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Abstract—We study distributed optimization in the presence
of Byzantine adversaries, where both data and computation
are distributed among m worker machines, t of which may
be corrupt. The compromised nodes may collaboratively and
arbitrarily deviate from their pre-specified programs, and a des-
ignated (master) node iteratively computes the model/parameter
vector for generalized linear models. In this work, we primarily
focus on two iterative algorithms: Proximal Gradient Descent
(PGD) and Coordinate Descent (CD). Gradient descent (GD)
is a special case of these algorithms. PGD is typically used
in the data-parallel setting, where data is partitioned across
different samples, whereas, CD is used in the model-parallelism
setting, where data is partitioned across the parameter space.
At the core of our solutions to both these algorithms is a
method for Byzantine-resilient matrix-vector (MV) multipli-
cation; and for that, we propose a method based on data
encoding and error correction over real numbers to combat
adversarial attacks. We can tolerate up to t ≤ ⌊m−1

2
⌋ corrupt

worker nodes, which is information-theoretically optimal. We
give deterministic guarantees, and our method does not assume
any probability distribution on the data. We develop a sparse
encoding scheme which enables computationally efficient data
encoding and decoding. We demonstrate a trade-off between the
corruption threshold and the resource requirements (storage,
computational, and communication complexity). As an example,
for t ≤ m

3
, our scheme incurs only a constant overhead on these

resources, over that required by the plain distributed PGD/CD
algorithms which provide no adversarial protection. To the best
of our knowledge, ours is the first paper that connects MV
multiplication with CD and designs a specific encoding matrix
for MV multiplication whose structure we can leverage to make
CD secure against adversarial attacks. Our encoding scheme
extends efficiently to (i) the data streaming model, in which
data samples come in an online fashion and are encoded as
they arrive, and (ii) making stochastic gradient descent (SGD)
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Byzantine-resilient. In the end, we give experimental results to
show the efficacy of our proposed schemes.

Index Terms — Distributed optimization, (proximal) gradient
descent, coordinate descent, Byzantine adversary, data encoding
and error correction over reals.

I. INTRODUCTION

Map-reduce architecture [4] is implemented in many dis-

tributed learning tasks, where there is one designated machine

(called the master) that computes the model iteratively, based

on the inputs from the worker machines at each iteration,

typically using descent techniques, like (proximal) gradient

descent, coordinate descent, stochastic gradient descent, the

Newton’s method, etc. The worker nodes perform the re-

quired computations using local data, distributed to the nodes

[5]. Several other architectures, including having no hierarchy

among the nodes have been explored [6].

In several applications of distributed learning, including the

Internet of Battlefield Things (IoBT) [7], federated optimiza-

tion [8], the recruited worker nodes might be partially trusted

with their computation. Therefore, an important question is

whether we can reliably perform distributed computation,

taking advantage of partially trusted worker nodes. These

Byzantine adversaries can collaborate and arbitrarily deviate

from their pre-specified programs. The problem of distributed

computation with Byzantine adversaries has a long history

[9], and there has been recent interest in applying this

computational model to large-scale distributed learning [10]–

[12].

In this paper, we study Byzantine-tolerant distributed op-

timization to learn a regularized generalized linear model

(GLM) (e.g., linear/ridge regression, logistic regression,

Lasso, SVM dual, constrained minimization, etc.). We con-

sider two frameworks for distributed optimization: (i) data-

parallelism architecture, where data points are distributed

across different worker nodes, and in each iteration, they

all parallelly compute gradients on their local data and

master aggregates them to update the parameter vector using

gradient descent (GD) [13]–[15]; and (ii) model-parallelism

architecture, where data points are partitioned across features,

and several worker nodes work in parallel, updating different

subsets of coordinates of the model/parameter vector through

coordinate descent (CD) [16]–[18]. Note that GD requires

full gradients to update the parameter vector; and if full

gradients are too costly to compute, we can reduce the per-
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iteration cost by using CD,1 which also has been shown to be

very effective for solving generalized linear models, and is

particularly widely used for sparse logistic regression, SVM,

and Lasso [16]. Given its simplicity and effectiveness, CD

can be chosen over GD in such applications [19]. Computing

gradients in the presence of Byzantine adversaries has been

recently studied [10]–[12], [20]–[32], and we discuss them

in detail Section III where we also put our work in context.

However, as far as we know, making CD robust to Byzantine

adversaries has not received much attention, and to the best

of our knowledge, ours is the first paper that studies CD

against Byzantine attacks and provides an efficient solution

for that.

A. Our Contributions

We propose Byzantine-resilient distributed optimization

algorithms both for PGD and CD based on data encoding and

error correction (over real numbers). As mentioned above,

there have been several papers that provide different meth-

ods for gradient computation in the presence of Byzantine

adversaries, however, our proposed algorithm differs from

them in one or more of the following aspects: (i) it does not

make statistical assumptions on the data or Byzantine attack

patterns; (ii) it can tolerate up to a constant fraction (< 1/2)

of the worker nodes being Byzantine, which is information-

theoretically optimal; and (iii) it enables a trade-off (in terms

of storage and computation/communication overhead at the

master and the worker nodes) with Byzantine adversary

tolerance, without compromising the efficiency at the master

node. We give the same guarantees for CD also.

First we design a coding scheme for distributed matrix-

vector (MV) multiplication, specifically, for operating in the

presence of Byzantine adversaries, and use that in both our

algorithms for PGD and CD to learn GLMs. Note that the

connection of MV multiplication with gradient computation

is straightforward and has been known for some time (see,

for example, [33], [34]), however, it is not clear whether we

can use MV multiplication methods for CD also. Indeed,

since each CD update has a different requirement than that

of gradient computation, a general-purpose algorithm for MV

multiplication may not be applicable for CD. One distinction

is that in gradient computation, we only need to encode

the data to compute the MV multiplication, whereas, in

CD, in addition to data encoding, since workers update few

coordinates of different parts of the parameter vector in

parallel, we need to encode the parameter vector as well for

master to be able to decode that. In this paper, we design our

encoding matrix for MV multiplication in such a way that it

is sparse and has a regular structure of non-zero entries (see

(11) for the encoding matrix for any worker), which makes

it applicable for CD too. This leads to efficient solutions for

both PGD and CD, which are our main focus in this paper.

Inspired from the real-error correction (or sparse re-

construction) problem [35], we develop efficient encod-

1Alternatively, we can also use SGD to reduce the per-iteration cost, and
we give a method for making SGD Byzantine-resilient in Section VI-A.

ing/decoding procedures for MV multiplication, where we

encode the data matrix and distribute it to the m worker

nodes, and to recover the MV product at the master, we

reduce the decoding problem to the sparse reconstruction or

real-error correction problem [35]. Note that in PGD, we only

need to encode the data, whereas, in CD, we also need to

encode the parameter vector, and our coding scheme should

facilitate the requirement that the update on a small fraction

of the encoded parameter vector should affect only a small

fraction of the original parameter vector. This is a non-trivial

requirement, and our coding scheme for MV multiplication

is designed in such a way that it supports this requirement

in an efficient manner; see Section II-B for a description

on plain distributed CD, Section II-E for our approach to

making CD robust to Byzantine attacks, and Section V for a

complete solution for Byzantine-resilient CD. In the context

of PGD/CD, for decoding, the master node processes the

inputs from the worker nodes, either to compute the true

gradient in the case of PGD or to facilitate the computation

at the worker nodes in the case of CD. We take a two-

round approach in each iteration of both these algorithms.

Our main results are summarized in Theorem 1 (on page 6)

for PGD and Theorem 2 (on page 8) for CD, and demonstrate

a trade-off between the Byzantine resilience (in terms of the

number of adversarial nodes) and the resource requirement

(storage, computational, and communication complexity).

As an example, for t ≤ m
3 , our scheme incurs only a

constant overhead on these resources, over that required by

the plain distributed PGD and CD algorithms which provide

no adversarial protection. Our coding schemes can handle

both Byzantine attacks and missing updates (e.g., caused by

delay or asynchrony of worker nodes). Our encoding process

is also efficient. Though data encoding is a one-time process,

it has to be efficient to harness the advantage of distributed

computation. We design a sparse encoding process, based on

real-error correction, which enables efficient encoding, and

the worker nodes encode data using the sparse structure. This

allows encoding with storage redundancy2 of 2m
m−2t (which

is a constant, even if t is a constant (< 1
2 ) fraction of

m), and a one-time total computation cost for encoding is

O((1 + 2t)nd). Note that the time for data encoding is a

factor of (1+ 2t) (where t is the corruption threshold) more

than the time required for plain data distribution which is

O(nd), the size of the data matrix.

We extend our encoding scheme in a couple of important

ways: first, to make the stochastic gradient descent (SGD) al-

gorithm Byzantine-resilient without compromising much on

the resource requirements; and second, to handle streaming

data efficiently, where data points arrives one by one (and

we encode them as they arrive), rather than being available

at the beginning of the computation; we also give few more

applications of our method. For the streaming model, more

specifically, our encoding requires the same amount of time,

irrespective of whether we encode all the data at once, or

2Storage redundancy is defined as the ratio of the size of the encoded
matrix and the size of the raw data matrix.
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we get data points one by one (or in batches) and we

encode them as they arrive. This setting encompasses a more

realistic scenario, in which we design our coding scheme

with the initial set of data points and distribute the encoded

data among the workers. Later on, when we get some more

samples, we can easily incorporate them into our existing

encoded setup. See Section VI for details on these extensions.

B. Paper Organization

We present our problem formulation, description of the

plain distributed PGD and CD algorithms, and the high-

level ideas of our Byzantine-resilient algorithms for both

PGD and CD along-with our main results in Section II. We

give detailed related work in Section III. We present our full

coding schemes for MV multiplication and also for gradient

computation for PGD along-with a complete analysis of

their resource requirements in Section IV. In Section V,

we provide a complete solution to CD. In Section VI, we

show how our method can be extended to SGD and to the

data streaming model. We also discuss applicability of our

method to a few more important applications in that section.

In Section VII, we show numerical results of our method: we

show the efficiency of our method for both gradient descent

(GD) and coordinate descent (CD) by running them to solve

linear regression on two datasets (moderate and large) and

plotting the running time with varying number of corrupt

worker nodes (up to <1/2 fraction).

C. Notation

We denote vectors by bold small letters (e.g., x,y, z, etc.)

and matrices by bold capital letters (e.g., A,F,S,X, etc.).

We denote the amount of storage required by a matrix X

by |X|. For any positive integer n ∈ N, we denote the set

{1, 2, . . . , n} by [n]. For n1, n2 ∈ N, where n1 ≤ n2, we

write [n1 : n2] to denote the set {n1, n1 + 1, . . . , n2}. For

any vector u ∈ R
n and any set S ⊂ [n], we write uS to

denote the |S|-length vector, which is the restriction of u to

the coordinates in the set S . The support of a vector u ∈ R
n

is defined by supp(u) := {i ∈ [n] : ui 6= 0}. We say

that a vector u ∈ R
n is t-sparse if |supp(u)| ≤ t. While

stating our results, we assume that performing the basic

arithmetic operations (addition, subtraction, multiplication,

and division) on real numbers takes unit time.

II. PROBLEM SETTING AND OUR RESULTS

Given a dataset consisting of n labelled data points

(xi, yi) ∈ R
d × R, i ∈ [n], we want to learn a

model/parameter vector w ∈ R
d, which is a minimizer of

the following empirical risk minimization problem:

min
w∈Rd

((
1

n

n∑

i=1

fi(w)

)
+ h(w)

)
, (1)

where fi(w), i = 1, 2, . . . , n, denotes the risk associated

with the i’th data point with respect to w and h(w) denotes

a regularizer. We call f(w) := 1
n

∑n
i=1 fi(w) the average

empirical risk associated with the n data points with respect

to w. Our main focus in this paper is on generalized linear

models (GLM), where fi(w) = ℓ(〈xi,w〉; yi) for some

differentiable loss function ℓ. Here, each fi : Rd → R is

differentiable, h : R
d → R is convex but not necessarily

differentiable, and 〈xi,w〉 is the dot product of xi and w.

We do not necessarily need each fi to be convex, but we

require f(w) to be a convex function. Note that f(w)+h(w)
is a convex function. In the following we study different

algorithms for solving (1) to learn a GLM.

A. Proximal Gradient Descent

We can solve (1) using Proximal Gradient Descent (PGD).

This is an iterative algorithm, in which we choose an arbi-

trary/random initial w0 ∈ R
d, and then update the parameter

vector according to the following update rule:

wt+1 = proxh,αt
(wt − αt∇f(wt)), t = 1, 2, 3, . . . (2)

where αt is the step size or the learning rate at the t’th
iteration, determining the convergence behaviour. There are

standard choices for it; see, for example, [36, Chapter 9].

For any h and α, the proximal operator proxh,α : Rd → R

is defined as

proxh,α(w) = arg min
z∈Rd

1

2α
‖z−w‖22 + h(z). (3)

Observe that if h = 0, then proxh,α(w) = w for every w ∈
R

d, and PGD reduces to the classical gradient descent (GD).

This encompasses several important optimization problems

related to learning, for which prox operator has a closed

form expression; some of these problems are given below.

• Lasso. Here fi(w) = 1
2 (〈xi,w〉 − yi)

2 and h(w) =
λ‖w‖1. It turns out that proxh,α(z) for Lasso is equal

to the soft-thresholding operator Sλα(z) [37], which, for

j ∈ [d], is defined as

(Sλα(z))j =





zj + λα if zj < −λα,
0 if − λα ≤ zj ≤ λα,

zj − λα if zj > λα.

• SVM dual. Jaggi [38] showed an equivalence between the

dual formulation of Support Vector Machines (SVM) and

Lasso. Hence, SVM dual is also a special case of (1).

• Constrained optimization. We want to solve a constrained

minimization problem minw∈C f(w), where C ⊆ R
d is a

closed, convex set. Define an indicator function IC for C
as follows: IC(w) := 0, if w ∈ C; and IC(w) := ∞,

otherwise. Now, observe the following equivalence

min
w∈C

f(w) ⇐⇒ min
w∈Rd

f(w) + IC(w).

If we solve the RHS using PGD, then it can be easily

verified that the corresponding proximal operator is equal

to the projection operator onto the set C [37]. So, the

proximal gradient update step is to compute the usual

gradient and then project it back onto the set C.
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• Logistic regression. Here fi is the logistic function, de-

fined as

fi(w) = −yi log
(

1

1 + e−ui

)
−(1−yi) log

(
e−ui

1 + e−ui

)
,

where ui = 〈xi,w〉, and h = 0. As noted earlier, since

h = 0, PGD reduces to GD for logistic regression.

• Ridge regression. Here fi(w) = 1
2 (〈xi,w〉 − yi)

2 and

h(w) = λ
2 ‖w‖22. Since fi’s and h are differentiable, we

can alternatively solve this simply using GD.

Let X ∈ R
n×d denote the data matrix, whose i’th row is

equal to the i’th data point xi. For simplicity, assume that m
divides n, and let Xi denote the n

m × d matrix, whose j’th

row is equal to x(i−1) n
m

+j . In a distributed setup, all the data

is distributed among m worker machines (worker i has Xi)

and master updates the parameter vector using the update rule

(2). At the t’th iteration, master sends wt to all the workers;

worker i computes the gradient (denoted by ∇if(wt)) on its

local data and sends it to the master; master aggregates all

the received m local gradients to obtain the global gradient

∇f(wt) =
1

m

m∑

i=1

∇if(wt). (4)

Now, master updates the parameter vector according to (2)

and obtains wt+1. Repeat the process until convergence.

