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ABSTRACT

The central question studied in this paper is Rényi Differential

Privacy (RDP) guarantees for general discrete local randomizers

in the shuffle privacy model. In the shuffle model, each of the =

clients randomizes its response using a local differentially private

(LDP) mechanism and the untrusted server only receives a random

permutation (shuffle) of the client responses without association to

each client. The principal result in this paper is the first direct RDP

bounds for general discrete local randomization in the shuffle pri-

vacy model, and we develop new analysis techniques for deriving

our results which could be of independent interest. In applications,

such an RDP guarantee is most useful when we use it for composing

several private interactions. We numerically demonstrate that, for

important regimes, with composition our bound yields an improve-

ment in privacy guarantee by a factor of 8× over the state-of-the-art

approximate Differential Privacy (DP) guarantee (with standard

composition) for shuffle models. Moreover, combining with Pois-

son subsampling, our result leads to at least 10× improvement over

subsampled approximate DP with standard composition.
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1 INTRODUCTION

Differential privacy (DP) [16] gives a principled and rigorous frame-

work for data privacy by giving guarantees on the information

leakage for individual data points from the output of an algorithm.

Algorithmically, a standard method is to randomize the output of
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an algorithm to enable such privacy. Originally DP was studied

in the centralized context, where the privacy from queries to a

trusted server holding the data was the objective [16]. However,

in distributed applications, such as federated learning [30], two

significant aspects need to be accommodated: (i) data is held locally

at clients and needs to be used for computation with an untrusted

server; and (ii) to build good learning models, one might need

repeated interactions (e.g., through distributed gradient descent).

To accommodate privacy of locally held data, a more appropriate

notion is that of local differential privacy (LDP) [15, 34]. In the

LDP framework, each (distributed) client holding local data, indi-

vidually randomizes its interactions with the (untrusted) server.1

Recently, such LDP mechanisms have been deployed by compa-

nies such as Google [23], Apple [29], and Microsoft [14]. However,

LDP mechanisms suffer from poor performance in comparison

with the centralized DP mechanisms, making their applicability

limited [15, 31, 34]. To address this, a new privacy framework using

anonymization has been proposed in the so-called shuffle model

[7, 13, 22], where each client sends her (randomized) interaction

message to a secure shuffler that randomly permutes all the received

messages before forwarding them to the server. Such a shuffling

can be enabled through anonymization techniques [10, 20, 22]. This

model enables significantly better privacy-utility performance by

amplifying LDP through this mechanism.

For the second aspect, where there are repeated interactions (e.g.,

through distributed gradient descent), one needs privacy composi-

tion [9]. In other words, we want to compute the overall privacy

budget under the composition of multiple iterations. Clearly, from

an optimization viewpoint, we might need to run these interactions

longer for better models, but these also result in privacy leakage.

Though the privacy leakage can be quantified using advanced com-

position theorems for DP (e.g., [19, 33]), these might be loose. To

address this, Abadi et al. [1] developed a “moments accountant”

framework, which enabled a much tighter composition. This is

enabled by providing the composition privacy guarantee in terms

of Rényi Differential Privacy [36], and then mapping it back to the

DP guarantee [37]. It is known [1] that the moments accountant

provides a significant saving in the total privacy budget in compari-

son with using the strong composition theorems [19, 33]. Therefore,

developing the RDP privacy guarantee can enable stronger compo-

sition privacy results. Analyzing the RDP of the shuffle model could

have several applications such as private statistics using interactive

schemes for heavy hitters, mean estimation, federated learning,

and distributed differentially private stochastic gradient descent

(DPSGD). This leads us to the central question addressed in this

paper:

1The mechanisms used have a long history including Randomized Response [41], but
were recently studied through the lens of local differential privacy (LDP).



Can we develop strong RDP privacy guarantees for gen-

eral local mechanisms in the shuffle privacy model?

The principal result in this paper is the first direct RDP guar-
antee for general discrete local randomization mechanisms in the
shuffle privacy model. In particular, given an arbitrary discrete local
mechanism with n0-LDP guarantee, we provide an RDP guarantee
for the shuffle model, as a function of n0 and the number of users
=; see Theorem 3.1. This can be seen as an amplification by shuf-
fling result for amplifying pure LDP guarantee to RDP guarantee
via shuffling. In contrast, the existing amplification by shuffling
results [7, 22, 24] amplify pure LDP guarantee to approximate DP
guarantee.

When numerically evaluating our bound, we save a factor of
8× compared to the state-of-the-art approximate DP guarantee for
shuffle models in [24]2 combined with strong composition, with
the number of iterations ) = 105, LDP parameter n0 = 0.5, and
number of clients = = 106; see Figure 4a in Section 4 for such ex-
ample regimes. Furthermore, characterizing the RDP of the shuffle
model enables us to compute the RDP of shuffling with Poisson
sub-sampling by using the results in [43]. We numerically show
that this approach can lead to at least 10× improvement in privacy
guarantee. This is for) = 104, n0 = 3, and = = 106. The comparison
is with applying the strong composition theorem [33] after get-
ting the state-of-the-art approximate DP of the shuffle model given
in [24] with Poisson sub-sampling [35] (see Figure 5a in Section 4
for more such regimes). This in turn implies that we can accommo-
date at least 10× more interactions for the same privacy budget in
these cases. Moreover, our upper bounds also give several orders of
magnitude improvement over the simple RDP bound stated in [21,
Remark 1] (also stated in (9)) in several regimes (see, for example,
Figure 2e in Section 4). We also develop a lower bound for the RDP
for the shuffle model and numerically demonstrate that the gap is
small for many parameter regimes of interest.

In order to obtain our upper bound result, we develop new analy-
sis techniques which could be of independent interest. In particular,
we develop a novel RDP analysis for neighboring datasets with a
special structure (see Theorem 3.7), in which one of the datasets has
all the data points to be the same (see the definition in (12)). A key
technical result is then to relate the RDP of general neighboring
datasets to those with special structure (see Theorem 3.6).

• For the RDP analysis of neighboring datasets with the above-
mentioned special structure, we first observe that the output
distribution of the shuffling mechanism is the multinomial
distribution. Using this observation, then we show that the
ratio of the distributions of the mechanism on special struc-
ture neighboring datasets is a sub-Gaussian random variable
(r.v.), and we can write the Rényi divergence of the shuffle
mechanism in terms of the moments of this r.v. Bounding the
moments of this r.v. then gives an upper bound on the RDP
for the special neighboring datasets. See the proof-sketch
of Theorem 3.7 in Section 3.3.2 and its complete proof in
Section 6.

• We next connect the above analysis to the RDP computa-
tion for general neighboring datasets D = (31, . . . , 3=) and

2We used the open source implementation for the privacy analysis in [24] available
from https://github.com/apple/ml-shuffling-amplification.

D ′
= (31, . . . , 3=−1, 3 ′=). To do so, a crucial observation is to

write the output distribution p8 of the local randomizer R
on the 8’th client’s data point 38 (for any 8 ∈ [= − 1]) as a
mixture distribution p8 = 4−n0p′

= + (1 − 4−n0 )p̃8 for some
p̃8 .

3 So, the number of clients that sample according to p′
=

is concentrated around 4−n0=. Therefore, if we restrict the
dataset to these clients only, the resulting datasets will have
the special structure, and the size of that dataset will be con-
centrated around 4−n0=. Finally, in order to be able to reduce
the problem to the special case, we remove the effect of the
clients that do not sample according to p′

= without affecting
the Rényi divergence. See the proof-sketch of Theorem 3.6
in Section 3.3.1 and its complete proof in Section 5.

Related Work

We give the most relevant work related to the paper and put our
contributions in the context of these works.

shuffle privacy model: Asmentioned, the shufflemodel of privacy
has been of significant recent interest [5–8, 13, 22, 25, 26]. However,
all the existing works in literature [7, 22, 24] only characterize
the approximate DP of the shuffle model – among these, [24] is
the state-of-the-art, but as we show in our experiments, it yields
weaker results when combined with composition. To the best of
our knowledge, there is no bound on RDP of the shuffle model
in the literature except for the one mentioned briefly in a remark
in [22, Remark 1] (which is obtained by the standard conversion
results from DP to RDP) and we state it in (9) for comparison.
However, this bound is loose (e.g., see Figure 2e) and not useful for
conversion to approximate DP (e.g., see Figures 3a, 3c), as well as
for composition (e.g., see Figure 4e). Thus, our work makes progress
on this important open question of analyzing the RDP of the shuffle
model. Both [20] and [27] used advanced composition to analyze
privacy of shuffle models in federated learning; our results could
be adapted to enhance their privacy guarantees.

Rényi differential privacy: The work of Abadi et al. [1] provided
a methodology to get stronger composition results. Inherently, this
used Rényi divergence, and was later formalized in [36] which
defined Rényi differential privacy (RDP). RDP presents a unified
definition for several kinds of privacy notions including pure differ-
ential privacy (n-DP), approximate differential privacy ((n, X)-DP),
and concentrated differential privacy (CDP) [11, 18]. As mentioned
earlier, RDP enables a stronger result for composition, through the
“moment accounting” idea. Similarly, several works [37, 40, 43] have
shown that analyzing the RDP of subsampled mechanisms provides
a tighter bound on the total privacy loss than the bound that can be
obtained using the standard strong composition theorems. However,
to the best of our knowledge, RDP analysis of the shuffle model and
its use for composition in the shuffle model has not been studied. In
this paper, we analyze the RDP of the shuffle model, where we can
bound the approximate DP of a sequence of shuffle models using
the transformation from RDP to approximate DP [1, 2, 12, 40]. We
show that our RDP analysis provides a better bound on the total

3The idea of writing the distribution of the output of an LDP mechanism as a mixture
distribution was previously proposed in [7, 24]. However, the way these mixture
distributions are used in our RDP analysis is different from these works, including
what mixtures we create and how we use them.



privacy loss of composition than that can be obtained using the
standard strong composition theorems (see Section 4).

Discrete mechanisms: Many of the works in DP use specific ran-
domization mechanisms, adding noise using the Laplace or Gauss-
ian distributions. However, in many situations the data is inherently
discrete (e.g., see [12] and references therein) or compression causes
it to be so (e.g., see [27, 32] and references therein). It is therefore of
interest to directly analyze privacy of discrete randomization mech-
anisms. Such discrete mechanisms have been studied extensively
in shuffle models [5, 25], but for approximate DP. To the best of
our knowledge, RDP for general discrete mechanisms in the shuffle
privacy framework is new to our work.

Paper Organization

The paper is organized as follows. In Section 2, we give some prelim-
inary definitions and results from the literature and also formulate
our problem. In Section 3, we present our main results (two upper
bounds and one lower bound on RDP), along with a proof sketch of
the first upper bound. We also describe the two main ingredients in
its proof – first is the reduction of computing RDP for the arbitrary
pairs of neighboring datasets to computing RDP for the special
pairs of neighboring datasets, and the second is computing RDP for
the special pairs of neighboring datasets. In Section 4, we present
several numerical results to demonstrate the advantages of our
bounds compared to the state-of-the-art. The rest of the sections
are devoted to the full proofs of our main results: Section 5 shows
the reduction of our general problem to the special case; Section 6
proves the RDP for the special case; Section 7 proves both our upper
bounds; and Section 8 proves our lower bound. In Section 9, we
conclude with a short discussion. Omitted details from the proofs
are provided in the appendices.

2 PRELIMINARIES AND PROBLEM

FORMULATION

We give different privacy definitions that we use in Section 2.1, some
existing results on RDP to DP conversion and RDP composition in
Section 2.2, and give our problem formulation in Section 2.3.

