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Abstract

Variational and Bayesian methods are two widely used set of approaches to solve image denoising problems. In a Bayesian
setting, these approaches correspond, respectively, to using maximum a posteriori estimators and posterior mean estimators for
reconstructing images. In this paper, we propose novel theoretical connections between Hamilton—Jacobi partial differential
equations (HJ PDEs) and a broad class of posterior mean estimators with quadratic data fidelity term and log-concave prior.
Where solutions to some first-order HJ PDEs with initial data describe maximum a posteriori estimators, here we show
that solutions to some viscous HJ PDEs with initial data describe a broad class of posterior mean estimators. We use these
connections to establish representation formulas and various properties of posterior mean estimators. In particular, we use
these connections to show that some Bayesian posterior mean estimators can be expressed as proximal mappings of smooth
functions and derive representation formulas for these functions.

Keywords Hamilton—Jacobi partial differential equations - Imaging inverse problems - Maximum a posteriori estimation -

Bayesian posterior mean estimation - Convex analysis

1 Introduction

Image denoising problems consist in estimating an unknown
image from a noisy observation in a way that accounts for the
underlying uncertainties. Variational and Bayesian methods
have become two important approaches for doing so, and in a
Bayesian setting these approaches correspond, respectively,
to using maximum a posteriori estimators and posterior mean
estimators for reconstructing images. The goal of this paper
is to describe a broad class of Bayesian posterior mean esti-
mators with quadratic data fidelity term and log-concave
prior using Hamilton—Jacobi (HJ) partial differential equa-
tions (PDEs) and to use these connections to clarify certain
image denoising properties of this class of Bayesian posterior
estimators.
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To illustrate the main ideas of this paper, we first briefly
describe convex finite-dimensional variational and Bayesian
methods relevant to image denoising problems. Variational
methods formulate image denoising problems as the opti-
mization of a weighted sum of a data fidelity term (which
embeds the knowledge of the nature of the noise corrupt-
ing the unknown image) and a regularization term (which
embeds known properties of the image to reconstruct), where
the goal is to minimize this sum to obtain an estimate that
hopefully accounts well for both the data fidelity term and
the regularization term [13,17]. Bayesian methods formu-
late image denoising problems in a probabilistic framework
that combine observed data through a likelihood function
(which models the noise corrupting the unknown image) and
prior knowledge through a prior distribution (which models
known properties of the unknown image) to generate a poste-
rior distribution. An appropriate decision rule that minimizes
the posterior expected value of a loss function, also called
a Bayes estimator, then selects a meaningful image esti-
mate from the posterior distribution that hopefully accounts
well for both the prior knowledge and observed data [21,62—
64,66]. A standard example is the posterior mean estimator,
the mean of the posterior distribution, which minimizes the
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mean squared error [43, pages 344-345], and more generally,
Bregman loss functions [4].

In this paper, we will focus on the class of finite-
dimensional image denoising problems

x=u+m, ey

where x € R" is the observed image, u € R” is the unknown
image, n is independent identically distributed Gaussian
noise. These problems are well-known to be ill-posed in gen-
eral, and variational and Bayesian approaches are celebrated
methods to find meaningful solutions to these ill-posed prob-
lems [2,21,67]. These methods aim to estimate the original
uncorrupted image by computing, respectively, the maximum
a posteriori (MAP) and posterior mean (PM) estimates

. 1
upmap(x,1) = arg%nn{zllx—y||§+l(y)} (2)
ye n
and
(Lix—y|2
e (F1xyBrsm)se g

upy(x,t, €)= 1 ; . (3)
fur o FrBrIm)re

The functions y — 2% lx — y||% and J : R” — RU{+o0}in
(2) are, respectively, the (quadratic) data fidelity and regular-

1 2
. . —(Lyx— J
ization terms, and the functions y — e <2’ le=lz+ (y))/e

and y — e~/W/€ in (3) are, respectively, the (Gaussian)
likelihood function and generalized prior distribution. The
parameter ¢t > O controls the relative importance of the data
fidelity term over the regularization term, and the parameter €
controls the shape of the posterior distribution in (3), where
small values of € favor configurations close to the mode,
which is the MAP estimate, of the posterior distribution.

Let us illustrate the MAP and PM estimates and their
denoising capabilities with an example. We consider an
anisotropic version of the Rudin—Osher—Fatemi (ROF) image
denoising model, which consists of considering an anisotropic
total variation (TV) regularization term with quadratic data
fidelity term [6,12,60]. Specifically, we define anisotropic
TV as follows

V= )

ijell,..n}

wi jlyi — yjl,

where w; ; > 0 and the value of an image y at the pixel i is
denoted by y; € R. For illustration purposes, we assume that
a digital image is defined on a two-dimensional regular grid
and only consider the 4-nearest neighbors interactions for
defining TV (e, w; j = w;; = % if i and j are neighbors,
and w; ; = w;; = 0 otherwise, see [19] for instance). Let
x denote an observed noisy image and ¢ and € be parameters
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as previously defined. Then, the associated anisotropic ROF
problem [60] takes the form

1 2
in{—[lx—yl3+TV(»{. 4
min {2; e — yl3 (y)} “)

The MAP and PM estimates to the ROF problem (4) are
given, respectively, by Egs. (2) and (3) with J(y) = TV(y),
i.e.,

(1
upyap(x,t) =argmin {— lx — ylI3 + TV(y)} 5
yern | 2t

and

S ye (Flx=yBHTVO) /ey

(6)
S o~ (Fhrvo)e o

upy(x,t, €)=

We note here that the PM estimate (6) with total variation
prior and its denoising properties was investigated in [48,49].

Figure la depicts the image Barbara, which we corrupt
with Gaussian noise (zero mean with standard deviation
o = 10) in Fig. 1b. We let x denote this corrupted image,
and we choose the parameters 1 = 16 and € = 6.25 in the
MAP and PM estimates. The MAP estimate can be computed
up to the machine precision using maximum-flow-based
algorithms [11,19,41], and the PM estimate can be approx-
imated using Markov Chain Monte Carlo methods. Here,
we approximated the PM estimate (6) using the variable-
at-a-time Metropolis—Hastings algorithm with random scan
detailed in ( [48], Algorithm 2 on page 42). Specifically, for
the parameters of Algorithm 2 in [48], we used, in the termi-
nology of their algorithm, the parameters o = 10 and A = 32
(corresponding here to the choice of t = 16 and € = 6.25
in (6)), we chose the initial point of the algorithm to be the
MAP estimate uj4p(x,t), and finally, we set the internal
parameters of Algorithm 2 in [48] as follows: o = 17.32
(these values yield an acceptance rate in the algorithm close
to the optimal value 0.234 suggested in [57]), 20,000 for the
maximum number of iterations, and n for the subsampling
rate.

The MAP and PM estimates associated with the ROF
model with these parameters produce the denoised images
illustrated in Fig. 1c¢ and d. Figure 2a—d zoom-in on the face
of Barbara in Fig. 1 The denoised image of Barbara with
the MAP estimate exhibits staircasing effects [14,23,25] that
can be observed in Fig. 2c, whereas the denoised image of
Barbara with the posterior mean estimate does not. In either
case, the denoised images result in a lost of texture, as can
be seen by comparing Fig. 2a with ¢ and d.

Variational methods are popular because the resultant
optimization problem for various non-smooth and convex
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Fig.1 The anisotropic ROF
model endowed with 4-nearest
neighbors is applied to the test
image “Barbara”. The original
image is shown in (a). The
image is corrupted by Gaussian
noise (zero mean with standard
deviation o = 10) and is shown
in (b). The corresponding
minimizer uy 4 p (x, t) given by
(4) and posterior mean estimate
upy(x,t,€) given by (6) with
parameters t = 16 and € = 6.25
is illustrated in (¢) and (d),
respectively

regularization terms used in image denoising problems, such
as total variation and /i-norm based regularization terms,
is well-understood [6,10,12,17,18,24,60] and can be solved
efficiently using robust numerical optimization methods [13].
MAP estimates from variational methods are also gener-
ally faster to compute than posterior mean estimates, since
the latter require complex stochastic methods to compute.
Reconstructed images from variational methods with non-
smooth and convex regularization terms, however, may have
undesirable and visually unpleasant staircasing effects due
to the singularities of the non-smooth regularization terms
[14,23,25,48,52,68]. This is illustrated for example in Fig.
1c, which contains regions where the pixel values are equal
and lead to staircasing effects. In contrast, posterior mean
estimates with quadratic fidelity term and total variation reg-
ularization terms have been shown to avoid staircasing effects
[48,49]. This is illustrated for example in Figs. 1 and 2d,
where the denoised image with posterior mean estimate does
not contain visibly substantial regions where the pixel values
are equal.

Related work Several papers have proposed novel connec-
tions between MAP and Bayesian estimators, including
posterior mean estimators. First, [48,49] showed that the class
of Bayesian posterior mean estimates (3) with TV regulariza-
tion term J can be expressed as minimizers to optimization
problems involving a quadratic fidelity term and a smooth
convex regularization term, i.e., there exists a smooth regu-
larization term freg: R" — R such that

1
uppm(x,t,€) =argmln{§ IIx—yII§+freg(y)}- (N
yeR?

This result was later extended to general priors [34], general
Gaussian data fidelity terms [35], and to some non-quadratic
data fidelity terms [36,37]. To our knowledge, there is no
representation formula for this smooth regularization term
available in the literature.

Second, [9] showed that the MAP estimate (2) corresponds
to a Bayes estimator when the regularization term J is con-
vex and uniformly Lipschitz continuous on R”, that is, the
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Fig.2 The anisotropic ROF
model endowed with 4-nearest
neighbors is applied to the test
image “Barbara”. Images
(a)—(d) are zoomed-in versions
of the images illustrated in
Fig. 1

MAP estimate (2) minimizes the posterior expected value
of an appropriate loss function. This was later extended by
[8] to some log-concave posterior distributions with non-
quadratic fidelity term and later studied from the point of
view of differential geometry in [53] and also derived for
posterior distributions that are strongly log-concave and at
least three times differentiable.

In addition to these results, it is known that under certain
assumptions on the regularization term J, the value of the
minimization problem

1
Sotx. 1) = min {27 ||x—y||%+J(y)} (8)

whose minimizer is the MAP estimate (2), satisfies the first-
order HJ PDE
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(d)

{@u,m%||vxSo<x,t>||§=o inR" x 0, +00),

at

So(x,0) = J(x) in R”.

The properties of the minimizer u 74 p (x, t) follow from the
properties of the solution to this HJ equation [17,18]. In par-
ticular, the MAP estimate satisfies the representation formula
upy(x,t) =x —tVySo(x, t).

We note that the results of [17,18] only concern con-
nections between a class of first-order HJ PDEs and MAP
estimators. To our knowledge, connections between posterior
estimators and HJ PDEs are not available in the literature.
Contributions In this paper, we propose novel theoretical con-
nections between solutions to HJ PDEs and a broad class
of Bayesian methods and posterior mean estimators. These
connections are described in Propositions 3.1 and 3.2 for
viscous HJ PDEs and first-order HJ PDEs, respectively. We
show in Proposition 3.1 that the posterior mean estimate (3)
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is described by the solution to a viscous HJ with initial data
corresponding to the convex regularization term J, which we
characterize in detail in terms of the data x and parameters ¢
and €. In particular, the posterior mean estimate (3) satisfies
the representation formulaupys(x, t,€) = x — 1V, Se(x, 1).
Next, we use the connections between viscous HJ PDEs and
posterior mean estimates established in Proposition 3.1 to
show in Proposition 3.2 that the posterior mean estimate
uppy(x,t,€) can be expressed through the gradient of the
solution to a first-order HJ PDE with twice continuously dif-
ferentiable convex initial dataR"” > x > K(x, 1) — % |x ||%,
where

Kc(x,t)

—eln 1 / LHEn=FB=Im)re
Qrte)? Jaom g

and x — K} (x, t) is the Fenchel-Legendre transform of the
function x — K (x, t). In other words, we show

upy(x,t,e)

. 1 1
= arg min {— lx — yl3 + (K:‘(y, 1 — —||y||§>} :
yern |2 2

This formula gives the representation of the convex regu-
larization term, enabling one to express the posterior mean
estimate as the minimizer of a convex variational problem,
and in fact in terms of the solution to a first-order HJ PDE.
This thereby extends the results of [34,48], who showed
existence of this regularization term when the data fidelity
term is quadratic, but not its representation. The second-order
continuous differentiability of this regularization term, in par-
ticular, implies that the posterior mean estimate u p s (x, t, €)
avoids image denoising staircasing effects as a consequence
of the results derived in [51, Theorem 3].

We also present several topological properties of posterior
mean estimators in Proposition 4.1, and we use these in con-
junction with the connections between HJ PDEs and posterior
mean estimators to derive representation and monotonicity
properties of posterior mean estimators in Propositions 4.2
and 4.3, respectively. These properties are then used to
derive an optimal upper bound on the mean squared error
Ey [lly —upm(x.t, €)[3], an estimate of the squared dif-
ference between the MAP and posterior mean estimates,
monotonicity and non-expansiveness properties of the pos-
terior mean estimate, and the behavior of the posterior mean
estimate u pys(x, ¢, €) in the limit + — O (Proposition 4.4).
Finally, we use the connections between both MAP and pos-
terior mean estimates and HJ PDEs to characterize the MAP
estimate (2) in the context of Bayesian estimation theory, and
specifically in proposition 4.5 to show that the MAP esti-
mate (2) corresponds to the Bayes estimator of the Bayesian
risk (52) whenever J is convex on R” and bounded from

below. When J is defined only on a strict subset of R",
we further show that the Bayesian risk (52) has a corre-
sponding Bayes estimator that is described in terms of the
solution to both the first-order HJ PDE (2.2) and the viscous
HJ PDE (3.1).

We would like to emphasize that the proofs of several

results presented in this paper are inspired from techniques
in existing works in several fields, including partial differ-
ential equations [26,42], convex analysis [38-40,58,59], the
theory of set-valued maps and differential inclusions [3],
large deviations theory [22], and geometric measure the-
ory [1,27,28,32,46,54,56]. To our knowledge, however, the
results presented in this paper are novel.
Organization In Sect. 2, we review concepts of real and
convex analysis that will be used throughout this paper.
In Sect. 3, we establish theoretical connections between a
broad class of Bayesian posterior mean estimators and HJ
PDEs. Our mathematical setup is described in Subsection 3.1,
the connections of posterior mean estimators to viscous HJ
PDEs are described in Subsection 3.2, and the connections
of posterior mean estimators to first-order HJ PDEs are
described in Subsection 3.3. We use these connections to
establish various properties of posterior mean estimators in
Sect. 4. Specifically, we present topological, representation,
and monotonicity properties of posterior mean estimators in
Subsection 4.1, an optimal upper bound on the mean squared
error Ey [|ly — upm(x, 1, €3], an estimate of the squared
difference between the MAP and posterior mean estimates,
monotonicity and non-expansiveness properties of the pos-
terior mean estimate, and the behavior of the posterior mean
estimate u pys(x, t, €) in the limit ¢ — 0 in Subsection 4.2.
Finally, we establish properties of MAP and posterior mean
estimators in terms of Bayesian risks involving Bregman
divergences in Subsection 4.3.

2 Background

This section reviews concepts from real and convex analysis
that will be used in this paper. For convenience to the reader,
we summarize some notations and definitions in Table 1; the
definitions are explained in detail below and the reader may
skip them. We also refer to [30,38,39,58,59] for comprehen-
sive references.

In what follows, the Euclidean scalar product on R” will
be denoted by (-, -) and its associated norm by |[|-||,. The
closure and interior of a non-empty set C C R" will be
denoted by cl C and int C, respectively. The boundary of a
non-empty set C C R" is defined as cl C \ int C and will
be denoted by bd C. The domain of a function f: R" —
R U {400} is the set dom f = {x e R": f(x) < +o0}.
Let f: Qx Q — Rwith Q2 x @ C R" x R It will
be useful in this paper to consider the gradient Vy f(x, y),

@ Springer
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divergence V, - f(x, y) and Laplacian Ay f(x,y) of Q >
x — f(x,y) for y € @/, which are defined as follows:

ey = (Frey e n) Ve £l =
Yl ey, and AL f(x, y) = 2, 227{(36, »).

