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Abstract— In this paper, we propose and analyze SPARQ-
SGD, an event-triggered and compressed algorithm for decen-
tralized training of large-scale machine learning models over a
graph. Each node can locally compute a condition (event) which
triggers a communication where quantized and sparsified local
model parameters are sent. In SPARQ-SGD, each node first
takes a fixed number of local gradient steps and then checks
if the model parameters have significantly changed compared
to its last update; it communicates further compressed model
parameters only when there is a significant change, as specified
by a (design) criterion. We prove that SPARQ-SGD converges as
O( 1

nT
) and O( 1√

nT
) in the strongly-convex and non-convex set-

tings, respectively, demonstrating that aggressive compression,
including event-triggered communication, model sparsification
and quantization does not affect the overall convergence rate
compared to uncompressed decentralized training; thereby
theoretically yielding communication efficiency for ‘free’. We
evaluate SPARQ-SGD over real datasets to demonstrate signif-
icant savings in communication bits over the state-of-the-art.

I. INTRODUCTION

There has been a recent interest in communication efficient

decentralized training of large-scale machine learning mod-

els e.g., [1]–[3]. In decentralized training, the nodes do not

have a central coordinator, and are not directly connected to

all other nodes, but are connected through a communication

graph. This implies that the communication is inherently

more efficient, as the local connection (degree) of such

graphs could be a small constant, independent of the network

size. In this paper, we propose SPARQ-SGD1 to improve

communication efficiency of decentralized training through

event-driven exchange of quantized and sparsified model

parameters between the nodes.

Over the past few years, a number of different methods

have been developed to achieve communication efficiency

in distributed SGD, where there exists a central coordi-

nator. These can be broadly divided into 2 categories.

In the first category, to reduce communication, workers

send compressed updates either with sparsification [4]–[8]

or quantization [9]–[12] or a combination of both [13].2
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1Acronym stands for SParsified Action Regulated Quantized SGD.
2In sparsification, the vector sparsification is done by selecting either its

top k entries (in terms of the absolute value) or random k entries, where k is
less than the dimension of the vector. Quantization consists of discretization
of the vector by rounding off its entries either randomly or deterministically
(in the extreme case, this can be just the sign operator).

Another class of algorithms that are based on the idea of

infrequent communication, workers do not communicate in

each iteration; rather, they send the updates after performing

a fixed number of local gradient steps [13]–[16]. The idea

of compressed communication, using quantization or spar-

sification, has been extended to the setting of decentralized

optimization [2], [3], [17].

In this paper, we propose SPARQ-SGD with event-

triggered communication, where a node initiates a (commu-

nication) action regulated by a locally computable triggering

condition (event), thereby further reducing the communi-

cation among nodes. In particular, the proposed triggering

condition is such that at least a fixed number of local gradient

steps or iterations (say, H local iterations) are first completed

and after that the condition checks if there is a significant

change (beyond a certain threshold) in its local model

parameter vector since the last time communication occurred.

Only if the change in model parameter exceeds the prescribed

threshold, does a node trigger compressed communication.

As far as we know, such an idea of event-triggered and com-

pressed communication has not been proposed and analyzed

in the context of decentralized (stochastic) training of large-

scale machine learning models.

As mentioned earlier, in addition to event-triggered com-

munication, we also incorporate compression of the model

parameters, when a node communicates; i.e., when a node

communicates its model parameters, it sends a quantized

and sparsified version of the model parameters. We therefore

combine the recent ideas applied to communication efficient

training (quantization and sparsification) with our event-

triggered communication to propose SPARQ-SGD3; see Al-

gorithm 1. We analyze the performance of our algorithm for

both convex and (smooth) non-convex objective functions,

in terms of its convergence rate as a function of the number

of iterations T (and also the number of communication

rounds) and the amount of communication bits exchanged

to learn a model to a certain accuracy. We prove that the

SPARQ-SGD converges as O( 1

nT
) and O( 1

√

nT
) in strongly-

convex and non-convex settings, respectively, demonstrating

that such aggressive compression, including event-triggered

communication does not affect the overall convergence rate

as compared to a uncompressed decentralized training [1].

Moreover, we show that SPARQ-SGD yields significant

3The idea of combining compression and fixed number of local iterations
has been carried out in a distributed setting (the master-worker architecture)
in [13]. In this work, in addition to extending this combination to the
decentralized setting, we also propose and analyze event-triggered com-
munication.



amount of saving in communication over the state-of-the-art;

see Section V for more details.

Related work. In decentralized setting, [2], [18], propose

unbiased stochastic compression for gradient exchange. [19],

[20] analyze Stochastic Gradient Push algorithm for non-

convex objectives which approximates distributed averaging

instead of compressing the gradients. Our work most closely

relates to [3] which proposed CHOCO-SGD, which uses

compressed (sparsified or quantized) updates; the distinction

is that we propose an event-triggered communication where

sparsified and quantized model parameters are transmitted

only if they have changed significantly after performing

some fixed number of local iterations, further reducing

communication. The idea of event-triggered communication

has been explored previously in the control community [21]–

[24], [25] and in optimization literature [26]–[28]. These

papers focus on continuous-time, deterministic optimization

algorithms for convex problems; in contrast, we propose

event-driven stochastic gradient descent algorithms for both

convex and non-convex problems. [29] propose an adaptive

scheme to skip gradient computations in a distributed setting

for deterministic gradients; moreover, their focus is on saving

communication rounds, and do not have any compressed

communication. Sub-gradient descent with quantization for

deterministic decentralized optimization has been studied in

[30] and [31] for convex objectives only, with the former

showing convergence only within a neighborhood of the

optimum and the latter employing an adaptive quantization

scheme to recover rates attained by un-quantized schemes.

