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Abstract—In cyber-physical systems (CPS), inference
based on communicated data is of critical significance as
it can be used to manipulate or damage the control oper-
ations by adversaries. This calls for efficient mechanisms
for secure transmission of data since control systems are
becoming increasingly distributed over larger geographical
areas. Distortion-based security, recently proposed as one
candidate for secure transmissions in CPS, is not only more
appropriate for these applications but also quite frugal in
terms of prior requirements on shared keys. In this article,
we propose distortion-based metrics to protect CPS com-
munication and show that it is possible to confuse adver-
saries with just a few bits of preshared keys. In particular,
we will show that a linear dynamical system can commu-
nicate its state in a manner that prevents an eavesdropper
from accurately learning the state.

Index Terms—Cyber-physical information

security.

systems,

[. INTRODUCTION

anumber of cyber-physical control applications, ranging
from autonomous cars and drones, to the Internet-of-Things
(IoT), to immersive environments, such as augmented reality.
It is well recognized that wireless networking is essential to
realize the potential of new CPS applications, and is equally
well recognized that private and secure exchange of information
are necessary and not simply desirable conditions for the CPS
ecosystem to thrive. For instance, personal health data in assisted
environments, car positions and trajectories, and proprietary
interests all need to be protected. This article introduces a new

W IRELESS networked environments are a natural host for
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approach to secure communication in CPS, that aims to distort
an adversary’s view of a control system’s states. In particular,
we will show that a linear dynamical system can securely com-
municate its state to a trusted party in a manner that prevents
a malicious adversary eavesdropping the communication from
accurately learning the state.

Our starting observation is that information security mea-
sures (cryptographic and information theoretic secrecy) are not
well matched to CPS applications as they impose unnecessary
requirements, such as protecting all the raw data, and thus
can cause high operational costs.! To illustrate this, we start
by comparing existing techniques for ensuring CPS privacy,
namely cryptographic and information-theoretic techniques.
Cryptographic methods rely on computational complexity as
a guarantee for the security of the underlying CPS, i.e., the
system is secure against computationally limited adversaries.
Cryptographic methods are universal and therefore are easy to
integrate in any system under consideration. However, some of
their shortcomings are as follows.

1) They do not provide guarantees against adversaries with
unlimited computational power (e.g., quantum adver-
saries).

2) They utilize  computationally
tion/decryption algorithms.

3) They come at the cost of high overhead on short packet
transmissions, therefore increasing delays [2]-[6].

In fact, those techniques have been previously studied in the
context of secure CPSs. For example, homomorphic encryp-
tion [7]-[9] and public-encryption systems [10] have been used
to provide security of networked control systems. Alternatively,
information-theoretic methods rely on keys: they have low com-
plexity and do not add packet overhead, but require the commu-
nicating nodes to share large keys—every communication link
needs to use a shared secret key (for a one-time pad) of length
equal to the entropy (effectively length) of the transmitted data
[11], [12]. These costs accumulate rapidly given that large CPS
applications can have dense communication patterns.

Instead, we propose a lightweight approach that provides
security guarantees against computationally capable (i.e., with
unlimited computational power) adversaries and uses small
amounts of keys and low complexity operations. The main obser-
vation behind our approach is the following. Consider a general

heavy  encryp-

Our article focuses on security against passive adversaries—alternatively
referred to in the literature as CPS Privacy.
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Example of drone motion: protection of the most significant bit

encryption scheme that uses a K-bit key to encrypt the states
of a dynamical system. From an abstract point of view, such a
scheme hides the true value of the state among a set of 2 states;
without knowing the value of the key, an outside observer of the
encrypted state cannot resolve the ambiguity among these fake
states—we refer to this set as the ambiguity set. General encryp-
tion (e.g., cryptographic or information-theoretic) schemes aim
at increasing the size of the ambiguity set. Differently, in CPS
applications, increasing the size of the ambiguity set may not be
effective if all of these states are close to each other in a metric
space. To make this idea concrete, assume that an adversary is
trying to locate a drone in order to shoot it down with one missile
in its possession. If a K-bit encryption scheme is used, the
adversary would ideally have a set of 2% possible locations for
the drone—any set of 2% possible locations are equivalent from
an information-theoretic security point of view. However, if all
locations are in close proximity, an adversary can possibly shoot
the missile and hit the target regardless of the actual location.
On the other hand, a different encryption scheme, which uses
only 1 bit of information, but instead carefully chooses the two
possible locations to be far apart, would be more secure against
such an adversary. We therefore propose a distortion measure in
order to capture this idea.

The following example illustrates the effect of maximizing
distortion.> Consider the following simple example of a drone’s
flying motion, depicted in Fig. 1. The drone starts at any position,
and moves between adjacent points within the grid. It regularly
communicates its location to a legitimate receiver, Bob. A pas-
sive eavesdropper, Eve, wishes to infer the drone’s locations, and
can perfectly overhear all the transmissions the drone makes. We
assume that the drone and Bob share just one bit of key, which
is secret from Eve, and ask: what is the best use we can make of
the key?

Using the 1-b of shared key to protect the MSB is not a good
solution. The MSB can be protected by XORing a 1-b of shared
key with the MSB. As shown in Fig. 1, the adversary can discover
the fake trajectory after a few time steps since this scheme leads

2 Although we illustrate our approach for a specific simple example, it extends
to protecting general system states.

to trajectories that do not adhere to the dynamics or environment
constraints. In particular, the fake trajectory abruptly moves
from the left end of the grid to the right end. At this point, the
adversary can learn the real trajectory by flipping back the MSB
(we assume that the used scheme is known to everyone). Similar
attacks can be made if we use a one-time pad [11] using the same
keys over time: as time progresses, more fake trajectories can
be discovered and discarded.

Conventional entropy measures also fail to provide insights on
how to use the key. For instance, assume we label the 64 squares
in Fig. 1 sequentially row per row, and consider two cases: in
case I, Eve learns that the drone is in one of the neighboring
squares {1, 2}, each with probability 1/2. For case II, Eve knows
that the drone is in one of the squares {1, 64}, again each with
probability 1/2. Both cases are equivalent from an information
security perspective since in both cases Eve’s uncertainty is a
set of two equiprobable elements and hence its entropy is 1.
However, the security risks in both situations are different. For
example, if Eve aims to take a photo of the drone, in the first
case, she knows where to turn her camera (squares 1 and 2 are
close by), whereas in the second case, she does not (squares 1
and 64 are far apart).

Instead, we propose to use a Euclidean distance distortion
measure: how far (in Euclidean space) is Eve’s estimate from the
actual location. We then propose encoding/decoding schemes
that utilize the shared key to maximize this distance. We first
consider an “average” distortion measure. Note that if Eve
had not received any of the drone transmissions, then the best
(adversarial) estimate of the drone’s location at any given time
is the center point of the confined region in Fig. 1. Therefore, a
good encryption scheme would strive to maintain Eve’s estimate
to be as close to the center point as possible; we achieve the
maximum possible distortion, if, after overhearing the drone’s
transmissions, Eve’s best estimate still remains the center point.