Definition 1 (Proper and lower semicontinuous functions) A
function f: R" — R U {400} is proper if dom f # & and
f(x) > —oo for every x € dom f.

A function f: R" — RU {+00} is lower semicontinuous
atx € R"ifitsatisfies liminfy_, 1o f(x%) > f(x) forevery
sequence {xk},j':f C R" such that limg— 400 X = X.

Definition 2 (Convex sets and their relative interiors) A sub-
set C C R" is convex if for every pair (x, y) € C x C and
every scalar A € (0, 1), the line segment Ax + (1 — A)y is
contained in C.

The relative interior of a convex set C, denoted by ri C, is
the set of points in the interior of the unique smallest affine set
containing C. Every convex set C with non-empty interior is
n-dimensional with ri C = int C and has positive Lebesgue
measure, and furthermore, the n-dimensional Lebesgue mea-
sure of the boundary bd C is equal to zero [45].

Definition 3 (Convex functions and the set T'y(R")) A proper
function f: R" — R U {400} is convex if its domain is
convex and if the inequality

fOx+A =2y =Afx)+UA-21)f(y)

holds for every pair (x, y) € dom f x dom f and every
scalar A € [0, 1]. It is strictly convex if the inequality above
is strict whenever x # y and A € (0, 1).

A proper function f: R" — RU{+o0} is strongly convex
with parameter m > 0 if

FOx+1 =0y <ife)+1=DF)
—%m — ) llx = yl?

for every pair (x,y) € dom f x dom f and every scalar
A e[0,1].

The class of proper, convex and lower semicontinuous
functions is denoted by I'g(R").

Definition 4 (Projections) Let C be a closed convex subset of
R". To every x € R”, there exists a unique element ¢ (x) €
C called the projection of x onto C that is closest to x in
Euclidean norm, i.e.,

e (x) = argmin ||x — yII%. (10)
yeC

This correspondence defines a map x — m¢(x) from R” to
C called the projector onto C ( [3], Chapter 0.6, Corollary

@ Springer

1). It satisfies the characterization
(x —mc(x),y —mc(x)) <0, VyeC. (11)

Definition 5 (Subdifferentials and subgradients) Let f €
I'o(R™). The subdifferential of f at x € dom f is the set
d f (x) of vectors p € R" that satisfies the inequality

f) = fx)+(p.y—x) 12)

for every y € R”". The subdifferential 9 f(x) is a closed
convex subset of R” whenever it is non-empty, and the vectors
p € 0 f(x) are called the subgradients of f at x.

The set of points x € dom f for which the subdifferential
d f (x) is non-empty is denoted by dom 9 f, and it includes
the relative interior of the domain of f, i.e., ri (dom f) C
dom 0 f [58, Theorem 23.4].

If f is strongly convex of parameter m > 0 and x €
dom 0 f, then the subgradients p € 9 f(x) satisfy the
inequality

FO) = F@) +(py—x)+ % ly — xII3.

If f is differentiable at x, then x € dom df and the
gradient V f(x) is the unique subgradient of f at x, and
conversely if f has a unique subgradient at x, then f is
differentiable at that point [58, Theorem 25.1].

The set-valued subdifferential mapping dom df > y —
d f (y) satisfies two important properties. First, it is monotone
in that if f is strongly convex of parameter m > 0, then for
every pair (y, yp) € dom df x dom df and p € 9f(y),
Po € 0 f(yg) the following inequality holds ([58], page 240
and Corollary 31.5.2):

m|y = yols < (p = po.y — o), (13)

Second, the mapping dom df > y > 7y 7(y)(0) is well-
defined, and it selects the subgradient of the minimal norm in
d f (x) and defines a function continuous almost everywhere
on dom 0 f, a consequence of the fact that this mapping
agrees with the gradient of f over the set of points in
int (dom J) at which f is differentiable [58, Theorem 25.5].

Definition 6 (Fenchel-Legendre transform)Let f € T'g(R").
The Fenchel-Legendre transform f*: R" — RU{4o00} of
f is defined by

f*(p) = sup {(p,x) — f(x)}. (14

xeR?

For every f € I'o(R"), the mapping f — f* is one-to-one,
f* e I'o(R"), and (f*)* = f. Moreover, for every x € R”
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and p € R", f and f* satisfy Fenchel’s inequality

f@+ f5(p) = (p.x), 15)

where equality holds if and only if p € 9 f(x), if and only if
x € 0 f*(p) [39, corollary 1.4.4]. If f is also differentiable,
the supremum in (14) is attained whenever there exists x €
R" such that p = V f(x).

Definition 7 (Bregman divergences) Let f € I'g(R"). The
Bregman divergence of f is the function Dy: R" x R" —
R U {400} defined by

Dy(x, p) = f(x)—(p,x)+ f*(p). (16)

It satisfies Dr(x, p) > O for every x € R"” and p € R”
by Fenchel’s inequality (15), with D¢ (x, p) = 0 whenever
p € df(x). It also satisfies D¢(x, p) = Dy+(p, x), with
Dy (x, p) = Dy(p, x) if and only if f is the quadratic f =
L3,

Definition 8 (Infimal convolutions) Let fi € T'o(R") and
f2 € To(R™). The infimal convolution of fi and f; is the
function

R'sx — (AOR)x) = inf  {fi(x1) + fa(x2)}.(17)

X1+x2=x
The infimal convolution is exact if the infimum is attained
at x; € dom f] and x» € dom f;, and in that case the
infimum in (17) can be replaced by a minimum. When the
relative interiors of f1 and f> have a point in common, i.e.,
ridom f] Nridom f> # &, the Fenchel-Legendre transform
of the infimal convolution (17) equals the sum of their respec-
tive Fenchel-Legendre transforms [58, Theorem 16.4], that
is,

((HOR*(p) = fi(p) + f5(p).

If f € ['h(R"), then Moreau’s decomposition Theorem [40,
50] asserts that

1 1 1
5 B0/ + S B0 = 5 13

The following proposition provides conditions for which
two functions f; and f, satisfying f1 + fo = % ||~||%
can be factorized, respectively, in the form % ||'||% Of and
% II- ||% O f*. The proof can be found in [40].

Proposition 2.1 (Infimal deconvolutions [40]) Suppose fi
and f> are two convex functions on R" such that fi + fo =
% ||'|I%. Then, there exists a unique function f € T'o(R") such
that

fl_l

1
=5 I130f and fo= 2 IO,

@ Springer

where f(x) = fz*(x)—% ||x||% foreveryx € R". Moreover,
f1 and f> are continuously differentiable and

Vfi(x) € df(Vh(x)) and V fa(x) € df*(Vg(x)).

Definition 9 (Moreau—Yosida envelopes and proximal map-
pings) Lett > 0 and J € I'g(R"). The functions

X (%n : ||%DJ) (x)

1
e P e iz g 18
and
1 2
x > argmin { — |lx — y[I5+ J () (19)
yeRn 2t

are called the Moreau—Yosida envelope and proximal map-
ping of J, respectively [39,50,59].

The following proposition provides connections between
HJ PDEs and Moreau—Yosida envelopes and proximal map-
pings, which corresponds to certain optimization problems
in image denoising problems. Specifically, this proposition
describes the behavior of the solution to the infimum prob-
lem (8) and its corresponding minimizer (2), and in particular
that for any observed image x € R”" and parameter ¢t > 0,
the imaging problem (8) has always a unique solution. A
summary of these results and their proof can be found in
[17].

Proposition 2.2 ([17]) Let J € T'o(R"). Then, the following
statements hold.

(1) The unique continuously differentiable and convex func-
tion So: R"* x [0, 4+00) — R that satisfies the first-order
Hamilton—Jacobi equation with initial data

{*’;f(x,zw FIVxSoe, 03 =0 inR" x (0, +00), 20)
So(x,0) = J(x) inR",

is defined by

So(x, 1) = ((% ||-\|%> DJ) (x)  (Lax—Oleinik formula) ~ (21)

1 )
= Jinf, {Z Hx—y\|2+J(y)}- (22)
Furthermore, for every x € dom J, sequence {rk},j:f
of positive real numbers converging to 0, and sequence
{d k},jzo? of vectors converging to d € R", the pointwise
limit So(x + txdy, ty) as k — +00 exists and satisfies

lim So(x + tedy, 1) = J(x).

k—+00
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(ii) For every x € R" and t > 0, the infimum in (22) R" x (0, +00) x (0, +00) 3 (x,t,€) — Zj(x,t,€)
exists and is attained at a unique point uy ap(x,t) € (L2
que p ot (e yn2+1<y>)/edy (26)
dom 9J (see Eq. (2)). In addition, the minimizer u

uyAp(x,t) satisfies the formula

upap(x,1) =x —tVeSo(x, 1), (23)

and (%ﬂ“)) € J (upap(x,1)).

(iii) Let {tk},j;xl’ be a sequence of positive real numbers
converging to zero and let {dk},':;xf be a sequence of
elements in R" converging to some d € R". Then, for
every x € dom J the pointwise limit of upap(x,1t)
as t — 0 exists and satisfies

Iim upyap(x + trdy, tr) = x.
k——+o00

(iv) Let x € dom dJ and let {tk},j:f be a sequence of
positive real numbers converging to zero. Then, the
limit of Vi So(x, ty) as k — +00 exists and satisfies

lim  ViSo(x, ) = 797 x)(0).

k——+00

(24)

3 Connections between Bayesian Posterior
Mean Estimators and Hamilton-Jacobi
Partial Differential Equations

3.1 Setup

To establish connections between Bayesian posterior mean
estimators and Hamilton—Jacobi equations, we will assume
that the regularization term J in the variational imaging
model (8) satisfies the following assumptions:

(A1) J € T'o(R"),

(A2) int (dom J) # &,

(A3) infyegre J(y) € R, and without loss of generality,
infyern J(y) = 0.

Assumption (Al) ensures that the minimal value of the
convex imaging problem (8) and its minimizer (2) are
well-defined and enjoy several properties (see Sect. 2, Propo-
sition 2.2). Assumption (A2) ensures that for every x € R”,
t > 0, and € > 0, the posterior distribution

o (FleyB+s) /e

R"> y > 25)

fRn e*(%l\x*yl\ﬁﬂ(y))/edy

and its associated partition function

are well-defined, and finally, Assumption (A3) guarantees
that the partition function (26) is also bounded from above
independently of x € R”. We will denote the posterior expec-
tation (with respect to the posterior distribution (25)) of a
measurable function f: Q +— R with Q C dom f inte-
grable on the set dom f N dom J by

Es [ ()] = Fipye (FErBw)e,

Zy(x,t,€) Jandom J

27

Posterior expectations of vector quantities are defined
similarly component-wise. Posterior expectations generally
depend on (x, ¢, €), but we will omit writing this dependence
explicitly.

3.2 Connections to Viscous Hamilton-Jacobi Partial
Differential Equations

The next proposition establishes connections between vis-
cous HJ PDEs with initial data J satisfying Assumptions
(A1)—(A3) and both the partition function (26) and the
Bayesian posterior mean estimate (3). These connections
mirror those between the first-order HJ PDE (20) with ini-
tial data J satisfying assumption (A1) and both the convex
minimization problem (8) and the MAP estimate (2). The
connections between viscous HJ PDEs and Bayesian pos-
terior mean estimators will be leveraged later to describe
several properties of posterior mean estimators in terms of
the observed image x and parameters ¢ and €, and in partic-
ular in Sect. 3.3 to show that the posterior mean estimate (3)
can be expressed as the minimizer associated with the solu-
tion to a first-order HJ PDE (Proposition 3.2) with at least
twice continuously differentiable and convex regularization
term.

Proposition 3.1 (The viscous Hamilton—Jacobi equation with
initial data in T'o(R")) Suppose the function J satisfies
assumptions (Al)—(A3). Then, the following statements hold.

(1) (Cole—Hopftransformation, [26] Section4.4.1) For every

€ > 0, the function Sc: R" x [0, +00) — [0, +00)
defined by

1
Se(x,t) == —€ln <WZJ(X, t, e))

=—€ln _ e’(Tlr‘|x*y|\§+J<y))/ed
B Qrre)'? Jan y

(28)
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is the unique smooth solution to the viscous HJ PDE with
initial data

Be e, + L IVeSe(x. 013 = SAxSe(x, 1) inR" x (0, +00),
Se(x,0) = J(x) in R,
(29)

In addition, the domain of integration in (3.1) can be
taken to be dom J or, up to a set of Lebesgue measure
zero, int (dom J) or dom (dJ). Furthermore, for every
x € dom J and € > 0, except possibly at the boundary
points x € (dom J) \ int (dom J) if such points exist,
the pointwise limit S¢(x, t) as t — 0 exists and satisfies

lim Sc(x, 1) = J(x).
t—0
t>0

(ii) (Convexity and monotonicity properties).

(a) The function R" x (0, 400) 3 (x,1) — Sc(x,t) —
= Int is jointly convex.

(b) The function (0, +00) 3 t > Sc(x,1) — 5 Int is
strictly monotone decreasing.

(c) The function (0, +00) > € > Sc(x,1) — 75 Ine is
strictly monotone decreasing.

(d) The functionR" > x % ||x||%—tS6 (x, 1) is strictly
convex.

(iii) (Connections to the posterior mean and mean squared
error) The posterior mean estimate upp(x,t,€) and
the mean squared error [Ily —upy(x,t, €)||%] sat-
isfy the formulas

uppy(x,t,€) =x —tVySe(x, t) (30)
and

E; [Hy —upy(x,t, 6)||%] =1eVy -upy(x,t,e) 31)

= nte —tzeAxSe(x,t).

Moreover, x — uppy(x,t, €) is a bijective function.
(iv) (Vanishing € — 0 limit) Let Sp : R" x (0, 400) — R
denote the continuously differentiable and convex solu-
tion to the first-order HJ] PDE (20) with initial data J.
For every x € R" and t > 0, the following limit holds:

lim —en( ——— / o (FlryBeim)e,
e—)(()) (27Tt6)"/2 .
€>

1
= inf {—lx—yl34+J}. 32
ylél]R"{Zt e —yli2 + (y)} (32)

that is,

lim S (x,t) = So(x, t),
e—0

e>0

@ Springer

and the limit converges uniformly over every compact
set of R™" x (0, +00) in (x, t). In addition, the gradient

Vi Se(x, t), the partial derivative %, and the Lapla-
cian § Ay Se(x, t) satisfy the limits

lim Vi Se(r, 1) = VeSoGe, 1), lim o€ (x, 1) = 250 (¢ 1)

m N = s 1), m —— (X, = X, 1),

>0 7€ x20 e—0 Jt Jat

e>0 >0

and

€
lim = A t)y=20
eE)r%)Z xSe(x, 1) ,

e>0

where each limit converges uniformly over every compact
set of R" x (0, +00) in (x, t). As a consequence, for every
x € R"andt > 0, the pointwise limit of upp (x, t, €) as
€ — 0 exists and satisfies

limuppy(x,t,€) =upap(x, 1),
e—0

e>0

and the limit converges uniformly over every compact set
of R" x (0, +00) in (x, 1).

Proof See “Appendix A” for the proof. O

To illustrate certain aspects of Proposition 3.1 and proper-
ties of posterior mean estimates, we give here two analytical
examples.

Example 3.1 (Tikhonov-Phillips regularization) Let J (x) =
% ||x||% with m > 0, and consider the solution Sy(x, #) and
Se (x, t) to the first-order PDE (20) and viscous HJ PDE (29)
with initial data J, respectively.

