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Abstract
Variational and Bayesian methods are two widely used set of approaches to solve image denoising problems. In a Bayesian
setting, these approaches correspond, respectively, to usingmaximum a posteriori estimators and posteriormean estimators for
reconstructing images. In this paper, we propose novel theoretical connections between Hamilton–Jacobi partial differential
equations (HJ PDEs) and a broad class of posterior mean estimators with quadratic data fidelity term and log-concave prior.
Where solutions to some first-order HJ PDEs with initial data describe maximum a posteriori estimators, here we show
that solutions to some viscous HJ PDEs with initial data describe a broad class of posterior mean estimators. We use these
connections to establish representation formulas and various properties of posterior mean estimators. In particular, we use
these connections to show that some Bayesian posterior mean estimators can be expressed as proximal mappings of smooth
functions and derive representation formulas for these functions.

Keywords Hamilton–Jacobi partial differential equations · Imaging inverse problems · Maximum a posteriori estimation ·
Bayesian posterior mean estimation · Convex analysis

1 Introduction

Image denoising problems consist in estimating an unknown
image from a noisy observation in a way that accounts for the
underlying uncertainties. Variational and Bayesian methods
have become two important approaches for doing so, and in a
Bayesian setting these approaches correspond, respectively,
to usingmaximum a posteriori estimators and posteriormean
estimators for reconstructing images. The goal of this paper
is to describe a broad class of Bayesian posterior mean esti-
mators with quadratic data fidelity term and log-concave
prior using Hamilton–Jacobi (HJ) partial differential equa-
tions (PDEs) and to use these connections to clarify certain
image denoising properties of this class of Bayesian posterior
estimators.
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To illustrate the main ideas of this paper, we first briefly
describe convex finite-dimensional variational and Bayesian
methods relevant to image denoising problems. Variational
methods formulate image denoising problems as the opti-
mization of a weighted sum of a data fidelity term (which
embeds the knowledge of the nature of the noise corrupt-
ing the unknown image) and a regularization term (which
embeds known properties of the image to reconstruct), where
the goal is to minimize this sum to obtain an estimate that
hopefully accounts well for both the data fidelity term and
the regularization term [13,17]. Bayesian methods formu-
late image denoising problems in a probabilistic framework
that combine observed data through a likelihood function
(which models the noise corrupting the unknown image) and
prior knowledge through a prior distribution (which models
known properties of the unknown image) to generate a poste-
rior distribution. An appropriate decision rule that minimizes
the posterior expected value of a loss function, also called
a Bayes estimator, then selects a meaningful image esti-
mate from the posterior distribution that hopefully accounts
well for both the prior knowledge and observed data [21,62–
64,66]. A standard example is the posterior mean estimator,
the mean of the posterior distribution, which minimizes the
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mean squared error [43, pages 344-345], and more generally,
Bregman loss functions [4].

In this paper, we will focus on the class of finite-
dimensional image denoising problems

x = u + η, (1)

where x ∈ R
n is the observed image, u ∈ R

n is the unknown
image, η is independent identically distributed Gaussian
noise. These problems are well-known to be ill-posed in gen-
eral, and variational and Bayesian approaches are celebrated
methods to findmeaningful solutions to these ill-posed prob-
lems [2,21,67]. These methods aim to estimate the original
uncorrupted imagebycomputing, respectively, themaximum
a posteriori (MAP) and posterior mean (PM) estimates

uM AP (x, t) := argmin
y∈Rn

{
1

2t
‖x − y‖22 + J ( y)

}
(2)

and

uP M (x, t, ε) :=
∫
Rn ye

−
(

1
2t ‖x− y‖22+J ( y)

)
/ε

d y
∫
Rn e

−
(

1
2t ‖x− y‖22+J ( y)

)
/ε

d y
. (3)

The functions y �→ 1
2t ‖x − y‖22 and J : R

n → R∪{+∞} in
(2) are, respectively, the (quadratic) data fidelity and regular-

ization terms, and the functions y �→ e
−
(

1
2t ‖x− y‖22+J ( y)

)
/ε

and y �→ e−J ( y)/ε in (3) are, respectively, the (Gaussian)
likelihood function and generalized prior distribution. The
parameter t > 0 controls the relative importance of the data
fidelity term over the regularization term, and the parameter ε
controls the shape of the posterior distribution in (3), where
small values of ε favor configurations close to the mode,
which is the MAP estimate, of the posterior distribution.

