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Abstract—In this paper we are interested in what we term the
federated private bandits framework, that combines differential
privacy with multi-agent bandit learning. We explore how differ-
ential privacy based Upper Confidence Bound (UCB) methods
can be applied to multi-agent environments, and in particular
to federated learning environments both in ‘master-worker’ and
‘fully decentralized’ settings. We provide theoretical analysis on
the privacy and regret performance of the proposed methods and
explore the tradeoffs between these two.
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I. INTRODUCTION

The promise of distributed computing is to improve the
efficiency and robustness of machine learning tasks by leverag-
ing communication networks to share the computational load,
leading to a compelling vision of world-wide computing [1].
However, no matter how compelling this vision is, it cannot get
realized before we address a number of challenges, of which
an important one is privacy.

In this paper, we consider privacy vs. learning trade-offs for
wireless recommendation systems, that are one of the most
popular learning algorithms in the consumer domain, and are
considered a key application of edge-based wireless distributed
systems [2] [3] [4]. As a use case, we consider a multi-chain
of stores, such as a fastfood chain, that make local recom-
mendations to their customers, but then wish to aggregate the
overall client responses to provide new recommendations or
launch new products. We assume that the client responses -
what items they like and how much - are the private data we
want to protect.

We pose our problem within the federated learning frame-
work, proposed by Google [5], that addresses the privacy chal-
lenge by maintaining the user data locally, while combining
learning models among the distributed agents. In particular,
we consider a federated multi-armed bandit (MAB) setup,
where each distributed agent could be a local store that makes
recommendations, while the aggregator is the parent company.
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The question we explore is, can we leverage the aggregator to
better inform what recommendations to make at the distributed
agents, without compromising the user data privacy.

We consider in particular a distributed version of the UCB
algorithm: we assume that each agent (store) makes a number
of recommendations locally and calculates a sequence of local
average reward values. To combine the local models, we
need to reveal the average values sequence to the aggregator,
without compromising the privacy of the data. We do so
by leveraging differential privacy (DP) [6] techniques that
preserve privacy of reward sequences. Maintaining privacy
amounts to adding a form of noise, which can affect which
items the aggregator decides to recommend next, and which
in turn can lead to a higher regret. This paper investigates this
privacy/regret trade-off.

A. Related Work

The MAB algorithm is widely used in recommendation
systems due to its simplicity and efficiency [7] [8]. Auer et
al. [9] developed the UCB algorithm, which is an index-based
policy relying on average reward plus an upper confidence
bound. Another mainstream approach is the sampling-based
approach [10] that instead of computing a deterministic index,
it uses a sample generated by a Bayesian estimator.

There has been a growing literature that extends the MAB
problem into multi-user settings. Liu and Zhao [11] consider a
distributed bandit problem with collisions: choosing the same
arm simultaneously leads to a reduced reward for two or
more agents. Similar approaches can be found in [12] [13]
that utilize different matching algorithms to avoid collisions.
Later work [14] makes use of gossip algorithm or running
consensus methods to keep an approximation of the average
value between agents and their neighbors. However, few works
have considered accommodating privacy considerations in the
learning process.

There is also a very rich literature on differential privacy,
mostly applied in deep learning [15] and information the-
ory fields. For decision-making problems, Tossou and Dimi-
trakakis present algorithms for differentially private stochastic
MAB [16]. The work in [17] also investigates this problem.
However, all these works operate under a single user setting.
As far as we know, our federated private bandit algorithm
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is the first work that considers both differential privacy and
communication in cooperative bandit problems.

