Data Encoding for Byzantine-Resilient
Distributed Optimization

Deepesh Data, Lingi Song, Member, IEEE, and Suhas Diggavi, Fellow, IEEE

Abstract—We study distributed optimization in the presence
of Byzantine adversaries, where both data and computation
are distributed among m worker machines, ¢ of which may
be corrupt. The compromised nodes may collaboratively and
arbitrarily deviate from their pre-specified programs, and a des-
ignated (master) node iteratively computes the model/parameter
vector for generalized linear models. In this work, we primarily
focus on two iterative algorithms: Proximal Gradient Descent
(PGD) and Coordinate Descent (CD). Gradient descent (GD)
is a special case of these algorithms. PGD is typically used
in the data-parallel setting, where data is partitioned across
different samples, whereas, CD is used in the model-parallelism
setting, where data is partitioned across the parameter space.
At the core of our solutions to both these algorithms is a
method for Byzantine-resilient matrix-vector (MV) multipli-
cation; and for that, we propose a method based on data
encoding and error correction over real numbers to combat
adversarial attacks. We can tolerate up to ¢t < LmT_lj corrupt
worker nodes, which is information-theoretically optimal. We
give deterministic guarantees, and our method does not assume
any probability distribution on the data. We develop a sparse
encoding scheme which enables computationally efficient data
encoding and decoding. We demonstrate a trade-off between the
corruption threshold and the resource requirements (storage,
computational, and communication complexity). As an example,
for t < 7, our scheme incurs only a constant overhead on these
resources, over that required by the plain distributed PGD/CD
algorithms which provide no adversarial protection. To the best
of our knowledge, ours is the first paper that connects MV
multiplication with CD and designs a specific encoding matrix
for MV multiplication whose structure we can leverage to make
CD secure against adversarial attacks. Our encoding scheme
extends efficiently to (i) the data streaming model, in which
data samples come in an online fashion and are encoded as
they arrive, and (ii) making stochastic gradient descent (SGD)

This paper was presented in parts at the IEEE Allerton 2018 (as an
invited talk) [1], and ISIT 2019 [2], [3]. The work of Deepesh Data and
Suhas Diggavi was partially supported by the Army Research Laboratory
under Cooperative Agreement W911NF-17-2-0196, by the UC-NL grant
LFR-18-548554, and by the NSF award 1740047. The work of Lingi Song
was partially supported by the NSF awards 1527550, 1514531, by the City
University of Hong Kong grant 7200594, and by the Hong Kong RGC ECS
21212419. The views and conclusions contained in this document are those
of the authors and should not be interpreted as representing the official
policies, either expressed or implied, of the Army Research Laboratory or
the U.S. Government. The U.S. Government is authorized to reproduce and
distribute reprints for Government purposes notwithstanding any copyright
notation here on.

Deepesh Data and Suhas Diggavi are with
California, Los Angeles (UCLA), Los Angeles,
(deepesh.data@gmail.com, suhasdiggavi@ucla.edu).

Linqgi Song is with the City University of Hong Kong, Hong Kong.
Part of this work was done when Linqi Song was at UCLA (email:
lingi.song @cityu.edu.hk).

Copyright (c) 2017 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions @ieee.org.

the University of
CA 90095, USA

Byzantine-resilient. In the end, we give experimental results to
show the efficacy of our proposed schemes.

Index Terms — Distributed optimization, (proximal) gradient
descent, coordinate descent, Byzantine adversary, data encoding
and error correction over reals.

I. INTRODUCTION

Map-reduce architecture [4] is implemented in many dis-
tributed learning tasks, where there is one designated machine
(called the master) that computes the model iteratively, based
on the inputs from the worker machines at each iteration,
typically using descent techniques, like (proximal) gradient
descent, coordinate descent, stochastic gradient descent, the
Newton’s method, etc. The worker nodes perform the re-
quired computations using local data, distributed to the nodes
[5]. Several other architectures, including having no hierarchy
among the nodes have been explored [6].

In several applications of distributed learning, including the
Internet of Battlefield Things (IoBT) [7], federated optimiza-
tion [8], the recruited worker nodes might be partially trusted
with their computation. Therefore, an important question is
whether we can reliably perform distributed computation,
taking advantage of partially trusted worker nodes. These
Byzantine adversaries can collaborate and arbitrarily deviate
from their pre-specified programs. The problem of distributed
computation with Byzantine adversaries has a long history
[9], and there has been recent interest in applying this
computational model to large-scale distributed learning [10]—
[12].

In this paper, we study Byzantine-tolerant distributed op-
timization to learn a regularized generalized linear model
(GLM) (e.g., linear/ridge regression, logistic regression,
Lasso, SVM dual, constrained minimization, etc.). We con-
sider two frameworks for distributed optimization: (i) data-
parallelism architecture, where data points are distributed
across different worker nodes, and in each iteration, they
all parallelly compute gradients on their local data and
master aggregates them to update the parameter vector using
gradient descent (GD) [13]-[15]; and (ii) model-parallelism
architecture, where data points are partitioned across features,
and several worker nodes work in parallel, updating different
subsets of coordinates of the model/parameter vector through
coordinate descent (CD) [16]-[18]. Note that GD requires
full gradients to update the parameter vector; and if full
gradients are too costly to compute, we can reduce the per-



iteration cost by using CD,! which also has been shown to be
very effective for solving generalized linear models, and is
particularly widely used for sparse logistic regression, SVM,
and Lasso [16]. Given its simplicity and effectiveness, CD
can be chosen over GD in such applications [19]. Computing
gradients in the presence of Byzantine adversaries has been
recently studied [10]-[12], [20]-[32], and we discuss them
in detail Section III where we also put our work in context.
However, as far as we know, making CD robust to Byzantine
adversaries has not received much attention, and to the best
of our knowledge, ours is the first paper that studies CD
against Byzantine attacks and provides an efficient solution
for that.

A. Our Contributions

We propose Byzantine-resilient distributed optimization
algorithms both for PGD and CD based on data encoding and
error correction (over real numbers). As mentioned above,
there have been several papers that provide different meth-
ods for gradient computation in the presence of Byzantine
adversaries, however, our proposed algorithm differs from
them in one or more of the following aspects: (i) it does not
make statistical assumptions on the data or Byzantine attack
patterns; (i) it can tolerate up to a constant fraction (< 1/2)
of the worker nodes being Byzantine, which is information-
theoretically optimal; and (iii) it enables a trade-off (in terms
of storage and computation/communication overhead at the
master and the worker nodes) with Byzantine adversary
tolerance, without compromising the efficiency at the master
node. We give the same guarantees for CD also.

First we design a coding scheme for distributed matrix-
vector (MV) multiplication, specifically, for operating in the
presence of Byzantine adversaries, and use that in both our
algorithms for PGD and CD to learn GLMs. Note that the
connection of MV multiplication with gradient computation
is straightforward and has been known for some time (see,
for example, [33], [34]), however, it is not clear whether we
can use MV multiplication methods for CD also. Indeed,
since each CD update has a different requirement than that
of gradient computation, a general-purpose algorithm for MV
multiplication may not be applicable for CD. One distinction
is that in gradient computation, we only need to encode
the data to compute the MV multiplication, whereas, in
CD, in addition to data encoding, since workers update few
coordinates of different parts of the parameter vector in
parallel, we need to encode the parameter vector as well for
master to be able to decode that. In this paper, we design our
encoding matrix for MV multiplication in such a way that it
is sparse and has a regular structure of non-zero entries (see
(11) for the encoding matrix for any worker), which makes
it applicable for CD too. This leads to efficient solutions for
both PGD and CD, which are our main focus in this paper.

Inspired from the real-error correction (or sparse re-
construction) problem [35], we develop efficient encod-

'Alternatively, we can also use SGD to reduce the per-iteration cost, and
we give a method for making SGD Byzantine-resilient in Section VI-A.

ing/decoding procedures for MV multiplication, where we
encode the data matrix and distribute it to the m worker
nodes, and to recover the MV product at the master, we
reduce the decoding problem to the sparse reconstruction or
real-error correction problem [35]. Note that in PGD, we only
need to encode the data, whereas, in CD, we also need to
encode the parameter vector, and our coding scheme should
facilitate the requirement that the update on a small fraction
of the encoded parameter vector should affect only a small
fraction of the original parameter vector. This is a non-trivial
requirement, and our coding scheme for MV multiplication
is designed in such a way that it supports this requirement
in an efficient manner; see Section II-B for a description
on plain distributed CD, Section II-E for our approach to
making CD robust to Byzantine attacks, and Section V for a
complete solution for Byzantine-resilient CD. In the context
of PGD/CD, for decoding, the master node processes the
inputs from the worker nodes, either to compute the true
gradient in the case of PGD or to facilitate the computation
at the worker nodes in the case of CD. We take a two-
round approach in each iteration of both these algorithms.
Our main results are summarized in Theorem 1 (on page 6)
for PGD and Theorem 2 (on page 8) for CD, and demonstrate
a trade-off between the Byzantine resilience (in terms of the
number of adversarial nodes) and the resource requirement
(storage, computational, and communication complexity).
As an example, for ¢ < 2, our scheme incurs only a
constant overhead on these resources, over that required by
the plain distributed PGD and CD algorithms which provide
no adversarial protection. Our coding schemes can handle
both Byzantine attacks and missing updates (e.g., caused by
delay or asynchrony of worker nodes). Our encoding process
is also efficient. Though data encoding is a one-time process,
it has to be efficient to harness the advantage of distributed
computation. We design a sparse encoding process, based on
real-error correction, which enables efficient encoding, and
the worker nodes encode data using the sparse structure. This
allows encoding with storage redundancy’® of m21"2t (which
is a constant, even if t is a constant (< %) fraction of
m), and a one-time total computation cost for encoding is
O((1 + 2t)nd). Note that the time for data encoding is a
factor of (1+ 2t) (where ¢ is the corruption threshold) more
than the time required for plain data distribution which is
O(nd), the size of the data matrix.

We extend our encoding scheme in a couple of important
ways: first, to make the stochastic gradient descent (SGD) al-
gorithm Byzantine-resilient without compromising much on
the resource requirements; and second, to handle streaming
data efficiently, where data points arrives one by one (and
we encode them as they arrive), rather than being available
at the beginning of the computation; we also give few more
applications of our method. For the streaming model, more
specifically, our encoding requires the same amount of time,
irrespective of whether we encode all the data at once, or

2Storage redundancy is defined as the ratio of the size of the encoded
matrix and the size of the raw data matrix.



we get data points one by one (or in batches) and we
encode them as they arrive. This setting encompasses a more
realistic scenario, in which we design our coding scheme
with the initial set of data points and distribute the encoded
data among the workers. Later on, when we get some more
samples, we can easily incorporate them into our existing
encoded setup. See Section VI for details on these extensions.

B. Paper Organization

We present our problem formulation, description of the
plain distributed PGD and CD algorithms, and the high-
level ideas of our Byzantine-resilient algorithms for both
PGD and CD along-with our main results in Section II. We
give detailed related work in Section III. We present our full
coding schemes for MV multiplication and also for gradient
computation for PGD along-with a complete analysis of
their resource requirements in Section IV. In Section V,
we provide a complete solution to CD. In Section VI, we
show how our method can be extended to SGD and to the
data streaming model. We also discuss applicability of our
method to a few more important applications in that section.
In Section VII, we show numerical results of our method: we
show the efficiency of our method for both gradient descent
(GD) and coordinate descent (CD) by running them to solve
linear regression on two datasets (moderate and large) and
plotting the running time with varying number of corrupt
worker nodes (up to <1/2 fraction).

C. Notation

We denote vectors by bold small letters (e.g., x,y, z, etc.)
and matrices by bold capital letters (e.g., A, F,S, X, etc.).
We denote the amount of storage required by a matrix X
by |X]|. For any positive integer n € N, we denote the set
{1,2,...,n} by [n]. For nj,ny € N, where n; < ng, we
write [n1 : ng] to denote the set {ni,n; + 1,...,nz}. For
any vector u € R™ and any set S C [n], we write ugs to
denote the |S|-length vector, which is the restriction of u to
the coordinates in the set S. The support of a vector u € R"
is defined by supp(u) := {i € [n] : u; # 0}. We say
that a vector u € R"™ is t-sparse if |[supp(u)| < ¢t. While
stating our results, we assume that performing the basic
arithmetic operations (addition, subtraction, multiplication,
and division) on real numbers takes unit time.

II. PROBLEM SETTING AND OUR RESULTS

Given a dataset consisting of n labelled data points
(xi,9:) € RT x R, i € [n], we want to learn a
model/parameter vector w € R?, which is a minimizer of
the following empirical risk minimization problem:

min ((; > i)+ h<w>> S

where f;(w), i = 1,2,...,n, denotes the risk associated
with the ¢’th data point with respect to w and h(w) denotes
a regularizer. We call f(w) := = >" | fi(w) the average

empirical risk associated with the n data points with respect
to w. Our main focus in this paper is on generalized linear
models (GLM), where f;(w) = £((x;,w);y;) for some
differentiable loss function ¢. Here, each f; : R & R is
differentiable, h : RY — R is convex but not necessarily
differentiable, and (x;,w) is the dot product of x; and w.
We do not necessarily need each f; to be convex, but we
require f(w) to be a convex function. Note that f(w)+h(w)
is a convex function. In the following we study different
algorithms for solving (1) to learn a GLM.

A. Proximal Gradient Descent

We can solve (1) using Proximal Gradient Descent (PGD).
This is an iterative algorithm, in which we choose an arbi-
trary/random initial wy € R?, and then update the parameter
vector according to the following update rule:

Wt+1 = prOXh’at (Wt — OétVf(Wt))7 t = 1, 2, 3, e (2)

where «y is the step size or the learning rate at the ¢’th
iteration, determining the convergence behaviour. There are
standard choices for it; see, for example, [36, Chapter 9].
For any h and «, the proximal operator prox, ., : R — R
is defined as l

prox;, o (w) = arg muin 52— wl3 +h(). @

Observe that if A = 0, then prox,, ,(w) = w for every w €

R?, and PGD reduces to the classical gradient descent (GD).

This encompasses several important optimization problems

related to learning, for which prox operator has a closed

form expression; some of these problems are given below.

o Lasso. Here f;(w) = %((x;;w) — 9;)? and h(w) =
Al[w|l1. Tt turns out that prox,, ,(z) for Lasso is equal
to the soft-thresholding operator Sy, (z) [37], which, for
J € [d], is defined as

zj+ Ao if z; < —Aay,
(Sxa(2)); =<0 if —Xa<z <A,
zj — Ao if z; > Aa

e SVM dual. Jaggi [38] showed an equivalence between the
dual formulation of Support Vector Machines (SVM) and
Lasso. Hence, SVM dual is also a special case of (1).

« Constrained optimization. We want to solve a constrained
minimization problem minycc f(w), where C C R is a
closed, convex set. Define an indicator function I- for C
as follows: I¢(w) := 0, if w € C; and I¢(w) :=
otherwise. Now, observe the following equivalence

oo,

min f(w)

<— i I .
min Jmin f(w) + Ie(w)

If we solve the RHS using PGD, then it can be easily
verified that the corresponding proximal operator is equal
to the projection operator onto the set C [37]. So, the
proximal gradient update step is to compute the usual
gradient and then project it back onto the set C.



o Logistic regression. Here f; is the logistic function, de-
fined as

1 e v
fl(w) Yi 108 (1 + e_ui) ( yl) 0g (1 + e—ui> )

where u; = (x;,w), and h = 0. As noted earlier, since
h = 0, PGD reduces to GD for logistic regression.

« Ridge regression. Here f;(w) = %((x;,w) — y;)? and
h(w) = 2||w|3. Since f;’s and h are differentiable, we
can alternatively solve this simply using GD.

Let X € R™"*4 denote the data matrix, whose 7’th row is
equal to the ¢’th data point x;. For simplicity, assume that m
divides n, and let X; denote the % X d matrix, whose j’th
row is equal to X(i—1)z4;.-Ina distributed setup, all the data
is distributed among m worker machines (worker ¢ has X;)
and master updates the parameter vector using the update rule
(2). At the t’th iteration, master sends w; to all the workers;
worker ¢ computes the gradient (denoted by V., f(w)) on its
local data and sends it to the master; master aggregates all
the received m local gradients to obtain the global gradient

Vf(w) = ooy Z Vif(we). 4

Now, master updates the parameter vector according to (2)
and obtains w, 1. Repeat the process until convergence.

If full gradients are too costly to compute. Updating the
parameter vector in each iteration of PGD according to (2)
requires computing full gradients. This may be prohibitive in
large-scale applications, where each machine in a distributed
framework has a lot of data, and computing full gradients
at local machines may be too expensive and becomes the
bottleneck. In such scenarios, there are two alternatives to
reduce this per-iteration cost: (i) Coordinate Descent (CD),
in which we pick a few coordinates (at random), compute
the partial gradient along those, and descent along those
coordinates only, and (ii) Stochastic Gradient Descent (SGD),
in which we sample a data point at random, compute the
gradient on that point, and descent along that direction. These
are discussed in Section II-B and Section VI-A, respectively.

