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Abstract—This paper investigates the problem of secure
communication in a wireline noiseless scenario where a source
wishes to communicate to a number of destinations in the
presence of a passive external adversary. Different from the
multicast scenario, where all destinations are interested in
receiving the same message, in this setting different destinations
are interested in different messages. The main focus of this
paper is on characterizing the secure capacity region, when the
adversary has unbounded computational capabilities, but limited
network presence. Towards this end, an outer bound on the secure
capacity region is derived, and secure transmission schemes are
designed and analyzed in terms of achieved rate performance.
It is first shown that, for the case of two destinations, the designed
scheme matches the outer bound, hence characterizing the secure
capacity region. Then, a particular class of networks referred to
as two-layer networks is considered, where the source commu-
nicates with the destinations by hopping information through
one layer of relays. It is shown that the designed scheme is
indeed capacity achieving for any two-layer network for which
one of the following three conditions is satisfied: (i) the number
of destinations is three, (ii) the number of edges eavesdropped by
the adversary is one, (iii) the min-cut capacities assume specific
values. It is also shown that two-layer networks can be used
to model and study a more general class of networks, referred
to as separable. The key feature of separable networks is that
they can be partitioned into edge disjoint networks that satisfy
specific min-cut properties. In particular, it is proved that the
secure capacity region of any separable network can be char-
acterized from the secure capacity region of the corresponding
two-layer network. Finally, for an arbitrary network topology,
a two-phase scheme is designed and its rate performance is com-
pared with the capacity-achieving scheme for networks with two
destinations.

Index Terms—Network coding, physical layer, information
security.
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I. INTRODUCTION

ECURE network coding [1] considers the communication
S from a source to a number of destinations in the presence
of a passive external adversary, with unbounded computational
capabilities, but limited network presence. The work in [1]
showed that the source can securely multicast to all destina-
tions at a rate of M — k, where M is the min-cut capacity
between the source and each destination, and k is the number
of edges eavesdropped by the adversary. In such a multicast
scenario, all destinations are interested in receiving the same
message.

In this paper, we focus on multiple unicast traffic, where
a source wishes to securely communicate to a number of
destinations, each interested in an independent message. Our
primal objective lies in characterizing the secure capacity
region, by means of derivation of novel outer bounds as well
as design of polynomial-time transmission schemes.

A. Related Work

Network coding was pioneered by the seminal work of
Ahlswede et al. [2]. The authors proved that, if M is the
min-cut capacity from the source to each destination, then
the source can multicast at a rate M to all the destinations.
This result implies that, even if a single destination with
min-cut capacity M has access to the entire network resources,
this destination can only receive at most at a rate equal
to M. Moreover, this result shows that multiple destinations
sharing some of the network resources, can still receive at a
rate M if they are interested in the exact same information.
Later, Li et al. [3] proved that it suffices to use random
linear coding operations to characterize the multicast capacity.
Jaggi et al. [4] designed polynomial time deterministic algo-
rithms aimed to achieve the multicast capacity. While for the
case of single unicast and multicast traffic the capacity is
well-known, the same is not true for the case of networks
where multiple unicast sessions take place simultaneously
and share some of the network resources. For instance, even
though the cut-set bound was proved to be tight for some
special cases, such as single source with non-overlapping
demands and single source with non-overlapping demands and
a multicast demand [5], in general it is not tight [6]. It was
also recently showed by Kamath ef al. [7] that characterizing
the capacity region of a general network where two unicast
sessions take place simultaneously is as hard as characterizing
the capacity region of a network with an arbitrary number
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of unicast sessions. For the case of single source and two
destinations with a non-overlapping demand and a multicast
demand, Ramamoorthy and Wesel [8] proposed a nice graph
theoretical approach to characterize the capacity region.

Information theoretic security, pioneered by Shannon [9],
aims at ensuring a reliable and secure communication among
trusted parties inside a network such that a passive external
eavesdropper does not learn anything about the content of the
information exchanged. For point-to-point channels, informa-
tion theoretic security can be achieved provided that the com-
municating trusted parties have a pre-shared key of entropy
at least equal to the length of the message [9]. Wyner [10]
showed that, if the adversary’s channel is a degraded version
of the channel to the legitimate destination, then an informa-
tion theoretic secure communication can be guaranteed even
without the pre-shared keys. Moreover, if public feedback is
available, Czap et al. [11] showed that secure communication
can be ensured over erasure networks even when the adversary
has a channel of better quality than the legitimate receiver.
In [1], Cai et al. characterized the information theoretic secure
capacity of a noiseless network with unit capacity edges and
with multicast traffic. In this work, which was followed by
several others [12], [13], a source wishes to multicast the
same information to a number of destinations in the presence
of a passive external adversary eavesdropping any k edges
of her choice. In [14], Cui et al. studied networks with
non-uniform edge capacities when the adversary is allowed
to eavesdrop only some specific subsets of edges. For a
given linear network code, the notion of generalized Network
Hamming weights (GNHW) was defined in [15]. It was shown
that the GNHM characterize the information that the adversary
has about the messages, as a function of the number of
edges eavesdropped. The GNHW are extension of generalized
Hamming weights (GHW) for linear codes proposed in [16].
Over the past few years, other notions of information theo-
retic security have been analyzed, such as the case of weak
information theoretic security [17]-[19]. Moreover, several
different scenarios have been studied, that include: (i) the case
of an active adversary, who can indeed corrupt the communi-
cation rather than just passively eavesdropping it [20]-[22];
(i) erasure networks where a public feedback is avail-
able [23]-[25]; (iii) wireless networks [26], [27].

To the best of our knowledge, our work is the first to
consider securing private messages over networks. In [28],
we considered sending private messages over butterfly-like
erasure networks; in [29], we considered noiseless networks
with two sources and two destinations where the network
topology was derived from the butterfly network; in [30],
we considered arbitrary networks for two destinations, and
also designed suboptimal schemes for arbitrary network con-
figurations. These results are in part included and extended in
this paper. Independently from our work, in [31], the authors
studied adaptive and active attacks and also considered mul-
tiple multicast traffic over a layered network structure, with
arbitrary number of layers. However, different to this paper,
every node in one layer is connected to every node in the next
layer.
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B. Contributions

In this paper, we study the problem of characterizing the
secure capacity region of a wireline noiseless multiple unicast
scenario with uniform edge capacities. In particular, we focus
on networks where a source wishes to securely communicate
to a number of destinations, each interested in a different mes-
sage. Our main contributions can be summarized as follows:

1) We derive an outer bound on the secure capacity region
for networks with arbitrary topology and arbitrary num-
ber of destinations. Similar to the multicast scenario [1],
this outer bound depends on the number of edges that
the adversary eavesdrops and on the min-cut capacities
between the source and different subsets of destinations.

2) We characterize the secure capacity region for net-
works with arbitrary topology and with two destinations.
Towards this end, we design a secure transmission
scheme whose achieved rate region is proved to match
the derived outer bound. In particular, we leverage a
key property, referred to as separability [8], in order to
select the parts of the network over which: (i) common
keys should be multicast, and (ii) encrypted private
messages should be communicated. Our analysis shows
that coding across different unicast sessions helps in
characterizing the secure capacity even in scenarios
where coding was not required in the absence of an
adversary.

3) We design a secure polynomial-time transmission
scheme for two-layer networks, where the source com-
municates with the destinations by hopping information
through a layer of relays. A key feature of such networks
is that they satisfy the separability property over graphs.
Our scheme is proved to achieve the secure capacity
region when any one of the three following conditions
is satisfied: (i) the number of destinations is three,
(ii) the adversary eavesdrops any one edge of the net-
work, (iii) the min-cut capacities assume certain values.
Moreover, we verify through numerical simulations of
100 randomly constructed two-layer networks that the
designed scheme matches the outer bound for networks
with arbitrary number of destinations and eavesdropped
edges. Thus, the scheme is conjectured to be capacity
achieving for any two-layer network.

4) We prove that any network satisfying the separability
property can be modeled as a two-layer network. More
importantly, we show that the secure capacity region of
any separable network can be characterized from the
secure capacity region of the corresponding two-layer
network, which we refer to as the child two-layer
network. In particular, to prove this result, we propose
a deterministic mapping from a secure scheme for the
child two-layer network to a secure scheme for the
corresponding separable network.

5) We design a secure polynomial-time transmission
scheme for networks with arbitrary topology and arbi-
trary number of destinations. In particular, our scheme
works in two phases: in the first phase, we multicast
keys using the entire network resources, and in the
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second phase we communicate encrypted private mes-
sage packets using again the entire network resources.
We also compare the rate region achieved by this scheme
with the secure capacity region of networks with two
destinations. This scheme is suboptimal, but it offers
a yardstick for the secure rate performance that can
be attained over multiple unicast networks with single
source, but arbitrary topology. Moreover, in both phases,
the scheme obliviously uses all the network resources,
i.e., it does not try to optimally “separate” the informa-
tion and key flows by leveraging the specific structure of
the network (which is indeed the case for the capacity
achieving scheme for two destinations). Although this
characteristic causes the scheme to be suboptimal, it also
makes it easy to implement.

6) We draw several observations on the derived secure
capacity results. For instance, we show that, although
the source conveys a private message to each receiver,
we may need to re-use the same keys across several
receivers to achieve the secure capacity. We also show
that the secure capacity region for two destinations is
non-reversible, which is a key difference with respect
to the case when there is no adversary. Specifically,
we show that, if we switch the role of the source and
destinations and we reverse the directions of the edges,
then the new secure capacity region differs from the
original one. Moreover, for the case of two destinations,
we compare the secure capacity region with the capacity
region when the adversary is absent. The goal of this
analysis is to quantify the rate loss that is incurred to
guarantee security.

C. Paper Organization

Section II formally defines the setup, that is the multiple
unicast wireline noiseless network with single source and
arbitrary number of destinations, and formulates the problem.
Section IIT derives an outer bound on the secure capac-
ity region. Section IV provides a capacity-achieving secure
transmission scheme for networks with two destinations and
arbitrary topology. Section V designs a secure transmission
scheme for networks with a two-layer topology and arbitrary
number of destinations. Section V also derives some secure
capacity results, and it shows connections between two-layer
networks and separable networks. Section VI provides a
two-phase achievable scheme for networks with arbitrary
number of destinations and arbitrary topology. Section VII
compares the derived results with the unsecure rate region,
and discusses the reversibility property of secure multiple
unicast traffic. Finally, Section VIII concludes the paper and
highlights some future research directions that are object of
current investigation.

II. SETUP AND PROBLEM FORMULATION

Throughout the paper we adopt the following notation
convention. Calligraphic letters indicate sets and subspaces;
() is the empty set and |A| is the cardinality of A; for two
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sets A1, Az, A1 C A, indicates that A; is a subset of As,
A; U A5 indicates the union of A; and As, A; LI A5 indicates
the disjoint union of A; and As, A3 N A3 is the intersection
of A; and Ay and A5\ A is the set of elements that belong
to A; but not to Ag; [n1 : ng] is the set of integers from
ny to ng > nq; [n] is the set of integers from 1 to n > 1;
[z]* = max{0,z} for z € R; for a vector a, al is its
transpose vector; dim(N) is the dimension of the subspace
N; for two subspaces N7 and Ao, their intersection, union
and sum are defined as N1 NN, = {x: x € Ni,x € Na},
NMUNs = {x: xe Nj orx € Nb},and N1+ N> := {x+y:
x € N1,y € Na}, respectively; 0;; is the all-zero matrix of
dimension ¢ X j; I; is the identity matrix of dimension j; for
a matrix A of dimension m X n, rk(A) is the rank of A, and
Als denotes the submatrix of A of dimension |S| x n where
only the rows indexed by the set S C [m] are retained.

We represent a wireline noiseless network with a directed
acyclic graph G = (V,&), where V is the set of nodes
and £ is the set of directed edges. The edges represent
orthogonal communication links, which are interference-free.
In particular, these links are discrete noiseless memoryless
channels of unit capacity over a common alphabet. If an edge
e € &£ connects a node 7 to a node j, we refer to node i as
the tail and to node j as the head of e, i.e., tail(e) = ¢ and
head(e) = j. For each node v € V, we define Z(v) as the set
of all incoming edges of node v and O(v) as the set of all
outgoing edges of node v.

In this network, there is one source node S and m destina-
tion nodes D;,7 € [m]. The source node does not have any
incoming edges, i.e., Z(S) = (), and each destination node
does not have any outgoing edges, i.e., O(D;) = (), Vi € [m)].
Source S has a message W; for destination D;,% € [m]. These
m messages are assumed to be independent. Thus, the network
consists of multiple unicast traffic, where m unicast sessions
take place simultaneously and share the network resources.
A passive eavesdropper/adversary Eve is also present in the
network and can eavesdrop any k edges of her choice. Note
that this assumption implies that Eve has limited network
presence; this is equivalent to a scenario where there are sev-
eral non-collaborating adversaries, each observing a different
subset of k edges. We also highlight that Eve is an external
eavesdropper, i.e., she is not one of the destinations.