Let us illustrate the MAP and PM estimates and their
denoising capabilities with an example. We consider an
anisotropic version of theRudin–Osher–Fatemi (ROF) image
denoisingmodel,which consists of considering an anisotropic
total variation (TV) regularization term with quadratic data
fidelity term [6,12,60]. Specifically, we define anisotropic
TV as follows

TV( y) =
∑

i, j∈{1,...n}
wi, j |yi − y j |,

where wi, j ≥ 0 and the value of an image y at the pixel i is
denoted by yi ∈ R. For illustration purposes, we assume that
a digital image is defined on a two-dimensional regular grid
and only consider the 4-nearest neighbors interactions for
defining TV (i.e., wi, j = w j,i = 1

2 if i and j are neighbors,
and wi, j = w j,i = 0 otherwise, see [19] for instance). Let
x denote an observed noisy image and t and ε be parameters

as previously defined. Then, the associated anisotropic ROF
problem [60] takes the form

min
y∈Rn

{
1

2t
‖x − y‖22 + TV( y)

}
. (4)

The MAP and PM estimates to the ROF problem (4) are
given, respectively, by Eqs. (2) and (3) with J ( y) = TV( y),
i.e.,

uM AP (x, t) = argmin
y∈Rn

{
1

2t
‖x − y‖22 + TV( y)

}
(5)

and

uP M (x, t, ε) =
∫
Rn ye

−
(

1
2t ‖x− y‖22+TV( y)

)
/ε

d y
∫
Rn e

−
(

1
2t ‖x− y‖22+TV( y)

)
/ε

d y
. (6)

We note here that the PM estimate (6) with total variation
prior and its denoising properties was investigated in [48,49].

Figure 1a depicts the image Barbara, which we corrupt
with Gaussian noise (zero mean with standard deviation
σ = 10) in Fig. 1b. We let x denote this corrupted image,
and we choose the parameters t = 16 and ε = 6.25 in the
MAP and PMestimates. TheMAP estimate can be computed
up to the machine precision using maximum-flow-based
algorithms [11,19,41], and the PM estimate can be approx-
imated using Markov Chain Monte Carlo methods. Here,
we approximated the PM estimate (6) using the variable-
at-a-time Metropolis–Hastings algorithm with random scan
detailed in ( [48], Algorithm 2 on page 42). Specifically, for
the parameters of Algorithm 2 in [48], we used, in the termi-
nology of their algorithm, the parameters σ = 10 and λ = 32
(corresponding here to the choice of t = 16 and ε = 6.25
in (6)), we chose the initial point of the algorithm to be the
MAP estimate uM AP (x, t), and finally, we set the internal
parameters of Algorithm 2 in [48] as follows: α = 17.32
(these values yield an acceptance rate in the algorithm close
to the optimal value 0.234 suggested in [57]), 20,000 for the
maximum number of iterations, and n for the subsampling
rate.

The MAP and PM estimates associated with the ROF
model with these parameters produce the denoised images
illustrated in Fig. 1c and d. Figure 2a–d zoom-in on the face
of Barbara in Fig. 1 The denoised image of Barbara with
the MAP estimate exhibits staircasing effects [14,23,25] that
can be observed in Fig. 2c, whereas the denoised image of
Barbara with the posterior mean estimate does not. In either
case, the denoised images result in a lost of texture, as can
be seen by comparing Fig. 2a with c and d.

