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Abstract—1In the traditional index coding problem, a server
employs coding to send messages to a set of clients within the
same broadcast domain. Each client already has some messages
as side information and requests a particular unknown message
from the server. All clients learn the coding matrix so that
they can decode and retrieve their requested data. Our starting
observation comes from the work by Karmoose et al., which
shows that learning the coding matrix can pose privacy concerns:
it may enable a client to infer information about the requests and
side information of other clients. In this paper, we mitigate this
privacy concern by allowing each client to have limited access to
the coding matrix. In particular, we design coding matrices so
that each client needs only to learn some of (and not all) the rows
to decode her requested message. We start by showing that this
approach can indeed help mitigate that privacy concern. We do so
by considering two different privacy metrics. The first one shows
the attained privacy benefits based on a geometric interpretation
of the problem. Differently, the second metric, referred to
as maximal information leakage, provides upper bounds on:
(i) the guessing power of the adversaries (i.e., curious clients)
when our proposed approach is employed, and (ii) the effect of
decreasing the number of accessible rows on the attained privacy.
Then, we propose the use of k-limited-access schemes: given an
index coding scheme that employs 7' transmissions, we create a
k-limited-access scheme with T, > T transmissions, and with
the property that each client needs at most k transmissions to
decode her message. We derive upper and lower bounds on 7T}
for all values of k, and develop deterministic designs for these
schemes, which are universal, i.e., independent of the coding
matrix. We show that our schemes are order-optimal for some
parameter regimes, and we propose heuristics that complement
the universal schemes for the remaining regimes.

Index Terms—Index coding, privacy, broadcasting, k-limited-
access scheme, maximal information leakage.
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I. INTRODUCTION

T IS well recognized that broadcasting can offer significant

bandwidth savings compared to point-to-point communica-
tion [4], [5], and could be leveraged in several wireless net-
work applications. Use cases include Wi-Fi (cellular) networks
where an access point (a base station) is connected to a set of
Wi-Fi (cellular) devices through a wireless broadcast channel,
and where devices request messages, such as YouTube videos.
Another use case has recently emerged in the context of
distributed computing [6], [7], where worker nodes exchange
data among themselves to complete computational tasks.

A canonical setup which captures the essence of broadcast
channels is the index coding framework [8]. In an index coding
instance, a server is connected to a set of clients through a
noiseless broadcast channel. The server has a database that
contains a set of messages. Each client: 1) possesses a subset
of the messages that she already knows, which is referred to
as the side information set, and 2) requests a message from
the database which is not in her side information set. The
server has full knowledge of the requests and side information
sets of all clients. A [linear index code (or index code in
short)! is a linear coding scheme that comprises a set of coded
broadcast transmissions which allow each client to decode her
requested message using her side information set. The goal is
to find an index code which uses the smallest possible number
of broadcast transmissions. The key ingredient in designing
efficient (i.e., with a small number of transmissions) index
codes is the use of coding across messages.

The starting observation of this work is that, using coding
over broadcast channels can cause privacy risks. In particular,
a curious client may infer information about the requests and
side information sets of other clients, which can be deemed
sensitive by their owners. For example, consider a set of clients
that use a server to download YouTube videos. Although
YouTube videos are publicly available, a client requesting a
video about a medical condition may not wish for others to
learn her request, or learn what are other videos that she has
already downloaded.

To illustrate why coding can create privacy leakage, con-
sider the index coding instance shown in Figure 1. A server
possesses a set of 5 messages, which we refer to as b; to bs.
The server is connected to a set of 4 clients: client 1 wants
message b; and has as side information message bs; client 2

'Tn this work, we solely focus on linear index codes.
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F' — bit messages

Fig. 1. An index coding example with 5 messages and 4 clients. Each client
wants one message and has another as shown above. The optimal index code
consists of sending the two transmissions by + b2 and b3 + bg.

wants bs and has bj; client 3 wants bz and has by; and
client 4 wants by and has bs. In this case, an optimal (i.e., with
the minimum number of transmissions) index code consists of
sending 2 transmissions, namely by + bs and bz + by: it is
easy to see that each client can decode the requested message
from one of these transmissions using the side information.
However, this index code can allow curious clients to violate
the privacy of other clients who share the broadcast channel,
by learning information that pertains to their requests and/or
side information sets. For example, assume that client 4 is
curious. Upon learning the two transmissions, client 4 knows
that nobody is requesting message bs. Moreover, she knows
that if a client is requesting by or b (similarly, bg or by), then
this client should have the other message as side information
in order to decode the requested message.

The solution that we propose to limit this privacy leakage
stems from the following observation: it may not be necessary
to provide clients with the entire set of broadcast transmis-
sions. Instead, each client can be given access, and learn
the coding operations, for only a subset of the transmissions,
i.e., the subset that would allow her to decode the message that
she requested. Consider again the example in Figure 1. The
optimal index code consists of two transmissions. However,
each client is able to decode her request using exactly one
of the two transmissions. Therefore, if each client only learns
the coding coefficients for the transmission that she needs,
then she will have no knowledge of the content of the other
transmission, and thus would have less information about the
requests of the other clients. Limiting the access of each client
to just one out of the two transmissions was possible for this
particular example; however, it is not the case that every index
code has this property.

Our approach in this paper builds on the idea described
above. We primarily turn our attention to a specific technical
challenge, namely how to design index codes where each
client is limited in her access to the transmitted messages.
Our method stems from our recent observation in [1], where
we showed that the knowledge of the coding matrix may
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enable a client to infer information about the requests and
side information of other clients. Thus, limiting the access
of clients to the coding matrix promises privacy benefits.
In particular, given an index coding instance that uses 7'
transmissions, we ask: Can we limit the access of each client
to at most £ < T transmissions, while still allowing each
client to decode her requested message? In other words, for
a given index coding instance, what is the best (in terms of
number of transmissions) index code that we can design such
that each client is able to decode her request using at most
k out of these transmissions? Towards this end, we propose
the use of k-limited-access schemes, that transform the coding
matrix so as to restrict each client to access at most k rows
of the transformed matrix, as opposed to the whole of it. Our
contributions can be summarized in two major directions: i)
we show formally and operationally how limiting the access of
clients can increase the privacy guarantees, and ii) we provide
deterministic constructions of our proposed k-limited-access
schemes. In more details, our contributions include:

o We formalize the intuition that using k-limited-access-
schemes can indeed increase the attained level of privacy
against curious clients. We demonstrate this by using
two privacy metrics. Our first proposed metric is an
entropy-based metric, which is inspired by a geometric
interpretation of the considered problem. The second
proposed metric is known as the Maximal Information
Leakage (MIL). Using MIL, we show how our scheme
affects the guessing power of the adversaries (i.e., curious
clients). We also show how, for a particular regime,
the guessing power of the adversaries vanishes asymptot-
ically. Finally, for both metrics, we show that the attained
level of privacy is linearly dependent on the value of k,
i.e., privacy increases linearly with the number of rows
of the coding matrix that we hide.

« We design polynomial time (in the number of clients) uni-
versal k-limited-access schemes (i.e., that do not depend
on the structure of the coding matrix) that require a simple
matrix multiplication. We prove that these schemes are
order-optimal in some regimes, for instance when k >
[T/2]. Interestingly, when k is larger than a threshold,
these schemes enable to restrict the amount of access to
half of the coding matrix with an overhead of exactly one
additional transmission. This result indicates that some
privacy-bandwidth trade-off points can be achieved with
minimal overhead.

« We propose algorithms that depend on the structure of the
coding matrix and show that, for some parameter regimes,
they provide improved performance with respect to the
universal schemes mentioned above. These schemes use
a graph-theory representation of the problem, and are
optimal for some special instances.

e We provide analytical and numerical performance
evaluations of our schemes. We show how our proposed
k-limited-access schemes provide a bandwidth-privacy
trade-off, namely how much bandwidth usage (i.e.,
number of transmissions) is needed to achieve a certain
level of privacy (captured by the value of k). We identify
the parameter regimes where our proposed schemes
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provide a trade-off curve that is close to the lower bound.
For the remaining regimes, we show through numerical
evaluations that our proposed algorithms give an average
performance that is close to the lower bound.

The paper is organized as follows. Section II introduces our
notation, formulates the problem, and gives a geometric inter-
pretation. Section III discusses how k-limited-access schemes
limit the privacy leakage. Section IV shows the construction
of k-limited-access schemes and proves their order-optimality
in some parameter regimes. Section V designs algorithms
which are better-suited for the remaining regimes. Section VI
discusses related work and Section VII concludes the paper.
Some of the proofs are delegated to the appendices. The results
in this paper are presented in part in [1]-[3].

II. NOTATION, PROBLEM FORMULATION AND
GEOMETRIC INTERPRETATION

Notation. Calligraphic letters indicate sets; |X| is the cardi-
nality of X; [n] is the set of integers {1,---,n}; boldface
lower case letters denote vectors and boldface upper case
letters indicate matrices; given a vector b, b; indicates the i-th
element of b; given matrices A and B, B C;, A indicates that
B is formed by a set of k rows of A; 0; is the all-zero row
vector of dimension j; 1, denotes a row vector of dimension
j of all ones and I, is the identity matrix of dimension j; e’
is the all-zero row vector of length j with a 1 in position i;
for all z € R, the floor and ceiling functions are denoted with
|z| and [z], respectively; logarithms are in base 2; Pr(X)
refers to the probability of event X.