B. Coordinate Descent

For the clear exposition of ideas, we focus on the non-
regularized empirical risk minimization from (1) (i.e., taking
h = 0) for learning a generalized linear model (GLM). This
can be generalized to objectives with (non-)differentiable
regularizers [16], [39]. Let X € R™*4 denote the data matrix
and y € R™ the corresponding label vector. To make it
distinct from the last section, we denote the objective function
by ¢ and write it as ¢(Xw;y) to emphasize that we want
to learn a GLM, where the objective function depends on

the data points only through their inner products with the
parameter vector. Formally, we want to optimize?

nin, <¢>(XW;y) = §€(<Xi,W>;yi)> : Q)

For U C [d], we write Vy¢(Xw;y) to denote the gradi-
ent of ¢(Xw;y) with respect to wy, where wy, denotes
the |U|-length vector obtained by restricting w to the co-
ordinates in /. To make the notation less cluttered, let
¢'(Xw;y) denote the n-length vector, whose i’th entry is
equal to ¢'((x;,W);y;) = %((u;yi)|u:<xhw>. Note that
Vo(Xw;y) = XT¢/(Xw;y) and that Vyo(Xw;y) =
X1 ¢'(Xw;y), where Xy, denotes the n x || matrix ob-
tained by restricting the column indices of X to the elements
inU.

Coordinate descent (CD) is an iterative algorithm, where,
in each iteration, we choose a set of coordinates and update
only those coordinates (while keeping the other coordinates
fixed). In distributed CD, we take advantage of the parallel
architecture to improve the running time of (centralized) CD.
In the distributed setting, we divide the data matrix vertically
into m parts and store the ¢’th part at the ¢’th worker node.
Concretely, assume, for simplicity, that m divides d. Let

X =[X; Xg ... X;,] and w = [w] wi ... wl]T,
where each X; is an n x % matrix and each w; is a length

% vector. Each worker ¢ stores X; and is responsible for

updating (a few coordinates of) w; — hence the terminology,
model-parallelism. We store the label vector y at the master
node. In coordinate descent, since we update only a few
coordinates in each round, there are a few options on how to
update these coordinates in a distributed manner:

Subset of workers: Master picks a subset S C [m] of
workers and asks them to update their w;’s [18]. This may
not be good in the adversarial setting, because if only a small
subset of workers are updating their parameters, the adversary
can corrupt those workers and disrupt the computation.

Subset of coordinates for all workers: All the worker
nodes update only a subset of the coordinates of their
local parameter vector w;’s. Master can (deterministically
or randomly) pick a subset &/ (which may or may not be
different for all workers) of f < d/m coordinates and asks
each worker to updates only those coordinates. If master
picks U deterministically, it can cycle through and update
all coordinates of the parameter vector in [d/mf] iterations.

In Algorithm 1, we give the distributed CD algorithm with
the second approach, where all worker nodes update the
coordinates of their local parameter vectors for a single subset
U. We will adopt this approach in our method to make the
distributed CD Byzantine-resilient. Let r = %. For any 7 €
[m], let W; = [wﬂ wio ... ’LUZ'T]T and X7 = [Xﬂ Xig e Xz’r]a
where X;; is the j’th column of X;. For any ¢ € [m] and
U C [r], let wy, denote the |U|-length vector that is obtained
from w; by restricting its entries to the coordinates in U;

3Here we are not optimizing the average of loss functions — since n is a
fixed number, this does not affect the solution space.



Algorithm 1 Distributed Coordinate Descent

1: Initialize. Each worker ¢ € [m] starts with an arbi-
trary/random w; € R", where r = % and, for simplicity,
we assume that m divides d.

2: while (until the stopping criteria at master is not satisfied)
do

3. On each worker i € [m], do in parallel:

4:  Worker ¢ computes X,;w; and sends it to the master

node.*

5: Worker ¢ receives (U C [r],¢'(Xw;y)) from the

master node.

6:  Worker ¢ updates its local parameter vector as (where

Viud(Xw;y) = Xi,¢' (Xw;y))

Wiy < Wiy — aViyd(Xw;y)

(6)

while keeping the other coordinates of w; unchanged,
and sends the updated w; to the master.
At Master:
Master receives {X;W;};c[m) from the m workers.
Master first computes Xw = > " X;w; and then
computes ¢’ (Xw;y).

10:  Master picks U C [r] (where U can be picked either
randomly or in a round-robin fashion) and sends (U C
[r], @' (Xw;y)) to all workers.

11: end while

similarly, let X;;; denote the n x |U{| matrix obtained by
restricting the column indices of X; to the elements in /.

In Algorithm 1, for each worker ¢ to update w; according
to (6), where the partial gradient of ¢ with respect to w;y,
is equal to Viyp(Xw;y) = Xi,¢' (3", Xjw;;y) and
worker ¢ has only (X;,w;), every other worker j sends
X jw; to the master, who computes ¢ (37" | X;w;; y)> and
sends it back to all the workers. Observe that, even if one
worker is corrupt, it can send an adversarially chosen vector
to make the computation at the master deviate arbitrarily
from the desired computation, which may adversely affect
the update at all the worker nodes subsequently.® Similarly,
corrupt workers can send adversarially chosen information to
affect the stopping criterion.

C. Adversary Model

We want to perform the distributed computation described
in Section II-A and Section II-B under adversarial attacks,

4 After the 1st iteration, worker 7 need not multiply X; with w; to obtain
X,;w; in every iteration; as only a few coordinates of w; are updated, it
only needs to multiply those columns of X; that corresponds to the updated
coordinates of w;.

SNote that even after computing Xw, master needs access to the labels
yi,t = 1,2,...,n to compute ¢'(Xw;y). Since y € R™ is just a
vector, we can either store that at master, or, alternatively, we can encode y
distributedly at the workers and master can recover that using the method
developed in Section IV for Byzantine-resilient distributed matrix-vector
multiplication, where the matrix is an identity matrix and vector is equal
toy.

6Specifically, suppose the i’th worker is corrupt and the adversary wants
master to compute ¢’ (Xw + e;y) for any arbitrary vector e € R™ of its
choice, then the i’th worker can send X;w; + e to the master.

where the corrupt nodes may provide erroneous vectors to
the master node. Our adversarial model is described next.

In our adversarial model, the adversary can corrupt at most
t < % worker nodes’, and the compromised nodes may
collaborate and arbitrarily deviate from their pre-specified
programs. If a worker is corrupt, then instead of sending
the true vector, it may send an arbitrary vector to disrupt the
computation. We refer to the corrupt nodes as erroneous or
under the Byzantine attack. We can also handle asynchronous
updates, by dropping the straggling nodes beyond a specified
delay, and still compute the correct gradient due to encod-
ing. Therefore we treat updates from these nodes as being
“erased”. We refer to these as erasures/stragglers. For every
worker ¢ that sends a message to the master, we can assume,
without loss of generality, that the master receives u; + e;,
where u; is the true vector and e; is the error vector, where
e; = 0 if the 7’th node is honest, otherwise can be arbitrary.
We assume that at most ¢ nodes can be adversarially corrupt
and at most s nodes can be stragglers, where s and ¢ are
some constants less than % that we will decide later. Note
that the master node does not know which ¢ worker nodes
are corrupted (which makes this problem non-trivial to solve),
but knows ¢t. We propose a method that mitigates the effects
of both of these anomalies.

Remark 1. A well-studied problem is that of asynchronous
distributed optimization, where the workers can have different
delays in updates [40]. One mechanism to deal with this is to
wait for a subset of responses, before proceeding to the next
iteration, treating the others as missing (or erasures) [41].
Byzantine attacks are quite distinct from such erasures, as
the adversary can report wrong local gradients, requiring the
master node to create mechanisms to overcome such attacks.
If the master node simply aggregates the collected updates as
in (4), the computed gradient could be arbitrarily far away
from the true one, even with a single adversary [42].

D. Our Approach to Gradient Computation

Recall that f;(w) = £({x;, w);y;) for some differentiable
loss function ¢, and the gradient of f; at w is equal to
Vii(w) = ()"0 ((xi, w);9:), where £'({x;,w);y;) :=
%K(u;yi)“:(x“m. Note that Vf;(w) € R? is a column
vector. Let f/(w) denote the n-length vector whose 4’th
entry is equal to ¢'((x;, w);y;). With this notation, since
Fw) = LY, filw), we have Vf(w) = 1XT f(w).
Since n is a constant, it is enough to compute X* f’(w). So,
for simplicity, in the rest of the paper we write

Vfw)=XTf(w), VYweR™L (7

A natural approach to computing the gradient V f(w)
is to compute it in two rounds: (i) compute f'(w) in the
Ist round by first multiplying X with w and then master

7Our results also apply to a slightly different adversarial model, where
the adversary can adaptively choose which of the ¢ worker nodes to attack
at each iteration. However, in this model, the adversary cannot modify the
local stored data of the attacked node, as otherwise, over time, it can corrupt
all the data, making any defense impossible.



locally computes f’(w) from Xw (master can do this locally,
because Xw is an m-dimensional vector whose ¢’th entry
is equal to (x;,w) and (f'(w)); = ¢'((x;,w);¥:));® and
then (i) compute Vf(w) = X7 f/(w) in the 2nd round by
multiplying X7 with f/(w). So, the task of each gradient
computation reduces to two matrix-vector (MV) multipli-
cations, where the matrices are fixed and vectors may be
different each time. To combat against the adversarial worker
nodes, we do both of these MV multiplications using data
encoding and real-error correction; see Figure 1 on page 12
for a pictorial description of our approach.

A two-round approach for gradient computation has been
proposed for straggler mitigation in [33], but our method for
MV multiplication differs from that fundamentally, as we
have to provide adversarial protection. Note that in the case
of stragglers/erasures we know who the straggling nodes are,
but this information is not known in the case of adversarial
nodes, and master needs to decode without this information in
the context of Byzantine adversaries. This is slightly different
from the standard error correcting codes (over finite fields) as
the matrix entries in machine learning applications are from
reals. In this case, we use ideas from real-error correction (or
sparse reconstruction) from the compressive sensing literature
[35], and using which we develop an efficient decoding at
master, which also gives rise to our sparse encoding matrix;
see Section IV for more details. For decoding efficiently,
we crucially leverage the block error pattern and design a
decoding method at master, which, interestingly, requires
just one application of the sparse recovery method on a
vector of size m, the number of workers, which may be
much smaller than the data dimensions n and d, thereby
making the decoding computationally efficient. Our encoding
matrix (given in (11), designed for MV multiplication) is very
sparse and has a regular pattern of non-zero entries, which
also makes it applicable for making coordinate-descent (CD)
Byzantine-resilient. We emphasize that a general-purpose
code for MV multiplication may not be applicable for CD, as
each CD iteration requires updating only a few coordinates of
the parameter vector, which makes it fundamentally different
(and arguably more complicated to robustify) than GD itera-
tions; see Section III-B and Section V for more details. Since
iterative algorithms (such as GD and CD) require repeated
parameter updates, it is crucial to have a method that has
low computational complexity, both at the worker nodes as
well as at the master node, and our coding solutions for both
GD and CD achieve that, in addition to being highly storage
efficient; see Theorem 1 for GD and Theorem 2 for CD.

Coming back to our two-round approach for gradient
computations using MV multiplications, for the 1st round,
we encode X using a sparse encoding matrix S() =
[(S(ll))T, e (SS,IL))T}T and store SZ(.l)X at the ¢’th worker
node; and for the 2nd round, we encode X7T using another
sparse encoding matrix S@ = [(S)HT ... (SEHT|T, and

8Note that even after computing Xw, master needs access to the labels
vi,t = 1,2,...,n to compute f/(w). See Footnote 5 for a discussion on
how master can get access to the labels.

store SEQ)XT at the 7’th worker node. Now, in the 1st round
of the gradient computation at w, the master node broadcasts
w and the ¢’th worker node replies with Sgl)Xw (a corrupt
worker may report an arbitrary vector); upon receiving all the
vectors, the master node applies error-correction procedure to
recover Xw and then locally computes f'(w) as described
above. In the 2nd round, the master node broadcasts f'(w)
and similarly can recover X7 f’(w) (which is equal to the
gradient) at the end of the 2nd round. So, it suffices to devise
a method for multiplying a vector v to a fixed matrix A in
a distributed and adversarial setting. Since this is a linear
operation, we can apply error correcting codes over real
numbers to perform this task. We describe it briefly below.

A trivial approach. Take a generator matrix G of any
real-error correcting linear code. Encode A as ATG =:
B. Divide the columns of B into m groups as B =
[B; Bs...B,,], where worker ¢ stores B;. Master broadcasts
v and each worker i responds with vrB; + elT, where
e; = 0 if the ¢’th worker is honest, otherwise can be
arbitrary. Note that at most ¢ of the e;’s can be non-zero.
Responses from the workers can be combined as v/’ B +e”.
Since every row of B is a codeword, vIB = vI'ATG is
also a codeword. Therefore, one can take any off-the-shelf
decoding algorithm for the code whose generator matrix is
G and obtain vI AT, For example, we can use the Reed-
Solomon codes (over real numbers) for this purpose, which
only incurs a constant storage overhead and tolerates optimal
number of corruptions (up to < %). Note that we need fast
decoding, as it is performed in every iteration of the gradient
computation by the master. As far as we know, any off-the-
shelf decoding algorithm “over real numbers” requires at
least a quadratic computational complexity, which leads to
Q(n? 4 d?) decoding complexity per gradient computation,
which could be impractical.

The trivial scheme does not exploit the block error pattern
which we crucially exploit in our coding scheme to give a ~
O((n+d)m) time decoding per gradient computation, which
could be a significant improvement over the trivial scheme,
since m typically is much smaller than n and d for large-
scale problems. In fact, our coding scheme enables a trade-
off (in terms of storage and computation/communication
overhead at the master and the worker nodes) with Byzantine
adversary tolerance, without compromising the efficiency at
the master node. We also want encoding to be efficient
(otherwise it defeats the purpose of data encoding) and our
sparse encoding matrix achieves that. Our main result for
the Byzantine-resilient distributed gradient computation is as
follows, which is proved in Section IV:

Theorem 1 (Gradient Computation). Let X € R"*? denote
the data matrix. Let m denote the total number of worker
nodes. We can compute the gradient exactly in a distributed
manner in the presence of t corrupt worker nodes and s
stragglers, with the following guarantees, where € > 0 is a
free parameter.

s+ < |12

o Total storage requirement is roughly 2(1 + €)|X].




o Computational complexity for each gradient computa-
tion:
— at each worker node is O((1 + ¢)24).
— at the master node is O((1 + ¢)(n + d)m).

o Communication complexity for each gradient computa-
tion:
— each worker sends ((1+ €)™t2) real numbers.
— master broadcasts (n + d) real numbers.

o Total encoding time is O (nd (1i€m + 1))

and t as long as (s +1) < | 15 -

both erasures and errors in the same way’ the corruption
threshold does not have to handle s and t separately. To
simplify the discussion, for the rest of the paper, we consider
only Byzantine corruption, and denote the corrupted set by
T C [m] with |Z| < t, with the understanding that this can
also work with stragglers.

In Theorem 1, € is a design choice and a free parameter
that can take any value in the interval [0, m—1], where € = 0
implies no corruption and ¢ = m — 1 implies that corruption
threshold t can be anything up to m74 If we want to tolerate

. 2t 10
t corrupt workers, then € must satisfy ¢ > prea Tl

Remark 3 (Comparison with the plain distributed PGD).
We compare the resource requirements of our method with
the plain distributed PGD (which provides no adversarial
protection), where all the data points are evenly distributed
among the m workers. In each iteration, master sends the
parameter vector w to all the workers; upon receiving w,
all workers compute the gradients on their local data in
O(%d) time (per worker) and send them to the master; master
aggregates them in O(md) time to obtain the global gradient
and then updates the parameter vector using (2).

In our scheme (i) the total storage requirement is O(1+¢€)
factor more;'" (see also Remark 4) (i) the amount of compu-
tation at each worker node is O(1 + ¢€) factor more; (iii) the
amount of computation at the master node is O((1 +¢€)(1+
%)) factor more, which is comparable in cases where n is not
much bigger than d; (iv) master broadcasts (1 + %) factor
more data, which is comparable if n is not much bigger than
d; and (V) each worker sends O ((1 + e)1+Tn/d) factor more
data, which is O(1 + €) — a constant factor — as long as
n = O0(dm).

Remark 2. The statement of Theorem 1 allows for any s
£ %J As we are handling

Remark 4. Let m be an even number. Note that we can get
the corruption threshold t to be any number less than m/2,

9When there are only stragglers, one can design an encoding scheme
where both the master and the worker nodes operate oblivious to encoding,
while solving a slightly altered optimization problem [41], in which gradients
are computed approximately, leading to more efficient straggler-tolerant GD.

10We could have written everything in terms of ¢, m, n, d, but we chose
to introduce another variable e which, in our opinion, clearly brings out
the tradeoff between the corruption threshold and the resource requirements
without cluttering the expressions.

