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Abstract—We study distributed stochastic gradient descent
(SGD) in the master-worker architecture under Byzantine at-
tacks. We consider the heterogeneous data model, where different
workers may have different local datasets, and we do not make
any probabilistic assumptions on data generation. At the core
of our algorithm, we use the polynomial-time outlier-filtering
procedure for robust mean estimation proposed by Steinhardt et
al. (ITCS 2018) to filter-out corrupt gradients. In order to be
able to apply their filtering procedure in our heterogeneous data
setting where workers compute stochastic gradients, we derive a
new matrix concentration result, which may be of independent
interest. We provide convergence analyses for smooth strongly-
convex and non-convex objectives and show that our convergence
rates match that of vanilla SGD in the Byzantine-free setting. In
order to bound the heterogeneity, we assume that the gradients
at different workers have bounded deviation from each other,
and we also provide concrete bounds on this deviation in the
statistical heterogeneous data model.

I. INTRODUCTION

Stochastic gradient descent (SGD) [2] is the main workhorse

behind the optimization procedure in several modern large-

scale learning algorithms [3]. In this paper, we consider a

master-worker architecture, where the training data is dis-

tributed across several machines (workers) and a central node

(master) wants to learn a machine learning model using

SGD [4]; see Figure 1. This setting naturally arises in the case

of federated learning [5]–[7], where user devices are recruited

to help build machine learning models using their locally

generated data. In such scenarios, the recruited worker nodes

may not be trusted with their computation, either because of

non-Byzantine failures, such as software bugs, noisy training

data, etc., or because of Byzantine attacks, where corrupt

nodes may manipulate the transmitted information to their

advantage [8]. These Byzantine adversaries may collaborate

and arbitrarily deviate from their pre-specified programs. The

importance of this problem motivates us to study Byzantine-

resilient optimization algorithms that are suitable for large-

scale learning problems.

We consider an empirical risk minimization (ERM) prob-

lem, where data is stored at R worker nodes, each having a

different dataset (with no probabilistic assumption on data gen-

eration); node r ∈ [R] has dataset Dr. Let Fr : Rd → R denote

the local loss function associated with the dataset Dr, which is

defined as Fr(x) , Ei∈U [nr][Fr,i(x)], where nr = |Dr|, i is

All the proofs and omitted details from this paper can be found in [1].
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Fig. 1 The training data is distributed across R worker nodes – worker r ∈ [R]
stores dataset Dr with an associated loss function Fr , and master wants to
learn a machine learning model x∗ := argmin

x∈Rd
1

R

∑
R

r=1
Fr(x) using

SGD in the presence of malicious nodes (denoted in red), who may provide
incorrect gradients in each SGD iteration. Filtering out corrupt gradients in
heterogeneous data setting and providing convergence analyses for strongly-
convex and non-convex objectives is the subject of this paper.

uniformly distributed over [nr] , {1, 2, . . . , nr}, and Fr,i(x)
is the loss associated with the i’th data point at node r with

respect to (w.r.t.) the model parameters x ∈ R
d. Our goal is

to solve the following minimization problem:

argmin
x∈C

(
F (x) ,

1

R

R∑

r=1

Ei∈U [nr][Fr,i(x)]
)
. (1)

Here, C ⊂ R
d denotes the parameter space and is a compact,

convex set.

We can minimize (1) using distributed vanilla SGD, where

in any iteration, master broadcasts the current model param-

eters to all workers, each of them then samples a stochastic

gradient from its local dataset and sends it back to the server,

who aggregates the received gradients and updates the global

model parameters. However, this simple solution breaks down

even with a single malicious node [9]; see Figure 1.

There have been several works in literature [9]–[24] that

provide robustness against Byzantine nodes; see also [7, Sec-

tion 5] for a detailed survey on Byzantine-robustness in feder-

ated learning. Among these, [9]–[16] assume homogeneous

(either same or i.i.d.) data across all nodes; [17]–[21] use

coding across datasets, which is hard to implement in settings

such as federated learning; [22] changes the objective function

and adds a regularizer term to combat the adversary; [23]

effectively reduces the heterogeneous problem to a homoge-

neous problem by clustering, and then learning happens within

each cluster having homogeneous data; and [24] proposed a



resampling technique that effectively adapts existing robust

algorithms (which might have been designed to work with

homogeneous – identical or i.i.d. – datasets) to work with

heterogeneous datasets, however, their convergence are only

applied to the robust aggregation rule from [9].