Variational methods are popular because the resultant
optimization problem for various non-smooth and convex
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Fig. 1 The anisotropic ROF
model endowed with 4-nearest
neighbors is applied to the test
image “Barbara”. The original
image is shown in (a). The
image is corrupted by Gaussian
noise (zero mean with standard
deviation σ = 10) and is shown
in (b). The corresponding
minimizer uM AP (x, t) given by
(4) and posterior mean estimate
uP M (x, t, ε) given by (6) with
parameters t = 16 and ε = 6.25
is illustrated in (c) and (d),
respectively

regularization terms used in image denoising problems, such
as total variation and l1-norm based regularization terms,
is well-understood [6,10,12,17,18,24,60] and can be solved
efficiently using robust numerical optimizationmethods [13].
MAP estimates from variational methods are also gener-
ally faster to compute than posterior mean estimates, since
the latter require complex stochastic methods to compute.
Reconstructed images from variational methods with non-
smooth and convex regularization terms, however, may have
undesirable and visually unpleasant staircasing effects due
to the singularities of the non-smooth regularization terms
[14,23,25,48,52,68]. This is illustrated for example in Fig.
1c, which contains regions where the pixel values are equal
and lead to staircasing effects. In contrast, posterior mean
estimates with quadratic fidelity term and total variation reg-
ularization terms have been shown to avoid staircasing effects
[48,49]. This is illustrated for example in Figs. 1 and 2d,
where the denoised image with posterior mean estimate does
not contain visibly substantial regions where the pixel values
are equal.

Related work Several papers have proposed novel connec-
tions between MAP and Bayesian estimators, including
posteriormeanestimators. First, [48,49] showed that the class
of Bayesian posteriormean estimates (3) with TV regulariza-
tion term J can be expressed as minimizers to optimization
problems involving a quadratic fidelity term and a smooth
convex regularization term, i.e., there exists a smooth regu-
larization term freg : R

n → R such that

uP M (x, t, ε) = argmin
y∈Rn

{
1

2
‖x − y‖22 + freg( y)

}
. (7)

This result was later extended to general priors [34], general
Gaussian data fidelity terms [35], and to some non-quadratic
data fidelity terms [36,37]. To our knowledge, there is no
representation formula for this smooth regularization term
available in the literature.

Second, [9] showed that theMAPestimate (2) corresponds
to a Bayes estimator when the regularization term J is con-
vex and uniformly Lipschitz continuous on R

n , that is, the
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Fig. 2 The anisotropic ROF
model endowed with 4-nearest
neighbors is applied to the test
image “Barbara”. Images
(a)–(d) are zoomed-in versions
of the images illustrated in
Fig. 1

MAP estimate (2) minimizes the posterior expected value
of an appropriate loss function. This was later extended by
[8] to some log-concave posterior distributions with non-
quadratic fidelity term and later studied from the point of
view of differential geometry in [53] and also derived for
posterior distributions that are strongly log-concave and at
least three times differentiable.

In addition to these results, it is known that under certain
assumptions on the regularization term J , the value of the
minimization problem

S0(x, t) := min
y∈Rn

{
1

2t
‖x − y‖22 + J ( y)

}
(8)

whose minimizer is the MAP estimate (2), satisfies the first-
order HJ PDE

{
∂S0
∂t (x, t) + 1

2 ‖∇xS0(x, t)‖22 = 0 in R
n × (0,+∞),

S0(x, 0) = J (x) in R
n .

(9)

The properties of the minimizer uM AP (x, t) follow from the
properties of the solution to this HJ equation [17,18]. In par-
ticular, theMAP estimate satisfies the representation formula
uP M (x, t) = x − t∇xS0(x, t).