UFor example, by taking ¢ = 2, our method can tolerate m /3 corrupt
worker nodes. So, we can tolerate linear corruption with a constant overhead
in the resource requirement, compared to the plain distributed gradient
computation which does not provide any adversarial protection.

but at the expense of increased storage and computation. For
any § > 0, if we want to get § close to m/2, i.e., t = m/2—9,
then we must have (1 + €) > m/24. In particular, at € =
2, we can tolerate up to m/3 corrupt nodes, with constant
overhead in the total storage as well as on the computational
complexity.
Note that when § is a constant, i.e., t is close to

then ¢ grows linearly with m; for example, if t = ™5,
then ¢ = m — 1. In this case, our storage redundancy
factor is O(m). In contrast, the trivial scheme (see “trivial
approach” on page 6) does better in this regime and has
only a constant storage overhead, but at the expense of an
increased decoding complexity at the master, which is at least
quadratic in the problem dimensions d and n, whereas, our
decoding complexity at the master always scales linearly with
d and n. If we always want a constant storage redundancy
for all values of the corruption threshold t, we can use our
coding scheme if t < c - mT_l, where ¢ < 1 is a constant,
and use the trivial scheme if t is close to mT_l

m—1
2 ’
—1

Our encoding is also efficient and requires
O(nd(liem—l—l) time. Note that O(nd) is equal

to the time required for distributing the data matrix X
among m workers (for running the distributed gradient
descent algorithms without the adversary); and the encoding
time in our scheme (which results in an encoded matrix that
provides Byzantine-resiliency) is a factor of (2t + 1) more.

Remark 5. Our scheme is not only efficient (both in terms

of computational complexity and storage requirement), but

it can also tolerate up to LmT_lJ corrupt worker nodes (by

taking € = m — 1 in Theorem 1). It is not hard to prove

that this bound is information-theoretically optimal, i.e., no
m

algorithm can tolerate [ 5] corrupt worker nodes, and at the

same time correctly computes the gradient.

E. Our Approach to Coordinate Descent

We use data encoding and add redundancy to enlarge the
parameter space. Specifically, we encode the data matrix X
using an encoding matrix R = [R; Ry R,,], where
each R; is a d x p matrix (with pm > d), and store XR; at
the ’th worker. Define X** := XR.. Now, instead 0f~ solving
(5), we solve the encoded problem arg minycgem ¢(Xv;y)
using Algorithm 1 (together with decoding at the master);
see Figure 2 on page 18 for a pictorial description of our
algorithm. We design the encoding matrix R such that
at every iteration of our algorithm, updating any (small)
subset of coordinates of v;’s (let v = [vI vI ... vI])
automatically updates some (small) subset of coordinates
of w; and, furthermore, by updating those coordinates of
v;’s, we can efficiently recover the correspondingly updated
coordinates of w, despite the errors injected by the adversary.
In fact, at any iteration ¢, the encoded parameter vector vy
and the original parameter vector w; satisfies vi = R*wy,
where RT := RT(RR”)~! is the Moore-Penrose pseudo-
inverse of R, and w; evolves in the same way as if we are
running Algorithm 1 on the original problem.



We will be effectively updating the coordinates of the
parameter vector w in chunks of size (m — 2t) or its integer
multiples (where ¢ is the number of corrupt workers). In
particular, if each worker 4 updates &k coordinates of v;, then
k(m—2t) coordinates of w will get updated. For comparison,
Algorithm 1 updates km coordinates of the parameter vector
w in each iteration, if each worker updates k coordinates in
that iteration.

As described in Algorithm 1 for the Byzantine-free CD,
in order to update its local parameter vector w; according
to (6), worker i needs access to ¢'(Xw;y), which master
computes after receiving {X ;W }je[m) from the workers. In
our Byzantine-resilient algorithm for CD also master will
need to compute Xw in every CD iteration, and for this
purpose, we employ the same encoding-decoding procedure
for MV multiplication that we used in the first round of
gradient computation, as described in Section II-D. In partic-
ular, to make the notation distinct from gradient computation,
in order to compute Xw, we encode X using an encoding
matrix L = [L{ L ... LI, where each L; is a p/ x n
matrix (with p’m > n) and worker ¢ stores XiL =L;X.

Note that in order to compute Xw, in the first round of
gradient computation as described in Section II-D, master
broadcasts w to all the workers and each worker 4 computes
XEw and sends it the the master (corrupt workers may
report arbitrary vectors), who then decodes and obtains Xw.
However, in coordinate descent, though master wants to
compute Xw in each CD iteration, we can significantly
improve the computation required at each worker: since only
a few coordinates of the original parameter vector w are
updated in each CD iteration, master needs to send only
those updated coordinates, and workers need to preform MV
multiplication with a much smaller matrix, whose number
of columns is equal to the number of updated coordinates
of w that they receive from master. Thus, the computational
complexity in each CD iteration at worker is proportional to
the number of coordinates updated in each CD iteration, as
desired.

Our main result for the Byzantine-resilient distributed
coordinate descent is stated below, which is proved in Sec-
tion V.

Theorem 2 (Coordinate Descent). Under the setting of The-
orem 1, our Byzantine-resilient distributed CD algorithm has
the following guarantees, where € > 0 is a free parameter.

s+ < |72
o Total storage requirement is roughly 2(1 + €)|X].
o If each worker i updates T coordinates of v;, then

- f—fﬁ coordinates of the corresponding w gets updated.

— the computational complexity in each iteration

% at each worker node is O(nr).
% at the master node is O((1 + €)nm + Tm?).

— the communication complexity in each iteration

* each worker sends (7 + (1 + €)2) real numbers.

n
m

* master broadcasts (f—fﬁ + n) real numbers.

o Total encoding time is O (nd <1j_6m + 1))

Remark 6 (Comparison with the plain distributed CD). We

compare the resource requirements of our method with the
plain distributed CD described in Algorithm 1 that does not
provide any adversarial protection. Let € be any number in
the interval [0,m — 1] — for illustration, we can take ¢ = 2,
which means t < *3 workers are corrupt. In Algorithm 1,
if each worker i updates I coordinates of w; (in total
1. coordinates of w) in each iteration, then (i) each worker
requires O({47;) time to multiply X; with the updated part of
w;; (i) master requires O(nm) time to compute > | X;w;
from {XiWi}icpmy; (ili) each worker sends n real numbers
(required for X;w;) to master; and (iv) master broadcasts n
real numbers (required for ¢ (Xw;y)).

In our scheme (i) the total storage requirement is O(1+¢)
factor more; (i) the amount of computation at each worker
node is O(1+¢) factor more; (iii) the amount of computation
at the master node is O((1+¢)+ =) factor more — typically,
since T is a constant and number of workers is much less
than n, this again could be O(1+ ¢); (iv) master broadcasts

1+ ﬁ) factor more data, which could be a constant

if Tm is smaller than (1 + €)n; and (V) each worker sends
% + %) factor more data, where the Ist term is much
smaller than 1 as T is typically a constant, and the 2nd term

is close to zero as (1 + €) is always upper-bounded by m.

Remark 7 (Comparison with the replication-based strategy).
One simple way to make Algorithm 1 Byzantine-resilient is
using repetition code, where we first divide the set of m
workers into 2tmﬁ groups of size (2t+1) each and also divide
the data matrix as X = [X; Xy ... lei’l] (assume, for
simplicity, that (2t + 1) divides m). Now, store the i’th block
X, at the (2t+1) workers in the i’th group of workers. Let the
parameter vector be divided as w = [wl wl ... WZ%]T.
In each CD iteration, the local parameter updates in ah+y W,
is replicated at (2t + 1) different workers in the i’th group of
workers, and since at most t workers are corrupt, master can
do a majority vote for decoding. Note that the total storage
and the computation at workers in this scheme grow linearly
by a factor of (2t + 1), where t is the number of corruption,
which could be significant. In contrast, the method that we
propose can tolerate linear corruption, say, t = 7, with a
constant overhead in storage and computational complexity.

The Remarks 2, 4, 5 are also applicable for Theorem 2.

III. RELATED WORK

There has been a significant recent interest in using coding-
theoretic techniques to mitigate the well-known straggler
problem [40], including gradient coding [43]-[46], encoding
computation [33], [34], [47], and data encoding [41], [48].
However, one cannot directly apply the methods for straggler
mitigation to the Byzantine attacks case, as we do not know
which updates are under attack. Distributed computing with
Byzantine adversaries is a richly investigated topic since [9],
and has received recent attention in the context of large-scale



distributed optimization and learning [10]-[12], [20]-[32].
These can be divided into three categories: (i) One which
assume explicit statistical models for data across workers
(e.g., data drawn i.i.d. from a probability distribution) and
analyze gradient descent [12], [20], [22], [24], [28]. (ii)
Other set of works make no probabilistic assumption on data,
and optimize through stochastic methods (e.g., stochastic
gradient descent) [10], [21], [23], [25]-[27], [30]-[32] and
also with deterministic methods (e.g., gradient descent) [30],
[31]. Note that none of these two sets of works do data
encoding and work with data as it is, and provide Byzantine
resilience by applying some robust aggregation procedures
(e.g., geometric median, coordinate-wise median, outlier-
filtering, etc.) at the master for aggregating gradients. (iii)
Another line of work which is most relevant to ours provide
Byzantine resiliency using redundant computations, either by
encoding the gradients [11] or by encoding the data itself
[29]. Note that [26] combines both redundant computations
and do a hierarchical robust aggregation and not is directly
comparable to ours.

Note that the statistical nature of data/analysis in the
first two sets of works leads to a statistical approximation
error in the convergence rates, which is also intensified by
the inaccuracy of the robust gradient aggregation procedure.
One of the main focuses in these works is typically on
obtaining faster convergence (where the goal is to match
the convergence rate of plain SGD/GD) and as good an
approximation error as possible. Note that the approximation
error in all these works scales at least as Q(v/d), where
d is the dimension of the model parameter vector, which
may be significant in high-dimensional settings. Moreover,
in all these works, since we are not allowed to pre-process
the data (such as, doing data encoding, etc.), we need to
make some assumptions on the data, and furthermore, master
has to apply a non-trivial decoding for gradient aggregation,
which requires significantly more time than what our de-
coding requires. For example, filtering-based decoding [22],
[30], [31], median-based decoding [12], [20], and heuristic
approaches [10], all have a super-linear complexity in m
— in fact, the filtering-based method as in [22], [30], [31]
(which is the most effective in terms of the approximation
error) requires O(m3d) time. In contrast, our decoding has
a linear dependence on both m and d. Note that, unlike the
first two categories, the third line of work (to which ours
also belongs) gives deterministic guarantees and work with
arbitrary datasets, with no probabilistic assumptions; we elab-
orate on these and do a detailed comparison with ours below.
We skip the comparison with the first two categories, as it
would not be a fair comparison because the underlying setting
is different — results in the first two categories are based
on statistical assumptions on data/algorithm and inaccurate
gradient recovery, whereas, results in the third category make
no assumption on the data/algorithm and allow exact gradient
recovery.

We want to emphasize that all these works use gradi-
ent descent (GD) or stochastic gradient descent (SGD) as

their optimization algorithm, which is a data-parallelization
method; in this paper, additionally, we also use coordinate
descent (CD) algorithm for optimization, which is a model-
parallelization method and is preferred over GD in some
applications; see Section I for more details on this. As will be
evident from Section V, making CD secure against Byzantine
attacks is arguably more intricate than securing GD.

We divide this section into three categories: first we com-
pare the redundancy-based methods for GD in Section III-A,
and then CD in Section III-B. Since we use matrix-vector
(MV) multiplication as a core subroutine for both GD and
CD, we also compare related work on this in Section III-C.

A. Gradient Descent (GD)

In this section, we do a detailed comparison with [11] and
[29], which are the closest related works that also combat
Byzantine adversaries using redundant computations.

For the sake of comparison, assume that ¢t < mT_l workers
are corrupt. The coding scheme of Chen et al. [11], which
they called DRACO, requires repetition of each data point
(2t 4 1) times, storing each copy at different workers. This
gives the storage redundancy factor of (2t + 1) in DRACO,
whereas, our coding method requires storage redundancy
factor of 2(1 4+ €) = -2Z-. which is a constant even if
t is a constant (< 3) fraction of m.'? Since each worker
in DRACO is doing (2t + 1)-factor more computation for
each GD iteration (than simply computing the gradients as in
plain distributed GD), the computational cost at workers also
grows by the same factor, which is a significant downside of
their scheme. In contrast, our scheme only requires O(—-"5-)
more computation at worker, which is a constant even if
t is a constant (< %) fraction of m. This significantly
reduces the computation time at the worker nodes in our
scheme compared to DRACO, without sacrificing much on
the computation time required by the master node — the
decoding at master in DRACO takes O(md) time, whereas,
our scheme requires O(-"5;(n 4 d)m) time, which is a
factor of O(;-™5; (1 + %)) more than DRACO. In high-
dimensional settings, where n is not much bigger than d, and
t is a constant (< %) fraction of m, this overhead is constant.
Overall, for a constant fraction of corruption, say, ¢t = %,
DRACO requires €)(t) times more storage and computation at
workers than our scheme (which could be significant in large-
scale settings), and requires Q2(1+ %) times less computation
at master. Note that the computation time at workers scales
at least as (24), which dominates the time taken by master
(since n, d are typically much larger than m), so our scheme

12To highlight the storage redundancy gain of our method over that of
DRACO, consider the following two concrete scenarios, where the data
matrix X € R™*9 consists of nd real numbers: (i) In a large setup with
m = 1000 worker nodes, if we want resiliency against ¢ = 100 corrupt
nodes (1/10 nodes are corrupt), our method requires redundancy of 2.5,
whereas DRACO requires redundancy of 201 (i.e., we need to store only
2.5 X nd real numbers, whereas DRACO stores 201 X nd real numbers), a
multiplicative-factor of > 80 more than ours. (i) In a moderate setup with
m = 150 and t = 50 (1/3 nodes are corrupt), the redundancy of our method
is 6, whereas DRACO requires redundancy of 101, a multiplicative-factor of
= 17 more than ours.



will be faster than DRACO with respect to the overall running
time. Note that the coding in DRACO is restricted to data
replication redundancy, as they encode the gradient as done
in [43], enabling application to (non)-convex problems; in
contrast, we encode the data enabling significantly smaller
redundancy, and apply it to learn generalized linear models,
and is also applicable to MV multiplication.

Yu et al. [29] (which is a concurrent work!?) proposes
Lagrange coded computing in a distributed framework to
compute any multivariate polynomial of the input data and
simultaneously provides resilience against stragglers, secu-
rity against adversaries, and privacy of the dataset against
collusion of workers. They leverage the Lagrange polyno-
mial to create computation redundancy among workers, and
using standard Reed-Solomon decoding, they can tolerate
both erasures/stragglers and errors/adversaries. Their method
provide privacy by adding random elements from the field
(which in the case of gradient computation is the field of all
matrices of a certain dimension) while doing the polynomial
interpolation. This is a standard method in Shamir secret
sharing scheme [49] that is widely used in information-
theoretically secure MPC protocols [50] to provide privacy
of users’ data. For the sake of comparison of the resource
requirements of our scheme and the one in [29], consider
the task of linear regression (the concrete machine learning
application studied in [29]). In the following, we assume
that mT_l — & workers are corrupt, which corresponds to

€ = H% — 1 in our setting; here § can take any value
in [0 : Z-1]. (i) The storage overhead of our scheme is
%1/2, whereas, in [29], it is Wml’ which is roughly the

same as ours. For example, to tolerate 2

3 corrupt workers

(ie., 6 = mT’?’), the storage overhead of our scheme and
of [29] is a multiplicative factor of 6 and # ~ 0,
respectively. (ii) The encoding time complexity of our scheme
is O(nd(m — 26)), whereas, it is O(m logQ(m)%) in [29].
Note that for constant § (i.e., corruption close to 1/2), the
encoding time of our scheme is much less (by a factor of
O(m log2(m))) than that of [29], whereas, for corruption cm,
where ¢ < %, the scheme of [29] takes O(%)—factor less
time in encoding than ours. (iii) The computation time at each
worker per gradient computation in both our scheme and [29]
is roughly the same — ours requires O(%) time and [29]
requires O(%) time. (iv) The decoding time complexity
per gradient computation in [29] is O (m log®(m)d), whereas,
ours requires O((1 + €)(n + d)m) time. Note that when n is
not much bigger than d and we want a constant fraction of
corruption, say, 5 corruption, then their decoding complexity
is worse than ours by a logarithmic factor. Also note that
our decoding algorithm is arguably simpler than theirs. (V)
For per gradient computation, each worker respectively sends
{féf; and d real numbers in ours and the scheme in [29].
Note that if n < dm and to tolerate a constant fraction of
= corruption, each worker sends roughly

corruption, say, =
O(m) less data in our scheme than that of [29]. Overall,

3

13yu et al. [29] is concurrent to our conference versions in Allerton 2018
[1] and ISIT 2019 [2], [3], on which this paper is based.

if we want tolerance against 5 corrupt worker nodes, then
both our scheme and the one in [29] have similar resource
requirements, except for that our scheme has a much better
communication complexity (by a factor of O(m)) from
workers to the master, whereas, the encoding time complexity
(which is a one-time process) of [29] is better than ours by

a factor of O(%).

B. Coordinate Descent (CD)

Even for the straggler problem, we are only aware of one
work by Karakus et al. [48] that, in addition to distributed
GD, also studies distributed CD, and that for quadratic
problems (e.g., linear/ridge regression) only. It also does data
encoding and achieves low redundancy and low complexity,
by allowing convergence to an approximate rather than exact
solution. As far as we know, ours is the first work that
studies distributed CD under Byzantine attacks and provides
an efficient solution, much better than the replication-based
solution (see Remark 7). At the heart of our solution for CD
is the matrix-vector (MV) multiplication procedure that we
develop in this paper; and it is the specific regular structure
of our encoding matrix (given in (11), designed for the MV
multiplication) that allows for partially updating the coordi-
nates of the parameter vector in each CD iteration. Note that a
general-purpose encoding matrix for MV multiplication may
not be applicable for the CD algorithm.