The symbol transmitted over n channel uses on edge e € £
is denoted as X'. In addition, for & C £ we define th =
{X? :e € &}. We assume that the source node S has infinite
sources of randomness ©, while the other nodes in the network
do not have any randomness.

Over this network, we are interested in finding all possible
feasible m-tuples (Ry, Ra, ..., Ry) such that each destination
D;,i € [m], reliably decodes the message W; (with zero
error) and Eve receives no information about the content of the
messages. In particular, we are interested in ensuring perfect
information theoretic secure communication, and hence we
aim at characterizing the secure capacity region, which is next
formally defined.

Definition 1 (Secure Capacity Region): A rate m-tuple
(R1,Ra,...,R,,) is said to be securely achievable if there
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exist a block length n with R; = Z(W4)

of encoding functions f., Ve € &£, with
s § fe (Wim, 0) if tail(e) = S,
¢ fe({ X} : €€ I(tail(e))}) otherwise,

such that each destination D; can reliably decode the message
Wi i.e.,

, Vi € [m] and a set

H(W;{X! e I(D;)}) =0, Vi€ [m].
Moreover, we also require perfect secrecy, i.e.,
I (Wimp; X2.) =0, ¥V €z C € such that [Ez| < k.

The secure capacity region is the closure of all such feasible
rate m-tuples.

Definition 2 (Min-Cut): A cut is an edge set £4 C €&,
which separates the source S from a set of destinations
Dy :={D;, i € A}. In a network with unit capacity edges,
the minimum cut or min-cut is a cut that has the minimum
number of edges. Throughout the paper, we denote by M 4
the capacity of the min-cut between the source S and the set
of destinations D4 := {D;, i € A}, A C [m], and we refer
to M 4 as the min-cut capacity.

In Definition 1, we require perfect secrecy, i.e., no matter
which (at most) k& edges Eve eavesdrops, she does not learn
anything about the content of the messages. In particular,
throughout the paper, we will use the following condition on
perfect secrecy proved in [32, Lemma 3.1].

Lemma 1: Let W be the message vector that has to be
transmitted, and K be a vector of size k£ of uniform i.i.d.
symbols independent of W. Then, the vector X representing
the symbols transmitted over the edges of the network can be
represented in matrix form as

w
X=[4 B [ K]
where A and B are the encoding matrices. This transmission
scheme is perfectly secure if and only if

rk ([A B||,) =rk(B|z), ¥|Z| <k, (1)

where, for a matrix H of size m x n and a set £ C [m],
we denote by H|z the submatrix of H of dimension |Z| x n
where only the rows indexed by the set Z C [m] are retained.

Remark 1: The condition in (1) ensures that any set of
(at most) k linear combinations of message symbols W and
random symbols K received on the edges indexed by Z
are independent from the message symbols . This follows
since, according to (1), the columns of A|z do not provide
any additional rank over the column rank provided by B|z,
and hence the random symbols from K can not be ‘canceled
out’ from the linear combinations received by the eavesdrop-
per without ‘canceling out’ the message symbols W. This
intuitively explains why the condition in (1) implies perfect
secrecy.

III. OUTER BOUND

In this section, we derive an outer bound on the secure
capacity region of a multiple unicast wireline noiseless net-
work with a single source and m destinations. In partic-
ular, as stated in Theorem 2, this region depends on the
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min-cut capacities between the source and different subsets
of destinations, and on the number of edges that the adver-
sary eavesdrops. The next theorem provides the outer bound
region.

Theorem 2: An outer bound on the secure capacity region
for the multiple unicast traffic over networks with a single
source and m destinations is given by

Ra<[Ma—K*t, VAC[m], 2)

where Ry := > R;, and where M, is defined in

€A
Definition 2.

Proof: Let £4 be a min-cut between the source S and
D4 and £z C €4 be the set of k edges eavesdropped by Eve,
and define Z(D4) := ;e 4 T(D;). If |Ea| <k, let Ez = Ea.
We have

nRa=H(Wa)

(a) n
= HWa) = HWalX7p,)

(b)
< HWa) - HWalXg),)

() n n
= I(W-A’ ng’ XfA\fz)

=I(Wa; Xg,) + I(Wa; Xg 2,1 XE,)

@
= I(Wa; Xg e |1XE,)

(e)

()
S TL[MA - k]+ ’

where W4 = {W;,i € A} and: (i) the equality in
(a) follows because of the decodability constraint (see
Definition 1); (ii) the inequality in (b) follows because of
the ‘conditioning reduces the entropy’ principle and since
Xg( D) is a deterministic function of X¢'; (iii) the equality
in (c) follows from the definition of mutual information and
since £4 = £z U Eq\z; (iv) the equality in (d) follows
because of the perfect secrecy requirement (see Definition 1);
(v) the inequality in (e) follows since the entropy of a discrete
random variable is a non-negative quantity and because of
the ‘conditioning reduces the entropy’ principle; (vi) finally,
the inequality in (f) follows since each link is of unit capacity
and since |E4 \ £z| = [M_4 — k]T. By dividing both sides of
the above inequality by n we obtain that R 4 in (2) is an outer
bound on the secure capacity region of the multiple unicast
traffic over networks with single source and m destinations.
This concludes the proof of Theorem 2. |

Remark 2: Since the passive adversary Eve eavesdrops any
k edges of her choice, intuitively Theorem 2 states that, if she
eavesdrops k edges of a cut with capacity M, we can at most
hope to reliably transmit at rate M — k. However, this holds
only for the case of a single source; indeed, as we will see
in Section VII-B through an example, higher rates can be
achieved for networks having a single destination and multiple
sources.
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Fig. 1. A 2-destination separable network Gy in (a) and its partition into 3 edge disjoint graphs 917., J C{1,2},T # 0 in (b)-(d). Here, M/ y = M

and M£1,2} =2.
IV. CAPACITY ACHIEVING SCHEME FOR NETWORKS
WITH TWO DESTINATIONS

In this section, we prove that the outer bound in Theorem 2
is tight for the case of m = 2 destinations and arbitrary k.
Towards this end, we design a secure transmission scheme
whose achievable rate region matches the outer bound in
Theorem 2. Our scheme follows the works of [1] and [9],
where the source shares k keys (i.e., uniformly at random gen-
erated packets) with each destination, as well as information
packets encoded with the k keys. As a result, by observing
any k edges, the eavesdropper cannot extract any information
about the messages. The main novel observation in our scheme
is that, although the source transmits a private message to
each receiver, we do not need to necessarily use a private key
to encrypt each private message, but instead we can re-use
the same key for multiple destinations. Thus, in some cases,
we need to multicast keys to the destinations, although we
never need to multicast encoded messages. Moreover, this
scheme has the special property that we can isolate the key
and encrypted message transmissions: we use some part of
the network to convey (potentially multicast) the keys, and
the remaining part to communicate the encrypted messages
(i-e., the messages encoded with the keys). Our main result is
stated in the following theorem.

Theorem 3: The outer bound in (2) is tight for the case
m = 2, i.e., the secure capacity region of the multiple unicast
traffic over networks with single source and m = 2 destina-
tions is

Ry < [Mgy — K", (3a)
Ry < [Mygy — k)t (3b)
Ry + Ry < [M{1,5y — ] (3¢)

Clearly, from the result in Theorem 2, the rate region
in (3) is an outer bound on the secure capacity region.
Hence, we now need to prove that the rate region in (3)
is also achievable. Towards this end, we start by providing
the following definition of separable graphs, which we will
leverage in the design of our scheme.

Definition 3 (Separable Graph): A graph G = (V, ) with
a single source and m destinations is said to be separable if it
can be partitioned into 2" —1 edge disjoint graphs (graphs with
empty edge sets are also allowed). These graphs are denoted
as gf7 = (V,é}),j C |m],J # 0 and are such that 6'[7 cCé&,

1 ="

UsE7 =&and £, NEL =0, VT # L C [m]. The three
following properties must be satisfied:

1) For each of the graphs G';, all the min-cut capacities
between the source S and any nonempty subset of
destinations in {D; : i € J} are identical with value
denoted by M';;

2) For each of the graphs G';, no paths exist from the
source S to each destination D;, ¢ € [m] \ J.

3) The min-cut capacities M, are such that

Ma= Y My, VAC [m], 4)
JE[m]
TNAAD
where M 4 is the min-cut capacity for the graph G as
defined in Definition 2.
To better understand the above definition, consider a graph
G with m = 2 destinations. Then, the graph G is separable if
it can be partitioned into 3 edge disjoint graphs such that:
. Q’%l} has the following min-cut capacities: M %1} from S
to D7 and zero from S to Ds,
. gi2} has the following min-cut capacities: zero from .S
to Dy and ]V[b} from S to Do,
. 9%172} has the following min-cut capacities: M E1,2} from
S to D, M{LQ} from S to D> and M{LQ} from S to
{D1, D>},
where the quantities M {1}, M {2} and M %172} can be computed
using the following set of equations:

My = Mgy + My oy, (5a)
]\/[{2} = Mb} + NI{I,Z}? (5b)
M{LQ} = M%l} + ]\/1'%2} + M{LQ}' (SC)

An example of separable graph for m = 2 and its partition
into 3 edge disjoint graphs is shown in Fig. 1. We now state the
following lemma, which is a consequence of [8, Theorem 1]
and which we will use to prove the achievability of the rate
region in (3). For completeness, we provide a self-contained
proof of this lemma in Appendix A.

Lemma 4 [8, Theorem 1]: Any graph with a single source
and m = 2 destinations is separable.

Proof of Theorem 3: By leveraging the result in
Lemma 4, we are now ready to prove Theorem 3.
In particular, we consider two cases depending on the value of
k (i.e., the number of edges that the eavesdropper eavesdrops).
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Without loss of generality, we assume that k < min;e (o) My,
as otherwise secure communication to the set of destinations
{D; : k > My;,,i € [2]} is not possible at any positive rate,
and hence we can just remove this set of destinations from the
network. To secure our messages from the adversary, we use
uniform random packets generated at the source, which we
refer to as keys. We will transmit these keys as well as the
messages encoded with these keys over the network. The
security of our schemes relies on two aspects: (i) a message
encoded with a uniform random key is independent of the
message and is distributed uniformly, and (ii) the amount of
keys that we use is such that the eavesdropper cannot collect
a sufficient number of keys and encoded messages to be able
to extract any information on the messages.

1) Case 1: k > M {1 2} In this case, by substituting the
quantities in (5) into (3), we obtain that the constraint
in (3¢) is redundant. Thus, we will now prove that the
rate pair (R, Rz) = (My1y —k, M{9y — k) is securely
achievable, which along with the time-sharing argument
proves the achievability of the entire rate region in (3).
We denote with K, K», ..., K the k key packets and

with WO, w® W) (with i € [2)) the R

message packets for D;. With this, our scheme is as

follows:

» We multicast the key packets K, Vi € [My; 5],
to both D and D5 using Qil 2} which has edges
denoted by & 1,2} This is possible since G (1.2} has
a min-cut capacity M{1 2} to both D and Dg (see
Definition 3).

o We unicast the key packets Ky, V/ € []V[{LQ} +1:
k), to D;, Vi € [2], using k— M, 5, paths out of the
]W{i} disjoint paths in G .. We denote by é{i} the
set that contains all the first edges of these paths.
Clearly, \5{1 | =k — My, ,,,Vi € [2]. Notice that
8{ i} € &(;y. Vi € [2] (see Definition 3).

e We send the R;,Vi € [2], encrypted message
packets (i.e., encoded with the keys) of D; on the
remaining M{i} —k +]V[£172} disjoint paths in ggi}.

