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Abstract—Fully autonomous vehicles need the ability to localize
without external help, for instance by using visual sensors
together with a pre-loaded map of landmarks. In this paper
we connect self-localization using landmarks with coding theory.
This connection enables to translate Hamming distance prop-
erties to probabilistic localization guarantees given a certain
number of errors in landmark identification; it also enables
to leverage existing polynomial time decoding algorithms for
localization. We present promising numerical evaluation results
by simulating vehicle traveling paths along a road network
generated from real data of a region in Washington D.C.

Index Terms—localization, autonomous navigation, landmarks,
coding theory, OpenStreetMap, graphs

[. INTRODUCTION

The ability to self-localize is a critical component in
autonomous navigation, and accordingly, the literature on
localization is rich and extensive, ranging from GPS-based
approaches [1], [2], [3], [4] and approaches that use other
artificial beacons [5], [6], [7], [8], to approaches that lever-
age natural landmarks, such as environmental structures or
curvature [9], [10], [11], [12], [13], [14], [15]. In this paper,
we propose a framework that connects self-localization using
landmarks with coding theory.

An application of our approach is to provide a backup
safety net for fully autonomous vehicles that need to self-
localize under all types of conditions. Autonomous vehicles
mainly rely on the global positioning system (GPS) for their
everyday navigation; yet a fully autonomous vehicle should
be able to also localize in GPS-denied environments, such as
when GPS reception is weak due to the common presence of
skyscrapers or tunnels [16], [17], [18] or when an adversary
is spoofing information [19]. In such cases, the vehicle may
leverage for instance visual sensors together with a pre-loaded
map of landmarks, to self-localize without external help.

Using natural landmarks for localization is intuitive to
humans; “Meet me by the tall tree” or some variant of this
phrase has likely been encountered by the reader. It has also
been extensively explored mainly within the robotics literature
from several angles, such as by using semantic observations
[20], building maps of landmarks [21], performing data as-
sociation of sensor outputs with natural landmarks [22], and
combinations of the above tasks [23].
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In this paper, we consider an abstract framework that
captures two main challenges: the fact that we want to use
landmarks that are not unique but plentifully available (e.g.,
use trees v.s. the Capitol as landmarks); and the fact that there
may be errors in landmark identification, either because our
sensors are not accurate (e.g. fog obstructing visual sensors)
or simply because the landmarks themselves change (e.g.
a tree got pruned or a trash can was moved). To address
the first challenge, we can consider sequences of landmark
observations: a local traversal of the environment may create
a unique sequence of individually non-unique landmarks.
This is intuitive for humans, where the potential ambiguity:
“Which tall tree?” can be resolved by an expansion of the
local landmarks considered: “The tall tree next to the two
fire hydrants”. To address the second challenge, we leverage
coding theory, where distance between sequences (that act as
codewords) can help correct errors.

The fact that errors can hinder localization is already
recognized, yet as far as we know the connection to coding
is new to this paper. Work has looked at mitigating errors
that happen during data association - that is, when mapping
sensor inputs to landmarks - mainly by refining and combining
several sensor inputs [22]. Yet, localization techniques can fail
if data acquisition is performed incorrectly or error correction
measures such as loop closure are not used [24]. Moreover, the
evidence that proposed localization algorithms perform well is
mostly empirical, through evaluation. Our goal is different: we
accept that errors may happen, and aim to provide probabilistic
guarantees on uniquely determining a position as a function
of the length of the observed sequence of landmarks.