It has been observed earlier in several works (see, for
example, [33], [34]) that gradient computation in GD for
linear regression can be reduced to MV multiplication, and
any general-purpose code for MV multiplication can be used
to provide a solution for gradient computation. As far as we
know, ours is the first paper that makes the connection of CD
and MV multiplication, and provides an efficient solution
for CD (which is also resilient to Byzantine attacks) for
learning generalized linear models. Note that, unlike GD,
not any general-purpose code for MV multiplication can be
used for CD: the main challenge in CD comes from the
fact that we only update a small number of coordinates
of the parameter vector in each CD iteration; when we
encode the data and iteratively update some coordinates of
the (encoded) parameter vector using the encoded data, we
need to make sure that this update in the encoded parameter
vector is reconciled with the update in the original parameter
vector. This is fundamentally different from GD iterations.
See Section V for more details.

C. Matrix-Vector Multiplication

For the task of a more fundamental problem of matrix-
vector (MV) multiplication in the presence of Byzantine ad-
versaries, which is at the core of the optimization algorithms
in this paper, we are only aware of two concurrent works [29]
(see Footnote 13) and [47]'* that provide (coding-theoretic)

14The conference version [34] only studies the straggler problem, and the
journal version [47] briefly mentions how their results from [34] can be
extended to handle adversarial nodes, and we describe that in this section.



solutions to this problem. In the following, we do a detailed
comparison of our solution with both of these works and also
discuss the (dis)similarities.

We have already done a detailed comparison with Yu et
al. [29] (concurrent work, see Footnote 13) with respect to
gradient descent in Section III-A. For the problem of MV
multiplication, the storage requirement, computation time per
worker, and communication complexity to/from workers is
the same in both ours and [29]. The comparison of encoding
time complexity is same as above; however, for a constant
corruption, say, %5 corrupt workers, our method outperforms
the one in [29] in terms of the decoding time complexity
by a factor of O(log?(m)). Note that, unlike [29], we
make a fundamental connection of handling Byzantine errors
with the sparse reconstruction (or the real-error correction)
problem from the compressive sensing literature [35].

Dutta et al. [47] (concurrent work, see Footnote 14)
focuses on matrix-vector (MV) multiplication. Though their
main focus is on providing resilience against stragglers, they
also mention that handling stragglers is very different than
handling errors, as it requires to correct errors over real
numbers, and, unlike stragglers, we do not know which
workers are corrupt. Similar to our observation, they also
note that since the matrices and vectors have entries from
real numbers, the decoding problem reduces to the sparse
reconstruction problem from the compressive sensing litera-
ture [35] and they also provide such a reduction. Apart from
these similarities, our solution for MV multiplication differs
from that of [47] in several important ways: (i) [47] provides
a detailed solution to the distributed MV multiplication for
the straggler problem for the case when the number of rows
in the matrix is smaller than the number of workers nodes.
As mentioned in [47], this method can be easily generalized
to the more general case when the matrix is of arbitrary
dimension, in which case, first we can divide the rows of
the matrix into several sub-matrices, each having number of
rows smaller than the number of workers, and then apply
the above method independently to each sub-matrix. This
simple extension may work (without losing efficiency) for
the straggler/erasure problem, however, leads to a highly
inefficient solution for the adversary/error problem. The
reason being that, in the presence of Byzantine workers, if
we solve the sparse reconstruction problem for each sub-
matrix separately, this would be inefficient, as the decoding
would then be computationally expensive. To remedy this,
we exploit the block error pattern and use a simple idea of
linearly combining the response vectors from each worker
using coefficients drawn from an absolutely continuous dis-
tribution, so that we only need to do just one computation
for solving the sparse construction problem. This significantly
reduces the decoding complexity; see Section IV-A for de-
tails. (i) [47] only shows a connection to the sparse recovery
problem, whereas, we provide a complete solution, with a
concrete sparse recovery (or real-error correction) matrix and
resource (encoding/decoding time, storage, communication)
requirement analysis. (iii) Our encoding matrix (given in

(11)) to encode data matrices of arbitrary dimensions is very
sparse and highly structured which allows us to apply that
construction to CD algorithm, which, as far we know, has not
been connected with MV multiplication before. Also, ours is
the first paper that provides a non-trivial and efficient (data
encoding) solution to CD in the presence of a Byzantine
adversary. (iv) We also want to mention that the focus in
[47] is on making the encoded matrix sparse (at the expense
of increased computation at workers) so that workers need
to compute shorter dot products, whereas, in this paper, we
make the encoding matrix sparse (much sparser than the
encoded matrix of [47]) to get efficient encoding/decoding.

IV. OUR SOLUTION TO GRADIENT COMPUTATION

In this section, we describe the core technical part of our
two-round approach for gradient computation described in
Section II-D — a method for performing matrix-vector (MV)
multiplication in a distributed manner in the presence of a
malicious adversary who can corrupt at most ¢ of the m
worker nodes. Here, the matrix is fixed and we want to right-
multiply a vector with this matrix.

Given a fixed matrix A € R""*" and a vector v € R"¢,
we want to compute Av in a distributed manner in the
presence of at most ¢ corrupt worker nodes; see Section II-C
for details on our adversary model. Our method is based on
data encoding and error correction over real numbers, where
the matrix A is encoded and distributed among all the worker
nodes, and the master node recovers the MV product Av
using real-error correction; see Figure 1. We will think of
our encoding matrix as S = [ST ST ... ST], where each
S, is a p X n,- matrix and pm > n,.. We will derive the matrix
S in Section I'V-B. For the value of p, looking ahead, we will
set p = [ 5|, which is a constant multiple of = even if ¢
is a constant (< %) fraction of m (e.g., if t = %, we would
have p = 32)_ For i € [m], we store the matrix S;A at the
1’th worker node. As described in Section II, the computation
proceeds as follows: The master sends v to all the worker
nodes and receives {S;Av + e;}7"; back from them. Let
e; = [e;1,€i2,...,¢e;p]T for every i € [p]. Note that e; = 0
if the ¢’th node is honest, otherwise can be arbitrary. In order
to find the set of corrupt worker nodes, master equivalently
writes {S;Av + e;}7, as p systems of linear equations.

i€ [p] ®)

where, for every i € [p], & = [e1,€2i,...,ems] . and S;
is an m X n, matrix whose j’th row is equal to the ¢’th
row of S;, for every j € [m]. Note that at most ¢ entries
in each €; are non-zero. Observe that {S;Av + e;}"; and
{éiAv + &;}¥_, are equivalent systems of linear equations,
and we can get one from the other.

Note that S,;’s constitute the encoding matrix S, which
we have to design. In the following, we will design these
matrices S;’s (which in turn will determine the encoding
matrix S), with the help of another matrix F, which will
be used to find the error locations, i.e., identities of the

compromised worker nodes. We will design the matrix F

iLl(V) = SZAV + éi,



W ¢ prox, ,(w — aVf(w))

M broadcasts w M broadcasts f'(w)

w Xw "(w Viw)=XTf(w
M Dec C(?fl;lz‘?vl)lte J'(w) M f(w) J'(w)
. B 2 5
@ :M '7;: Xe})} )X@
w' z
Wl . W3 o o o W2 [ ]
stVx  siVx six sWx  SPXT sPXT  sPXT S X7

Fig. 1 This figure shows our 2-round approach to the Byzantine-resilient distributed gradient descent to optimize (1) for learning a generalized linear
model. Since the gradient at w is equal to Vf(w) = X7T f/(w) (see (7)), we compute it in 2 rounds, using a matrix-vector (MV) multiplication as a
subroutine in each round. In the 1st round, first we compute Xw, and then compute f/(w) from Xw — since the j’th entry of Xw is equal to (x;, w),
we can compute f’(w) from Xw (see Section II-D). In the 2nd round we compute XT f/(w) — which is equal to V f(w) — using another application
of MV multiplication. For a matrix A and a vector v, to make our distributed MV multiplication Av Byzantine-resilient, we encode A using a sparse
matrix S = [ST ST ... ST]T and distribute S; A to worker i (denoted by W;). Note that in the first round, we have A = X,v = w, and we encode
X using S(), and in the second round, we have A = XT v = f’ (w), and encode XT using S, The adversary can corrupt at most ¢ workers (the
compromised ones are denoted in red color), potentially different sets of ¢ workers in different rounds. The master node (denoted by M) broadcasts v to
all the workers. Each worker performs the local MV product and sends it back to M. If W; is corrupt, then it can send an arbitrary vector. Once the master
has received all the vectors (out of which ¢ may be erroneous), it sends them to the decoder (denoted by Dec), which outputs the correct MV product Av.

(of dimension k x m, where k& < m — here k is determined
by the error-correction capability, and we will set k = 2¢; see
Section IV-D for more details) and the matrices S;’s such that

C.1 FS; = 0 for every i € [p].

C.2 For any t-sparse u € R™, we can efficiently find all the
non-zero locations of u from Fu.

C.3 Forany 7 C [m] such that |[7| > (m—t), let Sy denote
the |7 |p x n, matrix obtained from S by restricting it
to all the S;’s for which ¢ € 7. We want St to be of
full column rank.

If we can find such matrices, then we can recover the desired
MV multiplication Av exactly: briefly, C.1 and C.2 will
allow us to locate the corrupt worker nodes; once we have
found them, we can discard all the information that the master
node had received from them. This will yield S Av, where
S is the |7 |p X n, matrix obtained from S by restricting it
to S;’s for all ¢ € T, where T is the set of all honest worker
nodes. Now, by C.3, since S is of full column rank, we can
recover Av from S+ Av exactly. Details follow.

Suppose we have matrices F and S,’s such that C.1 holds.
Now, multiplying (8) by F yields

9

for every i € [p], where ||&;]|o < t. In Section IV-A, we give
our approach for finding all the corrupt worker nodes with the
help of any error locator matrix F. Then, in Section IV-B,

we give a generic construction for designing S;’s (and, in

f; := Fh;(v) = F&;,

turn, our encoding matrix S) such that C.1 and C.3 hold. In
Section IV-C, we show how to compute the desired matrix-
vector product Av efficiently, once we have discarded all the
data from the corrupt works nodes. Then, in Section IV-D,
we will give details of the error locator matrix F that we use
in our construction.

Remark 8. As we will see in Section IV-B, the structure of
our encoding matrix S is independent of our error locator
matrix F. Specifically, the repetitive structure of the non-zero
entries of S as well as their locations will not change irre-
spective of what the ¥ matrix is. This makes our construction
very generic, as we can choose whichever ¥ suits our needs
the best (in terms of how many erroneous indices it can locate
and with what decoding complexity), and it won’t affect the
structure of our encoding matrix at all — only the non-zero
entries might change, neither their repetitive format, nor their
locations!

A. Finding The Corrupt Worker Nodes

Observe that supp(€;) may not be the same for all ¢ € [p],
but we know, for sure, that the non-zero locations in all these
error vectors occur within the same set of ¢ locations. Let
T = |J!_, supp(€;), which is the set of all corrupt worker
nodes. Note that |Z| < ¢t. We want to find this set Z efficiently,
and for that we note the following crucial observation. Since
the non-zero entries of all the error vectors €;’s occur in the
same set Z, a random linear combination of €;’s has support



equal to Z with probability one, if the coefficients of the
linear combination are chosen from an absolutely continuous
probability distribution. This idea has appeared before in [51]
in the context of compressed sensing for recovering arbitrary
sets of jointly sparse signals that have been measured by the
same measurement matrix.

Definition 1. A probability distribution is called absolutely
continuous, if every event of measure zero occurs Wwith
probability zero.

It is well-known that a distribution is absolutely continuous
if and only if it can be represented as an integral over an inte-
grable density function [52, Theorem 31.8, Chapter 6]. Since
Gaussian and uniform distributions have an explicit integrable
density function, both are absolutely continuous. Conversely,
discrete distributions are not absolutely continuous. Now we
state a lemma from [51] that shows that a random linear
combination of the error vectors (where coefficients are
chosen from an absolutely continuous distribution) preserves
the support with probability one.

Lemma 1 ([51]). Ler Z = |J7_, supp(€&;), and let € =
P | @&, where a;’s are sampled i.i.d. from an absolutely
continuous distribution. Then with probability 1, we have
supp(e) = 7.

From (9) we have f; = Fe; for every ¢ € [p]. Take
a random linear combination of f;’s with coefficients «;’s
chosen i.i.d. from an absolutely continuous distribution, for
example, the Gaussian distribution. Let f = o; >r )=
(o7 (Zf:l Féz) = F (Zf:l O[,Lél) = Fé, where € =
P | @;&;. Note that, with probability 1, supp(€) is equal
to the set of all corrupt worker nodes, and we want to
find this set efficiently. In other words, given Fe, we want
to find supp(€é) efficiently. For this, we need to design a
k x m matrix F (where k¥ < m) such that for any sparse
error vector e € R™, we can efficiently find supp(e) from
f = Fe. Many such matrices have been known in the
literature that can handle different levels of sparsity with
varying decoding complexity. We can choose any of these
matrices depending on our need, and this will not affect the
design of our encoding matrix S. In particular, we will use
a k x m Vandermonde matrix along with the Reed-Solomon
type decoding, which can correct up to k/2 errors and has
decoding complexity of O(m?); see Section IV-D for details.

Time required in finding the corrupt worker nodes. The
time taken in finding the corrupt worker nodes is equal
to the sum of the time taken in the following 3 tasks. (i)
Computing Fé; for every i € [p]: Note that we can get Fé;
by multiplying (8) with F. Since F is a £ x m matrix, and
we compute Fh;(v) for p systems, this requires O(pkm)
time. (ii) Taking a random linear combination of p vectors
each of length m, which takes O(pm) time. (iii) Applying
Lemma 2 (in Section IV-D) once to find the error locations,
which takes O(m?) time. Since p is much bigger than m,
the total time complexity is O(pkm).

B. Designing The Encoding Matrix S

Now we give a generic construction for designing S,’s
such that C.1 and C.3 hold. Fix any k xm matrix F such that
we can efficiently find e from Fe, provided e is sufficiently
sparse. We can assume, without loss of generality, that F' has
full row-rank; otherwise, there will be redundant observations
in Fe that we can discard and make F smaller by discarding
the redundant rows. Let N (F) C R™ denote the null-space
of F. Since rank(F) = k, dimension of N'(F) is ¢ = (m —
k). Let {by,bs,...,b,} be a basis of N(F), and let b; =
[bi1 b ... bim]T, for every i € [q]. We set b;’s the columns
of the following matrix F:

bll b21 bql
b12 b22 bq2

Ft=| ' ' (10)
blm b2m qu mxq

The following property of F+ will be used for recovering
the MV product in Section IV-C.

Claim 1. For any subset T C [m], such that |T| > (m —1),
let F= be the |T| x q matrix, which is equal to the restriction
of F to the rows in T. Then F%—- is of full column rank.

Proof. Note that ¢ = m — k, where £ = 2t. So, if
we show that any ¢ rows of F* are linearly independent,
then, this in turn will imply that for every 7 C [m] with
|T| > (m —t), the sub-matrix F+ will have full column
rank. In the following we show that any ¢ rows of F+ are
linearly independent. To the contrary, suppose not; and let
T’ C [m] with |T7| = g be such that the ¢ x ¢ matrix F#, is
not a full rank matrix. This implies that there exists a non-
zero ¢/ € R? such that F+,¢’ = 0. Let b = Ftc’. Note that
b # 0 (because columns of F1 are linearly independent)
and also that ||b|lg < m — ¢ = k. Now, since FF+ = 0, we
have Fb = 0, which contradicts the fact that any &£ columns
of F are linearly independent. O

Now we design S;’s. For i € [p], we set S; as follows:

0 ... 0 b11 b21 bll 0O ... 0
_ 0o ... 0 b12 b22 blg 0o ... 0
S; =

0 ... 0 bim bom bjm, 0 ... O

where | = q if i < p; otherwise [ = n, — (p — 1)q. The first
(i — 1)q and the last n, — [(i — 1)q + [] columns of S; are
zero. This also implies that the number of rows in each S;
is p = [n,/q].

Claim 2. For every i € [p], we have FS; = 0.

Proof. By construction, the null-space of F is N (F) =
span{bq,bs,...,b,}, which implies that Fb, = 0, for
every i € [g]. Since all the columns of S;’s are either O
or b; for some j € [g], the claim follows. O



The above constructed matrices S;’s give the following
encoding matrix S; for the i’th worker node:

bli-~-bqi

S; = (1)

bli . bqi
bli e bli

PXNy

All the unspecified entries of S, are zero. The matrix S; is
for encoding the data for worker 7. By stacking up the S;’s
on top of each other gives us our desired encoding matrix S.

To get efficient encoding, we want S to be as sparse as
possible. Since S is completely determined by F-, whose
columns are the basis vectors of AV/(F), it suffices to find a
sparse basis for N'(F). It is known that finding the sparsest
basis for the null-space of a matrix is NP-hard [53]. Note that
we can always find the basis vectors of N'(F) by reducing F
to its row-reduced-echelon-form (RREF) using the Gaussian
elimination [54]. This will result in F+ whose last q TOWS
forms a ¢ x ¢ identity matrix. Note that ¢ = m — k, where
k = 2t. So, if the corruption threshold ¢ is very small as
compared to m, the F+ that we obtain by the RREF will
be very sparse — only the first 2¢ rows may be dense. Since
computing S is equivalent to computing F-, and we can
compute F+ in O(k%m) time using the Gaussian elimination,
the time complexity of computing S is also O(k?m).