5209

We denote by E{Z} the set that contains all the
first edges of these paths in G tiy Clearly, || =
R;, Vi € 2], S{Z} - 5{} and 5{1} ﬂf{z} =0 (see
Definition 3).
This scheme achieves R; = M'i} —k+ M'{LQ} =
My —Fk, Vi € [1: 2], where the second equality follows
by using the definitions in (5). Now we prove that this
scheme is also secure. We start by noticing that, thanks
to Definition 3, the edge sets 5{’,\172}, f:'{i} and E;}, with
i € [2], are disjoint. We write these transmissions in a
matrix form (with G and U being the encoding matrices
of size ¢ x k and (R; + R2) X k, respectively) and we
obtain (6) and (7), shown at the bottom of the page.
We here highlight that on the remaining edges
5\{5{1 oy U 5{1} U&y U 5{2} U &2y} of the network,
we either do not transmit any symbol or simply route
the symbols from {Xi{l}ﬂXg{z}’Xé{l}’Xs ,, } (corre-
sponding to the symbols transmitted on disjoint paths).
Thus, without loss of generality, we can assume that
Eve eavesdrops at most £ edges from {SELQ} U 5{1} U

5{1}U5{2} U&(2}}. In what follows, we let: (i) X denote
the vector of the symbols transmitted over these edges,
(i) K be the vector of the k random key packets, and
(iii) W be the vector of the message packets for both
destinations. More formally,

| L
iy :
Xf{l} Wl(Rl)
X = é{z} » W= W(l) )
£y .
Xg .
L {2}
R
L W) |
- K,
Ky
K= .
| Kk

gir 912 g1k
g21 922 92k
[ Xt |
XA =
Eq2)
L 91 Ge2 - Gek |
G
[ w1 w2 Uk
U21 U2 U2k
Xf{l} _
€2y . .
L Url Ur2 Urk

U

| K]
2
0= ||+ 2 (k—Mgm}), 6)
Ky
- Wfl) —
K, :
KQ W(Rl
+ WQ(I) , = Rl + RQ. (7)
Ky, :
W(RZ)
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2)

With this, X can be represented in a matrix form as

O¢s(Ry+R2) G]{W]
X = 1 9
IR1+R2 U K |’ ©)

with G and U being defined in (6) and (7), respectively,
at the bottom of the previous page. We highlight that
the first |5E1’2}| rows of GG (i.e., those that correspond
to multicasting the keys) are determined by the network
coding scheme for multicasting [2]. As such, they can
be constructed in O (|€]%) by using the multicasting
scheme of [4], which requires a finite field of size
m = 2. Thus, the security follows if we can show that
for any choice of G, there exists a U such that (9)
satisfies the condition in Lemma 1. This is proved in
Appendix B where we show that, over a sufficiently
large finite field, a random choice of U in (9) satisfies
the condition in Lemma 1 with high probability. Thus,
the rate pair (1, R2) = (M{1)—k, M2y —k) is securely
achievable.

Case 2: k£ < M {172}. By substituting the quantities
in (5), the rate region in (3) becomes

R; < M{i} —k
= ]ti} + M£172} —k, Vie[2], (10a)
Ri+ Ry < M9y — k

We now show that we can achieve the two corner
points i.e., the rate pair in (8), shown at the bottom
of the page, for « € {0,1}, where the equality in
(a) follows by using the definitions in (5). This, along
with the time-sharing argument, proves the achievability
of the entire rate region in (10). We recall that we
denote with K, Ko, ..., K}, the k key packets and with
Wi(l),Wi(z), cey Wi(Ri) (with ¢ € [2]) the R, message
packets for D;. With this, our scheme is as follows:

o Using the graph gim} we multicast to both destina-
tions D1 and Da: (i) K;, Vi € [k], (ii) a(M{LQ}—k)
encrypted message packets (i.e., formed by encod-
ing Wi and the keys K) for Dy and (iii) (1 — «)
(M’£L2} — k) encrypted message packets (i.e.,
formed by encoding W5 and the keys K) for D-.
Recall that the edges of the graph gfm} are denoted
by 8%172} (see Definition 3). Note that, since all
these packets are multicast, then D; might also
receive packets that are for Ds, and vice versa.
However, note that, since the eavesdropper is exter-
nal, i.e., it is not one of the destinations, then this
does not violate the security condition, as long as
the adversary, who eavesdrops any k edges of her
choice, does not learn anything about the content
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of the messages. We also highlight that the mes-
sage packets multicast to the two destinations are
encoded using the key packets, where the encod-
ing is based on the secure network coding result
on multicasting [1], which ensures perfect security
from an adversary eavesdropping any k edges.

e We send M {Z encrypted message packets of D;
(i.e., encoded by using the k key packets) on the
M'{i} disjoint paths to D; in the graph ggi}, and
denote by ff{i} the set that contains all the first edges
of these paths for ¢ € [2].

This scheme achieves the rate pair in (8) at the bottom
of this page. Now we prove that this scheme is also
secure. For ease of representation, in what follows we
let R} = a(]V[{LQ} —k)and Ry = (1— a)(]”h,z} —k).
We again notice that, thanks to Definition 3, the edge
sets 5&1.2}, c‘f{l} and 3{2} are disjoint. We write these
transmissions in a matrix form (with G, S and U being
the encoding matrices of sizes £ X k, £ x t and r X k
respectively) and we obtain (11) and (12) at the bottom
of the next page.

In what follows, we let: (i) X denote the vector of
the symbols transmitted over the edges &£ %1’2}, f:'{l} and

é{g}, (i) K be the vector of the k£ random key packets,
and (iii)

1 i Ri+1) 7
W1( ) Wl( 1+1)
W= Wl(i;) W= W{zl:%l)n
W, Wy ot
i 2(R'2) ] I W2(R2)
With this, X can be represented in a matrix form as
Xl
X =1 Xey
2
_ W'
| S Do G g
L Orxt ]r U K

where G and S are defined in (11), shown at the
bottom of the next page, and U is defined in (12),
shown at the bottom of the next page. Similar to Case 1,
on the remaining edges 8\{6’%172} U :‘:'{1} U 5{2}} of
the network, we either do not transmit any symbol or
simply route the symbols from {X £n X £ } (corre-
sponding to the symbols transmitted on disj01}nt paths).
Thus, without loss of generality, we can assume that

(R1, R2) = ((1 — o) (M1.0y — M2y) + a(M1y — k),
(1— o) (Myzy — k) + (M1 23 — Mq1y))

—~

a

g

= (MEI} + Q(Mh,z} — k), M{z} +(1- O‘)(M{LQ} —k)) . ®)
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the eavesdropper eavesdrops at most k edges from
{€{12y U &1y U €2y} We highlight that the matri-
ces and S are determined by the secure network
coding scheme for multicasting [1]. As such, they can
be constructed in O (k?|£|*2) by using the scheme
of [33], which requires a finite field of size |€|¥. Thus,
security follows if we can show that for any choice of
S and G satisfying the security condition in Lemma 1,
e th([S GI,) = rk([G]],). V2] < k,
there exists a choice of U such that the security condition
in Lemma 1 is satisfied for (13). This is proved in
Appendix C where we show that, over a sufficiently
large finite field, a random choice of U in (13) satisfies
the condition in Lemma 1 with high probability.
This concludes the proof of Theorem 3. m|

Example 1: We here illustrate the above described scheme

for the network Gy in Fig. 1(a). We first note that Gy has
min-cut capacities M1y = Moy = 3 and My 2y =4, and it
can be partitioned into three edge disjoint graphs G, J C
{1,2},J # @ as shown in Figs. 1(b)-(d), with min-cut
capacities equal to ]V[ﬁ} = ]V[%Q} = 1 and ]Vql,?} = 2,
respectively. We assume that the adversary eavesdrops any
k = 2 edges of her choice. For this case, the source should
be able to securely communicate at a rate (Ri, Ro) = (1,1)
towards the m = 2 destinations. This rate pair can be achieved
using two key packets K; and K> and operations over F4 as
follows:

1) Over the set of edges in ggl}, the source transmits W5 +
K; + 2 Ky; the intermediate node simply routes this
transmission to D1;

2) Over the set of edges in 9%2}, the source transmits Ws +
K + 3 Ko; the intermediate node simply routes this
transmission to Ds;

3) Over the set of edges in ggm}, the source multicasts
K, and K5 to the receivers. It transmits K; to one
intermediate node and K5 to the other intermediate

5211

D, Do

Fig. 2. Example of a non-separable graph.

D3

node. The intermediate node denoted as i in Fig. 1(d)
receives K7 and K5 and transmits K; + K5 on its out-
going edges. Thus D; and D, receive both K; and K.
It therefore follows that D;,i € [2], can successfully
recover W;. [ |

We conclude this section with some observations on sep-
arable graphs. As highlighted in the proof of Theorem 3,
given the separation of a graph into subgraphs, our capacity
achieving scheme is polynomial-time. However, identifying
the subgraphs with the required min-cut properties is not an
easy problem [8], and it is not clear if it can be performed in
polynomial-time. Moreover, although for the case of m = 2
destinations any graph is separable (see [8, Theorem 1]),
in general the same does not hold for m > 3, as the following
example illustrates.

Example 2: Consider the network in Fig. 2, which con-
sists of lm = 3 destinations and has the following min-cut
capacities: ]\/[{1} =1, Af{Q} =1, M{3} =1, M{LQ} = 2,

gi1  gi2 g1k
921 goo 91k K,
Ky
Xeo = :
Ky,
L 91 Ge2 ek |
G
where £ = \5%172}| and t = R} + R}, and
U U2 U1k
U21 U2 U2 Ky
Xé . K2
|
Xf{z} . . . :
: : : K,
Url  Ur2 Urk
U

_ S w®
S11 812 S1t :
§21 8§22 S1t .
(R7)
Wi
+ , 11
W (11)
| sa1 se2 set | W(‘Ré)
S -2 -
[ Wl(R’l+1) T
W) ,
W(R,2+1) 5 T:R1+R2_(M{172}—k) . (12)
2
W2(R2)
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]\/[{273} = 2, A[{L?)} =2 and M{17273} = 2. With thiS, we can
find M’,, J C [3], by solving (4). In particular, we obtain:
!/ _ !/ _ !/ _ / _ ! _ !/ —
]W{l} = ]W{2} = ]W{?)}.— 0, ]\/[{172} = M{2’3} = ]\/[{173} = 1
and M{LQ 3 = —1. Since a graph can not have a negative
min-cut capacity, we readily conclude that a separation of the

form defined in Definition 3 is not possible. |

V. SECURE SCHEME FOR TWO-LAYER NETWORKS

In Section IV, we characterized the secure capacity region
of networks with m = 2 destinations, by leveraging the separa-
bility property. In this section, we discuss separable networks
with arbitrary number of destinations and characterize the
capacity region of networks with: (i) arbitrary number m of
destinations, where the adversary eavesdrops any k = 1 edge
of her choice, (ii) networks with m = 3 destinations, where
the adversary eavesdrops any arbitrary k£ edges of her choice,
and (iii) networks with arbitrary values of k and m for which
the min-cut capacities satisfy certain properties. Towards this
end, we will first consider a special class of separable net-
works, namely networks having a two-layer topology, and
design a secure scheme for this class of networks. We will
then show that, in order to characterize the secure capacity
region of any separable network, it is sufficient to study
two-layer networks. In particular, we will prove that any
separable network can be modeled as a two-layer network with
the same min-cut capacities, and that a secure scheme for a
two-layer network can be transformed into a secure scheme
for its corresponding separable network. We now proceed by
formally defining the two-layer network topology.

Definition 4: A two-layer network consists of one source S
that wishes to communicate with m destinations, by hopping
information through one layer of ¢ relays. As such, a two-layer
network is parameterized by: (i) the integer ¢, which denotes
the number of relays in the first layer; (ii) the integer m,
which indicates the number of destinations in the second layer;
(iii) m sets M;, i € [m], such that M; C [t], where M;
contains the indexes of the relays connected to destination D).

An example of a two-layer network is shown in Fig. 3, for
which ¢t = 6, m = 3, M; = {1,2,3,4}, My = {1,2,5,6}
and M3 = {3,4,5,6}.

Before delving into the study of such two-layer networks,
recall that the capacity-achieving scheme for m = 2 destina-
tions described in Section IV uses some parts of the network
to convey (potentially multicasting) the keys and the remain-
ing part to communicate the encrypted messages. Therefore,
we now ask the following question: can we extend this idea
to get a capacity-achieving scheme for separable networks
with arbitrary number of destinations? In other words, can
we spatially isolate the key from the message transmission?
The next example shows that this is not possible through an
example.

Example 3: Consider the two-layer network shown in Fig. 3,
which consists of m = 3 destinations, and where the adversary
can eavesdrop any k = 3 edges of her choice. For this network
we have the following min-cut capacities: M1y = My =
]\/[{3} = 4, M{LQ} = ]\/[{173} = ]\/[{273} = M{1~,273} = 6
We would like to show that the triple (Rj, Re,R3) =
(1,1,1) — obtained from the outer bound in Theorem 2 — can
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S

O @) O
D1 D2 D3

Fig. 3.  Two-layer network example which illustrates that using different
parts of the network to transmit the keys and the encrypted messages is
not optimal. In this network M; = {1,2,3,4}, My = {1,2,5,6} and
M3z ={3,4,5,6}.

not be achieved when the key packets and the encrypted
messages are transmitted over different parts of the network.
It is not difficult to see that, out of the 6 outgoing edges from
the source, multicasting 3 keys' requires a number of edges
strictly greater than 4. Thus, we would be left with strictly less
than 2 edges, which are not sufficient to transmit 3 message
packets, i.e., one for each destination. It therefore follows that,
with this strategy, the rate triple (R, Ro, R3) = (1,1,1) can
not be securely achieved.