Decentralized consensus with quantization over time varying

topology has been analyzed in [32]. [33] considers inexact

proximal gradient with quantization in decentralized opti-

mization for strongly convex objectives, showing conver-

gence to the global optimum. As far as we know, ours

is the first paper which uses event-triggered (incorporating

infrequent communication) and compressed communication

for decentralized stochastic optimization of both strongly

convex and non-convex objectives.

Contributions. We study optimization in a decentralized

setup, where n different workers, each having a different

dataset Di (the dataset Di has an associated objective func-

tion fi : Rd → R), are linked through a connected graph

G = ([n], E), where [n] := {1, 2, . . . , n}. Vertex i in G is

associated with the ith worker who can only communicate

with its neighbors Ni = {j ∈ [n] : {i, j} ∈ E}. We consider

the empirical risk minimization of the loss function:

f(x) =
1

n

n
∑

i=1

fi(x), (1)

where fi(x) = Eξi∈UDi
[Fi(x, ξi)], where the notation ξi ∈U

Di denotes that ξi is a uniformly random data sample from

the dataset Di and Fi(x, ξi) denotes the risk associated with

the data sample ξi with respect to (w.r.t.) x at the ith worker

node. We solve the decentralized optimization in (1) using

SPARQ-SGD. Our theoretical results are the convergence

analyses for both strongly convex and non-convex objectives

in the synchronous setting; see Theorem 1 and 2, respec-

tively. In the strongly-convex setting, we show a convergence

rate of O
(

1
nT

)

+O
(

c0
δ2T (1+ǫ)

)

+O
(

H2

δ4ω2T 2

)

+O
(

H3

ω3δ6T 3

)

for some ǫ ∈ (0, 1), the factors (c0 for triggering threshold,

H for number of local iterations, and ω for compression)

for communication efficiency, and δ, the spectral-gap of the

connectivity matrix W , appear in the higher order terms.

Thus, for large enough T , they do not affect the dominating

term O
(

1
nT

)

, which, in fact, is the convergence rate of

centralized vanilla SGD with mini-batch size of n. Similar

observation is also made in the non-convex setting, where we

get a convergence rate of O( 1√
nT

); see Corollary 1 and 2 and

the following remarks for more details. Hence, for both the

objectives, we get essentially the same convergence rate as

that of vanilla SGD, even after applying SPARQ-SGD to gain

communication efficiency; and hence, we get communication

efficiency essentially “for free”. We compare our algorithm

against CHOCO-SGD [17], which is the state-of-the-art in

compressed decentralized training and provide theoretical

justification for communication efficiency of SPARQ-SGD

over CHOCO-SGD to achieve the same target accuracy.

We corroborate our theoretical understanding with numerical

results in Section V where we demonstrate that SPARQ-SGD

yields significant savings in communication bits. For a con-

vex objective simulated on the MNIST dataset, SPARQ-SGD

saves total communicated bits by a factor of 15× compared

to CHOCO-SGD [3] and by 1000× compared to vanilla SGD

to converge to the same target accuracy. Similarly, for a non-

convex objective simulated on the CIFAR-10 dataset [34], we

save total bits by a factor of 40× compared to CHOCO-SGD

[17] and around 3K× compared to vanilla SGD to reach the

same target accuracy.

Paper organization. We describe SPARQ-SGD, our pro-

posed algorithm, in Section II. In Section III, we state our

main results for strongly-convex and non-convex objectives,

and give proof outlines of these theorems in Section IV. We

validate our theoretical findings with numerical experiments

in Section V. The complete proofs for our theorems can be

found in the full paper [35].

II. OUR ALGORITHM: SPARQ-SGD

In this section, we describe SPARQ-SGD, our decentral-

ized SGD algorithm with compression and event-triggered

communication. First we need to define its main ingredients.

Definition 1 (Compression, [7]). A (possibly randomized)

function C : Rd → R
d is called a compression operator, if

there exists a constant ω ∈ (0, 1], such that the following

holds for every x ∈ R
d:

EC [‖x− C(x)‖22] ≤ (1− ω)‖x‖22, (2)

where expectation is taken over the randomness of C. We

assume C(0) = 0.

It is known that some important sparsifiers as well

as quantizers are examples of compression operators: (i)



Topk and Randk sparsifiers (in which we select k en-

tries; see Footnote 2) with ω = k/d [7], (ii) Stochas-

tic quantizer Qs from [9]4 with ω = (1 − βd,s) for

βd,s < 1, and (iii) Deterministic quantizer
‖x‖1

d Sign(x)

from [12] with ω =
‖x‖2

1

d‖x‖2
2

. It was shown in [13] that

if we compose these sparsifiers and quantizers, the result-

ing operator also gives compression and outperforms their

individual components. For example, for any Compk ∈
{Topk, Randk}, the following are compression operators:

(iv) 1
(1+βk,s)

Qs(Compk) with ω =
(

1− k
d(1+βk,s)

)

for

any βk,s ≥ 0, and (v)
‖Compk(x)‖1SignCompk(x)

k with ω =

max
{

1
d ,

k
d

(

‖Compk(x)‖2
1

d‖Compk(x)‖2
2

)}

.