The solution Sy(x, #) is given by the Lax—Oleinik formula
(Proposition 2.2, Eq. (22))

1 m
So(x, 1) = inf {—|x—yl|3+ = Ilyl3
0(x, 1) ygw{zf lx y||2+2||y||2}
m x5
2(1 +mt)

This minimization problem is a special case of Tikhonov—
Phillips regularization (also known as ridge regression in
statistics), a method for regularizing ill-posed problems in
inverse problems and statistics using a quadratic regular-
ization term [55,64]. The corresponding minimizer can be
computed using the gradient V, So(x, ¢) via equation (23) in
Proposition 3.1:

mtx  x
l4+mt  14+mr

upap(x, 1) =x —tVySo(x, 1) =x —
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The solution S, (x, ¢) is given by the integral

Se(x,1)

— —¢hn ;/ o (FIeie i) e,
Qute)"/2 Jpn

2
m ||x|]

+ 2 + m)
=+ — mt) .
201 mr) 2

The posterior mean estimate u pys(x, ¢, €) can be computed
using the representation formula (30) in Proposition 3.1(iii)
by calculating the gradient V, S¢(x, 7):

mtx
14+ mt

uPM(xatae) =X _IVXSG(x5t) =X —
X

1+mt

The mean squared error E; [|ly — upu(x,, €)[13] can be
computed using the representation formula (31) in Proposi-
tion 3.1(iii) by calculating the divergence of upy(x, t, €):

2 nte
J [Ily —upy(x,t, 6)”2] =teVy -upy(x,t, €)=

(33)

Comparing the solutions Sy(x, #) and S¢ (x, 1), we see that
lime_0 Se(x, 1) = Sp(x,t) forevery x € R" and ¢ > 0, in
accé;dance with the result established in Proposition 3.1(iv).
Note also that while (x, t) — Sp(x, t) is jointly convex, its
viscous counterpart (x,t) +— Sc(x,?) is not. Indeed, t +—
S (x, 1) is not convex, and it is convex only after subtracting
= Int from Se(x, 1).

Example 3.2 (Soft thresholding) Let J(x) = Z?:l Ailxil,
where A; > Oforeachi € {1, ..., n}, and consider the solu-
tions Sp(x, t) and S¢(x, 1) to the first-order (20) and viscous
HJ PDEs (29) with initial data J, respectively.

The solution Sy (x, #) is given by the Lax—Oleinik formula

1 n
S =I5+ |y,~|}

i=1

n
(1
= El (ylirgR{Z(xi — )P+ Iyil}),
i=

So(x,t) = inf
o(x. 1) ;éan{

where x; and y; denote the i component of the vectors x
and y, respectively. In the context of imaging, this minimiza-
tion problem corresponds to denoising an image with the
weighted sum of a quadratic fidelity term and a weighted /;-
norm as the regularization term. This term is widely used in
imaging to encourage sparsity of an image, and it has received
considerable interest due to its connection with compressed
sensing reconstruction [10,24]. The solution to this mini-
mization problem corresponds to a soft thresholding applied

14+mt

component-wise to the vector x [20,29,47]. The soft thresh-
olding operator is defined for any real number a and positive
real number « as

a—a ifa>a,

R x (0, +00) 3 (a, ) — T(a,0) = ifa € [—a, al, (34)

a+a ifa < —a.

The minimizer in the Lax—Oleinik formula of Sy (x, t) is then
given component-wise fori € {1, ..., n} by

(upap(x,1)); =T (xi, th),

so that

n

Sox, )= (%(xi — T (xi, 12))” + 2 T (xi, mm) :

i=1

The solution S¢ (x, ¢) is given by the integral

1 (e e=y13+30 2ilvil) /e
— 2 2 k=1"1171
Se(x,t)——eln((zme)n/z/ne (r ) dy
+00
(i =y 2+ \yz\)
_ 1 _ 21 i
- (3 [
n
1 /2 +oo _(L(xi+y,
S ([ e >
i=1

+/+°O e—<21,(x[—y1')2+>»1)'1)/€dyi>>

0

To compute this integral, first define the function
Raz+ L(z) =

1
Eezz erfc (z),

where erfc denotes the complementary error function. Then,
we have ([33], page 336, integral 3.332, 2., and page 887,
integral 8.250, 1.)

OO (L ity Ay 2 Ny
l\/Z/ e—(z(x,-ﬁ-)z) +)»,_\,)/edyi R (M)
2V mte Jo ie

and

+oo Lo o2 ) 7 s .
1 i/ e—(z(xx i) H'y')/edy,» _ e‘ﬂL< Xi +1X )’
2V e Jy 2te
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from which we get

Il _ Zl (1 ()
()

Now, to find the posterior mean estimate it suffices to com-
pute the gradient of V, S¢(x, ) and use formula (30). To do
so, we need the derivative of the function L. Since

Se(x,t) =

2 =2L@)+—=
dZZ_Z 4 ﬁa

the chain rule gives

0 Xi +t)»i) (—xi +l‘)»,‘>>
— (L + L —
ox; ( < A/ 2te V2te
_ (x,' +t)»i> L (xl- +t)\,')
B te 2te
B <—x,’ +t)»i> L (—
te

The posterior mean estimate is therefore given component-
wise by

Xi + 1A )
A 2te )

— 1(VxSe(x,1))i
The posterior mean estimate u p s (x, f, €) yields a smooth

analogue of the soft thresholding operator 7' (defined in (34))
evaluated at (x;, 71;), in the sense that lim€_>8 (uppy(x,t,€));

(upp(x,1,€)); = x;

=x; + 1A

= T (x;,t)x;) foreveryi € {1, ...,n}by f’?oposition 3.1(31v).
Figure 3 shows the MAP and posterior mean estimates
in one dimension for the choice of ¢t = 1.25, ¢ =
{0.025, 0.1, 0.25, 0.5, 1},and A = 2 for x € [-5, 5].

3.3 Connections to First-Order Hamilton-Jacobi
Equations

In this section, we use the connections between the poste-
rior mean estimate (3) and viscous HJ PDEs established in
Proposition 3.1 to show that the posterior mean estimate can
be expressed through the solution to a first-order HI PDE with
initial data of the form of (20). In particular, we show that
the posterior mean estimate satisfies the proximal mapping
formula

@ Springer

3 T T T T T T T T T
map(x t) upm(x,t;e) with e = 0.25
up, m(Xti€) with € = 0.025 upm(x,t;c) with € =0.5
oL upm(x,t;() with € = 0.1 upm(x,t;() with e =1

Fig. 3 Numerical example of the MAP and posterior mean estimates
in one dimension with J(x) = X; |x| for the choice of + = 1.25,
e =1{0.025, 0.1, 0.25, 0.5, 1}, and Ay =2 for x € [—5, 5]

upy(x,t,e)

.1 1
= arg min {5 e = I3+ (K:‘(y, f - §||y||§)} :

yeR”

where the function K.: R" x x(0, +00) — R is defined
through the solution S¢ (x, #) to the viscous HJ PDE (29) via

Kc(x,1)

1 2
= 5 Ilxllz = 18 (x. 1)

—icln ! / [HEn=dyB=Im)re
Qrte)'? Jgom 7 ’

which is convex by Proposition 3.1(ii)(d), and where K (y, t)
denotes the Fenchel-Legendre transform of y +— K (y, t).
This result gives the representation of the convex imag-
ing regularization term whose existence was derived by
[34,35,48,49] (and later extended to non-quadratic data
fidelity terms in [36,37]). This representation result depends
crucially on the connections established between the poste-
rior mean estimate u p 7 (x, ¢, €) and the viscous HJ PDE (29)
established in Proposition 3.1. Moreover, we also show
that y — KJ(y,t) is at least twice continuously differ-
entiable. This fact implies that the posterior mean estimate
upy(x,t, €) for image denoising does not suffer from stair-
casing effects thanks to a result established in [51, Theorem
3] as proven for Total Variation regularization terms in [48].
Here, our results are applicable to any regularization term J
satisfying assumptions (A1)—(A3).

Proposition 3.2 (Connections between the posterior mean
estimate and first-order HJ PDEs) Suppose the function J
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satisfies assumptions (Al)-(A3). For every x € R", t > 0,
and € > 0, let Sc(x,t) denote the solution to the viscous
HJ PDE (29) with initial data J and let upy(x, t, €) denote
the posterior mean estimate (3). Consider the first-order HJ
PDE

: 2
08 1 o .
?—S(x, s)+ 5 HVXS(x, S)H2 =0 in R" x (0, +oo),(35)
S, 0) = K}(x, 1) — x|3 in R".

Then, the initial data x — K (x,t) — %||x||% is convex,
the solution to the HJ PDE (35) satisfies the Lax—Oleinik
formula

- 1 1
S =inf { —lx—yl3+ (K .0 - slyl3
(x7 S) yléan {25 ”x .)’”2 + ( € (y’ ) 2”)’”2)} )

and the corresponding minimizer at s = 1 is the posterior
mean estimate upp(x,t,€):

uppy(x,t,e)

: 1 2 * 1 2
=argmin | =[x — yl5 + | K (y, 1) — 5 llyllz ) ¢ - (36)
sern |12 2

Moreover, for every t > 0 and € > 0 the function R" >
y = K} (y,t) is at least twice continuously differentiable.

Proof By definition of the function (x, 1) — Kc(x,1), we
can write

1
1Se(x,1) + Ke(x, 1) = Enxn%.

As both x +— tSc(x, 1) and x — K (x,t) are convex by
Proposition 3.1(ii)(a) and (d), we can apply Proposition 2.1
in Sect. 2 to conclude that x — K} (x, 1) — % [lx ||% is convex
and to express tS¢ (x, t) as

1Se(x, 1)

e 1
:ylélﬂgn{5||x—y||§+(K§‘(y,t)—Ellyllﬁ)} (37)

On the one hand, by Proposition 2.2 the right hand side of
(37) is the solution S’o (x, s) to the first-order HJ PDE (35) at
s = 1, and therefore its minimizer is given by x — V. S’o (x, 1).
On the other hand, the gradient V So(x, 1) is equal to the left
hand side of (37), that is, V¢ So(x, 1) = #Vy S (x, ), which
isequal tox —upy(x,t, €) by formula (3). As a result, the
posterior mean estimate upy/(x, f, €) minimizes the right
hand side of (37), that is,

upp(x,t,e)

: 1 2 * 1 2
=argmin =[x —yll;+ | K (y,0) — 5llyllz ) ¢ -
sern |2 2

Now, using the strict convexity of x +— K(x,?) and
that VK. (x,t) = uppy(x,t,€) is a bijective function in x
for every + > 0 and € > 0 by Proposition 3.1(iii) we can
invoke [58, Theorem 26.5] to conclude that y — K(y, 1)
is a continuously differentiable, strictly convex, and bijec-
tive function on R”, and moreover that y — V,K*(y,1)
corresponds to the inverse of x +— wupy(x,t,€), ie.,
VyKX(upu(x,t,€),t) = x. Finally, as x — Kc(x,1) is
twice differentiable and strictly convex on R”, the inverse
function theorem [26, Appendix C, Theorem 7] implies that
y = V,KX(y,t) is continuously differentiable on R”",
whence y — Kc(y, 1). O

4 Properties of Posterior Mean and MAP
Estimators

In this section, we describe various properties of the Bayesian
posterior mean estimate (3) in terms of the data x € R",
parameters ¢ > 0 and € > 0, and the imaging regulariza-
tion term J. Specifically, in Sect. 4.1, we derive topological,
representation, and monotonicity properties of the poste-
rior mean estimate, which we use in Sect. 4.2 to further
derive an optimal upper bound on the mean squared error
Ey [lly —upm(x.t, €)[3], an estimate of the squared dif-
ference between the MAP and posterior mean estimates,
monotonicity and non-expansiveness properties of the pos-
terior mean estimate, and the behavior of the posterior mean
estimateu p s (x, t, €) inthe limitr — 0. Finally, we describe
the MAP and posterior mean estimates in terms of Bayes risks
and their connections to HJ PDEs in Sect. 4.3.

4.1 Topological, Representation, and Monotonicity
Properties

This section describes the topological, representation, and
monotonicity properties of the Bayesian posterior mean
estimate (3), which are stated, respectively, in Proposi-
tions 4.1, 4.2, and 4.3.

The first result, Proposition 4.1, states that the posterior
mean estimate belongs in the interior of the domain of J for
all data x € R" and parameters > 0 and € > 0.

Proposition 4.1 (Topological properties) Suppose that the
function J satisfies assumptions (Al)—(A3). Then, the fol-
lowing properties hold.

(1) Foreveryx € R", t > 0, and € > 0, the posterior mean
estimate upp(x,t, €) is contained in int (dom J).

(i) Let x € R", t > 0, and ¢ > 0, and let S.: R" x
(0, +00) — R denote the solution to the viscous HJ
PDEs (29) with initial data J. Then, the expected value
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of the initial data E ; [J ( y)] satisfies the bounds

0<Jpu(x.1,€) <E;[J(y)]

<e (eS<<X~’>/€ - 1) < 400. (38)

Proof See “Appendix B”. O

The second result, Proposition 4.2, gives representation
formulas for the posterior mean estimate. In particular, when
the regularization term J satisfies assumptions (A1)—(A3)
and dom J = R”, the posterior mean estimate and mean
squared error then satisfy representation formulas in terms of
the mean minimal subgradient of J given by E; [na J() (0)].
These representation formulas are then used to show that
whendom J # R", the posterior mean estimate can nonethe-
less be approximated using the first-order HJ PDE (20) by
smoothing the initial value J via a Moreau—Yosida approxi-
mation So(x, ) with > 0.

Proposition 4.2 (Representation properties) Suppose that
the function J satisfies assumptions (Al)—(A3), let x € R",
t >0,ande > 0, and let (x,1t) — So(x,1t) and (x,t) —
Se(x, t) denote the solutions, respectively, to the first-order
and viscous HJ PDEs (20) and (29) with initial data J.

(1) (Representation formulas) If dom J = R", then
E; [Hna](y)(()) ||2] < o0, for every yo, € R" we have

E, [<<¥> +7mh5()(0), y — )’OH = ne,

and the posterior mean estimate upy(x, t, €) and mean
squared error &y [Ily —upy(x,t,e) |I§] of the Bayesian
posterior distribution (25) satisfy the representation for-
mulas

(39)

upm(x,t,€) =x —tE; [m55(y(0)] (40)

and

Ey Iy = upyix. 1. €)13]
=nte — 1By [(my15)(0), y —upm(x.1,€))]. (41)

Moreover, the gradient ViS¢ (x, t) and Laplacian Ay Se
(x, t) satisfy the representation formulas
ViSe(x, 1) =Ey [m95(5)(0)] (42)

and

1
AxSe(x,1) = EEJ [(mas(» (@), y —upp(x,1,6)].
(43)
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(ii) (Limit formulas) Let {y,k}ktxf be a sequence of positive
real numbers decreasing to zero. The solution S¢(x,1t)
to the viscous HJ PDE (29) and its gradient V. S¢(x, t)
satisfy the limits

Se(x, 1)
1 ~(FIx-y3+I ) /e )
=—cln| ——— e \¥ 2 d
<(27tte)”/2 /R Y (44)
— lim —cln ! / o (FyBesoa)e,
k—+00 Qmte)’? Jpn
and
. (L x—y13+s (y.uk))/f
T Jan VySo(y.mu)e (2' be=sl2+$ dy
Vi Se(x,t) = limg— 400 ( I e’(le“X’y“%+‘g°(y"‘k))/‘dy .
R
(45)

In particular, the posterior mean estimate upy(x,t, €)
satisfies the limits

upp(x,1,€)

1 2
] (fw ye(z,|xy2+smy,uk>)/edy)
= lm

k=400 fR" e*(%\IxfyHngSo(y,uk))/edy (46)
—(Lx—y|?
li Jrn VySo(y. ii)e (31 y"ﬁ&’(y'uk))/gdy
=x—1 R
MRS - ~(F i Soaw) e
Jane N dy
Proof See “Appendix C” for the proof. O

Remark 4.1 Note that the representation formulas in Proposi-
tion 4.2(i) may not hold if dom J # R". To see this, consider
J : R" > R U {+0o0} defined by

0, ifllyla =1,

J(y) = {
+o0,

otherwise.