However, let the source transmits the following symbols on
its outgoing edges

X, 00010 0] W
X 00011 1| |W
Xs| _ {0000 1 2 4] |Ws 14
X4 1001 3 2| |Ki|"
X5 46 41 4 2||K
X6 2 4 2 1 5 4| |K;
B

where B € IF?XG is the encoding matrix. If the intermediate
nodes simply route the received symbols, then we can achieve
the rate tuple (1,1,1). This is because, the encoding matrix
B can be written as

"

B=[B B,

where B’ contains the first three columns of B in (14), and B”
contains the last three columns of B in (14). Thus, it follows
that

k(B B']

Z) —rk (B”(Z) L V|Z| <3,

which, from Lemma 1, implies that the encoding in (14) is
secure.

Note that 3 keys are required since the adversary eavesdrops k = 3 edges
of her choice.
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Moreover, each destination can decode its respective
message as follows:

e Destination 1: W7 =6 X7 +3 X2 +4 X3+ Xy,

e Destination 2: Wy =6 X; +4 X2 + 3 X5 + X,

o Destination 3: W3 =5 X3 +6 X4 + X5 + 2 X.

Thus, the rate triple (R;, R, R3) = (1,1, 1) can be securely
achieved. This example shows that using different parts of
the network to transmit the keys and the encrypted messages,
in general is not optimal. This is partially due to the fact
that destinations do not need to decode each key individually,
as long as they can successfully recover their message. |

A. Secure Transmissions Scheme

For two-layer networks, we have M4 = |U;eaM;|. For
notational convenience, we let Mny; ;1 = |[M; N M| and
Manyiay = [Mi N (UjeaM;)|. Moreover, we also assume
that My;y > k,Vi € [m] (otherwise secure communication is
not possible) with My := k for consistency.

We here propose a polynomial-time (see Lemma 6) secure
transmission scheme for two-layer networks. In Section V-B,
we will then derive its achieved rate region. The source S
encodes the message packets with £ random packets and
transmits these packets on its outgoing edges to the ¢ relays.
We can write the received symbols at the ¢ relays as

I Cl, o as)
. ,

where: (i) W;,i¢ € [m] is a column vector of R; message
packets for destination D;, (ii) K is a column vector which
contains the k random packets, (iii) H is an encoding matrix of
dimension ¢ x (3_;" | R;) (as we will show below such a matrix
can always be constructed so that all the destinations correctly
decode their intended message), and (iv) V is a Vandermonde
matrix of dimension ¢ X k. The matrix V' is chosen for security
purposes, i.e., any set of k rows of V' are linearly independent
and hence Lemma 1 ensures that, no matter which £ rows
(i.e., edges) Eve eavesdrops, she will learn nothing about the
messages Wiy,

Remark 3: The only property of V' that we require in our
scheme is the Maximum Distance Separable (MDS) property
(i.e., any k rows of V are linearly independent). This implies
that, even if we select a random matrix V instead of V', with
high probability (close to 1 for large field size) we will have
a secure scheme for the two-layer network. This also implies
that a finite field of size O(|€|) can deterministically provide
such a matrix V.

Each relay ¢ € [t] will then forward the received symbol
X; in (15) to the destinations to which it is connected.
As such, each destination will observe a subset of sym-
bols from {X;, Xo,...,X;} (depending on which of the ¢
relays it is connected to). Finally, destination D;,i € [m]
selects a decoding vector and performs the inner product with
[X1, Xo, ..., X;]. In particular, this decoding vector is chosen
such that it has two characteristics: (1) it is in the left null

5213

space of V, i.e., in the right null space of VT: this ensures
that each destination is able to cancel out the random packets
(encoded with the message packets); (2) it has zeros in the
positions corresponding to the relays it is not connected to;
this ensures that each destination uses only the symbols that
it actually observes. In other words, all the decoding vectors
that D; can choose belong to the right null space N; of the

matrix V; defined
VT
Vvi = |:C7,:| )

where C; is a matrix of dimension ¢; x t, with ¢; being the
number of relays to which D; is not connected to, i.e., t; =
t — M;. In this section, we will use the notion V; to denote
the row-space of the matrix V;. In particular, each row of C;
has all zeros except a one in the position corresponding to a
relay to which D; is not connected to.

For instance, for the network in Fig. 3, we have

(16)

C__b 00010
Yoo o o0 o0 1]
001 0 0 0
Cb__O()O 10 0]
100 0 0 0
“=lo1000 0]

We let T be a matrix of dimension (>.!"; R;) X t that, for
each destination D;,7 € [m], contains R; decoding vectors
that belong to the right null space of the matrix V; in (16),
denoted as N;. Mathematically, we have

S
R ——

————dg)———— 7

a7
,,,,d@,,,,

————dg%m)————

L ™m |

where d]@ denotes the j-th decoding vector (of length t)
selected from the null space N;, with ¢ € [m], j € [R;]. Note
that, if for all 7 € [m], we can select R; decoding vectors
from N; such that all the d;z) in (17) are linearly independent
(i.e., such that 7" has a full row rank), then it is possible to

construct the matrix H in (15) such that

TH = I(ZIL R:)> (18)

which ensures that all the destinations are able to correctly
decode their intended message as

. 1%
R AR P
) L] s
W1 Wl

=TH| : |+TVK = | :

Wi W,
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In Appendix D, we propose an iterative algorithm (of
polynomial-complexity as formally proved in Lemma 6) to
select R;,i € [m] decoding vectors from N; such that T’
in (17) has indeed a full row rank. The performance of the
proposed algorithm is provided in the following lemma, which
is also proved in Appendix D.

Lemma 5: For any given permutation
{m(1),...,m(m)} of [m], it is possible to select

T =

Q i—1
Rw(i) = dim ZN.,T(J') —dim ZN'”U) s
j=1 j=1

1 € [m], (19)

vectors from N ;) so that all the Y 7" | R; selected vectors
are linearly independent.

Remark 4: Note that, since there are m! possible permu-
tations of [m], then Lemma 5 offers m! possible choices
for selecting R;,i € [m] vectors from N; so that all the
> R; selected vectors are linearly independent. We prove
in Lemma 7 that these choices form the corner points of the
secure rate region achieved by our scheme.

Remark 5: The result in Lemma 5 implies that rate m-tuple
(R1,Ra,...,Ry,), with R;,i € [m] being defined in (19), can
be securely achieved by our proposed scheme.

The following lemma analyzes the complexity of designing
our proposed secure scheme.

Lemma 6: The complexity of designing the secure trans-
mission scheme in (15) equals O(m|£[*). Moreover, a field
size of dimension ¢ > |£] is sufficient.

Proof: To achieve any rate m-tuple (R, Ro,...,R,,)
using our scheme, we need to find a basis of null spaces
N;, Vi € [m] and then use the iterative algorithm proposed in
Appendix D to form the decoding matrix 7" in (17). A basis of
the null space NV; can be found using the Gaussian elimination
algorithm, which has a complexity of O(|€|?) [34]. The itera-
tive algorithm in Appendix D for selecting decoding vectors in
these null spaces requires discarding dependent vectors, which
has a complexity of O(m/|£||€|?). This follows since: (i) there
are at most m|E| vectors in the basis of these null spaces,
and (ii) to check if each vector is dependent on the previously
selected vectors, we require O(|€|3) computations using the
Gaussian elimination algorithm. Finally, given the decoding
matrix 7', we require the computation of the encoding matrix
H which, as highlighted in (18), is the right inverse of 7.
Thus, computing H requires O(|€[?) operations by again
using the Gaussian elimination algorithm. It therefore follows
that the overall complexity of our secure transmission scheme
is O(m|&[%).

As discussed in Remark 3, to ensure security we are using
only the MDS property of the Vandermonde matrix V' in (15).
The size of this matrix is ¢ x k, and ¢ < |€|. Thus, a field
size of dimension |£| is sufficient. This concludes the proof
of Lemma 6. |

In the next section, we will leverage the result in Lemma 5
and Remark 4 to derive the secure rate region achieved by our
proposed scheme.
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B. Achieved Secure Rate Region

In this section, we derive the rate region achieved by the
secure scheme described in Section V-A. In particular, we have
the following lemma, whose proof is in Appendix E.

Lemma 7: The secure rate region achieved by the proposed
scheme is given by

0<> R;<dim <ZM‘> ,VAC [m],  (20)
ic A ic A
where N; is the right null space of the matrix V; in (16).

In the remainder of this section, we prove that the secure
rate region in (20) is indeed the secure capacity region when:
(i) the adversary eavesdrops any k = 1 edge of her choice
(and arbitrary m); (ii) there are m = 3 destinations (and
arbitrary k); (iii) k£ and m are arbitrary, but the network has
some special structure in terms of minimum cut.

C. Secure Capacity for k = 1, m Arbitrary

In this section, we consider the case where Eve eavesdrops
any k = 1 edge of her choice, and characterize the secure
capacity region. In particular, we prove the following theorem.

Theorem 8: For the two-layer network when Eve eavesdrops
any k = 1 edge of her choice, the secure capacity region is

D Ri < Ma—Cyu, YAC [m],
icA

2y

with C 4 being the number of connected components in an
undirected graph where: (i) there are |.4| nodes, i.e., one for
each ¢ € A; (ii) an edge between node i and node j, {i,j} €
A, i # j, exists if M; N M; # 0.

1) Outer Bound: We show that the outer bound in Theo-
rem 2 can be equivalently written as in (21). Let A;, ¢ € [C 4],
represent the set of nodes in the i-th component of the graph
constructed as explained in Theorem 8. Then, clearly A =
|_|lC:““1 A; and we can write

ZRi: ZRi-i- ZRi+---+ Z R;
i€ A €Ay i€A2 i€AC ,
(a)
< (Mg, —k)+ (Mg, — k) + ...

+ (MACA - k)

b

(:) ]\/IAlUAQU...UAcA - kC.A
© Mg — kCy

= Ma - O,

where: (i) the inequality in (a) follows by applying (2) for
each set A;,i € [C4], (i) the equality in (b) follows since,
by construction, M; N M; = () for all i € A, and j € A,
with & # y, and (iii) the equality in (c) follows since A =
|_|iC:““1 A;. Thus, (2) implies (21). Moreover, since C'4 > 1, (21)
implies (2). This shows that the rate region in Theorem 8§ is
an outer bound on the secure capacity region when k = 1.

We now consider an example of a two-layer network and
show how the upper bound derived above applies to it.
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Example 4: Let A = {2,3,4}, and assume that M; =
{1,2}, Ma = {3,4}, M3 = {4,5,6} and M, = {7,8}.
Then, we construct an undirected graph such that: (i) it has 3
nodes since |A| = 3 and (ii) it has an edge between node 2
and node 3 since My N M3 = {4} # (. It therefore follows
that this graph has C 4 = 2 components. In particular, we have

STRi=Y Ri+ > Ri<Mpaay—2k"=" 4, 2)
i€A €A1 €A
where A; = {2,3} and A, = {4}. [ |
2) Achievable Rate Region: We here show that the rate
region in Theorem 8 is achieved by the scheme described in
Section V-A. In particular, we show that

dim <2Ni> > Ma—Ca, YAC [m],  (23)
icA

where recall that dim (Z A M) is the secure rate perfor-

mance of our proposed scheme in Section V-A (see Lemma 7).

The condition in (23) can be equivalently written as V.4 C [m],

M= Cu < dim (S, ,N5) & dim ((ieavi)”)
=t —dim (NicaVi),

where the equality in (a) follows by using the property of the
dual space and rank nullity theorem, and V;,7 € A is defined
in (16) with V; being the row space of the matrix V;. In other
words, we next show that

VA C [m], dim(NcaV;) <t — My + Cy. (24)

Towards this end, we would like to count the number of
linearly independent vectors x € IF; that belong to (NieaVs).

We note that, by our construction: (i) VT consists of one
row (since £ = 1) of t ones, and (ii) C; has zeros in the
positions indexed by M;. Hence, if a vector belongs to V;,
then all its components indexed by M have to be the same,
i.e., either they are all zeros, or they are all equal to a multiple
of one. Thus, we have ¢ choices to fill such positions indexed
by M.

