<c + 5 (b +3H>+bF'>
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2Ho?
<9 (3H/-@2 n b" ) (57)

Here, the second inequality used the same bounds on both the quantities on the RHS of the first inequality that we used to go
from (45) to (46).

Substituting the bound on E||D||? from (57) into (56) gives

BIF (o)) < BIF(@)] - 1B [VF@)| + 5 (310 + Qﬁ’j’z) (58)

Note that (58) holds with probability 1.

Now we have a recurrence at synchronization indices given in (55) and at non-synchronization indices given in (58). Adding
(55) and (58) from ¢t = 0 to T" (use (55) for the synchronization indices and (58) for the rest of the indices) gives:

T T T 20.2
> E[F(z)] <) E[F(2')] - ;];E IVF@))||” + %’7 [IZ <3T2 + gHb + 33H2n2)

t=0 t=0
T 5  2Ho?
+<T—H> <3H/$ + 5 )] (59)
We can simplifying the constant term in the RHS of (59) as follows:

1 5  9H%0? 9 9 1 5  2Ho?
1 9H252 2Ho?
o (3T2+ ba +33H252> + <3H52+ ba )

3Y2  11Ho?
< —+
- H b

Substituting this in (59) and then rearranging, we get:

IN

+ 36 H >

7ZEHVF I < nT[E[F(woﬂ—]E[F(wT“)]Hf Tt

9 /3Y? 11Ho?
( g +36H/€2> (60)

Note that the last term in (60) is a constant. So, it would be best to take the step-size 7 to be as large as possible such that it
satisfies ) < 5. We take ) = g7 . Substituting this in (60) and using F'(z”+1) > F(x*) gives

37T2 . 11Ho?
H b

fZEHVF I” < B [eirat) - Bir ) + 5

7 + 36H/~@2> , (61)

where 12 = O (03 (e + €')) and 0§ = 25H2 - (1+ 3 34 )+ 28 H? k2. Note that (61) is the convergence rate in the non-convex
part of Theorem 1.

Error probability analysis. Note that (55) holds with probability at least 1 — exp (—5/2(117?)1() and (58) holds with
probability 1. Since to arrive at (59) (which leads to our final bound (61)), we used (55) % times and (58) (T — %) times;
as a consequence, by union bound, we have that (61) holds with probability at least 1 — exp ( %), which is at
least (1 — §), for any 6 > 0, provided we run our algorithm for at most 7' < § H exp(%) iterations.

This concludes the proof of the non-convex part of Theorem 1.

D. Results on Full-Batch Local Gradient Descent

In this section, we focus on the case when in each local iteration clients compute full-batch gradients (instead of computing
mini-batch stochastic gradients) in Algorithm 1. Our main result for full-batch gradient descent with local iteration is given
below:
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Theorem 4 (Full-Batch Local Gradient Descent). In the same setting as that of Theorem 1, except for that we running
Algorithm I with a fixed step-size 1 = 51{% and in any iteration, instead of sampling mini-batch stochastic gradients, every
honest client takes full-batch gradients from their local datasets. If € < %, then with probability 1, the sequence of average
iterates {x' = 4= o, @l it € [0: T} satisfy the following convergence guarantees:

¢ Strongly-convex: If F' is L-smooth for L > 0 and p-strongly convex for p > 0, we get:

T 14
T_*2<(_,U 0 .x2 , 1% )
le” — 2" < (1 - ogg) e ==l + 5l (62)
¢ Non-convex: If F' is L-smooth for L > 0, we get:
T
1 2 10HL . 24
TZHVF(wt)H < [F(2%) — F(x )}+€FGD. (63)
t=0

In (62), (63), Top = 22 1 25 Hx?2, where Ygp = O (Hrn/e).
The rest of this section is devoted to proving Theorem 4.

Note that the robust accumulated gradient estimation (RAGE) result of Theorem 2 (which is for stochastic gradients) is one
of the main ingredients behind the convergence analyses of Theorem 1. So, in order to prove Theorem 4, first we need to
show a RAGE result for full-batch gradients. Note that we can obtain such a result by substituting o = 0 in both the parts of
Theorem 2; however, this would give a loose bound on the approximation error in the second part. In the following, we get a
tighter bound (both for RAGE and the convergence rates in Theorem 4) by working directly with full-batch gradients. To get
a RAGE result for full-batch gradients, we do a much simplified analysis than what we did before to prove Theorem 2, and
the resulting result is stated and proved below in Theorem 5.

Note that, in order to prove Theorem 2, we showed an existence of a subset S of honest clients (from the set /C of clients
who communicate with the server) from whom the accumulated stochastic gradients are well-concentrated, as stated in
form of a matrix concentration bound (7) in Theorem 2. It turns out that for full-batch gradients, an analogous result can
be proven directly (as there is no randomness due to stochastic gradients); and below we provide such a result. Note that
Theorem 2 is a probabilistic statement, where we show that with high probability, there exists a large subset S C K of
honest clients whose stochastic accumulated gradients are well-concentrated. In contrast, in the following result, we can
deterministically take the set of a// honest clients in K to be that subset for which we can directly show the concentration.