Index Coding. We consider an index coding instance, where
a server has a database B of m messages B = {bq}, where
M = [m] is the set of message indices, and b; € FL' j € M,
with F' being the message size, and where operations are
done over the binary field. The server is connected through
a broadcast channel to a set of clients C = {ca}, where
N = [n/] is the set of client indices. We assume that m > n’.
Each client ¢;,i € N, has a subset of the messages {bs,},
with §; C M, as side information and requests a new message
by, with ¢; € M\ S; that she does not have. We assume
that the server employs a linear code, i.e., it designs a set
of broadcast transmissions that are linear combinations of the
messages in B. The index coding algorithm used to design
the linear code is only known by the server and not by the
clients. The linear index code can be represented as AB =Y,
where A € F2*™ is the coding matrix, B € F7"*F is the
matrix of all the messages and Y € FgXF is the result-
ing matrix of linear combinations. Upon receiving Y, client
¢i,i € N, employs linear decoding to decode the requested
message byg,.

Problem Formulation. In [8], it was shown that the index
coding problem is equivalent to the rank minimization of an
n’ x m matrix G € ]FS‘,Xm, whose i-th row g;, @ € [n'], has
the following properties: (i) has a 1 in the position ¢; (i.e.,
the index of the message requested by client ¢;), (ii) has a 0
in the j-th position for all j € M\S;, (iii) can have either 0 or
1 in all the remaining positions. For instance, with reference
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to the example in Figure 1, we would have

1 %000
x 1000
=100 1 + 0|
[00*10J

where x can be either 0 or 1. It was shown in [8] that
finding an optimal linear coding scheme (i.e., with minimum
number of transmissions) is equivalent to completing G (i.e.,
assigning values to the x components of G) so that it has the
minimum possible rank. Once we have completed G, we can
use a basis of the row space of G (of size T = rank (G))
as a coding matrix A. In this case, client ¢; can construct g;
as a linear combination of the rows of A, i.e., ¢; performs
the decoding operation d;AB = d;Y, where d; € ]Fg is the
decoding row vector of ¢; chosen such that d; A = g;. Finally,
client ¢; can successfully decode by, by subtracting from d; Y
the messages corresponding to the non-zero entries of g; (other
than the requested message). We remark that any linear index
code that satisfies all clients with 7" transmissions (where 1" is
not necessarily optimal) — and can be obtained by any index
code design algorithm [9]—[11] — corresponds to a completion
of G (i.e., given A € ngm, we can create a corresponding
G in polynomial time). Such a matrix G is not necessarily
unique. However, it is of rank at most 7" and follows the
structure described above. The following observation on the
matrix G is important for next discussions: although the n’
clients may not be identical (i.e., they do not share the same
requests and side information sets), the matrix G does not
necessarily have n/ distinct vectors. Consider for example the

situation where n’ = 3, ¢ = 1 and S; = {2}, g2 = 2 and
S, ={1} and g3 =3 and S3 = ). Let A = (1) (1) ﬂ.Then

a corresponding matrix G is

1
G=|1
0

S = o
_ o O

In what follows, we assume that a matrix G of n’ rows has n <
n’ distinct Tows; without loss of generality, we assume that
these distinct vectors are the first n vectors of G, i.e., g;,¢ €
[n]. Since identical vectors are reconstructed identically using
the matrix A, it therefore suffices to focus on reconstructing
the n distinct vectors g;,¢ € [n]. To further simplify the
problem, we henceforth assume the existence of only n clients
C[n) With corresponding n distinct rows gj;,,; more clients with
corresponding rows in G that are identical to gj,,; would apply
the same decoding operations as the clients cp.

In our problem formulation, we assume that we start with
a linear index code A € ]FQTX’", and a particular realization
of a corresponding matrix G of rank 7' with n distinct rows.>
Then, we ask: Given n distinct vectors g;, i € [n], in a
T'-dimensional space, can we find a minimum-size set Ay,
with Ty, > T vectors, such that each g; can be expressed
as a linear combination of at most k vectors in Ay (with

2We remark that our scheme starts by assuming a particular realization of
the matrix G. Optimizing over the choice of the matrix G is out of scope of
this work.
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(a) Conventional Transmission Protocol.
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(b) Proposed Transmission Protocol.

Fig. 2. A comparison between the conventional and the proposed transmission protocols. The proposed transmission protocol incurs a negligible increase in

the transmission overhead when both n and m are o(F').

1 <k <T)? The vectors in Ay form the rows of the coding
matrix Ay that we will employ. Then by definition, client c;
will be able to reconstruct g; using the matrix Ag) Cr Ar.We
can equivalently restate the question as follows: Given a
coding matrix A, can we find P € ]Fg""XT, with T}y, as small
as possible, such that Ay = PA and each row of G can
be reconstructed by combining at most k rows of Ay? Note
that £k = T corresponds to the conventional transmission
scheme of an index coding problem for which P = Ir. In
the remainder of the paper we will refer to a scheme that
chooses Aj to be the coding matrix as k-limited-access
scheme.

Transmission Protocol. In order to realize the privacy benefits
of using k-limited-access schemes — which we will thoroughly
illustrate in Section III — we propose a different transmission
protocol for the index coding setup. Figure 2 shows both the
conventional and the proposed transmission protocols. In the
conventional protocol, the server designs a set of 7' packets,
each corresponding to an equation from the set of equations
AB =Y. As shown in Figure 2(a), packet i € [T] consists
of (i) a payload which contains the linear combination y; and
(i1) a header which contains the coefficients a; used to create
the equation. In the conventional protocol, the server sends
these packets (both headers and payloads) on the broad-
cast channel to all clients. Our proposed protocol, however,
operates differently. Specifically, the server generates packets
which correspond to the set of equations AyB = Y in a
way that is similar to the conventional protocol. The server
then sends only the payloads of these packets on the broadcast
channel. Differently, the server sends the coefficients corre-
sponding to only Ag) Ckr Ay to client ¢; using a private
key or a dedicated private channel (e.g., the same channel
used by ¢; to convey her request to the server). Thus, using a
k-limited-access scheme incurs an extra transmission overhead
to privately convey the coding vectors. In particular, the total
number of transmitted bits Cj can be upper bounded as
Cr < nkm + Ty F, while the total number of transmitted
bits C using a conventional scheme is C = T'(F + m).
The extra overhead incurred is negligible in comparison to

Span of A

Collection of -
vectors G

Subspace of
¢ ) dimension &
A

(at most)

Selected
e “r-+" subspace
F™ - -

Fig. 3. A geometric interpretation of k-limited-access schemes. An index
code A is obtained from a particular filling of the matrix G. Therefore,
the collection of row vectors of G lies in the span of A. Finding A, is
equivalent to finding a collection of subspaces, each of dimension at most k,
to cover G. Client ¢; is sent a collection of (at most) k rows of Ayg; these
correspond to one subspace which covers g;.

the broadcast transmissions that convey the encoded messages
when n and m are both o(F'), which is a reasonable assump-
tion for large file sizes (for instance, when sharing YouTube
videos).

Geometric Interpretation. The geometric interpretation of
our problem is depicted in Figure 3. An index code A corre-
sponds to a particular completion of the matrix G. Therefore,
the set of row vectors in G lies in the row span of A (which is
of dimension 7"). We denote this subspace of dimension 1" by
L. The problem of finding a matrix Ay can be interpreted
as finding a set of subspaces, each of dimension at most
k, such that each row vector g;, i € [n], is covered by at
least one of these smaller subspaces. Once these subspaces
are selected, then the rows of A, are taken as the union of
the basis vectors of all these subspaces. Client ¢; is then given
the basis vectors of subspace L;, i.e., the one which covers
g;, instead of the whole matrix Aj. Therefore ¢; would have
perfect knowledge of L; instead of L. Having less information
about L naturally translates to less information about the
requests of other clients, as we more formally discuss in the
next section.
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Q[n,]aS[L‘ A A Receiver i }_‘42,)

Fig. 4. The procedure of designing an index code and applying k-limited-
access schemes.

Index
Coding
Algorithm

k-limited-access
Scheme

ITII. ACHIEVED PRIVACY LEVELS

In this section, we investigate and quantify the level of
privacy that k-limited-access schemes can achieve compared
to a conventional index coding scheme (i.e., when each client
has access to the entire coding matrix). In particular, we are
interested in understanding how a curious client can obtain
information about the identity of the request of other clients.
Towards this end, we quantify the amount of information
that a curious client can obtain about the coding matrix A
when a k-limited-access scheme is used. This approach stems
from our recent observation in [1], where we showed that the
knowledge of the coding matrix may enable a curious client
to infer information about the requests and side information of
other clients. In other words, quantifying the privacy leakage
in the coding matrix offers a proxy to understanding the
privacy leakage in the request and side information set. In
what follows, we consider the setup described in the previous
section and suppose that the last client, client c,, is curious.