Now, consider V; with j € A and j # i. By using the
same logic as above, if a vector belongs to V;, then all its
components indexed by M ; have to be the same and we have
q choices to fill these. We now need to count the number of
such choices that are consistent with the choices made to fill
the positions indexed by M. Towards this end, we consider
two cases:

1) Case 1: M;NM; = (). In this case, there is no overlap
in the elements indexed by M; and M and hence we
can select all the available ¢ choices for the positions
indexed by M;

2) Case 2: M; N M, # (. In this case, there is some
overlap in the elements indexed by M, and M. Thus,
since we have already fixed the elements indexed by
M, we do not have any choice for the elements indexed
by M (since all the elements have to be the same).

By iterating the same reasoning as above for all i € A, we con-
clude that we can fill all the positions indexed by U;c 4 M
of a vector = € }Ffl and make sure that z € (N;c4V;) in ¢©4
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ways. This is because, there are C 4 connected components,
and for each of these components we have only g choices to fill
the corresponding positions in the vector z (i.e., the positions
that correspond to the relays to which at least one of the
destinations inside that component is connected). Once we
fix any position inside a component, in fact all the other
positions inside that component have to be the same, and thus
we have no more freedom in choosing the other positions.
Moreover, the remaining t — M 4 positions of z can be filled
with any value in F, and for this we have ¢!~ %4 possible
choices. Therefore, the number of vectors = € ]Ffl that belong
to (NieaV;) is at most ¢©A+ =M which implies

VA C [m], dim(NicaVi) <t — M+ Ca.

This proves that the secure scheme in Section V-A achieves
the rate region in Theorem 8. We now illustrate our method of
identifying vectors that belong to N;c 4 V; through an example.

Example 5: Lett = 8, m = 4, My = {1,2}, My = {3,4},
Mgz = {4,5,6} and M, = {7,8}. Let A = {2,3,4}. With
this, we can construct V;, i € [4], as described in (16), where
VT consists of one row of 8 ones. We now want to count the
number of vectors x € IFS such that x € Vo N V3N V4. We use
the following iterative procedure:

1) For x to belong to Vs its elements in the 3rd and 4th
positions have to be the same since Mo = {3,4}. Thus,
we have ¢ choices to fill the 3rd and 4th position.

2) For z to belong to Vs, its elements in the 4th, 5th and
6th positions have to be the same since M3 = {4,5,6}.
However, the element in the 4th position has already
been fixed in selecting vectors that belong to V. Thus,
there is no further choice in filling the 5th and 6th

positions.
3) For x to belong to V4, its elements in the 7th and 8th
positions have to be the same since M, = {7,8}.

Since in the previous two steps, we have not filled
yet the elements in these positions, then we have ¢
possible ways to fill the elements in the 7th and 8th
positions.

4) Moreover, we can fill the elements in the 1st and 2nd
positions of z in ¢? possible ways.

With the above procedure we get that dim (N;e 23,43 Vi) = 4,
which is equal to the upper bound that we computed in (22)
for the same example. u

D. Secure Capacity for m = 3, k Arbitrary

In this section, we consider the case m = 3, and prove the
following theorem.

Theorem 9: For a two-layer network with m = 3 destina-
tions, the secure capacity region is given by

Y Ri < My—k, VAC [m].
€A

(25)

Clearly, from our result in Theorem 2, the rate region in (25)
is an outer bound on the secure capacity region and can be
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equivalently written as

ZRiS

i€A

min > Mg - 79|k:},
P:l]Q=A {QGP
QeP

VA C [m],

where P is a disjoint partition of 4. We will now show that
for every A C [m],

dim (YA )=  min S M —P|k}. (26)
(ieA )P:QUPQ—A{QGP ©
c

We prove (26) by considering three different cases.

Case 1: |A| = 1, i.e., A = {i}. For this case, V; in (16)
has k+t— My rows. In particular, all these rows are linearly
independent since: (i) the rows of V7' are linearly independent
as V is a Vandermonde matrix, (ii) C; is full row rank by
construction, and (iii) any linear combination of the rows
of VT will have a weight of at least t — k + 1 (from the
Vandermonde property), whereas any linear combination of
the rows of C; will have a weight of at most t—Mgy <t— k.
It therefore follows that, Vi € [3], we have that

dim(\N;) =t — dim(V;)
=t- (k—}—t—ﬂf{i})
= My — k,

where the first equality follows by using the rank-nullity
theorem. Thus, (26) is satisfied.

Case 2: |A| = 2, i.e.,, A= {i,j}. For this case, V(i,j) €
[3]2,i # j, we have that

dim(N; + N;) = dim(N;) + dim(N)
— dim(N; NAj)

— My +Mj—2k—dim(N; N N;), (27)
where the second equality follows by using dim(JN;) derived
in Case 1. Thus, we need to compute dim(N; N A). Note
that, by definition, N; N A; is the right null space of

T
-7 a) - [¢]
ij — | [ N
VJ Cj Ci

where the last equality follows by removing one copy of
the common rows in C; and Cj, ie., C;; is a matrix of
dimension (t — Mpy; j3) x t, with all unique rows. Using a
similar argument as in Case 1 (i.e., any vector in the span
of VT has a minimum weight of t — k + 1 and any linear
combination of the rows of C;; will have a weight of at most
t — Mny;,51), the number of linearly independent rows of V;;
is min{t, t— Mﬂ{i,j} + k} Thus,

dim(N; NN;) =t — min{t,t — Mny; ;3 + k}
= maX{O, Mﬂ{i,j} - k}
= [Mngi 5y — kI,
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where the first equality follows from the rank-nullity theorem.
We can now write dim(N; + N;) from (27) as

dim(N; + AF) =
min {M{i} + My — 2k, My, 5y — k} .

Thus, the condition in (26) is satisfied.
Case 3: A = {1,2,3}. For this case, we will compute

dim(N1 + No +N3) as

d1m(N1 +N2 +N3) =t— dlm(Vl NVa N V3) (28)

Towards this end, we would like to compute the number of
linearly independent vectors = € IFZ that belong to V1 NVaNVs.
We start by noting that, similar to the case & = 1, the positions
of z corresponding to [t] \ U;je[3/M; can be filled with any
value in IF, and for this we have qt~M1.2,33 possible choices.
We now select a permutation (4, j, £) of (1,2,3).

In order for x to belong to V;, the positions of x correspond-
ing to M can be filled in ¢* possible ways. This is because:
(i) C; in (16) has zeros in the positions specified by M;, and
(ii) VT has k rows. In other words, let x M, be the subvector
of x € Ffz where only the components indexed by the set M,
are retained. Then, in order for z to belong to V; we would
need

k
T
TM; = Z aZJVy,Mi ’
y=1

where o, € F,,Vy € [k] and V[, is the y-th row of
VT where only the columns indexed by M; are retained.
Thus, we have ¢* possible values that the coefficients o’s can
assume.

Then, to fill the positions of z specified by M, so that
x € V;, we have at most q*=Mntiy 1" possible choices. This
is because the positions of x corresponding to M; N M have
already been fixed (when filling z 4;, i.e., the vector x in the
positions specified by M;).

Finally, to fill the positions of = corresponding to M,
such that = € V,, we have at most q!*~Mnte.tia1)" possible
choices. This is because, the positions of z corresponding
to M; N (M; UM;) have already been fixed (when filling
Tm;uM,» 1.€., the vector = in the positions specified by
M; U M;). Thus, we obtain the following upper bound

dim(V; N Va NV3) <
k+ [k~ Mngplt+
[k — Moy T+
t — M 23}

We observe that the upper bound above, in general, is not tight
and it varies depending on the choice of the permutation of
(1,2, 3). However, in Appendix F, we further tighten the upper
bound for the quantity dim(V; N V2 N V3), and we show that
this new bound is invariant of the choice of the permutation
of (1,2, 3). Moreover, we show that, when substituted in (28),
this new bound satisfies the condition in (26). This proves that
the scheme described in Section V-A securely achieves the rate
region in Theorem 9.
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E. Secure Capacity for Arbitrary Values of k and m

We here provide sufficient conditions for which the secure
scheme in Section V-A is capacity achieving for arbitrary
values of k£ and m. In particular, we have the following lemma.

Lemma 10: The scheme in Section V-A achieves the secure
capacity region of a two-layer network with arbitrary values of
k and m whenever Mny; ;1 > k for all (i,5) € [m]?,i # j.

Proof: We can compute dim(N;e.4V;) as follows

. (2)
d1m(ﬂi€AVi) < k+ [k‘ — Mm{il,iz}]Jr
+ [k - Mﬂ{i3,{i1,i2}}]+ +..
+ [k - Mﬁ{i‘A‘,{il,ig,...,i‘A\—l}}]+
+t— My
(2) k+t— My,
where (i1,42,...,%.4)) represents a permutation of the ele-
ments of A and: (i) the inequality in (a) follows by extending
to arbitrary values of m the iterative algorithm proposed for

Case 3 in Section V-D to fill the vector x so that x € N;c AV
and (ii) the equality in (b) follows since

Mﬂ{ij,{il,iQ,...,ij—l}} Z Mm{ijvij*l} Z k

By using the property of dual spaces and the rank-nullity
theorem, we obtain dim(}_, 4 Ni) > M4 —Fk, which satisfies
the condition in (26) V.A C [m]. This concludes the proof of
Lemma 10. m|
Example 6: An example of a two-layer network that satisfies
the condition in Lemma 10 is characterized by the following
parameters (see Definition 4): t = 10,m = 4,k = 6, M; =
{1,2,3,4,5,6,7,8}, M2 = {3,4,5,6,7,8,9,10}, M3 =
{1,2,5,6,7,8,9,10} and M4 ={1,2,3,4,7,8,9,10}. |
The results presented in this section provide the secure
capacity region characterization for networks with: (i) arbitrary
value m of destinations, and &k = 1 edge eavesdropped by the
adversary; (ii) arbitrary value k£ of edges eavesdropped and
m = 3 destinations; (iii) arbitrary values for k& and m under
certain conditions on the min-cut capacities (see Lemma 10).
For arbitrary values of m and k for which the condition
in Lemma 10 is not satisfied, we performed numerical eval-
uations by randomly constructing two-layer networks and,
for all the cases we tried, we could not find any network
for which the scheme is not optimal. In particular, in our
simulations, we considered up to m = 8 destinations and, for
different choices of ¢ and k, we connected each destination
to a randomly chosen set of relays. We constructed 100 such
network instances, and verified that the rate region achieved
by our designed scheme given in Lemma 7 equals the outer
bound in (2). This suggests that our designed scheme could
indeed be optimal for arbitrary values of m and k, and we
conjecture this result to hold.
Conjecture 1: Consider a two-layer network with m des-
tinations, where an adversary eavesdrops any k edges of her
choice. The secure capacity region is given by

ZRi < |UieaMi| =k, VA C [m],
ieA
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where M; C [t], ¢ € [m] denotes the destination connec-
tion sets.

E Secure Capacity Scheme for Arbitrary Separable Networks

In this section, we will first show that for any separable
network, a corresponding two-layer network can be created
such that both networks have the same min-cut capacities M 4
for all A C [m]. We will then show that a secure scheme
designed for a two-layer network can be converted to a secure
scheme for the corresponding separable network.

By Definition 3, a separable network G with m des-
tinations, can be separated into 2" — 1 networks gj7,
J C [m], T # 0 where gj7 has min-cut capacity M "7 to every
subset of destinations in J. To construct the corresponding
two-layer network, we use the following iterative procedure:

1) We place the source node S in layer 0 of our network,
and the m destination nodes D;,i € [m], in layer 2 of
our network;

2) For each J C [m], we add M; relays in layer 1 of our
network;

3) For each J C [m], we connect: (i) the source in layer
0 with all the added M "7 relays, and (ii) all the added
M} relays with the destinations D;,i € J in layer 2.

By following the above procedure, it is not difficult to verify
that, for each .4 C [m], the min-cut capacity in the constructed
two-layer network is M 4 as given in (4). As such, the new
constructed two-layer network has the same min-cut capacity
M 4 of the corresponding separable network. In what follows,
we refer to the original separable network as parent separable
network, and to the corresponding two-layer network as child
two-layer network.

We now show that a secure scheme designed for the child
two-layer network can be leveraged to build a secure scheme
for the corresponding parent separable network. Towards this
end, we assume that we have a secure scheme for the child
two-layer network, i.e., as described in (15) in Section V-A,
we have

w
X=[H V] [ W } |
Recall that, as highlighted in Remark 3, even if we select a
random matrix V instead of the Vandermonde matrix V', with
a high probability (close to 1 for large field size) we will have
a secure scheme for the child two-layer network.