The domain of J is the unit sphere in R”, which is convex,
and J satisfies assumptions (A1)—(A3). The function J is
continuously differentiable on int (dom J), with VJ(y) =
0 for every y € int (dom J). Clearly, E; [naj(y) (0)] =
0. However, for every x # 0, the posterior mean estimate
upy(x,t,€) # x. Hence, the representation formula (40)
does not hold in that case.

The next result, Proposition 4.3, uses the properties of
solutions to first-order HJ PDEs presented in Proposition 2.2
together with the representation formulas (40) and (41) to
describe monotonicity properties of the posterior mean esti-
mate. Proposition 4.3 will be leveraged in the next subsection
to derive an optimal upper bound for the mean squared error
Ey [lly —upm(x,t, €)|3] and several estimates and limit
results of u pys(x, ¢, €) in terms of the observed image x and
parameter ¢ > 0.
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For the statement and proof of Proposition 4.3, and later and
for Proposition 4.5, we define the function
lupm(x +d,t,e) —upmu(x,t,e)ll < ldlly.  (S1)

— X
domdJ >y ¢y(ylx, 1) = <yT) + 737y (0),

which is a subgradient of the convex function y > y —
% lx — y||% + J(y) forevery y € dom 9J.

Proposition 4.3 (Monotonicity property) Suppose that the
function J is strongly convex of parameter m > 0 and satis-
fies assumptions (Al)~(A3). Let x € R", t > 0, and ¢ > 0.
Then, for every y, € dom dJ,

(ZE) 5 Iy - o]

<Ey [lesylx, 1) — @1 (yolx, 1), y — o)]
< ne — (goj(yolx, D, upp(x,t,€)— J’())-

(47)

Moreover, the mean Euclidean norm of the minimal subgra-
dient of J is finite, i.e., Ey [Hnaj(y)(O) ||2] < 4o00.

Proof See “Appendix D” for the proof. O
4.2 Error Bounds and Limit Properties

In this section, we derive an optimal bound for the mean
squared error E; [||y —upy(x,t, e)||%], a bound on the
squared difference between the MAP and posterior mean esti-
mates, monotonicity and non-expansiveness properties of the
posterior mean estimate, and limiting results of the posterior
mean estimate in terms of the parameters 7.

Proposition 4.4 (Error Bounds and limit properties) Suppose
that the function J is strongly convex of parameter m > 0
and satisfies assumptions (Al)—(A3).

(1) For everyx € R", t > 0, and € > 0, the mean squared
error K [||y —upy(x,t, e)||%] of the Bayesian poste-
rior distribution (25) satisfies the upper bound

nte
By [Iy = upnie.r 03] < (48)

T l+mt

(ii) For everyx € R", t > 0, and € > 0, the squared dif-
ference between the MAP and posterior mean estimates
satisfies the upper bound

nte
1 +mt

luprap(x, 1) —upy(x,t,€)|3 < (49)

(iii) The posterior mean estimate is monotone and non-
expansive, that is, for everyx,d € R", t > 0, and e > 0,

(uppy(x +d,t,e) —upy(x,t,€),d) >0 (50

@iv) Let {tk};;Xl’ be a sequence of positive real numbers con-
verging to 0 and let {d k},jzo? be a sequence of elements
of R" converging to d € R". Then, for every x € dom J
and € > 0, the pointwise limit of uppy(x + tydy, tx, €)
as k — 400 exists and satisfies

lim wuppy(x+ txdy, ty, €) = x.
k—+o00

Proof Proof of (i): Since upy(x,t,€) € int (dom J) by
Proposition 4.1 and int (dom J) C dom dJ (see Defini-
tion 5), we can set yo = uppy(x, 1, €) in the monotonicity
inequality (47) in Proposition 4.3(i) and rearrange to get the
upper bound (48).

Proof of (ii): Note that for every y, € dom dJ, the mono-
tonicity inequality (47) in Proposition 4.3 yields

Ey [<<¥ + ﬂaj(y)(0)> Y= yo>:| < ne.

Choose yy = upap(x,t), which for every x and r > 0 is
always an element of dom dJ and also satisfies the inclusion

X—upmAp(*x.1)
t

tion 2.2. Hence, the monotonicity of the subdifferential of
y = 2% lx — y||% + J(y) and strong convexity of J of
parameter m > 0 implies

1 4+ mt
( . )ny—uMAp(x,z)n%

) € 3J(upap(x, 1)) by part (ii) of Proposi-

< <<¥ + ﬂaj(y)(0)> .Yy —uyap(x, f)>~

Combine these inequalitiesto get By [Ily — umap(x, 1)[3] <
l'j:; -, and use the convexity of the Euclidean norm to get
inequality (49).

Proof of (iii): The convexity of x — K (x, t) by Propo-
sition 3.1(ii)(d) and Vy K¢ (x, ) = upp(x, t, €) implies the
monotonicity property (50) (see definition 5, equation (13),
and [58], page 240 and Corollary 31.5.2). Since both func-
tions x — Se¢(x, 1) and x — % ||x||% —tSc(x, t) are convex
by Proposition 3.1(ii)(a) and (d), the gradient of the func-
tion x % ||x||% — tSc(x, t), whose value is the posterior
mean estimate u py/(x, t, €) by Proposition 3.1(iii), is Lip-
schitz continuous with unit constant (see [69] for a simple
proof), that is,

[(x +d —1VeSe(x +d, 1)) — (x —1VeSe(x, 1)) 2

=llupy(x +d,t,e) —upy(x,t,€)ly < |idll,,
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which proves inequality (51).
Proof of (iv): Inequality (49) and the triangle inequality
imply

l(x +tedy) —upy(x + trdy, ti, €)ll»
ntye
14+ mt

< N (x +tdy) —uprap(x + tid, ti)llo +

The limit limg_, y o0 # pps(x + t1dk, tx, €) = x then follows
by Proposition 2.2(iii). O

Remark 4.2 The upper bound for the mean squared error in
(48) is optimal. As shown in Example 3.1, it is attained for
the quadratic term J (x) = 75 [lx II%.

4.3 Bayesian Risks and Hamilton-Jacobi Partial
Differential Equations

In this section, we will consider the Bayesian risk associated
with the following Bregman divergence (see Definition 7)

R" x R" > (u, y)
Do, (u,p;(ylx,1)) if y € domadJ,
+00

. (52)
otherwise,

where

y—x
dmﬁJayH¢KHL0=<—TJ+WMMWL

R”Bden@MJﬁ=%Hx—ﬂ@+J@)

The associated Bayesian risk to the posterior distribution (25)
corresponds to the expected value [E ; [D@l (u, p;(y|x, t))].
We refer the reader to [4] and [44] for discussions on Bregman
loss functions and Bayesian estimation theory.

Here, we will use the connections between maximum a
posteriori and posterior mean estimates and Hamilton—Jacobi
equations derived in Sect. 3 to show that when the regular-
ization term J is convex on R” and bounded from below,
then the MAP estimate u ;4 p(x, t) minimizes in expecta-
tion the Bregman loss function (52). We also show that when
dom J # R”" and satisfies assumptions (A1)-(A3). The
results rely on the monotonicity property (47) established
in Proposition (4.3).

Proposition 4.5 (Bregman divergences) Suppose that the

Sfunction J satisfies assumptions (Al)—(A3), and let x € R",
t>0,ande > 0.

(1) The mean Bregman loss function dom J > u >
E; [Dq;;j (u,p5(ylx, t))] € R has a unique minimizer

@ Springer

u € dom 0J that satisfies the inclusion

(g) € 07 (@) + (VeSe(x, 1) — Ey [m375)(0)])
(53)

where addition in (53) is taken in the sense of sets.

(1) If J is finite everywhere on R", then the MAP estimate
upyap(x,t) is the unique global minimizer of the Breg-
manlossfunction R"* > u — Ejy [Dq;l (u, 5(y|x, t))] €
R, that is,

upap(x,t) =argminE; [Do, (u, ¢;(ylx,1))] (54
ueR”
Proof See “Appendix E” for the proof. O

5 Conclusion

In this paper, we presented novel theoretical connections
between Hamilton—Jacobi partial differential equations and
a broad class of Bayesian posterior mean estimators with
quadratic data fidelity term and log-concave prior relevant to
image denoising problems. We derived a representation for-
mula for the posterior mean estimate u pys(x, ¢, €) in terms
of the spatial gradient of the solution to a viscous Hl PDE
with initial data corresponding to the convex regularization
term J. We used these connections to show that the posterior
mean estimate can be expressed through the gradient of the
solution to a first-order HJ PDE with twice continuously dif-
ferentiable convex initial data, and furthermore, we derived
a novel representation formula for this initial data which, to
our knowledge, was not available in the literature.

The connections between HJ PDEs and Bayesian poste-
rior mean estimators were further used to establish several
topological, representation, and monotonicity properties of
posterior mean estimates. These properties were then used
to derive an optimal upper bound on the mean squared error
E; [||y —upy(x,t, e)||%], an estimate of the squared dif-
ference between the MAP and posterior mean estimates,
monotonicity and non-expansiveness properties of the pos-
terior mean estimate, and the behavior of the posterior mean
estimate u pps(x, t, €) in the limit r — 0.

Finally, we used the connections between both MAP and
posterior mean estimates and HJ PDEs to show that the
MAP estimate (2) corresponds to the Bayes estimator of the
Bayesian risk (52) whenever the regularization term J is
convex on R"” and bounded from below and the data fidelity
term is quadratic. We also show that when dom J # R", the
Bayesian risk (52) has still a Bayes estimator that is described
in terms of the solution to both the first-order HJ PDE (2.2)
and the viscous HJ PDE (3.1).
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We wish to note that in addition to its relevance to image
denoising problems, the viscous HJ PDE (29) has recently
received some attention in the deep learning literature, where
its solution x +— Sc(x,t) is known as the local entropy
loss function and is a loss regularization effective at train-
ing deep networks [15,16,31,65]. While this paper focuses
on HJ PDEs and Bayesian estimators in imaging sciences,
the results in this paper may be relevant to the deep learn-
ing literature and may give new theoretical understandings
of the local entropy loss function in terms of the data x and
parameters ¢ and €.

The results presented in this work crucially depend on the
data fidelity term being quadratic and the generalized prior
distribution y > e~/ being log-concave. This paper did
not consider non-quadratic data fidelity terms (correspond-
ing to non-Gaussian additive noise models) with log-concave
priors, or non-additive noise models [5,7].
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A Proof of Proposition 3.1

We will use the following lemma, which characterizes the
partition function (26) in terms of the solution to a Cauchy
problem involving the heat equation with initial data J €
[o(R™), to prove parts (i) and (ii)(a)—(d) of Proposition 3.1.

Lemma A.1 (The heat equation with initial data in I'o(R"))
Suppose the function J : R" — R U {+0o0} satisfies assump-
tions (Al)—(A3).

(1) For every € > 0, the function we: R" x [0, +00) —
(0, 1] defined by

We(x, 1) = WZJ(X, t,e)
1 ~(FlIx=y13+7 ) /e
= PRt dy (55
Qrte)"/? /n y 9

is the unique smooth solution to the Cauchy problem

{Bé’f (x,1) = SAxwe(x, 1) inR" x (0, +00), (56)

we(x,0) = e/ X)/e in R,

In addition, the domain of integration of the integral (55)
can be taken to be dom J or, up to a set of Lebesgue
measure zero, int (dom J) or dom 9J. Furthermore, for
everyx € R"ande > 0, except possibly at the points x €

(dom J) \ (int dom J) if such points exist, the pointwise
limit of we(x, t) as t — 0 exists and satisfies

lim we (x, 1) = e~/ /€,
t—0

t>0

with the limit equal to 0 whenever x ¢ dom J.
(ii) (Log-concavity and monotonicity properties).

(a) The function R" x (0, +00) > (x, 1) > 1" 2w, (x, 1)
is jointly log-concave.

(b) The function (0, +00) > t — t"?w.(x, t) is strictly
monotone increasing.

(¢) The function (0, +00) 3 € — €"/?w,(x, 1) is strictly
monotone increasing.

(d) The function R" > x +— ei”"”%wE (x, 1) is strictly
log-convex.

The proof of (i) follows from classical PDEs arguments for
the Cauchy problem (56) tailored to the initial data (x, €)
e~/ /€ with J satisfying assumptions (A1)—(A3), and the
proof of log-concavity and monotonicity (ii)(a)—(d) follows
from the Prékopa—Leindler and Holder’s inequalities [30,46,
56]; we present the details below.

Proof Proof of Lemma A.1 (i): This result follows directly
from the theory of convolution of Schwartz distributions (
[42], Chapter 2, Sect. 2.1, Chapter 4, Sect. 4.2 and 4.4., and
in particular Theorem 4.4.1 on page 110). To see why this
is the case, note that by assumptions (A1)—(A3) the initial
condition y > ¢~/ is a locally integrable function, and
locally integrable functions are Schwartz distributions.

Proof of Lemma A.1 (ii)(a): The log-concavity property
will be shown using the Prékopa—Leindler inequality.

Theorem A.1 (Prékopa—Leindler inequality [46,56]) Let f,
g, and h be non-negative real-valued and measurable func-
tions on R", and suppose

Ry 4 (1= 2)y,)) = f(y) ey

forevery y,, y, € R"and ) € (0, 1). Then,

A (I-2)
/ h(y)dyz( / f(y)dy) ( / g(y)dy) .
R7 Rn Rn

Proof of Lemma A.1 (ii)(a) (continued): Let ¢ > 0,
Ae O, D, x =i+ (1 —=Mx2,y =2y, + (1 =Dy,
and r = A1 + (1 — M)ty for any x1, x2, ¥, ¥o € R” and
t1, 1y € (0, 400). The joint convexity of the function R” x
0, 400) > (z,t) — % ||z||% and convexity of J imply

! [ 134 J(y)
— x_
2 Yz Yy
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A 2 =2
Sz—tl”xl—yl”ﬁT

+AJ(y) + (1= 2)J(y2),
This gives

o (Fley3+s ) /e
(2me)n/?

~(sk x5+ 0n) e

e
>
- (2re)n/?

(s Ix2=mll+s ) ) e

QQme)n/?

e

Applying the Prékopa—Leindler inequality with

~(FIx—yB+I )/

h(y) =

(2me)n/? ’
o (A lE iy B+ ) /e
fy) = GnE :
and
oz lmamy B () 6
8y =

2me)n/? ’
and using the definition (55) of we (x, 1), we get

X ()
"Pwe(x, 1) = (tf/zwe(xl,tl)) (l;/zwe(xz,b)) ,

As a result, the function (x,7) — 2w (x, 1) is jointly
log-concave on R” x (0, 400).

Proof of Lemma A.1 (ii)(b): Since ¢ > 1 is strictly
monotone decreasing on (0, 400), then for every x € R”,
yedomJ,e >0,and0 < t] < 1o,

(Al ) /e

2me)/2

o (s lEyI3i ) e

(2me)n/?

whenever x # y. Integrating both sides of the inequality
with respect to y over dom J yields

1 2
(2ni)n/2 / e_(ﬁ”x_ynzﬂ(y))/edy
dom J

1 2
dom J

’

@ Springer

As a result, the function ¢t — /2w (x, 1) is strictly mono-
tone increasing on (0, 4-00).