Our contributions in this paper are as follows. First, we
make a connection between the problem of landmark-based
self-localization and coding theory, by introducing a special
type of code that groups multiple sequences as a single
codeword. Leveraging this connection, we translate Hamming
distance properties to probabilistic guarantees on the worst-
case length of landmark sequences that need to be sensed for
localization, given a number of expected errors. Our approach
is, as far as we know, the first enabling the derivation of
localization guarantees through offline preprocessing of a map
and thus can be used to guide the selection and density of
landmarks to achieve a desired performance'. Finally, this
connection allows us to leverage existing efficient “decoding”

'We do not explore the latter direction in this paper, but refer to [25].
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algorithms for localization. We argue that our approach can
be easily deployed, by constructing a landmarks map using
data currently available online, such as the Open Street Map
(OSM) [26] data. In our numerical evaluation, we find that
even with quite a generic set of landmarks (such as curbside
hydrants, trash cans, etc.), it is feasible for a vehicle to fast
self-locate within a large area of Washington D.C.

We want to highlight that although in the rest of the paper
our approach is expressed in terms of self-localization for
vehicles, the connection to coding theory is an abstract concept
and is true for all self-localization applications.

Related Work. There is extensive literature on localization
using GPS and other artificial signals [6], [7], [8]; our approach
is complementary to these, focusing on autonomous localiza-
tion. Autonomous vehicle self-localization is a well-researched
field, including work with roots in localization in robotics [9],
[27]. Landmark detection-based methods have been explored
with both natural and artificial landmarks [5], [15], [28]; a
currently popular approach is simultaneous localization and
mapping (SLAM) [29], that faces the challenge of scaling
for larger (outdoor) environments [23]. Dealing with errors
is mainly addressed at the level of associating landmarks with
sensing inputs (e.g., by increasing the amount of sensing),
while position identification uses Bayesian inference algo-
rithms such as particle filtering [16], [10].

Paper Organization: Section II introduces the problem
statement and develops the connection to coding theory;
Section III discusses probabilistic localization; Section IV con-
nects decoding algorithms to localization; Section IV presents
numerical evaluation results using real street-level data; and
Section V concludes the paper.

II. FROM SELF-LOCALIZATION TO CODING

In this section, we build a connection between the self-
localization problem and decodability of a channel code.

A. Self-Localization Problem

We assume the availability of an offline large-scale map
of the area in which self-localization should be achieved?.
In particular, we are given a labeled, directed graph G =
(V,E,h(E)), with vertex set V, edge set E C V x V, and
a labeling function h : E — A, where: the edges in the
set E represent different street segments; the vertices in the
set V represent the legal transitions between street segments
(for instance: intersection, fork-outs, etc.); A = B™ denotes
landmark vectors of length m with entries from B, where B
is a finite alphabet of types of landmarks (such as: tree, traffic
light, fire hydrant, trash can, etc.); and h(e) describes a set of
landmarks of size at most m that would ideally (in the error-
free case) be sensed locally by a vehicle traversing the street
segment ¢ € E. A path® p of length n on G is a function

2Such a map can be constructed using data currently available online,
such as the geographical landmark dataset in [30] and the Open Street Map
(OSM) [26] data, as we do in our numerical evaluation.

30ur definition of path does not require that edges or vertices in the path are
distinct, and coincides with the definition of a walk in graph theory textbooks
[31].

p : {0,1,..,n} — V satisfying (p(i),p(i + 1)) € E for
i = 0,...,n — 1. Each path p of length n in G defines an
element of A" given by the sequence of labels (landmarks)
[h(p(0),p(1)),...,h(p(n —1),p(n))] which we denote by y,
(we can equivalently think of ¥, as a length mn vector with
elements in B) . When traversing p in real-life, the vehicle
will detect a sequence of landmarks g, € A", which may not
necessarily be equal to y,, due to any source of sensing errors.

B. Coding Formulation

We here provide a high level intuition of how we map
the self-localization problem to a coding problem, and give
the formal notation and definitions later in this section. In
the following, we use the standard definition of Hamming
distance, that measures the number of positions where two
sequences of the same length differ [32]; we also use the well
known result that a code allows to correct up to ¢ errors if and
only if the Hamming distance between any two codewords is
at least 2¢ + 1 [33].