To transform the above secure scheme into a secure scheme
for the parent separable network, we proceed as follows.
On every graph G'; in the parent separable network, we trans-
mit (multicast) the symbols that were transmitted in the child
two-layer network from the source node S in layer O to
the set of M/, relays in layer 1 that were added when
constructing the child two-layer network for G';. Note that
this multicast towards all destinations D;,7 € J, is possible
since G has min-cut capacity M’;. With such a strategy,
at the end of the transmissions every destination in the parent
separable graph still receives the same set of packets as it
would have received in the child two-layer network. Thus,
all the destinations can still decode their respective messages.
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We now prove that this scheme is also secure. Let Y be the
collection of the symbols transmitted (multicast) on the parent
separable network, as described above. Since multicasting
involves network coding, we have

y=[G]X (29)

where G is an encoding matrix of dimension |€|x M(,,,], which
can be constructed in O (m|€ |3) by using the multicasting
scheme of [4], which requires a finite field of dimension m.
Thus,

v

vy=[c¢][H V]{W]

K

From the security condition in Lemma 1, it follows that the
scheme above is secure if we can show that for any choice of
G, there exists a V such that V is an MDS matrix (i.e., any
k rows of V are linearly independent) and

rk ([ GHGV ]|, ) =rk ([ GV ]],).
V2| < k.

=[GH Gf/]{

(30)

This is shown in Appendix G, where we prove that over a suffi-
ciently large finite field, with high probability a random choice
of V is an MDS matrix and satisfies the condition in (30).

VI. TWO-PHASE SCHEME FOR NETWORKS WITH
ARBITRARY TOPOLOGIES AND ARBITRARY
NUMBER OF DESTINATIONS

We now propose the design of a secure transmission scheme
for networks with arbitrary topologies and arbitrary number
of destinations. This scheme consists of two phases, namely
the key generation phase (in which secret keys are generated
between the source and the m destinations) and the message
sending phase (in which the message packets are first encoded
using the secret keys and then transmitted to the m desti-
nations). In particular, this scheme is inspired by the work
in [11], where it was shown that for multicast and single
unicast connections, such a two-phase scheme that separates
over time the transmissions of keys and messages indeed
achieves the secure capacity. However, it turns out that this is
no longer the case for multiple unicast sessions, as we discuss
in detail in the following.

The secure rate region of this two-phase scheme is presented
in Theorem 11.

Theorem 11: Let (Rl,f%g, e Rm) be an achievable rate
m-tuple in the absence of the eavesdropper. Then, the rate
m-tuple (Ry, Ra, ..., R,,) with

. 1T

Ri:Rz{l_M} Vi € [m] 31
where M is the minimum min-cut capacity between the source
and any destination, is securely achievable in the presence of

an adversary who eavesdrops any k edges of her choice.
Proof: Let My;, be the min-cut capacity between the
source and the destination D; with ¢ € [m]. We define M as
the minimum among all these individual min-cut capacities,
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ie, M = minjcp,) My;y. Let (Ry, Ra,...,Ry) € R™ be
the rate m-tuple achieved in the absence of the eavesdropper.
We start by noting that if £ > M, then (31) would evaluate
to a zero rate towards each destination, which can always be
achieved. Thus, we focus on the case k < M. We approxi-
mate the rate m-tuple (Rl, Ro, ... ,Rm) € R™ with rational
numbers; notice that this is always possible since the set of
rationals QQ is dense in R. Since this rational rate m-tuple
might involve fractional flows on the edges, we replace each
edge with T' parallel edges. We denote this new network as
Gr. The number T is chosen such that: (i) we achieve the rate
m-tuple (TRl, TRQ, o ,TRm) over Gr, and (ii) every edge
in Gr carries an integer flow. In what follows, we describe
our coding scheme and show that

k A oA N
(R17R27"'va):(l_M>(RlaR25'"va) (32)

is securely achievable on G. In particular, our scheme consists
of two phases, namely the key generation phase and the
message sending phase. Moreover, the key generation phase
consists of k subphases, whereas the message sending phase
consists of M — k subphases. In each subphase, we use the
network Gr for transmission. We also highlight that we allow
the adversary to eavesdrop any Tk edges of Gr. We next
describe the two phases of our scheme.

o Key generation. This first phase — in which secure keys
are established between the source and the destinations —
consists of k£ subphases. In each subphase, the source
multicasts T'(M — k) random packets securely to all
destinations which will be used as secret keys in the
message sending phase. This is possible thanks to the
secure network coding result of [1], since the minimum
min-cut capacity of Gr is T'M and Eve has access to
Tk edges. Thus, at the end of this phase, by transmitting
T M random packets in each of the k subphases, a total
of Tk(M — k) secure keys are established between the
source and the m destinations.

o Message sending. This phase consists of M — k sub-
phases. In each subphase, we choose Tk packets out
of the Tk(M — k) securely shared (in the key gen-
eration phase) random packets. For each choice of
Tk packets, we convert the unsecure scheme achieving
(Tf%l, TRo, ..., TRm) to a secure scheme achieving the
same rate m-tuple. Towards this end, we expand the Tk
shared packets into Z;nzl TR]- packets using an MDS
code matrix. With this, we have the same number of
random packets as the message packets. We then add the
message packets with the random packets and transmit
them as it was done in the corresponding unsecure
scheme (i.e., in absence of the eavesdropper).

We highlight that the two phases of the proposed scheme
(i.e., key generation and message sending) are presented
separately just for ease of explanation and understanding.
Secure communication over erasure and error free channels
indeed requires that the source and destinations agree on the
secure keys that are used to encode the message packets. This
agreement can be reached through a key generation phase.
Then, a message sending phase can be combined with the key
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generation phase as a single code of a certain block length —
which equals to nM over Gr — hence making the security
aspect of the scheme consistent with Definition 1. In particular,
n is determined by the field size required in the key generation
and message sending phases and represents the block length
of the code used in one subphase of the key generation or
message sending phase over Gr. Thus, this translates to a code
of overall block length of nT'M over G.

Proof of security. For each of the M — k subphases of the
message sending phase, we denote by W; the TR; messages
for D;, and define W as

Wi
1%
W = 2
W

Moreover, we let K be the vector containing the Tk securely
shared random packets. With this, for each of the M — k
subphases of the message sending phase, we can write the
transmissions over the network Gr as

X = [ Ha v][W], (33)

K
where H,s is the encoding matrix used in absence of the
eavesdropper and V is the Vandermonde matrix of size
Z:Zl TR; x Tk. Because of the property of Vandermonde
matrices, (33) satisfies the security condition in Lemma 1, and
hence the scheme above is secure. We also highlight that this
Vandermonde matrix V' always exists for any finite field of size

m A
> R; or more. This follows because of the three following
i=1

facts: (i) Z R > M since, by definition, M is the minimum

min-cut capac1ty between the source and any destination;
(i1) £ < M since otherwise (31) would evaluate to a zero rate
m

towards any destination; and (iii) »_ R; > k from the two

facts in (i) and (ii). Moreover, thisl_rrllatrix V can be created
with a constant time complexity by selecting the element in
the i-th row and j-th column of V to be (a;)’~! where the
coefficients «;’s are distinct elements from the finite field.

We would like to emphasize that in our setting (according
also to Definition 1) the adversary is assumed to eavesdrop
any k edges of the network §. For the two-phase scheme
described above, from the original graph G we construct
the new graph Gr, where each edge in G has now been
replaced by T parallel edges. Thus, if over the graph G the
adversary was eavesdropping k edges, over Gr we now allow
her to eavesdrop any Tk edges. However, the adversary is
not allowed to change this set of T’k eavesdropped edges
from one subphase to another. In other words, in each of the
M subphases the adversary will always eavesdrop the same
set of Tk edges. Note that this is also consistent with the
description of the eavesdropper’s capabilities in Definition 1.
We also point out that, with this assumption of the adversary
eavesdropping the same set of Tk edges in each subphase,
the proposed two-phase scheme is secure since:

(i) After the k£ subphases of the key generation phase,
the source and the m destinations have securely
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established T'k(M — k) packets (referred to as secure
keys), to which the adversary has no access;

In each of the M — k subphases of the message sending
phase, we transmit »_." TR; new message packets by
using Tk secure keys (out of the Tk(M — k) keys
generated in the key generation phase). Thus, it follows
that each subphase of the message sending phase is using
a set of independent keys from those used in a different
subphase.

(ii)

Analysis of the achieved rate m-tuple. The secure scheme
described above requires a total of M subphases, where the
first k£ subphases are from phase 1 (i.e., key generation) and
the next M — k subphases are from phase 2 (i.e., message
sending). In particular, in the first k£ subphases, we generate the
secure keys and in the remaining M —k subphases, we securely
transmit at rates of (TRl, TRQ, e T]:'im). Thus, the achieved
secure message rate (Ry, Ro, ..., R,,) is

M —Fk 4 EN 5 .
Rj =T Rj = <]. - M) Rj,V] S [m] . (34)
This concludes the proof of Theorem 11. |

It is worth noting that the capacity region in absence of
the eavesdropper was determined in [5, Theorem 9] (see also
Lemma 14), and is given by

> Ry < Ma, VAC [m).
i€A
By leveraging this result and (31), we can therefore compute
the rate region achieved by our secure two-phase scheme,
which is given in the next corollary.
Corollary 12: The achievable secure rate region of the
two-phase scheme is given by

Z&sm—k(%), VA C [m],

€A

where M = m[m] My
i€[m
We now comment on the design complexity of this

two-phase scheme and provide a trivial upper bound on the
field size.

Lemma 13: The complexity of designing the secure
two-phase transmission scheme equals O(m?|€|?). Moreover,
a field size of O(m + |&]) suffices.

Proof: To design our two-phase scheme for a rate tuple
(R1,Ra,...,Ry), we need to use k subphases for mul-
ticasting the keys and M — k subphases for routing the
multi-commodity information flow. Recall that M is the
minimum of the min-cut capacities from the source to any
destination D;, i € [m], and as such M can be found in
O(m|&]?:) [35] by solving m linear programs. The design of
the deterministic matrix for multicasting the keys has a time
complexity of O(|€|mM (M + m)) [4], which can be further
upper bounded as O(|£[3>m). Finally, the design of the routing
for multi-commodity flow can also be performed using a linear
program which has a time complexity of O((m|£|)??) [35].
Thus, the overall time complexity is O(m3|€]3).

The field size required for constructing the deterministic
multicast matrix is m [4]. We also require an MDS code for
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encoding the message packets before routing. This requires
a field size of |€| (corresponding to the Vandermonde or
similar MDS matrix). Thus, a trivial bound on the field size
requirement is O(m + |£]). However, since our encoding
schemes are linear, we believe that vector encoding schemes,
such as the subspace coding scheme in [36], could be adapted
to this case and leveraged to achieve a small finite field size.
This is part of our current investigation. |
We conclude this section, by highlighting two fundamental
features of our two-phase scheme:

1) Different from the scheme designed in Section V,
which only applies to separable networks, the two-phase
scheme applies to networks with arbitrary topologies.

2) The two-phase scheme is oblivious to the network struc-
ture, and uses all the network resources in both phases.
In other words, different from the optimal scheme of
Section IV for m = 2 destinations, the two-phase
scheme does not seek to optimally separate the infor-
mation and key flows. This causes the scheme to be
suboptimal (see also Corollary 12) as also remarked by
the detailed analysis in [30, Section 4.3].

VII. COMPARISONS AND NON-REVERSIBILITY OF
MULTIPLE UNICAST TRAFFIC

In this section, we make some comparisons and dis-
cuss properties of multiple unicast traffic. In particular,
in Section VII-A, we compare the secure rate region for
m = 2 destinations in Theorem 3 with the capacity region
when the adversary is absent. The goal of this analysis is
to quantify the rate loss that incurs to guarantee security.
In Section VII-B, we prove that the secure capacity region for
m = 2 destinations is non-reversible. Specifically, we show
that, if we switch the role of the source and destinations
and we reverse the directions of the edges, then the new
secure capacity region differs from the original one. This is
a surprising result since it implies that — different from the
unsecure case where non-reversible networks must necessary
have non-linear network coding solutions [37], [38] — under
security constraints even networks with linear network coding
solutions can be non-reversible if the traffic is multiple unicast.

A. Comparison With the Unsecure Capacity Region

The unsecure capacity region (i.e., capacity in the absence of
the eavesdropper) for a multiple unicast network with a single
source and multiple destinations described in Section II, is well
known [5, Theorem 9] and given by the following lemma.

Lemma 14: The unsecure capacity region for the multiple
unicast traffic over networks with single source node and m
destination nodes is given by

Ru< My, VAC[m], (35)

where R4 := > R; and M 4 is defined in Definition 2.

By comparirfg??a) with (35) (evaluated for the case m = 2),
we observe that in the presence of the eavesdropper, different
from the unicast and multicast scenarios where we always lose
arate k in each dimension, in the multiple unicast case the loss
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might be strictly smaller than £ per dimension. An example
is given below to illustrate this.