B. Main Contributions

Our work proposes a new bandit learning framework, the
federated private bandits that combines differential privacy
with multi-agent bandit learning. Our key contributions are as
follows.

i) We introduce a federated private bandit framework. For
each agent, we apply an (e,0) differentially private variants
of the UCB scheme. Specifically, the hybrid mechanism [18]
is used to track a non-private reward sequence for each agent
and to output a private sum reward. The agents then use this
private sum reward plus a relaxation of the upper confidence
bound to update the arm index.

ii) We consider two multi-agent settings: (a) the DP-Master-
worker UCB (a master-worker structure): an external central
node can observe all individual agent models and can return
back an aggregated one to all agents; (b) the DP-Decentralized
UCB (fully decentralized with networked structure): the agents
average their model with their neighbors’ information using a
consensus algorithm without the help of a central node. In both
methods, the real rewards are kept private from all agents.

iii) We analyze both the privacy and regret performance
of our federated private UCB algorithms and characterize the
influence of communication and privacy on decision making.
In particular, we evaluate the trade-off between the privacy
and regret.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a federated recommendation system with M
subsystems or agents, where each agent can make recommen-
dations to its local users. We allow the agents to communicate
either through a central node (master-worker structure) or
directly with their neighbors (networked fully decentralized
structure), to aggregate their knowledge of the user prefer-
ences. We discuss both the ‘master-worker’ distributed struc-
ture and the fully decentralized structure in this paper. All M
nodes are associated with K arms (e.g., movies, ads, news,
or items) from an arm set A := {1,2,..., K} that can be
recommended to the users.

A. Federated Private Bandit Framework

The above system model can be formulated as a K-armed
bandit problem with M distributed agents. At time slot ¢, each
agent chooses and pulls an arm from the set of K arms, and
then the arm j € A chosen by agent i € [M] generates an i.i.d.
reward r; ;(¢) from a fixed but unknown distribution at time ¢.
We denote by pi;,; the unknown mean of reward distribution.
In our model, the reward distribution of each arm is the same
for each agent, ie., for all arms 1 < j < K, py1; = p2j =
.o = Ui j = ... = unr,j, and thus in the rest of the paper we
use p; for simplicity.

The arm that agent ¢ plays at time ¢ is denoted as a;(t) € A.
Let ¢;(t) be the communication message sent by agent ¢ and
q_;(t) be the messages received by agent ¢ at time ¢. Here,

messages can be learning model parameters which will be
specified later. Then the policy m;(t) for agent ¢ can be viewed
as a mapping from the collected history set to the action set.
That is, m;(t) : H;(t) — A, where the history H;(t) gathers
actions, rewards, and message exchange of the past H;(t) =
{(ai(1),7i0,0)(1)sq—i(1)) ooy (@it = 1), 7 0,01y (E = 1),
g—;(t —1))}. The overall objective of the A agents is to
maximize the ex{pected sum reward over a finite time horizon
T: E[Zthl Zf\zl Ti.a;(1)(t)]. Without loss of generality, we
can assume that pp is always the best arm for each agent.
Then the suboptimality gap can be defined as A; := py — y;
for any arm j # 1. Let n; j(t) be the number of times arm
j is pulled by agent ¢ up to time ¢, then the number of times
arm j is pulled by all the agents in the network up to time ¢
can be calculated as n;(t) := Zf\il n;,5(t).

The learning goal is to minimize the overall expected regret,
which is defined as the expected reward difference between the
best arm and the online learning policies of the agents. For
policies with action a;(t) (Vi € [M],Vt), the overall expected
regret is defined as

R(T) = TMpu1 = B> 3 i (®)] = D AE[n (T)

(1
B. Differential Privacy

We use differential privacy as our privacy metric and briefly
review some background material in the following.

Definition 1 (Differential Private Bandit Algorithm).
A bandit algorithm 7; for agent i is (€,6)-
differentially private if for all two neighboring reward
sequences  r(t) = {7’7;,(“(1)(1),...,ri,ai(t)(t)} and
r'(t) = Tiay W)@ (e, that differ on
at most 1 position), for all subsets S C A, and for all
measurable image subsets Q of q;(t), the following holds:

Pr{a;(t) € S,q:(t) € Qlr(t)} < @)
exp (€) Pr{a;(t) € S, qi(t) € Qr'(t)} + 4.

We say the algorithm of the system is (e,0)-differentially
private if (2) holds for all agents.