The following scheme can achieve this maximum distortion
by using exactly one bit of shared secret key. When encoding, the
drone either sends its actual trajectory or its “mirrored” version,
depending on the value of the secret key. The mirrored trajectory
is obtained by reflecting the actual trajectory across a mirroring
point in space; in this example, the mirroring point is the center
point in Fig. 2. Since Eve does not know the value of the shared
key, its best estimate of the drone’s location—after receiving the
drone’s transmissions—would be the average location given the
trajectory and its mirrored version, which is exactly the center
point.

Our results in Section I1I extend this idea of mirroring to more
general lightweight mappings for dynamical systems in higher
dimensional spaces, and theoretically analyze the performance
in terms of average distortion for a larger variety of distributions
(with certain symmetry conditions). We also discuss a class of
systems and controllers for which we can always achieve the
perfect distortion with just 1-b of key.

Next, we consider a worst-case-sense distortion-based met-
ric. In other words, our security metric is “in the worst case,
how far is Eve’s estimate from the actual location?”” That is,
the adversary’s distortion may be different for different time
instances and different instances of the actual trajectory, and we
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Fig. 2. Example of drone motion: mirroring-based scheme.

are interested in the minimum among these. For example when
the drone is near the origin, both the actual and fake trajectories
are close to origin and thus the adversary knows that the drone
is near the origin. In this case, the overall (expected) distortion
for adversary is still maximum, but at this particular instance
of time, the adversary comes very close to the actual position.
In Section V, we provide encryption schemes that are suitable
for maximizing this distortion metric and show that with 3-b
of shared key per dimension [i.e., nine for 3-D motion], our
schemes achieve near-perfect worst case distortion. Our main
contributions are as follows.

1) We define security measures that are based on assessing
the distortion: in the average sense over time and over
data, and in the minimum sense, providing worst case
guarantees at any time and for any particular instances of
data.

2) For the expected distortion, we develop a scheme that uses
exactly 1-b of key and can provide maximum possible
distortion (equivalent to Eve with no observations) in
some cases. We also discuss the cases where it is not
optimal and give an analytical characterization of the
attained distortion. We then discuss a class of systems and
controllers for which we can always guarantee the perfect
distortion with just 1-b of shared key. Since for some
applications, an ambiguity set of size two (corresponding
to 1-b of key) may not be enough, we also derive an
expression of attained distortion when we use larger keys.

3) For the worst case distortion, we design a scheme that
uses 3-b of key per dimension and prove that it achieves
the maximum possible distortion (equivalent to that of
Eve with no observations) when the inputs to the systems
are independent from the previous states.

4) For linear control systems, we provide a relation between
the distortion in inputs to the distortion in states. This is
particularly useful when inputs are easier to distort and
analyze compared to the states.

A. Related Work

Secure data communication where the adversary has unlim-
ited computational power is studied from the lens of information

theory, most notably by Shannon [11] and Wyner [13]. The study
of secure communication while using distortion as a measure of
security is relatively new and is first studied by Yamamoto [14],
where the goal is to maximize the distortion of an eavesdropper’s
estimate on a message, viewed from an asymptotic (in block
length) information-theoretic approach. Schieler and Cuff [15]
later showed that, in the limit of an infinite block length n code,
only log(n) bits of secret keys are needed to achieve the max-
imum possible distortion. The idea of using finite block length
(and even single-shot) distortion as a performance measure was
initiated in [16], where schemes for single-shot communication
were considered. It demonstrated the exponential benefits for
each additional bit of shared key. The schemes examined were
for single-shot sensor observations, and not for time-series data,
which is the focus of this article.

Secure communication in control systems is studied in
[17]-[21]. Securing the system state from an adversary was
explored in [17] and [18], where an asymptotic steady-state
analysis was explored. In contrast, this article also deals with
transients and is not asymptotic. Information-theoretic security
was explored in [19], where the mutual information was used as
a privacy measure. Security of the terminal state is considered
in [20] where an adversary makes partial noisy measurement of
the state trajectory. Securing the states of an unstable system has
been considered in [22] where the notion of secure capacity was
used to characterize the level of secrecy against an adversary
connected through a wiretap channel. Differential privacy for
control systems was explored in [21], which uses standard statis-
tical indistinguishability that is equally applicable to categorical
(nonmetric space) data; in our article, we use the estimation error
of the adversary in order to quantify privacy, utilizing the fact
that CPS data lie in Euclidean space, as argued earlier.

B. Notation

For a matrix A, we denote by A’ and A, the transpose
and complex transpose of A, respectively; by A" the rth
power of A; X and X, denote column vectors, and X(’l’ =
(X, X1 - Xp) forb>aand a,b € Z; fx(x) denotes the
probability density function of a random vector X; for any
random vector Y, we denote the mean and covariance matrices
of Y by puy and Ry respectively, thus for example, the mean and
the covariance matrix of X, ab will be denoted by px+ and Ry
respectively; by [m], we denote {1,2,...,m} wherem € Z™;
and by [mj : ms], we denote {mq,my +1,...,mo} where
m1,my € ZT and mo > my; and a negative sign (—) in the
superscript of a function indicates the inverse of the function,
i.e., the inverse of the functions a(z) and o%)(z) are o~ (z)
and o~ (%) (), respectively.

II. SYSTEM MODEL
A. System Dynamics

We consider the linear dynamical system as

X1 = AX; + BU; +wy, Y, =CX;+ve ()
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where )?t € R"isthe state of the system attimet € N,U; € R™
is the input to the system at time ¢, w; € R™ is the process noise,
Y, are the system observations, and v; € R? is the observation
noise. We denote X{ by X, UIT’1 by U, and wf’l by w.
Based on the initial state X 1 and target state )?T, the controller
computes a sequence of inputs that moves the state from the
initial state X to the target state X7 in 7' time instances. We
assume that the system uses the observations Y7’ to optimally
estimate the states X. The optimal estimates of X made by the
system are denoted by X—in the case of perfect observation,
i.e., noiseless and observable systems, then X = X.

B. Communication and Attacker/Defender Models

At each time instance, the system (Alice) transmits informa-
tion about its state estimate to a legitimate receiver, which is
referred to as Bob, via a noiseless link. This situation occurs, for
example, when Bob is remotely monitoring the execution of the
system as in Supervisory Control and Data Acquisition systems
or in the remote operation of drones.

Attacker Model. A malicious receiver, referred to as Eve, is
assumed to eavesdrop on the communication between the system
and Bob and is able to receive all transmitted signals. The goal
of Eve is to make an estimate that is as close to X as possible:
since Bob receives X and makes control decisions with this
information, Eve is interested in X. We assume that Eve knows
the following:

1) the encoding/decoding functions used by Alice and Bob;
2) the dynamical system;
3) the controller design.

This information automatically implies knowing the prior
probability distributions on the input and state vectors. With this
information set, we assume that Eve uses the most adversarial
eavesdropping strategy: one which minimizes our performance
metric (see Section II-E). Eve is assumed to be passive: she
does not actively communicate, but is interested in learning the
system’s states from¢ = 1to 7.

Defender Model. We assume that Alice and Bob have a
shared k-bit key K that they use to encode/decode the trans-
mitted messages. For a given encoding/decoding function, the
assumed Eve adopts the most adversarial eavesdropping strat-
egy (from the perspective of our chosen performance metric).
Therefore, we assume that Alice/Bob attempts to design their
encoding/decoding functions, which optimize this worst case
performance. We elaborate more on that in Section II-E.