We assume that the index coding instance is random,
i.e., we consider the requests and side information sets of
clients as random variables and denote them as ()[,) and Sy,
respectively. The operation of the server is shown in Figure 4
and is described as follows:

Step-1: The server obtains the information about the requests
Q[n) and side information sets S,,) of all clients cpy.

Step-2: Based on this information, the server designs an index
code A by means of some index coding algorithm [9]-[11].
In particular, the index coding algorithm used to design this
index code is only known by the server and not by the clients.
Step-3: The server then applies the k-limited-access scheme
to obtain Ay PA, where P is a deterministic mapping
from A to Ay (see Section IV for the construction of P).
This implies that T} is a deterministic function of 7" and &
(i.e., the parameter of the scheme). .
Step-4: The server sends A,(;) to client ¢;. If multiple AS)
can be selected, then the server picks and transmits one such
matrix uniformly at random, independently of the underlying
A which might have generated this Aj.

We are now interested in quantifying the level of privacy
(measured in terms of the amount of information about A
learnt by the curious client ¢, leveraging the knowledge
of A;Cn)) that is achieved by the protocol described above.
Towards this end, we use two privacy metrics, namely an
entropy-based metric and the Maximal Information Leak-
age (MIL).

A. Entropy-Based Privacy Metric

The entropy-based privacy metric is inspired by the geo-
metric interpretation of our problem in Figure 3. We let L
(respectively, L,,) be the random variable associated with the
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subspace spanned by the T' rows of the coding matrix A
(respectively, spanned by the k row vectors of A,(fn ). Client ¢,
receives the matrix Y and as such she knows 7}. Given this,
we now define the entropy-based privacy metric and evaluate
it for the proposed protocol.

Definition III.1. The entropy-based privacy metric is
defined as

P — H(L|L,, Ty,
and quantifies the amount of uncertainty that c,, has about the
subspace spanned by the 7" rows of the index coding matrix A.

Before characterizing P,EEm), we state the following lemma,
which is a special case of [12, Theorem 2]. We provide the
proof for this special case in Appendix A for completeness.

Lemma IIL1. Given a subspace L, C F3' of dimension k,
let L(T, Ly) be the set of subspaces L C F5' of dimension
T > k where L, C L. Then |L(T, Ly,)| is equal to

T—k-1 om _ 2k+2

(T, L) = ] oT — kil
=0

Assume an index coding setting with ¢,, observing a partic-
ular subspace L,, = ¢,, and a number of transmissions T}, = t
for the k-limited access scheme. Moreover, we consider a
stronger adversary (i.e., curious client) and assume that she
also knows the specific realization of 7' = ¢. Given this, we can
compute

Ent)

(@)

P H(L|Ly = £y, T}, = ts, T = t)
®)
log (|£(t, £2)])

m>t

~

H(L|Ly = 0,,T =1)

t—k—1
om _ 2k+€
log ( H ot _ 9k+t

£=0

()

(D

m(t — k),

where: (i) the equality in (a) follows because T}, is a determin-
istic function of 7" and &, which is the parameter of the scheme
(see Step-3); (ii) the equality in (b) follows by assuming that
the underlying system maintains a uniform distribution across
all feasible ¢-dimensional subspaces of F3"; (iii) the equality
in (c) follows by virtue of Lemma III.1. We note that when
m > t, then the quantity in (1) decreases linearly with k,
i.e., as intuitively expected, the less rows of the coding matrix
¢n, learns, the less she can infer about the subspace spanned
by the T rows of the coding matrix A. This suggests that,
by increasing k, ¢y, has less uncertainty about ¢;. Note also that
P,EEm) is zero when k = t; this is because, under this condition,
¢y, receives the entire index coding matrix, i.e., L, = L, and
hence she is able to perfectly reconstruct the subspace spanned
by its rows. However, although P,EEm) = 0 when k& = {,
¢, might still have uncertainty about ¢; [1]. Quantifying this
uncertainty is an interesting open problem; this uncertainty,
in fact, depends on the underlying system, e.g., on the index
code used by the server and on the distribution with which the
index code matrix is selected.
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B. Maximal Information Leakage (MIL)

The second metric that we consider as our privacy metric
is the MIL [13], [14]. Given two discrete random variables
X and Y with alphabets X and ), the MIL from X to Y is
denoted by £(X — Y') and defined as

Pr {U = U}
LIX—=Y)=  sup log——— 2)
U—-X-Y-U maXqycy PU (U)
—1 E!
og Z mexrga? JPrix(iz), ()

where equality in (3) is shown in [13, Theorem 1]. The MIL
metric captures the amount of information leaked about X
through Y to an adversary, who is interested in estimating
a (possibly probabilistic) function U of X. The adversary’s
estimate is U(Y') which is a function of Y. This is captured
by the fact that U — X — Y — U forms a Markov chain
as shown in the expression in (2). The MIL computes the
multiplicative gain in the guessing power of the adversary,
Pr(U = U), in comparison to the best uninformed guess,
max pu(u). Moreover, the metric considers a worst-case such

adversary, that is, an adversary who is interested in computing
an estimate U (Y") of a function U (X ) for which the maximum
information can be leaked out of Y'; thus the initial supremum
step. This definition admits an operational interpretation to
privacy [14]: if L(X — Y) = { bits, then the guessing
power of the adversary for any function U is upper-bounded
by Pr(U = U) < 2 max pu(u). We kindly refer the Reader
to [13] for more detaiuls about this metric.

The result in [13] shows that this quantity depends only on
the joint distribution of X and Y. The following properties of
the MIL are useful [13, Corollary 2]:

e (Property 1): If X —Y — Z, then L(X — Z) <

min{L(X - Y), LY — 2)},

o (Property 2): L(X — Y) < min{log |X/[,log |V|},

o (Property 3): L(X — X) =log|{x: px(x) > 0}].

To describe how we use the MIL as a privacy metric in our
setup, we first need to define what are the corresponding
random variables X and Y, and then argue that the estimation
of client ¢,, of the requests of other clients forms a Markov
chain as required by the MIL definition. To do so, we first
define the following sets:

1) Given g;, Ay and an integer r, let P(g;, Ay, r) be the set
of all possible sub-matrices Ag) of Ay with exactly r rows,
that client ¢; can use to reconstruct the vector g;:

P(gi, A7) ={Z C; Ay | 3d € F; s.t. g; = dZ},

2) Given g;, S; and Ay, let T(gi, Si, Ax) be the set of all
possible sub-matrices A" of A with the minimum possible
number of rows, such that client ¢; with side information S;
can decode g;:

T(qiaSiaAk) = U ,P(giaAkarmin)a
g:€G(qi,Si)
where
G(0:,Si) = {8 € FF' | g = L. gpmp\{qiusiy = 0} 5
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and rpip = minR, R = {r € N*:
P(gi, Ay, 7) # 0}

Since the requests and the side information sets are con-
sidered as random variables, then all subsequently generated
codes, namely A, Ay and Ag) can be treated as random vari-
ables as well. We denote the corresponding random variables
of these quantities as A, Ay and A,(f) respectively. In other
words, for a given realization of Q) = q,) and S, = Sy
the corresponding realizations of the aforementloned codes
used by the server are A = A, A, = A}, and A(l) (l)

When using conventional index codes (1 e., Wlthout
k-limited-access schemes), client ¢,, (i.e., the curious client
and hence the adversary) would try to infer information about
Q[n—1) from observing A and given her information of @, S
Therefore, one can think of client ¢,,’s estimate of @[, 1] as
being a particular estimation function, the input of which is
A. Differently, after using k-limited-access schemes, client ¢,
would only have observed A;ﬂ") instead of A. Therefore, in the
context of MIL, one choice of the variables X and Y is A and
A,(c"), respectively. The function U would therefore be client
cp’s estimate of Qp, 1) out of A. The following proposition
shows that this choice of variables X, Y and U allows us to
use the MIL as a metric.

dg; € g(qL,SL) such that

Proposition IIL2. The following Markov chain holds
Qpo1) — A— Ay — AL, )

conditioned on the knowledge of QQ,, S, in every stage of the
chain.

Proof: We have the following:

o Qu_1y—A—Aj holds since Ay is a deterministic function
of A (see also Step-3 of the proposed ;)rotocol);

« A — AL — A( ™) holds since P(AL Ak, Qn, Sn) =
1/|T (Q,L,S",Ak)|, independent of A as described in
Step-4 of the proposed protocol.

|
We define P,gMH‘) =L (A — A,(cn)\Qn = (Qpn,Sn = Sn) as
our MIL privacy metric.> The quantity PIEMIL) gives the

maximum amount of information that ¢, can extract about
Q[n_l} given the knowledge of @, and S,. The following

theorem — proved in Appendix B — provides a guarantee
n P(MIL)
(R

Theorem IIL.3. Using the MIL, the attained level of privacy
against a curious client when k-limited-access schemes are
used is

PYE = O(S,| + mk). (5)
The quantity in (5) characterizes the maximum amount of
information that can be leaked to a curious client when
k-limited-access schemes are used. It is clear that decreasing
k would decrease this amount of information; this aligns with
the intuition that the less rows a server gives to a client,
the less information a client would be able to infer about
other clients sharing the broadcast domain. In order to shed

3We use the notation £ (X — Y'|Z) to denote that the variables X and Y’
are conditioned on Z.
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more light on the benefits of usin k 11m1ted access schemes,
one could compare the quantity P L) with the MIL obtained
when k-limited-access schemes are not used, i.e., when a client
observes the whole matrix A. Let this quantity be denoted as
P,SMIL) = L(A — AlQ, = qn, S, = S,). Our target is to
provide a lower bound on P(MIL) This would indeed offer a
best-case estimate on the amount of information leaked when
conventional codes are used. We have the following result,
which is proved in Appendix C.