The most relevant work to ours are [13], [15], [16], in

the sense that they also applied the same robust gradient

aggregation rule as ours, which is the robust mean estima-

tion (RME) algorithm from [25], however, there are major

differences. [16] study SGD for ERM and assume the same

data across all nodes. [13], [15] analyze full-batch gradient

descent for minimizing population risk assuming i.i.d. data

across nodes. In order to use the decoding algorithm of [25],

both [13], [15] derive a matrix concentration bound, the need

of which arises because they minimize the population risk. In

this paper, since we minimize the empirical risk, we do not

need such a result. However, we do need to prove a matrix

concentration bound (which is of a very different nature than

theirs, and we use entirely different tools to prove that), the

need of which arises because of heterogeneity in datasets and

that the gradients are stochastic due to SGD – if we work

with full-batch deterministic gradients, we would not need

any of such concentration bounds. See Theorem 2 for our new

matrix concentration result. Note that [13] left a few problems

open, including analyzing the stochastic gradient descent in

Byzantine settings. In this paper, we resolve this (while min-

imizing the empirical risk) in a more general heterogeneous

data setting, and provide comprehensive analyses of Byzantine

SGD and prove its convergence for both strongly-convex and

non-convex objectives. See [1] for a detailed discussion on

related work.

The reason for applying RME algorithms for gradient aggre-

gation is that its error guarantee has a much better dependence

on the dimension d than the more traditional approaches based

on median or trimmed-mean; see Section III and [1] for more

details. So, in high-dimensional problems, decoding based on

RME algorithms performs better.

Our contributions. We provide convergence analyses of

our Byzantine-resilient SGD algorithm (see Algorithm 1)

for smooth strongly-convex and non-convex objectives under

the assumption of bounded variance for stochastic gradients

(Assumption 1) and the bounded gradient dissimilarity (As-

sumption 2), which is a deterministic condition on datasets

for bounding heterogeneity. We also provide concrete upper

bounds on the gradient dissimilarity as well as the local

variances in the statistical heterogeneous model under different

distributional assumptions (sub-exponential and sub-Gaussian)

on local gradients.

Our algorithm can tolerate ǫ < 1
4 fraction of corrupt

worker nodes. In the strongly-convex case, our algorithm can

find optimal parameters within an approximation error of

O(κ2+ σ2

bR+ σ2d
bR

(ǫ+ǫ′)
ǫ′ ) (where κ2 is the gradient dissimilarity

bound, σ2 is the variance bound, b is the mini-batch size for

stochastic gradients, and ǫ′ > 0 is any constant such that

ǫ+ǫ′ ≤ 1
4 ) “exponentially fast”; and in the non-convex case, it

can find an approximate stationary point within the same error

with “linear speed”, i.e., with a rate of 1
T ; see Theorem 1.

The σ2

bR term in the approximation error is the standard SGD

variance and the σ2d
bR

(ǫ+ǫ′)
ǫ′ term is due to Byzantine attacks.

Note that both these terms can be made small by taking a

sufficiently large mini-batch size of stochastic gradients. Note

that when workers compute full-batch gradients (i.e., σ = 0),

the approximation error becomes O(κ2).1 See Section II-B for

a detailed discussion on several aspects of our results.

As mentioned earlier, for filtering corrupt gradients, we em-

ploy the robust mean estimation algorithm from [25]. In order

to apply that in our heterogeneous data setting where workers

sample stochastic gradients from their local datasets, we derive

a new matrix concentration bound (stated in Theorem 2). See

Section III for more details.

We also extend these results to the case where workers send

compressed gradients to the master, and the corresponding

results can be found in [1, Section 5].

Paper organization. We describe our algorithm and the

main convergence results in Section II. We describe our main

technical tool, a new matrix concentration result for hetero-

geneous data with stochastic gradients in Section III. Omitted

details/proofs can be found in [1], which is an extended version

of this work.

II. MAIN CONVERGENCE RESULTS

In this section, we state our assumptions, describe the adver-

sary model and our algorithm, and state our main convergence

results, together-with some important remarks on the results.

Assumption 1 (Bounded local variances). The stochastic

gradient sampled from any local dataset is uniformly bounded

over C for all workers, i.e., there exists a finite σ, such that for

every x ∈ C, r ∈ [R], Ei∈U [nr]‖∇Fr,i(x)−∇Fr(x)‖2 ≤ σ2.