C. Inputs and States Random Process Model

We assume that both receivers are only aware of the system
model, the matrices A, B, C, and the statistics of noises. There-
fore, from the perspective of the receivers, the input and output
sequences have random distributions which depend on A, B, C
and the statistics of the noise. In addition to the process noise
w, the joint distribution f(X, U, w) depends on the following:

1) the initial and target states;
2) the control law of the system;
3) the state estimation process.

So, even in noiseless systems, X and U possess inherent
randomness from a receiver’s perspective due to its lack of
knowledge about the initial and target states.

D. Encoding Model

The system encodes and transmits packets Z7 to ensure that
Bob is able to accurately receive X{, the optimal estimates
of the system. To do so, the system transmits a packet Z; at
each time step ¢. In this article, we use lightweight memoryless
encryption schemes. The tth transmitted packet is a function of
only the current state estimate and the shared keys, thus, Z; :=
& (X, K), where & is the encoding function used at time ¢. We
will denote Z{ by Z.

E. Bob/Eve Models of Decoding

Bob noiselessly receives the transmitted packets from the
system, and decodes them using the shared key. Then, using
the decoded information, it generates an estimate of the state of
the system at times ¢ € [T']. We require that Bob’s estimate is
as accurate as Alice’s. If we assume that, at time ¢ € [T'], Bob’s
decoding function is T';(Z¢, K), then the previous condition is
satisfied by ensuring that T;(Z¢, K) = X, forall t € [T.

Similarly, Eve also receives all transmissions from the system.
However, unlike Bob, she does not have the key K. Therefore,
Eve’s estimate of X, is X, := ¢.(ZT),t € [T], where ¢, is the
decoding function used by Eve at time .

F. Distortion Metrics

We consider a distortion-based security metric that captures
how far an estimate is from the actual value. In particular,
our analysis is based on the Euclidean distance as our dis-
tance metric. However, our analysis can be extended to any
p-norm, since other norms are just a constant factor away, i.e.,
1 X1, < nva | X || 4- We assess the performance of Eve as how
far its estimate X is from Alice’s estimate X. Formally, for a
given time instance ¢ and a transmitted codeword Z7 , we define
the following quantity:

A 112 (a
D(t, ) = Ex, 77 | X: — XtH @ iy (th\le> ()

where (2) captures the distortion incurred by Eve while esti-
mating X, for transmitted symbols Z{ . Equality in (a) follows
because the best (minimizing) estimates of Eve at time ¢ are
Xy = ou(2]) = E[X|Z] .

Note that Bob is required to successfully estimate X, knowing
Z% and the key. Therefore, for a given realization of the key,
the encoding function can only map one X; and that key real-
ization to each value of Z{ . Therefore, Eve realizes that only
trajectories from a particular subset can be the true trajectory
for a given Z1: those are the ones which correspond to each
key realization. Therefore, the expectation in (2) is in fact taken
over the randomness in the key taking into account posterior
probabilities given Z{ . If Eve does not have observations, the
expectation is taken over X; with prior distribution and we get
D(t,ZT) = u(Ry,).
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As D(t,Z{) is a function of time * and the transmitted
sequence Z{, we consider two overall distortion metrics: the
“average case” distortion (denoted by D) where we take ex-
pectation over all possible Z{ and average out over time; and
the “worst case” distortion (denoted by Dyy) where we take
minimum over all possible Z{ and time instances

T
Average . 1 -
Distortion ~ & = Ezr [T ;D(t, Zy) (3)
Worst Case . ] T
Distortion W = IgiTn [g[% D(t, Z; )} N

It is worth to note that the definitions of Dg and Dy in (3)
and (4) imply that Eve’s state estimation must be associated
to a time instance. In other words, making a random/constant
estimate of the state hoping that it matches the actual state at
some time will lead to high distortion values. Furthermore, Dy
can be defined even when there is no prior distribution on X7 .
However, to provide a baseline comparison with the case when
the adversary has no observations, we assume that X7 always
have a known prior distribution.

G. Design Goals

Our goal is to choose the encoding and decoding functions,
& and 7y, so that Bob can decode loselessly while the distortion
is maximized for Eve’s estimate. In addition, we seek to achieve
this with the minimum amount of shared keys K. In the absence
of any observation by Eve, these distortions will be

T
1
D™ — —N" (R maX _ min tr(Ry, ).
E TtE:I r(Rx,), W = min r(Rx,)

These will serve as upper bounds as
1 d @ 1 &
Dp= f[EleZtr(RX”ZT) < T Z tr(RXt) = DI (5)
t=1 p

< min [EZIT |:tr(RXt‘Z’lI‘):|

Dw = min min tr(RthZlT) e

ZT te[T)]

(b)
< : t R — Dmax
< min r(Rx,) W

(©)

where (a) and (b) follows from [,z [tr(Rx, |Z1)] < u(Ryx,),
which follows from the law of total variance.

[ll. OPTIMIZING AVERAGE DISTORTION Dpg

In this section, we will first discuss schemes to optimize
the average distortion (D). We will initially analyze encoding
schemes that use 1 b of secret key, and characterize their attained
level of distortion. We then show that such schemes attain the
maximum level of distortion for a family of distributions on X,
which exhibit a certain class of symmetry. Later we describe
how this analysis extends to the use of multiple keys, as for
some application having an ambiguity set of size two might not
be enough.

a,yMirrored point

s
Mirroring Plane -

®

* Actual point

Fig. 3. Mirroring across the line passing through the origin and having
a 45° angle with the X -axis.

A. Encoding Schemes With 1-b Shared Secret Key

We now discuss encoding schemes that use 1 b of shared key
and show how the achieved distortion compares to the upper
bound in (5). These encoding schemes work as follows:

ifK=0

_ X
Zi = {at(Xt) it =1 "E]

(7
where K € {0,1} is the shared bit and «;(X}) is a transfor-
mation of the state vector X;. We will next show the attained
distortion of such schemes.

Theorem II1.1 (Proofin Appendix A): The average distortion
(DE) attained by using the scheme in (7) is

N fx(a (X))
o7 2 EX {fx(X) + Fx(a- (X))

t=1

T

X, at<Xt)||2} ®)

where fa™(X) := a7 (X1) a3 (X2)" -
over, if the following condition holds:

ar(Xr)'|'. More-

fx(z) = fx(a™(x)), forallz € X )
then the expression simplifies to
1 & )
Dp = E;[EX [ X: — (X)) (10)

Condition (9) implies a general notion of symmetry in the
distribution of fx (z). In the following, we focus on a partic-
ular notion of distribution symmetry, for which we show the
corresponding choice of «(X;) and how it can achieve high
levels of distortion. Consider a transformation function oy (x)
that reflects a point = across an affine subspace of dimension d,
defined by the equations Sy = b;, where S; € R?*™ consists
of d < n orthonormal rows and b; € R%; the transformation is
ai(z) = (I — 25,S;)x + 25}b;. The choice of the dimension d
and the subspace (S¢, b;) depends on the properties we would like
the encoded trajectories to have. We refer to encoding schemes
that are based on this transformation as mirroring schemes. For
example, consider X; € R? where S; = %[—1 1] and b; = 0.
Then, a;(X,) corresponds to mirroring across a line that passes
through the origin with a 45° angle. This is shown in Fig. 3. We
are interested in mirroring schemes as they are lightweight and
can be implemented on low-complexity IoT devices. Moreover,
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such schemes can provide the maximum distortion level for a
class of distributions with what we refer to as point symmetry.
Definition III.1 (Point Symmetry): A random vector X is
said to have point symmetry if there exists a point v for which
fx(@) = fx(2v—1), Vo e X.
Lemma II1.2: Tf X has point symmetry across v, then v =

bx-
Proof: Since X has point symmetry, then

fx(@) = fx(2v—z) = [fx(2) = fo-x(2)

= Ux =2v — ux = wx =v.