Example 7: Consider a network with a single source and
m = 2 destinations with My =2, M5y = 2 and My 2y =
3. In the absence of any eavesdropper, according to (35) the
rate pair (1.5,1.5) is Pareto optimal. However, in the case of
an adversary eavesdropping any k£ = 1 edge of her choice,
according to (3), the secure rate pair (1, 1) is achievable, and
hence only a rate of 0.5 per destination (i.e., dimension) is
lost for security, as opposed to a loss of 1 per component for
the unicast and multicast traffic.

B. Non-Reversibility of the Secure Capacity Region

In order to characterize the unsecure capacity region in (35),
network coding is not necessary and routing is sufficient (see
also [5, Theorem 9]). Thus, from the result in [38], it directly
follows that the capacity result in (35) is reversible. In partic-
ular, let G be a network with single source and m destinations
with a certain capacity region (that can be computed from
Lemma 14). Then, the reverse graph G’ is constructed by
switching the role of the source and destinations and by
reversing the directions of the edges. Thus, G’ will have m
sources and one single destination. The result in [38] ensures
that G and G’ will have the same capacity region, i.e., the
result in Lemma 14 characterizes also the unsecure capacity
region for the multiple unicast traffic over networks with m
sources and single destination.

We now focus on the secure case. In Section IV, we have
characterized the secure capacity region for a multiple unicast
network with single source and m = 2 destinations. In par-
ticular, Theorem 3 shows that the secure capacity region does
not depend on the specific topology of the network and it can
be fully characterized by the min-cut capacities My, My
and My 5y and by the number k of edges eavesdropped by
Eve. We now show that this result is non-reversible, i.e., the
secure capacity region of the reverse network is not the same
as the one of the original network. Moreover, we also show
that the secure capacity region of networks with 2 sources
and a single destination cannot anymore be characterized by
only the min-cut capacities, i.e., it also depends on the specific
network topology.

Consider the three networks in Fig. 4 and assume
k = 1, ie., Eve eavesdrops one edge of her choice.
For the network in Fig. 4(a) we have min-cut capacities
(M1y, Moy, M{; 23) = (1,2,2) and hence from Theorem 3
it follows that a corner point for the secure capacity region
for this network is given by (R;, Re) = (0,1). This point can
be achieved by simply using the scheme shown in Fig. 4(a),
where K represents the key and W5 the message for D2. Now,
consider the network in Fig. 4(b) that is obtained from Fig. 4(a)
by switching the role of the source and destinations and by
reversing the directions of the edges. For this network, which
has the same min-cut capacities as the network in Fig. 4(a),
the rate pair (R1, R2) = (1, 0) is securely achievable using the
scheme shown in Fig. 4(b) where W is the message of S and
K and K> are the keys generated by S and Ss, respectively.
The rate pair (R1, R2) = (1,0), which is securely achieved
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(@) (R1,R2) = (0,1) is capac- (b) (R1,R2) = (1,0) is achiev-
ity. able.
D
X4
X3
X X9
S] SQ
() R1,R2) = (1,0) is not
achievable.

Fig. 4. Network examples for non-reversibility.

by the network in Fig. 4(b), cannot be securely achieved by
the network in Fig. 4(a). This result implies that a secure rate
pair that is feasible for one network might not be feasible for
the reverse network, i.e., the secure capacity regions can be
different and hence cannot be derived from one another. The
achievability of the pair (R1, R2) = (1,0) in Fig. 4(b) also
shows that the outer bound in (2) does not hold for networks
with single destination and multiple sources, in which case it
is possible to achieve rates outside this region.

Consider now the network in Fig. 4(c). This network has
the same min-cut capacities as the network in Fig. 4(b),
ie., (My, Moy, M{1,91) = (1,2,2). We now show that the
rate pair (Ry, Re) = (1,0), which can be securely achieved
in the network in Fig. 4(b), cannot be securely achieved in
the network in Fig. 4(c). Let X;,i € [4], be the transmitted
symbols as shown in Fig. 4(c). With this, we have

Ry = H(WY)

@ (W) — HWi|Xs, X4)

(b)

< H(Wi) — HWi| X1, X2, X3)
=I(W1: X1, X2, X3)

= I(Wy; X1) + I(Wy; Xo, X3|X1)
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© I(Wy; Xo, X3|X1)

= H(X2, X3 X1) — H(X2, X3|W1, X1)

@ H(X, Xa) = H(X2, Xa) =0 ,

where: (i) the equality in (a) follows because of the decod-
ability constraint; (i) the inequality in (b) follows because
of the ‘conditioning reduces the entropy’ principle and since
X, is a deterministic function of (X7, X5); (iii) the equality
in (c) follows because of the perfect secrecy requirement;
(iv) finally, the equality in (d) follows since (X»,X3) is
independent of (W7, X1). This result shows that the rate pair
(R1, R2) = (1,0) is not securely achievable in the network
in Fig. 4(c). This implies that, for a network with single
destination and multiple sources, we cannot characterize the
secure capacity region based only on the min-cut capacities
(M{1y, Moy, My 2y), i.e., the result would also depend on
the specific network topology.

VIII. CONCLUSIONS AND OPEN QUESTIONS

In this paper, we considered a source that aims to securely
send private messages to m destinations, in the presence
of a passive adversary that eavesdrops any k edges of her
choice. We derived an outer bound expressed in terms of
min-cut capacities, and designed schemes that achieve the
secure capacity for the cases of (i) m = 2, k arbitrary, and
arbitrary network topologies; (ii) m = 3, k arbitrary, two-layer
and arbitrary separable network topologies; (iii) m arbitrary,
k = 1, two-layer and arbitrary separable network topologies;
(iv) m and k arbitrary for network topologies satisfying certain
min-cut conditions. We note that in all these cases our achiev-
able schemes are of polynomial-time complexity. However,
unlike two-layer networks, for arbitrary separable networks,
identifying the network separation may require an exhaustive
search. This indicates that for arbitrary networks as well,
identifying a capacity achieving scheme is a hard problem.
Accordingly, we also proposed a suboptimal polynomial-time
scheme that applies to all networks, arbitrary m and k, and
for any subset of destinations A C [m], loses a maximum
sum-rate of k (44 — 1) compared to the outer bound (recall
that M 4 is the min-cut capacity between the source and the
set of destinations in A, and M is min;c,) My;}).

To the best of our knowledge, our work is the first to
consider security for multiple unicast sessions over networks.
Given this, several open questions remain, that include:
(i) proving Conjecture 1; (ii) leveraging subspace codes or
other vector coding designs that require smaller alphabet size;
and (iii) deriving polynomial-time algorithms for arbitrary
networks that perform close to the optimal.

APPENDIX A
PROOF OF LEMMA 4

For completeness, we here report the proof of the result in
Lemma 4, which is a direct consequence of [8, Theorem 1].
In particular, this result shows that any graph G with single
source and m = 2 destinations is separable. The graph G
has min-cut capacity My;,i € [2], towards destination
D; and min-cut capacity M o) towards {D1, Do}, from
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which M%i}.,i € [2], and N[£1,2} can be. computed l?y qsing
the expressions in (5). For any graph with two destinations,
we represent this min-cut capacities triple, i.e., the min-cut
capacity to destination D;, the min-cut capacity to destination

D5, and the min-cut capacity to destination {D, D>} as:

(M1y, M2y, M1 2y) =
(M@}+M;112}, My +M]y gy, My, + Moy + M{LQ}) ,

where the equality follows by using (5). We now prove
Lemma 4 in two steps. We first show that the graph G can
be separated into two graphs: 9%1} with min-cut capacities

(Mh}, 0, Mh}) and G/, with min-cut capacities

(Miy,2y: Moy + My oy, Mgy + M) -

Then, by applying the same principle we further separate
the graph G/, into two graphs: QEQ} with min-cut capac-

ities (0,]V[€2},]W£2}) and 9%172} with min-cut capacities

(AI£172}’ M{m}’ M{L?})' This would complete the proof of
Lemma 4.

We now prove that we can separate the graph G into the
two graphs ggl} and G/ .. Towards this end, from the original
graph G, we create a new directed acyclic graph G’ where a
new node D’ is connected to D through an edge of capacity
Mh} + M€1,2} and to D through an edge of capacity ]V[%Q}.
It is not difficult to see that in G’ the min-cut capacity between
S and D' is ]V[h} + ‘MELQ} + ]V[EQ} = M;jy 2y, where
the equality follows from (5c). From the max-flow min-cut
theorem, we can find M, oy edge-disjoint paths from S to D’;
we color the edges in these paths green. We can also find Moy
edge-disjoint paths from S to Da; we color the edges in these
paths red. Notice that, at the end of this process, some of the
edges can have both green and red colors. We also highlight
that:

o Out of the My 5 green paths from S to D',
M{1} + M{m} paths flow through D; and M%’f?} flow
through Ds.

« If a path is exclusively green, it flows through D; since
otherwise, in addition to the M9, red edge-disjoint paths
from S to D2, we would have also this path and thereby
violate the min-cut capacity constraint to Da.

The second observation above implies that, if there are M %1}
exclusively green paths, then we can separate the graph G’
into two graphs: Qil} that contains all these M, exclusively
green paths and G/ that contains all the edges of G’ that are
not in ggl}. Given this, by simply removing the node D’ and
its incoming edges, we get G, and Gy..,. We now show how
we can obtain these M %1 exclusively green paths. Towards
this end, we denote with P} the set of all green paths from S to
D’ (notice that these paths might have also some red edges).
Then, until there exists a path p € P such that either it is not
exclusively green or it does not start with an edge that is both
red and green, we apply the two following steps:

1) Let e be the first edge in p, which is both green and
red and denote with g the red path from S to D, that
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contains the edge e. Recall that, since the M 2} red paths
are edge-disjoint, there is only one red path g passing
through e. We split the path p into two parts as p; —e—po
and similarly we split the path g into g; — e — go.

2) We add the red color to p; (that before was all green)
and we remove the red color from g, i.e., now each
edge in g; is either green or it does not have any color.
Note that in this way we replace the red path g1 —e— g2
with p; — e — go from source S to Ds, which is also
disjoint from the rest of M9y — 1 red paths.

We note that this process will stop only when all the My oy
paths from S to D’ are either exclusively green or start with
an edge that is both red and green. We also note that, since
we did not remove any edge, clearly we also did not change
any min-cut capacity during this process. Since initially there
were Moy red edges coming out of S and, in the process of
the algorithm, we replaced one red by another red, then the
number of red edges outgoing from S still remains the same.
Thus, among the My, 2y paths from S to D', only at most
M5y paths start with an edge that is both green and red and
therefore, by using (5), at least M {1} are exclusively green
paths. This proves that the original graph G can be separated
into the two graphs G| 1} and G/._. By using similar arguments,
one can then show that the graph G/ . can be separated into
the two graphs Qf{Q} and g~l{1,2}' This concludes the proof of
Lemma 4.

APPENDIX B
PROOF OF SECURITY: THEOREM 3, CASE 1

We here prove that, for any choice of G, there exists a U in

Y = [ Orx(ry+Ry) G } [ w }
IR1+R2 U K |’

)(8])

for every |Z| < k. Towards this end, we select a random
matrix U and show that with high probability the condition
in (36) is satisfied for a sufficiently large field. This proves
the existence of such a matrix U. In particular, we have the
set of equations in (37), shown at the bottom of the next page,
where the labeled equalities follow from: (a) using the union
bound; (b) the fact that (%) < (%)t, and (d) considering
sufficiently large ¢ and arbitrary small values of e. In order to
show the inequality in (c), assume that Z corresponds to k;
rows in | Opx(r,+Rr,) G | indexed by Z; and ky rows in

[ Ir,+r, U | indexed by Z; with k; + ko < k. With this,
we have that

G

U

,rk ( |: OKX(R1+R2)
IR1+R2
This follows since, because of the structure of the matrix,
the rows in the block | Ogx(m,+r,) G | are linearly

such that

Orx(Rit+Rs) G ]
k 1 2
" ( |: IR1+R2 U

Z) =k ([ G ]5,) +k
k1<ky
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independent of the rows in the block [IR1+R2 U ]
Moreover, we have

G .
Tk<[ U} z) =k,
with probability
k2 Firi—1Y (e) F2
q -1
p=IT{1-"—F— )= 110-a")
j=1 q j=1

k2 ()

2 (a

1

q

1

q

) e
where: (i) the inequality in (e) follows since ky +j — 1 —
k < —1 for all j € [kg], and (ii) the inequality in (f) follows
since ko < k. This shows that the inequality in (c) above
holds.