Theorem IIL.4. Using the MIL, the attained level of privacy
against a curious client for a conventional index coding
setup is

Q (mT —T?) < M < 0(|S,| + mT). (6)

Discussion. The results in Theorem II1.3 and Theorem II1.4
shed light on the guessing power of the adversary when using
k-limited-access schemes. In particular,

« The upper bounds in (5) and (6) can be restated as follows
Pr[Qu(A{") = QilQu = . S = S
< 2P [Q = QilQu = gus S = Sa] s (D
Pr [Qi(4) = QilQu = 4u, S = S,
< 2T P [ Q) = QilQun = 4y Sn = S - ®)

q’I’H

Note that the term 2/~ is present in both upper bounds.
This term suggests that the guessing power of an adver-
sary (i.e., curious client) increases with the size of the
side information set. This can be explained as follows.
A client with a small side information set is naturally
limited in the choices of an index coding solution (con-
ventional or k-limited-access schemes) that can satisfy
her. In contrast, a client with a large side information set
can have a large set of possible index coding solutions
that can satisfy her. Therefore, when one specific index
code (conventional or not) is revealed to her, this can
potentially reveal more information about other clients
for the later case (i.e., large side information set) than the
former one (i.e., small side information set). Therefore,
this term corresponds to natural guessing capabilities that
the adversary has which depend on its side information
set. The second term is affected by the choice of the code:
the bound in (8) suggests that the guessing power can
be increased depending on the value of 7' (the number
of transmissions), whereas the bound in (7) limits the
guessing power growth of the adversary to k, regardless
of the number of transmissions.

¢ The aforementioned arguments compare the growth rates
of the upper bounds on MIL for both schemes. In
addition, we can make the assumption that @; and
Qi(A) correspond to the pair of functions which sat-
isfy the supremum step in computing the MIL for
conventional codes.* Under this assumption, we can

4This assumption is suggested when studying the MIL in applications
when the system designer does not have access to the distribution fr;x and

fyo 1141,
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MIL Vi
B k( ) p]g )
O(|8,] +mk) QmT —T?)

(Lower Privacy)
MIL

Fig. 5. This figure shows how the MIL privacy metrics compare for the
conventional index coding schemes and the k-limited-access schemes. Taking
k = o(T) and T = o(y/m) would guarantee privacy gains when using
k-limited-access schemes.

show that
~ S P(MIL) — 2 " 2mT ?
Pr [Qi(A) - Q} 2
)

where (a) follows by multiplying the numerator and
denominator by Pr [Qt = Qz}

nition of MIL in (2) and the assumption that Qi(A) and
Q; satisfy the supremum step, and (b) follows by using
the upper and lower bounds in (5) and (6), respectively.
The bound in (9) gives an upper bound on the gain in the
guessing power of the adversary when k-limited-access
schemes are used with respect to conventional schemes.
The term 2!57! is independent from the used scheme.
However, the extra gain term vanishes as T' grows when
k = o(T) and T = o(y/m); in other words, in this
regime of parameters, the probability of guessing the right
request approaches zero. This result can be interpreted
with the help of Figure 5. The k-limited-access schemes
always achieve privacy gains as compared to conventional
index codes, when the upper bound in (5) and the lower
bound in (6) strictly mismatch. A sufficient (but not
necessary) condition for this is to select £ = o(7") and

T = o(y'm).

and then using the defi-

C. Metrics Comparison

The two proposed metrics in this manuscript provide two
different interpretations of the adversary’s capabilities. In par-
ticular, while the entropy-based metric provides a geometric
interpretation, the MIL offers a computational interpretation.
Although the values of the two metrics measure in bits
(assuming that logarithms in both metrics are in base 2),
the two metrics are not directly comparable. The main reason
is that the two metrics have opposite indications of privacy for
k-limited-access schemes: a high value of PIS’HL indicates less
privacy, while a high value of PE™ indicates more privacy.
In an attempt to provide a comparison of the two metrics,
note that PY'™™ > 0 and that Pf™<log |L(t,/,)|. Therefore,
in order to make a consistent comparison, we instead consider
the two metrics PM™ and PE™ = log |L(t, £,,)| — PE™.

In the remainmg part of thls section, we prove that neither
of the two metrics gives more pessimistic values than the
other. Towards this end, we show two index coding instances,
where in one we have PMT < PE and vice versa in the
other case. We show these cases with the help of the next
lemma (the proof of which is in Appendix D), where we let
the index coding strategy adopted by the server be described
by the distribution p(A|Q[n], S[n)): the distribution of picking
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a conventional index code A given the index coding instance
Q[n] and S[n].

Lemma IILS. For a uniform  server  strategy,
i.e., p(A|Qpn),Spy) is uniform over all values of A which
could satisfy the particular index coding instance described
by Qn}, Sin), then we have PMIL — ]og ’A,(fn)|Qn, Sn‘.

Using Lemma III.5, we can now show the following two
cases. For simplicity, we consider the specific case of m =4
and 7" = 2. We assume also that @, = 1 and S,, = 0.

Case 1: k =T and the server uses a uniform strategy. In this
case, we have

pML (@ log Aggn)@n =1,8, =10

D 1og |41Q, = 1,8, = 0] £ log(14 + 7),

where: (i) the equality in (a) follows using Lemma IIL5; (ii)
the equality in (b) follows by noting that k = T' corresponds to
the conventional transmission; (iii) the equality in (c) follows
by noting that there are 14 valid A matrices constructed as
follows: one row vector is of the form [1, 0, 0, 0] and the
other row vector is any other non-zero vector, and there are 7
valid A matrices where the sum of the two row vectors add
up to the vector [1, 0, 0, 0]. On the other hand, we have

P = log |L(t, £n)| = P™
=log|L(t,¢4,)| — H(L|L, =1,,T =1t)
© 1og |L(t, £0)| — H(LIL = 1,, T = t)
2-2-1 /54 144
(b) 2% —2
=0
where: (i) the equality in (a) follows by noting that k = T
corresponds to the conventional transmission; (ii) the equality
in (b) follows from Lemma III.1. Therefore, we have P,LVHL >
P,
Case 2: k£ = 1 and the server does not necessarily use a
uniform strategy. In this case, we have

(®)

(a)
PY < og | AN @, = 1,8, = 0] 2 log1 =0,

where: (i) the inequality in (a) follows by noting property 2
of the MIL; (ii) the equality in (b) follows by noting that
the way client n can reconstruct the required message using
k = 1 transmission is by receiving it uncoded. On the other
hand, we have

PP —log|L(t,4,,)| — PE™
(a)
=log|L(t, £p)|—H(L|L, =[1. 0, 0, 0], T =1) > 0,
where the inequality in (a) follows by using a transmission

strategy that slightly deviates from the uniform distribution.
Therefore, we have P < PE™.

IV. CONSTRUCTION OF k-LIMITED-ACCESS SCHEMES

In this section, we focus on designing k-limited-access
schemes and assessing their theoretical performance in terms
of number of additional transmissions required with respect to
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a conventional index coding scheme. Recall that we are given a
coding matrix A that requires 7" transmissions. Then, we seek
to construct a matrix P € ]FQT’*‘XT, so that A, = PA, and
each client needs to access at most £ rows of A} to decode
her requested message. In particular, we aim at constructing
matrices P with T} as small as possible. Trivially, T}, > T.
Towards this end, we first derive upper and lower bounds on
T. Our main result is stated in the theorem below.

Theorem IV.1. Given an index coding matrix A € ngm

with T > 2, it is possible to transform it into A, = PA with
P e ]Fg"'XT, such that each client can decode her requested
message by combining at most k rows of Ay, if and only if

k
T
T > max {T,T*}, T*:min{Tk: E (k> zn},
i

=1

(10)

where n is the number of distinct rows of the matrix G.
Moreover, we provide polynomial time (in n) constructions
of P such that:

o When [T/2] <k <T, then

Tr <min{n,T + 1}; (11
o When 1<k < [T/2], then
T\, < min {n 2l 1 } . (12)

Proof: The lower bound on T} in (10) is proved in Appen-
dix E. In particular, the bound in (10) says that, if we are
allowed to combine at most k out of the 7} vectors, then
we should be able to create a sufficient number of vectors.
The two upper bounds on 7} in (11) and (12) are proved in
Section IV-A, where we give explicit constructions for P. W

We note that, as expected, the smaller the value of & that
we require, the larger the value of T} that we need to use.
Trivially, for £ = 1 we would need T} = n, i.e., the server
would need to send uncoded transmissions. Thus, there is a
trade-off between the bandwidth — measured as the number
T}, of broadcast transmissions — and privacy — captured by the
value of k that we require. Interestingly, with just one extra
transmission, i.e., T = T + 1, we can restrict the access of
each client to at most half of the coding matrix, independently
of the coding matrix A (i.e., Kk = [T/2]). In other words,
for this regime, we can achieve a certain level of privacy
with minimal overhead. However, as we further reduce the
value of k, the overhead becomes more significant. Moreover,
the results in Theorem IV.1 also imply that our constructions
are order-optimal in the case of sufficiently large values of n
(i.e., when n = ©(21)).5 In addition, when [T/2] < k < T,
our scheme is at most one transmission away from the optimal
number of transmissions, and this holds for any value of n.