Intuitively, for our bandit problem, if the reward r; ;(7) for
arm j and agent ¢ is the private information, the definition
above implies that we want the algorithm to protect the arm’s
reward realization 7; ;(7) against an adversary even if the ad-
versary can observe the output actions a;(1),as(2),. .., a;(t),
the transmitted information ¢;(1),¢;(2),...,¢(t), and other
reward realizations.

A commonly used differential privacy scheme is the Laplace
mechanism, which simply adds a Laplace noise N ~ Lap(%)
to the private data communicated. In our problem, we employ
a more sophisticated differential privacy mechanism, termed
the hybrid mechanism, that we briefly describe next.

The Hybrid Mechanism [18] is a tree based aggregation
scheme that releases private statistics over a data sequence.
Consider a reward sequence r = (r(1),7(2),...,7(T)), where
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at each time ¢ a new r(t) € [0,1] is inserted. Assume we
want to output the partial (up to time ¢) sum s(t) = Zle (i)
while ensuring that the sequence r is (e, §)-private. The Hybrid
mechanism outputs partial sums at times ¢t = 2% k£ = 1,2, ...
For the time period 2k and 25+1 the mechanism constructs a
binary tree B(t) that has as leaves the inputs (i), all other
nodes store partial sums, and the root node contains the sum
from 2% to 25*1 — 1. The mechanism outputs a private sum
L(t) by adding a Laplace noise of scale 1, i.e., Lap(L) to
a set of nodes that “cover” all the inputs. As compared to
the straightforward approach of adding noise to each sample
7(4), this method enables to output partial sums that satisfy the
same differential privacy gurantees adding overall less noise -
indeed there is only a logarithmic amount of noise added for
any given sum because of the logarithmic tree depth.

III. FEDERATED PRIVATE MULTI-ARMED BANDITS

In this section, we present two algorithms for the federated
private bandit problems under different settings and provide
their performance analysis. Our algorithms combine the non-
private UCB algorithm [9] with the Hybrid (e, d) differential
privacy technique.

In the UCB algorithm, at time slot ¢, each arm j of
agent ¢ updates an estimate of the index I; ;(¢), which is
calculated as the sum of the empirical mean Y; ;(¢) and

an upper confidence bound: I; ;(t) = Y;;(t) + 1/7,,211(;%)'
Here, Y; ;(t) = vs,;(t)/ni;(t), yi,;(t) is the sum of observed
rewards and n; ;(¢) is the total number of times that arm j
has been pulled until time ¢.

To achieve differential privacy, we apply a DP mechanism
as shown in Figure. 1. In particular, we instantiate the hybrid
mechanism H; ; for each arm j at each agent i, which keeps
track of the non-private empirical mean Y; ; and outputs a
private mean X ;. Here X; ; = s, ;/n; ; and s; ; is the private
sum reward. The agents select actions based on the private
mean X ; instead of the empirical mean Y; ;, thus ensuring
that the actions are also differentially private.

/

RACHEENCY

Fig. 1. Graphical model for the hybrid mechanism H; ; of agent 1.

We present two federated learning algorithms. The first,
termed DP-Master-worker UCB algorithm, employs the DP
mechanism to compute the individual arm index that consists
of a private mean as well as an additional privacy-induced
uncertainty. Then, the central node aggregates and returns
back an aggregated index that will be used arm selection. The
second, termed DP-Decentralized UCB algorithm, employs the

same DP mechanism, but the agents estimate the index by
averaging their neighbors’ input.

A. DP-Master-worker UCB algorithm

In Algorithm 1, each arm j of each agent ¢ uses the DP
mechanisms H; ; (shown in Figure 1) to maintain a private
total reward s; ;. The communication phase begins when the
counter n = 2P for p = 1,2, .... The individual arm index of
each agent ¢ is first updated using the private mean, the upper
confidence bound and the additional noise due to privacy (Line
12). Then, the central node averages all the private indices
to compute an average index which leads to the same best
arm selection for all M agents. Each agent 7 starts from the
common index and privately updates it. For each agent, if an
arm is pulled for the p** time consecutively (without switching
to any other arms in between), it will also be played for the
next 2P time slots.