]
The following result characterizes the performance of the
mirroring scheme, and shows that it achieves the maximum
distortion for distributions with point symmetry.
Corollary I11.3: If «;(X}) is based on a mirroring scheme
along the planes given by S;z = b;, t € [T, and the condi-
tion (9) holds, then (10) becomes

T
1
Dp =7+ Ztr(StRXtSQ + (by — Sepx, ) (be — Sepx,)') -

i=1 (11)
Moreover, if X has point symmetry, then Dp =
% Zthl tr(Rx, ), the maximum possible distortion.

Proof: If condition (9) holds, then by simply plugging the
expression of c;(X;) for the mirroring scheme along S;xz = b,
that is oy (X;) = (I — 25.5;) X + 2S;b; in (10), we get (11)
(formal proof in Appendix A). Choosing S; = I and b, = p,
makes o~ (X{) = 2puxr — X{, which by point symmetry sat-
isfies (9). Therefore, we get Dp = Zthl tr(Rx,). Note that
the optimal distortion, denoted as D7, and obtained by optimiz-
ing over S; and by, satisfies D}, > o7, tr(Rx, ). However,
from (5), we have D7, < % ZZ;I tr(Rx, ). Therefore, the se-
lected S; and b, and the corresponding distortion values are
optimal. |

Now, we show the implications of our results for mirroring-
based schemes in the context of a few examples.

Example 1: Consider an example where U is distributed as
Gaussian with mean gy and covariance matrix Ryy. Then, for
a noiseless system with perfect observation and a zero initial
state, X7 is also Gaussian distributed with mean xr = Quu
and variance RX; = QRyQT, where Q relates U to X] af-
ter unfolding the time-dependent state equations into the form
XTI = QU. A Gaussian random vector has point symmetry and
therefore, according to Corollary III.3, we can get maximum
distortion by setting b, = ux, and S; = 1.

The next example is based on a Markov-based model for the
dynamical system. For this example, the following lemma is
useful.

Lemma IIl.4: Consider the random vector X7 where the
following conditions hold: fx, (1) has point symmetry; and
th]qu(xt\x'i_l) has point symmetry, then so does fx(X),
where X = X7 and p = [pts,” pta,’ -+ ']’ Therefore, by
virtue of Corollary III.3, mirroring schemes can achieve the
maximum distortion.

Lemma III.4 allows us to characterize the performance of the
following example.

Example 2: Consider the following random walk mobility
model. Let a € N, and X; be its location at time ¢, then

X1 ~ Uni([—a : d])
Xt|Xt_1 ~ Unl([fa : a] N {Xt—l — 1,Xt_1,Xt_1 + 1})

This example follows the system model in (1) by assuming a
noiseless system with U, to be independent across ¢, and to be
uniformly distributed among {—1,0,1} when X; € [-a+1:
a — 1], Uy uniformly distributed in {0, 1} when X; = —a, and
Uy uniformly distributed in {—1, 0} when X; = a. One can see
that these distributions satisfy the conditions in Lemma II1.4.
Therefore, one can set b, = u; = 0 and S; = 1, which will
achieve maximum distortion of Dg.

Example 3: Here, we provide a numerical example that
shows how our mirroring scheme performs for situations where
we compute the state distributions using numerical simulations.
In Section IV, we will also show that the controller used in
this example falls under the class of controller where we do
not need to compute the distribution on states and can directly
apply our scheme to achieve the perfect distortion. We consider
the quadrotor dynamical system provided in [23, eq. (4)]. The
quadrotor moves in a 3-D cubed space with a width, length,
and height of 2 m, where the origin is the center point of the
space. The quadrotor starts its trajectory from an initial point
(=1, y1, 21) and finishes its trajectory at a target point (1, yr, z7)
after T time steps, where the points y1, 21, y7, and zr are picked
uniformly at random in [1, 1]*. We assume that 7' = 10 time
steps, and that the continuous model in [23, (4)] is discretized
with a sample time of Ts = 0.5 s. We assume that the quadrotor
encodes and transmits only the states that contain the location
information (first three elements of the state vector X;). The
quadrotor is equipped with an LQR controller that designs the
input sequence UlT ~1 as the solution of the following problem:

minimize |U]|* + 10| x7"|°
subject to Xy = AMX, + By, vt € [T — 1]
X, = [—1y1 z10--- 0]/

Xr=[lyrzr0--- 0] (12)

where A9 and B4 define the quadrotor’s discrete-time
model. The remaining states of X; and Xp are set to zero to
allow the drone to hover at the respective locations. We perform
numerical simulation of the aforementioned setup: we run 2
millions iterations, where in each iteration, a new initial and
target points are picked, and the resultant trajectory is recorded.
Based on the recorded data, we consider different mirroring
schemes and numerically evaluate the attained distortion. To
facilitate numerical evaluations, the simulation space is gridded
into bins with 0.2 m of separation, and the location of the drone
at each trajectory is approximated to the nearest space bin.

Fig. 4 shows some of the drone trajectories obtained from
our numerical simulation. It is clear that not all trajectories are
equiprobable, and therefore the distribution of X, is not uniform
across all bins in space. Since the motion of the drone is mainly
progressive in the positive x-axis direction, reflection across a
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Fig. 4. lllustration of some trajectories. The reflection plane is shown
as a dashed black line. One trajectory (solid black) is shown along with
its mirrored image (dotted black).

fixed point results in mirrored trajectories that are progressing
in the opposite direction, and therefore are identified to be
fake automatically. Therefore, mirroring across a point here is
useless: the numerically computed distortion for this scheme is
equal to zero.

Next, we consider mirroring across the reflection plane shown

in Fig. 4, where by = 0 and S; = [8 (1) (1)] As can be seen from

the figure, the reflection plane is indeed an axis of symmetry
for the distribution of the drones trajectories, and therefore
is expected to provide high distortion values. We numerically
evaluate the attained distortion using the scheme by using (8),
which evaluates to Dg = 0.3971. This is slightly less than
Dp** =0.3979.

B. Encoding Schemes With k-bits Shared Secret Key

The scheme in (7) assumes the use of 1 b for encryption.
However, it is straightforward to extend the scheme when we
require a larger ambiguity set. For k bits, we denote the possible
values of the shared key as K € [0 : 2¥ — 1]. Therefore, the
scheme works as follows:

Zy(K) = ol™(X,) vt € [T] (13)

where agK)

t when the value of the key is K, and a,ﬁo) (x) = a;(o) () = x.
The following theorem shows the achieved value of the distortion
in this case, which is a direct extension of Theorem III.1.