APPENDIX C
PROOF OF SECURITY: THEOREM 3, CASE 2
We here prove that, for any choice of S and G satisfying
k([ S @G ”2) =rk([ G ]|z) for all |Z| < k, there
exists a U in

W’
X _ |: OS 0[{[)(7‘ g :| W// ’
rXt T K
such that
S Opr G B G
(Lo " FIL) - (EL) o

for every | Z| < k. Towards this end, we select a random U
and show that with high probability the condition in (38) is
satisfied for a sufficiently large field. This proves the existence
of such a matrix U. By following similar steps as in the proof
of Case 1 in Appendix B, we get set of equations in (39),
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shown at the bottom of the next page, where the inequalities
in (a) and (b) follow by using similar arguments as in the
proof of Case 1 in Appendix B.

APPENDIX D
PROOF OF LEMMA 5

In this section, we use an iterative algorithm that, for
any permutation 7 = {m(1),...,m(m)} of [m], allows to
select Ry ;) vectors from Nﬂ(i) (with Ry ;) being defined
in (19)) so that all the selected ZZZI R; vectors are linearly
independent. We next illustrate the main steps of the proposed
algorithm.

1) We select Ry = dim(N;(;)) independent vectors
from A (;). Note that one possible choice for this
consists of selecting the basis of the subspace Ny (1.
Next we would like to select independent vectors from
Nﬂ-(g) that are also independent of the Ry vectors
that we selected in the previous step. Towards this end,
we note that a basis of the subspace NV (1) + Nz is a
subset of the union between a basis of Nﬂ(l) and a basis
of Nﬂ(g). Therefore, we can keep selecting vectors from
a basis of N,r@) as long as we select an independent
vector. Since there are dim(N7(1) + Ny (2)) independent
vectors in a basis of N;(1) + Nj(2), then we can
select

Ry 2y = dim(N (1) + Ny (2)) — dim(Ny (1))

2)

independent vectors from NW(Q) that are also indepen-
dent of the R (1) vectors that we selected in the previous
step.

Similar to the above step, we now would like to select
independent vectors from N s that are also indepen-
dent of the Ry(1) + Ry ) vectors that we selected in
the previous two steps. Towards this end, we note that

3)

0 G G
Prirk | | Ut = rk , V|2 <k (372)
Ingr U ||, v |l,
0 G
—1-Pr{ | [rk <l H(FatFia) ‘ ) #k ( | )] (37b)
|2|<k Trrr: U |5 Ulls
(2 0 G
1 3 Prick| | R £ rk (37¢)
B Imire U |5 Ulls
(b) k 0 G G
>1- <%> max Pr< rk Ox(R1+R2) #*rk (37d)
ko) o1zI<k Irivr. U ||, Ull.
k
0 G G
=1- <%> max ([ 1 —Prqrk Ox(RatRe) =rk (37e)
k |Z|<k IR1+R2 U = U =
(©) k k
9o <%> max <1_ (1 - 1) ) (370)
k |Z|<k q
(@
> 1—e (37g)
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a basis of the subspace Ny (1) +Nz(2) + Ny (3) is a subset
of the union between a basis of (1) —I—Nﬂ(g) and a basis
of N7 (3). Therefore, we can keep selecting vectors from
a basis of N3y as long as we select an independent
vector. Since there are dim(N(1) + N2y + Ny(3))
independent vectors in a basis of N (1) +Nx(2) + N (3).
then we can select

Rﬂ(g) = dim(./\/ﬂ(l) +Nﬂ(2) +Nﬂ(3))
— dim(N 1) + Ny2))

independent vectors from Nﬂ(g) that are also indepen-
dent of the Ry 1)+ Ry(2) vectors that we selected in the
previous two steps.

4) We keep using the iterative procedure above for all the
elements in 7, and we end up with Z:Zl R; vectors that
are linearly independent.

This concludes the proof of Lemma 5.

APPENDIX E
PROOF OF LEMMA 7

In this section, we leverage the result in Lemma 5 to prove
Lemma 7. We start by noting that the rate region in (20) can
be expressed as the polyhedron in (40), shown at the bottom
of the page, where f(A) := dim (}_,. 4N;). We now prove
the following lemma, which states that this function f(-) is a
non-decreasing and submodular function over subsets of [m].

Lemma 15: The set function

f(A) :== dim (ZM’> , VA C [m]
i€A
is a non-decreasing and submodular function.
Proof: Let A C B C [m], then

f(B) = dim <ZM->

i€B

=dim | Y Ni+ > N

icA JjEB\A
> dim (ZN) = f(A),
i€A
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which proves that the function f(-) is non-decreasing. For
proving submodularity, consider two subsets C,D C [m].
Then, we have

fCUD) = dim(

> xi)

i€CUD

i€eC Jj€D

— dim ZM+ Z/\G)

— dim( > Nk>
keCnND

=)+ f(D) - f(CND),

which proves that the function f(-) is submodular. O

Since f(-) is a submodular set function, then the polyhedron
defined in (40) is the polymatroid associated with f(-).
Moreover, since f(-) is also non-decreasing, then the corner
points of the polymatroid in (40) can be found as follows
[39, Corollary 44.3a]. Consider a permutation 7™ =
{r(1),...,m(m)} of [m]. Then, by letting S, =
{m(1),...,7()} for 1 < ¢ < m, we get that the corner
points of the polymatroid in (40) can be written as R, =
f(S¢)— f(S¢—1). Note that by using f(A) = dim (3,;c 4 N;).
the above corner points are precisely those in (19) in Lemma 5.
Since each rate m-tuple (R1, Ra,. .., Ry), with R;,i € [m)]
being defined in (19), can be securely achieved by our
proposed scheme, it follows that the secure rate region in (20)
can also be achieved by our scheme. This concludes the proof
of Lemma 7.

S Ouxr G G
Prirk =rk V2| <k (39a)
Orxe I U ||, U
k
>1— (%> max | 1—Prdrk Oexr G ¢ (39b)
k |ZI<k Opxe I U = U =
(a) k k
>1-— <%> max <1 — <1 — l) ) (;) 1—e (39¢)
k |Z|<k q
Py = {RGR[W]:RZO,ZRisﬂA), Mg[m]}- (40)
€A
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APPENDIX F
ANALYSIS OF THE DIMENSION OF (V3 N V2 N V)

From our analysis, we have obtained

dim(Vi N Va N Vs) <k + [k — Mg jy]*

+ [k = Mage, o)™+t — Mg o3 (42)
We now further consider two cases.
Case 3A: There exists a pair (i,7) € [3]%,i # 7, such

that Mqy; ;3 > k. In this case, with the permutation (4, 7, £),
the expression in (42) becomes
dim(Vy N Vo N Vs3) <k [k — Mage )"
+t— M123)
=t— M 23
+ max{2k — Mnys gi 1y K}
From (28), this implies that

dim(Ny + N2 +N3) > My 0.3)
—max{2k — Mn e (i j3}, k}
Ry Mgy + My — 2k},

where the last equality follows since My 23y = My, ;) +
Mgy —Mny 14,5y - With this, the condition in (26) is satisfied.
Case 3B: We have Mny; ;3 < k,V(i,j) € [3]?,i # j. In this
case, we compute dim(V; N Vo N V3) as follows: we first
fill the positions of z indexed by M;, for which we have
¢* possible choices; we then fill the positions of = indexed
by My, for which we have at most q(*~Mnt1.21) possible
choices. However, by following this procedure, we may have
fixed more than k positions of x corresponding to indexes in
M3, which is not feasible. If that is the case, we backtrack,
i.e., we remove the excess choices that we used for filling the
positions of x indexed by M. Thus,

1) If Mng3,1,2)) <k, then
dim(V1NVaNV3) <t — Mg a3 +k
+ (k= Mn1,2y) + (B = M3, {1,2}3)-
This, from (28), implies
dim(N7 + N2 + N3) > Mgy + Mgy
+ M3y — 3k,

= min {M{ng} —

which satisfies the condition in (26).
2) If Mﬂ{B,{l,Z}} > k, then

dim(V1 N Vo NVs) <t — My 233 +k
+ (k — Mny1,2y)
—min{k — Mny12y, Mgz, q1,233 — k}-
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This, from (28), implies

dim(N7 + N2 +N3) > min {Mq 53 — k
My + May + Mgy — 3k},

which satisfies the condition in (26).

APPENDIX G
PROOF OF SECURITY: SEPARABLE NETWORKS

In this section, we show that for any choice of G of size
|E| X Myyy,) with M, > k, there exists a V' such that V' is an
MDS matrix (i.e., any k rows of V are linearly independent)
and

k(lem avl,) -
k([av ],
We start by noting that

R([6V]],)=rk(Gls V)

(
< ([em 6V ]|,)
(

=rk(Glz-[M V])
<rk(Gl3).

Thus, if we prove that, for all |Z| < k,

rk (Gl V) =1k (Gly),

then we also show that (43) holds. In what follows, we for-
mally prove that a V such that V is an MDS matrix that
satisfies the condition in (44) for all |Z] < k can be
constructed with high probability. Towards this end, we let
k= rk (G|z), where k < k since |Z| < k. We have set of
equations in (41), shown at the bottom of the page, where:
(i) the equality in (a) follows by using the De Morgan’s laws,
and (ii) the inequality in (b) follows since for two events A and
B, we have Pr(AU B) < Pr(A4) + Pr(B). We now further
upper bound the two probability terms P; and P». For P,
we obtain the set of equations in (45), shown at the bottom
of the next page, where: (i) the equality in (c) follows by
defining, for a given Z such that |Z]| < k, the event

Az={rk([G117) =rk ([ G ]]2)}
(ii) the equality in (d) follows by using the De Morgan’s laws;
(iii) the inequality in (e) follows by using the union bound;
(iv) the inequality in (f) follows since (?) < (%)t; (v) the
inequality in (g) follows by defining the event Az as

). vEI <k @)

(44)

Az ={rk (GV) =rk([ G 1],)}

Pr{{k ([ G.V)=rk([G]|,), V2l <k} {Vis MDS} ]

(41a)
([6,7)=rk([G1].), Y2l <k} u{V is not MDS}} (41b)
Gll,). vzl gk}c—Pr{f/is not MDS}. (41c)

Py
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where G is the matrix formed by the k = 7k ([ G ]| 2)
independent rows of [ G ||, and V is formed by the first k

columns of V. Thus, the inequality in (g) then follows since
Az C Az; (vi) the equality in (h) follows due to the following
computation. We write

VZ[Ul V2 Ufc]

— GV =[G Gus ... Cu ]

Note that the matrix GV is of full rank (equal to l%) if the
only solution to Zle ciGu; = 0is ¢; = 0,Vi € [k]. Let
N be the null space of G, and N1 be the space such that
NtAN =@and NLUN = F,'t) Then, we can write
each v;,i € [k], as the sum of its projection on N (say
UE“)) and the residual in N* (say vgb)). This implies that GV
is of full rank if the only solution to Zle ci@’ugb) =0is
¢ =0,Vi € [l%] (because Gvi(a) = 0). Since a random choice
of v; results in a random choice on vgb), then the probability
of GV being of full rank is equal to the probability that all the
vectors v,fb), i € [k] are mutually independent in N-L. This
probability, since dim(N-1) = k, is equal to H;:UI (1 — 3—;);
finally, (vii) the inequality in (i) follows since i — k < —1 for
alli€[0:k—1] and k < k.

For P,, we obtain

P, =Pr {f/ is not MDS}
c

@Pr

n A

S:|S|=k
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Yprd | (As)"

S:|S|=k

0 <M]Lm1> Pr{(As)}

where: (i) the equality in (j) follows by defining, for a given
S such that |S| = k, the event

As — {f/\s is full rank} ,

(ii) the equality in (k) follows by using the De Morgan’s
laws; (iii) the equality in (¢) follows by selecting uniformly
at random all the subsets of & rows out of the M, [m] TOWS,
(iv) the equality in (m) follows by counting arguments to
ensure that the k selected rows are all independent, and
(v) the inequality in (n) follows since i — k < —1 for all
1€[0: k—1].

Thus, we obtain the set of equations in (46), shown at
the bottom of the page, where the last inequality holds for
sufficiently large values of ¢ and arbitrary small values of e.

Pr=pefrk ([ G,V) =rk([G]],), W2l <k} (452)
Py az] V9ped ot Y ez (45b)
Z:|2|<k Z:|Z|<k Z:|Z|<k
© (elel)" ey _ (€N
= <T> e, Pritaz)) = <T> e, (1= Pridz}) (450)
© [ele|\" A
() e, (-pe{ac}) B9
k k-1 i
w (<21) ( T(-2) e
i=0 q
; k k
2 (-9
Pr{{rk ([ G ;7)) =k ([ G ][2). V12| <k} {Vis MDs}} (46a)
e|8| k 1 § M[m} 1 k
() (o () ()
>1-e (460)
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