Proof of Lemma A.1 (i)(c): Since € +— 1 is strictly
monotone decreasing on (0, +00) and dom J > y — J(y)
is non-negative by assumption (A3), then for every x € R”,
t >0,and 0 < €; < €3 we have

e—(%\lx—y||%+J(y))/el - e—(%llx—y\l%+l(y))/éz

whenever x # y. Integrating both sides of the inequality
with respect to y over dom J yields

/ o~ (FryBrsm)sa
dom J

L ie—yl2
<f o (FlrrBrim)/e,
dom J

As a result, the function € — /2

tone increasing on (0, 4+00).
Proof of Lemma A.1 (ii)(d): Lete > 0,7 > 0,A € (0, 1),
x1,x2 € R"withx| # xoand x = Ax| + (1 — A)x,. Then,

we (x, t) is strictly mono-

1 2
e 2te ”xllz We (x, t)

_ 1 / e((x,y)/t—%||Y|\%—J(y))/€dy
(27”6)"/2 dom J

/c;om J

o2y /16~ K1y BT ()/e Hd
(2mte)r/? Y

=5 1y13-1)) e

2mte)n/?

Holder’s inequality [30, Theorem 6.2] then implies

1 2
e 2te ”xllz We (x’ t)

/
S
dom J

S nie=Llyl3-sme  \ '
/ &
dom J (27”6)”/2

oL e 12 Mol =
_ (eZte 1 2we(x17f)> (ezré 2 ZwE(xz,t)) ,

(r0/e=%1y13- ) e

Qrtey? dy

where the inequality in the equation above is an equality if and
only if there exists a constant & € R such that ae*1-¥)/1¢ =
exxY)/1€ for almost every y € dom J. This does not hold
here since x| # x». As a result, the function R" 3 x —
eTIe”"”%w6 (x, 1) is strictly log-convex. O

Proof of Proposition 3.1 (i) and (ii)(a)-(d): The proof
of these statements follows from Lemma A.l and classic
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results about the Cole—Hopf transform (see, e.g., [26, Section
4.4.1]), with S¢(x, t) = —e log(we(x, 1)).

Proof of Proposition 3.1 (iii): The formulas follow from
a straightforward calculation of the gradient, divergence, and
Laplacian of S¢(x, t) that we omit here. Since the function
X — % ||x||% — tSe(x, t) is strictly convex, we can invoke
(Corollary 26.3.1,[58]) to conclude that its gradientx +— x —
tVySe(x, t), which gives the posterior mean u pys(x, t, €), is
bijective.

Proof of Proposition 3.1 (iv): We will prove this result
in three steps. First, we will show that

1
li Se(x,t) < inf —x—yl3+J
Henj(l)lp G(x )_yeintlgiom J){zl ”x _Y||2+ (y)}
e>0
and

1
inf —lx—yl3+J
e J){2t x — yllz + (y)}

1
inf — |lx — ylI? = .
yeél(}mj{zt llx }’||2+J(}’)} So(x, 1)

Next, we will show that liminf._ o Se

0
(x,1) > So(x, t). Finally, we will use steps 1 and 2 ti)>con—

clude that lim¢ o Sc(x, ) = So(x, t). Pointwise and local

€>
uniform convergence of the gradient lim¢_,¢ V. Sc(x, 1) =
e>0

>
Vi So(x, t), the partial derivative lime—.0 w = %
e>0

and the Laplacian lim¢_ %Ax Se(x,t) = 0 then follow
from the convexity and differentiability of the solutions
(x,1) — So(x,t)and (x, 1) — Se(x, 1) to the HI PDEs (20)
and (29).

In what follows, we will use the following large deviation
principle result [22]: For every Lebesgue measurable set A €
R,

lim —e In ;/ e*i”x*y”%dy
20 Qmte)r/2 [ 4

€>

1
=essinf { — [lx — y|? ,
S5 10 {ZI l J’||2}

where
inf | L jlx — y12
essinf { — ||x —
yeA |2t Y2
1

= sup {a eR:a < % lx — y||%,fora.e.y € A} .

Step 1. (Adapted from Deuschel and Stroock [22], Lemma
2.1.7.) By convexity, the function J is continuous for every

Yo € int (dom J), the latter set being open. Therefore, for
every such y, there exists a number ry, > 0 such that for

every 0 < r < ry, the open ball B,(y() is contained in
int (dom J). Hence,

S(e.t) = ,eln< 1 2/ e—(%ux—y||§+1<y>>/edy>
@rte)"? Jint (dom J)

< cem(—1 2/ o~ Flx-yBHI0)/e g,
@rte)"/2 JB,(yo)

< el ;2 el =I3 4,
Qrte)t/ Br(¥0)

+ sup  J(y).
YEBr(y0)
Take lim supe—,¢ and apply the large deviation principle to
0

€>
the term on the right to get

sup  J(y).

1
lim sup S¢(x, 1) < essinf {— lx — yllg} +
2 yeBr(yo)

e—0 YEB:(¥9)
e>0

Take lim,_, ¢ on both sides of the inequality to find

1
e—0 2t
e>0

limsup Se(x,1) < — ||x — yoH; + J(yo)-

Since the inequality holds for every y, € int (dom J), we
can take the infimum over all y € int (dom J) on the right-
hand-side of the inequality to get

1
li Se(x,1) < inf —lx = yl3+ J(») $(57
11611_)8(1)1}) e (x )_yeiml&omj){m lx —yls + (y)}( )
e>0

By assumptions (Al) and (A2) that J € To(R") and
int (dom J) # &, the infimum on the right hand side is
equal to that taken over dom J [58, Corollary 7.3.2], i.e.,

1
inf Tl — 2T
yeintlglom J) {2; lloe = Iz + ()’)}

= inf

1 . B
yedom 4 {Z lx =yl + JU)} = Sox.0).  (58)

We combine (57) and (58) to obtain

lim sup Se(x, 1) < So(x, 1),
e—0
e>0

which is the desired result.

Step 2. We can invoke Lemma 2.1.8 in [22] because its
conditions are satisfied (in the notation of [22], & = —/J,
which is upper semicontinuous, y +—> 2% lx — yII% is the rate
function, and note that the tail condition (2.1.9) is satisfied in
that supycpn —J(y) = —infyers J(y) = 0 by assumption
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(A3)) to get

liminf S¢(x, 1) > So(x, 1).
e—0

e>0

Step 3. Combining the two limits derived in steps 1 and 2
yields

lim Sc(x, 1) = Sp(x, 1)
e—0

€>0

for every x € R” and ¢+ > 0, where the limit converges
uniformly on every compact subset (x, #) of R” x (0, +00)
[58, Theorem 10.8].

By differentiability and joint convexity of both R” x
0, 400) > (x,1) > Sp(x,t)and R" x (0, +00) > (x, 1) —
Se(x, 1) — % In ¢ (Proposition 2.2 (i), and Proposition 3.1 (i)
and (ii)(a)), we can invoke [58, Theorem 25.7] to get

0Se(x,t
lim VS, (x. 1) = V,So(x, ) and lim (L) _ ”6>
€0 e—0

at 2t
e>0 e>0
. 08e(x, 1) 3So(x, 1)
= lim = ,
e—0 at ot
e>0

for every x € R" and r > 0, where the limit converges
uniformly on every compact subset of R” x (0, +00). Fur-
thermore, the viscous HJ PDE (29) for S. implies that

. € o 0Sc(x, 1) 1 2
tim S8u5.t0.0) = lim (SR 4 1980,
e>0 e>0
0So(x, ) 1 5
= ——=+ = ||VeSo(x, ¢
( o +2|| xSo(x, Dl
:O,

where the last equality holds thanks to the HJ PDE (20)
(see Proposition 2.2). Here, again, the limit holds for every
x € R" and + > 0, and the limit converges uniformly
over any compact subset of R” x (0, +00). Finally, the limit
lime_)(()) uppy(x,t,€) =upyap(x,t)holds directly as a con-

seqlignce to the limit lime o Vy Sc(x, 1) = V,Sp(x, 1) and

the representation f0rmula€s>(30) (see Proposition 3.1(iii)) and
(23) (see Proposition 2.2(ii))for the posterior mean and MAP
estimates, respectively.

B Proof of Proposition 4.1
Proof of (i): We will prove that upys(x, ¢, €) € int (dom J)
in two steps. First, we will use the projection operator

(10) (see Definition 4) and the posterior mean estimate
uppy(x,t,€) to prove by contradiction that upys(x,1,€) €
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cl (dom J). Second, we will use the following variant of the
Hahn-Banach theorem for convex bodies in R” to show in
factthat upps(x,t, €) € int (dom J).

Theorem B.1 [58, Theorem 11.6 and Corollary 11.6.2] Let
C be a convex set. A pointu € C is a relative boundary point
of C if and only if there exist a vector a € R" \ {0} and a
number b € R such that

u = argmax {(a, y) + b},
yeC

with (a,y) + b < (a,u) + b for every y € int (C).

Step 1. Suppose upp(x,t,€) ¢ cl (dom J). Since the
set cl (dom J) is closed and convex, the projection of
upp(x,t,€) onto cl (dom J) given by el dom J)(upM
(x,1,€)) = u is well-defined and unique (see Definition 4),
withupp(x, t, €) # u by assumption. The projection u also
satisfies the characterization (11), namely

(wppy(x,t,e) —u,y—u)) <0

for every y € cl (dom J). Then, by linearity of the posterior
mean estimate,

lupp(e,t,€) —al3 = (uppy(x,t,€) —it, upp(x,t,€) —
=(upy(x,t,€) —a,Ey[y] —a)
=E; [(upm(x.t.€) —a, y —u))]
<0,

which implies that upps(x, t, €) = u. This contradicts the
assumption that upys(x, ¢, €) ¢ cl (dom J). Hence, it fol-
lows that u pys(x, t, €) € cl (dom J).

Step 2. We now wish to prove that uppy(x,t,€) €
int (dom J). Note that this inclusion trivially holds if there are
no boundary points, i.e., (cl (dom J) \ int (dom J)) = <.
Now, we consider the case (cl (dom J) \ int (dom J)) # &.
Suppose that upy(x,t,¢) € (cl (dom J) \ int (dom J)).
Then, Thm .B.1 applies and there exist a vector a € R" \ {0}
and a number b € R such that

upy(x,t, ) = argmax {{(a, y) + b},
yecl (dom J)

with (a,y) + b < (a,upy(x,t,€)) + b for every y €
int (dom J). By linearity of the posterior mean estimate,

(a,upy(x,t,€))+b=(a.E;[y])+0b
=E; [(a, y) +b]
<Ej[a,upm(x,t,€)+b]
= (a,upy(x,t,€))+0b,
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where the strict inequality in the third line follows from
integrating over int (dom J). This contradicts the assump-
tionthatupy(x,t,€) € (cl (dom J) \ int (dom J)). Hence,
uppy(x,t,e) € int (dom J).

Proof of (ii): First, as a consequence that upys(x,t,€) €
int (dom J), the subdifferential of J at u py;(x, ¢, €) is non-
empty because the subdifferential dJ is non-empty at every
point y € int (dom J) [58, Theorem 23.4]. Hence, there
exists a subgradient p € dJ (upy(x, t, €)) such that

J) =z Jupm(x.t,€) = (p.y —upp(x,1,€)).  (59)

Take the expectation E; [-] on both sides of inequality (59)
to find

E;[J(»]
>Ey[Jpu(x,t,€) — (p,y —upm(x,1,€))]
= Jupm(x.1,€) —E;[(p.y —upm(x,1,€)]
= J(upu(x,1,€) —(p. By [y] —upm(x,t,€)
=Jupm(x,1,€)) —(p,upm(x,t,€) —uppy(x,t,€))
=J(upy(x,t,e)).

(60)

This gives the lower bound of inequality (38).

Second, use the convex inequality 1 +z < e* that holds on
R withz = J(y)/e for y € dom J. This gives the inequality
1+ %J(y) < ¢/W/¢_ Multiply this inequality by e~/ (/¢
and subtract by e~/ /€ on both sides to find

1
EJ(y)e—J(y)/e <1 - e—f(y)/é). (61)

Multiply both sides by e~ melF—y ”%, divide by the partition
function Zj (x, t, €) (see Eq. (26)), integrate with respect to
y € dom J, and use

1 1 —(Lyx—y|2
Ly e Glslirim)re
Zj(x,t,f) dom J €

1
= ZEJ [J(»]

to obtain

1
EEJ [J(,V)] < 7000 )

/ (6—21,|x—y|§/e _e—(zl,lx—ylﬁﬂ(y))/s) dy.
dom J

(62)

Now, we can bound the right hand side of (62) as follows

| 2
1 e_%ux_yu%/g_ef(fofy\IerJ(y))/e dy
Zj(x,t,€) Jaom J

1
T Zy(x,t,€) Jaom J
1

B Zj(x,t,€) Jdom J
1

< -
T Zy(x,t€) Jpn
_ mte)t/?

T Zj(x,t,€) ’

el =yI3/e
(Fle=yGrrm)/e ;o (63)

e

e lE I3y g

Combining (62) and (63), we get

Qrte)'/? 1)

Zj(x,t,€) - 64

E;[J(»)]<e (
Using the representation formula (28) for the solution
(x,t) — Sc to the viscous HJ PDE (29), we have
that 2mte)"/2/Zy(x,t,€) = e5*D/€ We can therefore
write (64) as follows

B, [J(p)] <e (esf@‘")/é - 1) < +oo.

Combining the latter inequalities with (60), we obtain the
desired set of inequalities (38).

C Proof of Proposition 4.2

Proof of (i): We will show that E; [ ||,y (0)],] < +o0
and derive formulas (39), (40), (41), (42), and (43) in four
steps. To describe these steps, let us first introduce some
notation. Recall that J satisfies assumptions (A1)—(A3) and
dom J = R”". Define the set

Dy={yeR"|3J(y) ={VIW}}.

We can invoke [58, Theorem 25.5] to conclude that D is
a dense subset of R”, the n-dimensional Lebesgue measure
of the set (R" \ Dy) is zero, and the function y — VJ(y)
is continuous on D;. Now, let x € R", ¢t > 0, ¢ > 0, and
¥o € R". Define the function ¢ : R” — R”" as

pr(ylx, 1) = (g) + 791 (y)(0).

Note that for every y € R" we have ¢;(ylx,t) €
IR s> u> 2 lx —uld+J@) (y).ie. ps(ylx, 1) isa
subgradient of the function u +— % [lx — uII% + J(u) eval-
uated atu = y. Let

Ci(x, yo.1.€) = / Iy = yol,e 2™ 2kay,  (63)
Rn
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and note that by assumption (A3), the expected value
Ey [|y — yol,] is bounded as follows

Es [y = yol,]

1 1 2
_ —(5llx=yll3+J(¥)/€
= — e ‘2 2 d
Zy(x.1,€) /R |y = 3ol Y

: — o lx—yl13 (66)
= m‘én ”y_yOHZe ZIeHx y\lzdy
_G@ 5009
Zj(x,t,€)
Define the vector field V: R” — R" as
(e yl2
V() = (y — yoe (Fls—yis) e o

which is continuous on R”. It is also bounded on R”; to see
this, use the triangle inequality, assumption (A3), and the

. _ 1,2 . .
fact that the function (0, +00) > r +> re” 2’ attains its
maximum at r* = /e to get

IVl = [ =y (31

(= x +x = yp, e (FEIEID)e

< (Jx - yoH2 +lx — y||2)e—(%IIX—yII%H(y))/e

< [ = yol, + e = yll2 o~ (s m)/e

< |x- yo||2 +llx - y||ze—i|IX—y||§

< [x = yol, + sup (||x - y||2e—iux—yu§>
ye]R"
Jie
< Hx—y()”z—i-(\/te)e_Tr, 68)

The divergence V- V (y), which is well-defined and contin-
uous on Dy, is given for every y € D; by

Vy-V(y)
1 2
=Vy- ((y - yo)e_(zf”"—y'|z+1(y>)/e)

vy - yo))ef(%nxfyu%ny))/e

1 2
—(Lx— J
+<Vye (Flxyid+im)se

J’O> (69)

o (G leyi3 i) e

_ o Lyx—vy12
<1 <y = +W(y)>e (i y2+]<y))/e’yy0>

€
— —(Lx—y|2
) el

We now outline the four steps that will be used to prove
Proposition 4.2(i). In the first step, we will show that the

@ Springer

divergence of the vector field V on D; integrates to zero in
the sense that

lim
r—+00

V, - V(y)dy| =0. (70)

/{yeR”l Iyl,<r}n Dy

Inthe second step, we will show that E [ |{@s (y]x, 1), y — yo)|]
< 400, with E; [{@s(ylx, 1), y — yo)] = ne, hereby prov-
ing formula (39), using the convexity of the function y +—
2—1t lx — yII% + J(y), Fatou’s lemma [30, Lemma 2.18], and
Eq. (70) derived in the first step. In the third step, we will com-
bine the results from the first and second steps to show that
E; [|| Ty (y) (0) || 2] < 400 and conclude that the representa-
tion formulas (40) and (41) hold. Finally, in the fourth step we
will conclude that the representation formulas (42) and (43)
hold using Egs. (40) and (41) and Proposition (3.1)(iii).