Theorem II1.5 (Proofin Appendix B): The average distortion
Dp; attained by using the scheme in (13) is

is an invertible transformation function used at time

2k 1

N R el
77 25 T 2
L{Z_O fx(a“{)(X))] fx(X)

(14)

k_ _ —
where Ri") =372, (0~ (0) () (X1) o, " (X))
anda~ ) (X):=[a, M (X1) @y (Xa) - 0™ (X7
Moreover, if the following condition holds:

fxla®@)=Cz) VeeX VKel0:28—1]

15)
where C(z) is a constant, then D g simplifies to
;I [2’@71 2k 1 . , 2-I
s 2 Ex |0 Y (e ) - o, Vx| -
=1 [K:O =0 J
(16)

Theorem II1.5 shows the average distortion attained for gen-
eral schemes that use k bits. In addition, we can generalize the
mirroring scheme in Section 111 to utilize £ bits as follows. Given
a k-bit key, then we select a set of k hyperplanes (i.e., a set of k
parameters, St(K) € R¥" and biK) € R%) for each time step ¢.
Then, let XC be a set of binary values corresponding to the binary
representation of the k-bit key. The mirroring scheme would
transform the point  to [ [ ;e oic (1 — 2St(K),St(K)):v + 2St(K),bt,
i.e., x is mirrored across the hyperplanes corresponding to the
1-valued bits in the binary representation of the shared key. It is
not difficult to see that this scheme can achieve the maximum
distortion when X; is Gaussian distributed with zero mean
and covariance matrix R; and independent across ¢: for this
case, St(K), K € K, are chosen as the eigenvectors of R; and
%) = 0.

Using multiple bits of shared keys can provide benefits be-
yond having a larger ambiguity set. In fact, while we show the
optimality of 1-b mirroring schemes for distributions with point
symmetries, using multiple bits of shared key can provide a
better distortion for general distributions. For example, it was
shown that, for a general finite alphabet: 1-b schemes are not
sufficient to achieve the maximum distortion; and with just 5 b of
shared keys, a scheme achieves more than 97% of the maximum
possible distortion [16].

IV. TRANSFORMATIONS MAINTAINING POINT SYMMETRY

Encoding and decoding schemes, such as the ones mentioned
in Section III, can be generally used for any dynamical system
with arbitrary distributions on the inputs U, the state vectors X,
and the state estimates X;. However, characterizing the attained
level of average distortion [using expressions (8) and (14)]
requires the knowledge of the distribution of the state estimate.
While a distribution can be obtained for the initial and target state
vectors, it may be difficult to incorporate the system dynamics,
the estimation method as well as the controller into the process
of finding a distribution of the inputs, states, and states estimate.
In such cases, numerical evaluations can aid into finding the
needed distribution, as was shown in Example 3 in Section III.
Although it is necessary to find the state distribution in order
to characterize the distortion, the knowledge of existing sym-
metries in the distribution can directly give possible choices
for the transformation function oy (-), which may attain high
levels of distortion; for example, if there is a point symmetry
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in the distribution, mirroring across the symmetry point attains
the maximum possible distortion. In this section, we ask the
following question: “under which conditions on the dynamical
system, does point symmetry in the initial and target states results
into point symmetry on the states estimate?”

A general answer to the aforementioned question appears to
be difficult. Therefore, we limit our answer in this article to the
scope of linear controllers. For a given initial and target states,
let XD be the reference trajectory that the control system
ideally wishes to follow. We assume that the system controller
selects an input vector that is a linear function of X 0 In many
cases, X is also a linear function of the initial and target
states (e.g., when the reference trajectory is the solution of an
LQR problem for the noiseless version of the system). Then,
we can write Uy = K;(X; — Xt(ref)). Moreover, we assume that
the optimal estimation function that the system uses a linear one
in the observations, i.e., we assume that X; is a linear function
of Yf, Xinit, and Xiaree. By incorporating the controller and
estimation equations into the system dynamics, one can arrive
at the relation X = MQ, where Q = [X/y Xiger wi 01,
and the matrix M is a function of the matrices A, B, C, and K,
and the linear function used in the estimation of state X; from
the observations. We assume that w{ and vT are uncorrelated
Gaussian random vectors. We first prove the following lemma.

Lemma IV.1: 1f a random vector V; € R™ has point symme-
try across fiy; , and g is an affine function, then the random vector
Vo = g(V4) has point symmetry across g(uy, ).

Proof: If Vi has point symmetry, then the following condi-
tions are equivalent:

fvi(v1) = fui Cpy, — 1)

fvi (V1) = fapy, v (v1)

Yo € Vg
Vv € V1.

Thus, to prove that V5 also has point symmetry, it suffices
to prove that the densities of V5 and 2uy, — Vo are the same.
Consider the two random vectors W and Ws. If they have the
same support and the same density function, then g(W7) and
g(W>2) will also have the same density for any function g; we
denote this by writing W; ~ Ws. Thus

Vi~2py, = V1
9(V1) ~ g(2pv, — V1)
M1V + My ~ 2Mypy, — M1Vh + Mo
Vo ~ 2(Mypy, + M) — (M1 Vi + My)
Vo~ 2(py,) — Va.

Thus, V5 has a point of symmetry. |

Theorem IV.2: If Xy and Xiyee are independent of wf and
vf, and both have point symmetries, then the vectors X; as well
as X will all have point symmetries for any matrix M.

Proof: First, note that w! and vT are Gaussian random
vectors, and, therefore, have point symmetries across their mean
points. Since Xini and Xureer are independent of w! and v, then
the vector () also has a point symmetry across the mean point
(which is the concatenation of the mean points of the respective
components of 0); we denote this point by 1. Then, by virtue of

LemmalIV.1, X (respectively X;) will also have point symmetry
across the point M puq (respectively across the point pg left
multiplied by the corresponding section of the matrix A/). W

Revisiting Example-3 of Section III. Example 3 in Section III
shows an example where the initial and target points exhibit point
symmetry. In such an example, the LQR controller is a linear
function of the previous states (one can find such a controller
by applying the KKT conditions). Since the system is noiseless,
then the estimated states are equal to the observations. Therefore,
the conditions for Theorem I'V.2 are met, and point symmetry is
preserved for X; and the whole trajectory X . Note, however, that
the point of symmetry for X; changes with ¢, i.e., it progresses
along the x-axis as shown in Fig. 4.

V. OPTIMIZING THE WORST CASE DISTORTION Dy

The expected distortion metric might not be well suited for
some applications (for example, if an adversary wants to shoot
a drone). In this case, the adversary’s estimate needs to be far
from the actual state at all time instances. Therefore, a more
appropriate metric would be to consider the worst case distortion
for the adversary. Consider, for example, the scheme in Fig. 2.
Here, the adversary’s estimate is always the center point and
therefore the maximum expected distortion is achieved. How-
ever, when the drone is close to the center, its mirror image will
also be close to the center. At this particular time instance, the
adversary’s distortion will be very small and thus the adversary
will essentially know the position.