Now we prove an important property of the encoding
matrix S that will be crucial for recovery of the desired
matrix-vector product.

Claim 3. For any T C [m] such that |T| > (m —t), let ST
denote the |T|p X n, matrix obtained from S by restricting
it to all the blocks S;’s for which i € T. Then St is of full
column rank.

Proof. For i € [p—1],let B; = [(i — 1)g+ 1 : iq] and
B, =[(p—1)¢g+1:n, —(p—1)g], where we see B;’s as a
collection of some column indices. Consider any two distinct
i,7 € [p]. It is clear that for any two vectors u; € B;,us €
B;, we have supp(ui) Nsupp(uz) = ¢, which means that
all the columns in distinct BB;’s are linearly independent. So,
to prove the claim, we only need to show that the columns
within the same B;’s are linearly 1ndependent Fix any 7 € [p],
and consider the |T|p x ¢ sub-matrix ST of S, which is
obtained by restricting S to the columns in B;. There are
precisely |77 non-zero rows in S(;—), which are equal to the
rows of the matrix FL defined in Claim 1. We have already
shown in the proof of Cla1m 1 that F is of full column rank.
Therefore, Sg-) is also of full column rank. This concludes
the proof of Claim 3. O

Since S is of full column rank, in principle, we can
recover any vector u € R™ from Su. In the next section,
we show an efficient way for this recovery.

C. Recovering The Matrix-Vector Product Av

Once the master has found the set Z of corrupt worker
nodes, it discards all the data received from them. Let

T = [m]\Z = {i1,42,...,i5} be the set of all honest
worker nodes, where f = (m — |Z|) > (m — t). Let
r=[rlr] .. . rl], where r; = S;Av +e;. All the r;’s from

the honest worker nodes can be written as

rr = SrAv, (12)

where S+ is as defined in Claim 3, and ry is also defined
analogously and equal to the restriction of r to all the r;’s for
which 7 € T. Since S+ has full column rank (by Claim 3),
in principle, we can recover Av from (12). Next we show
how to recover Av efficiently, by exploiting the structure of
S.

Let f‘j = [’I”ilj,’l“izj,...,’l”ifj]T, for every j € [p] The
repetitive structure of S;’s (see (11)) allows us to write (12)
equivalently in terms of p smaller systems.

i, = Fj(Av)s,, forj € [p], (13)

where, for j € [p—1], B; = [(i—1)g+1:ig] and F; = F=,
and B, = [(p— 1)q+1 n, —(p—1)q| and F, is equal to the
restriction of F# to its first (n,,—(p—1)g) columns. Since F
has full column rank (by Claim 1), we can compute (Av)g,
for all ¢ € [p], by multiplying (13) by F+ (FTF i)~ 1FJT,
which it called the Moore-Penrose 1nverse of F;. Since
Av = [(AV)E,, (AV)E,,..., (Av)gp)]T, we can recover
the desired MV product Av.

Time Complexity analysis. The task of obtaining Av from
ST Av reduces to (i) computing FJr (F%)" once, which
takes O(q?|T|) time naively; (ii) computlng F,| once, which
takes at most O(q |T]) time naively; and (iii) computmg the
MYV products F}F; for every j € [p], which takes O(pq|T])
time in total. Since p is much bigger than ¢, the total time
taken in recovering Av from S7Av is O(pq|T|) = O(pm?).

D. Designing The Error Locator Matrix F

In this section, we design a k x m matrix F (where k& < m)
such that for any sparse error vector e € R™, we can
uniquely and efficiently recover e (and, therefore, supp(e))
from the under-determined system of linear equations f =
Fe ¢ R*. This is related to the sparse representation prob-
lem, where one would like to find the sparsest representation
of f in terms of the linear combination of the columns of F',
i.e., minimizing ||e||p subject to the constraint that f = Fe.
This problem is of combinatorial nature and is known to
be NP-hard [35]. To make this problem computationally
tractable, Candes and Tao [35] showed that if F' satisfies a
certain regularity condition (which they named the restricted
isometry property (RIP)), then the sparsest reconstruction
problem can be reduced to minimizing [le[; = Y .-, |e;
subject to the constraint that f = Fe, which can be efficiently
solved using a linear program. They also showed that a ran-
dom Gaussian matrix satisfies the RIP condition. A common
problem with such random constructions is that they may
not work with small block-lengths (in our setting, m is the
number of workers which may not be a big number), and can
only correct a constant fraction of errors, where the constant
is very small. We need a deterministic construction that can



handle a constant fraction (ideally up to 1/2) of errors and
that works with small block-lengths.

Akcakaya and Tarokh [55] proposed an efficient solution
to the sparse representation problem using Vandermonde ma-
trices. To construct them, take m distinct non-zero elements

Z1,%2,---,2m from R, and consider the following k& x m
Vandermonde matrix F.
1 1 1 1 7
21 22 z3 e Zm
2 2 2 2
F = 1 2 3 m (14)
k-1 -1 k-1 k—1
27 25 Z3 zn

- kxm

For the above F, it was shown in [55] that, if |[supp(e)| <
k/2, then the Reed-Solomon type decoding can be used for
exact reconstruction of e from f = Fe.!3 Furthermore, their
decoding algorithm is efficient and runs in O(m?) time. The
results in [55] are given for complex vector spaces, and
they hold over real numbers also. Below we state the sparse
recovery result (specialized to reals) from [55].

Lemma 2 ([55]). Let F be the k x m matrix as defined in
(14). Let e € R™ be an arbitrary vector with |supp(e)| <
k/2. We can exactly recover the vector e from £ = Fe in

O(m?) time.

Note that F is a k x m matrix, where k < m. Choosing k
is in our hands, and larger the k, more the number of errors
we can correct (but at the expense of increased storage and
computation); see Section IV-E for more details.

E. Resource Requirement Analysis

In this section, we analyze the total amount of resources
(storage, computation, and communication) required by our
method for computing gradients in the presence of ¢ (out of
m) adversarial worker nodes and prove Theorem 1. Fix an
e > 0. Let the corruption threshold ¢ satisfy ¢ < [(e/(1 +
) - (m/2)].

As described earlier in Section II-D, we compute the
gradient Vf(w) = XT f/(w) in two-rounds; and in each
round we use the Byzantine-tolerant MV multiplication,
which we have developed in Section IV, as a subroutine;
see Figure 1 for a pictorial representation of our scheme.
We encode X to compute f'(w) in the Ist round: first
compute Xw using MV multiplication and then locally
compute f’(w). To compute XT f/(w) (which is equal to
the gradient) in the 2nd round, we encode X and compute
XT f'(w). Let S and S be the encoding matrices of
dimensions pym x n and pem X d, respectively, to encode
X and X7, respectively. Here, p1 = [n/q] and py = [d/q],
where ¢ = m — k. Since k = 2t (by Lemma 2), we have
g=(m—Fk)>m/(1+e¢).

I5Note that, since any k columns of F (which is the Vandermonde matrix)
are linearly independent, if there exists a vector e such that |[supp(e)| < k/2
and e satisfies f = Fe for a fixed f, then e is unique.

1) Stora de Reqmrement Each worker node ¢ stores two
matrices S, )X and S DXT . The first one is a p1 X (d+1)
matrix, and the second one is a py X n matrix. So, the total
amount of storage at all worker nodes is equal to storing
(p1(d+1) 4 pan) x m real numbers. Since p; < [(1+€),=]
and po < [(1+ e) 1. the total storage is

(pl(d +1) +p2n)m =pim(d+ 1) + pamn
<[A+en+ml(d+1)+[(1+€)d+mln
=14+en2d+1)+mn+d+1).

where the first term is roughly equal to a 2(1 + €) factor
more than the size of X. Note that the second term does
not contribute much to the total storage as compared to the
first term, because the number of worker nodes m is much
smaller than both n and d. In fact, if m — k& divides both n
and d, then the second term vanishes. Since |X| is an n x d
matrix, the total storage at each worker node is almost equal
to 2(1+¢€) = IX] "which is a constant factor of the optimal, that

X| “and the total storage is roughly equal to 2(1 + €)|X].

> Tm ?

is

2) Computational Complexity: We can divide the compu-
tational complexity of our scheme as follows:

e Encoding the data matrix. Since, for every ¢ < k and
7 > k, the total number of non-zero entries in Sgl) and
Sg-l) are at most n and p;, respectively (see Section IV-B
for details), the computational complexity for computing
S{UX for each i < k, and S{VX for each j > k, is
O(nd) and O(p;d), respectively. So, the encoding time for
computing SV X is equal to O (k(nd) + (m — k)(p1d)) =
O ((Hem—i—l)nd) Similarly, we can show that the
encoding time for computing S?X7” is also equal to
0 (( T5:m + 1)nd ). Note that computing SM and S@

take O(k2 ) time each, which is much smaller, as com-
pared to the encoding time. So, the total encoding time is
o <( 1+e
only once.

o Computation at each worker node. In the first round, upon
receiving w from the master node, each worker ¢ computes
(SEUX)W, and reports back the resulting vector. Similarly,
in the second round, upon receiving f’(w) from the master
node, each worker 7 computes (SZ@)XT) f/(w), and reports
back the resulting vector. Since S,EDX and ng)XT are
p1 X (d+1) and ps X n matrices, respectively, each worker
node i requires O(pyd + pon) = O((1 + €)24) time.

o Computation at the master node. The total time taken by
the master node in both the rounds is the sum of the time
required in (i) finding the corrupt worker nodes in the 1st
and 2nd rounds, which requires O(pi1hkm) and O(p2km)
time, res%)ectively (see Section IV-A), (ii) recovering Xw
from S Xw in the st round, which requires O(p;m?)
time, (111) computing f'(w) from Xw, which takes O(n)
time, and (iv) recovering XT f’(w) from S(TQ)XTf’(w)
in the 2nd round, which requires O(pym?) time (see
Section IV-C). Since £ < m, the total time is equal to

m+ l)nd) Note that this encoding is to be done



O((p1 +p2)m?) = O((1 + €)(n + d)m).

3) Communication Complexity: In each gradient compu-
tation, (i) master broadcasts (n + d) real numbers, d in the
first round and n in the second round; and (ii) each worker
sends ((1+ €)™t?) real numbers to master, (1+€)2 in the
first round and (1 + €)4 in the second round.

V. OUR SOLUTION TO COORDINATE DESCENT

In this section, we give a solution to the distributed
coordinate descent (CD) under Byzantine attacks and prove
Theorem 2. To make our notation simpler, we remove the
dependence on the label vector y in the problem expression
(5) and rewrite it as follows (this is without loss of generality
in the light of Footnote 5 and Algorithm 1):

n

arg min ¢(Xw) := ZE((xi7w)).

R
we i=1

(15)

We want to optimize (15) using distributed CD, described
in Section II-B. As outlined in Section II-E, we use data
encoding and error correction over real numbers for that.
To combat the effect of adversary, we add redundancy
to enlarge the parameter space. Let X® = XR, where
R = [R; Ry ... R,,] € R¥XP™ with pm > d, and each
R, is a p x d matrix. We will determine the encoding matrix
R later, after describing what properties we want from it.
For the value of p, looking ahead, when ¢ is the number
of corrupt workers, we will choose p = ﬁ, which is
a constant multiple of % even if ¢ is a constant fraction
(< %) of m (e.g., for t = %, we have p = %d). We consider
R’s which are of full row-rank. Let Rt := RT(RR”)~!
denote its Moore-Penrose inverse such that RRt = I,
where I; is the d x d identity matrix. Note that R™ is
of full column-rank. Let v = R*w be the transformed
vector, which lies in a larger (than d) dimensional space.
Let Rt = [(RN)T R)T (R;)T)T, where each

R = (R*); is a p x d matrix. With this, by letting
v=[vl vl ... vI]T, we have that v; = R w for every

i € [m]. Now, consider the following modified problem over
the encoded data.

arg min ¢(X%v). (16)

vERP™
Observe that, since R is of full row-rank, min,,cgas ¢(Xw) is
equal to minyegem ¢(Xv); and from an optimal solution
to one problem we can obtain an optimal solution to the
other problem. We design an encoding/decoding scheme such
that when we optimize the encoded problem (16) using
Algorithm 1, the vector v that we get in each iteration is
of the form v = R*w for some vector w € RZ!% In
fact, our encoding/decoding will ensure that the w for which
v = R*w would be equal to the original parameter vector
in that iteration if we had run Algorithm 1 to solve (15).
We need this property because in any CD iteration ¢, we

161f such a w exists, then it is unique. This follows from the fact that
R is of full column-rank.

need access to the original parameter vector w’ (such that
vl = Rtw?) to facilitate the local parameter updates of
vt ..., vl at the workers. See the paragraph after (18) for
more details.

Now, instead of solving (15), we solve its encoded form
(16) using Algorithm 1 (with decoding at the master), where
each worker i stores X = XR,; and is responsible for
updating (some coordinates of) v;. In the following, let
U C [p] be a fixed arbitrary subset of [p]. Let v := RTw’
for some w? at time ¢ = 0. Suppose, at the beginning of the
t’th iteration, we have vt = RTw! for some wt, and each
worker ¢ updates v}, according to

Vi =vh — Vi p(Xv1), 17)
where Vi o(XBvt) = (XE)T¢/(XBv"). Recall that each
R; is a d x p matrix, and each R := (R*); is a p x d matrix.
We denote by Ry, the d X |{/| matrix obtained by restricting
the columns of R; to the elements of {{. Analogously, we
denote by R, := (R")y, the |U| x d matrix obtained by
restricting the rows of R to the elements of ¢. With this,
we can write Xﬁ, = XR,y. Now, (17) can be equivalently
written as

viit=vlh, - o RE X ¢ (X v, (18)
In order to update v, worker i requires ¢’ ():(th), where
XFvt =37 Xfv! and worker ¢ has only (X[, v}). Since
vt = RTw!, we have Xfivt = XRv! = Xwt. So, it
suffices to compute Xw! at the master node — once master
has Xw?, it can locally compute ¢'(Xw') and send it to
all the workers. Computing Xw? is the distributed matrix-
vector (MV) multiplication problem, where the matrix X is
fixed and we want to compute Xw? for any vector w in the
presence of an adversary. In Section IV, we give a method
for performing distributed MV multiplication in the presence
of an adversary. Now we give an overview, together-with an
improvement on its computational complexity.

We encode X using an encoding matrix L € REm)xn ] et
L=[LTLY ... LT |7, where each L; is a p’ x n matrix with
p' = [-"5;|. Bach L; has p’ rows and n columns, and has
the same structure as that of S; from (11). Worker i stores
XZ.L = L;X. To compute Xw, master sends w to all the
workers; worker ¢ responds with L;Xw + e;, where ¢; =0
if the 7’th worker is honest, otherwise can be arbitrary; upon
receiving {L;Xw+e;}7,, where at most ¢ of the e;’s can be
non-zero, master applies the decoding procedure and recovers
Xw back. We can improve the computational complexity of
this method significantly by observing that, in each iteration
of our distributed CD algorithm, only a few coordinates of w
get updated and the rest of the coordinates remain unchanged.
(Looking ahead, when each worker updates v;;;’s according
to (17), it automatically updates w) according to (6) —
for a specific function f as defined in (21) — where v and
w satisfy v = R*w.) This implies that for computing Xw,
master only needs to send the updated coordinates to the
workers and keeps the result from the previous MV product
with itself. This significantly reduces the local computation




at the worker nodes, as now they only need to perform a local
MV product of a matrix of size p’ x |f(U)| and a vector of
length | f(U)|. See Section IV for details.

Our goal in each iteration of CD is to update some
coordinates of the original parameter vector w; instead, by
solving the encoded problem, we are updating coordinates of
the transformed vector v. We would like to design an algo-
rithm/encoding such that it has exactly the same convergence
properties as if we are running the distributed CD on the
original problem without any adversary. For this, naturally,
we would like our algorithm to satisfy the following property:

Update on any (small) subset of coordinates of w should
be achieved by updating some (small) subset of coordinates of
v;’s; and, by updating those coordinates of v;’s, we should
be able to efficiently recover the correspondingly updated
coordinates of w. Furthermore, this should be doable despite
the errors injected by the adversary in every iteration of the
algorithm.