We note that the results of [17,18] only concern con-
nections between a class of first-order HJ PDEs and MAP
estimators. To our knowledge, connections between posterior
estimators and HJ PDEs are not available in the literature.
Contributions In this paper,weproposenovel theoretical con-
nections between solutions to HJ PDEs and a broad class
of Bayesian methods and posterior mean estimators. These
connections are described in Propositions 3.1 and 3.2 for
viscous HJ PDEs and first-order HJ PDEs, respectively. We
show in Proposition 3.1 that the posterior mean estimate (3)
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is described by the solution to a viscous HJ with initial data
corresponding to the convex regularization term J , which we
characterize in detail in terms of the data x and parameters t
and ε. In particular, the posterior mean estimate (3) satisfies
the representation formula uP M (x, t, ε) = x− t∇xSε(x, t).
Next, we use the connections between viscous HJ PDEs and
posterior mean estimates established in Proposition 3.1 to
show in Proposition 3.2 that the posterior mean estimate
uP M (x, t, ε) can be expressed through the gradient of the
solution to a first-order HJ PDE with twice continuously dif-
ferentiable convex initial dataR

n 
 x �→ K ∗
ε (x, t)− 1

2‖x‖22,
where

Kε(x, t)

= tε ln

(
1

(2π tε)n/2

∫
dom J

e

(
1
t 〈x, y〉− 1

2t ‖ y‖22−J ( y)
)
/ε

d y
)

and x �→ K ∗
ε (x, t) is the Fenchel–Legendre transform of the

function x �→ Kε(x, t). In other words, we show

uP M (x, t, ε)

= argmin
y∈Rn

{
1

2
‖x − y‖22 +

(
K ∗

ε ( y, t) − 1

2
‖ y‖22

)}
.

This formula gives the representation of the convex regu-
larization term, enabling one to express the posterior mean
estimate as the minimizer of a convex variational problem,
and in fact in terms of the solution to a first-order HJ PDE.
This thereby extends the results of [34,48], who showed
existence of this regularization term when the data fidelity
term is quadratic, but not its representation. The second-order
continuous differentiability of this regularization term, in par-
ticular, implies that the posterior mean estimate uP M (x, t, ε)
avoids image denoising staircasing effects as a consequence
of the results derived in [51, Theorem 3].

We also present several topological properties of posterior
mean estimators in Proposition 4.1, and we use these in con-
junctionwith the connections betweenHJPDEsandposterior
mean estimators to derive representation and monotonicity
properties of posterior mean estimators in Propositions 4.2
and 4.3, respectively. These properties are then used to
derive an optimal upper bound on the mean squared error
EJ

[‖ y − uP M (x, t, ε)‖22
]
, an estimate of the squared dif-

ference between the MAP and posterior mean estimates,
monotonicity and non-expansiveness properties of the pos-
terior mean estimate, and the behavior of the posterior mean
estimate uP M (x, t, ε) in the limit t → 0 (Proposition 4.4).
Finally, we use the connections between both MAP and pos-
terior mean estimates and HJ PDEs to characterize the MAP
estimate (2) in the context of Bayesian estimation theory, and
specifically in proposition 4.5 to show that the MAP esti-
mate (2) corresponds to the Bayes estimator of the Bayesian
risk (52) whenever J is convex on R

n and bounded from

below. When J is defined only on a strict subset of R
n ,

we further show that the Bayesian risk (52) has a corre-
sponding Bayes estimator that is described in terms of the
solution to both the first-order HJ PDE (2.2) and the viscous
HJ PDE (3.1).

We would like to emphasize that the proofs of several
results presented in this paper are inspired from techniques
in existing works in several fields, including partial differ-
ential equations [26,42], convex analysis [38–40,58,59], the
theory of set-valued maps and differential inclusions [3],
large deviations theory [22], and geometric measure the-
ory [1,27,28,32,46,54,56]. To our knowledge, however, the
results presented in this paper are novel.
Organization In Sect. 2, we review concepts of real and
convex analysis that will be used throughout this paper.
In Sect. 3, we establish theoretical connections between a
broad class of Bayesian posterior mean estimators and HJ
PDEs.Ourmathematical setup is described inSubsection 3.1,
the connections of posterior mean estimators to viscous HJ
PDEs are described in Subsection 3.2, and the connections
of posterior mean estimators to first-order HJ PDEs are
described in Subsection 3.3. We use these connections to
establish various properties of posterior mean estimators in
Sect. 4. Specifically, we present topological, representation,
and monotonicity properties of posterior mean estimators in
Subsection 4.1, an optimal upper bound on the mean squared
error EJ