If full gradients are too costly to compute. Updating the

parameter vector in each iteration of PGD according to (2)

requires computing full gradients. This may be prohibitive in

large-scale applications, where each machine in a distributed

framework has a lot of data, and computing full gradients

at local machines may be too expensive and becomes the

bottleneck. In such scenarios, there are two alternatives to

reduce this per-iteration cost: (i) Coordinate Descent (CD),

in which we pick a few coordinates (at random), compute

the partial gradient along those, and descent along those

coordinates only, and (ii) Stochastic Gradient Descent (SGD),

in which we sample a data point at random, compute the

gradient on that point, and descent along that direction. These

are discussed in Section II-B and Section VI-A, respectively.

B. Coordinate Descent

For the clear exposition of ideas, we focus on the non-

regularized empirical risk minimization from (1) (i.e., taking

h = 0) for learning a generalized linear model (GLM). This

can be generalized to objectives with (non-)differentiable

regularizers [16], [39]. Let X ∈ R
n×d denote the data matrix

and y ∈ R
n the corresponding label vector. To make it

distinct from the last section, we denote the objective function

by φ and write it as φ(Xw;y) to emphasize that we want

to learn a GLM, where the objective function depends on

the data points only through their inner products with the

parameter vector. Formally, we want to optimize3

min
w∈Rd

(
φ(Xw;y) :=

n∑

i=1

ℓ(〈xi,w〉; yi)
)
. (5)

For U ⊆ [d], we write ∇Uφ(Xw;y) to denote the gradi-

ent of φ(Xw;y) with respect to wU , where wU denotes

the |U|-length vector obtained by restricting w to the co-

ordinates in U . To make the notation less cluttered, let

φ′(Xw;y) denote the n-length vector, whose i’th entry is

equal to ℓ′(〈xi,w〉; yi) := ∂
∂uℓ(u; yi)|u=〈xi,w〉. Note that

∇φ(Xw;y) = XTφ′(Xw;y) and that ∇Uφ(Xw;y) =
XT

Uφ
′(Xw;y), where XU denotes the n × |U| matrix ob-

tained by restricting the column indices of X to the elements

in U .

Coordinate descent (CD) is an iterative algorithm, where,

in each iteration, we choose a set of coordinates and update

only those coordinates (while keeping the other coordinates

fixed). In distributed CD, we take advantage of the parallel

architecture to improve the running time of (centralized) CD.

In the distributed setting, we divide the data matrix vertically

into m parts and store the i’th part at the i’th worker node.

Concretely, assume, for simplicity, that m divides d. Let

X = [X1 X2 . . . Xm] and w = [wT
1 wT

2 . . . wT
m]T ,

where each Xi is an n× d
m matrix and each wi is a length

d
m vector. Each worker i stores Xi and is responsible for

updating (a few coordinates of) wi – hence the terminology,

model-parallelism. We store the label vector y at the master

node. In coordinate descent, since we update only a few

coordinates in each round, there are a few options on how to

update these coordinates in a distributed manner:

Subset of workers: Master picks a subset S ⊂ [m] of

workers and asks them to update their wi’s [18]. This may

not be good in the adversarial setting, because if only a small

subset of workers are updating their parameters, the adversary

can corrupt those workers and disrupt the computation.

Subset of coordinates for all workers: All the worker

nodes update only a subset of the coordinates of their

local parameter vector wi’s. Master can (deterministically

or randomly) pick a subset U (which may or may not be

different for all workers) of f ≤ d/m coordinates and asks

each worker to updates only those coordinates. If master

picks U deterministically, it can cycle through and update

all coordinates of the parameter vector in ⌈d/mf⌉ iterations.

In Algorithm 1, we give the distributed CD algorithm with

the second approach, where all worker nodes update the

coordinates of their local parameter vectors for a single subset

U . We will adopt this approach in our method to make the

distributed CD Byzantine-resilient. Let r = d
m . For any i ∈

[m], let wi = [wi1 wi2 . . . wir]
T and Xi = [Xi1 Xi2 . . .Xir],

where Xij is the j’th column of Xi. For any i ∈ [m] and

U ⊆ [r], let wiU denote the |U|-length vector that is obtained

from wi by restricting its entries to the coordinates in U ;

3Here we are not optimizing the average of loss functions – since n is a
fixed number, this does not affect the solution space.
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Algorithm 1 Distributed Coordinate Descent

1: Initialize. Each worker i ∈ [m] starts with an arbi-

trary/random wi ∈ R
r, where r = d

m and, for simplicity,

we assume that m divides d.

2: while (until the stopping criteria at master is not satisfied)

do

3: On each worker i ∈ [m], do in parallel:

4: Worker i computes Xiwi and sends it to the master

node.4

5: Worker i receives (U ⊆ [r], φ′(Xw;y)) from the

master node.

6: Worker i updates its local parameter vector as (where

∇iUφ(Xw;y) = XT
iUφ

′(Xw;y))

wiU ← wiU − α∇iUφ(Xw;y) (6)

while keeping the other coordinates of wi unchanged,

and sends the updated wi to the master.

7: At Master:

8: Master receives {Xiwi}i∈[m] from the m workers.

9: Master first computes Xw =
∑m

i=1 Xiwi and then

computes φ′(Xw;y).
10: Master picks U ⊆ [r] (where U can be picked either

randomly or in a round-robin fashion) and sends (U ⊆
[r], φ′(Xw;y)) to all workers.

11: end while

similarly, let XiU denote the n × |U| matrix obtained by

restricting the column indices of Xi to the elements in U .

In Algorithm 1, for each worker i to update wi according

to (6), where the partial gradient of φ with respect to wiU

is equal to ∇iUφ(Xw;y) = XT
iUφ

′(
∑m

j=1 Xjwj ;y) and

worker i has only (Xi,wi), every other worker j sends

Xjwj to the master, who computes φ′(
∑m

j=1 Xjwj ;y)
5 and

sends it back to all the workers. Observe that, even if one

worker is corrupt, it can send an adversarially chosen vector

to make the computation at the master deviate arbitrarily

from the desired computation, which may adversely affect

the update at all the worker nodes subsequently.6 Similarly,

corrupt workers can send adversarially chosen information to

affect the stopping criterion.

C. Adversary Model

We want to perform the distributed computation described

in Section II-A and Section II-B under adversarial attacks,

4After the 1st iteration, worker i need not multiply Xi with wi to obtain
Xiwi in every iteration; as only a few coordinates of wi are updated, it
only needs to multiply those columns of Xi that corresponds to the updated
coordinates of wi.

5Note that even after computing Xw, master needs access to the labels
yi, i = 1, 2, . . . , n to compute φ′(Xw;y). Since y ∈ R

n is just a
vector, we can either store that at master, or, alternatively, we can encode y
distributedly at the workers and master can recover that using the method
developed in Section IV for Byzantine-resilient distributed matrix-vector
multiplication, where the matrix is an identity matrix and vector is equal
to y.

6Specifically, suppose the i’th worker is corrupt and the adversary wants
master to compute φ′(Xw + e;y) for any arbitrary vector e ∈ R

n of its
choice, then the i’th worker can send Xiwi + e to the master.

where the corrupt nodes may provide erroneous vectors to

the master node. Our adversarial model is described next.

In our adversarial model, the adversary can corrupt at most

t < m
2 worker nodes7, and the compromised nodes may

collaborate and arbitrarily deviate from their pre-specified

programs. If a worker is corrupt, then instead of sending

the true vector, it may send an arbitrary vector to disrupt the

computation. We refer to the corrupt nodes as erroneous or

under the Byzantine attack. We can also handle asynchronous

updates, by dropping the straggling nodes beyond a specified

delay, and still compute the correct gradient due to encod-

ing. Therefore we treat updates from these nodes as being

“erased”. We refer to these as erasures/stragglers. For every

worker i that sends a message to the master, we can assume,

without loss of generality, that the master receives ui + ei,

where ui is the true vector and ei is the error vector, where

ei = 0 if the i’th node is honest, otherwise can be arbitrary.

We assume that at most t nodes can be adversarially corrupt

and at most s nodes can be stragglers, where s and t are

some constants less than 1
2 that we will decide later. Note

that the master node does not know which t worker nodes

are corrupted (which makes this problem non-trivial to solve),

but knows t. We propose a method that mitigates the effects

of both of these anomalies.

Remark 1. A well-studied problem is that of asynchronous

distributed optimization, where the workers can have different

delays in updates [40]. One mechanism to deal with this is to

wait for a subset of responses, before proceeding to the next

iteration, treating the others as missing (or erasures) [41].

Byzantine attacks are quite distinct from such erasures, as

the adversary can report wrong local gradients, requiring the

master node to create mechanisms to overcome such attacks.

If the master node simply aggregates the collected updates as

in (4), the computed gradient could be arbitrarily far away

from the true one, even with a single adversary [42].

D. Our Approach to Gradient Computation

Recall that fi(w) = ℓ(〈xi,w〉; yi) for some differentiable

loss function ℓ, and the gradient of fi at w is equal to

∇fi(w) = (xi)
T ℓ′(〈xi,w〉; yi), where ℓ′(〈xi,w〉; yi) :=

∂
∂uℓ(u; yi)|u=〈xi,w〉. Note that ∇fi(w) ∈ R

d is a column

vector. Let f ′(w) denote the n-length vector whose i’th
entry is equal to ℓ′(〈xi,w〉; yi). With this notation, since

f(w) = 1
n

∑n
i=1 fi(w), we have ∇f(w) = 1

nX
T f ′(w).

Since n is a constant, it is enough to compute XT f ′(w). So,

for simplicity, in the rest of the paper we write

∇f(w) = XT f ′(w), ∀w ∈ R
d. (7)

A natural approach to computing the gradient ∇f(w)
is to compute it in two rounds: (i) compute f ′(w) in the

1st round by first multiplying X with w and then master

7Our results also apply to a slightly different adversarial model, where
the adversary can adaptively choose which of the t worker nodes to attack
at each iteration. However, in this model, the adversary cannot modify the
local stored data of the attacked node, as otherwise, over time, it can corrupt
all the data, making any defense impossible.
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locally computes f ′(w) from Xw (master can do this locally,

because Xw is an n-dimensional vector whose i’th entry

is equal to 〈xi,w〉 and (f ′(w))i = ℓ′(〈xi,w〉; yi));8 and

then (ii) compute ∇f(w) = XT f ′(w) in the 2nd round by

multiplying XT with f ′(w). So, the task of each gradient

computation reduces to two matrix-vector (MV) multipli-

cations, where the matrices are fixed and vectors may be

different each time. To combat against the adversarial worker

nodes, we do both of these MV multiplications using data

encoding and real-error correction; see Figure 1 on page 12

for a pictorial description of our approach.

A two-round approach for gradient computation has been

proposed for straggler mitigation in [33], but our method for

MV multiplication differs from that fundamentally, as we

have to provide adversarial protection. Note that in the case

of stragglers/erasures we know who the straggling nodes are,

but this information is not known in the case of adversarial

nodes, and master needs to decode without this information in

the context of Byzantine adversaries. This is slightly different

from the standard error correcting codes (over finite fields) as

the matrix entries in machine learning applications are from

reals. In this case, we use ideas from real-error correction (or

sparse reconstruction) from the compressive sensing literature

[35], and using which we develop an efficient decoding at

master, which also gives rise to our sparse encoding matrix;

see Section IV for more details. For decoding efficiently,

we crucially leverage the block error pattern and design a

decoding method at master, which, interestingly, requires

just one application of the sparse recovery method on a

vector of size m, the number of workers, which may be

much smaller than the data dimensions n and d, thereby

making the decoding computationally efficient. Our encoding

matrix (given in (11), designed for MV multiplication) is very

sparse and has a regular pattern of non-zero entries, which

also makes it applicable for making coordinate-descent (CD)

Byzantine-resilient. We emphasize that a general-purpose

code for MV multiplication may not be applicable for CD, as

each CD iteration requires updating only a few coordinates of

the parameter vector, which makes it fundamentally different

(and arguably more complicated to robustify) than GD itera-

tions; see Section III-B and Section V for more details. Since

iterative algorithms (such as GD and CD) require repeated

parameter updates, it is crucial to have a method that has

low computational complexity, both at the worker nodes as

well as at the master node, and our coding solutions for both

GD and CD achieve that, in addition to being highly storage

efficient; see Theorem 1 for GD and Theorem 2 for CD.

Coming back to our two-round approach for gradient

computations using MV multiplications, for the 1st round,

we encode X using a sparse encoding matrix S(1) =

[(S
(1)
1 )T , . . . , (S

(1)
m )T ]T and store S

(1)
i X at the i’th worker

node; and for the 2nd round, we encode XT using another

sparse encoding matrix S(2) = [(S
(2)
1 )T , . . . , (S

(2)
m )T ]T , and

8Note that even after computing Xw, master needs access to the labels
yi, i = 1, 2, . . . , n to compute f ′(w). See Footnote 5 for a discussion on
how master can get access to the labels.

store S
(2)
i XT at the i’th worker node. Now, in the 1st round

of the gradient computation at w, the master node broadcasts

w and the i’th worker node replies with S
(1)
i Xw (a corrupt

worker may report an arbitrary vector); upon receiving all the

vectors, the master node applies error-correction procedure to

recover Xw and then locally computes f ′(w) as described

above. In the 2nd round, the master node broadcasts f ′(w)
and similarly can recover XT f ′(w) (which is equal to the

gradient) at the end of the 2nd round. So, it suffices to devise

a method for multiplying a vector v to a fixed matrix A in

a distributed and adversarial setting. Since this is a linear

operation, we can apply error correcting codes over real

numbers to perform this task. We describe it briefly below.

A trivial approach. Take a generator matrix G of any

real-error correcting linear code. Encode A as ATG =:
B. Divide the columns of B into m groups as B =
[B1 B2 . . .Bm], where worker i stores Bi. Master broadcasts

v and each worker i responds with vTBi + eTi , where

ei = 0 if the i’th worker is honest, otherwise can be

arbitrary. Note that at most t of the ei’s can be non-zero.

Responses from the workers can be combined as vTB+eT .

Since every row of B is a codeword, vTB = vTATG is

also a codeword. Therefore, one can take any off-the-shelf

decoding algorithm for the code whose generator matrix is

G and obtain vTAT . For example, we can use the Reed-

Solomon codes (over real numbers) for this purpose, which

only incurs a constant storage overhead and tolerates optimal

number of corruptions (up to < 1
2 ). Note that we need fast

decoding, as it is performed in every iteration of the gradient

computation by the master. As far as we know, any off-the-

shelf decoding algorithm “over real numbers” requires at

least a quadratic computational complexity, which leads to

Ω(n2 + d2) decoding complexity per gradient computation,

which could be impractical.
The trivial scheme does not exploit the block error pattern

which we crucially exploit in our coding scheme to give a ∼
O((n+d)m) time decoding per gradient computation, which

could be a significant improvement over the trivial scheme,

since m typically is much smaller than n and d for large-

scale problems. In fact, our coding scheme enables a trade-

off (in terms of storage and computation/communication

overhead at the master and the worker nodes) with Byzantine

adversary tolerance, without compromising the efficiency at

the master node. We also want encoding to be efficient

(otherwise it defeats the purpose of data encoding) and our

sparse encoding matrix achieves that. Our main result for

the Byzantine-resilient distributed gradient computation is as

follows, which is proved in Section IV:

Theorem 1 (Gradient Computation). Let X ∈ R
n×d denote

the data matrix. Let m denote the total number of worker

nodes. We can compute the gradient exactly in a distributed

manner in the presence of t corrupt worker nodes and s
stragglers, with the following guarantees, where ǫ > 0 is a

free parameter.