Event-triggered communication. As mentioned in Sec-

tion I, our proposed event-triggered communication consists

of two phases: in the first phase, nodes perform a fixed

number H of local iterations, and in the second phase, they

check for the communication-triggering condition (event),

if satisfied, then they send the (compressed) updates. Let

IT ⊆ [T ] denote a set of indices at which workers check for

the triggering condition. Since we are in the synchronous

setting, we assume that IT is same for all workers. Let

IT = {I(1), I(2), . . . , I(k)}. The gap of IT is defined as

gap(IT ) := maxi∈[k−1]{(I(i+1) − I(i))}, [14], which is

equal to the maximum number of local iterations a worker

performs before checking for the triggering condition. Note

that gap(IT ) = 1 is equivalent to the case when workers

check for the triggering condition in every iteration.

Our algorithm, SPARQ-SGD, for optimizing (1) in a de-

centralized setting is presented in Algorithm 1. For designing

this, in addition to combining sparsification and quantization,

we carefully incorporate local iterations and event-triggered5

communication into the CHOCO-SGD algorithm [3], which

uses only sparsified or quantized updates. This poses several

technical challenges in proving the convergence; see proofs

of Theorems 1, 2, and in particular, the proof of Lemma 1.

In SPARQ-SGD, each node i ∈ [n] maintains a local

parameter vector x
(t)
i , and their goal is to achieve consensus

among themselves on the value of x that minimizes (1), while

allowing only for compressed and infrequent communication.

Node i updates x
(t)
i in each iteration t by a stochastic

gradient step (line 4). An estimate x̂
(t)
i of x

(t)
i is also

maintained at each neighbor j ∈ Ni and at i itself. Thus,

each node maintains an estimate of all its neighbors’ local

parameter vectors and of itself. In our algorithm, IT is the

set of indices for which the workers check for the triggering

condition and take a consensus step. We also allow the

triggering threshold ct to vary with t with the requirement

that ct = o(t). At time-step t, if (t + 1) ∈ IT , the nodes

check for the triggering condition (line 7), if satisfied, then

4Qs : Rd → R
d is a stochastic quantizer, if for every x ∈ R

d, we have
(i) E[Qs(x)] = x and (ii) E[‖x − Qs(x)‖22] ≤ βd,s‖x‖

2

2
. Qs from [9]

satisfies this definition with βd,s = min
{

d

s2
,
√

d
s

}

.

5The Zeno phenomenon [21] does not occur in our setup as we have a
discrete sampling period as well as a fixed number of local iterations, giving
a lower bound to the event intervals of atleast H times the sampling period.

Algorithm 1 SPARQ-SGD: SParsified Action Regulated

Quantized SGD

1: Initial values x
(0)
i ∈ R

d on each node i ∈ [n], consensus

stepsize γ, SGD stepsizes {ηt}t≥0, threshold sequence

{ct}t≥0, compression operator C having parameter ω,

communication graph G = ([n], E) and mixing matrix

W , set of synchronization indices IT , initialize x̂
(0)
i := 0

for all i
2: for t = 0 to T − 1 in parallel for all workers i ∈ [n]

do

3: Sample ξ
(t)
i and compute stochastic gradient g

(t)
i :=

∇Fi(x
(t)
i , ξ

(t)
i )

4: x
(t+ 1

2 )
i := x

(t)
i − ηtg

(t)
i

5: if (t+ 1) ∈ IT then

6: for neighbors j ∈ Ni ∪ {i} do

7: if ‖x(t+ 1
2 )

i − x̂
(t)
i ‖22 > ctη

2
t then

8: Compute q
(t)
i := C(x(t+ 1

2 )
i − x̂

(t)
i )

9: Send q
(t)
i and receive q

(t)
j

10: else

11: Send 0 and receive q
(t)
j

12: end if

13: x̂
(t+1)
j := q

(t)
j + x̂

(t)
j

14: end for

15: x
(t+1)
i = x

(t+ 1
2 )

i + γ
∑

j∈Ni

wij(x̂
(t+1)
j − x̂

(t+1)
i )

16: else

17: x̂
(t+1)
i = x̂

(t)
i , x

(t+1)
i = x

(t+ 1
2 )

i for all i ∈ [n]
18: end if

19: end for

each node i ∈ [n] sends to all its neighbors, the compressed

difference between its local parameter vector and its estimate

that its neighbors have (line 8). If this condition is not

satisfied, then the node does not communicate (written as

‘Send 0’) (line 11). Then, based on the messages received

from its neighbors, the ith node updates x̂
(t)
j – the estimate

of the jth node’s local parameter vector (line 13), and then

every node performs the consensus step (line 15).

In SPARQ-SGD, observe that every worker node initial-

izes its estimate x̂
(0)
i of the ith node’s local parameter vector

x
(0)
i to be x̂

(0)
i := 0, whereas, in principle, it should have

been equal to x
(0)
i . To ensure this, in the first round of

our algorithm, every worker sends its (compressed) local

parameter vector to all its neighbors.