Note that if each coordinate of v depends on too many
coordinates of w, then updating a few coordinates of v may
affect many coordinates of w, and it becomes information-
theoretically impossible to satisfy the above property (even
without the presence of an adversary).!” This imposes a
restriction that each row of RT must have few non-zero
entries, in such a way that updating v},’s, for any choice
of U C [p], will collectively update only a subset (which
may potentially depend on Uf) of coordinates of the original
parameter vector w', and we can uniquely and efficiently
recover those updated coordinates of w!, even from the
erroneous vectors {vii' + ey}, where at most ¢ out
of m error vectors {e;,}; are non-zero and may have
arbitrary entries. In order to achieve this, we will design a
sparse encoding matrix R™ (which in turn determines R),
that satisfies the following properties:

P.1 R has structured sparsity, which induces a map f :
[p] = P([d]) (where P([d]) denotes the power set of
[d]) such that

a) {f(i): i € [p]} partitions {1,2,...,d}, i.e., for every
i,j € [p], such that i # j, we have f(i) N f(j) =0
and that | J?_, f(i) = [d].

by 1£()] = /()] for every 7,j € [p— 1], and | (p)| <
|f(@)], for any i € [p — 1].

c) For any U C [p], define f(U) = Ujenf(j). If
we update v, Vi € [m], according to (18), it
automatically updates Wtf(u) according to

Wit = whyy — aXfgnd (Xwh).  (19)

"To see this, consider the case when each worker i updates only the
first coordinate of v; and no worker is corrupt. Master receives m linear
equations v;1 = Rzrlw, i =1,2,...,m, where R;rl is the first row of
R;" for every ¢ € [m]. Assume, for simplicity, that these m equations are
linearly independent. When m is smaller than d (which is always the case),
there are infinite solutions to this system of linear equations, unless at most
m elements of w are involved in the m linear equations (i.e., the number
of unknowns are at most the number of equations), which is equivalent to
saying that the rows R:rl for ¢ = 1,2,...,m are sparse. Our encoding
matrix will satisfy this property; see Section V-A for more detail.

If we set vt;' 1

@

ot t+1
=V and WW

vitl = RTw!t! ie., our invariant holds.

ot
= wm, then

Note that (19) is the same update rule if we run the plain

CD algorithm to update wy ). In fact, our encoding matrix
: t4+1

. t+1 _ p+
satisfies a stronger property, that v~ = Riu, a0V )
holds for every i € [m], U C [p], where R}, ¢y denotes

the [U| x | f(U)| matrix obtained from R}, by restricting its
column indices to the elements in f(U).

P.2 We can efficiently recover W?(_zj) from the erroneous

vectors {vii' + e}, where at most ¢ of ej,’s are
non-zero and may have arbitrary entries. Since v =
+ t+1 ' -
Rz‘u,'f(u)wf(u)’ forevery i € [m], Uc [p}i this property
requires that not only R, but its sub-matrices also have

error correcting capabilities.

Remark 9. Note that P.1 implies that for every i € [p],
we have |f(i)| < d/p. As we see later, this will be equal
to m/(1 + €) for some € > 0 which is determined by the
corruption threshold. This means that in each iteration of the
CD algorithm running on the modified encoded problem, we
will be effectively updating the coordinates of the parameter
vector w in chunks of size m/(1+¢€) or its integer multiples.
In particular, if each worker i updates k coordinates of
v;, then km/(1 + €) coordinates of w will get updated.
For comparison, Algorithm 1 updates km coordinates of the
parameter vector w in each iteration, if each worker updates
k coordinates in that iteration.

Now we design an encoding matrix RT and a decoding
method that satisfy P.1 and P.2.

A. Encoding and Decoding

In this section, we first design an encoding matrix R that
satisfies P.1. RT will be such that it has orthonormal rows,
so, R is easy to compute, R = (R*)T. For simplicity, we
denote Rt by S. We show that the encoding matrix that we
design for the MV multiplication in Section IV satisfies all
the properties that we want.!® In the MV multiplication, we
had a fixed matrix A and the master node wants to compute
Aw for any vector w of its choice. In the solution presented
in Section IV, we encode A and store S; A at the i’th worker
node. Now, the master sends w to all the worker nodes, and
each worker i responds with S;Aw + e;, where e; = 0 if
worker ¢ is honest, otherwise can be arbitrary. Once master
receives {S;Aw + e;}/",, it can run the error correcting
procedure to recover Aw. To apply this in our setting, we
take A to be the identity matrix, such that S;A = S,
and the master can recover w from {r; = S;w + ¢;}",,
if at most ¢ of the e;’s are non-zero. For convenience, we
rewrite the encoding matrix S; for the ¢’th worker node from

18The encoding and decoding of this section is based on the corresponding
algorithms from Section IV.



. ! R—_ O 2 t
t—t+1;, U U, Wiy = Wiy — Wi

M broadcasts w,, M broadcasts ¢'(Xw')
=t , " t+1
Wi Compute | ¢'(Xw') M Dec W
¢'(Xw')
)
T ~ SN
S R/ - & Yo
. A i3 X e,
v > Q
o &
W1 WQ e o0
L X L, X L3X L,X XR, XR, XRj3 XR,,
Fig. 2 This figure shows our 2-round approach to the Byzantine-resilient distributed coordinate descent (CD) for solving (15) using data encoding and
real-error correction. We encode X with the encoding matrix [R1 ... Ry,] € R4XP2™ and store XR := XR,; at the 7’th worker and solve (16) over

an enlarged parameter vector v € RP2™ . At the t’th iteration, for some I/ C [p2], the update at the 4 th worker is vﬂ 1= =vh,—o:RE, XT¢ (XEvt),

which requires ¢ (XBvt), where XBv! = Xwt. The first part of the figure is for providing ¢/ (Xw?) to _every worker in each iteration so that they
can update v ’s. For this, we encode X using the encoding matrix [LT ... LTIT € RP1™Xn and store XiL := L;X at worker 7. The encoding has
the property that we can recover Xw' from the erroneous vectors {XL wt +e;}m i1 where at most ¢ of the e;’s are non-zero and can be arbitrary. We
can make it computationally more efficient at the workers’ side by observing that, in each iteration only a subset of coordinates of w are being updated:
suppose we updated vtu/ ’s in the ¢’th iteration, which automatically updated W?(u/) Since w[ dN\F ) remain unchdnged we need to send only wi, f )
to the workers — in the figure, to take care of a technicality, we let master broadcast wt fun =W Funy (u’)’ each worker 4 computes X w Fu)

and sends it backs to the master. Since master keeps Xw?~1 from the previous iteration with itself, it can compute Xw?. The set of corrupt workers
may be different in different rounds — the corrupt ones are shown in red color and they can send arbitrary outcomes to master. Once master has recovered
Xwt, it computes ¢’ (Xw?) and broadcasts it; upon receiving it worker 4 updates v;j{' 1 and sends it back. By P.1, this reflects an update on wf,'&l{)

according to (19); and by P.2, the master can recover W?(Ll}{).

Section IV-B below: and for any U C [p], we define f( )= Uzeuf(i). It is clear
bii . Do from the definition of f that (i) {f(i) : ¢ € [p]} partitions

B [d]; (ii) for every i € [p — 1] we have |f( )| = ¢, and that

|f(p)| < gq. Recall that ¢ = m—2t. For the 3rd property, note

Si = b b (20) that, for any U C [p], all the columns of S;;; whose indices
Li---Tai belong to [d] \ f(U) are identically zero, which implies that
bui ... i pxd we have

Here ¢ = (m —2t) and | = d — (p — 1)q, where Siww = Sas fayWrwy, forevery w € RY (22)
p = [g]. Note that 1 < [ < ¢, and if ¢ divides d, then 7
I = q. All the unspecified entries of S; are zero. By Wwhich in turn implies that
stacking up the S;’s gives us our desired encoding matrix T T
S = [ST ST ... ST|”. Note that by, ba, .. ., by are such Sau X" =S s Xfw):- (23)
that if we let b; = [bir biz.. . bim]" for every i € [g], Since ST = ST, we have SJr = 8%, for every i € [m] and
then {by,bs,..., by} is a set of orthonormal vectors. This every U C [p]. With these, our update rule Vt+1 — Sy wh—
implies that S is orthonormal, and, therefore, ST = ST, By S XT & (XW )19 can equivalently be written as k
taking R = ST we have RT = S. Now we show that S i q y
satisfies P.1-P.2. viil =S f(u)w?&j), (24)

Our Encoding Satisfies P.1. We need to show a map f : where

— P([d]) that satisfies P.1. Let us define the function 41 ot _ T / t
E:] follow(s[, ]v)vhere (g=m —2t) and p = [%1: g R ICIREIC atXf(u)¢ (X, )

19We emphasize that we used ST = S7 crucially to equivalently write

) [(i—1)*xqg+1:ixq] ifl<i<p, our update rule vitl = R} wt — aRY,XT¢/(Xw?) from (18) as
f(@) = . QD ot 5wt — 018y XT ¢ (Xwh). This follows because S+ = ST

[(p - 1) *q+1: d] ifi=p, and we take RT = S, which together imply that R;L = Rz;/{ = Siu



Observe that (25) is the same update rule as (19), which
implies that if each worker ¢ updates v;;; according to the
CD update rule, then the collective update at all the worker
nodes automatically updates w4y according the CD update
rule. Now we show that our invariant vit! = Swit! is
maintained. We show this by induction. Base case v = Sw’
holds by construction. For the inductive case, assume that
vl = Sw' holds at time ¢ and we show vitl = Swit!
holds at time ¢ + 1. -

Define U := [ J\U and f(U) := [d] \ f(U). Since we did
not update v’_’s, we have vtil = vl for every i € [m].
This, together with the inductive hypothe31s (i.e., vl = Sw?),
implies that

vgl =Sw'. (26)
Since f(U) = f(U), we have from (22) that
—wi=S - —wt
Sazw =Sz FoViay (27)
It is clear from (25) that Wﬁ did not get an update when
t+l ot
we updated v},’s, which implies that W s w@.
Substituting this in (27) gives Sw' = Szﬂm a0

which, by (22), yields S;w’ = S . This, together

with (26), implies

et
uw

vgl =S w'th (28)
We already have from (22) and (24) that
vitt =Sy with (29)

Since (28) and (29) hold for every i € [m], we have viT! =
Sw!T1, Hence, the invariant is maintained.

Our Encoding Satisfies P.2. If we let

T

[ P T T
Vimu ‘= [Vll/{ Vou - 'lexl} )

R T T T T
Spmgu, ) = St s Sy -+ Smu,pan]

then the collective update (24) from all the workers can be
written as

t+1
Vimlu

= Spmu,ru) Wil - (30)

It is easy to verify that for every choice of U C [p],
Stmju, s 18 a full column-rank matrix, wh1ch implies that
we can in pr1nc1ple recover the updated w*, f(u) from v[:fb]l
S[m]L{ FaOwW f(u) Now we show that not only can we recover
Wf(u) from {S;, f(u)w u)}z 1, but also efficiently recover

;‘5/1[) from the erroneous vectors {S;;,. f(L{)Wf(u)Jrezu}Z 1
where at most ¢ out of m error vectors {e;, }, are non-zero
and may have arbitrary entries. Let U = {j1,j2,..., ju|}>
and for every i € [m], let e;y = [e45, €, - - eij‘ul]T. Master
equivalently writes {S. f(u)W%j) +eiy }™, as [U| systems
of linear equations.

t+1 Q t 1 .
hi(Wiiy) = SiaoWiiyy + &, i€U, (1)
where, for every i € U, & = [e1, €2, ..., ems) " and S; ;)

is an m x | f(U)| matrix whose j’th row is equal to the i’th

row of Sjy, for every j € [m]. Note that at most ¢ entries in
each €; are non-zero. Observe that {S;;;, f(u)w;fbl{)—kelu}:" 1

and {SZ FAOW f(L{) + &, }icy are equivalent systems of linear
equations, and we can get one from the other. Observe that
(31) is similar to (8): S; f) is equal to S (for the same
1) with some of its zero columns removed; and adding zero
columns to S; ;) will not change the value of fzi(wﬁ;{)).
Now, using the machinery developed in Section IV we can

recover wth(rbll) from (31) in O(|U|m?) time.

B. Resource Requirement Analysis

In this section, first we give our algorithm developed for
distributed coordinate descent in the presence of ¢ (out of
m) adversarial worker nodes, whose pictorial description is
given in Figure 2.

We use two encoding matrices L €
R ¢ R&>*wm) Let L = [LT LT ...

R(pﬂn)xn and
LI]1T and R =

[R1 Ry R,,], where each L; is a p; X n matrix
with p; = ["5-] and each R; is a d x py matrix with
p2 = [%5]. Worker i stores both X! = L;X and

)~(R = XR,;. Roughly, L is used to recover Xw from

the erroneous {L;Xw + e€;}™,, and R is used to update

the parameter vector reliably despite errors. Here L is a

full column-rank matrix and R is a full row-rank matrix.

Initialize with an arbitrary w” and let v0 = R*w?". Repeat

the following until convergence:

1) At iteration ¢, master sends (W}a) - Wf‘-(u))zo to all the
workers (at ¢t = 0, master sends wg), where U C [po] is
the set of indices used for updating v’f‘&l’s in the previous
iteration, which in turn updated W;Zu); see (24) and (25)
in Section V-A.

2) Worker i computes XZ (w* f(u) Wf(u))

f(u)) and sends it to the master.’!

{XL( f(u) }(u))Jrei};’;l, where at most ¢ of the e;’s
are non-zero and may have arbitrary entries, the master
applies the decoding procedure of Section IV and recovers
X(WHZ}) — W ). We assume that master keeps Xw' ™!
from the previous iteration (which is equal to 0 if ¢ = 0),
it can compute Xw! = Xwi~! — X(W;ZZ}[) -
Note that if ¢ = 0, this is equal to Xw?".

3) After obtaining Xw?, master computes ¢'(Xw?), picks a
subset U C [ps] (randomly or in a round robin fashion to
cover [po] in a few iterations), and sends (¢'(Xw'),U)
to all the workers.

4) Each worker node i € [m] updates vi;' « vi, —
aVaup(Xvt) = vh, — ozf(XfZ,)Tgb (Xw'), while keep-
ing the other coordinates of v} unchanged. Worker i sends
Vit to tﬂﬁ master. Note thaTt vt = R oW

where wi,)) = Wy — X @' (Xw)]; see (24) and

(25) in Section V-A.

LiX (W)~
Upon receiving

t
W)

200bserve that master need not send the locations f(I4), because workers
can compute those by themselves, as they know both ¢/ and the function f.
21'With some abuse of notation, when we write Xw F(u)s We implicitly
assume that w ) is a length d vector, which has 0’s in the indices that

lie in f(U).




5) Upon receiving {v};' + ey}, where at most ¢ of
the {ei}7™,’s are non-zero and may have arbitrary
entries, master applies the decoding procedure (since our
encoding satisfies P.2) and recovers w fJ(FZ})

Now we analyze the total amount of resources (storage,
computation, and communication) required by the above
algorithm and prove Theorem 2. Fix an € > 0. Let the
corruption threshold ¢ satisfy ¢t < |(¢/(1+¢€)) - (m/2)].

1) Storage Requirement:: By a similar analysis done
in Section IV-E, we can show that the total storage at all
worker nodes is roughly equal to 2(1 + €)|X].

2) Computational Complexity:: We can divide the com-
putational complexity of our scheme as follows:

e Encoding the data matrix. By a similar analysis done in
Section IV-E, we can show that the total encoding time is
0 (( em+ 1)nd> Note that this encoding is to be done
only once.

o Computation at each worker node. Suppose that in each
iteration of our algorithm, all the workers update 7 coordi-
nates of v;’s. Fix an iteration ¢ and assume that at iteration
(t—1), workers updated the coordinates in the set i C [pa],
where |U| = 7. Recall from P.1 that updating 7 = |U|
coordinates of each vt ! automatically updates w;a).

Upon receiving (W t( )) from the master node,

f(M) _N
each worker i computes XF(w f(u)

7}@,)) and reports
back the resulting vector. Note that (w" f(L{) tf(u)) has
at most | f(U)| = 1%

= non-zero elements, which together

with that )NCL is a p1 x d matrix, implies that computing
XL( (u) W) takes O(p1-|f(U)]) = O(~n7') time.?
In the second round, given ¢'(Xw?), since (X7 is of
dimension n x 7, updating v, requires O(nT) time, where
T = |U|. So, the total time taken by each worker is O(nr).
. Computation at the master node. Once master receives
{L; X( fu ) }(u)) + e}, applying the decoding
procedure of Section IV to obtain X (W, f (u) w (u)) from
these erroneous vectors requires O(pym?) = O((1+€¢)nm)
time. After that obtaining Xw' takes another O(n) time.
Given Xw', computing ¢'(Xw') takes O(n) time,
assuming that computing ¢ ((x;,w');y;) requires
unit time, where (x;,w') is equal to the 4’th entry

of Xw'. Upon recewmg {(vii' + ew}T,, where
t+1 RL JaoW (u)’ for all 4 € [m], recovering w“{z}{)

requ1res O(TTTLQ) time. So, the total time taken by the
master node is O((1 + €)nm + T7m?).

3) Communication Complexity:: Suppose workers update
7 coordinates of v;’s in each iteration. Then (i) master
T in the first round

I+e + n) C 14
to represent w' F and n in the second round to represent

real numbers, T2

broadcasts (

22Note that in the very first iteration, master sends w0, which may be a
dense length d vector, and computing X;Lw? at the i’th worker can take
O(p1d) = O((1 + e)%d) time. This is only for the first iteration.

20

¢'(Xw'); and (i) each worker sends (7 + (1+¢€)Z) real
numbers, (1+ €)2 in the first round for computing Xw* at
the master node and 7 in the second iteration to represent

t
Viy-

VI. EXTENSIONS

In this section, we give a few important extensions of our
coding scheme developed earlier in Section IV. First we give
a Byzantine-resilient and communication-efficient method for
stochastic gradient descent (SGD). Second we show how
to exploit the specific structure of our encoding matrix to
efficiently extend our coding technique to the streaming data
model. In the end, we give a few more important applications,
where our method can be applied constructively.