• (s+ t) ≤
⌊

ǫ
1+ǫ · m2

⌋
.

• Total storage requirement is roughly 2(1 + ǫ)|X|.
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• Computational complexity for each gradient computa-

tion:

– at each worker node is O((1 + ǫ)ndm ).
– at the master node is O((1 + ǫ)(n+ d)m).

• Communication complexity for each gradient computa-

tion:

– each worker sends
(
(1 + ǫ)n+d

m

)
real numbers.

– master broadcasts (n+ d) real numbers.

• Total encoding time is O
(
nd
(

ǫ
1+ǫm+ 1

))
.

Remark 2. The statement of Theorem 1 allows for any s

and t as long as (s + t) ≤
⌊

ǫ
1+ǫ · m2

⌋
. As we are handling

both erasures and errors in the same way9 the corruption

threshold does not have to handle s and t separately. To

simplify the discussion, for the rest of the paper, we consider

only Byzantine corruption, and denote the corrupted set by

I ⊂ [m] with |I| ≤ t, with the understanding that this can

also work with stragglers.

In Theorem 1, ǫ is a design choice and a free parameter

that can take any value in the interval [0,m−1], where ǫ = 0
implies no corruption and ǫ = m−1 implies that corruption

threshold t can be anything up to m−1
2 . If we want to tolerate

t corrupt workers, then ǫ must satisfy ǫ ≥ 2t
m−2t .10

Remark 3 (Comparison with the plain distributed PGD).

We compare the resource requirements of our method with

the plain distributed PGD (which provides no adversarial

protection), where all the data points are evenly distributed

among the m workers. In each iteration, master sends the

parameter vector w to all the workers; upon receiving w,

all workers compute the gradients on their local data in

O(ndm ) time (per worker) and send them to the master; master

aggregates them in O(md) time to obtain the global gradient

and then updates the parameter vector using (2).

In our scheme (i) the total storage requirement is O(1+ ǫ)
factor more;11 (see also Remark 4) (ii) the amount of compu-

tation at each worker node is O(1 + ǫ) factor more; (iii) the

amount of computation at the master node is O((1 + ǫ)(1 +
n
d )) factor more, which is comparable in cases where n is not

much bigger than d; (iv) master broadcasts (1 + n
d ) factor

more data, which is comparable if n is not much bigger than

d; and (v) each worker sends O
(
(1 + ǫ) 1+

n/d
m

)
factor more

data, which is O(1 + ǫ) – a constant factor – as long as

n = O(dm).

Remark 4. Let m be an even number. Note that we can get

the corruption threshold t to be any number less than m/2,

9When there are only stragglers, one can design an encoding scheme
where both the master and the worker nodes operate oblivious to encoding,
while solving a slightly altered optimization problem [41], in which gradients
are computed approximately, leading to more efficient straggler-tolerant GD.

10We could have written everything in terms of t,m, n, d, but we chose
to introduce another variable ǫ which, in our opinion, clearly brings out
the tradeoff between the corruption threshold and the resource requirements
without cluttering the expressions.

11For example, by taking ǫ = 2, our method can tolerate m/3 corrupt
worker nodes. So, we can tolerate linear corruption with a constant overhead
in the resource requirement, compared to the plain distributed gradient
computation which does not provide any adversarial protection.

but at the expense of increased storage and computation. For

any δ > 0, if we want to get δ close to m/2, i.e., t = m/2−δ,

then we must have (1 + ǫ) ≥ m/2δ. In particular, at ǫ =
2, we can tolerate up to m/3 corrupt nodes, with constant

overhead in the total storage as well as on the computational

complexity.

Note that when δ is a constant, i.e., t is close to m−1
2 ,

then ǫ grows linearly with m; for example, if t = m−1
2 ,

then ǫ = m − 1. In this case, our storage redundancy

factor is O(m). In contrast, the trivial scheme (see “trivial

approach” on page 6) does better in this regime and has

only a constant storage overhead, but at the expense of an

increased decoding complexity at the master, which is at least

quadratic in the problem dimensions d and n, whereas, our

decoding complexity at the master always scales linearly with

d and n. If we always want a constant storage redundancy

for all values of the corruption threshold t, we can use our

coding scheme if t ≤ c · m−1
2 , where c < 1 is a constant,

and use the trivial scheme if t is close to m−1
2 .

Our encoding is also efficient and requires

O
(
nd
(

ǫ
1+ǫm+ 1

))
time. Note that O(nd) is equal

to the time required for distributing the data matrix X

among m workers (for running the distributed gradient

descent algorithms without the adversary); and the encoding

time in our scheme (which results in an encoded matrix that

provides Byzantine-resiliency) is a factor of (2t+ 1) more.

Remark 5. Our scheme is not only efficient (both in terms

of computational complexity and storage requirement), but

it can also tolerate up to ⌊m−1
2 ⌋ corrupt worker nodes (by

taking ǫ = m − 1 in Theorem 1). It is not hard to prove

that this bound is information-theoretically optimal, i.e., no

algorithm can tolerate ⌈m2 ⌉ corrupt worker nodes, and at the

same time correctly computes the gradient.

E. Our Approach to Coordinate Descent

We use data encoding and add redundancy to enlarge the

parameter space. Specifically, we encode the data matrix X

using an encoding matrix R = [R1 R2 . . . Rm], where

each Ri is a d× p matrix (with pm ≥ d), and store XRi at

the i’th worker. Define X̃R := XR. Now, instead of solving

(5), we solve the encoded problem argminv∈Rpm φ(X̃Rv;y)
using Algorithm 1 (together with decoding at the master);

see Figure 2 on page 18 for a pictorial description of our

algorithm. We design the encoding matrix R such that

at every iteration of our algorithm, updating any (small)

subset of coordinates of vi’s (let v = [vT
1 vT

2 . . . vT
m])

automatically updates some (small) subset of coordinates

of w; and, furthermore, by updating those coordinates of

vi’s, we can efficiently recover the correspondingly updated

coordinates of w, despite the errors injected by the adversary.

In fact, at any iteration t, the encoded parameter vector vt

and the original parameter vector wt satisfies vt = R+wt,

where R+ := RT (RRT )−1 is the Moore-Penrose pseudo-

inverse of R, and wt evolves in the same way as if we are

running Algorithm 1 on the original problem.
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We will be effectively updating the coordinates of the

parameter vector w in chunks of size (m− 2t) or its integer

multiples (where t is the number of corrupt workers). In

particular, if each worker i updates k coordinates of vi, then

k(m−2t) coordinates of w will get updated. For comparison,

Algorithm 1 updates km coordinates of the parameter vector

w in each iteration, if each worker updates k coordinates in

that iteration.

As described in Algorithm 1 for the Byzantine-free CD,

in order to update its local parameter vector wi according

to (6), worker i needs access to φ′(Xw;y), which master

computes after receiving {Xjwj}j∈[m] from the workers. In

our Byzantine-resilient algorithm for CD also master will

need to compute Xw in every CD iteration, and for this

purpose, we employ the same encoding-decoding procedure

for MV multiplication that we used in the first round of

gradient computation, as described in Section II-D. In partic-

ular, to make the notation distinct from gradient computation,

in order to compute Xw, we encode X using an encoding

matrix L = [LT
1 LT

2 . . . LT
m]T , where each Li is a p′ × n

matrix (with p′m ≥ n) and worker i stores X̃L
i = LiX.

Note that in order to compute Xw, in the first round of

gradient computation as described in Section II-D, master

broadcasts w to all the workers and each worker i computes

X̃L
i w and sends it the the master (corrupt workers may

report arbitrary vectors), who then decodes and obtains Xw.

However, in coordinate descent, though master wants to

compute Xw in each CD iteration, we can significantly

improve the computation required at each worker: since only

a few coordinates of the original parameter vector w are

updated in each CD iteration, master needs to send only

those updated coordinates, and workers need to preform MV

multiplication with a much smaller matrix, whose number

of columns is equal to the number of updated coordinates

of w that they receive from master. Thus, the computational

complexity in each CD iteration at worker is proportional to

the number of coordinates updated in each CD iteration, as

desired.

Our main result for the Byzantine-resilient distributed

coordinate descent is stated below, which is proved in Sec-

tion V.

Theorem 2 (Coordinate Descent). Under the setting of The-

orem 1, our Byzantine-resilient distributed CD algorithm has

the following guarantees, where ǫ > 0 is a free parameter.

• (s+ t) ≤
⌊

ǫ
1+ǫ · m2

⌋
.

• Total storage requirement is roughly 2(1 + ǫ)|X|.
• If each worker i updates τ coordinates of vi, then

–

τm
1+ǫ coordinates of the corresponding w gets updated.

– the computational complexity in each iteration

∗ at each worker node is O(nτ).

∗ at the master node is O((1 + ǫ)nm+ τm2).

– the communication complexity in each iteration

∗ each worker sends
(
τ + (1 + ǫ) n

m

)
real numbers.

∗ master broadcasts
(

τm
1+ǫ + n

)
real numbers.

• Total encoding time is O
(
nd
(

ǫ
1+ǫm+ 1

))
.

Remark 6 (Comparison with the plain distributed CD). We

compare the resource requirements of our method with the

plain distributed CD described in Algorithm 1 that does not

provide any adversarial protection. Let ǫ be any number in

the interval [0,m− 1] – for illustration, we can take ǫ = 2,

which means t ≤ m
3 workers are corrupt. In Algorithm 1,

if each worker i updates τ
1+ǫ coordinates of wi (in total

τm
1+ǫ coordinates of w) in each iteration, then (i) each worker

requires O( nτ
1+ǫ ) time to multiply Xi with the updated part of

wi; (ii) master requires O(nm) time to compute
∑m

i=1 Xiwi

from {Xiwi}i∈[m]; (iii) each worker sends n real numbers

(required for Xiwi) to master; and (iv) master broadcasts n
real numbers (required for φ′(Xw;y)).

In our scheme (i) the total storage requirement is O(1+ ǫ)
factor more; (ii) the amount of computation at each worker

node is O(1+ǫ) factor more; (iii) the amount of computation

at the master node is O((1+ǫ)+ τm
n ) factor more – typically,

since τ is a constant and number of workers is much less

than n, this again could be O(1+ ǫ); (iv) master broadcasts(
1 + τm

(1+ǫ)n

)
factor more data, which could be a constant

if τm is smaller than (1 + ǫ)n; and (v) each worker sends(
τ
n + (1+ǫ)

nm

)
factor more data, where the 1st term is much

smaller than 1 as τ is typically a constant, and the 2nd term

is close to zero as (1 + ǫ) is always upper-bounded by m.

Remark 7 (Comparison with the replication-based strategy).

One simple way to make Algorithm 1 Byzantine-resilient is

using repetition code, where we first divide the set of m
workers into m

2t+1 groups of size (2t+1) each and also divide

the data matrix as X = [X1 X2 . . . X m
2t+1

] (assume, for

simplicity, that (2t+1) divides m). Now, store the i’th block

Xi at the (2t+1) workers in the i’th group of workers. Let the

parameter vector be divided as w = [wT
1 wT

2 . . . wT
m

2t+1

]T .

In each CD iteration, the local parameter updates in any wi

is replicated at (2t+1) different workers in the i’th group of

workers, and since at most t workers are corrupt, master can

do a majority vote for decoding. Note that the total storage

and the computation at workers in this scheme grow linearly

by a factor of (2t+1), where t is the number of corruption,

which could be significant. In contrast, the method that we

propose can tolerate linear corruption, say, t = m
3 , with a

constant overhead in storage and computational complexity.

The Remarks 2, 4, 5 are also applicable for Theorem 2.

III. RELATED WORK

There has been a significant recent interest in using coding-

theoretic techniques to mitigate the well-known straggler

problem [40], including gradient coding [43]–[46], encoding

computation [33], [34], [47], and data encoding [41], [48].

However, one cannot directly apply the methods for straggler

mitigation to the Byzantine attacks case, as we do not know

which updates are under attack. Distributed computing with

Byzantine adversaries is a richly investigated topic since [9],

and has received recent attention in the context of large-scale
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distributed optimization and learning [10]–[12], [20]–[32].

These can be divided into three categories: (i) One which

assume explicit statistical models for data across workers

(e.g., data drawn i.i.d. from a probability distribution) and

analyze gradient descent [12], [20], [22], [24], [28]. (ii)

Other set of works make no probabilistic assumption on data,

and optimize through stochastic methods (e.g., stochastic

gradient descent) [10], [21], [23], [25]–[27], [30]–[32] and

also with deterministic methods (e.g., gradient descent) [30],

[31]. Note that none of these two sets of works do data

encoding and work with data as it is, and provide Byzantine

resilience by applying some robust aggregation procedures

(e.g., geometric median, coordinate-wise median, outlier-

filtering, etc.) at the master for aggregating gradients. (iii)

Another line of work which is most relevant to ours provide

Byzantine resiliency using redundant computations, either by

encoding the gradients [11] or by encoding the data itself

[29]. Note that [26] combines both redundant computations

and do a hierarchical robust aggregation and not is directly

comparable to ours.

Note that the statistical nature of data/analysis in the

first two sets of works leads to a statistical approximation

error in the convergence rates, which is also intensified by

the inaccuracy of the robust gradient aggregation procedure.

One of the main focuses in these works is typically on

obtaining faster convergence (where the goal is to match

the convergence rate of plain SGD/GD) and as good an

approximation error as possible. Note that the approximation

error in all these works scales at least as Ω(
√
d), where

d is the dimension of the model parameter vector, which

may be significant in high-dimensional settings. Moreover,

in all these works, since we are not allowed to pre-process

the data (such as, doing data encoding, etc.), we need to

make some assumptions on the data, and furthermore, master

has to apply a non-trivial decoding for gradient aggregation,

which requires significantly more time than what our de-

coding requires. For example, filtering-based decoding [22],

[30], [31], median-based decoding [12], [20], and heuristic

approaches [10], all have a super-linear complexity in m
– in fact, the filtering-based method as in [22], [30], [31]

(which is the most effective in terms of the approximation

error) requires O(m3d) time. In contrast, our decoding has

a linear dependence on both m and d. Note that, unlike the

first two categories, the third line of work (to which ours

also belongs) gives deterministic guarantees and work with

arbitrary datasets, with no probabilistic assumptions; we elab-

orate on these and do a detailed comparison with ours below.

We skip the comparison with the first two categories, as it

would not be a fair comparison because the underlying setting

is different – results in the first two categories are based

on statistical assumptions on data/algorithm and inaccurate

gradient recovery, whereas, results in the third category make

no assumption on the data/algorithm and allow exact gradient

recovery.

We want to emphasize that all these works use gradi-

ent descent (GD) or stochastic gradient descent (SGD) as

their optimization algorithm, which is a data-parallelization

method; in this paper, additionally, we also use coordinate

descent (CD) algorithm for optimization, which is a model-

parallelization method and is preferred over GD in some

applications; see Section I for more details on this. As will be

evident from Section V, making CD secure against Byzantine

attacks is arguably more intricate than securing GD.