First we setup the notation to state our main result on RAGE for full-batch gradients. Let C; C [R] denote the subset of clients
of size K that are active at any time ¢ € [0 : T']. Let Algorithm 1 generate a sequence of iterates {z’. : t € [0: T],r € K;}
when run with a fixed step-size 7 satisfying n < ﬁ while minimizing a global objective function F' : R? — R, where in
any iteration, instead of sampling mini-batch stochastic gradients, every honest client takes full-batch gradients from their
local datasets. Take any two consecutive synchronization indices t, tx+1 € Zr. Note that |t;1 — t;| < H. For an honest

client r € Iy, , let VF;?,’;’C?E“ = :Z:l VFE,(x!) denote the sum of local full-batch gradients taken by client r between

time ¢, and ¢4 1. Note that at iteration ¢ 1, every honest client r € Ky, reports its local parameters wﬁ’““ to the server,

from which server can compute VFf,’;’th’fl“, whereas, corrupt clients may report arbitrary and adversarially chosen vectors in
R<. The goal of the server is to produce an estimate Vﬁ;&f ¥t of the average accumulated gradients from honest clients as
best as possible.

Theorem 5 (Robust Accumulated Gradient Estimation for Full-Batch Gradient Descent). Suppose an € fraction of clients
who communicate with the server are corrupt. In the setting and notation described above, suppose we are given K < R
accumulated full-batch gradients Vﬁff;’ctc’f,“ .7 € Ky, in R, where Vﬁff;’ctcﬁ“ = VF;’Z’C?{;“ if the r’th client is honest,
otherwise can be arbitrary. Let S C Ky, be the subset of all honest clients in Ky, and VED R 1| dics \va3eMas

S,accu 1S] i,accu
be the sample average of uncorrupted full-batch gradients. If € < L, then with probability 1, we can find an estimate

vV EL OfVFtk’t’“+1 in polynomial-time, such that HVﬁ;fc{fk“ — VFRb <0 (HrA\/€).

S,accu S,accu

Proof. First we prove that

1 T
Amax ( (VF-tk’tk+1 _ VFtk,tk+1) (VF_tk,tk+1 _ VFtk,tk+1) ) < 11H2,‘{2. (64)

|S‘ 2,accu S,accu %,accu S,accu
€S
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In view of the alternate characterization the largest eigenvalue given in (15), this is equivalent to showing

2
b 18T - Z (VFr = VEg S v) < 12, (65)
veE v
which we prove below. Define Fisy ¥+ = z’jtz_l F(x'), where ' = & Zrelctk x! forany t € [ty : tr1 — 1]. Take
an arbitrary unit vector v € R%.
2
toothtt trotrst
|S\ Z <VFz aect VFSkaC(I:Cl:r ,U>
2
R O e G )
2
<5 o S (VR VEEE > =P Z (VR = VRGN v)
i€S
(Using [la + b]|* < 2[|la|? + 2[|b]|*)
= g (VR - VRS w) 42 (VAL - YRR v)
i€s
2
2 c+1 1 2 1 1
S Z<VF§§£?§.* VFa*t ,v> 20 S| <VFf§C§3+ — VE& v>]
i€s
2 2 2
< 1 2 (VRS - VRS ) o 3| <VFZ§;2’;“ VES T v)
i€s
4 2
- L (eR )
i€s
< i VFtk,tk+1 VFatC]::;,lthrl 2
15133
(Using Cauchy-Schwarz inequality (u, v) < |lul/||v|| and that ||v|| = 1)
thy1—1 2
4 . tit thy1—1
- E Z Z (VFl(wf) - VF(:Bt)) (SIHCG ch)z:u P = tk:t:; F(wt))
ies || t=t,
tk+1—1 )
<8 Z thy1 — Z |VF; () — VF(z")|| (Using Jensen’s inequality)
i€s t=ts,
tpy1—1
INIE t N
< |S| iy (2([VF(@!) - VE@)|” +2 [V () - VF("))
€S t=tg
© 4H ter 1 )
2 20|t _ ot
=18 Z Z (2” +2L% ||z — 2| )
€S t=ty
try1—1 1 9
< 8H?k? +8HL? E :cf K Z :I}éH (Since xt = % ZjEICtk ;1;3)
t=tg €S th
try1—1

< 8H?k* + 8HL? Z Z S |lat -2t

t=ty,

The last inequality follows from the Jensen’

L-Lipschitz gradient property of F' to bound

Now we bound the last term of (66).

(66)

zGS JGICf

s inequality. In (a) we used (6) to bound ||V F;(x}) — x!)|* < k2 and

IVF(x) = VF(z")| < Ll|z; — «'|.

VE(
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1

SHL e have

Lemma 4. Foranyr,s € Ky, if n <

tey1—1
Z H:Bﬁ — wiHZ < Tn*H3k?. (67)

t=ty

Proof. Note that we have shown a similar result (but, in expectation) in Lemma 3 (on page 14), which is for stochastic
gradients. We will simplify that proof to prove Lemma 4, which is for full-batch deterministic gradients.

Take an arbitrary ¢ € [ty : tg+1 — 1]. Following the proof of Lemma 3 until (24) and removing the factor of 3 inside the
summation (the factor of 3 appeared because we applied the Jensen’s inequality earlier to separate the deterministic gradient
term and the stochastic gradient terms) would give

t—1
|2t — @t |* <n?H Y | VE(2d) - VE(2])]|” (68)

J=tk
Following the remaining proof of Lemma 3 from (24) until the end and substituting o = 0 gives the desired result. O

Substituting the bound from (67) into (66) gives

1 Z <VF75k7tk+1 _ y et v>2 < 8H2K2 + 56 HAL22 K2
€S

‘S| i,accu S,accu
i

56
< 8H?k? + 2—5H%2 (Substituting n < =)

< 11H%k2% (69)

Note that (69) holds for an arbitrary unit vector v € R?, implying that (65) holds true. Since (65) and (64) are equivalent,
we have thus shown (64).
Now apply Theorem 3 with S being the set of all honest clients, and g/*"+! = VR 1 gliolein g pletei

i,accu 2,accu S,accu S,accu

gt Dithe st . Stit oot .
i = VE& ™, € =0, and 0 = 11H?k%. We would get that we can find an estimate VF,5, "' of VF" 5 in

polynomial-time, such that Hvﬁi&cf’““ — vE® || < O (Hr\/€) holds with probability 1. 0

S,accu

Theorem 4 can be proved with appropriate modifications in the proof of Theorem 1, and for completeness, we prove it
below.
D.1. Convergence Proof of the Strongly-Convex Part of Theorem 4

Let IC; C [R] denote the subset of clients of size || = K that are active at the ¢’th iteration. For any ¢ € [¢; : ;41 — 1], let

! = % > ke K., x! denote the average of the local parameters of clients in the sampling set £, .