Step 1. The proof of the limit result (70) that we present here
is based on an application of Theorem 4.14 in [54] to the
vector field V (-). As this result is fairly technical, we first
introduce some terminology and definitions that will be used
exclusively in this part of the proof of (i).

Let C be anon-empty convex subset of R”. The dimension of
the set C is defined as the smallest dimension of a non-empty
affine set containing C, with the dimension of a non-empty
affine set being the dimension of the subspace parallel to it
[58, pages 4 and 12]. If C consists of a single point, then its
dimension is taken to be zero.

Letk € {0, ..., n}. Denote by H" ¥ the (n — k)-dimensional
outer Hausdorff measure in R” as defined in [28, Sect. 2.10.2,
p-171]. The measure H" —k in particular, is a constant multi-
ple of the (n — k)-dimensional Lebesgue measure for every
measurable subset B C R”" (see [27], Section 1.2, p.7, and
Theorem 1.12, p.13).

A subset S C R” is called slight if H*~'(S) = 0, and a
subset T C R" is called thin if T is o-finite for H"~!,i.e., T
can be expressed as a countable union of sets T = U,:L;Xf Ty
with H"~1(T}) < 400 for each k € N7 (see, e.g., [54]).
Letk € {0, ..., n}. Anon-empty, measurable subset 2 C R”
is said to be countably H"*-rectifiable if it is contained, up
to a null set of (n — k)-dimensional outer Hausdorff measure
H"=* zero, in a countable union of continuously differen-
tiable hypersurfaces of dimension (n — k) (see, e.g., [1] and
references therein). A non-empty, measurable and countably
H"*_rectifiable subset of R”, in particular, is o-finite for
H K,

A subset A C R” is called admissible if its boundary bd A
is thin and if the distributional gradient of the characteristic
function of A is a vector measure on Borel subsets of R”
whose variation is finite (see [54] pp.151 and the reference
therein). For the purpose of our proof, we will use the fact
that the family of closed balls of radius r > 0, namely {y €
R™ | |yll, < r}, are admissible sets (see [32], Example 1.10,
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and note that admissible sets are also called Caccioppoli sets
[32], pages 5-6).

Let A be an admissible set and let v: A — R” be a vector
field. In the terminology of [54], we say that v is inte-
grable over the admissible set A if v satisfies definition 4.1
of [54], and in that case, the number 7 (v, A) is called the
integral of v over A. Note, here, that the notion of integra-
bility considered in [54] is different from that of the usual
Lebesgue integrability. Nevertheless, if v is integrable in the
sense of [54], v is also Lebesgue measurable (Corollary 4.9,
[54]), and if the Lebesgue integral f 4 1v(y)|dy is finite, then
I(v, A) = fA lv(y)|dy ( [54], Proposition 4.7).

Let E be an non-empty subset of R?, let v: E — R" be a
vector field, and let D, denote the set of points at which v is
differentiable in int E (for the definition of differentiability
of vector fields, see [61], page 150, Definition 7.22). In the
terminology of [54], we call a divergence of v any function
g: E+— Rsuchthat g(y) = V-v(y)foreachy € (int E)N
D,.

In addition to these definitions, we will need the following
two results due to, respectively, [1] and [54].

Theorem C.1 [1, Theorem 4.1] (for convex functions) Let 2
be a bounded, open, convex subset of R", and let f: Q — R
be a convex and Lipschitz continuous function. Denote the
subdifferential of f at'y € Q by 0 f(y). Then, for each
k € {0, ..., n}, the set

{yeQldim@f(y) =k}
is countably H"*-rectifiable.

Theorem C.2 [54, Theorem 4.14] Let A be an admissible set,
and let S and T be, respectively, a slight and thin subset of
cl A. Let v be a bounded vector field in cl A that is continuous
in (cl A) \ S and differentiable in (int A) \ T. Then, every
divergence of v is integrable in A. Moreover, there exists a
vector fieldbd A 5 y — na(y) with |[na(y)ll, = 1 forevery
y € bd A such that if div v denotes any divergence v, then

I(div v, A) :/ (), ny(y))dH" 'dy. (71)
bd A

Step 1 (Continued). Fix r > Oandlet A = {y € R" |
llyll, < r} denote the closed ball of radius » centered at
the origin in R"”. Note that A is bounded, convex, closed,
and admissible. Consider now the restriction of the convex
function J to int A. As int A is bounded, open and convex,
the function J is Lipschitz continuous on int A [58, Theorem
10.4]. All conditions in Theorem (C.1) are satisfied (with
Q =int A and f = J), and we can invoke the theorem to
conclude that the set

T ={yeint A|dim(aJ(y)) > 1}

is countably ‘H"~!_rectifiable, and therefore o-finite for
H"~!. In particular, the set T is thin. Moreover, recalling the
definition of the set Dy = {y e R" | 0J(y) = {VJ(»)}},
we find that the set (int A) \ 7 comprises the points y €
int A at which the subdifferential dJ(y) is a singleton, i.e.,
T = (@int A)N(R"\ Dy).

Now, consider the vector field V defined by (67). This
vector field is continuous in R"” by convexity of J and
dom J = R”. It is also bounded by (68). Now, define the
function g: A — R via

V.-V(y)ifye AN Dy,

. (72)
0, ifyeAN@R"\ D).

gy) =

The function g constitutes a divergence of the vector field V
because it coincides with the divergence V - V(y) at every
y € (int A) N Dy. Moreover, its Lebesgue integral over A
is finite; to see this, first note that for every y € A N Dy the
absolute value of g(y) can be bounded using (69), the triangle
inequality, the Cauchy—Schwarz inequality, and assumption
(A3) as follows

g =IV-V(yl

1 /y—x
n—(-——+VJW)].y—y
€ t
o~ (GHlx=yi3i ) e
Il (y—x
<(n+ g T+VJ(y) Y= Yo
e—(%\lx—y\l%+l()’))/€
1 —Xx
< <n += ”y— + VJ(y)H [y - yoH2> (73)
€ t 2
o (FlEyB+s ) e
L/|y—x
< (n+: —| FIVIWI: 1y = yol,
2

o (Frle=yi3+r(0) /e

1 _
< (n—i——( X +||VJ(y>||2> Hy—yo||2)
€ t 2

1 2
e—m\lx—y\lz

Second, as the set A is a closed bounded subset of dom J =
R" the function J is Lipschitz continuous relative to A,
and therefore there exists a number L4 > 0 such that
IVJ(y)ll, < L4 forevery y € AN Dj. As a consequence,
we can further bound g(y) forevery y € A N Dy in (73) as

1 - R
gy < (n+ - (Hy . al H2+LA) (; —y0||2>€ el yls (74
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In particular, using the definition of g given by (72), we have
that (74) holds forevery y € A. We can now use (72) and (74)
to get

f 2ldy
A

f lg()ldy
{yeR||lylla<r}

= IV-Vyldy
{yeR[llylla<rinD

(2 (1
= n+ —
{yeR" ||yl <r}ND, € t

—Lix—y12
e 2,5”-‘7 y”2dy

(5 2
{yeR"[llylla<r} N ! 2

—Lix—y12
e 2[€||x ynzdy

> (75)

) +LA) Iy = ¥oll,

Since the function

1 —
e (e (P
€ t

is continuous, it is bounded on the compact set A = {y €
R™ | lyll, < r}. Its integral over A is therefore finite, and
using (75) we find that fA |g(y)|dy is finite as well.

The previous considerations show that all conditions in
Theorem (C.2) are satisfied (with A = {y e R" | || yll, <r},
v=V,§5=0,T={yeintA|dm@J(y) > 1} =
(int A) N (R™\ Dy)). We can therefore invoke [54, Theorem
4.14] to conclude that the divergence of g is integrable (in the
sense described by [54]), with integral /(g, A), and that there
exists a vector field bd A 5 y — n,(y) with [|[r,(y)], =1
for every y € bd A such that

#L4) Iy = pol, ) B
2

I(g. A) = / V(). mo(y) dH"dy. (76)
bd A

Since the Lebesgue integral of |g| over A is finite, we also
have [54, Prop 4.7]

I(g. A) = /A ¢y, 77

Using that A = {y € R" | |lyll, < r}, Egs. (72), (76),
and (77), we obtain

/ g(y)dy
(yeR"||lyl,<r)

_ f V. Vydy
{yeR"|lyll,<r}

_ / (V(y). my(y)) dH". (78)
{yeR"|lyll,=r}

@ Springer

As r was an arbitrary positive number, we can take the abso-
lute value and then the limit » — 400 on both sides of (78)
to find

Jim / V. V(ydy

r=+00 |/ {yeR||lyll,<r}NDy

= lim / (V(y), ny(») dH"7| . (79)
r=+00 1 {yeR|yll,=r)

We will now show that the limit on the right side of (79)
is equal to zero. To show this, first take the absolute value
inside the integral on the right side of (79) to find

/ (V(y), ny(y)) dH" !
{yeR" || yll,=r}

(80)
= / V(). no(p))] dH".
{yeR[llyll=r}

Use the Cauchy—Schwarz inequality, Eq. (67), assumption
(A3) (infyern J(y) = 0) and [|ny|, = 1 to further bound
the right side of (80) as follows

/ V(). mo(y))] dH!
{yeR"|llyll,=r}
< / IVl el dH™!
{yeR"||lyll,=r}

=/ Iy =yol,e
{yeR"llyllo=r}

< / (lylls + | vo ||2)e—(z%||x—y||§)/e A
{yeR"|llyll=r)

81
~(FIx=yIB+I )/ dHn(—l )

Use the parallelogram law 2(||x||§ + ||u||%) = |lx — u||% +
[|x —i—uII% with u = x — y to bound the exponential
e lx=yl3/e by
o2 lx—yl3/e

— o2 GUYIEHI2x—yI5)—x]5) /€ (82)

< o~ GlIyIE=lxl3)/e

and use it in (81) to get

/ V() my ()| dH"!
{yeR"||lyl,=r}

— L cLisiz=x2 _
5/ (”y”2+Hy0H2)e 2,(2\IyII2 ||x||2)/EdHn l.
{yeRllyll2=r}
(83)

Since the domain of integration in (83) is over the surface of
an n-dimensional sphere of radius || y|, = r, the integral on
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the right side of (83) is given by

/ Uyl + o e H GIvB=lxBre gpn-i
{yeRM"lIyl2=r}

:/ (r+ ||y0 ||2)e*2*1t(%’2*||x\|%)/e dH"!
{yeR"[|Iyll,=r}

=(r+ ||yo||2)e‘%<%r2—”x"5>/6/ dH!
{yeR"[llylly=r}

_ —%(%rz—uxu%)/e nz"/? 4

=+ [l e FEET) (84)

where nz"/?)T (% + 1) is the area of an n-dimensional
sphere of radius one, with I" (4 + 1) denoting the Gamma
function evaluated at % + 1. Since

. =5 (37— 1x113)/
im (4 ol e F TN,

the limit » — 400 in (84) is equal to zero, i.e.,

im
I F00 JiyeRM ||l yllp=r

(85)

Combining (79), (80), (83) and (85) yield

lim =0.

r—>+00

Vy - V(y)dy

/{yER"I lylla<r}n Dy

which proves the limit result (70).

Step 2. Recall that the divergence of the vector field y —
V(y) on Dy is given by (69). Combine (70) and (69) to
conclude that

y—x
/ <ne—<< +VJ(y)>,y—yO>)
{yeR"| |yl <r}n Dy t

o (Frleyi3 )

lim
r—+00

ay| =o. (86)

Note that the minimal subgradient 773;(y)(0) = VJ(y) for
every y € D;. We can therefore substitute the minimal sub-
gradient 7y (y)(0) for the gradient V J(y) inside the integral
in the limit (86) without changing its value. Moreover, since
the set Dy is dense in R” and the n-dimensional Lebesgue
measure of (R" \ Dy) is zero, we can further substitute the
domain of integration {y € R" | ||yll, <r} N Dy of the
integral in the limit (86) with {y € R" | ||y|l, < r} without
changing its value. With these two changes, the limit (86)
can be written as

y—x
ne—(| ——+m (0)>,y—y>>
/{yelR"\ lylp<r} ( << t aJ(y) 0

lim
r—-+00

(lylla + ”yo”Z)e—%(%HyH%—IIxH%)/e dH" =0,
}

1 2
e—(zux—yuﬁny))/edy _

Using the notation ¢ (y|x, t) = (yt;x) + 15y (0), we can
write this limit more succinctly as

lim / (ne — (s (ylx. 1), ¥ — yo))
r=>+00 | Jiyer| Iyl =r)
e—(g,nx—yngw(y))/edy‘ _o. 87)

Now, consider the function R" > y +— (ps(ylx,?)
—ps(yolx, 1),y — yo). Note here that as J is convex with
dom J = R”, both ¢;(ylx,?) and @;(yglx,?) are sub-
gradients of the convex function u % lx — u||% +
J(u) at u = y and u = Yy, respectively [58, Theo-
rem 23.4]. We can therefore apply inequality (13) (with
p = @s(ylx,1), po = @s(yolx,1), and m = 0) to find
(0s (vlx. 1) — @y (yolx. 1), y — o) = 0. Define F: R" —
R and G: R" — R as follows:

F(y) =(ps(ylx,0),y — yo)e—(%”x—yl\%H(w)/e

and

G(y) = <§0J (Yolx. 1), y — yO) e—(%\lx—y\l%l(y))/e_

Notethat F(y)—G () = (¢ (yIx.1) — s (yolx. 1), ¥ — o)

—(Lix—y|2
e (Zf I y”2+l(y))/6 > 0 for every y € R". Integrate

y+— F(y) — G(y) over R” and use Fatou’s lemma to find

0= [ F =G0y

< lim F(y) — G(y)dy
r=+00 J{yeRn| ||yl <r}

= lim / F(y)dy
r=+00 \ J{yeRn| |yl =r}

+/ (—G(J’))dy)
{yeR| Iyl =<r}

(88)

Use the Cauchy—Schwarz inequality assumption (A3) (inf yegn
J(y) = 0) to bound the second integral on the right hand side

@ Springer



846

Journal of Mathematical Imaging and Vision (2021) 63:821-854

of (88) as follows

/ (—G()dy
{yeR"||lyl,<r}

=/ —{@solx, 1), y — o)
{yeR| Iyl =<r}
(o),

< wr(yolx, )|, |y —Yy
/{yemm} s ol 0] |y = yoll,

o (FlEyEHI ) /e

(89)
dy
< lestolz. ol [y = 3ol

o FyB)re

= [os(yolx. D], Ci(x, yg. 1. €),

where Ci(x, y,. t, €) was defined in (65). Combine (88)
and (89) to find

0< / FO) GOy

r—+00

< lim </ F(y)dy + |¢s(yolx. D),
{yeR| |yl =<r}

Ci(x. you 1, e)) (90)

= lim / F(y)dy | + |@s(yolx, 1)
(r—>+00 {yeRn| lIyll,<r} ) ” 70 Hz

C](x7 yOataE)'

The integral on the right hand side of (90) can be bounded
using assumption (A3) as follows

/ F(y)dy
{yeR||Iylp=r}

= f (s (ylx. ), y = yo)
{yeR Iyl <r}

o (Fim)e
=f{ sy 10103 =il 0 n)
YeR"[yla=r
o (Fim)e
=/ (s (ylx. 1), y = yo) — ne)
{yeR| Iyla=<r}

1 2
o (Fim)e,

+ne/
{yeR"| lIyla=<r}
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O

—(Lx=yl2
o (Fim)e,

< (s (1. 1. ¥ = yo) — ne)
{yeR Iyl <r}
o (Eim)e,

—(Lx—y|2
+n€/ o (FsyB)re

=/ (0s(ylx, 1), y = yo) — ne)
{yeR"| Iyly=<r}

—(Lx=y|2
o FIyBIW) /ey o e,

Combine (90) and (91) to get

0 S/R F(y) —G(y)dy

< | lim / (@ (ylx, 1), y = yo) — ne)
o0 J{yern 1yl <r} 92)
e—(;,|x—y|%+1<y))/edy>
+[l@s(volx, D], Cr(x, yo, 1, €) + ne@mre)”’?.