We divide this section into three categories: first we com-

pare the redundancy-based methods for GD in Section III-A,

and then CD in Section III-B. Since we use matrix-vector

(MV) multiplication as a core subroutine for both GD and

CD, we also compare related work on this in Section III-C.

A. Gradient Descent (GD)

In this section, we do a detailed comparison with [11] and

[29], which are the closest related works that also combat

Byzantine adversaries using redundant computations.

For the sake of comparison, assume that t ≤ m−1
2 workers

are corrupt. The coding scheme of Chen et al. [11], which

they called DRACO, requires repetition of each data point

(2t + 1) times, storing each copy at different workers. This

gives the storage redundancy factor of (2t + 1) in DRACO,

whereas, our coding method requires storage redundancy

factor of 2(1 + ǫ) = 2m
m−2t , which is a constant even if

t is a constant (< 1
2 ) fraction of m.12 Since each worker

in DRACO is doing (2t + 1)-factor more computation for

each GD iteration (than simply computing the gradients as in

plain distributed GD), the computational cost at workers also

grows by the same factor, which is a significant downside of

their scheme. In contrast, our scheme only requires O( m
m−2t )

more computation at worker, which is a constant even if

t is a constant (< 1
2 ) fraction of m. This significantly

reduces the computation time at the worker nodes in our

scheme compared to DRACO, without sacrificing much on

the computation time required by the master node – the

decoding at master in DRACO takes O(md) time, whereas,

our scheme requires O( m
m−2t (n + d)m) time, which is a

factor of O( m
m−2t (1 + n

d )) more than DRACO. In high-

dimensional settings, where n is not much bigger than d, and

t is a constant (< 1
2 ) fraction of m, this overhead is constant.

Overall, for a constant fraction of corruption, say, t = m
3 ,

DRACO requires Ω(t) times more storage and computation at

workers than our scheme (which could be significant in large-

scale settings), and requires Ω(1+ n
d ) times less computation

at master. Note that the computation time at workers scales

at least as Ω(ndm ), which dominates the time taken by master

(since n, d are typically much larger than m), so our scheme

12To highlight the storage redundancy gain of our method over that of
DRACO, consider the following two concrete scenarios, where the data
matrix X ∈ R

n×d consists of nd real numbers: (i) In a large setup with
m = 1000 worker nodes, if we want resiliency against t = 100 corrupt
nodes (1/10 nodes are corrupt), our method requires redundancy of 2.5,
whereas DRACO requires redundancy of 201 (i.e., we need to store only
2.5× nd real numbers, whereas DRACO stores 201× nd real numbers), a
multiplicative-factor of > 80 more than ours. (ii) In a moderate setup with
m = 150 and t = 50 (1/3 nodes are corrupt), the redundancy of our method
is 6, whereas DRACO requires redundancy of 101, a multiplicative-factor of
≈ 17 more than ours.
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will be faster than DRACO with respect to the overall running

time. Note that the coding in DRACO is restricted to data

replication redundancy, as they encode the gradient as done

in [43], enabling application to (non)-convex problems; in

contrast, we encode the data enabling significantly smaller

redundancy, and apply it to learn generalized linear models,

and is also applicable to MV multiplication.

Yu et al. [29] (which is a concurrent work13) proposes

Lagrange coded computing in a distributed framework to

compute any multivariate polynomial of the input data and

simultaneously provides resilience against stragglers, secu-

rity against adversaries, and privacy of the dataset against

collusion of workers. They leverage the Lagrange polyno-

mial to create computation redundancy among workers, and

using standard Reed-Solomon decoding, they can tolerate

both erasures/stragglers and errors/adversaries. Their method

provide privacy by adding random elements from the field

(which in the case of gradient computation is the field of all

matrices of a certain dimension) while doing the polynomial

interpolation. This is a standard method in Shamir secret

sharing scheme [49] that is widely used in information-

theoretically secure MPC protocols [50] to provide privacy

of users’ data. For the sake of comparison of the resource

requirements of our scheme and the one in [29], consider

the task of linear regression (the concrete machine learning

application studied in [29]). In the following, we assume

that m−1
2 − δ workers are corrupt, which corresponds to

ǫ = m
1+2δ − 1 in our setting; here δ can take any value

in [0 : m−1
2 ]. (i) The storage overhead of our scheme is

m
δ+1/2 , whereas, in [29], it is m

δ+1 , which is roughly the

same as ours. For example, to tolerate m
3 corrupt workers

(i.e., δ = m−3
6 ), the storage overhead of our scheme and

of [29] is a multiplicative factor of 6 and 6
1+3/m ≈ 6,

respectively. (ii) The encoding time complexity of our scheme

is O(nd(m− 2δ)), whereas, it is O(m log2(m) nd
δ+1 ) in [29].

Note that for constant δ (i.e., corruption close to 1/2), the

encoding time of our scheme is much less (by a factor of

O(m log2(m))) than that of [29], whereas, for corruption cm,

where c < 1
2 , the scheme of [29] takes O( m

log2(m)
)-factor less

time in encoding than ours. (iii) The computation time at each

worker per gradient computation in both our scheme and [29]

is roughly the same – ours requires O( nd
1+2δ ) time and [29]

requires O( nd
1+δ ) time. (iv) The decoding time complexity

per gradient computation in [29] is O(m log2(m)d), whereas,

ours requires O((1+ ǫ)(n+ d)m) time. Note that when n is

not much bigger than d and we want a constant fraction of

corruption, say, m
3 corruption, then their decoding complexity

is worse than ours by a logarithmic factor. Also note that

our decoding algorithm is arguably simpler than theirs. (v)

For per gradient computation, each worker respectively sends
n+d
1+2δ and d real numbers in ours and the scheme in [29].

Note that if n ≤ dm and to tolerate a constant fraction of

corruption, say, m
3 corruption, each worker sends roughly

O(m) less data in our scheme than that of [29]. Overall,

13Yu et al. [29] is concurrent to our conference versions in Allerton 2018
[1] and ISIT 2019 [2], [3], on which this paper is based.

if we want tolerance against m
3 corrupt worker nodes, then

both our scheme and the one in [29] have similar resource

requirements, except for that our scheme has a much better

communication complexity (by a factor of O(m)) from

workers to the master, whereas, the encoding time complexity

(which is a one-time process) of [29] is better than ours by

a factor of O( m
log2(m)

).

B. Coordinate Descent (CD)

Even for the straggler problem, we are only aware of one

work by Karakus et al. [48] that, in addition to distributed

GD, also studies distributed CD, and that for quadratic

problems (e.g., linear/ridge regression) only. It also does data

encoding and achieves low redundancy and low complexity,

by allowing convergence to an approximate rather than exact

solution. As far as we know, ours is the first work that

studies distributed CD under Byzantine attacks and provides

an efficient solution, much better than the replication-based

solution (see Remark 7). At the heart of our solution for CD

is the matrix-vector (MV) multiplication procedure that we

develop in this paper; and it is the specific regular structure

of our encoding matrix (given in (11), designed for the MV

multiplication) that allows for partially updating the coordi-

nates of the parameter vector in each CD iteration. Note that a

general-purpose encoding matrix for MV multiplication may

not be applicable for the CD algorithm.

It has been observed earlier in several works (see, for

example, [33], [34]) that gradient computation in GD for

linear regression can be reduced to MV multiplication, and

any general-purpose code for MV multiplication can be used

to provide a solution for gradient computation. As far as we

know, ours is the first paper that makes the connection of CD

and MV multiplication, and provides an efficient solution

for CD (which is also resilient to Byzantine attacks) for

learning generalized linear models. Note that, unlike GD,

not any general-purpose code for MV multiplication can be

used for CD: the main challenge in CD comes from the

fact that we only update a small number of coordinates

of the parameter vector in each CD iteration; when we

encode the data and iteratively update some coordinates of

the (encoded) parameter vector using the encoded data, we

need to make sure that this update in the encoded parameter

vector is reconciled with the update in the original parameter

vector. This is fundamentally different from GD iterations.

See Section V for more details.

C. Matrix-Vector Multiplication

For the task of a more fundamental problem of matrix-

vector (MV) multiplication in the presence of Byzantine ad-

versaries, which is at the core of the optimization algorithms

in this paper, we are only aware of two concurrent works [29]

(see Footnote 13) and [47]14 that provide (coding-theoretic)

14The conference version [34] only studies the straggler problem, and the
journal version [47] briefly mentions how their results from [34] can be
extended to handle adversarial nodes, and we describe that in this section.
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solutions to this problem. In the following, we do a detailed

comparison of our solution with both of these works and also

discuss the (dis)similarities.

We have already done a detailed comparison with Yu et

al. [29] (concurrent work, see Footnote 13) with respect to

gradient descent in Section III-A. For the problem of MV

multiplication, the storage requirement, computation time per

worker, and communication complexity to/from workers is

the same in both ours and [29]. The comparison of encoding

time complexity is same as above; however, for a constant

corruption, say, m
3 corrupt workers, our method outperforms

the one in [29] in terms of the decoding time complexity

by a factor of O(log2(m)). Note that, unlike [29], we

make a fundamental connection of handling Byzantine errors

with the sparse reconstruction (or the real-error correction)

problem from the compressive sensing literature [35].

Dutta et al. [47] (concurrent work, see Footnote 14)

focuses on matrix-vector (MV) multiplication. Though their

main focus is on providing resilience against stragglers, they

also mention that handling stragglers is very different than

handling errors, as it requires to correct errors over real

numbers, and, unlike stragglers, we do not know which

workers are corrupt. Similar to our observation, they also

note that since the matrices and vectors have entries from

real numbers, the decoding problem reduces to the sparse

reconstruction problem from the compressive sensing litera-

ture [35] and they also provide such a reduction. Apart from

these similarities, our solution for MV multiplication differs

from that of [47] in several important ways: (i) [47] provides

a detailed solution to the distributed MV multiplication for

the straggler problem for the case when the number of rows

in the matrix is smaller than the number of workers nodes.

As mentioned in [47], this method can be easily generalized

to the more general case when the matrix is of arbitrary

dimension, in which case, first we can divide the rows of

the matrix into several sub-matrices, each having number of

rows smaller than the number of workers, and then apply

the above method independently to each sub-matrix. This

simple extension may work (without losing efficiency) for

the straggler/erasure problem, however, leads to a highly

inefficient solution for the adversary/error problem. The

reason being that, in the presence of Byzantine workers, if

we solve the sparse reconstruction problem for each sub-

matrix separately, this would be inefficient, as the decoding

would then be computationally expensive. To remedy this,

we exploit the block error pattern and use a simple idea of

linearly combining the response vectors from each worker

using coefficients drawn from an absolutely continuous dis-

tribution, so that we only need to do just one computation

for solving the sparse construction problem. This significantly

reduces the decoding complexity; see Section IV-A for de-

tails. (ii) [47] only shows a connection to the sparse recovery

problem, whereas, we provide a complete solution, with a

concrete sparse recovery (or real-error correction) matrix and

resource (encoding/decoding time, storage, communication)

requirement analysis. (iii) Our encoding matrix (given in

(11)) to encode data matrices of arbitrary dimensions is very

sparse and highly structured which allows us to apply that

construction to CD algorithm, which, as far we know, has not

been connected with MV multiplication before. Also, ours is

the first paper that provides a non-trivial and efficient (data

encoding) solution to CD in the presence of a Byzantine

adversary. (iv) We also want to mention that the focus in

[47] is on making the encoded matrix sparse (at the expense

of increased computation at workers) so that workers need

to compute shorter dot products, whereas, in this paper, we

make the encoding matrix sparse (much sparser than the

encoded matrix of [47]) to get efficient encoding/decoding.

IV. OUR SOLUTION TO GRADIENT COMPUTATION

In this section, we describe the core technical part of our

two-round approach for gradient computation described in

Section II-D – a method for performing matrix-vector (MV)

multiplication in a distributed manner in the presence of a

malicious adversary who can corrupt at most t of the m
worker nodes. Here, the matrix is fixed and we want to right-

multiply a vector with this matrix.

Given a fixed matrix A ∈ R
nr×nc and a vector v ∈ R

nc ,

we want to compute Av in a distributed manner in the

presence of at most t corrupt worker nodes; see Section II-C

for details on our adversary model. Our method is based on

data encoding and error correction over real numbers, where

the matrix A is encoded and distributed among all the worker

nodes, and the master node recovers the MV product Av

using real-error correction; see Figure 1. We will think of

our encoding matrix as S = [ST
1 ST

2 , . . . ,S
T
m], where each

Si is a p×nr matrix and pm ≥ nr. We will derive the matrix

S in Section IV-B. For the value of p, looking ahead, we will

set p = ⌈ n
m−2t⌉, which is a constant multiple of n

m even if t

is a constant (< 1
2 ) fraction of m (e.g., if t = m

3 , we would

have p = 3n
m ). For i ∈ [m], we store the matrix SiA at the

i’th worker node. As described in Section II, the computation

proceeds as follows: The master sends v to all the worker

nodes and receives {SiAv + ei}mi=1 back from them. Let

ei = [ei1, ei2, . . . , eip]
T for every i ∈ [p]. Note that ei = 0

if the i’th node is honest, otherwise can be arbitrary. In order

to find the set of corrupt worker nodes, master equivalently

writes {SiAv + ei}mi=1 as p systems of linear equations.

h̃i(v) = S̃iAv + ẽi, i ∈ [p] (8)

where, for every i ∈ [p], ẽi = [e1i, e2i, . . . , emi]
T , and S̃i

is an m × nr matrix whose j’th row is equal to the i’th
row of Sj , for every j ∈ [m]. Note that at most t entries

in each ẽi are non-zero. Observe that {SiAv + ei}mi=1 and

{S̃iAv + ẽi}pi=1 are equivalent systems of linear equations,

and we can get one from the other.

Note that S̃i’s constitute the encoding matrix S, which

we have to design. In the following, we will design these

matrices S̃i’s (which in turn will determine the encoding

matrix S), with the help of another matrix F, which will

be used to find the error locations, i.e., identities of the

compromised worker nodes. We will design the matrix F
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Fig. 1 This figure shows our 2-round approach to the Byzantine-resilient distributed gradient descent to optimize (1) for learning a generalized linear
model. Since the gradient at w is equal to ∇f(w) = XT f ′(w) (see (7)), we compute it in 2 rounds, using a matrix-vector (MV) multiplication as a
subroutine in each round. In the 1st round, first we compute Xw, and then compute f ′(w) from Xw – since the j’th entry of Xw is equal to 〈xj ,w〉,
we can compute f ′(w) from Xw (see Section II-D). In the 2nd round we compute XT f ′(w) – which is equal to ∇f(w) – using another application
of MV multiplication. For a matrix A and a vector v, to make our distributed MV multiplication Av Byzantine-resilient, we encode A using a sparse
matrix S = [ST

1 ST
m . . . ST

m]T and distribute SiA to worker i (denoted by Wi). Note that in the first round, we have A = X,v = w, and we encode

X using S(1), and in the second round, we have A = XT ,v = f ′(w), and encode XT using S(2). The adversary can corrupt at most t workers (the
compromised ones are denoted in red color), potentially different sets of t workers in different rounds. The master node (denoted by M) broadcasts v to
all the workers. Each worker performs the local MV product and sends it back to M. If Wi is corrupt, then it can send an arbitrary vector. Once the master
has received all the vectors (out of which t may be erroneous), it sends them to the decoder (denoted by Dec), which outputs the correct MV product Av.