2.1 Privacy Definitions

In this subsection, we define different privacy notions that we will
use in this paper: local differential privacy (LDP), central differential
privacy (DP), and Rényi differential privacy (RDP).
Definition 1 (Local Differential Privacy - LDP [34]). For n0 ≥
0, a randomized mechanism R : X → Y is said to be n0-local
differentially private (in short, n0-LDP), if for every pair of inputs
3, 3 ′ ∈ X, we have

Pr[R(3) ∈ S] ≤ 4n0 Pr[R(3 ′) ∈ S], ∀S ⊆ Y . (1)

Let D = {31, . . . , 3=} denote a dataset comprising = points
from X. We say that two datasets D = {31, . . . , 3=} and D ′

=

{3 ′1, . . . , 3
′
=} are neighboring (and denoted by D ∼ D ′) if they dif-

fer in one data point, i.e., there exists an 8 ∈ [=] such that 38 ≠ 3 ′8
and for every 9 ∈ [=], 9 ≠ 8 , we have 3 9 = 3 ′9 .

Definition 2 (Central Differential Privacy - DP [16, 17]). For n, X ≥
0, a randomized mechanism M : X= → Y is said to be (n, X)-
differentially private (in short, (n, X)-DP), if for all neighboring
datasets D ∼ D ′ ∈ X= and every subset S ⊆ Y, we have

Pr [M(D) ∈ S] ≤ 4n0 Pr
[
M(D ′) ∈ S

]
+ X. (2)

Definition 3 (Rényi Differential Privacy - RDP [36]). A randomized
mechanism M : X= → Y is said to have n (_)-Rényi differential
privacy of order _ ∈ (1,∞) (in short, (_, n (_))-RDP), if for any
neighboring datasetsD ∼ D ′ ∈ X= , the Rényi divergence between
M(D) and M(D ′) is upper-bounded by n (_), i.e.,

�_ (M(D)||M(D ′)) = 1

_ − 1
log

(
E\∼M(D′)

[(
M(D)(\ )
M(D ′) (\ )

)_])

≤ n (_),

whereM(D)(\ ) denotes the probability thatM on inputD gener-
ates the output \ . For convenience, instead of n (_) being an upper
bound, we define it as n (_) = supD∼D′ �_ (M(D)||M(D ′)).

Our objective in this paper is to characterize the Rényi differential
privacy of a shuffling mechanismM (see Section 2.3 for details) for
different values of order _.

2.2 RDP to DP Conversion and RDP

Composition

In this subsection, we state some preliminary results from the liter-
ature that we will use. Though our main objective in this paper is
to derive RDP guarantees of a shuffling mechanism, we also give
the central privacy guarantees of that mechanism. For that purpose,
we use the following result for converting the RDP guarantees of
a mechanism to its DP guarantees. To the best of our knowledge,
this result gives the best conversion.4

Lemma 2.1 (From RDP to DP [4, 12]). Suppose for any _ > 1, a
mechanismM is (_, n (_))-RDP. Then, the mechanismM is (n, X)-
DP, where n, X are define below:

For a given X ∈ (0, 1) :

n = min
_

n (_) + log (1/X) + (_ − 1) log (1 − 1/_) − log (_)
_ − 1

For a given n > 0 :

X = min
_

exp [(_ − 1) (n (_) − n)]
_ − 1

(
1 − 1

_

)_
.

As mentioned in Section 1, the main strength of RDP in com-
parison to other privacy notions comes from composition. The
following result states that if we adaptively compose two RDP
mechanisms with the same order, their privacy parameters add up
in the resulting mechanism.

Lemma 2.2 (Adaptive composition of RDP [36, Proposition 1]).

For any _ > 1, let M1 : X → Y1 be a (_, n1 (_))-RDP mechanism

and M2 : Y1 × X → Y be a (_, n2 (_))-RDP mechanism. Then, the

mechanism defined by (M1,M2) satisfies (_, n1 (_) + n2 (_))-RDP.

4An optimal conversion from RDP to approximate DP was studied in [2]; however,
we observed numerically, that it does not give better performance as compared to the
conversion presented above.





Symbol Description

[�] {1, 2, . . . , �} for any � ∈ N
n0 LDP parameter (see Definition 1)

(n, X) Approximate DP parameters (see Definition 2)
(_, n (_)) RDP parameters (see Definition 3)

R : X → [�] A discrete n0-LDP mechanism at clients for mapping
their data points to elements in [�]

p = (?1, . . . , ?�) The output distribution of R when the data point is 3
p′

= (? ′1, . . . , ?
′
�
) The output distribution of R when the data point is 3 ′

p8 = (?81, . . . , ?8�) for 8 ∈ [=] The output distribution of R when the data point is 38
p′
= = (? ′=1, . . . , ?

′
=�

) The output distribution of R when the data point is 3 ′=
P A collection of = distributions {p1, . . . ,p=}
P−8 A collection of (= − 1) distributions P \ {p8 }

A collection of = distributions, where clients in the set C map
PC , where C ⊆ [= − 1] according to p′

= , clients in the set [= − 1] \ C map according
to p̃8 (see (18)), and client = maps according to p= (see (19)-(21))

A=
�

A set of all possible histograms with � bins and = elements (see (4))

h h = (ℎ1, . . . , ℎ�) with
∑�
8=1 ℎ8 = = is an element of A=

�
M(D) The shuffle mechanismM on the dataset D ∈ X= ;

M(D) is a distribution over A=
�
(see (3))

� (P) Distribution over A=
�
when client 8 maps its data point

according to the distribution p8 (see (17))

Table 1: Notation used throughout the paper

_ using convexity of the function (_ − 1) n (_) as follows. From [39,
Corollary 2], the function (_ − 1) �_ (P| |Q) is convex in _ for any
given two distributions P and Q. Thus, for any real order _ > 1, we
can bound the RDP of the shuffle model by

n (_) ≤ 0 · ( ⌊_⌋ − 1) · n (⌊_⌋) + (1 − 0) · (⌈_⌉ − 1) · n (⌈_⌉)
_ − 1

, (7)

where 0 = ⌈_⌉ − _, since _ = 0⌊_⌋ + (1 − 0) ⌈_⌉ for any real _. Here,
⌊_⌋ and ⌈_⌉ respectively denote the largest integer smaller than or
equal to _ and the smallest integer bigger than or equal to _.

In the following theorem, we also present another bound on RDP
that readily holds for all _ ≥ 1.

Theorem 3.3 (Upper Bound 2). For any = ∈ N, n0 ≥ 0, and any

_ ≥ 1 (including the non-integral _), the RDP of the shuffle model is

upper-bounded by

n (_) ≤ 1

_ − 1
log

(
4_

2 (4n0−1)2
= + 4

n0_− =−1
84n0

)
, (8)

where = = ⌊ =−124n0 ⌋ + 1.

We prove Theorem 3.3 in Section 7.2.

Remark 3 (Improved Upper Bounds – Saving a Factor of 2). The

exponential term 4
n0_− =−1

84n0 in both the upper bounds stated in (5)
and (8) comes from the Chernoff bound, where we naively choose
the factor W = 1/2 instead of optimizing it; see the proof of Theo-
rem 3.1 in Section 7.1. If we instead had optimized W and chosen

it to be, for example, W =

√
2n04n0√
= log(=) (which goes to 0 when, say,

n0 ≤ 1
4 log(=)), we would have asymptotically saved a multiplica-

tive factor of 2 in the leading term in both upper bounds, because

in this case we have = = ⌊(1 − W) =−14n0 ⌋ + 1 → ⌊=−14n0 ⌋ + 1 as = → ∞.
We chose to evaluate our bound with W = 1/2 because of two rea-
sons: first, it gives a simpler expression to compute; and second,
the evaluated bound does not give good results (as compared to the
ones with W = 1/2) for the parameter ranges of interest.

Remark 4 (Difference in Upper Bounds). Since the quadratic term
in _ inside the log in (8) has an extra multiplicative factor of 4n0

in comparison with the corresponding term in (5), our first upper
bound presented in Theorem 3.1 is better than our second upper
bound presented in Theorem 3.3 for all parameter ranges of interest;
see also Figure 2 in Section 4. However, the expression in (8) is much
cleaner to state as well as to compute as compared to that in (5).
As we will see later, the techniques required to prove both upper
bounds are different.

Remark 5 (Potentially Better Upper Bounds for Specific Mecha-
nisms). Since both our upper bounds are worse-case bounds that
hold for all n0-LDP mechanisms, it is possible that for specific mech-
anisms, we may be able to exploit their structure for potentially
better bounds. See Remark 8 on this just after (32).

The upper bounds on the RDP of the shuffle model presented
in (5) and (8) are general and hold for any discrete n0-LDP mech-
anism. Furthermore, these bounds are in closed form expressions
that can be easily implemented. To the best of our knowledge, there
is no bound on RDP of the shuffle model in literature except for the
one given in [21, Remark 1], which we provide below5 in (9). For
the LDP parameter n0 and number of clients =, they showed that

5As mentioned in Section 1, this was obtained by the standard conversion results from
DP to RDP, which could be loose.



for any _ > 1, the shuffle mechanismM is (_, n (_))-RDP, where

n (_) = _
244n0 (4n0 − 1)2

=
. (9)

In Section 4, we evaluate numerically the performance of both our
bounds (from Theorems 3.1 and 3.3) against the above bound in (9).
We demonstrate that both our bounds outperform the above bound
in all cases; and in particular, the gap is significant when n0 > 1

– note that the bound in [22] is worse than our simplified bound
given in Corollary 3.2 by a multiplicative factor of 44n0 .

3.2 Lower Bound

In this subsection, we provide a lower bound on the RDP for any
integer order _ satisfying _ ≥ 2.

Theorem 3.4 (Lower Bound). For any = ∈ N, n0 ≥ 0, and any

integer _ ≥ 2, the RDP of the shuffle model is lower-bounded by:

n (_) ≥ 1

_ − 1
log

(
1 +

(
_

2

)
(4n0 − 1)2

=4n0

+
_∑
8=3

(
_

8

) ( (
42n0 − 1

)
=4n0

)8
E

[(
: − =

4n0 + 1

)8 ] )
,

(10)

where expectation is taken w.r.t. the binomial random variable : ∼
Bin (=, ?) with parameter ? =

1
4n0+1 .

We give a proof-sketch of Theorem 3.4 in Section 8 and provide
its complete proof in Appendix E.

When 8 is an even integer, then the expectation term in (10) is
positive. When 8 ≥ 3 is an odd integer, then using the convex-
ity of function 5 (G) = G8 , it follows from the Jensen’s inequality

(i.e., E5 (- ) ≥ 5 (E- )) and E[:] =
=

4n0+1 , that E
[ (
: − =

4n0+1
)8 ] ≥(

E
[
: − =

4n0+1
] )8

= 0. Using these observations, we can safely ignore
the summation term from (10) and obtain the following simplified
lower bound.

Corollary 3.5 (Simplified Lower Bound). For any = ∈ N,
n0 ≥ 0, and integer _ ≥ 2, the RDP of the shuffle model is lower-

bounded by:

n (_) ≥ 1

_ − 1
log

(
1 +

(
_

2

)
(4n0 − 1)2

=4n0

)
. (11)

Remark 6 (Upper and Lower Bound Proofs). Both our upper
bounds stated in Theorems 3.1 and 3.3 hold for any n0-LDP mecha-
nism. In other words, they are the worst case privacy bounds, in the
sense that there is no n0-LDP mechanism for which the associated
shuffle model gives a higher RDP parameter than those stated in (5)
and (8). Therefore, the lower bound that we derive should serve as
the lower bound on the RDP privacy parameter of the mechanism
that achieves the largest privacy bound (i.e., worst privacy).

We prove our lower bound result (stated in Theorem 3.4) by
showing that a specific mechanism (in particular, the binary Ran-
domized response (RR)) on a specific pair of neighboring datasets
yields the RDP privacy parameter stated in the right hand side
(RHS) of (10). This implies that RDP privacy bound (which is the
supremum over all neighboring datasets) of binary RR for the shuf-
fle model is at least the bound stated in (10), which in turn implies
that the lower bound (which is the tightest bound for any n0-LDP
mechanism) is also at least that.