III. MAIN RESULTS

Our main results are under the following assumptions:

Assumptions. (i) L-Smoothness: Each local function fi
for i ∈ [n] is L-smooth, i.e, ∀x,y ∈ R

d, we have fi(y) ≤
fi(x)+〈∇fi(x),y−x〉+L

2 ‖y−x‖2. (ii) Bounded variance:

For every i ∈ [n], we have Eξi‖∇Fi(x, ξi)−∇fi(x)‖2 ≤ σ2
i ,

for some finite σi, where ∇Fi(x, ξi) is the unbiased gradient

at worker i such that Eξi [∇Fi(x, ξi)] = ∇fi(x). We define

the average variance across all workers as σ̄2 := 1
n

∑n
i=1 σ

2
i .



(iii) Bounded second moment: For every i ∈ [n], we have

Eξi‖∇Fi(x, ξi)‖2 ≤ G2, for some finite G.6

Let W ∈ R
n×n denote the weighted connectivity matrix of

our underlying graph G, with wij for every i, j ∈ [n] being its

(i, j)th entry, which denotes the weight on the link between

worker i and j. W is assumed to be symmetric and doubly

stochastic, which implies that all its eigenvalues λi(W ), i =
1, 2, . . . , n, lie in [−1, 1]. Without loss of generality, assume

that |λ1(W )| > |λ2(W )| ≥ . . . ≥ |λn(W )|. Since W is

doubly stochastic, we have λ1(W ) = 1, and since G is

connected, we have λ2(W ) < λ1(W ). Let the spectral gap

of W be defined as δ := 1−|λ2(W )|. Since |λ2(W )| ∈ [0, 1)
we have δ ∈ (0, 1]. It is known that simple matrices W with

δ > 0 exist for every connected graph, [3].

Now we state the main results of this paper both for

strongly-convex and non-convex objectives.

Theorem 1 (Smooth and strongly-convex objective with

decaying learning rate). Suppose fi, for all i ∈ [n] is

L-smooth and µ-strongly convex. Let C be a compression

operator with parameter equal to ω ∈ (0, 1]. Let IT =
{I(1), I(2), . . . , I(k)} and H = maxi∈[k−1]{(I(i+1) − I(i))}.

If we run SPARQ-SGD with consensus step-size γ =
2δω

64δ+δ2+16β2+8δβ2−16δω , (where β = maxi{1−λi(W )}), an

increasing threshold function ct ≤ c0t
(1−ǫ) for all t where

constant c0 ≥ 0 and ǫ ∈ (0, 1) and decaying learning rate

ηt =
8

µ(a+t) , where a ≥ max{ 5H
p , 32L

µ } for p = γδ
8 , and let

the algorithm generate {x(t)
i }T−1

t=0 for i ∈ [n], then

Ef(x(T )
avg)− f∗ ≤ µa3

8ST
‖x(0) − x∗‖2 + 4T (T + 2a)

µST

σ̄2

n

+
Z1T

µ2ST
(2L+ µ)

G2H2

p2
+

Z2c0ωT
(2−ǫ)

µ2(2− ǫ)ST

(

2L+ µ

p

)

where x̄
(T )
avg = 1

ST

∑T−1
t=0 wtx̄

(t), where x̄(t) = 1
n

∑n
i=1 x

(t)
i ,

weights wt = (a + t)2, and ST =
∑T−1

t=0 wt ≥ 1
3T

3 and

Z1, Z2 are universal constants.

The analysis provided also works for any ct = o(t),
however we provide it for ct ≤ c0t

(1−ǫ) to highlight the main

idea. The consensus step-size γ does not appear explicitly

in the above rate expression, but affects the convergence

indirectly through p = γδ/8. Note that δ ∈ (0, 1], β ≤ 2,

and ω ≥ 0. Substituting these in the expression of γ and p
gives γ ≥ 2δω

161 and p ≥ δ2ω
644 . Now we simplify the above

expression to gain further insights as to how our techniques

for reducing communication affect the convergence rate.

Corollary 1. Using E‖x(0)−x∗‖22 ≤ 4G2

µ2 (from [36, Lemma

2]) and p ≥ δ2ω
644 , hiding constants (including L) in O

notation, the rate expression in Theorem 1 is simplified as:

E[f(x̄(T )
avg)]− f∗ ≤ O

(

σ̄2

µnT

)

+O
(

c0
µ2δ2T (1+ǫ)

)

+O
(

G2H2

µ2δ4ω2T 2

)

+O
(

G2H3

µω3δ6T 3

)

6Bounded second moment is a standard assumption in stochastic opti-
mization with compressed communication [7], [8].

Remark 1. Observe that the dominating term O
(

σ̄2

µnT

)

is

not affected by the compression factor ω, the number of

local iterations H , the factor c0 in the triggering condition,

and the topology of the underlying communication graph

(which is controlled by the spectral gap δ) – they all appear

in the higher order terms (note that ǫ > 0). In order to

ensure that they do not affect the dominating term while

converging at a rate of O
(

σ̄2

µnT

)

, we would require T ≥

T0 := C × max

{

(

nc0
µδ2σ̄2

)
1
ǫ

,
(

nH2G2

µσ̄2δ4ω2

)

}

for sufficiently

large constant C. Thus, for large enough T , we get benefits

of all these techniques in saving communication bits, without

affecting the convergence rate significantly.

Now we analyze the effect of ω,H, c0, δ on the threshold

T0: (i) if we compress the communication more, i.e., smaller

ω, then T0 increases, as expected; (ii) if we take more number

of local iterations H , T0 would again increase, as expected,

because increasing H means communicating less frequently;

(iii) if we increase c0, which means that triggering threshold

has become bigger, we expect less frequent communication,

thus T0 increases, as expected; (iv) if the spectral gap

δ ∈ (0, 1] is closer to 1, implying that the graph is

well-connected, then the threshold T0 decreases, which is

expected, as good connectivity results in faster consensus.