A straightforward mapping of the self-localization problem
to a coding problem would be to treat the sequence g,
associated with every path p in our graph as a codeword. Then
the set of paths of a given length ¢ would lead to a codebook
that would contain as codewords the corresponding sequences
i, € A%, and we could examine the Hamming distance of the
code to derive error correction bounds. This approach adds
unnecessary complexity to our problem (the number of paths
increases exponentially with £), as we observe next.

Observation 1: If a vehicle can determine that after ¢ steps
it is at some vertex vy, this is sufficient to self-localize; it does
not need to retrieve the path p it followed to arrive to vy.
This observation indicates that we should use as codewords
groups of paths. In particular, if the vehicle moves in a
graph with |V| vertices for ¢ steps, the code we will consider
will have |V| codewords, one for each vertex; the codeword
associated with vertex v will consist of all paths of length ¢ that
end at v. It is among these codewords we need to distinguish
to be able to localize our vehicle, and thus, we can tolerate
ambiguity among different paths that terminate at the same
vertex.

Note that, even with this approach, the worst case Hamming
distance could be small: indeed, consider two paths of length
{ that have the first /—1 edges in common and only diverge at
the last step (in the example of Fig. 1, two such paths would
be {4,7,b,c} and {i,j,b,e}). Clearly, the Hamming distance
between two such paths, would be at most m (recall each
edge is associated with at most m landmarks), since they may
differ in at most m positions. Such a code would be able to
correct max{0, | %1 |} errors (in Fig. 1, m = 1, and thus not-
correctable errors can occur). That is, we will not be always
able to give hard guarantees on error correction. However:

Observation 2: Given a number of expected errors, we can
translate Hamming distances between codewords to probabilis-
tic guarantees.

These guarantees would be in the following sense: assume
that after ¢ steps the car is at vertex v selected uniformly at
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Fig. 1. Example of a labeled directed graph with landmarks sensed along
each street segment (edge).

random from V'; then we can calculate a lower bound on the
probability that we can successfully localize at v.

C. Questions

Given the above formulation, we abstract two aspects of the
self-localization problem under ¢ sensing errors.

Question 1 (probabilistic-localization): Consider a map
described by a graph G where the vehicle starts at an arbitrary
vg € V, and follows a path p of length ¢ to a vertex wvy.
Assume that at most ¢ errors occur when sensing the landmark
sequence {J,. We ask: what (probabilistic) guarantees can we
offer to uniquely determine the position of the vehicle p(v,)
from the observed landmarks sequence g, € A for an £ < n;?

Question 2 (efficient-localization): Given a map described
by a graph GG where the vehicle starts at an arbitrary v € V,
and assuming that landmark sequence g, is observed while
following a path p. If the last vertex p(n,) is uniquely
decodable, can we identify it in polynomial-time?

Remark 1: Note that in the aforementioned abstract formu-
lation, we are interested in how fast and effectively localization
can be achieved over GG (or its corresponding real-life map)
given an upper bound on the number of steps 7;. On the
other hand, the localization precision is a property of the
graph G that depends on the definition of the vertex set V.
For instance, if each vertex v € V corresponds to a street
section of Im length, then the localization precision is within
Im. Similarly, if it corresponds to 5m, that reflects on the
localization precision.

D. Coding Notation

Let X be a finite set of elements, B a finite alphabet of
symbols and A = B an alphabet of vectors of length m
with entries from B. Given n € N, we denote with A" the
set of all possible sequences of length n using the alphabet
A (we can equivalently think of these as sequences of length
mmn over the alphabet B).

An encoding function f,, : X — A" maps an element z €
X to a subset f,(x) of A™. We will use the notation f,(S)
to denote Usesfn(s), S € X. The union C), = Uzex fn(z)
defines a code C C A".