Algorithm 1 DP-Master-worker UCB algorithm

1: Initialization: Set ¢ = 0 and counter n = 1;

2: For each arm j, 1 < j < K of each agent ¢, 1 < < M,

instantiate DP mechanisms H; ;.

3: Input: The differential privacy parameter ¢;
4: while ¢t <T do
5 for agent ¢ to M do
6: if ¢ < K then
7.
8
9

Play arm a;(t) = t, observe reward 7; o, (4)(t)
Insert 7; q,(+)(t) to the DP mechanism H; ., )

: end if
10: if n =27 for p=10,1,... then
11: Update total reward s; ;(t) using H;
12: Update v; ; = Llogtlog'®n; ;(t)
13: Update index I; ;(t) = X; j+ 31‘3%:) + Zigg
14: /*Begin communication phase
15: Send index I; j(t) to the central node
16: Receive the averaged index I7"?(t) of j arms
17: /*End communication phase
18: Pull best arm a (t) = argmax ;17" (t)
19: if af(t) # af(t — 1) then
20: Reset n = 1;
21: end if
22: else
23: af(t)y=ai(t—1)
24: end if
25 Play arm a;(t), observe the reward 7; o+ (;)(t)
26: Insert 7 4+ (1) (?) to the DP mechanism H; .+ ()
27: Update t =t+1,n=n+1
28: end for
29: for The central node do
30: /*Begin communication phase
31: Receive index sequence {Il_,j...IM_j} of j arms
32: Compute and return back I3 = 4 ML
33: /*End communication phase
34: end for

35: end while
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We next analyze the algorithm performance. Theorem 1
provides the privacy performance of Algorithm 1.

Lemma 1 (Privacy error bound). The error between the
empirical mean Y; ; and private mean X, ; after n;; times
of plays is bounded as |Y; j — X; j| < hy, , with probability
at least 1 — 6, where hy,, ; is the error incurred by the private

mechanism calculated as h,,, ; = 1 log"®(n; ;) -log } - ml]

Proof. This follows directly from the Fact 1 (Appendix.A
[19]) that the hybrid mechanism remains (e, §)-DP after any
number n; ; of plays since each time only one arm is pulled,
that will affect only one mechanism. O

Theorem 1 (Privacy of Algorithm 1). Algorithm 1 is e-
differential private after T timeslots with § = T4,

Proof. Proposition 2.1 of [6] proves the post-processing prop-
erty of DP mechanisms: the composition of a mapping f
with an (e, d)- differentially private algorithm is also (e, )
differentially private. Using Lemma 1, the hybrid mechanism
is (e, 0)- differentially private. Moreover, our Algorithm 1 can
be seen as a mapping from the averaged output of the hybrid
mechanism to the action. This completes our proof. L

Theorem 2 gives the regret of Algorithm 1. Here we only
give a proof sketch, the complete proof can be found in
Appendix.C [19].

Theorem 2 (Regret of Algorithm 1). The learning regret of
Algorithm 1 is

8logT )2,25
e(1—Bo)Amin >

for some 0 < By < 1, where Ny qp = max{A;}, Apin =
min {A;}, € is the parameter for (e,0) privacy, 6 = T~%.

RO(T) £ MK Az (4 + max]( Spoct )

ALinf3

Proof outline. The regret incurred during the time horizon
T is caused by playing suboptimal arms. We first bound the
amount of error between the private and empirical means
that are caused by the DP mechanism. Using this bound and
Lemma 1, we estimate the number of times that we play
suboptimal arms. We show that after a sufficient number of

times O(%), a suboptimal arm will not be selected
with high probability.
Remark: Through the central mode we obtain

O(MK log*>*(T)) regret. The DP mechanism mainly
increases the exploration rounds. If we do not use the DP
mechanism, the O(log®?° T') term vanishes. We note that
after SA“;ST plays, the suboptimal arms will be selected with
low proggi)ility, and we can achieve a O(M K logT) regret.
Note that in Theorem 2, the parameter e reflects the trade off
between privacy and regret, where the privacy increases as €
decrease.