Remark 7 (Gap in Upper and Lower Bounds). When comparing
our simplified upper and lower bounds from Corollaries 3.2 and 3.5,
respectively, we observe that when _445n0 < =

9 , our upper and lower
bounds differ by a multiplicative factor of 44n0 . In our generic upper
bound (5), note that when = is large, only the term corresponding
to _2 matters, and with our improved upper bound (which saves a
factor of 2 in that term asymptotically – see Remark 3), the upper
and lower bounds are away by the factor of 4n0 , which tends to 1
as n0 → 0. Thus, in the regime of large = and small n0, our upper
and lower bounds coincide. Without any constraints on =, n0, we
believe that our lower bound is tight. Closing this gap by showing a
tighter upper bound is an interesting and important open problem.

3.3 Proof Sketch of Theorem 3.1

The proof has two main steps. In the first step, we reduce the
problem of deriving RDP for arbitrary neighboring datasets to the
problem of deriving RDP for specific neighboring datasets, D,D ′,
where all elements inD are the same andD ′ differs fromD in one
entry. In the second step, we derive RDP for the special neighboring
datasets. Details follow:

The specific neighboring datasets to whichwe reduce our general
problem have the following form:

D<
same =

{
(D<,D ′

<) : D< = (3, . . . , 3, 3) ∈ X<,

D ′
< = (3, . . . , 3, 3 ′) ∈ X<, where 3, 3 ′ ∈ X

}
.

(12)

Consider arbitrary neighboring datasets D = (31, . . . , 3=) ∈ X=

and D ′
=

(
31, . . . , 3=−1, 3 ′=

)
∈ X= . For any < ∈ {0, . . . , = − 1},

define new neighboring datasets D (=)
<+1 =

(
3 ′=, . . . , 3

′
=, 3=

)
∈ X<+1

andD ′(=)
<+1 =

(
3 ′=, . . . , 3

′
=, 3

′
=

)
∈ X<+1, each having (<+1) elements.

Observe that
(
D ′(=)
<+1,D

(=)
<+1

)
∈ D<+1

same. The first step of our proof

is summarized in the following theorem.

Theorem 3.6 (Reduction to the Special Case). Let @ =
1
4n0

and< ∼ Bin (= − 1, @) be a binomial random variable. We have:

Eh∼M(D′)

[(
M(D)(h)
M(D ′) (h)

)_]

≤ E<∼Bin(=−1,@)


E
h∼M(D′(=)

<+1)


(
M(D (=)

<+1) (h)

M(D ′(=)
<+1) (h)

)_

.

(13)

We give a proof-sketch of Theorem 3.6 in Section 3.3.1 and pro-
vide its complete proof in Section 5.

We know (by Chernoff bound) that the binomial random variable
is concentrated around its mean, which implies that the terms in
the RHS of (13) that correspond to< < (1−W)@(=−1) (we will take
W = 1/2) will contribute in a negligible amount. Then we show in

LemmaD.1 (on page 20) that�< := E
h∼M(D′(=)

<+1)

[(
M(D (=)

<+1) (h)
M(D′(=)

<+1) (h)

)_]

is a non-increasing function of <. These observations together
imply that the RHS in (13) is approximately upper bounded by
� (1−W )@ (=−1) via Chernoff bound.

Since �< is precisely what is required to bound the RDP for
the specific neighboring datasets, we have reduced the problem of
computing RDP for arbitrary neighboring datasets to the problem of



computing RDP for specific neighboring datasets. The second step
of the proof bounds � (1−W )@ (=−1) , which follows from the result
below that holds for any< ∈ N.

Theorem 3.7 (RDP for the Special Case). Let< ∈ N be arbi-

trary. For any integer _ ≥ 2, we have

sup
(D<,D′

<) ∈D<
same

Eh∼M(D<)

[(M(D ′
<) (h)

M(D<) (h)

)_]

≤ 1 +
(
_

2

)
(4n0 − 1)2
<4n0

+
_∑
8=3

(
_

8

)
8Γ(8/2)

( (
42n0 − 1

)2
2<42n0

)8/2
.

(14)

We give a proof-sketch of Theorem 3.7 in Section 3.3.2 and pro-
vide its complete proof in Section 6.

Substituting< = (1 − W)@(= − 1) + 1 in (14) yields the bound in
Theorem 3.1.

3.3.1 Proof Sketch of Theorem 3.6. For 8 ∈ [=], let p8 denote the
distribution of the n0-LDP mechanism R when the input data point
is 38 , and p′

= denote the distribution of R when the input data
point is 3 ′= . The main idea of the proof is the observation that each
distribution p8 can be written as the following mixture distribu-

tion: p8 =
1
4n0 p

′
= +

(
1 − 1

4n0

)
p̃8 , where p̃8 is a certain distribution

associated with p8 . So, instead of client 8 ∈ [= − 1] mapping its
data point 38 according to p8 , we can view it as the client 8 maps
38 according to p′

= with probability 1
4n0 and according to p̃8 with

probability (1 − 1
4n0 ). Thus the number of clients that sample from

the distribution p′
= follows a binomial distribution Bin(=−1, @) with

parameter @ =
1
4n0 . This allows us to write the distribution of M

when clients map their data points according to p1, . . . ,p=,p
′
= as

a convex combination of the distribution ofM when clients map
their data points according to p̃1, . . . , p̃=−1,p=,p

′
= ; see Lemma 5.1.

Then using a joint convexity argument (see Lemma 5.2), we write
the Rényi divergence between the original pair of distributions
of M in terms of the same convex combination of the Rényi di-
vergence between the resulting pairs of distributions of M as in
Lemma 5.1. Using a monotonicity argument (see Lemma 5.3), we
can remove the effect of clients that do not sample from the distri-
bution p′

= without decreasing the Rényi divergence. By this chain
of arguments, we have reduced the problem to the one involving
the computation of Rényi divergence only for the special form of
neighboring datasets, which proves Theorem 3.6. Details can be
found in Section 5.

3.3.2 Proof Sketch of Theorem 3.7. Consider any pair of special
neighboring datasets (D<,D ′

<) ∈ D<
same for any< ∈ N. Using

the polynomial expansion, we get

Eh∼M(D<)

[(M(D ′
<) (h)

M(D<) (h)

)_]

=

_∑
8=0

(
_

8

)
Eh∼M(D<)

[(M(D ′
<) (h)

M(D<) (h) − 1

)8 ]
.

(15)

Let - : A<
�

→ R denote a random variable (r.v.) associated with
the distribution M(D<), and for every h ∈ A<

�
, is defined as

- (h) =<
( M(D′

<) (h)
M(D<) (h) − 1

)
. With this, we can rewrite (15) in terms

of themoments of- . Thenwe show that- is a sub-Gaussian r.v. that

has zero-mean and bounded variance. Using the sub-Gaussianity
of - , we bound its higher moments (see Lemma 6.1). Substituting
these bounds in (15) proves Theorem 3.7. Details can be found in
Section 6.

4 NUMERICAL RESULTS

In this section, we present numerical experiments to show the
performance of our bounds on the RDP of the shuffle model and its
usage for getting approximate DP and composition results.

RDP of the shuffle model: In Figure 2, we plot several bounds on
the RDP of the shuffle model in different regimes. In particular, we
compare between the first upper bound on the RDP given in Theo-
rem 3.1, the second upper bound on the RDP given in Theorem 3.3,
the lower bound on the RDP given in Theorem 3.4, and the upper
bound on the RDP given in [22, Remark 1] and stated in (9).6 It is
clear that our first upper bound (5) gives a tighter bound on the
RDP in comparison with the second bound (8) and the upper bound
given in [22]. Furthermore, the first upper bound is close to the
lower bound for small values of the LDP parameter n0 and for high
orders _. In addition, the gap between our proposed bound in Theo-
rem 3.1 and the bound given in [22] increases as the LDP parameter
n0 increases. We also observe that the curves of the lower and upper
bounds on the RDP of the shuffle model saturate close to n0 when
the order _ approaches to infinity. This indicates that the pure DP
of the shuffle model is bounded below by n0, an observation made
in literature [3, 22]. As can be seen in Figures 2d and 2e, the RDP
obtained by standard approximate DP to RDP conversion in [22,
Remark 1], can be several orders of magnitude loose in comparison
to our analysis.

Approximate DP of the shuffle model: Analyzing RDP of the shuf-
fle model provides a bound on the approximate DP of the shuffle
model from the relation between the RDP and approximate DP as
shown in Lemma 2.1. In Figure 3, we plot several bounds on the
approximate (n, X)-DP of the shuffle model for fixed X = 10−6. In
Figures 3d and 3b, we do not plot the results given in [22], since
their bounds are quite loose and are far from the plotted range
when n0 > 1. We can see that our analysis of the RDP of the shuf-
fle model provides a tighter bound on the approximate DP of the
shuffle model in comparison with the bound given in [7] in some
regimes. However, our RDP analysis performs worse than the best
known bound given in [24], when used without composition. This
might be due to the gap between our upper and lower bound on
the RDP of the shuffle model as the lower bound provides better
performance than the bound given in [24] for all values of LDP
parameter n0. Note that the main use case for converting our RDP
analysis to approximate DP is after composition rather than in the
single-shot conversion illustrated in Figure 3.

Composition of a sequence of shuffle models: We now numerically
evaluate the privacy parameters of the approximate (n, X)-DP for
a composition of ) mechanisms (M1, . . . ,M) ), where MC is a
shufflemechanism for all C ∈ [) ]. In Figure 4, we plot three different
bounds on the overall privacy parameter n for fixed X = 10−8 for
a composition of ) identical shuffle models. The first bound on

6The results in [24] are for approximate DP (not for RDP), that is why we did not
compare with them in Figure 2.









Now, using Lemma 5.1, in the following lemma we show that the
Rényi divergence between � (P) and � (P ′) can be upper-bounded
by a convex combination of the Rényi divergence between � (PC)
and � (P ′

C) for C ⊆ [= − 1].

Lemma 5.2 (Joint Convexity). For any _ > 1, the function

Eh∼� (P′)

[(
� (P) (h)
� (P′) (h)

)_]
is jointly convex in (� (P), � (P ′)), i.e.,

Eh∼� (P′)

[(
� (P) (h)
� (P ′) (h)

)_]

≤
∑

C⊆[=−1]
@ |C | (1 − @)=−|C |−1

E
h∼�

(
P′
C

)

©­­«
� (PC) (h)
�

(
P ′
C

)
(h)

ª®®¬

_
.

(24)

We prove Lemma 5.2 in Appendix B.2. For any C ⊆ [= − 1],
let P̃[=−1]\C = {p̃8 : 8 ∈ [= − 1] \ C}. With this notation, note

that PC \ P̃[=−1]\C = {p′
=, . . . ,p

′
=}

⋃{p=} and P ′
C \ P̃[=−1]\C =

{p′
=, . . . ,p

′
=}

⋃{p′
=} is a pair of specific neighboring distributions,

each containing |C| + 1 distributions. In other words, if we de-

fine D (=)
|C |+1 =

(
3 ′=, . . . , 3

′
=, 3=

)
and D ′(=)

|C |+1 =
(
3 ′=, . . . , 3

′
=, 3

′
=

)
, each

having ( |C| + 1) data points, then the mechanisms M(D (=)
|C |+1)

and M(D ′(=)
|C |+1) will have distributions � (PC \ P̃[=−1]\C) and

� (P ′
C \ P̃[=−1]\C), respectively.

Now, since (D ′(=)
|C |+1,D

(=)
|C |+1) ∈ D |C |+1

same , if we remove the effect

of distributions in P̃[=−1]\C in the RHS of (24), we would be able
to bound the RHS of (24) using the RDP for the special neighboring

datasets in D |C |+1
same . This is precisely what we will do in the follow-

ing lemma and the subsequent corollary, where we will eliminate
the distributions in P̃[=−1]\C in the RHS (24).

The following lemma holds for arbitrary pairs (P,P ′) of neigh-
boring distributionsP = {p1, . . . ,p=} andP ′

= {p1, . . . ,p=−1,p
′
=},

where we show that Eh∼� (P′)

[(
� (P) (h)
� (P′) (h)

)_]
does not decrease

when we eliminate a distribution p8 (i.e., remove the data point
38 from the datasets) for any 8 ∈ [= − 1]. We need this general
statement as it will be required in the proof of Theorem 3.1 later.