Error correcting code. A code C,, C A" = B™" is said
to be uniquely decodable and t-error correcting if there exists

a (decoding) map g : A" — X satisfying that, Vx € X and
Vo € fo(x):

du(5,0) <t = ¢(6) =z, (1)

where d (y, ) is the Hamming distance between sequences y
and z calculated with respect to symbols in B. Equivalently, (1)
implies that Vz; # xo € X with distance dy (f,.(x1), fn(z2)),

Ay (fu(z1), frn(x2)) > 26 41, 2

where the pairwise distance is calculated as
dH(f"(xl)afn(xQ) = l’I_lil’l

1€ fn(xi),

g2 Efn (1‘2)

2dp(o1,02).

Self-localization as coding. Given a map described by the
directed graph G = (V, E, h), we define the set of messages
X to be V, the set of symbols A representing the co-domain
of h, the code O™ = {y, : p € P} where P(" is the
set of all paths of length n on the G. The encoding function
fn: X — A" is given by f,(z) = Ueptm {yp} where pim
is the set of paths p of length n in the graph G that terminate
at z, i.e., p(n) = x. Thus, we partition the set of paths P
into |V| disjoint sets {f,,()}sex, each one corresponding to
each vertex z.

III. PROBABILISTIC LOCALIZATION

We observe the following: To uniquely determine that the
vehicle is at a specific vertex z after n steps and t errors,
we require that for any other vertex y, if p; € fn(z) and
pj € fn(y), then dg(yp,,yp;) = 2t+ 1. Otherwise, if the path
p; was followed to vertex x and t errors were observed, we
would end up with a landmark sequence §j,, that is closer to
fn(y) than f,(x). If this happens, we will say that vertex x
is uniquely decodable after n steps.

Example. Consider the toy graph shown in Fig. 1 where
the vertices represent different street intersections and the edge
labels represent the landmarks observed on the street segments
connecting them. In particular, the number of possibly ob-
served labels is |A| = 3. In Fig. 1, if we observe only the set of
paths of length 2 terminating at each vertex, we cannot resolve
the ambiguity between vertices a and b even if we consider
the case of having no observation errors, i.e. ¢ = 0. This is
due to the fact that there exist two paths terminating at a and
b, respectively, that are identically labeled or equivalently, we
have that min, ¢y, (a), A (00, 08) < 1.

b€ fn(b)
As observed in Section IIB, unique decodability is not

guaranteed, even if we allow the number of steps n to
arbitrarily increase. Indeed, if there exists a common neighbor
v connecting to two vertices « and y through directed edges
(vz) and (vy), then error correction would not be guaranteed
if ¢ > max{0, |“52 ]}, where m is the number of landmarks
associated with each edge. Instead, we can check what per-
centage of the codewords have pairwise Hamming distance
greater than 2¢ + 1. Note that as n increases, this percentage
may also increase.
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We can extend this observation to derive upper bounds on
the pairwise Hamming distance that are independent of the
number of steps n.

Proposition 1: Consider a vertex v that is connected to
vertices v1 and vy through paths p; = {v,...,v1} and ps =
{v,...,v2} both of the same length %, and let y,, and yp,
denote the landmark sequences associated with paths p; and
po respectively. Then

dH(fn(vl)v fn(UQ)) < dH(yPuy;Dz)’

for all n > k.

The proof follows directly by considering two paths, one
ending at v; and the other at vy, that share a common initial
part of length n — k that reaches vertex v, and then split, one
to reach v; and the other vs.

Proposition 1 indicates that a method to upper bound
the error correcting capabilities of a given map/choice of
landmarks, is to find short length paths for pairs of vertices;
we note that maps correspond to planar graphs, and thus such
calculations could be computationally efficient [34]. We do not
pursue further this direction in this paper; but instead calculate
through brute force pairwise distances between codewords (we
note that this calculation can be performed offline and once
for each map).