Note that n is always O(27') (i.e., the number of distinct non-zero vectors
g; for a given T is at most 27" — 1). The case of sufficiently large values
of n corresponds to the case where this bound on the number of distinct
vectors g; is not loose: there is a corresponding lower bound on n, i.e., n =
Q(27T). Therefore, the case of sufficiently large values of n corresponds to
n=0(27T).
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Fig. 6. Bandwidth (T} on the y-axis) versus privacy (k on the x-axis) trade-off when using the k-limited-access schemes in Theorem IV.1 for different

values of n. The plots in this figure are for 7' = 20.

This is shown in the following lemma, which is proved in
Appendix E.

Lemma IV.2. Consider an index coding setup. We have

o When n = 2T — 1 and [T/2] < k < T, the bounds
in (10) and (11) coincide, i.e., the provided construction
of P is optimal;

e For any value of n < 2T — 1 and [T/2] < k < T,
the bound in (11) is at most one transmission away from
the bound in (10);

o« When n = O(2T) and for any value of k, then
Ty, @(kQ%), i.e., the provided construction is
order-optimal.

Figure 6 shows the trade-off exhibited by our proposed
k-limited-access schemes between bandwidth usage (7}) and
the attained privacy (k) - we use k as a proxy to the amount of
attained privacy against a curious client (see Section III). The
figure shows the performance of our constructions in Theo-
rem IV.1 (labeled as Scheme-1), as well as the lower bound
in (10) (labeled as LB) and an upper bound which corresponds
to uncoded transmissions (labeled as UB). Figure 6(a) confirms
the order-optimality of our constructions when n = 27 — 1.
In addition, our schemes perform similarly well when n is
sufficiently large (and not necessarily equal to 27 — 1) as
shown in Figure 6(b) where n = T'. Finally, Figure 6(c)
shows the performance for a small value of n, i.e., n = T2
The figure shows that our proposed constructions do can be
improved when n and k are both small, a case which we study
in more details in Section V.

We now conclude this section by giving explicit construc-
tions of the P matrix and prove the two upper bounds on
Ty in (11) and (12). Our design of P allows to reconstruct
any of the 27 — 1 non-zero vectors of size 7. As such our
constructions are universal, in the sense that the matrix P that
we construct does not depend on the specific index coding
matrix A.

A. Proof of Theorem IV.1, Equations (11) and (12)

Recall that A is full rank and that the ¢-th row of G can
be expressed as g; = d; A, where d; € ]Fg is the coefficients
row vector associated with g;. We next analyze two different
cases/regimes, which depend on the value of k.

Case I: [T/2] <k <T.Whenn>T +1, let

_ | Ir
p=1).

which results in a matrix Ay, with T, = 7"+ 1, matching the
bound in (11). We now show that each g; = d;A,i € [n],
can be reconstructed by combining up to k£ vectors of Ay. Let
w(d;) be the Hamming weight of d,. If w(d;) < [T/2], then
we can reconstruct g; as g; = [d; 0] A, which involves adding
w(d;) < [T/2] < k rows of Ay. Differently, if w(d;) >
[T/2]+1, then we can reconstruct g; as g; = [d; 1] Ay, where
d; is the bitwise complement of d;. In this case, reconstructing
g; involves adding T'— w(d;) + 1 < |T/2] < k rows of Ay.
When n < T + 1, then it is sufficient to send n uncoded
transmissions, where the i-th transmission satisfies ¢;,7 € [n].
In this case c¢; has access only to the ¢-th transmission, i.e.,
k = 1. This completes the proof of the upper bound in (11).
Example: We show how the scheme works via a small
example, where T' = 4 and k£ = 2. In this case, we have

o

13)

0
1
0
0
1

_— o = OO
— = O

If gg = [1 1 0 0]A, then it can be reconstructed as
gi=[1 1 0 0 0/PA with 2 rows of PA used in the
reconstruction. Differently, if g; = [I 1 1 0] A, then it
can be reconstructed as g; = [0 0 01 1] PA with again
2 rows of PA used in the reconstruction.
Case I: 1 <k < [T/2].Let Q@ = |T/[£]] and

Tiem =T — Q [£]. If k divides T, then Q = k, Trem = 0,
otherwise @ < k — 1 and Tiem < [£]. Then, we can write

Z, 0 0 0

0 Z 0 0
P=1: : N

0 o0 Zg 0

0 0 0 Zgw

In other words, the matrix P is constructed as a block-
diagonal matrix, with the diagonal elements being Z; for all
i € [Q + 1], where Z;, of dimension \; x [T |, has as rows all
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Fig. 7. Performance of the scheme in Theorem IV.1 (referred to as scheme-1) for different values of n, compared against the lower bound LB in equation (10)

and the upper bound UB of sending uncoded transmissions - 7" = 20.

non-zero vectors of length {%W Therefore, \; = 217/F1 — 1.
Similarly, the matrix Zg4q, of dimension Agi1 X Trem,
has as rows all non-zero vectors of length Ti.,. Therefore,
AQ+1 = 2Trem _ 1,
Therefore, equation (12) holds by computing
Q+1

Ty = Zx\i :Q(Q[%1 _1) 4 oTem _ 1 < kQ[%L
i=1

where we used the facts that Q < k — 1 and Ty < {%]
What remains is to show that any vector g;,7 € [n], can be
reconstructed by adding at most k vectors of P. To show this,
we prove that any vector v € F% can indeed be constructed
with the proposed design of P. We note that we can express
the vector v as v = [v -+ vg41], where v;’s, ¢ € [Q] are
parts of the vector v each of length [L], while v, 1 is the
last part of v of length Tiem. Then, we can write v = . vy,

1€EKX(v)
where v; = [O(i—l)’—%“ v; O(Q_i)[%] OTmm} for i € [Q],

vo+1 = |0g £ Vo and K(v) C [@+1] is the set
of indices for which v; is not all-zero. According to the
construction of P, for all ¢ € K(v), the corresponding vector
v; is one of the rows in Z;. The proof concludes by noting
that [/C(v)| < k. This is true because, if k does not divide
T, then Q < k — 1; otherwise, @ = k but Tier, = 0 (i.e.,
vg+1 does not exist), therefore K(v) C [k]. This completes
the proof of the upper bound in (12).

Example: We show how the scheme works via a small
example, where 7' = 8 and k = 3. For this particular example,
we have Q@ = |[T/[£]| =2and Toew = T - Q [£] = 2.
Thus, the idea is that, to reconstruct a vector v € Fg, we treat
v as Q+1 = 3 disjoint parts; the first 2 are of length [£] = 3
and the remaining part is of length i, = 2. We then construct
P as Q+ 1 = 3 disjoint sections, where each section allows us
to reconstruct one part of the vector. Specifically, we construct

Zl 0Z><3 O7x2
O7x3  Zz  Orxe
O3x3 O3x3 Z3

P =

where

Z, =7y =

\
e == )
=0 O = = O
— O = O~ O

N

w
I
— - O
=

Any vector v can be reconstructed by picking at most k
vectors out of P, one from each section. For example, let
[01001110]. This vector can be reconstructed by
adding vectors number 2, 10 and 16 from P.

v =

V. CONSTRUCTIONS FOR SMALL VALUES OF n AND k

In Section IV, we have proved that, independently of the
value of n, if & > [T/2], then it is sufficient to add
one additional transmission to the 7' transmissions of the
conventional index coding scheme. Moreover, the analysis
provided in Lemma IV.2 showed the order-optimality of our
universal scheme in Theorem IV.1 (referred to as Scheme-1)
for values of &k < [T/2] when n is sufficiently large
(i.e., exponential in 7"). Figure 7 shows the performance of
Scheme-1 in Theorem IV.1 as a function of the values of n for
T = 20, with £k = 2 in Figure 7(a) and k£ = 5 in Figure 7(b).
The performance of Scheme-1 was obtained by averaging over
1000 random index coding instances. In each instance, a code
is constructed using the scheme described in Section IV-A, and
only the rows actually used by the clients c[,,) are retained. The
performance of the scheme is finally computed by the average
number of rows retained in those 1000 iterations. Figure 7
shows that our proposed scheme performs well not only for
the case of sufficiently large n (e, n = ©(27)) but also
for lower values of n. However, Figure 7 also suggests that
for small values of both n and k (note the left-half of the
plot in Figure 7(a)), we need to devise schemes that better
adapt to the specific values of the index coding matrix A and
vectors g;,4 € [n] (recall that Scheme-1 is universal, and
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Fig. 8. Bipartite graph representation.
hence independent of A). We next propose and analyze the
performance of such algorithms.