B. DP-Decentralized UCB algorithm

In Algorithm 2, the agents average their model with their
neighbors models at each time ¢, instead of aggregating their
values with the help of a central node. We assume that each
agent maintains a bi-directional communication with a set of

Algorithm 2 DP-Decentralized UCB algorithm

1: Imitialization: Set ¢ = 0; 11;(0) = {71;(0), ..., 70ar,;(0) },
8;(0) = {81,;(0), ..., 50,;(0)}
2: For each arm j, 1 § j < K ofeachagenti, 1 <i< M,

instantiate DP Mechanisms H; ;.
3: Input: The differential privacy parameter e; matrix P
represents the network structure; p > 1;
4: while ¢t < T do
5 for agent i to M do
6: if ¢ < K then
7 play arm a;(t) = t, observe the reward 7, (4 (t)
8 Insert r,,(;)(t) to the DP mechanism H; 4,y
9

else

10: /*Begin the communication phase
11: Update the estimated play numbers:
12: ﬁj(t):Pﬁj(t—1)+P17j(t—1)
13: Update the additional private error term:
14: 0;,7(t) = Llog +log"® i1, ;(t)
15: Update the estlmated total rewards:
16: éj(t) = Péj(t - 1)
17: /*End the communication phase.
18: Update the arm index :

. _ R, (t)+ei  logt 0i,5(t)
19: Ii;(t) = U+\/2p M@ A® T A
20: Select the best arm a;(t) = argmaz ;I; J(t)

21 Observe the reward r,, (1) (1)

22: Insert r,,(;)(t) to the DP mechanism H; 4,1
23: Update s; 4, (;)(t) using DP mechanism H; ,, (1)
24: t=t+1

25: end if

26: end for

27: end while

neighboring agents. We consider Gaussian distributions for
each arm’s reward, i.e., the reward at arm j is sampled from
a Gaussian distribution with mean 4; ; and variance o2. We
assume that the variance o2 is known and is the same at each
arm. We use a consensus algorithm that captures the effect of
the additional private information an agent receives through
communication with other agents. We represent the network as
a graph where nodes are agents and edges connect neighboring
agents. A discrete-time consensus algorithm can be expressed
as:

x(t + 1) = Px(t), 3)

where x is the quantity we want the agents to agree on, and
P is a row stochastic matrix given by

P=1Iy-— L. “4)

maxr
Here, Ips is the identity matrix with order M, dyq. =
max; deg(i),i € {1,..,M} and deg(i) is the degree of
agent i. K € [0,1] is a step size parameter and L is the
Laplacian matrix of this communication graph. Without loss
of generality, we assume that the eigenvalues of P are ordered
as M =1>X>..2> M\ > -1
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For our federated private MAB problem, we use the follow-
ing definitions, that are similar to the definitions in Algorithm
1. Let 5; ; be the estimated total private reward, 7; ; be the
estimated total true reward of arm j at agent 7, and 7; ; be the
estimated total number of times that the arm j has been played
by agent . Let X” = §; /7, be the estimated private mean,
and f’w = §;,;/Mi,; be the estimated empirical mean.

Without taking into account differential privacy, the consen-
sus algorithm will update §; ; and 7; ; as follows:

n; t+1) = Piy (t) + P¢; (t) (5)
Vit +1) = Py;(t) + Pr;(t), (6)

where &; ;(t) = I(a;(t) = j), indicating if arm j is played
by agent 7 at time slot ¢; r; j(t) is the reward with respect to
the action which is generated by the distribution N (u;,02).
0;(1),&(t),¥;(t),r;(t) are vectors that connect the values
5,5 (t), &5 (), §ij (L), 7 5(t) for i = 1, ..., M respectively. We
note that under our DP mechanism, an agent can not observe
the reward sequences. Thus, we use the following equation to
update the private total rewards instead of (6):

8;(t+1) = P8;(1). (7

The above equation captures the fact that only the private total
reward §;(¢) can be broadcasted through the network graph,
not r;(t). We still keep (5) because we only aim to keep the
reward values private and not the numbers 1i;.