Combine (87) and (92) to get

0 < /R F(y) — G(y)dy

= ( x’t) - ( xyt)a -
[I;n (gﬂj y| @J y0| Yy yO) (93)
o (FrBrsm)re

< |es(yolx. D), Ci(x, yg, t, €) 4+ neure)"’?,

Divide (93) by the partition function Z; (x, t, €) (see Eq. (26))
to get

0= E; [[0s(vlx.0) — 91 (volx. ). ¥ — 3o)]
les(yolx. )|, Ci(x, yo. 1. €) + ne2mre)"/? .

B Zj(x,t,¢€) :
94)

Now, using the Cauchy—Schwarz inequality and (66), we can
bound E; [|(¢s (yolx. 1), y — yo)|] as follows

Ey [|{es(volx. 1), ¥ = yo)|]
1
T Z(x.1.€) /R” [l (yolx. 1), ¥y — ¥

1 2
o (Eim)e,

1
< ||</?J(.)’0|xat)i|2m/én Hy —J’o”g
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(FyB)re

_lestyolx, 0], CiCx, yo. 1, €)
N Zj(x,t,€) '

95)

Use the triangle inequality and the upper bounds in (94)
and (95) to obtain

EJ [|{es(ylx. 0.y = yo)l]
=E; [[{eslx. 1) = (91 (yolx. 1) — s (yolx. 1)), ¥ — ¥o)[]
<EJ [[{es(yolx. 1), y — ¥o)|
+ (s (ylx. 1) = @s(yolx, 1), y — yo)|]
=Ey [|{esolx, 1), y — yo)|]
+E; [|{es vlx, 1) — 0s (volx, ), ¥ — yo)l]
_ lesolx. [, C1x, yo. 1. )

- Zj(x,1,€)
los(yolx. )], Ci(x, yo. 1. €) + ne@mte)"/?
+
Zj(x,t,¢€)
< +00. (96)

Since E; [|<(ﬂ] (ylx, 1),y — y0)|] < +00, we can use (87) to conclude
that

Ey [(0s(ylx. 1), ¥ — ¥o)]

1

= —-— x,t),y—
AR /R {ps 1, 1),y = ¥o)

o~ irm)re

1
T Zy(x,t,e)

lim / {@s (vl 1), y — o)
T 00 JiyeRr Iyl <r}
e—(%ux—yuéu(y))/edy

1

- Zj(x,t,€) 7

lim (ne —ne + (s (yx, 1), ¥y — ¥o))
r=>400 J{yeRn| ||yl <r}

1 2
o~ hirim)re o

= ne

— im / (ne — g, (1%, 1), y — o))
r=Fo0 \ Hyern||lyl,<r}
ef(%nxfyu%uy))/edy)

= ne.

Inequality (96) and equality (97) show the desired results
E; [|(@s(plx, 1),y = yo)|] < +o0 and By [(¢s(ylx, 1),y — yo]] =
ne, which, after recalling the definition ¢;(y|x,t) = (g) +
Ty (y) (0), also proves formula (39).

Step 3. Thanks to Step 2, we have E; [|(¢s (y|x, 1), y — yo)|] < +o0
and E; [(@s(ylx, 1), y — yo)] = ne for every y, € R". In particu-
lar, the choice of y, = 0 yields E; [[{¢s(y|x,?), y)|]] < 400 and

Ey [{¢s(y|x,1), y)] = ne. As a consequence, we have that

Ey [|{es (ylx. 1), yo)l]
=E; [[{ps(ylx. 1), yo + (v — )|]
<Ey [|leslx. 0.y = yo)| + Hes (vlx, 0, »)1] (98)
=Ey [|{eslx, 0, y = yo)l] + Eu @y (yIx, 1), y)11
< 00,

and

Ey [{¢s (ylx. 1), yo)]
=E; [(pslx, 1), (y — ) + ¥o)]

=E; [ps(ylx. 1), »)1—Ey [{esvlx, 0,y — yo)] 99)
= N€E — ne
=0,

forevery y, € R". Now, let {¢;}?_, denote the standard basis in R" and
let {g; (y|x, );}}_, denote the components of the vector g (y|x, t),i.e.,

wr(ylx, 1) = (sylx, D1, ..., 0y
(ylx, t)n). Using (98) with the choice of y, = ¢; fori € {1,...,n},
we get Ej [|os(ylx,1)i]] < oo foreveryi € {1,...,n}. Using the
norm inequality [|@;(y|x, )|, < ZLI los(y|x,t)i|, we can bound
Es [Hgoj(ylx, t)||2] as follows

Ej [lgs(ylx, 0] < Ey [Z los (ylx, z>i|}

i=1

n (100)
= ZEJ [los(ylx, )il

i=1

< 400.

We can therefore combine (99) and (100) to getE; [(goj (ylx, 1), yo)] =
(E; [os(ylx, 1)], yo) = 0 for every y, € R", which yields the follow-
ing equality:

Ejlps(ylx, )] =0. (101)

Moreover, recalling the definition ¢ (y|x, t) = (y,;x) +757(y)(0) and

using (66) (with yo = x) and (100), we can bound E; [ |75y (0), ]
as follows

Ej 70100 O] ,]

-l (552)-(59) ]

2

<E, [ 705 (0) + (y_x) + H(y:")
2

=Ey [llgslx. O] + P [Ily — xlI,]

Ci(x,x,t,€)
tZj(x,t,€)

~

2] (102)

—

<E,[les(ylx. Dll,] +

< +00.
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We can now combine (66), (101) and (102) to expand the expected value
of E; [¢s(yl|x, )] as follows

E;lps(ylx, )]

=E, [(?) + nauy)«»]

=E; {(g)} +E; [naj(y)(())] (103)
= <7MPM(L;’E) _x) +Ey [mas0)(0)]
=0.

Solving for uppy(x,t,€) in (103) yields upy(x,t,e) = x —

tE, [na j(y)(())], which gives the representation formula (40).
We now derive the second representation formula (41). Let y, =
upy(x,t,€)in Eq. (97) and use the representation formula (40) to find

Ey (07000, y —upum(x.1,6))]

=l (55) - (%)

y—upy(x,t, )]

=E, |:<7TBJ(y)(0) + (?) Yy —upm(x,t, €)>

(55 a-see ]
=K |:<778](y)(0) + (?) Yy —upm(x,t, é)ﬂ
(52 o]

=E;Ups(ylx, 1),y —upp(x,t,e))l

B e
—ne—E, [<<y;x>,y7u1w(x,t,e)>].

We will use (104) to derive a representation formula for
Es [Hy —upy(x,t, e)ll%]. Multiply (104) by ¢ and rearrange to get

(104)

E;[{y—x,y —upu(x,t,e)l

=nte —tEy [<7Taj(y)(0),y—upM(x,t,€)>]. (105)

The left hand side of (105) can be expressed as

Ej{y—x,y—upm(x.t,€)]
=E;y—x+@pu(x,1,€) —upyu(x,1,¢)),
y—upmu(x,t,€))]
=E;y—upmux,t,€),y —upu(x,1,¢))
+lupm(x,t,€), y —upy(x,1,€))]
=) [lly —upn(x.1.013]
+E; {upm(x,t,€),y —upp(x,t,€))]
=By Iy~ upu .1 ©)l3]
+upm(x,t,€),Eylyl —upm(x,1,€))
=By Iy = upu .1 ©)l3]

@ Springer

+(upm(x,t,€),upy(x,t,€) —upy(x,t,¢))

=y [lly —upnx.1. 03] (106)

Combine Egs. (105) and (106) to get

By Iy = upu. 1 0)l3]

=nte —tEy [<7‘(a](y)(0), y—upy(x,t, 5))] s

which gives the representation formula (41).

Step 4. Thanks to Step 3, the representation formulas (40) and (41)
hold. Recall that by Proposition 3.1(iii), the gradient V,S¢(x, t) and
Laplacian A, S¢(x,t) of the solution S, to the viscous HJ PDE (29)
satisfy the representation formulas

upy(x,t,€) =x —tVyeSc(x,1) (107)
and
E, [lly —upy(x. 1, e)H%] = nte — 12Ny S (%, 1). (108)

Use (40) and (107) to get

ViSe(x, 1) =Ky [ma500(0)].

which is the representation formula (42). Use (41) and (108) to get
e Sc(x. 1) = 1By [(m5(y)(0). y —upp(x.1,€))]

which is, after dividing by 7€ on both sides, the representation formu-
las (43). This concludes Step 4.

Proof of (ii): Here, we only assume that J satisfies assumptions
(A1)—(A3); we do not assume that dom J = R”. Let {;Lk}z';xf be a
sequence of positive real numbers converging to zero. Define f;: R" x
(0, +00) x (0, +00) — R by

Je(x, 1, k)
! ~(FIx=13+So v ) /¢ 109
= —elog Qrtey /n e dy ( )

and let Sp(x, ux) denote the solution to the first-order HJ PDE (20) with
initial data J evaluated at (x, ux), that is,

1
Sotx. i) = inf, {% ||x—y||%+f(y)}. (110)

By Proposition 2.2(i), the function R” > x + Sp(x, x) is continu-
ously differentiable and convex for each k € N, and the sequence of
real numbers {Sy(x, ;Lk)},j:of converges to J(x) for every x € dom J.
Moreover, by assumption (A3) (infycgs J(y) = 0) the sequence
{So(x, ;/.k)}z':o‘f is uniformly bounded from below by 0, that is,

1
Sox, ) = inf —llx =yl +J
0(%, k) o, {2/«% e = yliz + (y)}

1
> inf { — |lx — y|? inf J
> o (e =)+ )

=0.
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As a consequence, we can invoke Proposition 3.1(i) to conclude that
for each k € N, the function (x, ) — fc(x,t, k) corresponds to the
solution to the viscous HJ PDE (29) with initial data fi(x,0,€) =
So(x, ux). Moreover, R” > x +— fe(x,1,k) is continuously differ-
entiable and convex by Proposition 3.1(i) and (ii)(a). Finally, as the
domain of the function x + Sp(x, px) is R”, we can use the represen-
tation formula (42) in Proposition 4.2(i) (which was proven previously
in this Appendix) to express the gradient Vy fi(x, ¢, €) as follows

—( Lix—vyi2
Jren VySo(y. a)e (%1 yu2+so<y,uk>)/edy

f]Rn e_(zi; ”x—y\I%-#So(y,uk))/édy

Vi fe(x,t,k) = . (111)

Now, since So(x, ux) > 0 for every k € N, we can bound the
integrand in (109) as follows

U (eyBesogmo)re o L ey (112)
(2mte)n/? ~ (QQute)r/? ’
where f]Ru mefi”xfy By y = 1. We can therefore invoke

the Lebesgue dominated convergence theorem [30, Theorem 2.24]
and use (109) and the limit limy_, ;o e~ S0®1)/€ = o=/ (X)/€ (with
limg s 400 e~ S0E1)/€ = () for every x ¢ dom J) to find

lim  f.(x,t k)

k—+00

— lim —clog 1 / e—(%nx—yu%+so<y,uk>)/edy
k—+00 (27'[[6)”/2 n

= —¢log ;/ e—(%l\x—yll%ﬂ(y))/sdy
(27”6)”/2 dom J

= Se(x,1), (113)
which gives the limit (44). By continuous differentiability and con-
vexity of R" > x +— fe(x,t,k) and R" > x +— Sc(x,t) and
the limit (113), we can invoke [58, Theorem 25.7] to conclude that
the gradient V, fi(x, 7, iux) converges to the gradient V,Sc(x, ) as
k — 4o00. Hence, we can take the limit k — 400 in (111) to find

lim Vi fe(x,1,k)
k—+o00

o Lixe—vl2
= i Jrn VySo(y, mi)e (2’ I yHZJrSO(y'W))/Ed
= m

k (Lyx—yp2
— 400 f]Rle (2, llx yH2+So(y,uk)>/6dy

Yl 14

= Vi Se(x,1),

which gives the limit (45). Finally, using the definition of the posterior
mean estimate (3), (114), and the representation formula (30) derived in
Proposition 3.1(iii), namely upy (x,t,€) = x — tV,Se(x, 1), we find
the two limits

upy(x,t,€)

f ye (Flyiesm)/e

=, lim . 2
—+ S (P
* _/]Rn e (21 lx Y||2+S0(yvﬂk))/6dy
(L x—y|?
. Jrn VySo(y, e C yHZJrSO(y‘M))/Edy
=x—1t lim X > ’
k—-+o0 fon ef(fuxfyn2+so<y,uk>)/edy

which establishes (46). This concludes the proof of (ii).

D Proof of Proposition 4.3

Let us first introduce some notation. Let x € R", r > 0, ¢ > 0, and
Yo € dom 0J. Define the functions

— X
dom dJ 2y = ¢(ylx,1) = (yf) + 7.1 (y)(0),

1
dom dJ 3y~ ®;(ylx, 1) = % lx = yl3 +J (),

and

— X
(ﬂS()(»,uk)(ﬂx, t) = <%> + vySO(ys ,LLk)

Note that for every y € R, ¢ (y|x, t) is a subgradient of the function
u— % |lx — ull% + J(u) evaluated at u = y and @g (., 1) (1%, 1) is @
subgradient of the function u % lx — uII% + S(u, ur) evaluated at
u=y.Let{ ;Lk}kle’ be a sequence of positive real numbers converging
to zero and let Sp: R” x (0, +00) — R denote the solution to the first-
order HJ PDE (20) with initial data J (see Proposition 2.2). Note that

the sequence {So(y, uk)}::"? is uniformly bounded from below since

1
= inf {— |y — u|?
So(y. mk) ulenw{% ly —ullz + J ()

= J(y) (115)

> 0.

Now, define the function F: dom 0J x dom 9J x R" x (0, +00) —
R as

F(y,y9,x,1)
= (ps(ylx. 1) — @s(yolx. 1), ¥ — ¥o)

o (FlryBrim)/e

(116)

fIRn e7<% ”x*yH§+J(y))/Edy

and the sequence of functions {F,, }{% with Fj, : R" x R" x R" x

(0, 4+00) — Ras

F;Lk(y, Yo X, 1)
= {080 1%, 1) = @500, 0 Yo l%, 1), ¥ — yo)

o (G lry B0y 16

(117)

[ e (BUBEsi0) ey

Since limg— 100 So(y, ux) = J(y) and limg— yo0 VySo(y, mx) =
74 (y)(0) for every y € dom dJ by Proposition 2.2(i) and (iv), and

lim [ (Geyiisomam) /e,
k—+o00 JRrn

(Lix—vyI2
:/ e (zl llx yl\2+l(y>)/edy

y

(118)

by (44) in Proposition 4.2(ii) and continuity of the logarithm, the
limit limg s o0 Fu(y, 9, X, 1) = F(y, yg, x, 1) holds for every y €
dom dJ, y, € dom 9J,x € R" and ¢ > 0. Note that as J is strongly
convex with parameter m > 0, the functions y — % [lx — yII% +J(y)
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and y > % lx — yII% + So(y, i) are strongly convex with parameter

(%) > 0. As a consequence, for every pair (y, yy) € dom daJ x
dom 9/, the following monotonicity inequalities hold (see Definition 5,

Eq. (13)):

0= (Z5) byl

<(es(ylx.0) — s (yolx. 1), y — ¥o) (119)

and
1+ mt 2

0= (Z) Iy - nol?