A. Special Instances

We first represent the problem through a bipartite graph
as follows. We assume that the rank of the matrix G is 7.
Then, there exists a set of 7" linearly independent vectors in
G; without loss of generality, we denote them as g; to gr.
Therefore, each vector g; 7,7 € [n—T], can be expressed as
a linear combination of some/all vectors from g|7); we denote
these vectors as the component vectors of g; 7. We can then
represent the problem as a bipartite graph (U U V,E) with
| = T and |V| = n — T, where u; € U represents the
vector g; for i € [T], v; € V represents the vector g;7 for
Jj € [n—T], and an edge exists from node u; to node v; if g;
is one of the component vectors of g; 7. Figure 8 shows an
example of such graph, where n = 9 and T = 6. For instance,
vy (i.e., g7) can be reconstructed by adding u;,i € [4] (i.e.,
g, % € [4]). Given a node s in the graph, we refer to the sets
O; and Z; as the outbound and inbound sets of s, respectively:
the inbound set contains the nodes which have edges outgoing
to node s, and the outbound set contains the nodes to which
node s has outgoing edges (i.e., the nodes each of which has an
incoming edge from s). Nodes on either sides of the bipartite
graph have either inbound or outbound sets.

For instance, with reference to Figure 8, O,,, = {v1,v9,v3}
and Z,,, = {u1,u2,us, us}. For this particular example, there
exists a scheme with 7% 6 which can reconstruct any
vector with at most £ = 2 additions. The matrix A, which
corresponds to this solution has the following vectors as rows:
g1, 81 + 82, 81 + 82 + 83, 81 + g2 + g3 + &4, g5 and
g5 + gg. It is not hard to see that each vector in G can be
reconstructed by adding at most 2 vectors in As. The row
vectors in Ay that are not in G can be aptly represented as
intermediate nodes on the previously described bipartite graph.
These intermediate nodes are shown in Figure 9 as highlighted
nodes. Each added node represents a new vector, which is the
sum of the vectors associated to the nodes in its inbound set.
We refer to the process of adding these intermediate nodes as
creating a branch, which is defined next.

Definition V.1. Given an ordered set S = {s1, ---, sg} of
nodes, where s; precedes s;41 for ¢ € [S—1], a branchon S is
aset S’ = {s},---,ss_,} of S—1 intermediate nodes added

g1

Fig. 9. Optimal representation when k = 2.

to the graph with the following connections: node s} has two
incoming edges from s; and so, and for i € [S — 1]\ {1}, s/
has two incoming edges from nodes s, ; and s;41.

For the example in Figure 9, we created branches on two
ordered sets, &1 = {u1, ug, uz, us} and So = {us, ug}.
Once the branch is added, we can change the connections
of the nodes in V in accordance to the added vectors. For
the example in Figure 9, we can replace upy) in Z,, with
only s3. Using this representation, we have the following
lemma.

Lemma V.1. If OuiT - OuiT_l Cc ... C (’)ui1 for some
permutation iy, - - - i of [T, then this instance can be solved
by exactly T transmissions for any k > 2.

Proof: One solution of such instance would involve creating
a branch on the set S = {w;,, u;,, --+, u;, }. The scheme

t
used would have the matrix Ay with its ¢-th row a; = > g;,
=1

for t € [T]. Note that g;, = a; and a, + a;_1 = g;, for all
t € [T]\ {1}. Moreover, for j € [n] \ [T], if v; 7 € O,
for some 4, then v;_r € Oui[ for all £ < t. If we let ¢ be
the maximum index for which v;_r € Ouw then we have

¢
Lo, = {ui, -+, u;, }, and so we get g; = > g, = ay.
=1

This completes the proof. ]

Corollary V.2. For G € F32*T of rank T, if n = T + 1, then
this instance can be solved in T' transmissions for any k > 2.

Proof: Without loss of generality, let g7 be a set of linearly
independent vectors of G. Then, we have O,, = {v1} for
i € I,, and O,,; = () for j € [T|\Z,,. Thus, from Lemma V.1,
this instance can be solved in 7" transmissions. This completes
the proof. |

B. Algorithms for General Instances

We here propose two different algorithms, namely Succes-
sive Circuit Removing (SCR) and Branch-Search, and analyze
their performance.

Algorithm 1: Successive Circuit Removing (SCR). Our first
proposed algorithm is based on Corollary V.2, which can be
interpreted as follows: any matrix G of 7+ 1 row vectors and
rank r can be reconstructed by a corresponding A, matrix with
r rows. If there does not exist any subset of rows of G with
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rank less than r, we call G a circuit.? Our algorithm works
for the case k = 29, for some integer q. We first describe SCR
for the case where ¢ = 1, and then extend it to general values
of g. The algorithm works as follows:

1) Circuit Finding: find a set of vectors of G that form a
circuit of small size. Denote the size of this circuit as r + 1.
2) Matrix Update: apply Corollary V.2 to find a set of r vectors
that can optimally reconstruct the circuit by adding at most
k = 2 of them, and add this set to As.

3) Circuit Removing: update G by removing the circuit.
Repeat the first two steps until the matrix G is of size 7" x T
and of rank 7", where 7" < T'. Then, add these vectors to As.

Once SCR is executed, the output is a matrix Ao such that
any vector in G can be reconstructed by adding at most k = 2
vectors of Ao. Consider now the case where ¢ = 2 (i.e., k = 4)
for example. In this case, a second application of SCR on
the matrix Ao would yield another matrix, denoted as Ay,
such that any row in Ag can be reconstructed by adding at
most 2 vectors of A,. Therefore, any vector in G can now
be reconstructed by adding at most 4 vectors of A4. We can
therefore extrapolate this idea for a general ¢ by successively
applying SCR ¢ times on G to obtain Ay, with k = 29.

The following theorem gives a closed form characterization
of the best and worst case performance of SCR.

Theorem V.3. Let TqSCR be the number of vectors in Ay
obtained via SCR. Then, for k = 29 and integer q, we have

fBest(fBest(. . fBest(n))) ST(_IS’CR S fW(Jrsr(me‘st(_ . fWOrst(n))),

q times

q times

(14)
=2|2]| and ¥ (n) =T ([TLJ + 1).

Proof: First we focus on the case ¢ = 1. The lower bound
in (14) corresponds to the best case when the matrix G can be
partitioned into disjoint circuits of size 3. In this case, if SCR
finds one such circuit in each iteration, then each circuit is
replaced with 2 vectors in Ay according to Corollary V.2.
To obtain the upper bound, note that any collection of 7'+1 has
at most 7" independent vectors, and therefore contains a circuit
of at most size 7'+ 1. Therefore, the upper bound corresponds
to the case where the matrix G can be partitioned into circuits
of size 7'+ 1 and an extra 7" linearly independent vectors.
In that case, the algorithm can go through each of these
circuits, adding 7" vectors to A for each of these circuits, and
then add the last T' vectors in the last step of the algorithm.
Finally, the bounds in (14) for a general ¢ can be proven by
a successive repetition of the above arguments. |
Algorithm 2: Branch-Search. A naive approach to determin-
ing the optimal matrix A is to consider the whole space F7,
loop over all possible subsets of vectors of F2 and, for every
subset, check if it can be used as a matrix Aj. The minimum-
size subset which can be used as Ay is indeed the optimal
matrix. However, such algorithm requires in the worst case

0] (22T) number of operations, which makes it prohibitively
slow even for very small values of 7'. Instead, the heuristic

where fBt(n)

5This is in accordance to the definition of a circuit for a matroid [15].
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that we here propose finds a matrix A more efficiently than
the naive search scheme. The main idea behind the heuristic is
based on providing a subset R C F2 which is much smaller
than 27" and is guaranteed to have at least one solution. The
heuristic then searches for a matrix A by looping over all
possible subsets of R. Our heuristic therefore consists of two
sub-algorithms, namely Branch and Search. Branch takes as
input G, and produces as output a set of vectors R which
contains at least one solution Aj. The algorithm works as
follows:

1) Find a set of T" vectors of G that are linearly independent.
Denote this set as B.

2) Create a bipartite graph representation of G as discussed
in Section V-A, using B as the independent vectors for .

3) Pick the dependent node v; with the highest degree, and
split ties arbitrarily. Denote by deg(v;) the degree of node v;.
4) Consider the inbound set Z,,, and sort its elements in a
descending order according to their degrees. Without loss of
generality, assume that this set of ordered independent nodes
is Ty, = {u1, u2, -+, Ugeg(vy) }-

5) Create a branch on Z,,,. Denote the new branch nodes as
{ui(v ’U,E, Ty u::l(eg(vi)}'

6) Update the connections of all dependent nodes in accor-
dance with the constructed branch. This is done as follows:
for each node v; € V with deg(v;) > k, if Z,, N Z,, is of the
form {u1, ug, ---, ug} for some ¢ < deg(v;), then replace
{u1, u2, ---, ug} in Z,,, with the single node u;. Do such
replacement for the maximum possible value of /.

7) Repeat 3) to 6) until all nodes in V have degree at most k.