It will be helpful to formally define mini-batch stochastic

gradients, where instead of computing stochastic gradients

based on just one data point, each worker samples b ≥ 1
data points (without replacement) from its local dataset and

computes the average of b gradients. For any x ∈ R
d, r ∈

[R], b ∈ [nr], consider the following set

F⊗b
r (x) :=

{
1

b

∑

i∈Hb

∇Fr,i(x) : Hb ∈
(
[nr]

b

)}
. (2)

Note that gr(x) ∈U F⊗b
r (x) is a mini-batch stochastic

gradient with batch size b at worker r. It is not hard to see

the following hold for every x ∈ R
d, r ∈ [R]:2

E [gr(x)] = ∇Fr(x), (3)

1It is not surprising that when κ = 0, we reach to an exact optimum in
full-batch GD – when κ = 0, all workers have the same data, and master can
decode the correct gradient by simply taking the majority vote of the received
gradients.

2Since clients sample data points without replacement, we can in fact show a

stronger variance bound of E ‖gr(x)−∇Fr(x)‖
2 ≤

(nr−b)
b(nr−1)

σ2. However,

for simplicity, we only use the weaker bound (4) in this paper.



E ‖gr(x)−∇Fr(x)‖2 ≤ σ2

b
. (4)

Assumption 2 (Bounded gradient dissimilarity). The variance

of the local gradients ∇Fr(x), r ∈ [R] from the global

gradient ∇F (x) = 1
R

∑R
r=1 ∇Fr(x) is uniformly bounded

over C for all workers, i.e., there exists a finite κ, such that

‖∇Fr(x)−∇F (x)‖2 ≤ κ2, ∀x ∈ C, r ∈ [R]. (5)

Assumption 1 has been standard in SGD literature. As-

sumption 2 has also been used earlier to bound heterogeneity

in datasets; see, for example, [26], [27], which study decen-

tralized SGD with momentum (without Byzantine workers).

Note that when workers compute full-batch gradients, we have

σ = 0 in Assumption 1; similarly, when all workers have

access to the same dataset as in [9], [12], [16], we have κ = 0
in Assumption 2. Note that (5) can be seen as a deterministic

condition on local datasets, under which we derive our results.

A note on Assumption 2. In the presence of Byzantine

adversaries, since we do not know which ǫR workers are

corrupt, we have to make some structural assumption on the

data that can provide relationships among gradients sampled

at different nodes for reliable decoding, and Assumption 2

is a natural way to achieve that. There are many alternatives

to establish this relationship, e.g., by assuming homogeneous

(same or i.i.d.) data across workers [9]–[13], [15], [16] or by

explicitly introducing redundancy in the system via coding-

theoretic solutions [17], [18], [21]; however, these approaches

fall short of in a distributed setup such as federated learning.

Note that assuming bounded gradients of local functions

(i.e., ‖∇Fr(x)‖ ≤ G for some finite G) is a common assump-

tion in literature with heterogeneous data; see, for example,

[28], [29] (without adversaries) and [14] (with adversaries).

Note that under this assumption, we can trivially bound the

heterogeneity among local datasets by ‖∇Fr(x)−∇Fs(x)‖ ≤
2G. So, assuming bounded gradients not only simplifies the

analysis but also obscures the effect of heterogeneity on the

convergence bounds, which Assumption 2 clearly brings out.

Bounds on σ2 and κ2 in the statistical heterogeneous

model. Since all results (matrix concentration and conver-

gence) in this paper are given in terms of σ and κ, to show

the clear dependence of our results on the dimensionality

of the problem, we bound these quantities in the statisti-

cal heterogeneous data model under different distributional

assumptions on local gradients; see [1] for details. For the

SGD variance bound, we show that if local gradients have

sub-Gaussian distribution, then σ = O
(√

d log(d)
)

. For the

gradient dissimilarity bound, we show that if either the local

gradients have sub-exponential distribution and each worker

has at least n = Ω(d log(nd)) data points or local gradients

have sub-Gaussian distribution and n ∈ N is arbitrary, then

κ ≤ κmean+O
(√

d log(nd)
n

)
, where κmean denotes the distance

of the expected local gradients from the global gradient. Note

that we make distributional assumptions on data generation

only to derive bounds on σ, κ. Other than that, we do not

Algorithm 1 Byzantine-Resilient SGD

1: Initialize. Set x0 := 0, a fixed learning rate η, and mini-

batch size b for stochastic gradients.