Lemma 5.3 (Monotonicity). For any 8 ∈ [= − 1], we have

Eh∼� (P′)

[(
� (P) (h)
� (P ′) (h)

)_]
≤ Eh∼� (P′

−8 )


©­­«
� (P−8 ) (h)
�

(
P ′
−8

)
(h)

ª®®¬

_
, (25)

where, for 8 ∈ [= − 1], P−8 = P \ {p8 } and P ′
−8 = P ′ \ {p8 }. Note

that in the left hand side (LHS) of (25), � (P), � (P ′) are distributions
over A=

�
, whereas, in the RHS, � (P−8 ), � (P ′

−8 ) for any 8 ∈ [= − 1]
are distributions over A=−1

�
.

We prove Lemma 5.3 in Appendix B.3. Note that Lemma 5.3 is a
general statement that holds for arbitrary pairs (P,P ′) of neigh-
boring distributions. For our purpose, we apply Lemma 5.3 with
(PC,P ′

C) for any C ⊆ [= − 1] and then eliminate the distribu-

tions in P̃[=−1]\C one by one. The result is stated in the following
corollary.

Corollary 5.4. Consider any< ∈ {0, 1, . . . , = − 1}. Let D (=)
<+1 =(

3 ′=, . . . , 3
′
=, 3=

)
andD ′(=)

<+1 =
(
3 ′=, . . . , 3

′
=

)
. Then, for any C ∈

( [=−1]
<

)
(i.e., C ⊆ [= − 1] such that |C| =<), we have

Eh∼� (P′
C )


(
� (PC) (h)
� (P ′

C) (h)

)_
≤ E

h∼M(D′(=)
<+1)


(
M(D (=)

<+1) (h)

M(D ′(=)
<+1) (h)

)_
.

(26)

We prove Corollary 5.4 in Appendix B.4. Substituting from (26)
into (24) and noting that for every h ∈ A=

�
, � (P)(h) and � (P ′) (h)

are distributionally equal to M(D)(h) and M(D ′) (h), respec-
tively, we get

Eh∼M(D′)

[(
M (D) (h)
M (D ′) (h)

)_]

(a)
≤

=−1∑
<=0

∑
C∈( [=−1]< )

@< (1 − @)=−<−1
E
h∼�

(
P′
C

)

©­­«
� (PC) (h)
�

(
P ′
C

)
(h)

ª®®¬

_
(b)
≤

=−1∑
<=0

∑
C∈( [=−1]< )

@< (1 − @)=−<−1
E
h∼M(D′(=)

<+1)


(
M(D (=)

<+1) (h)

M(D ′(=)
<+1) (h)

)_
(c)
=

=−1∑
<=0

(
= − 1

<

)
@< (1 − @)=−<−1

E
h∼M(D′(=)

<+1)


(
M(D (=)

<+1) (h)

M(D ′(=)
<+1) (h)

)_
= E<∼Bin(=−1,@)


E
h∼M(D′(=)

<+1)


(
M(D (=)

<+1) (h)

M(D ′(=)
<+1) (h)

)_

.

The inequality (a) is the same as (24), just writing it differently. In
(b) we used (26) and in (c) we used the fact that number of<-sized
subsets of [= − 1] is equal to

(=−1
<

)
. This completes the proof of

Theorem 3.6.

6 PROOF OF RDP FOR THE SPECIAL FORM

Fix an arbitrary < ∈ N and consider any pair of neighboring
datasets (D<,D ′

<) ∈ D<
same. Let D< = (3, . . . , 3) ∈ X< and

D ′
< = (3, . . . , 3, 3 ′) ∈ X< . Letp = (?1, . . . , ?�) andp′

= (? ′1, . . . , ?
′
�
)

be the probability distributions of the discrete n0-LDP mechanism
R : X → Y = [�] when its inputs are 3 and 3 ′, respectively, where
? 9 = Pr[R(3) = 9] and ? ′9 = Pr[R(3 ′) = 9] for all 9 ∈ [�]. Since R
is n0-LDP, we have

4−n0 ≤
? 9

? ′9
≤ 4n0 , ∀9 ∈ [�] . (27)

SinceM is a shufflemechanism, it induces a distribution onA<
�
for

any input dataset. So, for anyh ∈ A<
�
,M(D<) (h) andM(D ′

<) (h)
are equal to the probabilities of seeing h when the inputs to M
are D< and D ′

< , respectively. Thus, for a given histogram h =

(ℎ1, . . . , ℎ�) ∈ A<
�

with< elements and � bins, we have

M(D<) (h) = MN (<,p,h) =
(
<

h

) �∏
9=1

?
ℎ 9

9 , (28)



whereMN (<,p,h) denotes theMultinomial distributionwith
(<
h

)
=

<!
ℎ1!· · ·ℎ� ! . Note that (28) can be obtained as a special case of the gen-

eral distribution in (17) by putting p 9 = p for each client 9 .
For M(D ′

<), note that the last client (independent of the other
clients) maps its input data point 3 ′ to the 9 ’th bin with probability
? ′9 , and the remaining (<−1) clients’ mappings induce a distribution

on A<−1
�

. Thus, M(D ′
<) (h) for any h ∈ A<

�
can be written as

M(D ′
<) (h) =

�∑
9=1

? ′9MN
(
< − 1,p, h̃ 9

)
, (29)

where h̃ 9 =
(
ℎ1, . . . , ℎ 9−1, ℎ 9 − 1, ℎ 9+1, . . . , ℎ�

)
∈ A<−1

�
. We implic-

itly assume that ifℎ 9 = 0 for some 9 ∈ [�], thenMN
(
< − 1,p, h̃ 9

)
=

0 as one of the elements is negative. Note that similar to (28), (29)
can also be obtained from (17) as a special case. Using the polyno-

mial expansion (1 + G)= =
∑=
8=0

(=
8

)
G8 (with G =

M(D′
<) (h)

M(D<) (h) − 1 in

the following), we have:

Eh∼M(D<)

[(M(D ′
<) (h)

M(D<) (h)

)_]

=

_∑
8=0

(
_

8

)
Eh∼M(D<)

[(M(D ′
<) (h)

M(D<) (h) − 1

)8 ]
.

(30)

Let - : A<
�

→ R be a random variable associated with the dis-
tribution M(D<) on A<

�
, and for any h ∈ A<

�
, define - (h) :=

<
( M(D′

<) (h)
M(D<) (h) − 1

)
. Substituting this in (30) gives:

Eh∼M(D<)

[(M(D ′
<) (h)

M(D<) (h)

)_]
= 1 +

_∑
8=1

(
_

8

)
Eh∼M(D<)

[
(- (h))8

]
<8

.

(31)

The RHS of (31) is in terms of the moments of - , which we bound
in the following lemma. Before that, first we simplify the expression

for - (h) by computing the ratio
M(D′

<) (h)
M(D<) (h) for any h ∈ A<

�
:

M(D ′
<) (h)

M(D<) (h) =

�∑
9=1

? ′9
MN (< − 1,p, h̃ 9 )
MN (<,p,h) =

�∑
9=1

? ′9
? 9

ℎ 9

<
. (32)

Thus, we get - (h) =<
( M(D′

<) (h)
M(D<) (h) − 1

)
=

(∑�
9=1

?′9
? 9
ℎ 9

)
−<.

Remark 8. As mentioned in Remark 5, we could tighten our upper
bounds for specific mechanisms. As shown in (31) above, the Rényi
divergence of a mechanism between two neighboring datasets can
bewritten in terms of themoments of a r.v.- , which is defined as the
ratio of distributions of the mechanism on these two neighboring
datasets. However, since our goal is to bound RDP for all n0-LDP
mechanisms, we prove the worse-case bound on the moments of -
that holds for all mechanisms; see (34) in Lemma 6.1 for bound on
the 8 ≥ 3’rd moments of - and (38) in Lemma 6.2 for bound on the
variance of - .

Lemma 6.1. The random variable - has the following properties:

(1) - has zero mean, i.e., Eh∼M(D<) [- (h)] = 0.

(2) The variance of - is equal to

Eh∼M(D<)
[
- (h)2

]
=<

©­«
�∑
9=1

? ′29
? 9

− 1
ª®¬
. (33)

(3) For 8 ≥ 3, the 8’th moment of - is bounded by

Eh∼M(D<)
[
(- (h))8

]
≤ 8Γ (8/2)

(
2<a2

)8/2
, (34)

where a2 =
(4n0−4−n0 )2

4 and Γ (I) =

∫ ∞
0

GI−14−G3G is the

Gamma function.

A proof of Lemma 6.1 is presented in Appendix C.1. Substituting
the bounds from Lemma 6.1 into (31), we get

Eh∼M(D<)

[(M (
D ′
<

)
(h)

M (D<) (h)

)_]
≤ 1 +

(
_

2

)
1

<

©­«
�∑
9=1

? ′29
? 9

− 1
ª®¬

+
_∑
8=3

(
_

8

)
8Γ (8/2)

(
(4n0 − 4−n0 )2

2<

)8/2 (35)

Note that ?1, . . . , ?<, ? ′1, . . . , ?
′
< are defined for the fixed pair of

datasets (D<,D ′
<) ∈ D<

same that we started with. So, the term con-

taining

(∑�
9=1

?′29
? 9

− 1

)
in the RHS of (35) depends on (D<,D ′

<),
and that is the only term in (35) that depends on (D<,D ′

<). Since
Theorem 3.7 requires us to bound (35) for any pair of neighboring
datasets (D<,D ′

<) ∈ D<
same, so, in order to prove Theorem 3.7,

we need to compute sup(D<,D′
<) ∈D<

same

(∑�
9=1

?′29
? 9

− 1

)
. We bound

this in the following.
Define a set Tn0 consisting of all pairs of �-dimensional proba-

bility vectors satisfying the n0-LDP constraints as follows:

Tn0 =
{
(p,p′) ∈ R� × R� : ? 9 , ?

′
9 ≥ 0,∀9 ∈ [�],

�∑
9=1

? 9 =

�∑
9=1

? ′9 = 1,

and 4−n0 ≤
? ′9
? 9

≤ 4n0 ,∀9 ∈ [�]
}
. (36)

Note that Tn0 contains all pairs of the output probability distribu-
tions (p,p′) of all n0-LDP mechanisms R on all neighboring data
points 3, 3 ′ ∈ X. Since any (D<,D ′

<) ∈ D<
same generates a pair

of probability distributions (p,p′) ∈ Tn0 (because D< = (3, . . . , 3)
and D ′

< = (3, . . . , 3, 3 ′) together contain only two distinct data
points 3, 3 ′), we have

sup
(D<,D′

<) ∈D<
same

©­«
�∑
9=1

? ′29
? 9

− 1
ª®¬
≤ sup

(p,p′) ∈Tn0

©­«
�∑
9=1

? ′29
? 9

− 1
ª®¬
. (37)

In the following lemma, we bounds the RHS of (37).

Lemma 6.2. We have the following bound:

sup
(p,p′) ∈Tn0

©­«
�∑
9=1

? ′29
? 9

− 1
ª®¬
=

(4n0 − 1)2
4n0

. (38)

We prove Lemma 6.2 in Appendix C.2. Taking supremum over
(D<,D ′

<) ∈ D<
same in (35) and then using (37) and (38), we get the

bound in Theorem 3.7.



7 PROOFS OF THE UPPER BOUNDS

In this section, we will prove our upper bounds stated in Theo-
rems 3.1 and 3.3 in Sections 7.1 and 7.2, respectively.

7.1 Proof of Theorem 3.1

Consider arbitrary neighboring datasets D = (31, . . . , 3=) ∈ X=

and D ′
=

(
31, . . . , 3=−1, 3 ′=

)
∈ X= . As mentioned in Section 3.3,

for any < ∈ {0, . . . , = − 1}, we define new neighboring datasets

D (=)
<+1 =

(
3 ′=, . . . , 3

′
=, 3=

)
and D ′(=)

<+1 =
(
3 ′=, . . . , 3

′
=, 3

′
=

)
, each having

(< + 1) elements. Observe that
(
D ′(=)
<+1,D

(=)
<+1

)
∈ D<+1

same.