In this section, we present an encryption scheme that attempts
to maximize the worst case distortion for Eve. The main idea is
to obfuscate the initial state in such a way that Eve, even if she
optimally, uses her knowledge about the dynamics and her obser-
vations, her best estimate is close to the maximal distortion. We
start by studying the problem of distorting the transmission of a
single random variable in Theorems V.2 and V.3. These results
then form the basis for maximizing the worst case distortion of
a trajectory, as described in Theorem V.4.

A. Building Step: Scalar Case

Consider the case where the system wants to communicate
a single scalar random variable X to Bob by transmitting
Z. The worst case distortion Dy, for Eve will be Dy =
minz Var(X|Z). Note that if Eve does not overhear Z, Eve uses
the minimum mean square error estimate (i.e., the mean value)
as her estimate, and thus experience a worst case distortion equal
to the variance of X.

We first assume that X ~ A(0, 1), and, thus the worst case
distortion cannot be larger than 1 by (6). We next develop our
scheme progressively, from simple to more sophisticated steps.
We will also use the following lemma.

Lemma V.1: The variance of a Bernoulli random variable
taking values a and b with probabilities p, and py, respectively,
is given by paps(a — b)2.

Mirroring. Reflecting around the origin (as we did for op-
timizing the average case distortion in Section III) does not
work well when X takes small values: indeed Var(X|Z) is
Pr(X=2|Z)(Pr(X=—Z2|2))(Z — (—=Z))? using Lemma V.1
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Fig. 5. Var(X|Z) versus Z for the shifting+mirroring scheme with

61 = 1.76; Dy = 0.4477. Var(X|Z) is 2> for |Z| > 6; and is pZ” +
(1=p)Z% — (pZ + (1L —p)Z)? for |Z| < 61, where p= f(Z)/(f(Z) +
£(2)), with f(Z) ~ N(0,1), and Z = Z + 61mod [0, 61).

and has a worst case value that goes to zero as Z approaches
zero.

Shifting. To avoid this, we could try to use a “shifting” scheme
where we add a constant f to X whenever the shared key bit is
one; but now this scheme does not perform well for large values
of Z: as Z increases Var(X|Z) goes to zero. This is because
using Lemma V.1

Var(X|Z) = Pre(X=Z|Z)(Pr(X =Z —0|2))(Z— (Z —0))*
=Pr(X = Z|Z)(Pr(X = Z — 0]2))(0)?

and Pr(X = Z|Z)(Pr(X = Z — 0|Z)) goes to zero for large
value of Z.

Shifting+Mirroring. We here combine shifting and mirroring,
in order to achieve a good performance for both small and large
values of X. We start from the case where we have k = 1 b of
key and then go to the case k& > 1.

1) kK = 1. We select #; € R that determines a window size
(61 is public and known by Eve). The encoding function
is

X ifK=0

X ifK=1, |X|>6
X+0,ifK=1, -6 <X <0
X—-0ifK=10<X <.

Z=E(X,K) =

We note that there is one particular value of X, X = 61,
which we do not transmit. Since this is of zero probability
measure, it can be safely ignored. Given Z, there are two
possibilities for X

(Z, -2} if|Z] > 0,
(Z,Z+60.}if —0,<Z <0
{Z,Z—(gl} if0< Z < 6.

X e

Using the fact that X ~ A(0,1), we can calculate the
posterior probabilities Pr(X|Z) and use Lemma V.1 to
compute Var(X|Z). Fig. 5 plots Var(X|Z) for § = 1.76.
The worst case distortion in this case becomes 0.4477,
which is the best we can hope for if we have only 1 b of
shared key. This follows because for any mapping from

X to Z, a transmitted symbol Z can have at most two
preimages (as Bob needs to reliably decode with 1 b of
key), and if one of these is X = 0, then no matter what the
second one is, the distortion corresponding to Z will be at
most 0.4477. Equality occurs when the second preimage
of Z is £1.76. Note that our scheme also maps 0 to —1.76
(for 0, = 1.76).

2) k> 1.For K € {0,1}*, we use the following encoding:

Z = (X, K) (17

X if K < 2k1
— _x itk > okt [ XI> 0
X + KZmod [0, 0;) X € [0, 0)

where the optimal value of the constant 6 depends on the
number k of keys we have, K is the decimal equivalent of
a binary string of length k, and rmod [a, b) = r — i(b —
a) is such that ¢ is an integer and r — i(b — a) € [a,b)
for r,a,b € R. Intuitively, if | X| > 60, then for half of
the keys, we reflect across origin, and for the other half,
we do nothing; if | X| < 6, we divide this window of
size 20}, into 2* equal size windows and shift a point
from one window to another by jumping K (in decimal)
windows. An example for £ = 2 is shown in Fig. 6(a)
for the key values K = 11 and K = 10. Fig. 6(b) plots
Dyy as a function of the number of keys k. Using k = 3
and 63 = 4.84, we achieve Dy, = 0.9998, which is very
close to 1, the best we can hope for.

Remark: We optimize the parameter 6, of our
scheme assuming Gaussian distribution. In particular,
0r, = arg maxg, (ming Dw (7)) and Dy (Z)is Z2if | Z| > 6y,
and is ZKe{o,l}k(pK(ZK)Q) - (ZK@{O,l}k PrZK)?,
if |Z] <6. Here, prx = f(ZK)/ZLe{O,l}’*‘ f(Zy) with
f(Zr) ~N(0,1), and Zg for K € {0,1}* is defined as
Zx = Z+ Ky 2;,5 mod [0, 6], with K being the decimal
equivalent of K.

We pick a choice of ) by computationally iterating over
the values of 6 to find one that maximizes Dyy, i.€., 0 =
arg maxg, minz(Dw (2)).

For other distributions, the optimal choice of 6 and the
corresponding worst case distortion would be different.

Theorem V.2: A Gaussian random variable with mean y and
variance o2 can be near perfectly (~ 0.9998 times the perfect
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distortion) distorted in worst case settings by just using three
bits of shared keys.

Proof: Generate the random variable V ~ N (0,1) as V =
(X — u)/o and encrypt it using k = 3 key bits and the pre-
viously described scheme. We transmit the mean p and the
variance o2 uncoded, and show that near perfectly distorting
the standard Gaussian V' results in near perfect distortion of X
for Eve. For ¢ = 0.9998, we have

Dy = mZinVar(X\Z) = mZinVar(ch +ulZ)

= o2 mZinVar(V|Z) = co?.

B. Vector Case and Time Series

Theorem V.3 (Proofin Appendix C): For a Gaussian random
vector X € R” with mean p and a diagonal covariance matrix
3, we can achieve Dy within 0.9998 of the optimal by using
3n bits of shared keys.

This theorem uses our 3-b encryption for each element in the
vector. Assume now that this vector captures the probability dis-
tribution of the initial state of dynamical system; by encrypting
this state, we can guarantee the following.

Theorem V.4 (Complete Proof in Appendix D): Using 3n
bits of shared keys, the shifting+mirroring scheme achieves
Dy > c-tr(JA]*'Y) with ¢ = 0.9998 for the dynamical sys-
tems (1) with C = I, v, = 0, the singular value decomposition
of Ais A= ®AVH  and initial state X; ~ N (y, ), where 3
is diagonal covariance matrix, and U; and w; are independent of
X;. Moreover, if |A;| > 1,Vi, where A; is the ith singular value
of A, then Dy is within 0.9998 of the maximum distortion.