2: for t = 0 to T − 1 do

3: At workers:

4: for r = 1 to R do

5: Receive x
t from master. Take a mini-batch stochastic

gradient gr(x
t) ∈U F⊗b

r (xt).

6: g̃r(x
t) =

{
gr(x

t) if worker r is honest,

> if worker r is corrupt,

where > is an arbitrary vector in R
d.

7: Send g̃r(x
t) to master.

8: end for

9: At master:

10: Receive {g̃r(xt)}Rr=1 from the R workers.

11: Apply the decoding algorithm RGE (described in [1,

Appendix E]) on {g̃r(xt)}Rr=1.

12: Let ĝ(xt) = RGE(g̃1(x
t), . . . , g̃R(x

t)).
13: Update the parameter vector:

x
t+1 = ΠC

(
x
t − ηĝ(xt)

)
,

where ΠC is the projection operator onto the set C.

14: Broadcast xt+1 to all workers.

15: end for

make any distributional assumption on the data and all results

in this paper hold for arbitrary datasets satisfying (4), (5).

Adversary model. We assume that an ǫ fraction of R workers

are corrupt; as we see later, we can tolerate ǫ < 1
4 . The corrupt

workers can collaborate and arbitrarily deviate from their pre-

specified programs: In any SGD iteration, instead of sending

the true gradients, corrupt workers can send adversarially

chosen vectors (they may not even send anything if they wish,

in which case, the master can treat them as erasures and

replace them with a fixed value). Note that, in the erasure

case, master knows which workers are corrupt; whereas, in the

Byzantine problem, master does not have this information.

A. Our Algorithm and the Convergence Results

We present our Byzantine-resilient SGD algorithm in Algo-

rithm 1. Our convergence results are for both strongly-convex

and non-convex smooth functions.

Theorem 1 (Strongly-convex and Non-convex). Suppose an

ǫ > 0 fraction of R workers are adversarially corrupt. For

an L-smooth3 global objective function F : C → R, let

Algorithm 1 generate a sequence of iterates {xt}Tt=0 when

running with a fixed learning rate η, where in the t’th iteration,

every honest worker r ∈ [R] samples a mini-batch stochastic

gradient from F⊗b
r (xt), satisfying (3) and (4) (corrupt workers

may send arbitrary vectors). Fix any ǫ′ > 0. If ǫ ≤ 1
4 − ǫ′,

3A function F : C → R is called L-smooth over C ⊆ Rd, if for every
x,y ∈ C, we have ‖∇F (x) − ∇F (y)‖ ≤ L‖x − y‖ (this property is
also known as L-Lipschitz gradients). This is also equivalent to F (y) ≤
F (x) + 〈∇F (x),y − x〉+ L

2
‖x− y‖2.



then with probability at least 1−T exp(− ǫ′2(1−ǫ)R
16 ), we have

the following convergence guarantees:

• Strongly-convex: If F is also µ-strongly convex4 and

η = µ
L2 , then we have

E‖xT − x
∗‖2 ≤

(
1− µ2

2L2

)T

‖x0 − x
∗‖2 + 2L2

µ4
Γ.

If we take T = log
(

µ4

L2Γ ‖x0 − x
∗‖2
)
/log( 1

1−µ2/2L2
), we

get E‖xT − x
∗‖2 ≤ 3L2

µ4 Γ .

• Non-convex: If η = 1
4L , then we have

1

T

T∑

t=0

E‖∇F (xt)‖2 ≤ 8L2

T
‖x0 − x

∗‖2 + Γ,

If we take T = 8L2‖x0−x
∗‖2

Γ , we get
1
T

∑T
t=0 E‖∇F (xt)‖2 ≤ 2Γ .

In both the bounds, expectation is taken over the sampling of

mini-batch stochastic gradients. Here, Γ = 9σ2

(1−(ǫ+ǫ′))bR +

9κ2 + 9Υ 2 with Υ = O
(
σ0

√
ǫ+ ǫ′

)
, where σ2

0 =
24σ2

bǫ′

(
1 + d

(1−(ǫ+ǫ′))R

)
+ 16κ2.

Due to lack of space, Theorem 1 is proved in [1].

Projection. Since the parameter space C is not equal to R
d,

our convergence analysis for non-convex objectives requires a

mild technical assumption on the size of C. This assumption is

only required to ensure that the iterates x
t always stay inside

C without projection. Similar assumption has also been made

in [11] for the same purpose. This assumption streamlines

our convergence analysis, as our focus in this paper is on

Byzantine-resilience.