Following the proof of the strongly-convex part of Theorem 1 given in Appendix B until (31) gives

2

ot — || < (1 + %) [t — gV (@l ) — o
2
2 1 tip1—1 tip1—1
+2n(n+ =)= Y. (VF@E'" ") = VE.(zli ™)
H K reky,
P 1 i i
otistiv t
+ 27] <77 + M) Fdu - E TEZK: ; VFT(.’I},.) (70)

We have already bounded the first term in Claim 3 (on page 17) by

@t — gV (2t =) —¥||F < (1 - nu) [Jat ot — 2|

(71)
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In order to bound the second term, we follow the proof of Claim 4 exactly until (36), and then to bound

tii—1  tip—1]|?
Hzcr”+1 — xSt H which gives

for every 7, s € Ky,, we use the bound from (67) in Lemma 4 and use < =7,

2

%Z (VE.(zt+ 1) = VE. (a7 1) || <3HkK. (72)
'rE’Ct,i

To bound the third term in the RHS of (70), we can simplify the proof of Claim 5: Firstly, note that with full-batch gradients,
the variance o2 becomes zero; secondly, as shown in Theorem 5, the robust estimation of accumulated gradients holds with

probability 1. Following the proof of Claim 5 with these changes and using n < = H +, we get
tip1—1 2
Flybivn = Z > VE/( < 213, 4 20H?K2, (73)
rElCt t=t;

where Tgp = O (Hk+/€). Substituting all these bounds from (71)-(73) into (70) and simplifying further using
(1+5) (1 —pn) < (1—42)and (n—i— %) < o gives

P< (128 ot — o

*

|zttt — + %7 (2738 + 23H?K?) (74)
Note that (74) gives a recurrence at the synchronization indices. Now we give a recurrence at non-synchronization indices.
Take an arbitrary ¢t € [T] and let t; € Zr be such that ¢t € [t; : t;+1 — 1]; when H > 2, such ¢’s exist. Following the steps
that we used to arrive at (45), we get the following (note that the last term on the RHS of (45) is zero, as g, (%) = VF,(x.)
holds for every r € [R] and ¢ € [T]; this will also save us the factor of 2 in the previous term as we don’t have to use the
Jensen’s inequality to get to (45)):

2

2 1
B m*” (1 + ) |t — 2" — 77VF(alct)H2 +17 (77 + ,u> e Z (VF(z') — VEF,(z)) (75)
rell:
Substituting the bounds from (71) and (72) into (75) and simplifying the coefficients as above, we get
3
= || < (1- %) =t — =7||° + ;"(31{#) (76)

Now we have a recurrence at the synchronization indices given in (74) and at non-synchronization indices given in (76). Let
a=(1-47), 8 = (278, + 23H?k?), and B, = (2 Hk?). Following the same steps that we used to arrive at (48) gives:

T «||2 T 0 * 677 1 1
- < - 2 77
o~ 2| < o [l2* = 27|+ °2 ({22 + W
H @ ) 20
Since o = (1 - 1), we have o = (1~ 1)1 € exp(— ey € 1 ety (eir)? Ly gt gt g0
In (a) we used the inequality (1 — 7) < % which holds for any z > 0; in (b) we used exp(—z) < 1 — x + 2 which holds
forany x > 0; in (c) we used n < ¢ A= and p < L, which imply ‘”’H <7 1 . Substituting these in (77) gives

ot o < (1= 50) o = a4 S (2 )

2 unH
un\ T L2 6x20
< (1) e ] +W<mﬂz+Hﬁl>
u\ T L2 14 /212
< (=) e w53 (FR w25 ) o

where Yp = O (Hk+/€). Substituting the value of n = 5]1% yields the convergence rate (62) in the strongly-convex part of
Theorem 4. Note that (78) holds with probability 1.
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D.2. Convergence Proof of the Non-Convex Part of Theorem 4

Following the proof of the non-convex part of Theorem 1 given in Appendix C until (53) and using 1 < 511% gives:

F(a') < F(a" ) = 1| V(@' I)HZ+%"||CH27 (79)

where C' = £ 50, cx, (VF(wtm—l) VE, (2 1)) - (ﬁ;ggﬁi“ — £ ek, T VFT(:cﬁ)).
Using the bounds from (72) and (73), together with the Jensen’s inequality, we can bound ||C/||? as follows:

|C1* < 2(3HK?) + 2(2Y2p + 20H?K?) < 2(2Y3, + 23H?K?) (80)
Substituting the bound from (80) into (79) gives:

H2 129

F( z+1) < F( 1+1*1) _ g ||VF(mti+1fl) =

(203 + 23H?K?) (81)

where Ygp = O (Hg /).

Note that above recurrence in (81) holds only at the synchronization indices. Now we give a recurrence at non-
synchronization indices.