A. Stochastic Gradient Descent

Stochastic gradient descent (SGD) [56] is another alterna-
tive if full gradients are too costly to compute. In each iter-
ation of SGD, we sample a data point uniformly at random,
compute a gradient on that sample, and update the parameter
vector based on that. We start with an arbitrary/random
parameter vector wg € R? and update it according the
following update rule:

Wit =wy — Vi, (wy), t=1,2,3,... (32)

where r; is sampled uniformly at random from {1,2,...,n}.
This ensures that the expected value of the gradient is equal to
the true gradient. Due to its simplicity and remarkable empiri-
cal performance, SGD has become arguably the most widely-
used optimization algorithm in many large-scale applications,
especially in deep learning [14], [15], [57]. We want to run
SGD in a distributed setup, where data is distributed among
m worker nodes and at most ¢ of them can be corrupt; see
Section II-C for details on our adversary model.

Our solution. In the plain SGD, we sample a data point
randomly and compute its gradient. So, we give a method
in which, at any iteration ¢, master picks a random number
ry in {1,2,...,n}, broadcasts it, and recovers the r;’th data
point x,,. Once the master has obtained x,.,, it can compute a
gradient on it and updates the parameter vector. Since master
recovers the data points, we can optimize for non-convex
problems also; essentially, we could optimize anything that
the plain SGD can. Our method is described below.

We encode X7 using the [d/(m — 2t)] x d encoding
matrix S(2), which has been defined in Section IV-E. For
simplicity, we denote S by S. Let S = [ST ST ... ST]”
Note that the j’th worker stores SjXT. Let X := SXT7,
which is a [d/(m — 2t)] x n matrix, whose 4’th column is
the encoding X; := Sx; of the i’th data point x;. Using
the method developed in Section IV, given {S;x; + €; };”:1
where e; = 0 if the j’th worker is honest, otherwise can
be arbitrary, master can recover x; exactly in O((1 + €)md)
time. Our main theorem is stated below, a proof of which
trivially follows from Section IV.



Theorem 3 (Stochastic Gradient Descent). Let X € R"*¢
denote the data matrix. Let m denote the total number of
worker nodes. We can compute a stochastic gradient in a
distributed manner in the presence of t corrupt worker nodes
and s stragglers, with the following guarantees, where € > (
is a free parameter.

(40 < |15 %)

o Total storage requirement is roughly (1 + €)|X].
Computational complexity for each stochastic gradient
computation:

— at each worker node is O((1+€)L).
— at the master node is O((1 + €)dm).

Communication complexity for each stochastic gradient
computation:

d
— master broadcasts [logn| bits.
o Total encoding time is O (nd (1j_€m + 1))

— each worker sends ((1+ €)-L) real numbers.

Observe the distributed gain of our method in the commu-
nication exchanged between the workers and the master: (i)
master only broadcasts an index in {1,2,...,n}, which only
takes [logn] bits; and (ii) each worker sends roughly %
fraction of the total dimension d. Hence, this method is par-
ticularly useful in distributed settings with communication-
constrained and band-limited links. The Remarks 2, 4, 5 are

also applicable for Theorem 3.

Remark 10 (One-round vs. two-round approach). Unlike the
two-round approach taken for gradient computation in PGD
and also for CD, we give a one-round approach for each
iteration of SGD. This is because in each SGD iteration we
need to compute the gradient on only one data point (not
the entire dataset, as in the case for each PGD iteration).
Because of this, recovering a (random) data-point itself at the
master and then computing a gradient on it locally (which
is what we do) would be far more efficient than computing
gradient on a single data point in a distributed manner.
This is in contrast to each gradient computation for PGD,
which requires computation of the full gradient (which is the
summation of gradients on all n data points). In principle, we
can use the one-round for each PGD iteration also in which
first we recover all the n data points at master and then
compute the full gradient locally, but this approach would
defeat the purpose of distributed computation both in terms
of storage and computational complexity. Note that our two-
round approach for PGD is significantly more efficient than
this.

The reason behind taking the two-round approach for
CD is because in order to update the local parameter
vectors in the t’th iteration, workers need access to the MV
multiplication XBvt = Xw! (see the paragraph after (18)
for more details), and in order to provide that we use an
extra round — the first round is used for computing Xw and
the second round is used for updating the local parameter
vectors. Again, for CD also, we could adopt a one-round
approach where master recovers all the n data points and

21

then do the parameter update, but that would be highly
inefficient and defeat the purpose of distributed computation.

One of the main advantages of the one-round approach
for SGD is that since we are recovering the data point itself
at the master, we can use it to optimize any function, both
convex and non-convex. This is in contrast to the two-round
approach, which can only be used for generalized linear
models only.

B. Encoding in The Streaming Data Model

An attractive property of our encoding scheme is that it is
very easy to update with new data points. More specifically,
our encoding requires the same amount of time, irrespective
of whether we get all the data at once, or we get each
sample point one by one, as in the online/streaming model.
This setting encompasses a more realistic scenario, in which
we design our coding scheme with the initial set of data
points and distribute the encoded data among the workers.
Later on, when we get some more samples, we can easily
incorporate them into our existing encoded data. We show
that updating (m — 2t) new data points in RY requires
O ((m—2t)((2t +1)d)) time in total, i.e., O ((2t + 1)d)
amortized-time per data point. This is the best one can hope
for, since the offline encoding of n data points requires
O ((2t + 1)nd) total time. At the end of the update, the final
encoded matrix that we get is the same as the one we would
have got had we had all the n+1 data points in the beginning.
Therefore, the decoding is not affected by this method at
all. Note that we use the same encoding matrices both for
gradient computation as well as for coordinate descent. So,
it suffices to prove our result in the streaming model for any
one of them, and we show it for gradient computation below.

Theorem 4. The total time complexity in encoding all the
data points at once, i.e., when encoding is done offline, is
the same as the total time complexity in encoding the data
points one by one as they come in the streaming model, i.e.,
when encoding is done online.

Proof. Let S( and S(® denote the encoding matrices for
encoding X and X7, respectively; see Section IV-B. For con-
venience, we copy over the corresponding encoding matrices
sﬁ” and Sz(-z) from (11) for the ¢’th worker node in Figure 3.
Suppose at some point of time we have encoded n data
points each lying in R? and distributed the encoded data
among the m worker nodes. Now a new data sample x € R?
comes in. We will show how to incorporate it in the existing
scheme in O ((2t + 1)d) time on average.
Updating the encoding matrices. Fix an arbitrary worker
i € [m]. Note that the new data matrix X has dimension
(n + 1) x d. So, the new encoding matrix Sgl) should
have (n + 1) columns, and we have to add one more
column to Sgl). By examining the repetitive structure of
S it is obvious which column to add: if [; < g, then
we add the p;-dimensional vector [0,0,... ,O,b(llﬂ)i]T
as the last column; otherwise, if [; = ¢, then we add the



_blz’---

bli .. -blli

“pi1Xn

(a)
—bli e

bli .. -bqi

bli e blr_;i_ paxd
(b)

Fig. 3 Figure 3a depicts the encoding matrix for the 7’th worker node for
encoding X, which is used in the first round of the gradient computation.
Here p1 = [n/q], where ¢ = (m — k) and k is equal to the number of
rows in the error recovery matrix F in (14), and I1 = n — (p1 — 1)q.
Figure 3b depicts the encoding matrix for the 7’th worker node for encoding
X7, which is used in the second round of the gradient computation. Here
p2 = [d/q] and l2 = d — (p2 — 1)q. All the unspecified entries in both
the matrices are zero.

(p1 + 1)-dimensional vector [0,0,...,0,by;]T as the last
column. In the second case, the number of rows of Sgl)
increases by one — the last row has all zeros, except for the
last element, which is equal to by;. Note that SZ(.2) does not
change at all. Observe that if the ¢’th worker performs this
update, then it does not have to store its entire encoding
matrix sﬁ”, it only needs to store n, ¢ = (m — k), and the
g real numbers by, b, ..., by, Where ¢ = m — k, which
could be much smaller as compared to n and d, and are
enough to define s§.1> and SEQ).

Updating the encoded data. Now we show how to update
the encoded data with the new sample x. We need to update
both SZ(-I)X as well as SZ@)XT for every worker i € [m)].

e Updating SZ(.l)X. If Iy < ¢, then we add b(llﬂ)ixT to
the last row of SEDX; otherwise, if I = ¢, then we add
b1;X as a new row in SZ(-l)X. In the first case, the resulting
matrix still has p; rows, whose first p; — 1 rows are same
as before, and the last row is the sum of the previous row
and b(ll_H),;xT. In the second case, the resulting matrix
has (p1 + 1) rows, whose first p; rows are the same as
before and the last row is equal to by;x”. Note that each
row of sﬁ” for ¢ < 2t, has at most (m — 2t) non-zero
elements; whereas, for ¢ > 2t, each row of sﬁ” has exactly
one non-zero entry. Since there are p; = [n/(m — 2t)]
rows in each Sgl), updating SZ(.l)X for every ¢ < 2t takes
O(d) time; and for 7 > 2¢, update in SEUX happens only
once in (m — 2t) new data points (whenever the second
case occurs and the resulting Sgl) has (p1 + 1) rows). So,
updating (m—2t) data points at all m worker nodes require
O@2tx(m—2t)d+ (m—2t)xd) = O((m — 2t)(2t +
1)d) time, i.e., O ((2t + 1)d) time per data point.

22

o Updating SEQ)XT. Note that X7 is a d x (n + 1) matrix
whose last column is equal to the new data sample x. Now,
to update SZ@)XT, we add Sl@)x as an extra column. The
resulting matrix is of size ps X (n + 1), whose first n
columns are the same as before and the last column is
equal to SE—Z)X. Since total number of non-zero entries in
S§2) is equal to d if « < 2t and equal to po = [d/(m — 2t)]
if ¢ > 2t, the total time required to update a new data point
is O(2t xd+ (m — 2t) x py) = O ((2t + 1)d).

Observe that at the end of this local update at each worker

node, the final encoded matrix that we get is the same as

the one we would have got had we had all the n + 1 data
points in the beginning. The decoding is not affected by this
method at all. This completes the proof of Theorem 4. [

Remark 11 (Updating the encoded data efficiently with new
features). Observe that since we encode both X and X7T in
an analogous fashion, it follows by symmetry that we can not
only update efficiently upon receiving a new data sample,
but can also update efficiently if we decide to enlarge the
dimension d of each of the n data samples at some point of
time — maybe we figure out some new features of the data
to get a more accurate model to overcome under-fitting. In
these situations, we don’t need to encode the entire dataset
all over again, just a simple update is enough to incorporate
the changes.

Remark 12 (What allows our encoding to be efficient for
streaming data?). The efficient update property of our coding
scheme is made possible by the repetitive structure of our
encoding matrix (see Figure 3), together with the fact that this
structure is independent of the number of data points n and
the dimension d — it only depends on the number of worker
nodes m and the corruption threshold t. We remark that other
data encoding methods in literature, even for weaker models,
do not support efficient update. For example, the encoding of
[41], which was designed for mitigating stragglers, depends
on the dimensions n and d of the data matrix. So, it may not
efficiently update if a new data point comes in.

C. More Applications.

There are many iterative algorithms, other than the gra-
dient descent for learning GLMs, which use repeated MV
multiplication. Some of them include (i) the power method
for computing the largest eigenvalue of a diagonalizable
matrix, which is used in Google’s PageRank algorithm [58],
Twitter’s recommendation system [59], etc.; (ii) iterative
methods for solving sparse linear systems [60]; (iii) many
graph algorithms, where the graph is represented by a fixed
adjacency matrix, [61]. In large-scale implementation of these
systems, where Byzantine faults are inevitable, the method
described in this paper can be of interest.

In most of these applications, the underlying matrix A is
generally sparse, which is exploited to gain computational
efficiency. So, it is desired not to lose sparsity even if we
want resiliency against Byzantine attacks. Fortunately, our
encoding matrix S is sparse (see (11)), which ensures that the



encoded matrix SA will not lose the sparsity of A: Each of
the first pk rows of S has at most (m—k) (where k = 2t) non-
zero elements, and each of the remaining rows has exactly
one 1. Since m is the number of worker nodes, which may
be small, and we can take ¢ to be up to LmT’lj, we may
have a few non-zero entries in each row of S (in the extreme
case when 2t = m — 1, each row of S has only one non-zero
entry). In a sense, we are getting Byzantine-resiliency almost
for free without compromising the computational efficiency

that is made possible by the sparsity of the matrix.

VII. NUMERICAL EXPERIMENTS

In this section, we validate the efficacy of our proposed
methods by numerical experiments. We run distributed gra-
dient descent (GD) and coordinate descent (CD) for lin-
ear regression arg min,cpa | Xw — y||3. As mentioned in
Section II-A, for linear regression (which is equal to ridge
regression when h = 0), the projected gradient descent
(PGD) reduces to gradient descent (GD). Since we are doing
exact computation (computing the gradients exactly in the
case of GD and updating the coordinates exactly in the case
of CD), (i) there is no need to check the convergence, and
(ii) our algorithm will perform exactly the same whether
we are working with synthetic datasets or real datasets,
hence, we will work with a synthetic dataset. We run our
algorithms?® with m = 15 worker nodes on two datasets:
(n = 10,000,d = 250) and (n = 20,000,d = 22,000).
For both the datasets, we generate (X,y) by sampling
X + N(0,I) and y = X6 + z, where § € R? has d/3
non-zero entries, all of them are i.i.d. according to N (0,4),
and each entry of z € R™ is sampled from N(0,1) i.i.d. In
each round of the gradient computation, the adversary picks
t worker nodes uniformly at random, and adds independent
random vectors of appropriate length as errors, whose entries
are sampled from N(0,0?) i.i.d. with ¢ = 100, to the true
vectors.

A. n=10,000,d = 250,m = 15

In Figure 4, we plot the total time taken (which is the
sum of the maximum time taken by any single worker node
and the time taken by the master node in both rounds)
for updating different number of coordinates in one CD
iteration, with varying number of corrupt worker nodes from
t = 1tot = 7. We plot the time needed for updating
~-fraction of d coordinates for four different values of
(i.e., v = 0.1,0.25,0.5,1) and we denote it by CD(~d) for
~v = 0.1,0.25,0.5, 1. Recall that CD(d) is equivalent to full
gradient computation as in the case of GD. Note that, when
t =7, we have ¢ = m — 1, which is the main cause behind
the significant increment in time for ¢t = 7.

23We implement our algorithm in Python, and run it on an iMac machine
with 3.8 GHz Quad-Core Intel Core i5 processor and 16 GB 2400 MHz
DDR4 memory.

23

n = 10000, d = 250, m =15

v D(0.1d)
— ++ CD(0.25d) >
7 0.05 L
3 - cD(0.5d) of” >
8 . 2 GD = cD(d) >
% ol >
£ ] > e
g 0.04 o~ >
S b | .
8 o >
2 24 .
& 0.03 o~ >
v 34 .
- |
g =
c b 1_!
9 0.02 A . o >
3 -
8 o -)< Y .
g 1 ¢ |e o: .>
£ Ve )‘ o .)< > .
% 0.01 - e o/ (e o_->
E N o}« © .\ Ve >< ) .)< IR
3. o D o .>< < < o . y (e o >
o X > < ob ! o Ve >< ) .)< i .
3 (e o > o leX e o= 1 Te o >
0.00 ; - - : - h -
t=1 t=2 t=3 =4 t=5 t=6 t=7

Fig. 4 We run our algorithms (CD and GD) with 15 worker nodes on a
dataset with n = 10,000,d = 250. This plot reports how the total time
taken (in seconds) for updating different number of coordinates in each CD
iteration changes with varying number of corrupt worker nodes from ¢ = 1
to t = 7. In the figure, we plot the total time taken (per iteration) for
updating the ~y-fraction of d coordinates for v = 0.1, 0.25, 0.5, 1. Note that
CD with v = 1 is equivalent to full gradient computation as in GD.

B. n = 20,000,d = 22,000,m = 15

In Figure 5, we report separately, the maximum time taken
by any single worker node and the time taken by the master
node (together in both the rounds) in one CD iteration for
updating different number of coordinates and also for GD,
with varying number of corrupt worker nodes from ¢ = 1 to
t = 6. As in the above case, we report the time needed for
updating y-fraction of d coordinates for four different values
of . Observe that the time taken by the master node is orders
of magnitude less than the time taken by the worker nodes.
We can also observe that with the running time in a worker
node per iteration for CD(0.1d) is 95% less than that for GD,
while this time saving in the master node is more than 40%.

REFERENCES

[1] D. Data, L. Song, and S. N. Diggavi, “Data encoding for byzantine-
resilient distributed gradient descent,” in Allerton Conference on Com-
munication, Control, and Computing, Allerton 2018, 2018, pp. 863—
870.

(2]

, “Data encoding methods for byzantine-resilient distributed op-
timization,” in IEEE International Symposium on Information Theory
(ISIT), 2019, pp. 2719-2723.

[3] D. Data and S. N. Diggavi, “Byzantine-tolerant distributed coordinate
descent,” in IEEE International Symposium on Information Theory
(ISIT), 2019, pp. 2724-2728.

[4] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107-113, Jan. 2008.