Assumption 3 (Size of C). Suppose ‖∇F (x)‖ ≤ M for

all x ∈ C. We assume that C contains the ℓ2 ball {x ∈
R

d : ‖x − x
0‖ ≤ 2L

Γ (M + Γ1)‖x0 − x
∗‖2}, where Γ =

9σ2

(1−(ǫ+ǫ′))bR + 9κ2 + 9Υ 2 and Γ1 = nmaxσ
b + κ + Υ , where

nmax = maxr∈[R] nr and other parameters are as defined in

Theorem 1 above.

Note the dependence of the size of C on nmax

b , which is

the maximum number of data samples at any worker. This

happens because we want a deterministic bound on the size

of C (not in expectation) even though we are doing stochastic

sampling of data points for gradient computation.

B. Important Remarks about Theorem 1

Analysis of the approximation error. In both parts of Theo-

rem 1, the approximation error Γ consists of three error terms:

First is Γ1 = O(σ
2

/(1−(ǫ+ǫ′))bR), which is the standard error

arising due to the sampling of stochastic gradients; second is

Γ2 = O(κ2), which is due to dissimilarity in the local datasets;

and third is Γ3 = O
((

σ2

bǫ′

(
1 + d

(1−(ǫ+ǫ′))R

)
+ κ2

)
(ǫ+ ǫ′)

)
,

which is due to Byzantine attacks. Observe that Γ1 decreases

4A function F : C → R is called µ-strongly convex over C ⊆ Rd, if for
every x,y ∈ C, we have F (y) ≥ F (x) + 〈∇F (x),y−x〉+ µ

2
‖x− y‖2.

with the mini-batch size b and the number of workers R,

as desired. Note that Γ3 consists of two terms Γ3,1 =
σ2

bǫ′

(
1 + d

(1−(ǫ+ǫ′))R

)
(ǫ+ǫ′) and Γ3,2 = κ2(ǫ+ǫ′), where we

can make Γ3,1 small by taking a large mini-batch size b. Note

that the presence of Γ3,2 is inevitable, since κ captures the

dissimilarity in different datasets, and that will always show

up when bounding the deviation of the true “global” gradient

from the decoded one in the presence of Byzantine workers.

Hence, by taking a sufficiently large mini-batch size (or full-

batch gradients, which gives σ = 0), we can reduce the error

term to O(κ2), which, in the statistical heterogeneous model

is equal to O
(
κ2

mean +
d log(nd)

n

)
, where κmean captures the

difference between local and global population means and n
is the number of data samples at each worker. In particular,

if each worker has n = Ω(d log(nd)) data points, and they

take a sufficiently large mini-batch size in each iteration of

Algorithm 1, the approximation error reduces to O(κ2
mean).

Convergence rates. Note that, in the strongly-convex case,

Algorithm 1 approximately finds optimal parameters x
∗

(within Γ error, which could be a constant) “exponentially

fast”; and in the non-convex case, Algorithm 1 approximately

finds a stationary point up to the same error with “linear

speed”, i.e., with a rate of 1
T . Thus, we recover the convergence

rates of vanilla SGD (running in the Byzantine-free setting)

for both the objectives.

Corruption threshold. Our proposed algorithm can tolerate

less than 1
4 fraction Byzantine workers, which is away from

the information-theoretically optimal 1
2 fraction. The 1

4 bound

comes from the subroutine of robust mean estimation (RME)

that we use for robust gradient estimation (RGE), as explained

in Section III. So, improved algorithms for RME that can be

adapted to our setting will directly give an improved corruption

threshold for our algorithm.

Failure probability. The failure probability of our algorithm

is at most T exp(− ǫ′2(1−ǫ)R
16 ), which is at most δ, for any δ >

0, provided we run our algorithm for T ≤ δ exp( ǫ
′2(1−ǫ)R

16 )
iterations. Though the error probability scales linearly with T ,

it also goes down exponentially with the number of workers

R. As a result, in settings such as federated learning, where

number of workers R could be very large (in tens of thousands

or millions), we can get a very small probability of error even

if run our algorithm for a long time. Note that the probability

of error is due to stochastic sampling of gradients, and if

we want a “zero” probability of error, we can run full-batch

gradient descent; we provide the corresponding results in [1].