We have done a similar calculations in the non-convex part of Theorem 1 in Appendix C.

Take an arbitrary ¢ € [T] and let t; € Zr be such that ¢ € [¢; : t;41 — 1]; when H > 2, such t’s exist. Following the same
steps until (56) and using 7 < =7 gives:

') < Fa') — 2 |[VEGH| + DI 82

where D = & i, (VF(x') — VF,(x)).

Using the bound from (72), we have || D||? < 3H k2. Substituting this in (82) gives:

Flz!*!) < F(z!) — g IVE@h)|” + 6%(3}152) (83)

Now we have a recurrence at the synchronization indices given in (81) and at non-synchronization indices given in (83).
Adding (81) and (83) from ¢ = 0 to 7" (use (81) for the synchronization indices and (83) for the rest of the indices) gives:

d 2 29| T T 3
1) D) 2 2,2 2
§ :F < §:O ;0 |[VF(z' - [ (208 + 23H°K%) + (T— H) <2HI€ ﬂ (84)
After rearranging and simplifying the last constant terms, we get:

T 2
Z IVF(@!)|” < iT [F(z°) — F(z" )] + % (Q%D + 25H/€2> (85)
t=0

Note that the last term in (85) is a constant. So, it would be best to take the step-size 7 to be as large as possible such that it

satisfies n < =7. We take ) = =77 . Substituting this in (85) and using F(z” ') > F(x*) gives
10HL 24 (272
= Z |VF(@!)|® < —— [F@’) - Fla)] + ( =+ 25Hm2> : (86)

where Ygp = O (Hk+/€). This yields the convergence rate (63) in the non-convex part of Theorem 4. Note that (86) holds
with probability 1.

This concludes the proof of Theorem 4.
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E. Bounding Local Variances and Gradient Dissimilarity in the Statistical Heterogeneous Model

In this section, we bound the gradient dissimilarity x2 (from (6)) and local variance o2 (from (2)) in the statistical model in
heterogeneous setting, where different clients may have local data generated from potentially different distributions. The
purpose of this section is to provide upper bounds on « and o in the statistical model.

Let ¢1,qo,...,qr denote the R probability distributions from which the local data samples at the clients are drawn.
Specifically, the data samples at any client r are drawn from ¢, in an i.i.d. fashion and independently from other clients.
For r € [R], let Q,. denote the alphabet over which g, is distributed. For r € [R], let f, : Q, x C — R denote the local
loss function at client r, where f.(z, x) is the loss associated with the sample z € Q,. w.r.t. the model parameters « € C
and C C R? is a bounded subset of R%. Linear regression is a classic example of this, where, if 2 = (w, y) denote the
pair of a feature vector w € R? and the response y € R, then f,(z,x) = 1((w,x) — y)?. For each client r € [R], we
assume that for any fixed z € Q,, the local loss function f,.(z,x) is L-smooth w.r.t. @, i.e., for any z € Q,., we have

var(zaw) - vfr(zay)” < L”:Z) - y”vvwvy eC.

Let pi- () := E.q, [fr(2, z)] denote the expected value of f,.(z, x), when z is sampled from Q, according to g,.. For any

xcC letu(z) =% Zle () denote the average value of p..(x),r € [R].

We are given n, i.i.d. samples 2, 1, 2,2, . .., Zrn, at the 7’th client from g,. Fix an arbitrary parameter vector x € C. Let
() = = 3" f.(z,;, ) denote the average loss at client r on the n, samples 2,1, ..., Z,n. W.It. . Let f(x) :=
n i=1 19 g p , 1 ) N
% Sy fr(x) denote the average loss across all clients. The analogues of (6) and (2) in this statistical heterogeneous
model are the following:

[V in(x) = V(@)||* <#2, vaxec, (87)
IV fo(zrinx) = Vin(@)||* < o? Vaec. (88)

Eicyn.

We need to find good upper bounds on « and o that hold for all » € [R],z € C with high probability. We provide two
bounds on «, one when the local gradients at clients are assumed to be sub-exponential random vectors, and other when
they are sub-Gaussian random vectors. We provide a bound on ¢ assuming that the local gradients are sub-Gaussian
random vectors. These are standard assumptions on gradients in statistical models, where data at all clients are sampled
from the same distribution in an i.i.d. fashion (Chen et al., 2017; Su & Xu, 2019; Yin et al., 2019), which is in contrast
to our heterogeneous data setting, where data at different clients may be sampled from different distributions. Note that
these works minimize the population risk with full batch gradient descent, whereas, we minimize the empirical risk with
stochastic gradient descent. In particular, (Chen et al., 2017; Su & Xu, 2019) make sub-exponential gradient assumption and
give convergence guarantees only for strong-convex objectives. On the other hand, (Yin et al., 2019) gives convergence
guarantees for non-convex objectives, but under a stricter condition of sub-Gaussian distribution on gradients. In this paper,
we provide convergence guarantees for both strongly-convex and non-convex objectives. Moreover, as opposed to (Chen
etal., 2017; Su & Xu, 2019; Yin et al., 2019), our results are in a more general heterogeneous data model. Note that we
need sub-Gaussian assumption only to bound the variance, which occurs because clients sample stochastic gradients. In
case of full batch gradient descent, we only need sub-exponential assumption, as the variance is zero.

Now we state the distributional assumptions on local gradients. We defer the definitions of sub-exponential/sub-Gaussian
random variables/vectors and their concentration inequalities that we will use in this section to Section E.3.