Remark 2. Observe that after a large enough T ≥ T0,

we get the same rate as that of distributed vanilla SGD

and also a distributed gain of n with the number of nodes

(workers). Thus, we essentially converge at the same rate as

that of vanilla SGD, while significantly saving in terms of

communication bits among all the workers; refer numerical

results in Section V.

Theorem 2 (Smooth and non-convex objective with fixed

learning rate). Suppose fi, for all i ∈ [n] be L-smooth.

Let C be a compression operator with parameter equal

to ω ∈ (0, 1]. Let IT = {I(1), I(2), . . . , I(k)} and H =
maxi∈[k−1]{(I(i+1) − I(i))}. If we run SPARQ-SGD for

T ≥ 64nL2 iterations with fixed learning rate η =
√

n
T ,

an increasing threshold function ct such that ct < 1
η for

all t and consensus step-size γ = 2δω
64δ+δ2+16β2+8δβ2−16δω ,

(where β = maxi{1 − λi(W )}), and let the algorithm

generate {x(t)
i }T−1

t=0 for i ∈ [n], then the averaged iterates

x̄(t) := 1
n

∑n
i=0 x

(t)
i satisfy:

∑T−1
t=0 E‖∇f(x̄(t))‖22

T
≤ 4

(

f(x̄0)− f∗ + Lσ̄2
)

√
nT

+
Z̃1G

2H2L2n

Tp2

(

1 +
2p

ω

)

+
Z̃2L

2ω
√
n(1+ǫ)

p
√
T (1+ǫ)

+
Z̃3G

2H2L3n3/2

T 3/2p2

(

1 +
2p

ω

)

+
Z̃4L

3ω
√
n(2+ǫ)

p
√
T (2+ǫ)

Here p = γδ
8 , ct ≤ 1

η(1−ǫ) for all t where ǫ ∈ (0, 1) and

Z̃1, Z̃2, Z̃3 and Z̃4 are universal constants.

Though the consensus step-size γ does not appear in the

rate expression, it affects it through the parameter p. As



argued after Theorem 1, we can show that p ≥ δ2ω
644 .

Corollary 2. Let f(x̄(0)) − f∗ ≤ J2, where J2 < ∞ is a

constant. Using p ≥ δ2ω
644 , and hiding constants (including

L) in the O notation, we can simplify the rate expression in

Theorem 2 to the following:
∑T−1

t=0 E‖∇f(x̄(t))‖22
T

≤ O
(

( n

T

)

1+ǫ
2

(

1+

√

n

T

)[

1

δ2

])

+O
((

n

T
+
( n

T

)3/2
)[

(1 + δ2)G2H2

ω2δ4

])

+O
(

J2 + σ̄2

√
nT

)

Remark 3. Observe that ω,H, δ do not affect the dominating

term O
(

J2+σ̄2
√
nT

)

. Since Theorem 2 provides non-asymptotic

guarantee, we need to decide the horizon T before running

the algorithm; so, to ensure that the dominating term does

not get affected by these different factors, while converging at

a rate of O
(

J2+σ̄2
√
nT

)

, we would be required to fix T ≥ T1 :=

C1 ×max

{

(

n(2+ǫ)

(J2+σ̄2)2δ4

)1/ǫ

, n3G4H4

(J2+σ̄2)2ω4δ4

}

for sufficiently

large constant C1. This implies that for large enough T ,

we get the benefits of all these techniques in saving on the

communication bits, essentially for “free”, without affecting

the convergence rate by too much. The rest of Remark 1 and

Remark 2 are also applicable here.

Theoretical justification for communication gain. The

convergence result for SPARQ-SGD highlights savings in

communication compared to CHOCO-SGD [3]. For the sake

of argument, consider the case when SPARQ-SGD only

performs local iterations and no threshold based triggering

(ct = 0, ∀t) . For the same compression operator ω used for

both SPARQ and CHOCO, to transmit the same number of

bits (i.e., having same number of communication rounds), T
iterations of CHOCO would correspond to T ×H iterations

of SPARQ (due to H local SGD steps). Thus for the same

number of bits transmitted, the bound on sub-optimality for

convex objective for CHOCO is O(1/µnT)+O(G
2
/ω2δ4µ2T 2)

while for SPARQ it is O(1/µnHT) + O(G
2
/ω2δ4µ2T 2). Thus

for the same amount of communication, SPARQ-SGD has

a better performance compared to CHOCO-SGD (the first

dominant term is affected by H). Similarly, for the same num-

ber of communication rounds, the bound on sub-optimality

for CHOCO-SGD for non-convex objectives is O(1/
√
T) +

O(1/T) while for SPARQ-SGD it is O(1/
√
HT) + O(H/T).

Thus, it can be seen that for large values of T, the per-

formance of SPARQ-SGD is better than that of CHOCO-

SGD for the number of communicated bits. Thus there is

theoretical justification for our algorithm to have a better

performance while using less bits for communication and

this claim is also supported through our experiments.

IV. PROOF OUTLINES

In this section, we give proof outlines of Theorem 1 and 2

and provide complete proofs in the full paper [35]. Our proof

outlines have been adapted from [3], [17], with significant

changes in the proof details arising due to event-triggered

communication.