III. ROBUST GRADIENT ESTIMATION (RGE)

In this section, we first briefly describe the main ingredient

of Algorithm 1, a method for robust gradient estimation

(RGE), and then prove our new matrix concentration inequal-

ity. The problem is as follows: We are given R gradient vectors

g̃1(x), . . . , g̃R(x) ∈ R
d for an arbitrary x ∈ R

d, where,

g̃r(x) = gr(x) is a uniform sample from F⊗b
r (x) if the r’th

worker is honest, otherwise, g̃r(x) can be arbitrary. We want



to compute ĝ(x), an estimate of gH(x) := 1
|H|

∑
i∈H gi(x),

which is the average of uncorrupted gradients of honest

workers, such that ‖ĝ(x)− gH(x)‖ is small for all x ∈ R
d.

For RGE, we employ the polynomial-time outlier-filtering

procedure for high-dimensional robust mean estimation (RME)

from [25]; see also [30], [31]. In the RME problem, the

good samples are from the same distribution and we want

to estimate its mean, which is different from our problem

where gradients come from different distributions due to

heterogeneity in datasets. For RME, the crucial observation in

these methods is that if the empirical mean of the samples is

far from their true mean, then the empirical covariance matrix

has high largest eigenvalue. So, the idea is to filter out the

samples that have large projection on the principal eigenvector

of the empirical covariance matrix. This is done via a soft-

removal method, where we assign weights (confidence score)

to the samples and down-weighting those that have large

projection, and remove the samples when their score go below

a threshold. In the end, take an average of the surviving

samples. The advantage of this aggregation rule over the

traditional ones (that are based on median and trimmed-mean)

is that the approximation error of the above solution has a

much better dependence on the dimension d of the parameter

space. Since we apply this subroutine in each SGD iteration,

this error eventually translates to the sub-optimality gap in our

optimization solution.

Note that the error guarantee of the above procedure is given

in terms of the concentration of the good samples around their

sample mean. When applied to our setting, where gradients

come from different distributions, we need to explicitly prove

this concentration which is non-trivial. We believe ours is

the first matrix concentration result for non-i.i.d. data (in the

federated learning setting). Our main result for robust gradient

estimation is as follows:

Theorem 2 (Robust Gradient Estimation). Fix an arbitrary

x ∈ R
d. Suppose an ǫ fraction of workers are corrupt and

we are given R gradients g̃1(x), . . . , g̃R(x) ∈ R
d, where

g̃r(x) = gr(x) is a uniform sample from F⊗b
r (x) satisfying

(3), (4) if the r’th worker is honest, otherwise can be arbitrary.

Let g̃i := g̃i(x) for i ∈ [R]. Then, for any constant ǫ′ > 0,

we have the following (where gS := 1
|S|

∑
i∈S gi):

1) Matrix concentration: With probability at least 1 −
exp(− ǫ′2(1−ǫ)R

16 ), there exists a subset S ⊂ [R] of uncor-

rupted gradients of size (1− (ǫ+ ǫ′))R such that

λmax

(
1

|S|
∑

i∈S

(gi − gS) (gi − gS)
T

)
≤

24σ2

bǫ′

(
1 +

d

(1− (ǫ+ ǫ′))R

)
+ 16κ2, (6)

where λmax denotes the largest eigenvalue.

2) Outlier-filtering algorithm: If ǫ ≤ 1
4 − ǫ′, then we

can find an estimate ĝ of gS in polynomial-time with

probability 1, such that ‖ĝ − gS‖ ≤ O
(
σ0

√
ǫ+ ǫ′

)
, where

σ2
0 = 24σ2

bǫ′

(
1 + d

(1−(ǫ+ǫ′))R

)
+ 16κ2.

The statement of Theorem 2 consists of two parts: First,

it shows an existence of a large subset S of uncorrupted

gradients having bounded concentration around their sample

mean, which is a matrix concentration result; and second,

it efficiently estimates the average of the gradients in S .

We provide a proof-sketch for the first part in this section,

and for the second part, we use the polynomial-time outlier-

filtering procedure from [25], which is described in detail in

[1], where we also provide an intuition behind the decoding

and its running time analysis; the decoding requires SVD

computations of d × R matrices and hence takes polynomial

time.

Now we prove the first part of Theorem 2. In order to show

(6), first we prove a separate matrix concentration bound in

the following lemma, and then we show how we can use that

to prove our desired bound (6).

Lemma 1. Suppose there are m independent distributions

p1, p2, . . . , pm in R
d such that Ey∼pi

[y] = µi, i ∈ [m]
and each pi has bounded variance in all directions, i.e.,

Ey∼pi
[〈y − µi,v〉2] ≤ σ2 holds for all unit vectors v ∈ R

d.