Remark: Although the independence assumption on the in-
puts is rather restrictive, the result serves as a stepping stone
toward understanding general cases.

Proof: The system transmits Z; = f(Y1, K) = f(X3, K)
where f is the encoding in Theorem V.3, and for ¢ € [T — 1]

Ziyr = AZy + (Yiya — AY:) = AZ; + BU; + w.
Bob can decode X using Z; and K. Then
Xt+1 =Ziy1—AZ + AX,
= (AZ + BU, + w;) — AZy + AX,

:AXt+BUt+wt:Xt+1 vVt € [T—l]
Eve’s distortion is calculated in Appendix D. ]
Complexity. O(n?) per time instance for both encoding and

decoding.

Case study. We take three choices of A of sizes 2 x 2, first
having all singular values no smaller than one, in particular
[1.01, 1], second having singular values [1.5, 0.5], and third hav-
ing singular values of [0.8,0.9]. For a given co-variance matrix
¥ =12,0;0,3] for the initial state, we plot the evolution of
distortion at the adversary’s end corresponding to our encryption
scheme and compare with ctr(3). This evolution is shown in
Fig. 7. As we can observe, when A has all the singular values

10 =—@®=[1.5,0.5]
- (101, 1]
= [0.8,0.9]
'(«EJ 8 —tr=tr (%)
[e]
k7]
©
c 6f
[e]
-3 M
- 1
34 Ve
s L J
52 el
~ o,
O—A—A__ ........ Lassefsssasiesesss -—
0 5 10 15 20 25 30

Fig. 7.
scheme.

Evolution of the distortion for Eve for shifting+mirroring-based

more than one, the distortion at adversary’s end is always at least
ctr(X), whereas for other cases in eventually goes to zero.

VI. DISTORTING THE INPUTS AND THE IMPLICATION
ON STATES

In many situations, it is easier to obtain a handle on the
distribution of the input sequence than on the distribution of
the state transition sequence. Moreover, in some situations, a
simple transformation of the original trajectory would lead to
a fake trajectory that does not obey the system dynamics and
thus can be detected by the adversary—alternatively, the state
trajectory distribution does not have useful symmetry properties.
Motivated by these, here we consider a different setup where
Alice encodes and transmits the input sequence to Bob instead
of the state transition sequence, i.e., Z; := (U, K). Under
this setup, using the mirroring-based scheme on inputs, one can
provide guarantees on the level of average/worst case distortion
for Eve’s estimate of the inputs. We then ask the following
question: if Alice encodes and transmits the input vectors, how
does the guarantees on average and worst case distortions on
the inputs translate to the guarantees on average and worst case
distortions on the states?

Formally, we consider the system model in (1) with zero noise,
i.e., w; = 0. Following the definition of average and worst case
distortions in (3) and (4), respectively, the distortions on inputs
and states vectors are as follows:

Expected distortions:

!

T -1
1 1
D(EX) = T[EZZU' (RXt\Z) ’ DEE‘U) = T[EZ tr (RUt‘Z)

t=1 t

Il
=

Worst case distortions:
(x) _ - : wy _ . .
Dy’ = min min tr (RXt‘Z) , Dy’ = min min tr (RU”Z) .

The following theorem provides a relation between the distortion
on the input vector and the distortion on the state vector for
both expected and worst case scenarios. In particular, it provides
relations between D, DY and D3}, DY,.
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Theorem VI.1: If the input vectors Uy, t € [T — 1] U {0},
satisfy the following condition:

|

t ot
ZZ BI(A™Y A" BRy, v, 7 | | 20

Dy
(18)

) , the following bounds

then, for given distortions D(EU) and DéV
holds:

DEEX) > Amin (BIB) D(EU)a D%ﬁ)/() 2 Amin (BIB) D‘(/g)

where Ay (B’ B) is the minimum eigenvalue of B'B.

Theorem VI.1 gives a lower bound on the distortion level of
the state vectors when distorting the inputs. The bound holds
when the condition (18) holds. Examples where condition (18)
holds are open-loop control systems where the distribution on
the inputs has a point of symmetry. We expand more on condi-
tion (18) after the proof of Theorem VI.1.

Proof: We start by introducing the following notation: 7 =
ZOT_I, U= Ug_l, and X = XlT. Moreover, without loss of
generality, we assume that Xy = 0. The states of the noiseless
dynamical system can be expressed as X; = Z§=1 ATBU; .
Then, we can write

t
Rx,z =Y A"'BRy, ,zB(A"") + 20,

i=1

(19)

Therefore, combining (18) and (19), we express D(EX) as

T t
DY > %[EZ S°N (A" BRy, ,1zB'(A"Y))
t=1 i=1
@1 & )
> k7 > u(BRy, ,zB)

t=1

T
1
= 7z > uw(B'BRy, ,z)
t=1

T
1
hnin( B'B) 2 > tr (R, yz) = Auin(B'B)DY)

where (a) follows by noting that the matrices
B'(A"™"YRy, ,1zA"™ B are positive semidefinite, and
therefore their trace is greater than or equal to zero. To
see that they are indeed positive semidefinite, note that Ry, |z
is positive semidefinite, therefore it has the eigendecomposition
Ry, , z = ¥AY'. Therefore, the claim follows by noting that,
for any vector z, we have

2B (A7) Ry, ,|zA" Bz
_ Z’B/ (Atfi)’ EA1/2A1/2E/At7iBZ
= [|[AY2S'AYB2|)2 > 0.

Identical arguments can be made to show the bound on Dg,( ),
||
Next, we show some sufficient conditions which ensure that
condition (18) holds.

1) U; and U; are uncorrelated for i # j and U := UOT’1
has point symmetry: In this case, the optimal mirroring scheme
is to mirror the point U across the point of symmetry. There-
fore, given Z, U; takes two values: Z; with probability pz
and Z~Z- with probability 1 — pz, where pz is equal to py =
fu(2)/(fu(Z) + fu(Z)) = 0.5, which follows from the point
symmetry assumption on U. So we have E[U;|Z] = Z:f2t,
Therefore, Ry,y,|z can be computed as follows:

Ru,u,1z = Eujz [(U; —
= i (Zz‘ - Zz‘) (Zj - Zj)l = (Zi = nz) (Z; — nz,)".

Then, we have EzRy, Uz = Ry,u, =0 by noting that
Z; and Z; have the same distribution as U; and U

E[U:|Z]) (U; - E[U;12))']

1 .
fz:,2,(2i,25) = 3 (fuiu; (26, 25) + fu,u,(Zis Z5))

- % (fu,(z0) fu, () + fu.(Zi) fo,; (Z5))

2) A and Ry, v,z are positive semidefinite matrices for all i, j,
and Z: This follows because if A is positive semidefinite, then
so is A* for any value of i. Therefore, we can write

( (A ),At_iBRUi—lUj—l‘Z)

= fu.v, (2, 25)-

=1{r Af ]141l ZBRUl lU 1‘z)

(B’
tl'( A2t_7'_‘7 BRUF1U_7'71\Z)
_ (B SAV2AY2Y BRy, v, 1)

—r (AYV2S'BRy, v, 1z B'TAY?)