Since we are in a decentralized setting, in order to do a

global optimization, i.e., optimizing (1), workers will have

to reach to a consensus. That is in fact a main ingredient in

our convergence analyses; see Lemma 1 and Lemma 2, and

also Remark 5.

A. Proof Outline of Theorem 1

Consider the collection of iterates {x(t)
i }T−1

t=0 , i ∈ [n]
generated by Algorithm 1 at time t. For any time t ≥ 0,

we have from line 15 of Algorithm 1 that

x
(t+1)
i = x

(t+ 1
2 )

i + 1(t+1)∈IT
γ

n
∑

j=1

wij(x̂
(t+1)
j − x̂

(t+1)
i ),

where x
(t+ 1

2 )
i = x

(t)
i − ηt∇Fi(x

(t)
i , ξ

(t)
i ) (line 4). Note that

we changed the summation from j ∈ Ni to j = 1 to n; this

is because wij = 0 whenever j /∈ Ni.

Let x̄(t) = 1
n

∑n
i=1 x

(t)
i denote the average of the local

iterates at time t. Now we argue that x̄(t+1) = x̄(t+ 1
2 ). This

trivially holds when (t + 1) /∈ IT . For the other case, i.e.,

(t+1) ∈ IT , this follows because
∑n

i=1

∑n
j=1 wij(x̂

(t+1)
j −

x̂
(t+1)
i ) = 0, which uses the fact that W is a doubly

stochastic matrix. Thus, we have

x̄(t+1) = x̄(t) − ηt
n

n
∑

j=1

∇Fj(x
(t)
j , ξ

(t)
j ). (3)

Subtracting x∗ (the minimizer of (1)) from both sides gives

x̄(t+1) − x∗ = x̄(t) − ηt
n

n
∑

j=1

∇Fj(x
(t)
j , ξ

(t)
j )− x∗ (4)

Using ηt ≤ 1
4L (which follows from substituting a ≥ 32L

µ in

ηt = 8
µ(a+t) ), together with some algebraic manipulations,

we have the following sequence relation for {x̄(t)}:

E‖x̄(t+1) − x∗‖2 ≤
(

1− ηtµ

2

)

E‖x̄(t) − x∗‖2 + η2t σ̄
2

n

− ηtet + ηt

(

2L+ µ

n

) n
∑

j=1

E‖x̄(t) − x
(t)
j ‖2 (5)

where et := Ef(x̄(t))−f∗ and expectation is taken w.r.t. the

entire process. We need to bound the last term of (5).

For this, let I(t0) denote the last synchronization index in

IT before time t. This, together with the assumption that

gap(IT ) ≤ H , implies t − I(t0) ≤ H . Using this and the

bounded gradient assumption, we can easily bound the last

term in the RHS of (5) (calculations are done in the full

paper [35] in a more general matrix form):

n
∑

j=1

E

∥

∥

∥
x̄(t) − x

(t)
j

∥

∥

∥

2

≤ 2E

n
∑

j=1

∥

∥

∥
x̄I(t0) − x

I(t0)

j

∥

∥

∥

2

+ 2nη2I(t0)
H2G2 (6)

In the following lemma, we show that the local iterates

x
(t)
j , j ∈ [n] asymptotically approach to the average iterate

x̄(t), thereby proving the contraction of the first term on the

RHS of (6). In other words, the consensus occurs eventually.



Lemma 1 (Consensus – contracting deviation of local iter-

ates and the averaged iterates). Under the assumptions of

Theorem 1, for any I(t) such that I(t) ∈ IT , we have

n
∑

j=1

E

∥

∥

∥
x̄I(t) − x

I(t)
j

∥

∥

∥

2

≤
20AI(t)η

2
I(t)

p2
,

where AI(t) = 2nG2H2+ p
2

(

8nG2H2

ω +
5ωncI(t)

4

)

with cI(t)
denoting the threshold function evaluated at timestep I(t).

We give a proof sketch of Lemma 1 in Section IV-A.1.

Note that ηI(t0)
≤ 2ηt, which follows from the following

set of inequalities:
ηI(t0)

ηt
= a+t

a+I(t0)
≤ a+I(t0)+H

a+I(t0)

(a)

≤
2(a+I(t0))

a+I(t0)
= 2, where (a) follows from our assumption that

a ≥ H . Now, substituting the bound from Lemma 1 in

(6) and using ηI(t0)
≤ 2ηt gives

∑n
j=1 E

∥

∥

∥
x̄(t) − x

(t)
j

∥

∥

∥

2

≤
4η2t

(

40At

p2 + 2nH2G2
)

. Putting this back in (5) yields

E‖x̄(t+1) − x∗‖2 ≤
(

1− ηtµ

2

)

E‖x̄(t) − x∗‖2 + η2t σ̄
2

n

− ηtet + 4η3t

(

2L+ µ

n

)(

40At

p2
+ 2nH2G2

)

Substituting the value of At = 2nG2H2 +
p
2

(

8nG2H2

ω + 5ωnct
4

)

and defining at = E‖x̄(t) − x∗‖2,

Q = σ̄2

n , R = 8 (2L+ µ)
(

40
p2 + 80

pω + 1
)

G2H2,

U = 100
(

2L+µ
p

)

ω and Ut = Uct, we get the recursion:

at+1 ≤
(

1− µηt
2

)

at − ηtet + η2tQ+ η3tR+ η3tUt

Employing a modified version of [7, Lemma 3.3], which is

provided in the full paper [35], gives

1

ST

T−1
∑

t=0

wtet ≤
µa3

8ST
a0 +

4T (T + 2a)