Assumption 3 (Sub-exponential local gradients). For every x € C, the local gradient vectors at any client r € [R) are
sub-exponential random vectors, i.e., there exist non-negative parameters (v, o) such that

WD By, [op (A (Vi (2,2) — V() 0))] < xp (\297/2), VI < (89)
veR:||v||=1

Assumption 4 (Sub-Gaussian local gradients). For every @ € C, the local gradient vectors at any client r € [R] are
sub-Gaussian random vectors, i.e., there exists a non-negative parameter o, such that

sup  E.oq [exp (AN (Vfr(z,2) — Vi, (x),v))] < exp (/\205/2) , YA eR. (90)

veER:||v||=1

Though, as stated above in both the assumptions, local gradients at all clients have the same parameters ((v, «) for
sub-exponential and o, for sub-Gaussian), this is without loss of generality. In case they have different parameters
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((vy, o), € [R] for sub-exponential and o, € [R] for sub-Gaussian), we can take the final parameters to be the
maximum of the respective local parameters — for sub-exponential, we can take v = max,.¢[g) Vr and @ = max,.¢(g] Qr,
and for sub-Gaussian, we can take o, = max,e(g] O

E.1. Bounding the gradient dissimilarity ~
In this section, we provide an upper bound on HV fr(x) — Vf(x) H

[V fo(@) = VI(@)|| < [VFr(®) = Vi (@) + Vi () = V()| + ||V f(2) = V()|

< IVir (@) = Ve (@)|| + [ Vi (@) — V()| + — Z |V Fe(2) — Vi ()| 1)

where for the third term, we used f(z) = & ZT | fr(x) and ,u( ) = 5 ZT 1 1y (), and applied the triangle in-
equality. It follows from (91) that in order to bound HV fr(z) — )|| uniformly over € C, it suffices to bound
[V () — V()| and ||V f,.(z) — Vi, (z)]|, V7 € [R] umforrnly overx € C.

Bounding ||V, (x) — Vu(x)|l. Note that Vi, (x) = E,q. [Vfr(z,2)] is a property of the distribution ¢, from
which the data samples have been drawn and so is Vu(x) = % Zle V. (x) the property of ¢1,...,qr. Note that
IV () — V()| captures heterogeneity among distributions through their expected values, and is equal to zero in
the i.i.d. homogeneous data setting of (Chen et al., 2017; Su & Xu, 2019; Yin et al., 2018; 2019). In order to get a
meaningful bound for k, it is reasonable to assume that this heterogeneity is bounded. We assume a uniform bound on the
IV () — V()| for every € C.

Assumption 5. For every client r € [R), the population mean of the local gradients has a uniformly bounded deviation
from the population mean of the global gradient, i.e.,

IVir(2) = V(@) < Kmeans Vo € C. (92)

Bounding ||V f,(x) — Vi, (z)||. Now we bound the difference between the sample mean and the true mean under both
sub-exponential and sub-Gaussian distributional assumptions on local gradients.

Let D = max{|lz — '|| : @, ' € C} be the diameter of C. Note that C is contained in B¢, /2> Which is the Euclidean ball of
radius £ 5 in d dimensions that contains C. Note that D = Q(\/&), and we assume that D can grow at most polynomially in
d.

Below we state two lemmas, each of which uniformly bounds HV fr(z) — Vu,,(:c)H over all x € C under different
distributional assumptions on gradients.

Lemma 5 (Sub-exponential gradients). Suppose Assumption 3 holds. Take an arbitrary r € [R]. Let n, € N be sufficiently

large such that n, = Q (dlog(n,d)). Then, with probability at least 1 — m, we have
- 8dlog(1 rLD
|V fr(z) = Vi (@)]| < 3u\/ os( n+ i ), Y € C. (93)

Lemma 6 (Sub-Gaussian gradients). Suppose Assumption 4 holds. Take an arbitrary r € [R]. For any n, € N, with

probability at least 1 — m, we have

V(@) — V()| < 3%\/ Sdlog1+n,LD) = ¢ 94)

Ny

We prove Lemma 5 in Appendix E.4 and Lemma 6 in Appendix E.5.

Now we state our main result on bounding the gradient dissimilarity, which we will prove with the help of the above two
lemmas. For notational convenience, we state for the case when all clients have the same number of data samples.
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Theorem 6 (Gradient dissimilarity). Suppose n := n,.,Vr € [R], and Assumption 5 holds. Then, the gradient dissimilarity
bound under different distributional assumptions is as follows:

1. Sub-exponential: Suppose Assumption 3 holds. Let n € N be sufficiently large such that n = Q (dlog(nd)). Then, with
probability at least 1 — the following bound holds for all r € [R]:

(1+nLD)d ’
7 3 dl d
[V fr(2) = Vf(@)|| < fmean + O ( Ogn(n)> . VzeC (95)
2. Sub-Gaussian: Suppose Assumption 4 holds. For every n € N, with probability at least 1 — TFnLD) Jﬂﬁ Dy the following
bound holds for all r € [R]:
7 F dl d
|VFr(@) = V(@) < Kmean + O ( Ogn(m> . Vxzec (96)

Remark 1. Note that under Assumption 3 (sub-exponential), the gradient dissimilarity bound (95) holds only when each
client has sufficiently large number of samples n = Q) (dlog(nd)). On the other hand, under Assumption 4 (sub-Gaussian),
the gradient dissimilarity bound (96) holds for every n € N.

Proof of Theorem 6. In order to prove Theorem 6, we need to show two bounds, one (stated in (95)) under the sub-

exponential gradient assumption, and the other (stated in (96)) under the sub-Gaussian assumption. We can show (95) using
Lemma 5 and (96) using Lemma 6. Here we only show (95); and (96) can be shown similarly.