Recall from Theorem 3.6, we have

Eh∼M(D′)

[(
M(D)(h)
M(D ′) (h)

)_]

≤
=−1∑
<=0

@<


E
h∼M(D′(=)

<+1)


(
M(D (=)

<+1) (h)

M(D ′(=)
<+1) (h)

)_

,

(39)
where @< :=

(=−1
<

)
@< (1 − @)=−<−1. For simplicity of notation, for

any< ∈ {0, 1, . . . , = − 1}, define

�< := E
h∼M(D′(=)

<+1)


(
M(D (=)

<+1) (h)

M(D ′(=)
<+1) (h)

)_
.

We show in Appendix D.1 that �< is a non-increasing function of
<. Using this and concentration properties of the Binomial r.v., we
get (details are in Appendix D.1):

E

[(
M(D)(h)
M(D ′) (h)

)_]
≤ 4n0_4−

@ (=−1)W2
2 + � (1−W )@ (=−1) , (40)

whereW > 0 is arbitrary, and expectation is taken w.r.t. h ∼ M(D ′).
Note that we have already bounded �< for all< in Theorem 3.7.
By setting W =

1
2 and = = ⌊(1 −W)@(= − 1)⌋ + 1 = ⌊ =−124n0 ⌋ + 1, we get

from Theorem 3.7, that:

Eh∼M(D′)

[(
M (D) (h)
M (D ′) (h)

)_]
≤ �=−1 + 4

n0_− =−1
84n0 (41)

≤ 1 +
(
_

2

)
(4n0 − 1)2

=4n0
+

_∑
8=3

(
_

8

)
8Γ (8/2)

( (
42n0 − 1

)2
2=42n0

)8/2
+ 4

n0_− =−1
84n0 .

Since the above bound holds for arbitrary pairs of neighboring
datasets D and D ′, this completes the proof of Theorem 3.1.

7.2 Proof of Theorem 3.3

The proof of Theorem 3.3 follows the same steps as that of the
proof of Theorem 3.1 that we outlined in Section 3.3 and also gave
formally in Section 7.1, except for the following change. Instead of
using Theorem 3.7 for bounding the RDP for specific neighboring
datasets, we will use the following theorem.

Theorem 7.1. Let< ∈ N be arbitrary. For any _ ≥ 2 (including

the non-integral _) and any (D<,D ′
<) ∈ D<

same, we have

Eh∼M(D<)

[(M (
D ′
<

)
(h)

M (D<) (h)

)_]
≤ exp

(
_2

(4n0 − 1)2
<

)
. (42)

We prove Theorem 7.1 in Appendix D.2. Note that Theorem 7.1

implies that �<−1 ≤ exp
(
_2

(4n0−1)2
<

)
holds for every integer< ≥ 2.

Substituting this in (41) (by putting< = = = ⌊ =−124n0 ⌋ + 1), we get

Eh∼M(D′)

[(
M (D) (h)
M (D ′) (h)

)_]
≤ 4_

2 (4n0−1)2
= + 4

n0_− =−1
84n0 .

This proves Theorem 3.3.

8 PROOF SKETCH OF THE LOWER BOUND

Consider the binary case, where each data point 3 can take a value
from X = {0, 1}. Let the local randomizer R be the binary ran-
domized response (2RR) mechanism, where Pr [R (3) = 3] = 4n0

4n0+1
for 3 ∈ X. It is easy to verify that R is an n0-LDP mechanism.
For simplicity, let ? =

1
4n0+1 . Consider two neighboring datasets

D, D ′ ∈ {0, 1}= , where D = (0, . . . , 0, 0) and D ′
= (0, . . . , 0, 1).

Let : ∈ {0, . . . , =} denote the number of ones in the output of the
shuffler. As argued in Section 2.3 on page 4, since the output of
the shuffle mechanism M can be thought of as the distribution
of the number of ones in the output, we have that : ∼ M(D)
is distributed as a Binomial random variable Bin(=, ?). The proof
uses some properties of the Binomial r.v., which are provided in
Appendix E.

9 CONCLUSION

The analysis of the RDP for the shuffle model presented in this
paper was based on some new analysis techniques that may be of
independent interest. The utility of these bounds were also demon-
strated numerically, where we saw that in important regimes of
interest, we get 8× improvement over the state-of-the-art without
sampling and at least 10× improvement with sampling (see Section
4 for more details).

A simple extension of the results would be to work with local
approximate DP guarantees instead of pure LDP. This can be seen
by using the tight conversion between approximate DP and pure DP
given in [24]. However, there are several open problems of interest.
Our upper bounds hold for general discrete local mechanisms. The
extension to continuous distributions requires careful technical
analysis as the histogram used for RDP analysis would need to
approximate continuous distributions via discretization. We leave
the analysis of continuous distributions as a future work. Perhaps
the most important one is mentioned in Remark 7. There is a multi-
plicative gap of the order 4n0 in our upper and lower bounds, and
closing this gap is an important open problem. We believe that our
lower bound is tight (at least for the first order term) and the upper
bound is loose. Showing this or getting a tighter upper bound may
require new proof techniques. A second question could be how to
get an overall RDP guarantee if we are given local RDP guarantees
instead of local LDP guarantees.
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A PROOF OF COROLLARY 1

In this section, we prove the simplified bound (stated in (6)) on
the RDP of the shuffle model, provided that _, n0, = satisfy a certain
condition. In particular, we will show that if _, n0, = satisfy _445n0 <
=
9 , then

n (_) ≤ 1

_ − 1
log

(
1 + _2 (4n0 − 1)2

=4n0

)
, (43)

where = =
=−1
24n0 + 1. In order to show (43), it suffices to prove the

following (using which in (5) will yield (6)):

_∑
8=3

(
_

8

)
8Γ (8/2)

( (
42n0 − 1

)2
242n0=

)8/2
+ 4

n0_− =−1
84n0 ≤

(
_

2

)
(4n0 − 1)2

=4n0
.

(44)

First notice that
(_
8

)
8Γ (8/2) ≤ _8 (see Claim 1 on page 15). In order

to show (44), it suffices to show

_∑
8=3

(
_

(
42n0 − 1

)
(242n0=)1/2

)8
+ 4

n0_− =−1
84n0 ≤

(
_

2

)
(4n0 − 1)2

=4n0
. (45)

Note that there are (_ − 2) terms inside the summation. If we show
that each of those terms is smaller than 1 (which would imply
that the term corresponding to 8 = 3 is the largest one), then the
summation is at most (_ − 2) times the term with 8 = 3. Further, if
the additional exponential term in the LHS is upper-bounded by the
termwith 8 = 3, thenwe can prove (45) by showing that (_−1) times
the term with 8 = 3 is upper-bounded by the RHS. These arguments
are summarized in the following set of three inequalities:

_
(
42n0 − 1

)
(242n0=)1/2

< 1 (46)

4
n0_− =−1

84n0 ≤
(
_

(
42n0 − 1

)
(242n0=)1/2

)3
(47)

(_ − 1)
(
_

(
42n0 − 1

)
(242n0=)1/2

)3
≤

(
_

2

)
(4n0 − 1)2

=4n0
(48)

In the rest of this proof, we will derive the condition on n0, _, =

such that (48) is satisfied. As we see later, the values of n0, _ thus
obtained will automatically satisfy (46) and (47).

By canceling same terms from both sides of (48), we get

_2
(
42n0 − 1

)3
(24n0=)3/243n0/2

≤ (4n0 − 1)2
2=4n0

⇐⇒ _2 (42n0 − 1) (4n0 + 1)2 ≤
√
2=4n043n0/2 (49)

For the LHS and the RHS, we respectively have

(42n0 − 1) (4n0 + 1)2 = (42n0 − 1) (42n0 + 24n0 + 1)
≤ 44n0 + 243n0 ≤ 344n0 (50)

2=4n0 = = − 1 + 24n0 ≥ =. (51)

Therefore, in order to show (49), it suffices to show 3_244n0 ≤√
=43n0 , which is equivalent to _445n0 <

=
9 . Thus, we have shown

that _445n0 < =
9 implies (48).

Now we show that when _445n0 < =
9 , (46) and (47) are automati-

cally satisfied:

(1) Proof of (46):

_
(
42n0 − 1

)
√
242n0=

≤ _42n0
√
24n0=

≤
√

_445n0

24n0=
≤

√
=/9
=

< 1.

In the second inequality we used _ ≥ 1 and in the penulti-
mate inequality we used 24n0= ≥ = from (51).

(2) Proof of (47): For this, first we upper-bound the LHS and
lower-bound the RHS, and then note that the upper-bound
is smaller than the lower-bound. For the upper-bound on

exp(n0_ − =−1
84n0 ), note that n0_ ≤ 45n0/4_ =

(
45n0_4

)1/4
<(=

9

)1/4
=

=1/4
√
3
. Also note that 4n0 ≤ 45n0/4_ <

=1/4
√
3
, which

implies =−1
84n0 =

√
3
8

=−1
=1/4 ≥

√
3

16 =
3/4. Substituting these bounds

in the exponent of exp(n0_ − =−1
84n0 ), we get:

exp

(
n0_ − = − 1

84n0

)
≤ exp

(
=1/4
√
3

−
√
3

16
=3/4

)

= exp

(
−=3/4

(√
3

16
− 1
√
3=

))

≤ exp
(
−2 ′=3/4

)
,

(52)

where 2 ′ > 0 is a constant even for small values of =. For
example, for = = 100, we get 2 ′ ≥ 1

20 .

For the lower-bound on
(
_(42n0−1)
(242n0=)1/2

)3
, note that 24n0= =

= − 1 + 24n0 ≤ = − 1 + 2
(=
9

)1/5 ≤ 2=, where 4n0 ≤
(=
9

)1/5
follows from 45n0 ≤ _445n0 <

=
9 . Now we show the lower

bound:

_3 (42n0 − 1)3

(242n0=)3/2
≥ (4n0 − 1)3 (4n0 + 1)3

(24n0=)3/243n0/2

≥ (4n0 − 1)343n0
(2=)3/243n0/2

≥ (4n0 − 1)3

(2=)3/2
≥

n30

(2=)3/2

(53)

Note that the upper-bound on exp(n0_ − =−1
84n0 ) is exponen-

tially small in =3/4, whereas, the lower-bound on _3 (42n0−1)3
(242n0=)3/2

is inverse-polynomial in =. So, for sufficiently large =, (47)
will be satisfied.

This completes the proof of Corollary 3.2

Claim 1 (An Inequality for the Gamma Function). For any _ ∈ N
and : ≥ 3, we have

(_
:

)
:Γ(:/2) ≤ _: .

Proof. Note that for any _ ∈ N and : ≤ _, we have
(_
:

)
=

_ (_−1) (_−2) ...(_−:+1)
:! .

We show the claim separately for the cases when : is an even
integer or not.

(1) When : is an even integer: Since for any integer = ∈ N,
Γ(=) = (= − 1)!, so when : is an even integer, we have(

_

:

)
:Γ(:/2) = _(_ − 1) (_ − 2) . . . (_ − : + 1)

:!
× : × (:

2
− 1)!



≤ _(_ − 1) (_ − 2) . . . (_ − : + 1)

≤ _: .

(2) When : is an odd integer: Note that for any integer = ∈ N,
we have Γ

(
= + 1

2

)
=

(2=)!
4==!

√
c ; see [42]. Let : = 20 + 1. Then(

_

:

)
:Γ(:/2) =

(
_

:

)
:Γ(0 + 1

2
)

=
_(_ − 1) (_ − 2) . . . (_ − : + 1)

:!
× : × (20)!

400!