Given the set of pairwise distances, we translate them to
probabilistic guarantees as follows: we say that the prob-
ability of successful localization after n steps and t er-
rors is lower bounded by the percentage of pairs where
du (fu(v1), fu(v2)) > 2t + 11

IV. LOCALIZATION-DECODING ALGORITHM

In this section, we present a polynomial time approach for
localization based on ideas for codeword decoding in coding
theory, that leverages dynamic programming (our approach is
a variation of the well-known Viterbi algorithm [35]). Again
we assume that at most ¢ errors may occur.

We consider a trellis of size |V| x n;, where each of the n;
transitions in the trellis diagram represent the edge connections
in the graph G. For the example given in Fig. 2, one transition
of the trellis diagram is given in Fig. 2. The first layer in the
trellis is connected to a common source vertex and the last
layer of the trellis is connected to a common sink vertex. The
decoding on this trellis diagram can be performed as follows:

(Stage 1) Given an observed sequence, calculate the costs
along each transition from one vertex to another in the trellis,
or the “mismatch” of traversing through a particular edge in
the k-th transition in the trellis diagram. For instance, for m =
1, if the k-th symbol of the observed sequence ¢[i] = 7, then
for all edges from the k-th layer of the trellis diagram to the
(k + 1)-th layer, we set their cost to be zero if this edge is
labeled 7, and set it to one otherwise. For m > 1 we count as
cost the Hamming distance between the observed and edge-
labeling vector in B™.

“More sophisticated translations are also possible at the cost of additional
computations; we do not explore this here.

Layer i+1

Fig. 2. Trellis transition used for the example graph in Fig. 1.

Result: Returns estimate of current position.

Let G = (V,E,h(E));

T = Trellis(G);

Let ¢ be the n;-length path codeword observed during
localization;

Initialize © = 1;

for symbol §[i] € x do

for all edges ¢ in i-th transition in T do
| Set edge weight = I(y[i] = h(e));

end

Increment 7;
end

foriec {1,2,--- ,n;,— 1} do

- Compute the accumulated cost at each vertex in
layer 7 4 1 of the trellis using the cost at layer ¢
and edges connecting layers ¢ and ¢ + 1;

if i > 2t + 1 then

if J unique cost minimizer v,(kiﬂ) in layer i + 1
then
| Return v,
end
end
end

(Stage 2) Given the trellis diagram with the edge costs
constructed in Stage 1, we successively compute the minimum
cost of a path terminating at node v(") in layer i of the
trellis using any dynamic programming algorithm for finding
minimum cost path. For each ¢ > ¢+ 1 if there exists a single
vertex that has a cost less than or equal to ¢ (all other vertices
have cost more than ¢ - or more than ¢ errors, which we assume
not possible), we terminate the algorithm and return this vertex
as the found location.

Remark 2: We note that a vehicle can attempt decoding at
each step as it moves through the map - does not need to wait
to collect sequences of symbols.

The pseudocode of the algorithm discussed above is given
in Algorithm 1. The complexity of Algorithm 1 is dominated
by (Stage 2), where the minimum cost path is found. There
are a number of algorithms that can be employed in this step
as subroutines, for instance, Viterbi’s algorithm which can
perform the task in O(n.(|E| + |V])) time, which drives the
computational complexity of Algorithm 1.
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V. EXPERIMENTAL EVALUATION

For our performance evaluation, we simulate transitions
performed in a real-world map of Washington D.C. We create
the graph G = (V, E, h(F)) describing the map, by employing
the geographical landmark dataset used in [30] in addition to
Open Street Map (OSM) [26] data. In particular, we study
a subset of the Washington D.C. area constrained by the
coverage of the dataset [30] with an area of 10.097 km?. Next,
we give a brief description of how the graph G and the labeling
function h were constructed in our experiments (we refer to
reader to the extended version [36] for details).

Structure of graph G. The OSM data provides a graphical
representation of the street map in terms of intersections and
street segments connecting them. The set of intersections were
used as the vertex set V' and the street segments were used as
the edge set E.