Using Assumption 5 (i.e., ||V - () — V()| < Kmean, V& € C) in (91) gives
R
|V f(x) = V@) < V(@) = Vi (@)]| + Fmean + Z Vi (x) — Vi (2)] . (97)

Note that (93) holds for any fixed client € [R]. By the union bound, we have that with probability at least 1 —

for every r € [R], we have ||V fr(x) — Vi, (z)| < 30/ %ﬁ”r“’),w eC.

Let n, = n,Vr € [R]. Using these in (97), we get that with probability at least 1 —

___R
(I+n, LD)2°

ﬁ, for every client r € [R],

we have ||Vfr(a:) — Vf(az)“ < Kmean + O («/ dlogm”) Vx € C, which proves (95). This completes the proof of
Theorem 6. O

E.2. Bounding the local variances

The local variance bound at the r’th client is Ejc (5, |Vfr(zm-7 x) — Vi (x) ||2 < o (from (88)). We simplify the LHS:

EiGU[nr] var(zr,ivw) - vfr(m)HQ < 2]Ei€U[n7‘] HVfT(zr,zﬁw) - VMT(J")H2
+ QEieu[m] |Vﬁ,(:l:) - Vﬂr(m)Hz
Qo fr(zr1, @) — V(@) + 2|V (@) — Vi () ||

S 4V (2o, @) - Vi (@) (98)

For the first term on the RHS of (a), we used that z,;,i € [n,] are i.i.d., and the second term follows because it is

independent of ¢ € [n,]. Inequality (b) follows because | Vi (x) — Vur(ac)H2 <|\\Vfr(zra, @) — Vur(as)Hz, since the
average of i.i.d. samples gives tighter concentration in comparison to if we use just one sample.

Note that bounding ||V f-(z,1,Z) — V()| is equivalent to bounding ||V f,.(z, ) — Vu, ()| for a random z ~ ¢,.
Now we provide a uniform bound on ||V f,.(z,z) — Vu, ()| for a random z ~ ¢, using the sub-Gaussian gradient
assumption.
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Bounding |V f.(z, ) — Vu,(x)| for a random z ~ g,. To bound this, we need sub-Gaussian assumption on local
gradients (we can also bound this using sub-exponential assumption, but that will give a bound that scales as §2(d) as opposed
to Q(\/&)) Note that Lemma 6 holds for any n,- € N. In particular, it also holds for n,, = 1. So, under Assumption 4, with

probability at least 1 — m we have

IVfr(z,2) — V()] < 30g4/8dlog(l+ LD), Vz € C, 99)

where z ~ q,, and probability is over the randomness due to the sub-Gaussian distribution of local gradients. So, with
probability at least 1 — m, we have
Eicon ||V (zri ) — Vin(@)| < 28802dlog(1 + LD),  Va eC. (100)

Note that (100) holds for a fixed client » € [R]. By taking the union bound over all clients r € [R] proves our variance
bound, which we state below.

Theorem 7 (Variance bound). Suppose n := n,.,Vr € [R|, and Assumption 4 holds. Then, with probability at least
1-— W’ the following bound holds for all r € [R)]:
= 2
Eicyin) ||V fr(zri @) = Vir(@)|” < O(dlog(d)), Vo eC. (101)

Remark 2 (Sub-Gaussian vs. sub-exponential assumption). Note that, we needed sub-Gaussian assumption on local
gradients because we wanted to uniformly bound Eicp, 1 |V fr (275, %) — V() ? which is the case when we use only
one data sample in each SGD iteration. In this paper, we use mini-batch SGD with a variable batch size (to control the
approximation error of our solution; see the approximation error analysis in Section 2.2). So, when the batch-size b is

sufficiently large and satisfies b = Q(d log(bd)), we can work with the sub-exponential gradient assumption because the
dlog(bd)
b

large batch size gives a concentration similar to sub-Gaussian. This would give a bound of O ( ) on variance.

E.3. Definitions of sub-exponential/sub-Gaussian distributions and concentration inequalities

In this section, we give formal definitions of sub-exponential/sub-Gaussian random variables/vectors and the concentration
inequalities for them that we will use later on to prove Lemma 5 and Lemma 6.

Definition 1 (Sub-exponential distribution). A random variable Z with mean p = E[Z] is sub-exponential if there are

non-negative parameters (v, ) such that

E[exp (A(Z — p))] < exp (\*?/2), VAl < é.

A random vector Z with mean p = E[Z] is sub-exponential if its projection on every unit vector is sub-exponential, i.e.,
there are non-negative parameters (v, o) such that

sup  Elfexp (MZ — p,v))] < exp (A1?/2), VAl < é.

veER:|[v]|=1

Now we state a concentration inequality for sums of independent sub-exponential random variables.

Fact 2 (Sub-exponential concentration inequality). Suppose X1, Xo, ..., X,, are independent random variables, where
for every i € [n], X; is sub-exponential with parameters (v;, «;) and mean p;. Then 'y ;| X; is sub-exponential with

n
parameters (v, ), where v? = " | vZ and o = max;<;<,, ;. Moreover, we have

= 1 2t
Pr [Z(Xi—m) zt] < exp (—Qmin{yz,a}) , vVt >0 (102)
i=1

Definition 2 (Sub-Gaussian distribution). A random variable Z with mean p = E[Z] is sub-Gaussian if there is a non-
negative parameter g such that

E[exp (A(Z — p))] < exp (A20§/2) , VA eR.
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A random vector Z with mean p = E|[Z] is sub-Gaussian if its projection on every unit vector is sub-Gaussian, i.e., there is
a non-negative parameter o, such that

sup  Efexp (AM(Z — p,v))] < exp (A\*0}/2), VA eR.
veER:||v||=1

Now we state a concentration inequality for sums of independent sub-Gaussian random variables.