√
c

= _(_ − 1) (_ − 2) . . . (_ − : + 1)
√
c

400!
(a)
≤ _(_ − 1) (_ − 2) . . . (_ − : + 1)

≤ _:

where (a) follows because
√
c

400! ≤ 1 when 0 ≥ 1 ⇐⇒ : ≥ 3.

This proves Claim 1. �

B OMITTED DETAILS FROM SECTION 5

B.1 Proof of Lemma 5.1

Lemma (Restating Lemma 5.1). � (P) and � (P ′) can be written

as the following convex combinations:

� (P) =
∑

C⊆[=−1]
@ |C | (1 − @)=−|C |−1� (PC), (54)

� (P ′) =
∑

C⊆[=−1]
@ |C | (1 − @)=−|C |−1� (P ′

C), (55)

where PC,P ′
C are defined in (19)-(21).

Proof. We only show (54); (55) can be shown similarly.
For convenience, for any C ⊆ [= − 1], define

P ′
|C |,= = {p′

=, . . . ,p
′
=} with |P ′

|C |,= | = |C|,

P̃[=−1]\C = {p̃8 : 8 ∈ [= − 1] \ C}.

With these notations, we canwritePC = P ′
|C |,=

⋃ P̃[=−1]\C
⋃{p=}

and P ′
C = P ′

|C |,=
⋃ P̃[=−1]\C

⋃{p′
=}.

Note that p8 = @p′
= + (1 − @)p̃8 for all 8 ∈ [= − 1]. For any

8 ∈ [= − 1], define the following random variable p̂8 :

p̂8 =

{
p′
= w.p. @,

p̃8 w.p. 1 − @.

Note that E[p̂8 ] = p8 .
For any subset C ⊆ [= − 1], define an event EC := {p̂8 =

p′
= for 8 ∈ C and p̂8 = p̃8 for 8 ∈ [= − 1] \ C}. Since p̂1, . . . , p̂=−1

are independent random variables, we have Pr[EC] = @ |C | (1 −
@)=−|C |−1.

Consider an arbitrary h ∈ A=
�
. Define a random variable* (P)

over A=
�
whose distribution is equal to � (P).

� (P)(h) = Pr[* (P) = h]
= Pr[* (p1, . . . ,p=−1,p=) = h]
= Pr

[
*

(
E[p̂1], . . . ,E[p̂=−1],p=

)
= h

]

=

∑
C⊆[=−1]

Pr[EC] Pr
[
*

(
E[p̂1], . . . ,E[p̂=−1],p=

)
= h | EC

]
(e)
=

∑
C⊆[=−1]

Pr[EC] Pr
[
*

(
P ′
|C |,=

⋃
P̃[=−1]\C

⋃
{p=}

)
= h

]

=

∑
C⊆[=−1]

Pr[EC] Pr
[
* (PC) = h

]

=

∑
C⊆[=−1]

@ |C | (1 − @)=−|C |−1 Pr
[
* (PC) = h

]
,

=

∑
C⊆[=−1]

@ |C | (1 − @)=−|C |−1� (PC) (h) (56)

where, P ′
|C |,= and P̃[=−1]\C in the RHS of (e) are defined in the

statement of the claim.
Since the above calculation holds for every h ∈ A=

�
, we have

proved (54). �

B.2 Proof of Lemma 5.2

Lemma (Restating Lemma 5.2). For any _ > 1, the function

Eh∼� (P′)

[(
� (P) (h)
� (P′) (h)

)_]
is jointly convex in (� (P), � (P ′)), i.e.,

Eh∼� (P′)

[(
� (P) (h)
� (P ′) (h)

)_]

≤
∑

C⊆[=−1]
@ |C | (1 − @)=−|C |−1

E
h∼�

(
P′
C

)

©­­«
� (PC) (h)
�

(
P ′
C

)
(h)

ª®®¬

_
.

(57)

Proof. For simplicity of notation, let % = � (P) and & = � (P ′).

Note that E&

[(
%
&

)_]
=

∫
%_&1−_3`, which is also called the

Hellinger integral. In order to prove the lemma, it suffices to show
that

∫
%_&1−_3` is jointly convex in (%,&), i.e., if %U = U%0 + (1 −

U)%1 and &U = U&0 + (1 − U)&1 for some U ∈ [0, 1], then the
following holds∫

%_U&
1−_
U 3` ≤ U

∫
%_0&

1−_
0 3` + (1 − U)

∫
%_1&

1−_
1 3`. (58)

Proof of (58) is implicit in the proof of [39, Theorem 13]. However,
for completeness, we prove (58) in Lemma B.1 below.

Since % = � (P) and & = � (P ′) are convex combinations of
%C = � (PC) and&C = � (P ′

C), respectively, with same coefficients,
repeated application of (58) implies (57). �

Lemma B.1. For _ ≥ 1, the Hellinger integral
∫
%_&1−_3` is

jointly convex in (%,&), i.e., if %U = U%0 + (1 − U)%1 and &U =

U&0 + (1 − U)&1 for some U ∈ [0, 1], then we have∫
%_U&

1−_
U 3` ≤ U

∫
%_0&

1−_
0 3` + (1 − U)

∫
%_1&

1−_
1 3`. (59)

Proof. Let 5 (G) = G_ . It is easy to show that for any _ ≥ 1, 5 (G)
is a convex function when G > 0. This implies that for any point
l ∈ Ω in the sample space, we have

5

(
%U (l)
&U (l)

)
= 5

(
U%0 (l)
&U (l)

+ (1 − U)%1 (l)
&U (l)

)



= 5

(
U&0 (l)
&U (l)

%0 (l)
&0 (l)

+ (1 − U)&1 (l)
&U (l)

%1 (l)
&1 (l)

)

≤ U&0 (l)
&U (l)

5

(
%0 (l)
&0 (l)

)
+ (1 − U)&1 (l)

&U (l)
5

(
%1 (l)
&1 (l)

)
,

where the last inequality follows from the convexity of 5 (G). By
multiplying both sides with &U (l) and substituting the definition
of 5 (G) = G_ , we get

%_U (l)&1−_
U (l) ≤ U%_0 (l)&

1−_
0 (l) + (1 − U)%_1 (l)&

1−_
1 (l) .

By integrating this equality, we get (59). �

B.3 Proof of Lemma 5.3

Lemma (Restating Lemma 5.3). For any 8 ∈ [= − 1], we have

Eh∼� (P′)

[(
� (P) (h)
� (P ′) (h)

)_]
≤ Eh∼� (P′

−8 )


©­­«
� (P−8 ) (h)
�

(
P ′
−8

)
(h)

ª®®¬

_
,

where, for 8 ∈ [= − 1], P−8 = P \ {p8 } and P ′
−8 = P ′ \ {p8 }. Note

that in the LHS, � (P), � (P ′) are distributions over A=
�
, whereas, in

the RHS, � (P−8 ), � (P ′
−8 ) for any 8 ∈ [= − 1] are distributions over

A=−1
�

.

Proof. First we show that Eh∼� (P′)

[(
� (P) (h)
� (P′) (h)

)_]
is convex in

p8 for any 8 ∈ [= − 1].
Note that due to the independence of R on different data points,

for any h = (ℎ1, . . . , ℎ�) ∈ A=
�
, we can recursively write the dis-

tributions � (P)(h) and � (P ′) (h) (which are defined in (17)) as
follows:

� (P)(h) =
�∑
9=1

?8 9� (P−8 ) (h̃ 9 ), ∀8 ∈ [=] (60)

� (P ′) (h) =
�∑
9=1

?8 9� (P ′
−8 ) (h̃ 9 ) =

�∑
9=1

? ′=9� (P
′
−=) (h̃ 9 ), ∀8 ∈ [= − 1] ,

(61)

where h̃ 9 = (ℎ1, . . . , ℎ 9−1, ℎ 9 −1, ℎ 9+1, . . . , ℎ�) for any 9 ∈ [�]. Here,
� (P−8 ), � (P ′

−8 ) are distributions over A
=−1
�

.8

Fix any 8 ∈ [= − 1] and also fix arbitrary p1, . . . ,p8−1,p8+1, . . .
,p=,p

′
= . Take any U ∈ [0, 1], and consider pU8 = Up0

8 + (1 − U)p1
8 .

Let PU = (p1, . . . ,p
U
8 , . . . ,p=), P0 = (p1, . . . ,p

0
8 , . . . ,p=), and

P1 = (p1, . . . ,p
1
8 , . . . ,p=). Similarly, let P ′

U = (p1, . . . ,p
U
8 , . . . ,p

′
=),

P ′
0 = (p1, . . . ,p

0
8 , . . . ,p

′
=), and P ′

1 = (p1, . . . ,p
1
8 , . . . ,p

′
=). With

these definitions, we have PU = UP0 + (1 − U)P1. Note that
(PU )−8 = (P0)−8 = (P1)−8 .

Then, from the recursive definitions of � (P) and � (P ′) (given
in (60) and (61), respectively), for any h ∈ A=

�
, we get

� (PU ) (h) =
�∑
9=1

?U8 9� ((PU )−8 ) (h̃ 9 )

8We assume that � (P−8 ) (h̃ 9 ) = 0 and � (P′
−8 ) (h̃ 9 ) = 0 if ℎ 9 − 1 < 0.

= U

�∑
9=1

?08 9� ((PU )−8 ) (h̃ 9 ) + (1 − U)
�∑
9=1

?18 9� ((PU )−8 ) (h̃ 9 )

(since pU8 = Up0
8 + (1 − U)p1

8 )

= U

�∑
9=1

?08 9� ((P0)−8 ) (h̃ 9 ) + (1 − U)
�∑
9=1

?18 9� ((P1)−8 ) (h̃ 9 )

(since (PU )−8 = (P0)−8 = (P1)−8 )
= U� (P0) (h) + (1 − U)� (P1) (h).

Similarly, we can show that � (P ′
U ) (h) = U� (P ′

0) (h)+(1−U)� (P
′
1) (h).

Thus we have shown that

� (PU ) = U� (P0) + (1 − U) � (P1)
�

(
P ′
U

)
= U�

(
P ′
0

)
+ (1 − U) �

(
P ′
1

)
.

From LemmaB.1, we have thatEh∼� (P′)

[(
� (P) (h)
� (P′) (h)

)_]
is jointly

convex in � (P) and � (P ′). As a result, we get

Eh∼� (P′
U )

[(
� (PU ) (h)
� (P ′

U ) (h)

)_]
≤ UEh∼� (P′

0)


©­­«
� (P0) (h)
�

(
P ′
0

)
(h)

ª®®¬

_
+ (1 − U) Eh∼� (P′

1)


©­­«
� (P1) (h)
�

(
P ′
1

)
(h)

ª®®¬

_

(62)

Thus, we have shown that Eh∼� (P′)

[(
� (P) (h)
� (P′) (h)

)_]
is convex in p8

for any 8 ∈ [= − 1].
Now we are ready to prove Lemma 5.3.
The LDP constraints put some restrictions on the set of values

that the distribution p8 can take; however, the maximum value that

Eh∼� (P′)

[(
� (P) (h)
� (P′) (h)

)_]
takes can only increase when we remove

those constraints. We instead maximize it w.r.t. p8 over the simplex
Δ� := {(?81, . . . , ?8�) : ?8 9 ≥ 0 for 9 ∈ [�] and ∑�

9=1 ?8 9 = 1}. This
implies

Eh∼� (P′)

[(
� (P)(h)
� (P ′) (h)

)_]
≤ max

p8 ∈Δ�

Eh∼� (P′)

[(
� (P)(h)
� (P ′) (h)

)_]

(63)

Substituting from (60) and (61) into (63), we get

Eh∼� (P′)

[(
� (P)(h)
� (P ′) (h)

)_]
≤ (64)

max
p8 ∈Δ�

Eh∼� (P′)


(∑�

9=1 ?8 9� (P−8 ) (h̃ 9 )∑�
9=1 ?8 9� (P ′

−8 ) (h̃ 9 )

)_
(65)

Since maximizing a convex function over a polyhedron attains its
maximum value at one of its vertices, and there are � vertices in
the simplex Δ� , which are of the form ?8 9∗ = 1 for some 9∗ ∈ [�]
and ?8: = 0 for all : ≠ 9∗, we have

max
p8 ∈Δ�

Eh∼� (P′)


(∑�

9=1 ?8 9� (P−8 ) (h̃ 9 )∑�
9=1 ?8 9� (P ′

−8 ) (h̃ 9 )

)_



(a)
= Eh∼� (P′)


(
� (P−8 ) (h̃ 9∗ )
� (P ′

−8 ) (h̃ 9∗ )

)_
(b)
= Eh∼� (P′

−8 )

[(
� (P−8 ) (h)
� (P ′

−8 ) (h)

)_]

Since the 8’th data point deterministically maps to the 9∗’th output
by the mechanism R, the expectation term in the RHS of (a) has no
dependence on the 8’th data point, so we can safely remove that,
which gives (b). This proves Lemma 5.3. �

B.4 Proof of Corollary 5.4

Corollary (Restating Corollary 5.4). Consider any< ∈ {0, 1, . . . , =−
1}. Let D (=)

<+1 =
(
3 ′=, . . . , 3

′
=, 3=

)
and D ′(=)

<+1 =
(
3 ′=, . . . , 3

′
=

)
. Then for

any C ∈
( [=−1]

<

)
, we have

Eh∼� (P′
C )


(
� (PC) (h)
� (P ′

C) (h)

)_
≤ E

h∼M(D′(=)
<+1)


(
M(D (=)

<+1) (h)

M(D ′(=)
<+1) (h)

)_
.