(of dimension k ×m, where k < m – here k is determined

by the error-correction capability, and we will set k = 2t; see

Section IV-D for more details) and the matrices S̃i’s such that

C.1 FS̃i = 0 for every i ∈ [p].
C.2 For any t-sparse u ∈ R

m, we can efficiently find all the

non-zero locations of u from Fu.

C.3 For any T ⊂ [m] such that |T | ≥ (m−t), let ST denote

the |T |p × nr matrix obtained from S by restricting it

to all the Si’s for which i ∈ T . We want ST to be of

full column rank.

If we can find such matrices, then we can recover the desired

MV multiplication Av exactly: briefly, C.1 and C.2 will

allow us to locate the corrupt worker nodes; once we have

found them, we can discard all the information that the master

node had received from them. This will yield ST Av, where

ST is the |T |p×nr matrix obtained from S by restricting it

to Si’s for all i ∈ T , where T is the set of all honest worker

nodes. Now, by C.3, since ST is of full column rank, we can

recover Av from ST Av exactly. Details follow.

Suppose we have matrices F and S̃i’s such that C.1 holds.

Now, multiplying (8) by F yields

fi := Fh̃i(v) = Fẽi, (9)

for every i ∈ [p], where ‖ẽi‖0 ≤ t. In Section IV-A, we give

our approach for finding all the corrupt worker nodes with the

help of any error locator matrix F. Then, in Section IV-B,

we give a generic construction for designing S̃i’s (and, in

turn, our encoding matrix S) such that C.1 and C.3 hold. In

Section IV-C, we show how to compute the desired matrix-

vector product Av efficiently, once we have discarded all the

data from the corrupt works nodes. Then, in Section IV-D,

we will give details of the error locator matrix F that we use

in our construction.

Remark 8. As we will see in Section IV-B, the structure of

our encoding matrix S is independent of our error locator

matrix F. Specifically, the repetitive structure of the non-zero

entries of S as well as their locations will not change irre-

spective of what the F matrix is. This makes our construction

very generic, as we can choose whichever F suits our needs

the best (in terms of how many erroneous indices it can locate

and with what decoding complexity), and it won’t affect the

structure of our encoding matrix at all – only the non-zero

entries might change, neither their repetitive format, nor their

locations!

A. Finding The Corrupt Worker Nodes

Observe that supp(ẽi) may not be the same for all i ∈ [p],
but we know, for sure, that the non-zero locations in all these

error vectors occur within the same set of t locations. Let

I =
⋃p

i=1 supp(ẽi), which is the set of all corrupt worker

nodes. Note that |I| ≤ t. We want to find this set I efficiently,

and for that we note the following crucial observation. Since

the non-zero entries of all the error vectors ẽi’s occur in the

same set I, a random linear combination of ẽi’s has support
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equal to I with probability one, if the coefficients of the

linear combination are chosen from an absolutely continuous

probability distribution. This idea has appeared before in [51]

in the context of compressed sensing for recovering arbitrary

sets of jointly sparse signals that have been measured by the

same measurement matrix.

Definition 1. A probability distribution is called absolutely

continuous, if every event of measure zero occurs with

probability zero.

It is well-known that a distribution is absolutely continuous

if and only if it can be represented as an integral over an inte-

grable density function [52, Theorem 31.8, Chapter 6]. Since

Gaussian and uniform distributions have an explicit integrable

density function, both are absolutely continuous. Conversely,

discrete distributions are not absolutely continuous. Now we

state a lemma from [51] that shows that a random linear

combination of the error vectors (where coefficients are

chosen from an absolutely continuous distribution) preserves

the support with probability one.

Lemma 1 ([51]). Let I =
⋃p

i=1 supp(ẽi), and let ê =∑p
i=1 αiẽi, where αi’s are sampled i.i.d. from an absolutely

continuous distribution. Then with probability 1, we have

supp(ê) = I.

From (9) we have fi = Fẽi for every i ∈ [p]. Take

a random linear combination of fi’s with coefficients αi’s

chosen i.i.d. from an absolutely continuous distribution, for

example, the Gaussian distribution. Let f̃ = αi (
∑p

i=1 fi) =
αi (
∑p

i=1 Fẽi) = F (
∑p

i=1 αiẽi) = Fẽ, where ẽ =∑p
i=1 αiẽi. Note that, with probability 1, supp(ẽ) is equal

to the set of all corrupt worker nodes, and we want to

find this set efficiently. In other words, given Fẽ, we want

to find supp(ẽ) efficiently. For this, we need to design a

k × m matrix F (where k < m) such that for any sparse

error vector e ∈ R
m, we can efficiently find supp(e) from

f = Fe. Many such matrices have been known in the

literature that can handle different levels of sparsity with

varying decoding complexity. We can choose any of these

matrices depending on our need, and this will not affect the

design of our encoding matrix S. In particular, we will use

a k×m Vandermonde matrix along with the Reed-Solomon

type decoding, which can correct up to k/2 errors and has

decoding complexity of O(m2); see Section IV-D for details.

Time required in finding the corrupt worker nodes. The

time taken in finding the corrupt worker nodes is equal

to the sum of the time taken in the following 3 tasks. (i)

Computing Fẽi for every i ∈ [p]: Note that we can get Fẽi
by multiplying (8) with F. Since F is a k ×m matrix, and

we compute Fh̃i(v) for p systems, this requires O(pkm)
time. (ii) Taking a random linear combination of p vectors

each of length m, which takes O(pm) time. (iii) Applying

Lemma 2 (in Section IV-D) once to find the error locations,

which takes O(m2) time. Since p is much bigger than m,

the total time complexity is O(pkm).

B. Designing The Encoding Matrix S

Now we give a generic construction for designing S̃i’s

such that C.1 and C.3 hold. Fix any k×m matrix F such that

we can efficiently find e from Fe, provided e is sufficiently

sparse. We can assume, without loss of generality, that F has

full row-rank; otherwise, there will be redundant observations

in Fe that we can discard and make F smaller by discarding

the redundant rows. Let N (F) ⊂ R
m denote the null-space

of F. Since rank(F) = k, dimension of N (F) is q = (m−
k). Let {b1,b2, . . . ,bq} be a basis of N (F), and let bi =
[bi1 bi2 . . . bim]T , for every i ∈ [q]. We set bi’s the columns

of the following matrix F⊥:

F⊥ =




b11 b21 . . . bq1

b12 b22 . . . bq2
...

...
...

...

b1m b2m . . . bqm




m×q

(10)

The following property of F⊥ will be used for recovering

the MV product in Section IV-C.

Claim 1. For any subset T ⊂ [m], such that |T | ≥ (m− t),
let F⊥

T be the |T |×q matrix, which is equal to the restriction

of F⊥ to the rows in T . Then F⊥
T is of full column rank.

Proof. Note that q = m − k, where k = 2t. So, if

we show that any q rows of F⊥ are linearly independent,

then, this in turn will imply that for every T ⊂ [m] with

|T | ≥ (m − t), the sub-matrix F⊥
T will have full column

rank. In the following we show that any q rows of F⊥ are

linearly independent. To the contrary, suppose not; and let

T ′ ⊂ [m] with |T ′| = q be such that the q× q matrix F⊥
T ′ is

not a full rank matrix. This implies that there exists a non-

zero c′ ∈ R
q such that F⊥

T ′c′ = 0. Let b = F⊥c′. Note that

b 6= 0 (because columns of F⊥ are linearly independent)

and also that ‖b‖0 ≤ m− q = k. Now, since FF⊥ = 0, we

have Fb = 0, which contradicts the fact that any k columns

of F are linearly independent.

Now we design S̃i’s. For i ∈ [p], we set S̃i as follows:

S̃i =




0 . . . 0 b11 b21 . . . bl1 0 . . . 0

0 . . . 0 b12 b22 . . . bl2 0 . . . 0

...
...

...
...

...
...

...
...

...
...

0 . . . 0 b1m b2m . . . blm 0 . . . 0




where l = q if i < p; otherwise l = nr − (p− 1)q. The first

(i − 1)q and the last nr − [(i − 1)q + l] columns of S̃i are

zero. This also implies that the number of rows in each Si

is p = ⌈nr/q⌉.
Claim 2. For every i ∈ [p], we have FS̃i = 0.

Proof. By construction, the null-space of F is N (F) =
span{b1,b2, . . . ,bq}, which implies that Fbi = 0, for

every i ∈ [q]. Since all the columns of S̃i’s are either 0

or bj for some j ∈ [q], the claim follows.
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The above constructed matrices S̃i’s give the following

encoding matrix Si for the i’th worker node:

Si =




b1i . . . bqi

. . .

b1i . . . bqi

b1i . . . bli




p×nr

(11)

All the unspecified entries of Si are zero. The matrix Si is

for encoding the data for worker i. By stacking up the Si’s

on top of each other gives us our desired encoding matrix S.
To get efficient encoding, we want S to be as sparse as

possible. Since S is completely determined by F⊥, whose

columns are the basis vectors of N (F), it suffices to find a

sparse basis for N (F). It is known that finding the sparsest

basis for the null-space of a matrix is NP-hard [53]. Note that

we can always find the basis vectors of N (F) by reducing F

to its row-reduced-echelon-form (RREF) using the Gaussian

elimination [54]. This will result in F⊥ whose last q rows

forms a q × q identity matrix. Note that q = m − k, where

k = 2t. So, if the corruption threshold t is very small as

compared to m, the F⊥ that we obtain by the RREF will

be very sparse – only the first 2t rows may be dense. Since

computing S is equivalent to computing F⊥, and we can

compute F⊥ in O(k2m) time using the Gaussian elimination,

the time complexity of computing S is also O(k2m).
Now we prove an important property of the encoding

matrix S that will be crucial for recovery of the desired

matrix-vector product.

Claim 3. For any T ⊂ [m] such that |T | ≥ (m− t), let ST

denote the |T |p × nr matrix obtained from S by restricting

it to all the blocks Si’s for which i ∈ T . Then ST is of full

column rank.

Proof. For i ∈ [p − 1], let Bi = [(i − 1)q + 1 : iq] and

Bp = [(p− 1)q + 1 : nr − (p− 1)q], where we see Bi’s as a

collection of some column indices. Consider any two distinct

i, j ∈ [p]. It is clear that for any two vectors u1 ∈ Bi,u2 ∈
Bj , we have supp(u1) ∩ supp(u2) = φ, which means that

all the columns in distinct Bi’s are linearly independent. So,

to prove the claim, we only need to show that the columns

within the same Bi’s are linearly independent. Fix any i ∈ [p],

and consider the |T |p × q sub-matrix S
(i)
T of ST , which is

obtained by restricting ST to the columns in Bi. There are

precisely |T | non-zero rows in S
(i)
T , which are equal to the

rows of the matrix F⊥
T defined in Claim 1. We have already

shown in the proof of Claim 1 that F⊥
T is of full column rank.

Therefore, S
(i)
T is also of full column rank. This concludes

the proof of Claim 3.

Since ST is of full column rank, in principle, we can

recover any vector u ∈ R
nr from ST u. In the next section,

we show an efficient way for this recovery.

C. Recovering The Matrix-Vector Product Av

Once the master has found the set I of corrupt worker

nodes, it discards all the data received from them. Let

T = [m] \ I = {i1, i2, . . . , if} be the set of all honest

worker nodes, where f = (m − |I|) ≥ (m − t). Let

r = [rT1 r
T
2 . . . rTm], where ri = SiAv+ ei. All the ri’s from

the honest worker nodes can be written as

rT = ST Av, (12)

where ST is as defined in Claim 3, and rT is also defined

analogously and equal to the restriction of r to all the ri’s for

which i ∈ T . Since ST has full column rank (by Claim 3),

in principle, we can recover Av from (12). Next we show

how to recover Av efficiently, by exploiting the structure of

S.

Let r̃j = [ri1j , ri2j , . . . , rif j ]
T , for every j ∈ [p]. The

repetitive structure of Si’s (see (11)) allows us to write (12)

equivalently in terms of p smaller systems.

r̃j = Fj(Av)Bj
, for j ∈ [p], (13)

where, for j ∈ [p−1], Bi = [(i−1)q+1 : iq] and Fj = F⊥
T ,

and Bp = [(p−1)q+1 : nr−(p−1)q] and Fp is equal to the

restriction of F⊥
T to its first (nr−(p−1)q) columns. Since F⊥

T

has full column rank (by Claim 1), we can compute (Av)Bi

for all i ∈ [p], by multiplying (13) by F+
j = (FT

j Fj)
−1FT

j ,

which it called the Moore-Penrose inverse of Fj . Since

Av = [(Av)TB1
, (Av)TB2

, . . . , (Av)TBp
)]T , we can recover

the desired MV product Av.

Time Complexity analysis. The task of obtaining Av from

ST Av reduces to (i) computing F+
j = (F⊥

T )
+ once, which

takes O(q2|T |) time naïvely; (ii) computing F+
p once, which

takes at most O(q2|T |) time naïvely; and (iii) computing the

MV products F+
j r̃j for every j ∈ [p], which takes O(pq|T |)

time in total. Since p is much bigger than q, the total time

taken in recovering Av from ST Av is O(pq|T |) = O(pm2).

D. Designing The Error Locator Matrix F

In this section, we design a k×m matrix F (where k < m)

such that for any sparse error vector e ∈ R
m, we can

uniquely and efficiently recover e (and, therefore, supp(e))
from the under-determined system of linear equations f =
Fe ∈ R

k. This is related to the sparse representation prob-

lem, where one would like to find the sparsest representation

of f in terms of the linear combination of the columns of F,

i.e., minimizing ‖e‖0 subject to the constraint that f = Fe.

This problem is of combinatorial nature and is known to

be NP-hard [35]. To make this problem computationally

tractable, Candes and Tao [35] showed that if F satisfies a

certain regularity condition (which they named the restricted

isometry property (RIP)), then the sparsest reconstruction

problem can be reduced to minimizing ‖e‖1 :=
∑m

i=1 |ei|
subject to the constraint that f = Fe, which can be efficiently

solved using a linear program. They also showed that a ran-

dom Gaussian matrix satisfies the RIP condition. A common

problem with such random constructions is that they may

not work with small block-lengths (in our setting, m is the

number of workers which may not be a big number), and can

only correct a constant fraction of errors, where the constant

is very small. We need a deterministic construction that can
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handle a constant fraction (ideally up to 1/2) of errors and

that works with small block-lengths.

Akçakaya and Tarokh [55] proposed an efficient solution

to the sparse representation problem using Vandermonde ma-

trices. To construct them, take m distinct non-zero elements

z1, z2, . . . , zm from R, and consider the following k × m
Vandermonde matrix F.

F =




1 1 1 . . . 1

z1 z2 z3 . . . zm

z21 z22 z23 . . . z2m
...

...
...

. . .
...

zk−1
1 zk−1

2 zk−1
3 . . . zk−1

m




k×m

(14)

For the above F, it was shown in [55] that, if |supp(e)| ≤
k/2, then the Reed-Solomon type decoding can be used for

exact reconstruction of e from f = Fe.15 Furthermore, their

decoding algorithm is efficient and runs in O(m2) time. The

results in [55] are given for complex vector spaces, and

they hold over real numbers also. Below we state the sparse

recovery result (specialized to reals) from [55].