Landmarks. The landmark object types considered were
fire hydrants, street lights, traffic lights, trash cans, and traffic
signs, which each satisfy properties of desirable landmarks
[15], [12]. Together with the graph structure, this allows for a
topological map-like representation [37] of the regions studied.

Labeling function h(F) of G. To construct the labels for
each street segment, a rectangular contour was constructed
along the street segment and only the considered landmarks
in [30] that fall within the street segment contour are con-
sidered part of the label. In addition to that, we added three
additional landmarks that can be observed by an autonomous
vehicle: the absolute bearing of a street segment (e.g. the
onboard compass reading) binned to 1 of 8 equal bearings,
the lengths of street segments (e.g. an odometer equipment
reading a street segment is 50m before the next turn) with bins
every 2m, and the bidirectionality of the street as a bit. For
each street segment, a vector of landmarks, e.g. [c1, ca, . . ., cg),
was created from individual landmarks c;. Therefore, a path
of length ¢ has an associated label of 8/ symbols that are each
used in calculating Hamming distances.

mmm Length 1 paths
800 B Length 3 paths
Length 5 paths
Length 7 paths

Frequency

100 4 I
[ T T T

0 5 10 15 20 25 30
Hamming Distance

Fig. 3. Overlapping histograms of minimum Hamming distances of path
groups for different path lengths.

Table I provides probabilistic guarantees, as a function of
the path length (columns) the vehicle traverses, and the number
of errors (rows) it experiences.

Localization success rate

o 5 10 15 20 25
Number of errors

Fig. 4. Localization success rate with different amounts of errors introduced
for length-7 paths. Red dotted lines show thresholds of 1.0, 0.9, and 0.8.

TABLE 1
PROPORTIONS OF LOCALIZABLE LOCATIONS FOR D.C. DATASET.
Errors || Length 1 | Length 3 | Length 5 | Length 7
0 0.9802 0.9992 0.9997 0.9997
1 0.6290 0.9592 0.9775 0.9794
2 0.2738 0.7603 0.8932 0.9068
3 0.0733 0.5266 0.7037 0.7783

These guarantees are derived offline by preprocessing the
map and calculating pairwise Hamming distances, as discussed
in Section III. We find that with this map and landmark
choices, with no errors, even after a single edge the vehicle can
uniquely self-localize with probability more than 98%; with
one error the vehicle needs to travel up to 3 edges to localize
with probabilities 97%; while with three errors, after 7 edges
the localization probability is above 77%. We underline that
these guarantees are pessimistic (lower bounds); indeed in our
performance evaluation through numerics (wee Fig. 4 that we
discuss later), paths of length 7 led to successful localization
even with 20 errors in more than 90% of the simulated cases.

Fig. 3 shows overlapping histograms of pairwise Hamming
distances for each group of paths associated with an ending
vertex and different path lengths taken as an average over 500
trials. As the path length increases, the histograms flatten and
the tail grows further out as expected, yet there always remain
some small distance cases as discussed in Section II and III.

Fig. 4 presents the average performance of the decoding
algorithm, for uniformly at random selected length-7 walks,
averaged over 500 trials and as a function of the number
of errors. We find that even with 20 identification errors
perturbing the ground truth landmark sequence, 94.6% of the
cases still led to successful localization.

VI. CONCLUSION

In this paper, we present a connection between the self-
localization problem and coding theory. By representing a road
network as a graph, landmark observations can be encoded
in vectors assigned to different edges representing street seg-
ments. Sequences of landmarks are analogous to codewords
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in coding theory, where conditions on decodability and error-
correction can be applied to understand the limitation of the
road network representation as well as the number of paths
needed for self-localization within this map. We thus argue
that through this connection, we can preprocess existing maps
and provide probabilistic guarantees on fault tolerance. In our
evaluations, our decoding algorithm was able to localize in
over 94% of randomly chosen walks even when 35% of the
walk’s labels were corrupted with errors, demonstrating its
robustness to observation errors.
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