Proof. Recall from Lemma 5.1 and the notation defined in Ap-
pendix B, that for anyC ⊆ [=−1], we havePC = P ′

|C |,=
⋃ P̃[=−1]\C

⋃{p=}
andP ′

C = P ′
|C |,=

⋃ P̃[=−1]\C
⋃{p′

=}, whereP ′
|C |,= = {p′

=, . . . ,p
′
=}

with |P ′
|C |,= | = |C| and P̃[=−1]\C = {p̃8 : 8 ∈ [= − 1] \ C}.

Now, repeatedly applying Lemma 5.3 over the set of distributions
p̃8 ∈ P̃[=−1]\C , we get that

Eh∼� (P′
C )


(
� (PC) (h)
� (P ′

C) (h)

)_
≤ E

h∼�
(
P′
|C|,=

⋃{p′= }
)

©­­«
�

(
P ′
|C |,=

⋃{p=}
)
(h)

�
(
P ′
|C |,=

⋃{p′
=}

)
(h)

ª®®¬

_
= E

h∼M(D′(=)
<+1)


(
M(D (=)

<+1) (h)

M(D ′(=)
<+1) (h)

)_
In the last equality, we used that P ′

|C |,=
⋃{p=} has |C| + 1 =< + 1

distributions which are associated with the (< + 1) data points
{3 ′=, . . . , 3 ′=, 3=} (< of them are equal to3 ′=); similarly,P ′

|C |,=
⋃{p′

=}
also has |C| + 1 = < + 1 distributions which are associated with
the (< + 1) data points {3 ′=, . . . , 3 ′=, 3 ′=} (all of them are equal to 3 ′=).

This implies that for every h ∈ A<+1
�

, �
(
P ′
|C |,=

⋃{p=}
)
(h) and

�
(
P ′
|C |,=

⋃{p′
=}

)
(h) are distributionally equal to M(D (=)

<+1) (h)

andM(D ′(=)
<+1) (h), respectively.

This proves Corollary 5.4. �

C OMITTED DETAILS FROM SECTION 6

C.1 Proof of Lemma 6.1

Lemma (Restating Lemma 6.1). The random variable - has the

following properties:

(1) - has zero mean, i.e., Eh∼M(D<) [- (h)] = 0.

(2) The variance of - is equal to

Eh∼M(D<)
[
- (h)2

]
=<

©­«
�∑
9=1

? ′29
? 9

− 1
ª®¬
.

(3) For 8 ≥ 3, the 8th moment of - is bounded by

Eh∼M(D<)
[
(- (h))8

]
≤ Eh∼M(D<)

[
|- (h) |8

]
≤ 8Γ (8/2)

(
2<a2

)8/2
,

where a2 =
(4n0−4−n0 )2

4 and Γ (I) =

∫ ∞
0

GI−14−G3G is the

Gamma function.

Proof. For simplicity of notation, let `0, `1 denote the distri-
butionsM(D<),M(D ′

<), respectively. As shown in (32), for any
h ∈ A<

�
, we have

- (h) =<

(
`1 (h)
`0 (h)

− 1

)
=

©­«
�∑
9=1

0 9ℎ 9
ª®¬
−<,

where 0 9 =
?′9
? 9

∈ [4−n0 , 4n0 ] for all 9 ∈ [�].
Now we show the three properties.

(1) The mean of the random variable - is given by

Eh∼`0 [- (h)] =<Eh∼`0

[
`1 (h)
`0 (h)

− 1

]

=<
∑

h∈A<
�

`0 (h)
(
`1 (h)
`0 (h)

− 1

)

=<
∑

h∈A<
�

(`1 (h) − `0 (h)) = 0

(2) The variance of the random variable - is given by

Eh∼`0
[
- (h)2

]
= Eh∼`0


©­«

�∑
9=1

0 9ℎ 9 −<
ª®¬
2

=<2
Eh∼`0


�∑
9=1

�∑
;=1

0 90;
ℎ 9ℎ;

<2
− 2

�∑
9=1

0 9
ℎ 9

<
+ 1


=<2

Eh∼`0


�∑
9=1

029

ℎ29

<2
+

�∑
9=1

∑
;≠9

0 90;
ℎ 9ℎ;

<2
− 2

�∑
9=1

0 9
ℎ 9

<
+ 1


=<2

[ �∑
9=1

(? ′9 )
2

?29

Eh∼`0 [ℎ29 ]
<2

+
�∑
9=1

∑
;≠9

? ′9?
′
;

? 9?;

Eh∼`0 [ℎ 9ℎ; ]
<2

− 2

�∑
9=1

? ′9
? 9

Eh∼`0 [ℎ 9 ]
<

+ 1
]

(b)
= <2

[ �∑
9=1

(? ′9 )
2

?29

(<? 9 (1 − ? 9 ) +<2?29 )
<2

+
�∑
9=1

∑
;≠9

? ′9?
′
;

? 9?;

(−<? 9?; +<2? 9?; )
<2

− 2

�∑
9=1

? ′9
? 9

? 9<

<
+ 1

]

=<2
[ �∑
9=1

(
(? ′9 )

2
(
1 − ? 9

)
? 9<

+ (? ′9 )
2

)



+
�∑
9=1

∑
;≠9

(
−
? ′9?

′
;

<
+ ? ′9?

′
;

)
− 1

]

=<2
[ 1
<

©­«
�∑
9=1

(? ′9 )
2 (1 − ? 9 )
? 9

−
�∑
9=1

∑
;≠9

? ′9?
′
;

ª®¬
+

�∑
9=1

(? ′9 )
2 +

�∑
9=1

∑
;≠9

? ′9?
′
;
− 1

]

=<2
[ 1
<

©­«
�∑
9=1

(? ′9 )
2

? 9
−

�∑
9=1

(? ′9 )
2 −

�∑
9=1

∑
;≠9

? ′9?
′
;

ª®¬
+

�∑
9=1

(? ′9 )
2 +

�∑
9=1

∑
;≠9

? ′9?
′
;
− 1

]

(c)
= <

©­«
�∑
9=1

(? ′9 )
2

? 9
− 1

ª®¬
.

Here, step (b) uses properties of multinomial distribution:
Eh∼`0 [ℎ 9 ] = <? 9 , Eh∼`0 [ℎ29 ] = <? 9 (1 − ? 9 ) +<2?29 , and

Eh∼`0 [ℎ 9ℎ; ] = −<? 9?; +<2? 9?; for 9 ≠ ; . Step (c) follows

because
∑�

9=1 (? ′9 )
2 + ∑�

9=1
∑
;≠9 ?

′
9?

′
;
=

(∑�
9=1 ?

′
9

)2
= 1, as

p′
= (? ′1, . . . , ?

′
�
) is a probability distribution.

(3) Let.8 denote the random variable associated with the output
of the local randomizer at the 8’th client. So, Pr [.8 = 9] = ? 9
for 9 ∈ [�]. Recall that ℎ 9 denote the number of clients
that map to the 9 ’th element from [�]. This implies that
for any 9 ∈ [�], we have ℎ 9 =

∑<
8=1 1{.8=9 } . For any 8 ∈

[<], define a random variable -8 =

(∑�
9=1 0 91{.8=9 }

)
− 1,

where 0 9 =
?′9
? 9
. Observe that -1, . . . , -< are zero mean

i.i.d. random variables, because for any 8 ∈ [<], we have
E [-8 ] =

(∑�
9=1 0 9? 9

)
− 1 = 0. With these definitions, we

can equivalently represent - (h) =

(∑�
9=1 0 9ℎ 9

)
− < as

- (h) =
∑<
8=1 -8 , which is the sum of < zero mean i.i.d.

r.v.s. Furthermore, since 0 9 ∈ [4−n0 , 4n0 ] for any 9 ∈ [�],
we have -8 ∈ [4−n0 − 1, 4n0 − 1]. Since any bounded r.v.

/ ∈ [0, 1] is a sub-Gaussian r.v. with parameter (1−0)2
4

(see [38, Lemma 1.8])), we have that -8 is a sub-Gaussian r.v.

with parameter a2 = (4n0−4−n0 )2
4 , i.e.,

E

[
4B-8

]
≤ 4

B2a2

2 , ∀B ∈ R.

It follows that - (h) = ∑<
8=1 -8 is also a sub-Gaussian ran-

dom variable with parameter<a2. The remaining steps are
similar to bound the moments of a sub-Gaussian random
variable. We write them here for completeness. From Cher-
noff bound we get

Pr [- ≥ C] ≤ min
B≥0

E
[
4B-

]
4BC

≤ min
B≥0

4
B2<a2

2

4BC

(b)
≤ 4

− C2

2<a2

where (b) follows by setting B =
C

<a2
. Similarly, we can

bound the term Pr [−- ≥ C]. Thus, we get

Pr [|- | ≥ C] ≤ 24
− C2

2<a2

Hence, the 8’th moment of the random variable - can be
bounded by

E
[
- 8

]
≤ E

[
|- |8

]
= 8

∫ ∞

0
C8−1 Pr [|- | ≥ C] 3C

≤ 28

∫ ∞

0
C8−14−

C2

2<a2 3C

(b)
= 8

(
2<a2

)8/2 ∫ ∞

0
D8/2−14−D3D

= 8
(
2<a2

)8/2
Γ (8/2) ,

where step (b) follows by setting D =
C2

2<a2
(change of vari-

ables). In the last step, Γ (I) =
∫ ∞
0 GI−14−G3G denotes the

Gamma function. Thus, we conclude that for every 8 ≥ 3, we

have E
[
|- |8

]
≤ 8Γ (8/2)

(
2<a2

)8/2
, where a2 = (4n0−4−n0 )2

4 .

This completes the proof of Lemma 6.1. �

C.2 Proof of Lemma 6.2

Lemma (Restating Lemma 6.2). We have the following bound:

sup
(p,p′) ∈Tn0

©­«
�∑
9=1

? ′29
? 9

− 1
ª®¬
=

(4n0 − 1)2
4n0

.

Proof. For any (p,p′) ∈ Tn0 , define 5 (p,p′) =
∑�

9=1
(?′9 )2
? 9

.

Since the function 6 (G,~) =
G2

~ is convex in (G,~) for ~ > 0, it

implies that the objective function 5 (p,p′) is also convex in (p,p′).
It is easy to verify that Tn0 is a polytope.