Lemma 2 ([55]). Let F be the k ×m matrix as defined in

(14). Let e ∈ R
m be an arbitrary vector with |supp(e)| ≤

k/2. We can exactly recover the vector e from f = Fe in

O(m2) time.

Note that F is a k×m matrix, where k < m. Choosing k
is in our hands, and larger the k, more the number of errors

we can correct (but at the expense of increased storage and

computation); see Section IV-E for more details.

E. Resource Requirement Analysis

In this section, we analyze the total amount of resources

(storage, computation, and communication) required by our

method for computing gradients in the presence of t (out of

m) adversarial worker nodes and prove Theorem 1. Fix an

ǫ > 0. Let the corruption threshold t satisfy t ≤ ⌊(ǫ/(1 +
ǫ)) · (m/2)⌋.

As described earlier in Section II-D, we compute the

gradient ∇f(w) = XT f ′(w) in two-rounds; and in each

round we use the Byzantine-tolerant MV multiplication,

which we have developed in Section IV, as a subroutine;

see Figure 1 for a pictorial representation of our scheme.

We encode X to compute f ′(w) in the 1st round: first

compute Xw using MV multiplication and then locally

compute f ′(w). To compute XT f ′(w) (which is equal to

the gradient) in the 2nd round, we encode XT and compute

XT f ′(w). Let S(1) and S(2) be the encoding matrices of

dimensions p1m × n and p2m × d, respectively, to encode

X and XT , respectively. Here, p1 = ⌈n/q⌉ and p2 = ⌈d/q⌉,
where q = m − k. Since k = 2t (by Lemma 2), we have

q = (m− k) ≥ m/(1 + ǫ).

15Note that, since any k columns of F (which is the Vandermonde matrix)
are linearly independent, if there exists a vector e such that |supp(e)| ≤ k/2
and e satisfies f = Fe for a fixed f , then e is unique.

1) Storage Requirement: Each worker node i stores two

matrices S
(1)
i X and S

(2)
i XT . The first one is a p1 × (d+ 1)

matrix, and the second one is a p2 × n matrix. So, the total

amount of storage at all worker nodes is equal to storing

(p1(d+1)+p2n)×m real numbers. Since p1 ≤ ⌈(1+ ǫ) n
m⌉

and p2 ≤ ⌈(1 + ǫ) d
m⌉, the total storage is

(
p1(d+ 1) + p2n

)
m = p1m(d+ 1) + p2mn

< [(1 + ǫ)n+m](d+ 1) + [(1 + ǫ)d+m]n

= (1 + ǫ)n(2d+ 1) +m(n+ d+ 1).

where the first term is roughly equal to a 2(1 + ǫ) factor

more than the size of X. Note that the second term does

not contribute much to the total storage as compared to the

first term, because the number of worker nodes m is much

smaller than both n and d. In fact, if m− k divides both n
and d, then the second term vanishes. Since |X| is an n× d
matrix, the total storage at each worker node is almost equal

to 2(1+ ǫ) |X|
m , which is a constant factor of the optimal, that

is,
|X|
m , and the total storage is roughly equal to 2(1+ ǫ)|X|.

2) Computational Complexity: We can divide the compu-

tational complexity of our scheme as follows:

• Encoding the data matrix. Since, for every i ≤ k and

j > k, the total number of non-zero entries in S
(1)
i and

S
(1)
j are at most n and p1, respectively (see Section IV-B

for details), the computational complexity for computing

S
(1)
i X for each i ≤ k, and S

(1)
j X for each j > k, is

O(nd) and O(p1d), respectively. So, the encoding time for

computing S(1)X is equal to O (k(nd) + (m− k)(p1d)) =

O
(
( ǫ
1+ǫm+ 1)nd

)
. Similarly, we can show that the

encoding time for computing S(2)XT is also equal to

O
(
( ǫ
1+ǫm+ 1)nd

)
. Note that computing S(1) and S(2)

take O(k2m) time each, which is much smaller, as com-

pared to the encoding time. So, the total encoding time is

O
(
( ǫ
1+ǫm+ 1)nd

)
. Note that this encoding is to be done

only once.

• Computation at each worker node. In the first round, upon

receiving w from the master node, each worker i computes

(S
(1)
i X)w, and reports back the resulting vector. Similarly,

in the second round, upon receiving f ′(w) from the master

node, each worker i computes (S
(2)
i XT )f ′(w), and reports

back the resulting vector. Since S
(1)
i X and S

(2)
i XT are

p1×(d+1) and p2×n matrices, respectively, each worker

node i requires O(p1d+ p2n) = O((1 + ǫ)ndm ) time.

• Computation at the master node. The total time taken by

the master node in both the rounds is the sum of the time

required in (i) finding the corrupt worker nodes in the 1st

and 2nd rounds, which requires O(p1km) and O(p2km)
time, respectively (see Section IV-A), (ii) recovering Xw

from S
(1)
T Xw in the 1st round, which requires O(p1m

2)
time, (iii) computing f ′(w) from Xw, which takes O(n)

time, and (iv) recovering XT f ′(w) from S
(2)
T XT f ′(w)

in the 2nd round, which requires O(p2m
2) time (see

Section IV-C). Since k < m, the total time is equal to
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O((p1 + p2)m
2) = O((1 + ǫ)(n+ d)m).

3) Communication Complexity: In each gradient compu-

tation, (i) master broadcasts (n + d) real numbers, d in the

first round and n in the second round; and (ii) each worker

sends
(
(1 + ǫ)n+d

m

)
real numbers to master, (1+ ǫ) n

m in the

first round and (1 + ǫ) d
m in the second round.

V. OUR SOLUTION TO COORDINATE DESCENT

In this section, we give a solution to the distributed

coordinate descent (CD) under Byzantine attacks and prove

Theorem 2. To make our notation simpler, we remove the

dependence on the label vector y in the problem expression

(5) and rewrite it as follows (this is without loss of generality

in the light of Footnote 5 and Algorithm 1):

arg min
w∈Rd

φ(Xw) :=
n∑

i=1

ℓ(〈xi,w〉). (15)

We want to optimize (15) using distributed CD, described

in Section II-B. As outlined in Section II-E, we use data

encoding and error correction over real numbers for that.

To combat the effect of adversary, we add redundancy

to enlarge the parameter space. Let X̃R = XR, where

R = [R1 R2 . . . Rm] ∈ R
d×pm with pm ≥ d, and each

Ri is a p×d matrix. We will determine the encoding matrix

R later, after describing what properties we want from it.

For the value of p, looking ahead, when t is the number

of corrupt workers, we will choose p = d
m−2t , which is

a constant multiple of d
m even if t is a constant fraction

(< 1
2 ) of m (e.g., for t = m

3 , we have p = 3d
m ). We consider

R’s which are of full row-rank. Let R+ := RT (RRT )−1

denote its Moore-Penrose inverse such that RR+ = Id,

where Id is the d × d identity matrix. Note that R+ is

of full column-rank. Let v = R+w be the transformed

vector, which lies in a larger (than d) dimensional space.

Let R+ = [(R+
1 )

T (R+
2 )

T . . . (R+
m)T ]T , where each

R+
i := (R+)i is a p × d matrix. With this, by letting

v = [vT
1 vT

2 . . . vT
m]T , we have that vi = R+

i w for every

i ∈ [m]. Now, consider the following modified problem over

the encoded data.

arg min
v∈Rpm

φ(X̃Rv). (16)

Observe that, since R is of full row-rank, minw∈Rd φ(Xw) is

equal to minv∈Rpm φ(X̃Rv); and from an optimal solution

to one problem we can obtain an optimal solution to the

other problem. We design an encoding/decoding scheme such

that when we optimize the encoded problem (16) using

Algorithm 1, the vector v that we get in each iteration is

of the form v = R+w for some vector w ∈ R
d.16 In

fact, our encoding/decoding will ensure that the w for which

v = R+w would be equal to the original parameter vector

in that iteration if we had run Algorithm 1 to solve (15).

We need this property because in any CD iteration t, we

16If such a w exists, then it is unique. This follows from the fact that
R+ is of full column-rank.

need access to the original parameter vector wt (such that

vt = R+wt) to facilitate the local parameter updates of

vt
1, . . . ,v

t
m at the workers. See the paragraph after (18) for

more details.

Now, instead of solving (15), we solve its encoded form

(16) using Algorithm 1 (with decoding at the master), where

each worker i stores X̃R
i = XRi and is responsible for

updating (some coordinates of) vi. In the following, let

U ⊆ [p] be a fixed arbitrary subset of [p]. Let v0 := R+w0

for some w0 at time t = 0. Suppose, at the beginning of the

t’th iteration, we have vt = R+wt for some wt, and each

worker i updates vt
iU according to

vt+1
iU = vt

iU − αt∇iUφ(X̃
Rvt), (17)

where ∇iUφ(X̃
Rvt) = (X̃R

iU )
Tφ′(X̃Rvt). Recall that each

Ri is a d×p matrix, and each R+
i := (R+)i is a p×d matrix.

We denote by RiU the d×|U| matrix obtained by restricting

the columns of Ri to the elements of U . Analogously, we

denote by R+
iU := (R+)iU the |U| × d matrix obtained by

restricting the rows of R+
i to the elements of U . With this,

we can write X̃R
iU = XRiU . Now, (17) can be equivalently

written as

vt+1
iU = vt

iU − αtR
T
iUX

Tφ′(X̃Rvt). (18)

In order to update vt
iU , worker i requires φ′(X̃Rvt), where

X̃Rvt =
∑m

j=1 X̃
R
j v

t
j and worker i has only (X̃R

i ,v
t
i). Since

vt = R+wt, we have X̃Rvt = XRvt = Xwt. So, it

suffices to compute Xwt at the master node – once master

has Xwt, it can locally compute φ′(Xwt) and send it to

all the workers. Computing Xwt is the distributed matrix-

vector (MV) multiplication problem, where the matrix X is

fixed and we want to compute Xwt for any vector wt in the

presence of an adversary. In Section IV, we give a method

for performing distributed MV multiplication in the presence

of an adversary. Now we give an overview, together-with an

improvement on its computational complexity.

We encode X using an encoding matrix L ∈ R
(p′m)×n. Let

L = [LT
1 LT

2 . . . LT
m]T , where each Li is a p′×n matrix with

p′ = ⌈ n
m−2t⌉. Each Li has p′ rows and n columns, and has

the same structure as that of Si from (11). Worker i stores

X̃L
i = LiX. To compute Xw, master sends w to all the

workers; worker i responds with LiXw + ei, where ei = 0

if the i’th worker is honest, otherwise can be arbitrary; upon

receiving {LiXw+ei}mi=1, where at most t of the ei’s can be

non-zero, master applies the decoding procedure and recovers

Xw back. We can improve the computational complexity of

this method significantly by observing that, in each iteration

of our distributed CD algorithm, only a few coordinates of w

get updated and the rest of the coordinates remain unchanged.

(Looking ahead, when each worker updates viU ’s according

to (17), it automatically updates wf(U) according to (6) –

for a specific function f as defined in (21) – where v and

w satisfy v = R+w.) This implies that for computing Xw,

master only needs to send the updated coordinates to the

workers and keeps the result from the previous MV product

with itself. This significantly reduces the local computation
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at the worker nodes, as now they only need to perform a local

MV product of a matrix of size p′ × |f(U)| and a vector of

length |f(U)|. See Section IV for details.

Our goal in each iteration of CD is to update some

coordinates of the original parameter vector w; instead, by

solving the encoded problem, we are updating coordinates of

the transformed vector v. We would like to design an algo-

rithm/encoding such that it has exactly the same convergence

properties as if we are running the distributed CD on the

original problem without any adversary. For this, naturally,

we would like our algorithm to satisfy the following property:

Update on any (small) subset of coordinates of w should

be achieved by updating some (small) subset of coordinates of

vi’s; and, by updating those coordinates of vi’s, we should

be able to efficiently recover the correspondingly updated

coordinates of w. Furthermore, this should be doable despite

the errors injected by the adversary in every iteration of the

algorithm.

Note that if each coordinate of v depends on too many

coordinates of w, then updating a few coordinates of v may

affect many coordinates of w, and it becomes information-

theoretically impossible to satisfy the above property (even

without the presence of an adversary).17 This imposes a

restriction that each row of R+ must have few non-zero

entries, in such a way that updating vt
iU ’s, for any choice

of U ⊆ [p], will collectively update only a subset (which

may potentially depend on U ) of coordinates of the original

parameter vector wt, and we can uniquely and efficiently

recover those updated coordinates of wt, even from the

erroneous vectors {vt+1
iU + eiU}mi=1, where at most t out

of m error vectors {eiU}mi=1 are non-zero and may have

arbitrary entries. In order to achieve this, we will design a

sparse encoding matrix R+ (which in turn determines R),

that satisfies the following properties:

P.1 R+ has structured sparsity, which induces a map f :
[p] → P([d]) (where P([d]) denotes the power set of

[d]) such that

a) {f(i) : i ∈ [p]} partitions {1, 2, . . . , d}, i.e., for every

i, j ∈ [p], such that i 6= j, we have f(i) ∩ f(j) = ∅
and that

⋃p
i=1 f(i) = [d].

b) |f(i)| = |f(j)| for every i, j ∈ [p− 1], and |f(p)| ≤
|f(i)|, for any i ∈ [p− 1].

c) For any U ⊆ [p], define f(U) := ∪j∈Uf(j). If

we update vt
iU , ∀i ∈ [m], according to (18), it

automatically updates wt
f(U) according to

wt+1
f(U) = wt

f(U) − αtX
T
f(U)φ

′(Xwt). (19)

17To see this, consider the case when each worker i updates only the
first coordinate of vi and no worker is corrupt. Master receives m linear
equations vi1 = R+

i1w, i = 1, 2, . . . ,m, where R+
i1 is the first row of

R+
i for every i ∈ [m]. Assume, for simplicity, that these m equations are

linearly independent. When m is smaller than d (which is always the case),
there are infinite solutions to this system of linear equations, unless at most
m elements of w are involved in the m linear equations (i.e., the number
of unknowns are at most the number of equations), which is equivalent to
saying that the rows R+

i1 for i = 1, 2, . . . ,m are sparse. Our encoding
matrix will satisfy this property; see Section V-A for more detail.

If we set vt+1

iU
:= vt

iU
and wt+1

f(U)
:= wt

f(U)
, then

vt+1 = R+wt+1, i.e., our invariant holds.

Note that (19) is the same update rule if we run the plain

CD algorithm to update wf(U). In fact, our encoding matrix

satisfies a stronger property, that vt+1
iU = R+

iU,f(U)w
t+1
f(U)

holds for every i ∈ [m], U ⊆ [p], where R+
iU,f(U) denotes

the |U| × |f(U)| matrix obtained from R+
iU by restricting its

column indices to the elements in f(U).
P.2 We can efficiently recover wt+1

f(U) from the erroneous

vectors {vt+1
iU + eiU}mi=1, where at most t of eiU ’s are

non-zero and may have arbitrary entries. Since vt+1
iU =

R+
iU,f(U)w

t+1
f(U), for every i ∈ [m], U ⊆ [p], this property

requires that not only R+, but its sub-matrices also have

error correcting capabilities.