Fact 3 (Sub-Gaussian concentration inequality). Suppose X1, Xa, ..., X, are independent random variables, where for
every i € [n], X; is sub-Gaussian with parameter o; > 0 and mean p;. Then 'y, X; is sub-Gaussian with parameter

_ L
0g =/ ;4 07 Moreover, we have

n

> (- i) = t} <exp (—17/207), W20, 103

i=1

Pr

E.4. Proof of Lemma 5 (sub-exponential gradients)

We prove Lemma 5 with the help of the following result, which holds for any fixed € C. Then we extend this bound to all
x € C using an e-net argument. These are standard calculations and have appeared in literature (Chen et al., 2017; Yin et al.,
2019).

Lemma 7. Suppose Assumption 3 holds. Take an arbitrary v € [R]. For any 6 € (0,1) and n, € N, define A =
V2v dlog 5+log(1/9) If n,. is such that A < ”—2, then, for any fixed x € C, with probability at least 1 — §, we have

N «

IV 7 (@) — Viar ()| < 232wy | 1085 +108(1/0) (104)

ny

where randomness is due to the sub-exponential distribution of local gradients.

Proof. Let B4 = {v e R*: |lv]| < 1}. Let V = {vy,vs,..., vy, ,} denote an 3-net of BY, which implies that for every
v € BY, there exists a v’ € V such that [|v — v'|| < 3. We have from (Vershynin, 2010, Lemma 5.2) that Ny /» = [V| < 5%.
Fix an arbitrary * € C. Note that there exists a v* € B? (namely, v* = m—gﬁg;”) such that
HVﬂ(m) - Vur(ac)H = (Vfr(x) = Vu(z),v*). By the property of V, there exists an index i* € [Ny,5] such that
[v* — v || < 1. Now we bound ||V f,.(z) — Vi, ().

[97:(2) — Vi) = (VFi(e) — Vin(), 0°)
= (Vfr(x) = Vi (), v ) + (Vfr(x) — Vo (x), v — v;+)
< (VF(@) - Vinlw), 0i-) + [ V() — Vo (@) 10° = |
< <V 77“(‘73) - v,ur(x)vvi*> + % ||V.fr(m) - V,UT(:E)H

By collecting similar terms together, we get

IV (@) = Vi (@) < 2max (Vo (x) = Vi (), ) (105)
Note that the RHS of (105) is a non-negative number (because LHS is). Note also that, since V C B, for every v € V, we
have [|v|| < 1. This implies that max,cy (V fr(x) — Vi (x),v) < maxyey <Vfr(:c) — Ve (z), ”5—”> Using this in
(105), we get

_ — v
IV fr(@) = Vi (@)]| < 2max <Vfr(a:) — Vi (), v|> : (106)
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Fix any v € V. It follows from Assumption 3 that <Vf,.(z, x) — Vi, (x), ”Z—”>, where z ~ ¢, is a sub-
exponential random variable (with mean zero) with parameters (v, «). From Fact 2 (stated on page 34), we have that
S <Vfr(zm-7 x) — V. (x), H%\I> (where z,; ~ ¢,i € [n,] are i.i.d.) is a sub-exponential random variable with

parameters (\/7,V, ).

Now, apply the concentration bound from (102) with ¢ = n,.A. Substituting this and the parameters (y/mrv, ), the bound

becomes exp(— 1 min{™ D; , @ exp(—3 "jﬁ ), where (a) follows because A < . This gives
uza ,r,A2
Pr|Y° <Vfr(zr,i,w) — V() IIU> >n, Al <exp (—"2 . ) : (107)
v v
i=1

Note that Y _7'", <Vfr(zm», ) — Vi, (x), ﬁ> =n, <Vfr(:1:) - Ve (), ﬁ> Using this in (107) yields

A2
> Al <exp | —— (108)
202
This implies that

Pr [rggg <Vfr(w) — Vur(z), |> } ;}Pr [<Vfr Vur(w)7”:j”> > A}
) svn (52)

A2
— exp <_"2 . —|—d10g5> (109)

| —
/\
<
I
|
<
=
3
&
S|

Together with (106), which implies that

Pr [V (@) ~ V@] 2 1 < Pr |2 (V) = V(2 12 ) 2

[l

holds for every ¢t > 0, (109) gives

Pr[[|Vf(@) = Vi (z)]| > 2A] < exp (— ) <4, (110)
where in the last inequality we used A = v/2v ‘“Og‘:’tlilfg(l/‘”.
This completes the proof of Lemma 7. O

Proof of Lemma 5. We have from Lemma 7 that for each fixed x € C, with probability at least 1 — J§, we have

2dlog5 + 2log(1/4)

Ny

(111)

var(w) - VMT(IB)H < 21/\/

To extend this argument uniformly over the entire set C, we use another covering argument. Recall that D is the diameter of C.
Note that C is contained in B% /20 which is the Euclidean ball of radius % in d dimensions that contains C. For some g > 0,

d
let Cs, = {@o, x2, . .. 733N50} be the dp-net of C. It follows from (Vershynin, 2010, Lemma 5.2) that N5, < (1 + %) .