The output R is the set of vectors corresponding to all nodes
in the graph. The next theorem shows that R in fact contains
one possible A, and characterizes the performance of Branch.

Theorem V.4. For a matrix G of dimension n X T, (a) Branch
produces a set R which contains at least one possible Ay, (b)
the worst-case time complexity tppanch of Branch is O(TLQ), and

(¢) IR| < (n—T)T.

Proof: To see (a), note that the algorithm terminates when
all dependent nodes have a degree of k£ or less. In every
iteration of the algorithm, the degrees of all dependent nodes
either remain the same or are reduced. In addition, at least
one dependent node is updated and its degree is reduced to 1.
Therefore the algorithm is guaranteed to terminate. Since all
dependent nodes have degrees k or less, their corresponding
vectors can be reconstructed by at most k£ vectors in R.
Therefore, R contains at least one solution Ay.

To prove (b), the worst-case runtime of Branch corresponds
to going over all nodes in V and creating a branch for each one.
For the i-th node considered by Branch, the algorithm would
update the dependencies of all dependent nodes with degrees
greater than k, which are at most n — ¢ nodes. Therefore

n—1
tBranch = Z (n - 'L) = n(n — 1) = O(n2)
i=0
To prove (c), note that |R| is equal to the total number of
nodes in all branches created by the algorithm. Therefore we
can write |R| < Y deg(v;) < (n —T)T = O(nT). [ |

v; €V
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Fig. 10. Performance comparison for different schemes - 7" = 6, k = 2.

Let tsearch be the worst-time complexity of the Search step
in Branch-Search. Then the worst-case time complexity of
Branch-Search is equal to s = tBranch + tsearch < O(n?) +
2Rl = O(n?) 4+ 0(2"T) = O(2"7), which is exponentially
better than the complexity of the naive search. Although our
heuristic is still of exponential runtime complexity, we observe
from numerical simulations that |R| is usually much less
than (n — T)7. Finding more efficient ways of search-
ing through the set R to find a solution Aj is an open
question.

C. Numerical Evaluation

We here explore the performance of our proposed schemes
through numerical evaluations. Specifically, we assess the per-
formance in terms of 73 of SCR and Branch-Search (labeled
as BS). We compare their performance against the lower bound
in equation (10) (labeled as LB), and the upper bound of
sending uncoded transmissions (labeled as UB). In particular,
we are interested in regimes for which k¥ < [T'/2], because
otherwise we know from Theorem IV.1 that T, = T + 1.
Moreover, we consider values of n < 2T — 1, because if
n = 27 — 1 we know from Lemma IV.2 that Scheme-1 is
order optimal. For SCR, we evaluate its average performance
(averaged over 1000 iterations) as well as its upper and lower
bounds performance established in Theorem V.3. For Branch-
Search, we evaluate its average performance (averaged over
1000 iterations). Figure 10 shows the performance of all the
aforementioned schemes for 7' 6 and k 2. As can
be seen from Figure 10, SCR consistently performs better
than uncoded transmissions. In addition, although the current
implementation of SCR greedily searches for a small circuit
to remove, more sophisticated algorithms for small circuit
finding could potentially improve its performance. However,
the bounds in (14) suggest that the performance of SCR is
asymptotically O(n). Branch-Search appears to perform better
than other schemes in the average sense. Understanding its
asymptotic behavior in the worst-case is an interesting open
problem.
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VI. RELATED WORK

Index coding was introduced in [8], where the problem was
proven to be NP-hard. Given this, several works have aimed
at providing approximate algorithms for the index coding
problem [9], [11], [16]. In our work, we were interested in
studying the index coding problem from the perspective of
private information delivery.

The problem of protecting privacy was initially proposed
to enable the disclosure of databases for public access, while
maintaining the anonymity of the clients [17]. Similar con-
cerns have been raised in the context of Private Information
Retrieval (PIR), which was introduced in [18] and has received
a fair amount of attention [19]-[23]. In particular, in PIR the
goal is to ensure that no information about the identity of
clients’ requests is revealed to a set of malicious databases
when clients are trying to retrieve information from them.
Similarly, the problem of Oblivious Transfer was studied [24],
[25] to establish, by means of cryptographic techniques, two-
way private connections between the clients and the server.
We note that it is not clear how the use of cryptographic
approaches would help in our setup. A curious client, in fact,
obtains information about other clients once she learns the
transmitted combinations of the messages, i.e., the coding
operations. In other words, given that a curious client has
also requested data, she needs to learn how the transmitted
messages are coded, in order to be able to decode her own
requested message.

We were here interested in addressing privacy concerns in
broadcast domains. In particular, we analyzed this problem
within the index coding framework, as we recently proposed
in [1]. This problem differs from secure index coding [26],
[27], where the goal is to guarantee that an external eaves-
dropper (with her own side information set) in [26], and
each client in [27], does not learn any information about the
content of the messages other than her requested message.
Differently, our goal was to limit the information that a
client can learn about the identities of the requests of other
clients (however, the two approaches could be combined).
Note that the techniques developed here can fundamentally
differ from those designed for secure index coding. As an
extreme example, in fact, the server in our setup can trivially
send all the messages that it possesses in an uncoded manner
on the broadcast channel. In this case, a curious client will
be able to decode all messages, but would still not be able
to infer which messages were requested/possessed by other
clients, and would learn nothing about their side information.
This property is what fundamentally contrasts the problem
under consideration from the works in [26], [27]. Moreover,
our approach here has a significant difference with respect
to [1]. In fact, while in [1] our goal was to design the coding
matrix to guarantee a high-level of privacy, here we assumed
that an index coding matrix (that satisfies all clients) was given
to us and we developed methods to increase its achieved level
of privacy.

The use of k-limited-access schemes allows the server to
transform an existing index code into a locally decodable
index code [28], [29]. Locally decodable index codes allow
each client to decode her request using at most k symbols
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out of the codeword, where k is referred to as the locality
of the code. In [28], the authors showed that the optimal
scalar linear locally decodable index codes with locality 1
are the ones obtained from the coloring of the information
graph of the index coding problem. In addition, they provided
probabilistic results on the existence (and the impossibility of
existence) of locally decodable codes with particular lengths
and localities for index coding problems on random graphs.
In [29], the authors extended one result in [28] where they
showed that the optimal vector linear locally decodable index
codes with locality 1 are obtained from the fractional col-
oring of the information graph. In addition, they provided a
scheme which allows the construction of locally decodable
codes for a particular set of index coding instances with
special properties, i.e., when certain covering properties are
maintained on the side information graph of the index coding
problem. Differently from these works, one of the main results
of this paper consisted of providing deterministic construc-
tions/schemes which transform any existing index code into
an equivalent code with locality k. In addition, our schemes
are universal, i.e., they do not depend on the underlying index
coding instance.

The solution that we here proposed to limit the privacy
leakage is based on finding overcomplete bases. This approach
is closely related to compressed sensing and dictionary learn-
ing [30], where the goal is to learn a dictionary of signals such
that other signals can be sparsely and accurately represented
using atoms from this dictionary. These problems seek lossy
solutions, i.e., signal reconstruction is not necessarily perfect.
This allows a convex optimization formulation of the problem,
which can be solved efficiently [31]. In contrast, our problem
was concerned with lossless reconstructions, in which case the
optimization problem is no longer convex.

VII. CONCLUSION

In this paper, we studied privacy risks in index coding.
This problem is motivated by the observation that, since the
coding matrix needs to be available to all clients, then some
clients may be able to infer the identity of the request and
side information of other clients. We proposed the use of k-
limited-access schemes: these schemes transform the coding
matrix so that we can restrict each client to access at most
k rows of the transformed matrix as opposed to the whole
of it. We explored two privacy metrics, one based on entropy
arguments, and the other on the maximal information leakage.
Both metrics indicate that the amount of privacy increases
with the number of rows that we hide. We then designed
polynomial time universal k-limited-access schemes, that do
not depend on the structure of the index coding matrix A
and proved that they are order-optimal for some parameter
regimes. For the remaining regimes, we proposed algorithms
that depend on the structure of the index coding matrix
A and provide improved performance. We overall found
that there exists an inherent trade-off between privacy and
bandwidth (number of broadcast transmissions), and that in
some cases we can achieve significant privacy with minimal
overhead.
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APPENDIX A
PROOF OF LEMMA III.1

The proof is based on simple counting arguments. A sub-
space L contains all vectors in L,,, the number of which
is 2F. A subspace L therefore consists of a set of T — k
linearly independent vectors {v1, - - - vr_j } that are in F5*\ Ly,
and all linear combinations of {vjr 4} and vectors in L.
We now enumerate the number of ways such a subspace L,
with L,, C L, can be constructed. We first pick a vector
vy € F5*\ L,. The total number of possible choices for v;
is equal to 2™ — 2k Once vy is selected to be in L, then all
vectors in vy + L, are added to L, where vy + L,, is the set
of vectors obtained by adding v; to all possible vectors in L.
Therefore, by picking v, the total number of vectors of F3*
that do not belong to L is now equal to 2™ —2F+1 out of which
we pick ve. The above process is repeated until all vectors
{vjr—i)} are selected. Therefore, the total number of such
choices becomes Hg:_ok_l (2’” — 2’“”). In order to compute
the total number of subspaces, we need to divide this number
by the total number of basis vectors (i.e., linearly independent
vectors) used to represent the vectors in L\ L,; we denote them
by {b1,--- ,br_}. The number of vectors in such a basis is
T — k. Given a subspace L, we pick b; from the set of vectors
in L\ L,,, the number of which is 2T _ 2k Then we pick bo
from the set of vectors L\ (L, 4+ b1), the number of which is
2T —2k+1 We repeat the previous argument for all 7' — k vec-
tors. The total number of such basis vectors is therefore equal
to Z;Jk_l (ZT — 2’“”). Dividing the two quantities therefore
proves Lemma III.1.