µST
Q

+
64T

µ2ST
R+

64c0T
(2−ǫ)

µ2(2− ǫ)ST
U,

where we’ve used that ct ≤ c0t
(1−ǫ) for c0 ≥ 0 and some

ǫ ∈ (0, 1), wt = (a+ t)2 and ST =
∑T−1

t=0 wt ≥ T 3

3 . Using

convexity of global objective f in the above inequality gives

Ef(x̄(T )
avg)− f∗ ≤ µa3

8ST
a0 +

4T (T + 2a)

µST
Q

+
64T

µ2ST
R+

64c0T
(2−ǫ)

µ2(2− ǫ)ST
U,

where x̄
(T )
avg = 1

ST

∑T−1
t=0 wtx̄

(t). Substituting the values

of a0, Q,R, U in the above inequality gives the result of

Theorem 1.

1) Proof sketch of Lemma 1: Note that Lemma 1 states

that e
(1)
I(t)

:=
∑n

j=1 E

∥

∥

∥
x̄I(t) − x

I(t)
j

∥

∥

∥

2

– the difference be-

tween local and the average iterates at the synchronization

indices – decays asymptotically to zero for decaying learning

rate ηt. We show this by setting up a contracting recursion

for e
(1)
I(t)

. First we prove that

e
(1)
I(t+1)

≤ (1− α1)e
(1)
I(t)

+ (1− α1)e
(2)
I(t)

+ c1η
2
I(t)

, (7)

where e
(2)
I(t)

:=
∑n

j=1 E

∥

∥

∥
x̂I(t+1) − x

I(t)
j

∥

∥

∥

2

, α1 ∈ (0, 1), and

c1 is a constant that depends on n, δ,H,G. Note that (7)

gives a contracting recursion in e
(1)
I(t)

, but it also gives the

other term e
(2)
I(t)

, which we have to bound. It turns out that

we can prove a similar inequality for e
(2)
I(t)

as well:

e
(2)
I(t+1)

≤ (1− α2)e
(1)
I(t)

+ (1− α2)e
(2)
I(t)

+ c2(t)η
2
I(t)

, (8)

where α2 ∈ (0, 1); furthermore, we can choose α1, α2 such

that α1 + α2 > 1. In (8), c2(t), in addition to n, δ,H,G,

also depends on the compression factor ω and ct which is

the triggering threshold at timestep t.

Remark 4. Note that [3] also proved analogous inequalities

(7) and (8) with constants c1 = c2 = 0. Here c1, c2(t)
are non-zero (with c2(t) possibly varying with t) and arise

due to the use of local iterations and event-triggered com-

munication, which make the proof of these inequalities (in

particular, the inequality (8)) significantly more involved than

the corresponding inequalities in [3].

Define eI(t) := e
(1)
I(t)

+ e
(2)
I(t)

. Adding (7) and (8) gives the

following recursion with α ∈ (0, 1):

eI(t+1)
≤ (1− α)eI(t) + c3(t)η

2
I(t)

. (9)

From (9), we can show that eI(t) ≤ c(t)η2I(t) for some c(t)
that depends on n, δ,H,G, ω, ct. Lemma 1 follows from this

because
∑n

j=1 E

∥

∥

∥
x̄I(t) − x

I(t)
j

∥

∥

∥

2

= e
(1)
I(t)

≤ eI(t) .

B. Proof Outline of Theorem 2

Note that (3) holds irrespective to the learning rate sched-

ule. So, by substituting ηt with η in (3), we get

x̄(t+1) = x̄(t) − η

n

n
∑

j=1

∇Fj(x
(t)
j , ξ

(t)
j ).

With some algebraic manipulations, we get:

E[f(x̄(t+1))] ≤ Ef(x̄(t))− η

4
E‖∇f(x̄(t))‖22 +

Lη2σ̄2

n

+

[

ηL2

2n
+

2L3η2

n

] n
∑

j=1

E‖x̄(t) − x
(t)
j ‖2 (10)

where expectation is taken over the entire process. Let I(t0)
be the last synchronization index in IT before time t. Note

that t−I(t0) ≤ H . Similar to (6), we can also bound the last

term on the RHS of (10) as (by replacing ηIt(0) in (6) by η)

n
∑

j=1

E‖x̄(t) − x
(t)
j ‖2≤2

n
∑

j=1

E‖x̄I(t0) − x
I(t0)

j ‖2+2nη2H2G2

(11)

We can use the following lemma to bound the first term in

the RHS of (11). This lemma is analogous to Lemma 1 in the



(a) (b) (c) (d)

Fig. 1 Figure 1a and 1b are for convex objective and we plot test error vs number of communication rounds and test error vs total number of bits
communicated, respectively, for different algorithms. Figure 1c and 1d are for non-convex objective where we plot training loss vs epochs and Top-1
accuracy vs total number of bits communicated, respectively.

fixed learning rate. Observe that if we simply replace ηI(t0)

with η in the bound of Lemma 1, we would get a slightly

weaker bound than what we obtain in the following lemma,

which we prove in the full paper [35].

Lemma 2 (Bounded deviation of local iterates and the

averaged iterates). Under the assumptions of Theorem 2, for

any I(t) such that I(t) ∈ IT , we have

n
∑

j=1

E‖x̄I(t) − x
I(t)
j ‖2 ≤ 4Aη2

p2
,

where A = 2nG2H2 + p
2

(

8nG2H2

ω + 5ωn
4η(1−ǫ)

)

.