Remark 9. Note that P.1 implies that for every i ∈ [p],
we have |f(i)| ≤ d/p. As we see later, this will be equal

to m/(1 + ǫ) for some ǫ > 0 which is determined by the

corruption threshold. This means that in each iteration of the

CD algorithm running on the modified encoded problem, we

will be effectively updating the coordinates of the parameter

vector w in chunks of size m/(1+ǫ) or its integer multiples.

In particular, if each worker i updates k coordinates of

vi, then km/(1 + ǫ) coordinates of w will get updated.

For comparison, Algorithm 1 updates km coordinates of the

parameter vector w in each iteration, if each worker updates

k coordinates in that iteration.

Now we design an encoding matrix R+ and a decoding

method that satisfy P.1 and P.2.

A. Encoding and Decoding

In this section, we first design an encoding matrix R+ that

satisfies P.1. R+ will be such that it has orthonormal rows,

so, R is easy to compute, R = (R+)T . For simplicity, we

denote R+ by S. We show that the encoding matrix that we

design for the MV multiplication in Section IV satisfies all

the properties that we want.18 In the MV multiplication, we

had a fixed matrix A and the master node wants to compute

Aw for any vector w of its choice. In the solution presented

in Section IV, we encode A and store SiA at the i’th worker

node. Now, the master sends w to all the worker nodes, and

each worker i responds with SiAw + ei, where ei = 0 if

worker i is honest, otherwise can be arbitrary. Once master

receives {SiAw + ei}mi=1, it can run the error correcting

procedure to recover Aw. To apply this in our setting, we

take A to be the identity matrix, such that SiA = Si,

and the master can recover w from {ri = Siw + ei}mi=1,

if at most t of the ei’s are non-zero. For convenience, we

rewrite the encoding matrix Si for the i’th worker node from

18The encoding and decoding of this section is based on the corresponding
algorithms from Section IV.
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Fig. 2 This figure shows our 2-round approach to the Byzantine-resilient distributed coordinate descent (CD) for solving (15) using data encoding and

real-error correction. We encode X with the encoding matrix [R1 . . . Rm] ∈ R
d×p2m and store X̃R

i := XRi at the i’th worker and solve (16) over

an enlarged parameter vector v ∈ R
p2m. At the t’th iteration, for some U ⊆ [p2], the update at the i’th worker is vt+1

iU = vt
iU −αtR

T
iUXTφ′(X̃Rvt),

which requires φ′(X̃Rvt), where X̃Rvt = Xwt. The first part of the figure is for providing φ′(Xwt) to every worker in each iteration so that they

can update vt
iU ’s. For this, we encode X using the encoding matrix [LT

1 . . . LT
m]T ∈ R

p1m×n and store X̃L
i := LiX at worker i. The encoding has

the property that we can recover Xwt from the erroneous vectors {X̃L
i w

t + ei}
m
i=1, where at most t of the ei’s are non-zero and can be arbitrary. We

can make it computationally more efficient at the workers’ side by observing that, in each iteration, only a subset of coordinates of w are being updated:
suppose we updated vt

iU′ ’s in the t’th iteration, which automatically updated wt
f(U′)

. Since wt
[d]\f(U′)

remain unchanged, we need to send only wt
f(U′)

to the workers – in the figure, to take care of a technicality, we let master broadcast ¯̄wt
f(U′)

:= wt−1
f(U′)

−wt
f(U′)

, each worker i computes X̃i ¯̄w
t
f(U′)

and sends it backs to the master. Since master keeps Xwt−1 from the previous iteration with itself, it can compute Xwt. The set of corrupt workers
may be different in different rounds – the corrupt ones are shown in red color and they can send arbitrary outcomes to master. Once master has recovered
Xwt, it computes φ′(Xwt) and broadcasts it; upon receiving it worker i updates vt+1

iU and sends it back. By P.1, this reflects an update on wt+1
f(U)

according to (19); and by P.2, the master can recover wt+1
f(U)

.

Section IV-B below:

Si =




b1i . . . bqi

. . .

b1i . . . bqi

b1i . . . bli




p×d

(20)

Here q = (m − 2t) and l = d − (p − 1)q, where

p = ⌈dq ⌉. Note that 1 ≤ l < q, and if q divides d, then

l = q. All the unspecified entries of Si are zero. By

stacking up the Si’s gives us our desired encoding matrix

S = [ST
1 ST

2 . . . ST
m]T . Note that b1i, b2i, . . . , bqi are such

that if we let bi = [bi1 bi2 . . . bim]T for every i ∈ [q],
then {b1,b2, . . . ,bq} is a set of orthonormal vectors. This

implies that S is orthonormal, and, therefore, S+ = ST . By

taking R = ST , we have R+ = S. Now we show that S

satisfies P.1-P.2.

Our Encoding Satisfies P.1. We need to show a map f :
[p] → P([d]) that satisfies P.1. Let us define the function f
as follows, where (q = m− 2t) and p = ⌈dq ⌉:

f(i) :=

{
[(i− 1) ∗ q + 1 : i ∗ q] if 1 ≤ i < p,

[(p− 1) ∗ q + 1 : d] if i = p,
(21)

and for any U ⊆ [p], we define f(U) := ∪i∈Uf(i). It is clear

from the definition of f that (i) {f(i) : i ∈ [p]} partitions

[d]; (ii) for every i ∈ [p − 1] we have |f(i)| = q, and that

|f(p)| ≤ q. Recall that q = m−2t. For the 3rd property, note

that, for any U ⊆ [p], all the columns of SiU whose indices

belong to [d] \ f(U) are identically zero, which implies that

we have

SiUw = SiU,f(U)wf(U), for every w ∈ R
d, (22)

which in turn implies that

SiUX
T = SiU,f(U)X

T
f(U). (23)

Since S+ = ST , we have S+
iU = ST

iU for every i ∈ [m] and

every U ⊆ [p]. With these, our update rule vt+1
iU = SiUw

t −
αtSiUX

Tφ′(Xwt)19 can equivalently be written as

vt+1
iU = SiU,f(U)w

t+1
f(U), (24)

where

wt+1
f(U) = wt

f(U) − αtX
T
f(U)φ

′(Xwt). (25)

19We emphasize that we used S+ = ST crucially to equivalently write
our update rule vt+1

iU = R+
iUwt − αRT

iUXTφ′(Xwt) from (18) as

vt+1
iU = SiUwt − αtSiUXTφ′(Xwt). This follows because S+ = ST

and we take R+ = S, which together imply that R+
iU = RT

iU = SiU .
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Observe that (25) is the same update rule as (19), which

implies that if each worker i updates viU according to the

CD update rule, then the collective update at all the worker

nodes automatically updates wf(U) according the CD update

rule. Now we show that our invariant vt+1 = Swt+1 is

maintained. We show this by induction. Base case v0 = Sw0

holds by construction. For the inductive case, assume that

vt = Swt holds at time t and we show vt+1 = Swt+1

holds at time t+ 1.

Define U := [p] \ U and f(U) := [d] \ f(U). Since we did

not update vt
iU

’s, we have vt+1

iU
= vt

iU
for every i ∈ [m].

This, together with the inductive hypothesis (i.e., vt = Swt),

implies that

vt+1

iU
= SiUw

t. (26)

Since f(U) = f(U), we have from (22) that

SiUw
t = S

iU,f(U)
wt

f(U)
. (27)

It is clear from (25) that wt
f(U)

did not get an update when

we updated vt
iU ’s, which implies that wt+1

f(U)
= wt

f(U)
.

Substituting this in (27) gives SiUw
t = S

iU,f(U)
wt+1

f(U)
,

which, by (22), yields SiUw
t = SiUw

t+1. This, together

with (26), implies

vt+1

iU
= SiUw

t+1. (28)

We already have from (22) and (24) that

vt+1
iU = SiUw

t+1. (29)

Since (28) and (29) hold for every i ∈ [m], we have vt+1 =
Swt+1. Hence, the invariant is maintained.

Our Encoding Satisfies P.2. If we let

v[m]U := [vT
1U vT

2U . . .vT
mU ]

T ,

S[m]U,f(U) := [ST
1U,f(U) ST

2U,f(U) . . .S
T
mU,f(U)]

T ,

then the collective update (24) from all the workers can be

written as

vt+1
[m]U = S[m]U,f(U)w

t+1
f(U). (30)

It is easy to verify that for every choice of U ⊆ [p],
S[m]U,f(U) is a full column-rank matrix, which implies that

we can in principle recover the updated wt+1
f(U) from vt+1

[m]U =

S[m]U,f(U)w
t+1
f(U). Now we show that not only can we recover

wt+1
f(U) from {SiU,f(U)w

t+1
f(U)}mi=1, but also efficiently recover

wt+1
f(U) from the erroneous vectors {SiU,f(U)w

t+1
f(U)+eiU}mi=1,

where at most t out of m error vectors {eiU}mi=1 are non-zero

and may have arbitrary entries. Let U = {j1, j2, . . . , j|U|},
and for every i ∈ [m], let eiU = [eij1eij2 . . . eij|U|

]T . Master

equivalently writes {SiU,f(U)w
t+1
f(U)+eiU}mi=1 as |U| systems

of linear equations.

h̃i(w
t+1
f(U)) = S̃i,f(U)w

t+1
f(U) + ẽi, i ∈ U , (31)

where, for every i ∈ U , ẽi = [e1i, e2i, . . . , emi]
T and S̃i,f(U)

is an m× |f(U)| matrix whose j’th row is equal to the i’th

row of SjU , for every j ∈ [m]. Note that at most t entries in

each ẽi are non-zero. Observe that {SiU,f(U)w
t+1
f(U)+eiU}mi=1

and {S̃i,f(U)w
t+1
f(U)+ ẽi}i∈U are equivalent systems of linear

equations, and we can get one from the other. Observe that

(31) is similar to (8): S̃i,f(U) is equal to S̃i (for the same

i) with some of its zero columns removed; and adding zero

columns to S̃i,f(U) will not change the value of h̃i(w
t+1
f(U)).

Now, using the machinery developed in Section IV we can

recover wt+1
f(U) from (31) in O(|U|m2) time.

B. Resource Requirement Analysis

In this section, first we give our algorithm developed for

distributed coordinate descent in the presence of t (out of

m) adversarial worker nodes, whose pictorial description is

given in Figure 2.

We use two encoding matrices L ∈ R
(p1m)×n and

R ∈ R
d×(p2m). Let L = [LT

1 LT
2 . . . LT

m]T and R =
[R1 R2 . . . Rm], where each Li is a p1 × n matrix

with p1 = ⌈ n
m−2t⌉ and each Ri is a d × p2 matrix with

p2 = ⌈ d
m−2t⌉. Worker i stores both X̃L

i = LiX and

X̃R
i = XRi. Roughly, L is used to recover Xw from

the erroneous {LiXw + ei}mi=1, and R is used to update

the parameter vector reliably despite errors. Here L is a

full column-rank matrix and R is a full row-rank matrix.

Initialize with an arbitrary w0 and let v0 = R+w0. Repeat

the following until convergence:

1) At iteration t, master sends (wt−1
f(U) −wt

f(U))
20 to all the

workers (at t = 0, master sends w0), where U ⊆ [p2] is

the set of indices used for updating vt−1
iU ’s in the previous

iteration, which in turn updated wt−1
f(U); see (24) and (25)

in Section V-A.

2) Worker i computes X̃L
i (w

t−1
f(U)−wt

f(U)) = LiX(wt−1
f(U)−

wt
f(U)) and sends it to the master.21 Upon receiving

{X̃L
i (w

t−1
f(U)−wt

f(U))+ei}mi=1, where at most t of the ei’s

are non-zero and may have arbitrary entries, the master

applies the decoding procedure of Section IV and recovers

X(wt−1
f(U)−wt

f(U)). We assume that master keeps Xwt−1

from the previous iteration (which is equal to 0 if t = 0),

it can compute Xwt = Xwt−1 − X(wt−1
f(U) − wt

f(U)).

Note that if t = 0, this is equal to Xw0.

3) After obtaining Xwt, master computes φ′(Xwt), picks a

subset U ⊆ [p2] (randomly or in a round robin fashion to

cover [p2] in a few iterations), and sends (φ′(Xwt),U)
to all the workers.

4) Each worker node i ∈ [m] updates vt+1
iU ← vt

iU −
αt∇iUφ(X̃vt) = vt

iU − αt(X̃
R
iU )

Tφ′(Xwt), while keep-

ing the other coordinates of vt
i unchanged. Worker i sends

vt+1
iU to the master. Note that vt+1

iU = R+
iU,f(U)w

t+1
f(U),

where wt+1
f(U) = [wt

f(U)−αXT
f(U)φ

′(Xwt)]; see (24) and

(25) in Section V-A.

20Observe that master need not send the locations f(U), because workers
can compute those by themselves, as they know both U and the function f .

21With some abuse of notation, when we write Xwf(U), we implicitly
assume that wf(U) is a length d vector, which has 0’s in the indices that

lie in f(U).
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5) Upon receiving {vt+1
iU + eiU}mi=1, where at most t of

the {eiU}mi=1’s are non-zero and may have arbitrary

entries, master applies the decoding procedure (since our

encoding satisfies P.2) and recovers wt+1
f(U).

Now we analyze the total amount of resources (storage,

computation, and communication) required by the above

algorithm and prove Theorem 2. Fix an ǫ > 0. Let the

corruption threshold t satisfy t ≤ ⌊(ǫ/(1 + ǫ)) · (m/2)⌋.

1) Storage Requirement:: By a similar analysis done

in Section IV-E, we can show that the total storage at all

worker nodes is roughly equal to 2(1 + ǫ)|X|.

2) Computational Complexity:: We can divide the com-

putational complexity of our scheme as follows:

• Encoding the data matrix. By a similar analysis done in

Section IV-E, we can show that the total encoding time is

O
(
( ǫ
1+ǫm+ 1)nd

)
. Note that this encoding is to be done

only once.

• Computation at each worker node. Suppose that in each

iteration of our algorithm, all the workers update τ coordi-

nates of vi’s. Fix an iteration t and assume that at iteration

(t−1), workers updated the coordinates in the set U ⊆ [p2],
where |U| = τ . Recall from P.1 that updating τ = |U|
coordinates of each vt−1

i automatically updates wt−1
f(U).

Upon receiving (wt−1
f(U) − wt

f(U)) from the master node,

each worker i computes X̃L

i (w
t−1
f(U) −wt

f(U)), and reports

back the resulting vector. Note that (wt−1
f(U) −wt

f(U)) has

at most |f(U)| = τm
1+ǫ non-zero elements, which together

with that X̃L

i is a p1 × d matrix, implies that computing

X̃L

i (w
t−1
f(U)−wt

f(U)) takes O(p1 · |f(U)|) = O(nτ) time.22

In the second round, given φ′(Xwt), since (X̃R
iU )

T is of

dimension n×τ , updating vt
iU requires O(nτ) time, where

τ = |U|. So, the total time taken by each worker is O(nτ).
• Computation at the master node. Once master receives

{LiX(wt−1
f(U) − wt

f(U)) + ei}mi=1, applying the decoding

procedure of Section IV to obtain X(wt−1
f(U)−wt

f(U)) from

these erroneous vectors requires O(p1m
2) = O((1+ǫ)nm)

time. After that obtaining Xwt takes another O(n) time.