Take an arbitrary ǫ′ ∈ (0, 1]. Then, given m independent

samples y1,y2, . . . ,ym, where yi ∼ pi, with probability

1 − exp(−ǫ′2m/16), there is a subset S of (1 − ǫ′)m

points such that λmax

(
1
|S|

∑
i∈S (yi − µi) (yi − µi)

T
)

≤
4σ2

ǫ′

(
1 + d

(1−ǫ′)m

)
.

Lemma 1 is a generalization of [32, Proposition B.1], where

the m samples y1, . . . ,ym are drawn independently from a

single distribution p with mean µ and variance bound of σ2.

Note that, in our setting, different yi’s may come from different

distributions, which may have different means.

Note that we are given R gradients, out of which at least

(1 − ǫ)R are according to the correct distribution. Consider

only the uncorrupted gradients (i.e., m = (1− ǫ)R) and take

pi to be the uniform distribution over F⊗b
i (x), which implies,

using (3) and (4), that the hypothesis of Lemma 1 is satisfied

with yi = gi(x),µi = ∇Fi(x), σ
2 = σ2

b . Now we have

from Lemma 1 that there exists a subset S of R gradients

of size (1 − ǫ′)(1 − ǫ)R ≥ (1 − (ǫ + ǫ′))R that satisfies

λmax

(
1
|S|

∑
i∈S (gi(x)−∇Fi(x)) (gi(x)−∇Fi(x))

T
)

≤
4σ2

bǫ′

(
1 + d

(1−(ǫ+ǫ′))R

)
. Note that this bounds the deviation

of the points in S from their respective means ∇Fi(x);
however, in (6), we need to bound the deviation of the points

in S from their sample mean gS(x) = 1
|S|

∑
i∈S gi(x).

Using the gradient dissimilarity bound (5) together with

some algebraic manipulations provided in [1], we show

that λmax

(
1
|S|

∑
i∈S (gi(x)− gS(x)) (gi(x)− gS(x))

T
)
≤

24σ2

bǫ′

(
1 + d

(1−(ǫ+ǫ′))R

)
+16κ2, which completes the proof of

the first part of Theorem 2.

ACKNOWLEDGMENTS

This work was supported in part by NSF grants # 1740047,

#2007714, and UC-NL grant LFR-18-548554.



REFERENCES

[1] D. Data and S. N. Diggavi, “Byzantine-resilient SGD in high
dimensions on heterogeneous data,” CoRR, vol. abs/2005.07866, 2020.
[Online]. Available: https://arxiv.org/abs/2005.07866

[2] H. Robbins and S. Monro, “A stochastic approximation method,” The

Annals of Mathematical Statistics. JSTOR, vol. 22, no. 3, pp. 400–407,
1951.

[3] L. Bottou, “Large-scale machine learning with stochastic gradient de-
scent,” in COMPSTAT, 2010, pp. 177–186.

[4] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, 2008.

[5] J. Konecný, “Stochastic, distributed and federated optimization for
machine learning,” CoRR, vol. abs/1707.01155, 2017.

[6] J. Konecný, H. B. McMahan, D. Ramage, and P. Richtárik, “Federated
optimization: Distributed machine learning for on-device intelligence,”
CoRR, vol. abs/1610.02527, 2016.

[7] P. Kairouz et al., “Advances and open problems in federated learning,”
CoRR, vol. abs/1912.04977, 2019.

[8] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals prob-
lem,” ACM Trans. Program. Lang. Syst., vol. 4, no. 3, pp. 382–401, Jul.
1982.

[9] P. Blanchard, E. M. E. Mhamdi, R. Guerraoui, and J. Stainer, “Machine
learning with adversaries: Byzantine tolerant gradient descent,” in NIPS,
2017, pp. 119–129.

[10] Y. Chen, L. Su, and J. Xu, “Distributed statistical machine learning in
adversarial settings: Byzantine gradient descent,” POMACS, vol. 1, no. 2,
pp. 44:1–44:25, 2017.

[11] D. Yin, Y. Chen, K. Ramchandran, and P. L. Bartlett, “Byzantine-robust
distributed learning: Towards optimal statistical rates,” in ICML, 2018,
pp. 5636–5645.