APPENDIX B
PROOF OF THEOREM II1.3

To prove Theorem III.3, we first recall the definition of
G(qi, Si)- Given ¢; and S;, G(¢;,S;) is the set which contains
all possible i-th vectors g; of the realization G of the matrix
G, namely

G(gi,Si) = {2 €FY | g, = 1, gpm)\{qus,} = 0} -

In addition, we define the following set. Given g; and an
integer r, we let D(g;,r) be the set of all possible matrices
Afj) of r rows from which g; can be reconstructed, namely

D(gi,r) ={Z € Fy*™|3d € Fy s.t. g; =dZ}.

Note that the definition of D(g;,r) is different than that of
P(gi, Ak, r) in that it is not dependent on a specific matrix
A . Then, we can write

P]EMIL) = ‘C(A - Al(cn)‘Qn = Qn, Sy = Sn)

(a) n
< log ‘A; )|Qn = Gn,Sn =Sp

k
gl U Digwr)

r=1g,€G(qn,Sn)
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1D(gn. )|

(Y T

r=1g,€G(qn,Sn)

k
9 Jog <2'$" > |D<g;,r>|>

r=1
k r—2

< log [ 251y " T

r=1j5=0
< log (2‘5n|k(2m - z)k—l)
= O(|Sn| 4+ mk),

2]+1

where: (i) the equality in (a) follows from Property 2 of the
MIL; (ii) the equality in (b) follows by noting that, given @,
and S,,, a possible A" would belong to D(g,,,r) for some
r € [k| and some g, € G(Qn,Sy); (iii) the equality in (c)
follows by noting that, by symmetry, the number of matrices
with r rows from which the vector g; can be reconstructed is
the same for every possible vector g; € G(¢;,S;). Therefore,
the sum over g,, can be replaced by D(g/,,r) X |G(qn,Sn)]
where g/, is any arbitrary vector in G(g,,S,). Based on
the structure of the vectors g, € G(g,,S.), ie., one in
position ¢, and zeros in the positions [m] \ {g, U Sp},
it follows that |G(q,,, S,.)| = 2!571; (iv) the inequality in (d) is
obtained by counting arguments similar to those in the proof of
Lemma III.1. In particular, we enumerate the number of ways
we can construct a matrix A,(fn) with 7 linearly independent
rows, which when linearly combined gives g/,. We first pick
a row vector v; € F5*\ Span(g/,), where Span(X) of a set of
row vectors X’ is the row span of these vectors; the number
of possible vectors v; is 2" — 2. Then, we pick a second
row vector ve € F5*\ Span({g,, v1}); the number of possible
vectors vo is 2™ —22. We repeat this argument for r—1 vectors;
the r-th vector is then selected so that a linear combination of
all r vectors is equal to g/,.

APPENDIX C
PROOF OF THEOREM II1.4

(MIL)

The upper bound on Pk follows by using similar steps

as in the derivation of the upper bound on P,EMIL)

rem III.3. Namely, we have

in Theo-

PMY) = L(A— AlQn = gn, Sn = Sp)
< log ‘A|Qn = (qn, S = Sn|
T
=g/l U Dlnr)

r=1g,€G(qn,Sn)

<l Y

r=1 gn Gg(Qn 7Sn)

T
= log <2'S"' > D(g;,wl)

r=1
T r—2

<log {2151y T

r=1 j=0

D(gn, 1)

9i+1)
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< log (2'5n‘T(2m - 2)T—1)
= O(|S,| +mT).
For the lower bound, we have

PMY — L(A — AlQn = qn, Sn = S)

Diog {A : p(A|Qn = gns Sn = Sn) > 0}]

(b) U

= log
8€G(qn,Sn)
> log |{A id € Fz g = dA}‘

{A: 3deF: g=dA}

©

> log{L CFy : dim(L) =T,g € L}
T-1 ;

(d) 2m =2

= log H <2T —9J
Jj=1

© gm 9\ "1 )

where: (i) the equality in (a) follows from Property 3 of the
MIL; (ii) the equality in (b) follows by noting that the clients
do not know the index coding algorithm used by the server;
(iii) the inequality in (c) follows by letting L C F5* be a
subspace of dimension dim(L); (iv) the equality in (d) follows
by using Lemma III.1 with k£ = 1 (since g’ has only one row)
and t = T (iv) the inequality in (e) follows by noting that

om _ 9j oam _ 9 _
APPENDIX D
PROOF OF LEMMA I11.5

Recall that the definition of the MIL is

P —log 3" p(AMY 1A%, Qu = 0. Sn = Sn),
AMea™
where
A* = ar max p(A,(c")|A, Qn = Gn, Sn = Sn),

g
A:p(AlQn:(I7z75n:Sn)>0

.A,(cn) is the set of all possible matrices A;C”), and we denote

by ¢n, Sy the particular realizations of @, S,,. Note also that,

P(AIQn = 4n.Sn =8n) = Y Q17 Sjn—1]) %
Qn—1]S[n—1]

P(A|Qpn—1], Sin—1], @n = Gn, Sn = Sn).

Therefore, for p(A|Qn = ¢n, Sn = Sn) to be non-zero for a
particular realization of A, it suffices that p(A[Q), Sjn)) be
non-zero for this A for some realization of Q)[,], S}, inside
the summation (since p(Q[n, Sp)) is a uniform distribution
and therefore is positive for all values of Q[,], Sp))-

Then, consider the matrix

A(n)
A* = k
{ B } 7

where B is a T' — k x m matrix consisting of a collection
of T' — k rows, each of weight 1 (i.e., each row vector of B
consists of one 1 and m — 1 zeros). Moreover, none of the
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row vectors of B contains a 1 in the location corresponding
to g,. Denote by P C [m] the set of locations where there are
1 values in the rows of the matrix B. Clearly, ¢,, ¢ P.

Note that there are some realizations of the variables
Q[n]; S[n) that can be satisfied by the matrix A* — specifically,
consider the case where @, = ¢,,S, = S, and Q; € P
for all 4 € [n — 1]. For this configuration, client n can
reconstruct its request using A,(C"), and clients ¢ € [n — 1]
can reconstruct their requests using the matrix B. Therefore,
we have p(A*|Q. = qn,Sn = Sn) > 0. However, note
that the only way for client n to be able to reconstruct its
requested message is by using A,(cn) (because the matrix B
does not include message ¢, in any of the rows). Therefore,
p(AfC")|A*,Qn = ¢n,S, = S,) = 1. The aforementioned
argument is true for any matrix A,(c"). This concludes the proof
of Lemma IIL.5.

APPENDIX E
PROOF OF THEOREM IV.1 - EQUATION (10) AND
LEMMA IV.2

Theorem IV.1 - Equation (10). Given an index coding matrix
A, we denote by Vo C FJ* the subspace formed by the span
of the rows of A. It is clear that the dimension of V4 is at
most 7' (exactly 7" if A is full rank) and that the n distinct
rows of G lie in Va. Let a; € F3",i € [Tk], be the i-th row of
A . Then, the problem of finding a lower bound on the value
of T}, can be formulated as follows: what is a minimum-size
set of vectors Ay, = {ayr, 1} such that any row vector of G can
be represented by a linear combination of at most k vectors
of Ax?

A lower bound on 7} can be obtained as follows. Given
Ay, there must exist a linear combination of at most k vectors
of Ay that is equal to each of the n distinct row vectors of G.
The number of distinct non-zero linear combinations of up to

k
k vectors is at most equal to > (7;") Thus, we have
i=1

()

i=1

(15)

Combining this with the fact that 7T}, > T' gives precisely the
bound in (10).

Lemma IV.2. We now derive the lower bound in Lemma I'V.2.
We first consider the case where n = 27 — 1. From (15),
we obtain

k
Tk
> ( ,’”) >9T 1. (16)
im1 \ !

Since in general T}, > T, to prove that Ty, > T+ 1 for k < T,
it is sufficient to show that we have a contradiction for 73, = T'.

Indeed, by setting T}, = 7', the bound in (16) becomes
k T
T T
> >2"—1=) :
i=1 i=1

which clearly is not possible since k < T'. Hence, T}, > 1T+ 1
forall k < T.
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For a general n and 1 < k < [T/2], we have

() =1(0) =5 (0) =

(2

k—1

— T > n'/k = Q(kn¥).

Therefore, Tj, = Q(k2* ) when n = ©(27). This lower bound,
along with the upper bound in equation (12) concludes the
proof of Lemma IV.2.
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