Applying the union bound in (111), we get that with probability at least 1 — §, we have for all ; € Cs,,

2dlog5 + 2log (%52)

Ny

|V fr(@i) = Vi ()] <20 (112)
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We want to bound ||V f,.(z) — Vi, ()|| for all & € C. Take any € C. Since Cs, is a do-net of C, there exists an @’ € Cs,
such that ||z — 2’| < do.
||vf_r(m) - vl‘r(m)H = HVﬁ(x JF (x /) + Vﬁ( /) - Vi, (x) + vﬂr( vﬂr H
< Vi) = V@) + | Vi () = Vi (@) + ||Vfr = V()] (113)

=: T =: Ty

Now we bound each term on the RHS of (113).

1 Ny
7 Z (va(zT,iv :13) - vfr(zr,iv Y
T i=1
< L||lxz—'|| < Ldo
Ty = |Ezng, [Vfr(z, @) = Vi(2z,@;)|[| £ Ezng, [[Vfir(z,2) = V(2,2
< Eang Lllw — /|| < Lo

Ty =

1 Ny
<o ; IV fr(2rira) = V(2 @)

Substituting the above bounds on 77, 75 in (113) and bounding the third term of (113) using (112) gives

2dlog 5 + 2log (N%)

ny

|V fr(®) = Vi ()| < 2L + 2v (114)

we would get

d d
Note that Ny, < (1+ 2" Take 5 = 1/ (14 2 ). 1 we take 8y = 17, which implies § = - L557,
Ns,
S

2dlog 5 + 2log ( ) 4d + 4dlog(1 + n,.LD) < 8dlog(1 + n,.L D). Substituting these in above gives

_ 2 2v
Vi(x)—Vu.(x)|| < —+ ——+/8dlog(l + n,.LD). (115)
V@) = Viu(@)]| < -+ Z/5dlon )
When n,. > m (which is a very small number less than 1), with probability at least 1 — m, we have
- 8dlog(1 ~LD
IV fr(@) = Vi, (@)]| < 3u\/ o8 n+ D) e (116)

Lower bound on n,.. Note that Lemma 7 requires A < ”—2, where A = \/51/\ / dlog‘wnilog(l/é). Substituting the value of
5= m gives n, > 20‘ (dlogb + dlog(1 + n,LD)), which is 2(dlog(n,LD)) for constant a, v. Treating the
smoothness parameter L a constant, we get n,. = Q(dlog(n,d)) to be requirement on the sample size at the r’th client for
the bound in Lemma 5 to hold.

This completes the proof of Lemma 5. O

E.5. Proof of Lemma 6 (sub-Gaussian gradients)

We prove Lemma 6 with the help of the following result, which holds for any fixed « € C.

Lemma 8. Suppose Assumption 4 holds. Take an arbitrary r € [R). For any 6 € (0,1) and n, € N, with probability at
least 1 — 0, we have for any fixed x € C:

IV Fr(@) = V()| < 2\/5%\/ togB + los(1/0) (117)

where randomness is due to the sub-Gaussian distribution of local gradients.
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Proof. Follow the proof of Lemma 7 exactly until (106). Then instead of the sub-exponential assumption, use the sub-
Gaussian assumption (Assumption 4) on local gradients. Then apply the concentration bound from (103) with ¢ = n,.A.
This gives that for any fixed v € V and any A > 0, we have

Pr Kvﬁ(w) - Vi (), v> > A] <exp ( mN) : (118)
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Now following the proof of Lemma 7 from (108) to (110) gives

g

where in the last inequality we used A = \@qu / dlog5+n710g(1/5). O

We can extend the bound from Lemma 8 to all x € C (and prove Lemma 6) using an e-net argument exactly in the same way
as used in the proof of Lemma 5. So, to avoid repetition, we do not show this extension here.

2
Pr[|Vfr(m) = Vi, ()| > 2A] < exp ( ”;;‘2 + dlog 5) <6, (119)

F. Additional Experimental Details

There are some implementation issues about the decoding algorithm (as described in Algorithm 2) that could be important
in the deployment of the algorithm. In the following, we describe these issues and also explain our approach in the
implementation to address them.

* Note that the stopping criterion (see line 7) in our decoding algorithm described in Algorithm 2 requires the matrix
concentration bound 0(2) that we show in Theorem 2 in terms of the SGD variance bound o2 (see (2)) and the bounded
gradient dissimilarity <2 (see (6)). Since these are properties of the local datasets stored at clients, which is challenging
to determine in a adversarial federated learning setting. In order to mitigate this, we observe two things:

1. the only place where Algorithm 2 uses this matrix concentration bound is in the stopping criterion (in line 7); and
2. in each iteration of the while loop, at least one sample gets its weight reduced to zero.

Since we know an upper bound on the fraction of corrupt samples, these two observations suggest replacing the
stopping condition in line 7 with the condition that break the while loop when the number of samples whose weights
become zero is more than the number of corrupt samples. This is what we used as a stopping criterion (in line 7) in our
implementation of Algorithm 2.

* Note that each iteration of the while loop (line 7) of Algorithm 2 requires computing the principal eigenvector of the
covariance matrix (line 8), which can be done using the singular value decomposition (SVD) algorithm. This, however,
could be computationally expensive. To mitigate this, we choose uniformly at random 1024 coordinates from the all
gradient vectors (same 1024 random coordinates from all the gradients), and run the decoding algorithm only on them.
Suppose A denotes the set of indices of the surviving gradients (i.e., whose weight are not zero when the filtering
algorithm terminates), then we will discard all those full gradients whose indices are outside the set A.

®
Furthermore, we observed performance boost when replacing the line 13 of Algorithm 2 (i.e., g = Zfil H:J(ng) with

~

9= ica ﬁgi, where A contains the identities of the surviving samples; in other words, we replaced the weighted
average with the uniform average.