Given Xwt, computing φ′(Xwt) takes O(n) time,

assuming that computing ℓ′(〈xi,w
t〉; yi) requires

unit time, where 〈xi,w
t〉 is equal to the i’th entry

of Xwt. Upon receiving {vt+1
iU + eiU}mi=1, where

vt+1
iU = R+

iU,f(U)w
t+1
f(U), for all i ∈ [m], recovering wt+1

f(U)

requires O(τm2) time. So, the total time taken by the

master node is O((1 + ǫ)nm+ τm2).

3) Communication Complexity:: Suppose workers update

τ coordinates of vi’s in each iteration. Then (i) master

broadcasts
(

τm
1+ǫ + n

)
real numbers, τm

1+ǫ in the first round

to represent wt
f(U) and n in the second round to represent

22Note that in the very first iteration, master sends w0, which may be a

dense length d vector, and computing X̃iLw
0 at the i’th worker can take

O(p1d) = O((1 + ǫ)nd
m

) time. This is only for the first iteration.

φ′(Xwt); and (ii) each worker sends
(
τ + (1 + ǫ) n

m

)
real

numbers, (1 + ǫ) n
m in the first round for computing Xwt at

the master node and τ in the second iteration to represent

vt
iU .

VI. EXTENSIONS

In this section, we give a few important extensions of our

coding scheme developed earlier in Section IV. First we give

a Byzantine-resilient and communication-efficient method for

stochastic gradient descent (SGD). Second we show how

to exploit the specific structure of our encoding matrix to

efficiently extend our coding technique to the streaming data

model. In the end, we give a few more important applications,

where our method can be applied constructively.

A. Stochastic Gradient Descent

Stochastic gradient descent (SGD) [56] is another alterna-

tive if full gradients are too costly to compute. In each iter-

ation of SGD, we sample a data point uniformly at random,

compute a gradient on that sample, and update the parameter

vector based on that. We start with an arbitrary/random

parameter vector w0 ∈ R
d and update it according the

following update rule:

wt+1 = wt − αt∇frt(wt), t = 1, 2, 3, . . . (32)

where rt is sampled uniformly at random from {1, 2, . . . , n}.
This ensures that the expected value of the gradient is equal to

the true gradient. Due to its simplicity and remarkable empiri-

cal performance, SGD has become arguably the most widely-

used optimization algorithm in many large-scale applications,

especially in deep learning [14], [15], [57]. We want to run

SGD in a distributed setup, where data is distributed among

m worker nodes and at most t of them can be corrupt; see

Section II-C for details on our adversary model.

Our solution. In the plain SGD, we sample a data point

randomly and compute its gradient. So, we give a method

in which, at any iteration t, master picks a random number

rt in {1, 2, . . . , n}, broadcasts it, and recovers the rt’th data

point xrt . Once the master has obtained xrt , it can compute a

gradient on it and updates the parameter vector. Since master

recovers the data points, we can optimize for non-convex

problems also; essentially, we could optimize anything that

the plain SGD can. Our method is described below.

We encode XT using the ⌈d/(m− 2t)⌉ × d encoding

matrix S(2), which has been defined in Section IV-E. For

simplicity, we denote S(2) by S. Let S = [ST
1 ST

2 . . . ST
m]T .

Note that the j’th worker stores SjX
T . Let X̃ := SXT ,

which is a ⌈d/(m− 2t)⌉ × n matrix, whose i’th column is

the encoding x̃i := Sxi of the i’th data point xi. Using

the method developed in Section IV, given {Sjxi + ej}mj=1,

where ej = 0 if the j’th worker is honest, otherwise can

be arbitrary, master can recover xi exactly in O((1 + ǫ)md)
time. Our main theorem is stated below, a proof of which

trivially follows from Section IV.
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Theorem 3 (Stochastic Gradient Descent). Let X ∈ R
n×d

denote the data matrix. Let m denote the total number of

worker nodes. We can compute a stochastic gradient in a

distributed manner in the presence of t corrupt worker nodes

and s stragglers, with the following guarantees, where ǫ > 0
is a free parameter.

• (s+ t) ≤
⌊

ǫ
1+ǫ · m2

⌋
.

• Total storage requirement is roughly (1 + ǫ)|X|.
• Computational complexity for each stochastic gradient

computation:

– at each worker node is O((1 + ǫ) d
m ).

– at the master node is O((1 + ǫ)dm).

• Communication complexity for each stochastic gradient

computation:

– each worker sends
(
(1 + ǫ) d

m

)
real numbers.

– master broadcasts ⌈log n⌉ bits.

• Total encoding time is O
(
nd
(

ǫ
1+ǫm+ 1

))
.

Observe the distributed gain of our method in the commu-

nication exchanged between the workers and the master: (i)

master only broadcasts an index in {1, 2, . . . , n}, which only

takes ⌈log n⌉ bits; and (ii) each worker sends roughly 1+ǫ
m

fraction of the total dimension d. Hence, this method is par-

ticularly useful in distributed settings with communication-

constrained and band-limited links. The Remarks 2, 4, 5 are

also applicable for Theorem 3.

Remark 10 (One-round vs. two-round approach). Unlike the

two-round approach taken for gradient computation in PGD

and also for CD, we give a one-round approach for each

iteration of SGD. This is because in each SGD iteration we

need to compute the gradient on only one data point (not

the entire dataset, as in the case for each PGD iteration).

Because of this, recovering a (random) data-point itself at the

master and then computing a gradient on it locally (which

is what we do) would be far more efficient than computing

gradient on a single data point in a distributed manner.

This is in contrast to each gradient computation for PGD,

which requires computation of the full gradient (which is the

summation of gradients on all n data points). In principle, we

can use the one-round for each PGD iteration also in which

first we recover all the n data points at master and then

compute the full gradient locally, but this approach would

defeat the purpose of distributed computation both in terms

of storage and computational complexity. Note that our two-

round approach for PGD is significantly more efficient than

this.

The reason behind taking the two-round approach for

CD is because in order to update the local parameter

vectors in the t’th iteration, workers need access to the MV

multiplication X̃Rvt = Xwt (see the paragraph after (18)

for more details), and in order to provide that we use an

extra round – the first round is used for computing Xw and

the second round is used for updating the local parameter

vectors. Again, for CD also, we could adopt a one-round

approach where master recovers all the n data points and

then do the parameter update, but that would be highly

inefficient and defeat the purpose of distributed computation.

One of the main advantages of the one-round approach

for SGD is that since we are recovering the data point itself

at the master, we can use it to optimize any function, both

convex and non-convex. This is in contrast to the two-round

approach, which can only be used for generalized linear

models only.

B. Encoding in The Streaming Data Model

An attractive property of our encoding scheme is that it is

very easy to update with new data points. More specifically,

our encoding requires the same amount of time, irrespective

of whether we get all the data at once, or we get each

sample point one by one, as in the online/streaming model.

This setting encompasses a more realistic scenario, in which

we design our coding scheme with the initial set of data

points and distribute the encoded data among the workers.

Later on, when we get some more samples, we can easily

incorporate them into our existing encoded data. We show

that updating (m − 2t) new data points in R
d requires

O ((m− 2t) ((2t+ 1)d)) time in total, i.e., O ((2t+ 1)d)
amortized-time per data point. This is the best one can hope

for, since the offline encoding of n data points requires

O ((2t+ 1)nd) total time. At the end of the update, the final

encoded matrix that we get is the same as the one we would

have got had we had all the n+1 data points in the beginning.

Therefore, the decoding is not affected by this method at

all. Note that we use the same encoding matrices both for

gradient computation as well as for coordinate descent. So,

it suffices to prove our result in the streaming model for any

one of them, and we show it for gradient computation below.

Theorem 4. The total time complexity in encoding all the

data points at once, i.e., when encoding is done offline, is

the same as the total time complexity in encoding the data

points one by one as they come in the streaming model, i.e.,

when encoding is done online.

Proof. Let S(1) and S(2) denote the encoding matrices for

encoding X and XT , respectively; see Section IV-B. For con-

venience, we copy over the corresponding encoding matrices

S
(1)
i and S

(2)
i from (11) for the i’th worker node in Figure 3.

Suppose at some point of time we have encoded n data

points each lying in R
d and distributed the encoded data

among the m worker nodes. Now a new data sample x ∈ R
d

comes in. We will show how to incorporate it in the existing

scheme in O ((2t+ 1)d) time on average.

Updating the encoding matrices. Fix an arbitrary worker

i ∈ [m]. Note that the new data matrix X has dimension

(n + 1) × d. So, the new encoding matrix S
(1)
i should

have (n + 1) columns, and we have to add one more

column to S
(1)
i . By examining the repetitive structure of

S
(1)
i , it is obvious which column to add: if l1 < q, then

we add the p1-dimensional vector [0, 0, . . . , 0, b(l1+1)i]
T

as the last column; otherwise, if l1 = q, then we add the
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S
(1)
i =




b1i . . . bqi

. . .

b1i . . . bqi

b1i . . . bl1i




p1×n

(a)

S
(2)
i =




b1i . . . bqi

. . .

b1i . . . bqi

b1i . . . bl2i




p2×d

(b)

Fig. 3 Figure 3a depicts the encoding matrix for the i’th worker node for
encoding X, which is used in the first round of the gradient computation.
Here p1 = ⌈n/q⌉, where q = (m − k) and k is equal to the number of
rows in the error recovery matrix F in (14), and l1 = n − (p1 − 1)q.
Figure 3b depicts the encoding matrix for the i’th worker node for encoding
XT , which is used in the second round of the gradient computation. Here
p2 = ⌈d/q⌉ and l2 = d − (p2 − 1)q. All the unspecified entries in both
the matrices are zero.

(p1 + 1)-dimensional vector [0, 0, . . . , 0, b1i]
T as the last

column. In the second case, the number of rows of S
(1)
i

increases by one – the last row has all zeros, except for the

last element, which is equal to b1i. Note that S
(2)
i does not

change at all. Observe that if the i’th worker performs this

update, then it does not have to store its entire encoding

matrix S
(1)
i , it only needs to store n, q = (m − k), and the

q real numbers b1i, b2i, . . . , bqi, where q = m − k, which

could be much smaller as compared to n and d, and are

enough to define S
(1)
i and S

(2)
i .

Updating the encoded data. Now we show how to update

the encoded data with the new sample x. We need to update

both S
(1)
i X as well as S

(2)
i XT for every worker i ∈ [m].

• Updating S
(1)
i X. If l1 < q, then we add b(l1+1)ix

T to

the last row of S
(1)
i X; otherwise, if l1 = q, then we add

b1ix as a new row in S
(1)
i X. In the first case, the resulting

matrix still has p1 rows, whose first p1 − 1 rows are same

as before, and the last row is the sum of the previous row

and b(l1+1)ix
T . In the second case, the resulting matrix

has (p1 + 1) rows, whose first p1 rows are the same as

before and the last row is equal to b1ix
T . Note that each

row of S
(1)
i for i ≤ 2t, has at most (m − 2t) non-zero

elements; whereas, for i > 2t, each row of S
(1)
i has exactly

one non-zero entry. Since there are p1 = ⌈n/(m− 2t)⌉
rows in each S

(1)
i , updating S

(1)
i X for every i ≤ 2t takes

O(d) time; and for i > 2t, update in S
(1)
i X happens only

once in (m − 2t) new data points (whenever the second

case occurs and the resulting S
(1)
i has (p1 + 1) rows). So,

updating (m−2t) data points at all m worker nodes require

O (2t ∗ (m− 2t)d+ (m− 2t) ∗ d) = O((m − 2t)(2t +
1)d) time, i.e., O ((2t+ 1)d) time per data point.

• Updating S
(2)
i XT . Note that XT is a d × (n + 1) matrix

whose last column is equal to the new data sample x. Now,

to update S
(2)
i XT , we add S

(2)
i x as an extra column. The

resulting matrix is of size p2 × (n + 1), whose first n
columns are the same as before and the last column is

equal to S
(2)
i x. Since total number of non-zero entries in

S
(2)
i is equal to d if i ≤ 2t and equal to p2 = ⌈d/(m− 2t)⌉

if i > 2t, the total time required to update a new data point

is O(2t ∗ d+ (m− 2t) ∗ p2) = O ((2t+ 1)d).

Observe that at the end of this local update at each worker

node, the final encoded matrix that we get is the same as

the one we would have got had we had all the n + 1 data

points in the beginning. The decoding is not affected by this

method at all. This completes the proof of Theorem 4.

Remark 11 (Updating the encoded data efficiently with new

features). Observe that since we encode both X and XT in

an analogous fashion, it follows by symmetry that we can not

only update efficiently upon receiving a new data sample,

but can also update efficiently if we decide to enlarge the

dimension d of each of the n data samples at some point of

time – maybe we figure out some new features of the data

to get a more accurate model to overcome under-fitting. In

these situations, we don’t need to encode the entire dataset

all over again, just a simple update is enough to incorporate

the changes.

Remark 12 (What allows our encoding to be efficient for

streaming data?). The efficient update property of our coding

scheme is made possible by the repetitive structure of our

encoding matrix (see Figure 3), together with the fact that this

structure is independent of the number of data points n and

the dimension d – it only depends on the number of worker

nodes m and the corruption threshold t. We remark that other

data encoding methods in literature, even for weaker models,

do not support efficient update. For example, the encoding of

[41], which was designed for mitigating stragglers, depends

on the dimensions n and d of the data matrix. So, it may not

efficiently update if a new data point comes in.

C. More Applications.

There are many iterative algorithms, other than the gra-

dient descent for learning GLMs, which use repeated MV

multiplication. Some of them include (i) the power method

for computing the largest eigenvalue of a diagonalizable

matrix, which is used in Google’s PageRank algorithm [58],

Twitter’s recommendation system [59], etc.; (ii) iterative

methods for solving sparse linear systems [60]; (iii) many

graph algorithms, where the graph is represented by a fixed

adjacency matrix, [61]. In large-scale implementation of these

systems, where Byzantine faults are inevitable, the method

described in this paper can be of interest.

In most of these applications, the underlying matrix A is

generally sparse, which is exploited to gain computational

efficiency. So, it is desired not to lose sparsity even if we

want resiliency against Byzantine attacks. Fortunately, our

encoding matrix S is sparse (see (11)), which ensures that the
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CD(0.1d) CD(0.25d) CD(0.5d) GD ≡ CD(d)

Worker Master Worker Master Worker Master Worker Master

t = 1 0.0020 0.0120 0.0073 0.0182 0.0122 0.0199 0.0493 0.0214

t = 2 0.0044 0.0187 0.0092 0.0212 0.0188 0.0277 0.0953 0.0393

t = 3 0.0054 0.0201 0.0118 0.0242 0.0269 0.0324 0.1213 0.0561

t = 4 0.0063 0.0253 0.0159 0.0327 0.0488 0.0468 0.1602 0.0610

t = 5 0.0107 0.0342 0.0328 0.0460 0.0776 0.0738 0.2943 0.0826

t = 6 0.0205 0.0717 0.0764 0.0833 0.1330 0.1088 0.8929 0.1227

Fig. 5 We run our algorithms (CD and GD) with 15 worker nodes on a dataset with n = 20, 000, d = 22, 000, and separately report the maximum time
taken by any single worker and the master per iteration against varying number of corrupt worker nodes from t = 1 to 6. For CD, we run our algorithm
for updating different number of coordinates. The first two columns correspond to the case when updating 0.1-fraction of d coordinates, the next two
columns for 0.25-fraction, and so on. The last two columns correspond to updating all the coordinates, which is equivalent to full gradient computation
as in GD.
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