[5] M. Zinkevich, M. Weimer, L. Li, and A. J. Smola, “Parallelized
stochastic gradient descent,” in Advances in neural information pro-
cessing systems, 2010, pp. 2595-2603.

[6] X. Lian, C. Zhang, H. Zhang, C. Hsieh, W. Zhang, and J. Liu,
“Can decentralized algorithms outperform centralized algorithms? A
case study for decentralized parallel stochastic gradient descent,” in
Advances in Neural Information Processing Systems, NIPS 2017, 4-9
December 2017, Long Beach, CA, USA, 2017, pp. 5336-5346.

[71 T. E Abdelzaher et al., “Will distributed computing revolutionize
peace? the emergence of battlefield iot,” in /CDCS 2018, 2018, pp.
1129-1138.

[8] J. Konecny, “Stochastic, distributed and federated optimization for
machine learning,” Ph.D. dissertation, University of Edinburgh, 2017.



CD(0.1d) CD(0.25d) CD(0.5d) GD = CD(d)

Worker Master Worker Master Worker Master Worker Master
t=1 0.0020 0.0120 0.0073 0.0182 0.0122 0.0199 0.0493 0.0214
t=2 0.0044 0.0187 0.0092 0.0212 0.0188 0.0277 0.0953 0.0393
t=3 0.0054 0.0201 0.0118 0.0242 0.0269 0.0324 0.1213 0.0561
t=4 0.0063 0.0253 0.0159 0.0327 0.0488 0.0468 0.1602 0.0610
t=25 0.0107 0.0342 0.0328 0.0460 0.0776 0.0738 0.2943 0.0826
t=6 0.0205 0.0717 0.0764 0.0833 0.1330 0.1088 0.8929 0.1227

24

Fig. 5 We run our algorithms (CD and GD) with 15 worker nodes on a dataset with n = 20, 000, d = 22, 000, and separately report the maximum time
taken by any single worker and the master per iteration against varying number of corrupt worker nodes from ¢t = 1 to 6. For CD, we run our algorithm
for updating different number of coordinates. The first two columns correspond to the case when updating 0.1-fraction of d coordinates, the next two
columns for 0.25-fraction, and so on. The last two columns correspond to updating all the coordinates, which is equivalent to full gradient computation
as in GD.

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

L. Lamport, R. Shostak, and M. Pease, “The byzantine generals
problem,” ACM Trans. Program. Lang. Syst., vol. 4, no. 3, pp. 382—
401, Jul. 1982.

P. Blanchard, E. M. E. Mhamdi, R. Guerraoui, and J. Stainer, “Machine
learning with adversaries: Byzantine tolerant gradient descent,” in
Advances in Neural Information Processing Systems, NIPS 2017, 4-
9 December 2017, Long Beach, CA, USA, 2017, pp. 118-128.

L. Chen, H. Wang, Z. B. Charles, and D. S. Papailiopoulos, “DRACO:
byzantine-resilient distributed training via redundant gradients,” in Pro-
ceedings of the 35th International Conference on Machine Learning,
ICML 2018, Stockholmsmdssan, Stockholm, Sweden, July 10-15, 2018,
2018, pp. 902-911.

Y. Chen, L. Su, and J. Xu, “Distributed statistical machine learning
in adversarial settings: Byzantine gradient descent,” POMACS, vol. 1,
no. 2, pp. 44:1-44:25, 2017.

D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Compu-
tation: Numerical Methods. Upper Saddle River, NJ, USA: Prentice-
Hall, Inc., 1989.

L. Bottou, “Large-scale machine learning with stochastic gradient
descent,” in Proceedings of COMPSTAT’2010. Physica-Verlag HD,
2010.

J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z.
Mao, M. Ranzato, A. W. Senior, P. A. Tucker, K. Yang, and A. Y.
Ng, “Large scale distributed deep networks,” in Advances in Neural
Information Processing Systems (NIPS), 2012, pp. 1232-1240.

J. K. Bradley, A. Kyrola, D. Bickson, and C. Guestrin, “Parallel
coordinate descent for 11-regularized loss minimization,” in ICML,
2011, pp. 321-328.

S. J. Wright, “Coordinate descent algorithms,” Math. Program., vol.
151, no. 1, pp. 3-34, 2015.

P. Richtarik and M. Takac, “Parallel coordinate descent methods for
big data optimization,” Mathematical Programming, vol. 156, no. 1,
pp. 433-484, Mar 2016.

Y. Nesterov, “Efficiency of coordinate descent methods on huge-scale
optimization problems,” SIAM Journal on Optimization, vol. 22, no. 2,
pp. 341-362, 2012.

D. Yin, Y. Chen, K. Ramchandran, and P. Bartlett, “Byzantine-robust
distributed learning: Towards optimal statistical rates,” in Proceedings
of the 35th International Conference on Machine Learning, ICML
2018, Stockholmsmdissan, Stockholm, Sweden, July 10-15, 2018, 2018,
pp. 5636-5645.

D. Alistarh, Z. Allen-Zhu, and J. Li, “Byzantine stochastic gradient
descent,” in Neural Information Processing Systems (NeurIPS), 2018,
pp. 4618-4628.

L. Su and J. Xu, “Securing distributed gradient descent in high
dimensional statistical learning,” POMACS, vol. 3, no. 1, pp. 12:1-
12:41, 2019.

C. Xie, S. Koyejo, and I. Gupta, “Zeno: Distributed stochastic gradient
descent with suspicion-based fault-tolerance,” in International Confer-
ence on Machine Learning (ICML), 2019, pp. 6893-6901.

D. Yin, Y. Chen, K. Ramchandran, and P. L. Bartlett, “Defending
against saddle point attack in byzantine-robust distributed learning,”
in ICML, 2019, pp. 7074-7084.

N. Gupta and N. H. Vaidya, “Byzantine fault-tolerant parallelized
stochastic gradient descent for linear regression,” in 57th Annual

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]
[36]

(371

(38]

(39]

[40]

[41]

[42]

Allerton Conference on Communication, Control, and Computing,
Allerton 2019, Monticello, IL, USA, September 24-27, 2019. 1EEE,
2019, pp. 415-420.

S. Rajput, H. Wang, Z. B. Charles, and D. S. Papailiopoulos, “DETOX:
A redundancy-based framework for faster and more robust gradient
aggregation,” in NeurIPS, 2019, pp. 10320-10330.

L. Li, W. Xu, T. Chen, G. B. Giannakis, and Q. Ling, “RSA: byzantine-
robust stochastic aggregation methods for distributed learning from het-
erogeneous datasets,” in Conference on Artificial Intelligence (AAAI),
2019, pp. 1544-1551.

A. Ghosh, J. Hong, D. Yin, and K. Ramchandran, “Robust federated
learning in a heterogeneous environment,” CoRR, vol. abs/1906.06629,
2019. [Online]. Available: http://arxiv.org/abs/1906.06629

Q. Yu, S. Li, N. Raviv, S. M. M. Kalan, M. Soltanolkotabi, and
A. S. Avestimehr, “Lagrange coded computing: Optimal design for
resiliency, security, and privacy,” in International Conference on Arti-
ficial Intelligence and Statistics (AISTATS), 2019, pp. 1215-1225.

D. Data and S. N. Diggavi, “Byzantine-resilient SGD in high
dimensions on heterogeneous data,” CoRR, vol. abs/2005.07866,
2020. [Online]. Available: https://arxiv.org/abs/2005.07866

——, “Byzantine-resilient high-dimensional SGD with local iterations
on heterogeneous data,” CoRR, vol. abs/2006.13041, 2020. [Online].
Available: https://arxiv.org/abs/2006.13041

L. He, S. P. Karimireddy, and M. Jaggi, “Byzantine-robust learning on
heterogeneous datasets via resampling,” CoRR, vol. abs/2006.09365,
2020. [Online]. Available: https://arxiv.org/abs/2006.09365

K. Lee, M. Lam, R. Pedarsani, D. S. Papailiopoulos, and K. Ramchan-
dran, “Speeding up distributed machine learning using codes,” IEEE
Trans. Information Theory, vol. 64, no. 3, pp. 1514-1529, 2018.

S. Dutta, V. R. Cadambe, and P. Grover, “Short-dot: Computing large
linear transforms distributedly using coded short dot products,” in
Advances in Neural Information Processing Systems 29: Annual Con-
ference on Neural Information Processing Systems 2016, December
5-10, 2016, Barcelona, Spain, 2016, pp. 2092-2100.

E. J. Candes and T. Tao, “Decoding by linear programming,” IEEE
Trans. Information Theory, vol. 51, no. 12, pp. 4203-4215, 2005.

S. Boyd and L. Vandenberghe, Convex Optimization. New York, NY,
USA: Cambridge University Press, 2004.

R. Tibshirani, “Convex optimization lecture notes,” http://www.stat.
cmu.edu/~ryantibs/convexopt-S15/scribes/08-prox-grad-scribed.pdf,
2015.

M. Jaggi, “An equivalence between the lasso and support vector
machines,” CoRR, vol. abs/1303.1152, 2013. [Online]. Available:
http://arxiv.org/abs/1303.1152

S. Shalev-Shwartz and A. Tewari, “Stochastic methods for [ 1-
regularized loss minimization,” Journal of Machine Learning Research,
vol. 12, pp. 1865-1892, 2011.

J. Dean and L. A. Barroso, “The tail at scale,” Commun. ACM, vol. 56,
no. 2, pp. 74-80, Feb. 2013.

C. Karakus, Y. Sun, S. N. Diggavi, and W. Yin, “Straggler mitigation
in distributed optimization through data encoding,” in In Advances in
Neural Information Processing Systems, NIPS 2017, 4-9 December
2017, Long Beach, CA, USA, 2017, pp. 5440-5448.

E. M. E. Mhamdi, R. Guerraoui, and S. Rouault, “The hidden vul-
nerability of distributed learning in byzantium,” in Proceedings of



the 35th International Conference on Machine Learning, ICML 2018,
Stockholmsmdssan, Stockholm, Sweden, July 10-15, 2018, 2018, pp.
3518-3527.

R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient
coding: Avoiding stragglers in distributed learning,” in Proceedings of
the 34th International Conference on Machine Learning, ICML 2017,
Sydney, NSW, Australia, 6-11 August 2017, 2017, pp. 3368-3376.

N. Raviv, R. Tandon, A. Dimakis, and I. Tamo, “Gradient coding
from cyclic MDS codes and expander graphs,” in Proceedings of
the 35th International Conference on Machine Learning, ICML 2018,
Stockholmsmdssan, Stockholm, Sweden, July 10-15, 2018, 2018, pp.
4302-4310.

Z. B. Charles and D. S. Papailiopoulos, “Gradient coding using the
stochastic block model,” in 2018 IEEE International Symposium on
Information Theory, ISIT 2018, Vail, CO, USA, June 17-22, 2018, 2018,
pp. 1998-2002.

W. Halbawi, N. A. Ruhi, F. Salehi, and B. Hassibi, “Improving
distributed gradient descent using reed-solomon codes,” in 2018 IEEE
International Symposium on Information Theory, ISIT 2018, Vail, CO,
USA, June 17-22, 2018, 2018, pp. 2027-2031.

S. Dutta, V. R. Cadambe, and P. Grover, “"short-dot": Computing large
linear transforms distributedly using coded short dot products,” IEEE
Trans. Inf. Theory, vol. 65, no. 10, pp. 6171-6193, 2019.

C. Karakus, Y. Sun, S. N. Diggavi, and W. Yin, “Redundancy
techniques for straggler mitigation in distributed optimization and
learning,” J. Mach. Learn. Res., vol. 20, pp. 72:1-72:47, 2019.

A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11,
pp. 612-613, 1979.

R. Cramer, I. Damgérd, and J. B. Nielsen, Secure Multiparty Compu-
tation and Secret Sharing. Cambridge University Press, 2015.

M. Mishali and Y. C. Eldar, “Reduce and boost: Recovering arbitrary
sets of jointly sparse vectors,” IEEE Transactions on Signal Processing,
vol. 56, no. 10, pp. 4692-4702, Oct 2008.

P. Billingsley, Probability and Measure, ser. Wiley Series in Probability
and Statistics. Wiley, 1995.

T. F. Coleman and A. Pothen, “The null space problem I. complexity,”
SIAM Journal on Algebraic Discrete Methods, vol. 7, no. 4, pp. 527—
537, 1986.

K. M. Hoffman and R. Kunze, Linear algebra.
NIJ: Prentice-Hall, 1971.

M. Akcakaya and V. Tarokh, “A frame construction and a universal
distortion bound for sparse representations,” IEEE Trans. Signal Pro-
cessing, vol. 56, no. 6, pp. 2443-2450, 2008.

R. Herbert and S. Monro, “A stochastic approximation
method,” The Annals of Mathematical Statistics. JSTOR,
www.jstor.org/stable/2236626., vol. vol. 22, no. 3, pp. 400-407,
1951.

A. Rakhlin, O. Shamir, and K. Sridharan, “Making gradient descent
optimal for strongly convex stochastic optimization,” in Proceedings of
the 29th International Conference on Machine Learning, ICML 2012,
Edinburgh, Scotland, UK, June 26 - July 1, 2012, 2012.

I. Ipsen and R. S. Wills, “Mathematical properties and analysis of
google’s pagerank,” Boletin de la Sociedad Espariola de Matemdtica
Aplicada, vol. 34, pp. 191-196, 01 2006.

P. Gupta, A. Goel, J. Lin, A. Sharma, D. Wang, and R. Zadeh, “Wtf:
The who to follow service at twitter,” in Proceedings of the 22Nd
International Conference on World Wide Web, ser. WWW *13.  New
York, NY, USA: ACM, 2013, pp. 505-514.

Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed.
Philadelphia, PA, USA: Society for Industrial and Applied Mathemat-
ics, 2003.

J. Kepner and J. Gilbert, Graph Algorithms in the Language of Linear
Algebra. Philadelphia, PA, USA: Society for Industrial and Applied
Mathematics, 2011.

[43]

[44]

[45]

[46]

[47]

(48]

[49]
[50]

[51]

[52]

(53]

[54] Englewood Cliffs,

[55]

[56]

[57]

[58]

[59]

[60]

[61]

Deepesh Data Deepesh Data graduated from the International Institute
of Information Technology, Hyderabad, India, with a B. Tech. degree in
Computer Science and Engineering, in 2011. He received M.Sc. and Ph.D.
degrees from the School of Technology and Computer Science at the Tata
Institute of Fundamental Research, Mumbai, India, in 2017.

25

After that, he joined the Indian Institute of Technology Bombay as a
post-doctoral fellow. Since March 2018, he has been with the University of
California, Los Angeles, as a post-doctoral scholar. His research interests are
in distributed optimization, machine learning, differential privacy, cryptog-
raphy, algorithms, and information theory. He has received the Microsoft
Research India Ph.D. Fellowship, the ACM India Doctoral Dissertation
Award (Honorable Mention), and the TIFR-Sasken Best Ph.D. Thesis Award
in Technology and Computer Sciences.

Lingi Song Lingi Song is an Assistant Professor in the Computer Science
Department at the City University of Hong Kong. Prior to that, he was
a Postdoctoral Scholar in the Department of Electrical and Computer
Engineering at the University of California, Los Angeles (UCLA). He
received the Ph.D. degree in Electrical Engineering from UCLA, and the
B.S. and M.S. degrees from Tsinghua University. His research interests
encompass information theory and coding theory, communications, machine
learning, and big data. He has received the Hong Kong RGC Early Career
Scheme in 2019 and the Best Paper Award at IEEE MIPR 2020.

Suhas N. Diggavi Suhas N. Diggavi received the B. Tech. degree in
electrical engineering from the Indian Institute of Technology, Delhi, India,
and the Ph.D. degree in electrical engineering from Stanford University,
Stanford, CA, in 1998. After completing his Ph.D., he was a Principal
Member Technical Staff in the Information Sciences Center, AT&T Shannon
Laboratories, Florham Park, NJ. After that he was on the faculty of the
School of Computer and Communication Sciences, EPFL, where he directed
the Laboratory for Information and Communication Systems (LICOS). He
is currently a Professor, in the Department of Electrical Engineering, at
the University of California, Los Angeles, where he directs the Information
Theory and Systems laboratory.

His research interests include information theory and its applications to
several areas including learning, security and privacy, data compression,
wireless networks, cyber-physical systems, genomics and neuroscience;
more information can be found at http://licos.ee.ucla.edu. He has received
several recognitions for his research including 2013 IEEE Information The-
ory Society & Communications Society Joint Paper Award, the 2013 ACM
International Symposium on Mobile Ad Hoc Networking and Computing
(MobiHoc) best paper award, the 2006 IEEE Donald Fink prize paper award
and the 2019 Google Faculty Research Award. He served as a Distinguished
Lecturer and also currently serves on board of governors for the IEEE
Information theory society. He is a Fellow of the IEEE.

He has been an associate editor for IEEE Transactions on Information
Theory, ACM/IEEE Transactions on Networking, IEEE Communication
Letters, a guest editor for IEEE Selected Topics in Signal Processing and in
the program committees of several IEEE conferences. He has also helped
organize IEEE and ACM conferences including serving as the Technical
Program Co-Chair for 2012 IEEE Information Theory Workshop (ITW), the
Technical Program Co-Chair for the 2015 IEEE International Symposium on
Information Theory (ISIT) and General co-chair for ACM Mobihoc 2018.
He has 8 issued patents.