Each arm j of each agent i uses the analogous DP mecha-
nisms H; ; in the the Algorithm 1 to maintain a private total
reward. The communication phase occurs at each timeslot to
update the estimate play numbers 7; ;(¢) and the total reward
§;,;(t) using (5) (7). Agent ¢ selects the arm with the maximum
index denoted as:

'fli,j (t) + ¢
Mﬁi,j (t)

logt @7‘/7]' (t)
fli,j (t) flivk(t)

where cg, c; are parameters representing the network stricture
and p > 1 is the exploration parameter. From (8) we notice
that the estimation performance, the network structure, and the
exploration parameter, all affect the learning performance.

Li(t) = Xij+/2p G

Theorem 3 (Privacy of Algorithm 2). Algorithm 2 is (e, 0)-
differentially private after T timeslots with § = %T’p.

The proof of Theorem 3 is similar to that of Theorem 1.
Theorem 4 (Regret of Algorithm 2). The learning regret of
Algorithm 2 is

MKpAmae M K 1 .25
RP(T) < 2—p% + i Zj>1 max[(M)Q 2

2 ) €(1—Po)

c 80 p(l+c;)logT
[ﬁé * B3A; -‘]

for some 0 < By < 1, p > 1, where Apqr = max {A;},

Apin = min {A;} and € is the parameter for (e, ) privacy,

6= %T”’ and c;, co are parameters of the network graph.

b

Proof outline. The regret is mainly caused by the estimated
variance due to communication and the privacy requirements.
By using Lemma 1 and Lemma 2 (provided in Appendix.B

[19]), we first bound the amount of error between the esti-
mated private mean and empirical mean. We note that the
communication cost is also reflected in this bound. Using this
bound, we estimate the number of times suboptimal arms are
selected, and complete the proof. The complete proof can be
found in Appendix.D [19].

Remark: From Theorem 4 we obtain O(MK log>?°T)
regret. Both the communication and the privacy mechanism
result in an expansion of the exploration phase. The DP
mechanism leads to an additional O(log®?® T') regret with the
parameter e inversely proportional to the regret. The federated
learning setup introduces constants ¢y and c¢; into the regret
which depend on the network topology. In particular, ¢ is pro-
portional to the network scale and c¢; depends on the number
of neighbors of agent i. The sparser the network connection,
the larger the c; and the regret. A larger exploration parameter
p also implies more exploration rounds.

IV. EXPERIMENTS

In this section, we mainly perform numerical simulations
to verify and analyze the performance of Algorithm 2. We
choose M = 20 and K = 10. The 20 agents are connected
according to a cycle graph which is a fully decentralized
setting. Figure 1 shows the impact of varying the privacy
parameter € in {1.5,2, 5} with fixed p = 2. We can see that the
regret increases with e. Figure 2 shows the impact of varing
the exploration parameter p in {1.2,2,4} with fixed ¢ = 2.
Again as expected the regret increases with p. These results
demonstrate the tradeoff between the regret (recommendation
accuracy) and privacy.
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Fig. 2. Regret performance of Algorithm 2.

V. CONCLUSION

In this paper, we proposed a distributed MAB framework for
recommendation systems that incorporates differential privacy.
At each distributed agent, we use an (e, §) differentially private
variant of UCB scheme to ensure that agents do not reveal
information on the reward values. We designed algorithms for
two multi-agent settings: the DP-Master-worker UCB algo-
rithm and the DP-Decentralized UCB algorithm each capturing
a different communication network connecting agents. We
analyzed both the privacy and regret performance and showed
how the need for communication and privacy can influence
the decision making performance of the agents.
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