< {@soCou 1%, 1) = @390y FolX. 1), ¥ — yo)- (120)
Multiply the first set of inequalities by

A Lix=vylI? o Lie_vi2
e (2’ I szJrj(y))/é/fR,, e (2‘ = y||2+J(y))/edy and the second set of

. .. —( % lx=yl3+So(y. —( X lx=yl3+So(y,
inequalities by ¢~ (3 1 I3 +Sor o)) /e fore (11 +$o0n0) /e

and use the definition of F and F),, to get the inequalities

o (FlryBri) /e

14+ mt
0= (Z) Iy - nol2
F(y, 0, %, 1)

0= () Iyl

Fu};(y’yOHx’t)A

fuo o (xyBrsm)e,

IA

(121)

o (Frle=y380 0100 fe

e*(%foyl\§+So(y,/Lk>)/edy

IA

These inequalities show, in particular, that F* and F,,, are both non-
negative functions for every (y, y;) € dom dJ x dom dJ, x € R", and
t > 0. As a consequence, Fatou’s lemma [30, Lemma 2.18] applies to
the sequence of functions {F),, }2’;’?, and hence

/ F(y. yo.x,t)dy
dom 9J

=< liminf/ Flu (3, yo. x, )dy
dom 9J

k—+00

< liminf/ Fu (y,yg, x,t)dy
]RH

k—+00

f]Rn <‘/’So(n#k)(y|x’ 1) — 0o, (YolX, 1), ¥y — ¥o

the right side on the last line of (122) to get
—( & Ix=yI3+So(y.1ax)
f]Rn <¢S{)(<,ﬂk)(y|xv 1), y - y0>e (2! el )/Gdy
fRn ef(%Hx*yl\§+50(y,uk))/€dy

— ne. (123)

On the other hand, applying the limit result (46) in Proposition 4.2(ii)
for the posterior mean estimate u py(x, t, €) and the limit limg_, o
©SoCui) Yolx, 1) = @y (yolx, 1) = <¥
integral on the right side on the last line of (122), we get

+ 7797 (yy) (0) to the second

lim inf
k—+o00

(Lix—vI2
(fw (950000 olx, 1), ¥ — yo)e (F1x y|2+50(Y-ll-k))/edy)

fRn €_<%‘lx_Y||§+So(y1Hk))/5dy
(124)

= (ps(olx, 1), upp(x.t,€) — y).

Combine (27), (116), (121), (122), (123), and (124) to get

(=52 ) sl - ol?]

<Ey [{oslx. 1) — @1 (yolx. 1), ¥ — yo)]
<ne—(ps(yolx, ), upm(x,1,€) = yo).

This establishes the set of inequalities (47).

Next, we show that E; [||75,(y)(0)],] < 400 indirectly using the
set of inequalities (47). By Proposition4.1,u py (x, t, €) € int (dom J).
Hence, there exists a number§ > 0 such that the open ball {y € R" |
ly —upm(x,t,€)ll, < &} is contained in int (dom J). Let y, €
{yeR" ||y —upm(x,t,e)ll, <8} with yq # upp(x,1,€). Recall
int (dom J) C dom 9J, so that both upy (x, t, €) and y are in the set
dom 9J. We claim that [E ; [|(<pj(y|x, t),upy(x,t,e)— y0>|] < +00.
Indeed, using the triangle inequality, the set of inequalities (47) proven
previously, the Cauchy-Schwarz inequality, and that E ; [||y - Yo ||2] <

(/]'R,, Iy - y0||2e_2r%”x_y”%dy) /Zj(x,t,€) < +oo by assumption
(A3),

>e—(zi,nx—yu§+so(y,uk>)/e dy

= lim inf ! >
k—-+00 fon o~ (G lxyBsom) ey
—(Lx—y|2 c
. f]R" <¢So(',llk)(y|x’ 0,y — y0>e (21 llx y|\2+So(y,M)>/edy
T koo —( 1=y B+ €
Jane \ ¥ dy

—(Lyx—y|2
L s ol 0, 3 = ol (1 yn2+so<y,uk>)/edy

S e—(%ux—yn§+so<y,uk>)/edy

(122)

‘We now wish to compute the limit in (122). On the one hand, we can
apply formula (39) in Proposition 4.2(i) (with initial data So(-, ;g ) and

using @s, (.0 (¥1x, 1) = (g) + VySo(y, i) to the first integral on

@ Springer
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=Ey [[{osvlx, 0,y = yo)
—{pslx, ),y —upu(x,1,€)ll
<Ej[|(eslx. 1),y = ¥o)|
+Hes(ylx, 1),y —upm(x,t, €)ll
=Ey [|{es(ylx. 1), y — yo)[]
+E; Koy (ylx, 1),y —upm(x,t, €))ll
<Ey[|{es(ylx. 1), y = yo)|] + ne
=E; [{ps(ylx, 1)
+@s (Yolx. 1) = @1 (yolx. 1)), ¥y = yo)|] + ne
=Ey [|lesvIx, 1) = 01 (olx, 1), ¥ = ¥o)
+{ps (yolx, 1), y — yo)|] + ne
<Ey [lfeslx, 1) = @5 (yolx. ), y = o]
+ (s (olx. 1), ¥ — yo)|] + ne
<Ey[|[{eslx. ) — s (yolx, 1), y — yo)|]
+Ey [|(es (volx. 1), y — yo)|] + ne
<E;[{pslx.0) —@s(yolx. 1), y — ¥o)]
+E; [ 5]+ ne
<ne—(p;(yolx, 1), upy(x,t,€) — yo)
Es [y = yoll,] +ne

(125)

< +o00.

This shows that [E; H((pj(ylx,t), upy(x,t,e) — y0)|] < +oo for
every yo € {y € R" | ly —upu(x,t,€)|l, < §} different from
upy(x,t,€). Now, let {e;}!_; denote the standard basis in R" and
let {@y(ylx,t);}_, denote the components of the vector ¢;(y|x, 1),
e, pr(ylx, 1) = (ps(ylx,01,...,0s5(y|x,1),). Using (125) with
the choice of yg = upy(x,t,€) — [l 5e;, which is contained in the open
ball {y e R" | ||y —upy(x,t, e)||2 < 8} foreachi € {1,...,n}, we
get

5
0<E, U<w(y|x, t,upy(x,t,€) — (wpy(x,t,€) — Eei)>‘j|

)
=E; U<</JJ(Y|JCJ), Eei> ]

)
= EEJ [lgs (ylx, 0)ill

8 8
< 2ne — <</>J(uPM(x, t,€) — Ee,- [ x,1), 5ei> (126)
8
+ |los(upp(x,t,e) — —eilx,t)
2 2
8
Erlly— e t.€) — 5ei)
2
< +00.
Using (126) and the norm inequality [lg;(ylx, D), < D1,

los (ylx, )i], we can bound E; [[lgs (ylx, £)|,] as follows

0 < Ey[llgs(ylx, 0]

<E, [Z les (ylx, rm}

i=1

= ZEJ s (ylx, )il

i=1

n

B B
< 2n’e - Z<<p1(um(x, Le) = el ), Eei>

i=1

8
oj(upy(x,t,€)+ Eeilx, 1)
2
)

This shows that E;[les(ylx. 0l,] < +oc. Finally, use (127),
py(ylx, 1) = +7Taj(y)(0) and assumption (A3) to find
Ey 72700 @]

:E,{ naj<y>(0>+( _x)—<y;x) 2]
- |l (G
[
[

)
E,; |:Hy —(upm(x,t, G)Eei)

(127)

< +o00.

<

<
-~

+
2

7 (y) (0) +(

|

y—x
7 lesylx. Ol +Ey [H ]
2

] :
s [ Iy = wle sy
1Zj(x,1,€) Jre

< +o00.

E
<E;[llesylx, Dl

This shows that [E ; [||7r31(y)(0) Hz] < +00.

E Proof of Proposition 4.5

Proof of (i): Let x € R” and r > 0 and define the functions

— X
dom dJ 2 y — ¢(y|x,1) = (%) + 7y (0),

1
dom 8/ 3 y = @y (ylx, 1) = - lx — yl3+ J ().

Note that for every y € R*, ¢;(y|x, t) is a subgradient of the function
u+— % [lx — ullg + J(u) evaluated atu = y.

Letu € dom dJ. The Bregman divergence of the functiondom dJ >
y > @y (ylx. 1) at (w, gy (ylx, 1)) is given by

Do, (u,p;(ylx, 1))
=@ ulx. 1) — (ps(ylx. 1), u) + D5 (ps (y|x, 1))
=d;ulx,t) — Sy(ylx,t) + (s (ylx. 1),y —u),

where the second equality follows by definition of the subdifferential
(see Definition 6) and that ¢ (y|x,t) € 9®,;(y, x, t).

Take the expected value with respect to the variable y over dom 9.J
to find

E; [Do, @, ¢ (ylx,1))]
=@y (ulx, 1) —Ey [(os(ylx, 1)), u) + % (ps (ylx,1))]
=0 (ulx, 1) —E;[@;(ylx, 1) + {ps(ylx, 1), y —u)].

(128)

We claim that the expected value E; [D¢J (u, @y (ylx, t))] is finite.
We will show this by proving, in turn, that the expected values
Ey[®;(ylx,t)] and E; [{¢s(y|x,1)), y — u)] are finite. Establishing
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the finiteness of E; [Dq;, (u, pj(y|x, t))] will enable us to conclude
that the expected value E [CD"J‘ (s (ylx, t))] on the right hand side of
the first equality of (128) is also finite.

First, using the definition of ®;(y|x, t) we have

1
E;[®;(ylx, )] =E,; [Z Ix — I3 + J(y)] .

The expected value E [2% lx — yllg] is finite because we can use the
definitions of the posterior mean estimate and inequality (48) (with
m = 0 in (48)) to express it as

0<E, [i e — y||%]
2t
1 2
=E; [27 l(x —upm(x,t,€) —(y —upm(x,t, 6))”2]
1 2
=E; [Z lx —upp(x,t, E)Ilz]

1
+E, [2— Iy —upm(x,t, e)n%}
t
+2E; [(x —upm(x,t,€),y —upmu(x,t,€))l

Ly .1, Ol
=—|lx —upy(x,t,e¢
2 PM 2

1
+Ey [5 ly —upm(x,t, e)n%}
+2(x —upy(x,t,e),E; [yl —uppy(x,t,e))

1
2
= —||x—upy(x,t, e
o I ( )3

2t

+2(x —upy(x,t,e),upy(x,t,e) —upy(x,t,e))

1
+E,; [— ly —upm(x,t, e)||%}

1
2
= —|x —upy(x,t, €
o | ( )iz

1
+E,; [5 Iy —upm(x,r1, e)n%}
ne

1 2
< —llx- .1,
=35 lx —upy(x,t,e)ll5 + >

The expected value E; [J (y)] is also finite because it is bounded by the

set of inequalities (38) in Proposition 4.1. Hence, the expected value

Ey[®)(ylx, 0] =Ey [ IIx = ylI5] + Ey [ ()] s finite.
Second, note that the expected

Ey [{¢s(y|x,1), y — u)] can be written as

value

Ej Kes(ylx, 1),y —u)]
=E;Ups(ylx, 1) —@sulx, 1),y —u) + {p;(ulx, 1), y — u)]
=E;Ups(ylx, 1) — @ (ulx, 1), y — u)] (129)
+ (@ (ulx, 1), By [y] — u)
=E; Kos(ylx, 1) —@s(ulx, 1), y —u)l
+{psulx, 1), upy(x,t,€) —u).

Apply the monotonicity property (47) to the expected value

Ey [{ps(ylx, 1) — @y (ulx, 1), y — u)] (with yo = u in (47)) in the
previous equation to find

0

IA

EyHos(ylx, 1) —gyulx, 1), y —u)l
ne — (py(ulx,t),uppy(x,t,€) —u).

IA

@ Springer

Add the term (p;(u|x, 1), upp(x,t,€) —u) on both sides of these
inequalities to get

(ps(ulx,t), upy(x,t,€) —u)
<E,Ups(ylx,t) —psu|x, 1),y —u)]

+(ps(ulx,t), uppy(x,t,€) —u) < ne.

(130)
Combine the inequalities (130) with the equality (129) to find

(ps(ulx,t), upm(x,t,€) —u)

= IEJ [<¢J(y|x’ l), y - u)] = ne.

These bounds prove that the expected value E; [(¢y (y|x, ), y —u)]is
finite.

The previous arguments show that the expected value
E; [Do, (u, ps(ylx, )] is finite. Now, we claim that the expected
value E; [{ps(ylx, 1), u)] = (E; [ps(ylx, 1))], u) is finite. Indeed,
we can use the representation formula (30) for expressing the posterior
mean estimate in terms of the gradient V, Sc(x, t) of the solution to
the viscous HJ PDE (29) and use that [ [na () (0)] is finite (Proposi-
tion 4.3) to write

E;les(ylx, )]

=K [(g) + ﬂaj(y)(o)]
=K, [(?)} +Ey [mas00n (0]

= —ViSe(@x, 1)+ Ey [m35(»(0)].

where both terms on the right hand side are finite. This shows that
Ey[ps(y|x,t))] is finite.

Using that E; [Dq>/ (u, 0y (ylx, t))] and E; [¢;(y|x, t))] are finite
in Eq. (128), we conclude that the expected value E ; [fb*} (ps(y)x, t))]
is also finite. We can now use the definitions of ®; and ¢, to express
Eq. (128) as

Ej [Do, W, p;(ylx.1)]
=Ey [®sulx.1) — (ps(ylx. 1), u) + D5 (ps (ylx. )]

1
= 5, v =l + 7@ (131)
+ (VaSe(x, 1) —Ey [mas(») (0] , )
+Ey [®5 (s (ylx.0)].
where, again, we used that E; [p;(y|x,1))] = —ViSe(x,1) +

E; [79.(y)(0)]. Now, let

J) = J@) + (Ve Se(x, 1) — Ey [m350) (], u).

Take the infimum over u € R" on both sides of Eq. (131) to find:
inf By [Do, (u, ¢;(ylx, 1)]

1 .
= {27 e =l + J(")} +Ey [@F (s (ylx, 1)]

Now, note that by assumptiorl (Al) y — J(y) € TI'h(R"), and
therefore the function u +— J(u) € I'o(R™). Therefore, the func-
tionu > R" —>> % lx — ull% + J(u) is strictly convex and has a
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unique minimizer denoted by u. Therefore, the infimum in the equal-
ity above can be replaced by a minimum. In addition, recall that

min, cgrn % lx — ull% +J ) corresponds to the solution to the first-

order HJ PDE (20) with initial condition J. Using Proposition 2.2(ii),
the unique minimizer u can be expressed using the inclusion relation

(x : u) € 0J(@) + (VaSe(x, 1) = Ey [107(»(0)]) - (132)

Therefore, the minimizer # is also the unique minimizer to u +>
E; [Do, @, ¢;(ylx,1))].

Proof of (ii): If dom J = R”, then the representation formula
ViSe(x,t) =Ey [7T3](y) (0)] derived in Proposition 4.2 holds and the
characterization of the unique minimizer # in equation (132) reduces
to

<¥> c (@)

By Proposition 2.2(ii), the unique minimizer that satisfies this charac-
terization is the MAP estimate upap(x,1),1.e., 4 = upyap(x,t). O
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