[12] D. Alistarh, Z. Allen-Zhu, and J. Li, “Byzantine stochastic gradient
descent,” in Neural Information Processing Systems (NeurIPS), 2018,
pp. 4618–4628.

[13] L. Su and J. Xu, “Securing distributed gradient descent in high dimen-
sional statistical learning,” POMACS, vol. 3, no. 1, pp. 12:1–12:41, 2019.

[14] C. Xie, S. Koyejo, and I. Gupta, “Zeno: Distributed stochastic gradient
descent with suspicion-based fault-tolerance,” in International Confer-

ence on Machine Learning (ICML), 2019, pp. 6893–6901.

[15] D. Yin, Y. Chen, K. Ramchandran, and P. L. Bartlett, “Defending against
saddle point attack in byzantine-robust distributed learning,” in ICML,
2019, pp. 7074–7084.

[16] D. Data and S. N. Diggavi, “On byzantine-resilient high-dimensional
stochastic gradient descent,” in ISIT, 2020, pp. 2628–2633.

[17] L. Chen, H. Wang, Z. B. Charles, and D. S. Papailiopoulos, “DRACO:
byzantine-resilient distributed training via redundant gradients,” in
ICML, 2018, pp. 902–911.

[18] S. Rajput, H. Wang, Z. B. Charles, and D. S. Papailiopoulos, “DETOX:
A redundancy-based framework for faster and more robust gradient
aggregation,” in NeurIPS, 2019, pp. 10 320–10 330.

[19] D. Data, L. Song, and S. N. Diggavi, “Data encoding methods for
byzantine-resilient distributed optimization,” in ISIT, 2019, pp. 2719–
2723.

[20] D. Data and S. N. Diggavi, “Byzantine-tolerant distributed coordinate
descent,” in ISIT, 2019, pp. 2724–2728.

[21] D. Data, L. Song, and S. N. Diggavi, “Data encoding for byzantine-
resilient distributed optimization,” IEEE Transactions on Information

Theory, vol. 67, no. 2, pp. 1117–1140, 2021, arXiv: https://arxiv.org/
abs/1907.02664.

[22] L. Li, W. Xu, T. Chen, G. B. Giannakis, and Q. Ling, “RSA: Byzantine-
robust stochastic aggregation methods for distributed learning from
heterogeneous datasets,” in Conference on Artificial Intelligence (AAAI),
2019, pp. 1544–1551.

[23] A. Ghosh, J. Hong, D. Yin, and K. Ramchandran, “Robust federated
learning in a heterogeneous environment,” CoRR, vol. abs/1906.06629,
2019. [Online]. Available: http://arxiv.org/abs/1906.06629

[24] L. He, S. P. Karimireddy, and M. Jaggi, “Byzantine-robust learning on
heterogeneous datasets via resampling,” CoRR, vol. abs/2006.09365,
2020. [Online]. Available: https://arxiv.org/abs/2006.09365

[25] J. Steinhardt, M. Charikar, and G. Valiant, “Resilience: A criterion for
learning in the presence of arbitrary outliers,” in ITCS, 2018, pp. 45:1–
45:21.

[26] H. Yu, R. Jin, and S. Yang, “On the linear speedup analysis of
communication efficient momentum SGD for distributed non-convex
optimization,” in ICML, 2019, pp. 7184–7193.

[27] X. Li, W. Yang, S. Wang, and Z. Zhang, “Communication effi-
cient decentralized training with multiple local updates,” CoRR, vol.
abs/1910.09126, 2019.

[28] H. Yu, S. Yang, and S. Zhu, “Parallel restarted SGD with faster con-
vergence and less communication: Demystifying why model averaging
works for deep learning,” in Conference on Artificial Intelligence (AAAI),
2019, pp. 5693–5700.

[29] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the
convergence of fedavg on non-iid data,” in International Conference

on Learning Representations (ICLR), 2020. [Online]. Available: https:
//openreview.net/forum?id=HJxNAnVtDS

[30] I. Diakonikolas, G. Kamath, D. Kane, J. Li, A. Moitra, and A. Stew-
art, “Robust estimators in high-dimensions without the computational
intractability,” SIAM J. Comput., vol. 48, no. 2, pp. 742–864, 2019.

[31] K. A. Lai, A. B. Rao, and S. S. Vempala, “Agnostic estimation of mean
and covariance,” in FOCS, 2016, pp. 665–674.

[32] M. Charikar, J. Steinhardt, and G. Valiant, “Learning from untrusted
data,” in STOC, 2017, pp. 47–60.