Remark 5. Lemma 2 is essentially about consensus with

bounded error, i.e., the nodes do not reach to a consensus,

but within an error that is proportional to the learning rate

η. Note that if we take a decaying learning rate ηt (as

in the strongly-convex case), then, as shown in Lemma 1,

different nodes will exactly reach to a consensus, however,

the convergence rate of our algorithm will no longer be

O
(

1√
T

)

, but we will only get a rate of O
(

1
log T

)

, which,

though matches the convergence rate of running vanilla SGD

with decaying learning rate on non-convex objectives, is

much slower than what we can get with a fixed learning

rate, as considered in this paper.

Using the bound from Lemma 2 in (11) gives
∑n

j=1 E

∥

∥

∥
x̄(t) − x

(t)
j

∥

∥

∥

2

≤ C := 8A
p2 η

2 + 2nη2H2G2. Note

that for the case of fixed learning rate η, we have to

fix the time horizon (the number of iterations) T before

the algorithm begins. By setting η =
√

n
T and T ≥

64nL2, we get η ≤ 1
8L . Now, substituting the bound on

∑n
j=1 E

∥

∥

∥
x̄(t) − x

(t)
j

∥

∥

∥

2

and η ≤ 1
8L in (10), rearranging

terms, and then summing from t = 0 to T − 1 gives:

T−1
∑

t=0

ηE‖∇f(x̄(t))‖22 ≤ 4
(

f(x̄(0))− Ef(x̄(t))
)

+
2L2C

n

T−1
∑

t=0

η3 +
8L3C

n

T−1
∑

t=0

η4 +
4Lσ̄2

n

T−1
∑

t=0

η2

Dividing both sides by ηT , setting η =
√

n
T and substituting

the value of A from Lemma 2 proves Theorem 2.

V. EXPERIMENTS

In this section, we compare SPARQ-SGD with CHOCO-

SGD [3], [17], which only employs compression (sparsifica-

tion or quantization) and is state-of-the-art in communication

efficient decentralized training.

Convex. We run SPARQ-SGD on MNIST dataset and use

multi-class cross-entropy loss to model the local objectives

fi, i ∈ [n]. We consider n = 60 nodes connected in a ring

topology, each processing a mini-batch size of 5 per iteration

and having heterogeneous distribution of data across classes.

We work with ηt = 1/(t + 100) (based on grid search)

and synchronization index H = 5. For SPARQ-SGD, we

use the composed operator SignTopK [13] with k = 10
(out of 7840 length vector for MNIST dataset) For our

experiments, we set the triggering constant c0 = 5000 in

SPARQ-SGD (line 7) and keep it unchanged until a certain

number of iterations and then increase it periodically; while

still maintaining that ctη
2
t decreases with t (as ct is o(t)) .

• Results. In Figure 1a, we observe SPARQ-SGD can

reach a target test error in fewer communication rounds

while converging at a rate similar to that of vanilla SGD.

The advantage to SPARQ-SGD comes from the significant

savings in the number of bits communicated to achieve a

desired test error, as seen in Figure 1b: to achieve a test

error of around 0.12, SPARQ-SGD gets 250× savings as

compared to CHOCO-SGD with Sign quantizer, around

10-15× savings than CHOCO-SGD with TopK sparsifier,

and around 1000× savings than vanilla decentralized SGD.

We also provide a plot for using the composed SignTopK
operator without event-triggering titled ‘SPARQ-SGD (Sign-

TopK)’ for comparison.

Non-convex. We match the setting in CHOCO-SGD [17]

and perform our experiments on the CIFAR-10 [34] dataset

and train a ResNet20 [37] model with n = 8 nodes

connected in a ring topology. Learning rate is initialized to

0.1, following a schedule consisting of a warmup period of

5 epochs followed by piecewise decay of 5 at epoch 200 and

300 and we stop training at epoch 400. The SGD algorithm is

implemented with momentum with a factor of 0.9 and mini-

batch size of 256. SPARQ-SGD consists of H = 5 local

iterations followed by checking for a triggering condition,

and then communicating with the composed SignTopK
operator, where we take top 1% elements of each tensor and



only transmit the sign and norm of the result. The triggering

threshold follows a schedule piecewise constant: initialized to

2.5 and increases by 1.5 after every 20 epochs till 350 epochs

are complete; while maintaining that ct < 1/η for all t.
We compare performance of SPARQ-SGD against CHOCO-

SGD with Sign, TopK compression (taking top 1% of

elements of the tensor) and decentralized vanilla SGD [1].

We also provide a plot for using the composed SignTopK
operator without event-triggering titled ‘SPARQ-SGD (Sign-

TopK)’ for comparison.

• Results. We plot the global loss function evaluated at

the average parameter vector across nodes in Figure 1c,

where we observe SPARQ-SGD converging at a similar rate

as CHOCO-SGD and vanilla decentralized SGD. Figure 1d

shows the performance for a given bit-budget, where we

show the Top-1 test accuracy as a function of the total

number of bits communicated. For Top-1 test-accuracy of

around 90%, SPARQ-SGD requires about 40× less bits than

CHOCO-SGD with Sign or TopK compression, and around

3K× less bits than vanilla decentralized SGD to achieve the

same Top-1 accuracy.
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