=t | AY2Y Bort/21r1/29' B’y AL/2
P —

D

tr (D'D) > 0.

VII. CONCLUSION

In this article, we considered distortion-based security for
CPSs as a complementary security approach that optimizes an
alternative security goal. This approach for security is suitable
for CPS applications where the estimation of the adversary about
the states is required to be “far” from the actual state value. We
provided security schemes that aim to optimize for both the
average and worst case distortions. For the average distortion,
we showed the surprising result that 1-b schemes are optimal for
certain distributions. We then provided the expression for the
attained level of distortion for a general security scheme. For
worst case distortion, we considered an initial situation where
we proposed an encryption scheme that achieves near optimal
distortion.

APPENDIX

A. Proof of Theorem Ill.1 and Corollary 111.3

We start by computing Ry, z7- Note that given a sequence
of transmitted symbol Zf , there are two possible values of
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sequence of message symbols X7 that are X{ = Z{ and
XT = ZT where Z, is a; (Z;) and X, is a;(Xt).

The posterior probability of X; = Z; given Z7 ,i.e., Pr(X; =
Z|Z1), will be equal to Pr(X{ = Z{|Z]) := pz. We note

that pz = - 2E . where Z:= (2} Z} -+ Zf)' Then,
E(X¢|ZT) = pzZ; + (1 — pz)(Z;). With this

Ry, zr = Ex, 27 [(Xt - E(Xi|2])) (X: - [E(Xt|Z1T))/}

= pZ(1 - pZ)2(Zt - Zt)(Zt - Zt)/
+ (1 —pz)p%(Z — Zt)(Zt - ZNt)/
=pz(1 = p2)(Z — Z)(Zs — Z4)
1 T
DE = T[EZ Ztr (RXf\ZlT>
t=1
_ %[EZ St (p2 (L~ p2)(Z ~ Z0)(Z0 - 22))
t=1
1 <& . .
= 2Ez Y pz(1—pz)u ((zt — Z)(Z; - Zt)’)

5T
I,

1 > 112
= 7Ez ;pz(l —p2)||Z — Zi)|

T (~

)
Z fx(2))?

1Z: = Z:|1*.

Now, Z{ is the transmitted symbols if X = Z{ and key was
zero or if {X; = Z;, Vt € [T]} and key was one. So, fz(Z) =
fX(Z);rfx(Z) . Thus, Dg

fX (%)
Z (Z))
fX /x(2)
/ ; fx(2))?
7/2 ))|z 7|2 dz

12 — Zi|?

12 — Zi|%dZ

T

L XX 2
2T[EXt:ZIfX( )+ (X )IIZ Zi|

:L[E XT: fX(Oéi(X)) ||X—Oé7(X)||2
2T o X+ (o (x) T

which proves (8). Again, if we can choose S;s, b;s where ()
is mirroring across planes given by S;z = b; such that

Ix(X) LX) vxer”

= fx(a”

the distortion D becomes

1

D
E = 4TX

a) 1l
UK, o (X012 Z[Extnstxt—btn
t=1

T
1
== > "t (SiRx, S; + (b — Supx, ) (b — Sipix,)')
t=1

where (a) follows as «y(.) is mirroring across plane given
by Six = by, and thus ay(x) = o; H(z) = (I — 25,5 X; +
25,b;. This proves (11).

B. Proof of Theorem 1.5

Since given Z, there are 2 possibilities of X7; X] =
a~ 1K) (Z), K € [0: 2% — 1], we start by computing

P = Pr(X, = 0, %(2,)|2) = Pr(X = o~ F)(2)|2)

iz = 0 ® )
= i PAIX = 0”@ fx(am(2)
@ fx(@ @) o 0:2% 1]

> frla(2))

where (a) follows by noting that Pr(Z|X = o~ (F)(Z)|Z) is
equal to the probability of the key being equal to K, which is
1/2F. Let S = Zf o fx (@9 (Z)). Then, E(X,|Z) equals

2k 1 ( ) 2’” 1
) (7,)p K () ~(K) (7
(6% (0% (0% .
ZO ~ 5 Z Ze) fx( (2))

We can then compute tr(Rx, z) as

53 ZfX (a A

where R{"= Y22 fx (o= O(X))(a; ) (X)) a7 ™ (X)),
Plugging tr(Rx,| Z) in the expression of Dy gives (14). More-
over, if condition (15) is met, (14) simplifies to (16).

Ex, z| X~ E(X:] 2)]” (2)) HREK)HQ

C. Proof for Theorem V.3
Let the shared key K is (K1, Ko, ..., K,,) where all K;s are

independent identically distributed and uniformly distributed in
{0,1}3. Let us also assume that X = (X, X x "),
where each X(*) € R. Similar to the scheme for scalar case,
we create a random vector V = (V) .. V(")) where V() =
(X® — ) /\/3;, and encode V) using key K; as in the
case of a scalar for all ¢ € [n]. Thus, the distortion Dy will be

mln Z Var(X

Dy = mlntr (Rx|z) Z)|Z

. ) &) 7) — 1\ mi (i)
mZm;(E“)Var(V |Z) ;(E“)mZmVar(V |Z)

(E“)m1nVar(V(l)|Z(1 —cz i) = ctr(X)

1 i=1

[

(2

Authorized licensed use limited to: UCLA Library. Downloaded on January 13,2022 at 02:57:53 UTC from IEEE Xplore. Restrictions apply.



1600

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 66, NO. 4, APRIL 2021

where ¢ = 0.9998. Since tr(X) is the expected distortion even
when the adversary has no observations, and as we can not beat
this by (6), this is optimal.

D. Proof for Theorem V.4

Distortion at the adversary’s end. Based on the coding
scheme, we can see that the adversary get BU; + w; by just
subtracting AZ; from Z;44 fort € [1: T — 1]. So, the adver-
sary’s information is given by the following set:

Eito ={Z1,BU; +wy, t € [1: T —1]}
= {f(Xl,K),BUt—I—wt, te [1 T — 1}}

Thus, D(t, Z{') = D(t, Eute) = tr(Rx,|E,, )- Next, we can
write

D(t +1, Zir) = tr(RXt+1\Einfo) = tr(R(AXtJrBUtert)\Einfo)

(a) ()
= r(Ratx, | By) = 0(Ratx, | £(x, k)

= tr(AtRXﬂEinfo (At),) = tr((At)’AtRXﬂEinfo)

(2) c-tr((A")A'Y) =c tr ((AHTAY)

e (VAHAYIS) = e (VAP V)

—c-tur (\A|2t szv) Yoo (|A|2t z) Y eum)

where (a) follows by noting that Ei,g, contains BU; + wy, Vit €
[L:T —1]; (b) follows because U, and w; are independent on
X; (c) follows because (A') At is a positive semidefinite matrix
and Rx, g, being a diagonal matrix with the diagonal entries

info

being elementwise greater than ¢X; (d) follows by writing the
singular value decomposition of A as A = ®AVH; () follows
by noting that A; is the ith singular value of A, and V is a unitary
matrix; and (f) follows for dynamic systems where |1;| > 1.
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