Since we maximize a convex function 5 (p,p′) over a polytope
Tn0 , the optimal solution is one of the vertices of the polytope. Note
that any vertex (p,p′) of the polytope in � dimensions satisfies

all the � LDP constraints (i.e., 4−n0 ≤ ? 9

?′9
≤ 4n0 , 9 = 1, . . . , �) with

equality. Without loss of generality, assume that the optimal so-

lution (p̃, p̃′) is a vertex such that
?̃′9
?̃ 9

= 4n0 for 9 = 1, . . . , ; and

?̃′9
?̃ 9

= 4−n0 for 9 = ; + 1, . . . , �, for some ; ∈ [�]. Thus, we have

1 =
�∑
9=1

?̃ ′9 = 4n0
;∑
9=1

?̃ 9 + 4−n0
�∑

9=;+1
?̃ 9

= 4n0
;∑
9=1

?̃ 9 + 4−n0
(
1 −

;∑
9=1

?̃ 9

)
= 4−n0 + (4n0 − 4−n0 )

;∑
9=1

?̃ 9



Rearranging the above gives
∑;

9=1 ?̃ 9 =
1

4n0+1 . This implies
∑;

9=1 ?̃
′
9 =

4n0
4n0+1 , which in turn implies

∑�
9=;+1 ?̃

′
9 =

1
4n0+1 . Now the result fol-

lows from the following set of equalities:

5
(
p̃, p̃′)

=

�∑
9=1

(?̃ ′9 )
2

?̃ 9
=

;∑
9=1

?̃ ′9
?̃ 9

?̃ ′9 +
�∑

9=;+1

?̃ ′9
?̃ 9

?̃ ′9

= 4n0
;∑
9=1

?̃ ′9 + 4−n0
�∑

9=;+1
?̃ ′9

=
42n0

4n0 + 1
+ 1

4n0 (4n0 + 1) =
(4n0 )3 + 1

4n0 (4n0 + 1) =
(4n0 − 1)2

4n0
+ 1,

where the last equality uses the identity G3 + 1 = (G + 1) (G2 −G + 1).
This completes the proof of Lemma 6.2. �

D OMITTED DETAILS FROM SECTION 6

D.1 Omitted Details from Section 7.1

Before proving (40), first we show an important property of �<
that we will use in the proof.

Lemma D.1. �< is a non-increasing function of<, i.e.,

E
h∼M(D′(=)

<+1)


(
M(D (=)

<+1) (h)

M(D ′(=)
<+1) (h)

)_
≤ E

h∼M(D′(=)
< )


(
M(D (=)

< ) (h)
M(D (=)

< ) (h)

)_
,

(66)

where, for any : ∈ {<,< + 1}, D (=)
:

=
(
3 ′=, . . . , 3

′
=, 3=

)
and D ′(=)

:
=(

3 ′=, . . . , 3
′
=, 3

′
=

)
with |D: | = |D ′

:
| = : .

Proof. Lemma D.1 follows from Lemma 5.3 in a straightforward
manner, as, unlike Lemma D.1, in Lemma 5.3 we consider arbitrary
pairs of neighboring datasets. �

Now we can prove (40).

Proof of (40).

Eh∼M(D′)

[(
M(D)(h)
M(D ′) (h)

)_]
≤

=−1∑
<=0

@<�<

=

∑
<< ⌊ (1−W )@ (=−1) ⌋

@<�< +
∑

<≥⌊(1−W )@ (=−1) ⌋
@<�<

(a)
≤ �0

∑
<< ⌊ (1−W )@ (=−1) ⌋

@< +
∑

<≥⌊(1−W )@ (=−1) ⌋
@<�<

(b)
≤ �04

−@ (=−1)W2
2 +

∑
<≥⌊(1−W )@ (=−1) ⌋

@<�<

(c)
≤ 4n0_4−

@ (=−1)W2
2 +

∑
<≥⌊(1−W )@ (=−1) ⌋

@<�<

(d)
≤ 4n0_4−

@ (=−1)W2
2 + � (1−W )@ (=−1) .

Here, steps (a) and (d) follow from the fact that�< is a non-increasing
function of< (see Lemma D.1). Step (b) follows from the Chernoff

bound. In step (c), we used that M(3=) = R(3=) and M(3 ′=) =

R(3 ′=), which together imply that

�0 = E

[(
M(3=)
M(3 ′=)

)_]
= E

[(
R(3=)
R(3 ′=)

)_]
≤ 4n0_,

where the inequality follows because R is an n0-LDP mechanism.
�

D.2 Proof of Theorem 7.1

Theorem (Restating Theorem 7.1). Let< ∈ N be arbitrary. For

any _ ≥ 2 (including the non-integral _), we have

sup
(D<,D′

<) ∈D<
same

Eh∼M(D<)

[(M (
D ′
<

)
(h)

M (D<) (h)

)_]

≤ exp

(
_2

(4n0 − 1)2
<

)
.

(67)

Proof. Fix an arbitrary < ∈ N. Let (D<,D ′
<) ∈ D<

same and
p = (?1, . . . , ?�),p′

= (? ′1, . . . , ?
′
�
) be the same as defined in the

proof of Theorem 3.7 in Section 6.

Eh∼M(D<)

[(M (
D ′
<

)
(h)

M (D<) (h)

)_]
= Eh∼M(D<)


©­«

�∑
9=1

? ′9
? 9

ℎ 9

<

ª®¬
_

= Eh∼M(D<)


©­«
1 +

�∑
9=1

? ′9
? 9

ℎ 9

<
− 1

ª®¬
_

≤ Eh∼M(D<)


exp

©­«
_
©­«

�∑
9=1

? ′9
? 9

ℎ 9

<
− 1

ª®¬
ª®¬

, (68)

where the first equality uses (32) and the last inequality follows
from 1 + G ≤ 4G .

In (68),h is distributed according toM(D<) = H< (R(3), . . . ,R(3)),
whereH< denotes the shuffling operation on< elements and range
of R is equal to [�]. Since all the< data points are identical, and
all clients use independent randomness for computing R(3), we
can assume, w.l.o.g., that M(D<) is a collection of< i.i.d. random
variables -1, . . . , -< , where Pr [-8 = 9] = ? 9 for 9 ∈ [�]. Thus, we
have (in the following, note that h = (ℎ1, . . . , ℎ�) is a r.v.)

1

<

�∑
9=1

? ′9
? 9

ℎ 9 =
1

<

�∑
9=1

? ′9
? 9

<∑
8=1

1{-8=9 }

=
1

<

<∑
8=1

�∑
9=1

? ′9
? 9

1{-8=9 } =
1

<

<∑
8=1

? ′
-8

?-8

, (69)

where 1{· } denotes the indicator r.v. Substituting from (69) into (68),
we get

Eh∼M(D<)


exp

©­«
_
©­«

�∑
9=1

? ′9
? 9

ℎ 9

<
− 1

ª®¬
ª®¬


= E-1,...,-<

[
exp

(
_

<

<∑
8=1

(
? ′
-8

?-8

− 1

))]



=

<∏
8=1

E-8

[
exp

(
_

<

(
? ′
-8

?-8

− 1

))]

=
©­«
E-∼p


4

_
<

(
?′
-

?-
−1

) 
ª®¬
<

(70)

wherep = [?1, . . . , ?�]. From Taylor expansion of 4G = 1+∑∞
:=1

G:

:! ,
we get

E-∼p


4

_
<

(
?′
-

?-
−1

) 
= 1 +

∞∑
:=1

1

:!
E-∼p

[(
_

<

(
? ′
-

?-
− 1

)): ]

= 1 +
∞∑
:=1

1

:!

�∑
9=1

? 9

(
_

<

(
? ′9
? 9

− 1

)):

= 1 +
∞∑
:=2

1

:!

�∑
9=1

? 9

(
_

<

(
? ′9
? 9

− 1

)):

≤ 1 +
∞∑
:=2

1

:!

�∑
9=1

? 9

(
_(4n0 − 1)

<

):

= 1 +
∞∑
:=1

1

:!

(
_(4n0 − 1)

<

):
− _(4n0 − 1)

<

= 4
_ (4n0−1)

< − _ (4n0 − 1)
<

, (71)

where the inequality follows from
?′9
? 9

≤ 4n0 , which holds for all

9 ∈ [�]. Substituting from (71) into (70), we get

Eh∼M(D<)

[(M (
D ′
<

)
(h)

M (D<) (h)

)_]
≤

(
4
_ (4n0−1)

< − _ (4n0 − 1)
<

)<

= 4_ (4
n0−1)

[
1 − _ (4n0 − 1)

<
4
−_ (4n0−1)

<

]<

≤ 4_ (4
n0−1)4−_ (4

n0−1)4
−_ (4n0−1)

< (since 1 − G ≤ 4−G )

= 4
_ (4n0−1)

[
1−4

−_ (4n0−1)
<

]

≤ 4
_2 (4n0−1)2

< . (since 1 − 4−G ≤ G )

This completes the proof of Theorem 7.1. �

E OMITTED DETAILS FROM SECTION 8

In this section, we provide a complete proof of Theorem 3.4.
Consider the binary case, where each data point 3 can take a

value from X = {0, 1}. Let the local randomizer R be the binary
randomized response (2RR) mechanism, where Pr [R (3) = 3] =

4n0
4n0+1 for 3 ∈ X. It is easy to verify that R is an n0-LDP mechanism.

For simplicity, let ? =
1

4n0+1 . Consider two neighboring datasets
D, D ′ ∈ {0, 1}= , where D = (0, . . . , 0, 0) and D ′

= (0, . . . , 0, 1).
Let : ∈ {0, . . . , =} denote the number of ones in the output of the
shuffler. As argued in Section 2.3 on page 4, since the output of
the shuffle mechanism M can be thought of as the distribution
of the number of ones in the output, we have that : ∼ M(D) is

distributed as a Binomial random variable Bin(=, ?). Thus, we have

M(D)(:) =
(
=

:

)
?: (1 − ?)=−:

M(D ′) (:) = (1 − ?)
(
= − 1

: − 1

)
?:−1 (1 − ?)=−:

+ ?

(
= − 1

:

)
?: (1 − ?)=−:−1 .

It will be useful to compute M(D) (:)
M(D′) (:) − 1 for the calculations later.

M(D ′) (:)
M(D)(:) − 1 =

:

=

(1 − ?)
?

+ (= − :)
=

?

(1 − ?) − 1

=
:

=
4n0 + (= − :)

=
4−n0 − 1

=
:

=

(
4n0 − 4−n0

)
+ 4−n0 − 1

=
:

=

(
42n0 − 1

4n0

)
−

(
4n0 − 1

4n0

)

=

(
42n0 − 1

=4n0

) (
: − =

4n0 + 1

)
(72)

Thus, we have that

E:∼M(D)

[(
M(D ′) (:)
M(D)(:)

)_]
= E

[(
1 + M(D ′) (:)

M(D)(:) − 1

)_]

(a)
= 1 +

_∑
8=1

(
_

8

)
E

[(
M(D ′) (:)
M(D)(:) − 1

)8 ]

(b)
= 1 +

_∑
8=2

(
_

8

)
E

[(
M(D ′) (:)
M(D)(:) − 1

)8 ]

= 1 +
_∑
8=2

(
_

8

) ( (
42n0 − 1

)
=4n0

)8
E

[(
: − =

4n0 + 1

)8 ]
(from (72))

(c)
= 1 +

(
_

2

)
(4n0 − 1)2

=4n0
+

_∑
8=3

(
_

8

) ( (
42n0 − 1

)
=4n0

)8
E

[(
: − =

4n0 + 1

)8 ]
.

Here, step (a) from the polynomial expansion (1+G)= =
∑=
:=0

(=
:

)
G: ,

step (b) follows because the term corresponding to 8 = 1 is zero (i.e.,

E:∼M(D)
[(

M(D′) (:)
M(D) (:) − 1

)]
= 0), and step (c) from the from the

fact that E:∼M(D)
[ (
: − =

4n0+1
)2]

= =? (1 − ?) = =4n0

(4n0+1)2 , which
is equal to the variance of the Binomial random variable.

In view of Remark 6, this completes the proof of Theorem 3.4.