[‖ y − uP M (x, t, ε)‖22
]
, an estimate of the squared

difference between the MAP and posterior mean estimates,
monotonicity and non-expansiveness properties of the pos-
terior mean estimate, and the behavior of the posterior mean
estimate uP M (x, t, ε) in the limit t → 0 in Subsection 4.2.
Finally, we establish properties of MAP and posterior mean
estimators in terms of Bayesian risks involving Bregman
divergences in Subsection 4.3.

2 Background

This section reviews concepts from real and convex analysis
that will be used in this paper. For convenience to the reader,
we summarize some notations and definitions in Table 1; the
definitions are explained in detail below and the reader may
skip them. We also refer to [30,38,39,58,59] for comprehen-
sive references.

In what follows, the Euclidean scalar product on R
n will

be denoted by 〈·, ·〉 and its associated norm by ‖·‖2. The
closure and interior of a non-empty set C ⊂ R

n will be
denoted by cl C and int C , respectively. The boundary of a
non-empty set C ⊂ R

n is defined as cl C \ int C and will
be denoted by bd C . The domain of a function f : R

n →
R ∪ {+∞} is the set dom f = {x ∈ R

n : f (x) < +∞}.
Let f : � × �′ → R with � × �′ ⊂ R

n × R
n′
. It will

be useful in this paper to consider the gradient ∇x f (x, y),
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divergence ∇x · f (x, y) and Laplacian 	x f (x, y) of � 

x �→ f (x, y) for y ∈ �′, which are defined as follows:

∇x f (x, y) =
(

∂ f
∂x1

(x, y), . . . , ∂ f
∂xn

(x, y)
)
, ∇x · f (x, y) =∑n

i=1
∂ f
∂xi

(x, y), and 	x f (x, y) = ∑n
i=1

∂2 f
∂x2i

(x, y).

Definition 1 (Proper and lower semicontinuous functions) A
function f : R

n → R ∪ {+∞} is proper if dom f �= ∅ and
f (x) > −∞ for every x ∈ dom f .
A function f : R

n → R∪{+∞} is lower semicontinuous
at x ∈ R

n if it satisfies lim infk→+∞ f (xk) ≥ f (x) for every
sequence {xk}+∞

k=1 ⊂ R
n such that limk→+∞ xk = x.

Definition 2 (Convex sets and their relative interiors) A sub-
set C ⊂ R

n is convex if for every pair (x, y) ∈ C × C and
every scalar λ ∈ (0, 1), the line segment λx + (1 − λ) y is
contained in C .

The relative interior of a convex set C , denoted by ri C , is
the set of points in the interior of the unique smallest affine set
containing C . Every convex set C with non-empty interior is
n-dimensional with ri C = int C and has positive Lebesgue
measure, and furthermore, the n-dimensional Lebesguemea-
sure of the boundary bd C is equal to zero [45].

Definition 3 (Convex functions and the set 
0(R
n)) A proper

function f : R
n → R ∪ {+∞} is convex if its domain is

convex and if the inequality

f (λx + (1 − λ) y) ≤ λ f (x) + (1 − λ) f ( y)

holds for every pair (x, y) ∈ dom f × dom f and every
scalar λ ∈ [0, 1]. It is strictly convex if the inequality above
is strict whenever x �= y and λ ∈ (0, 1).

A proper function f : R
n → R∪{+∞} is strongly convex

with parameter m ≥ 0 if

f (λx + (1 − λ) y) ≤ λ f (x) + (1 − λ) f ( y)

−m

2
λ(1 − λ) ‖x − y‖22

for every pair (x, y) ∈ dom f × dom f and every scalar
λ ∈ [0, 1].

The class of proper, convex and lower semicontinuous
functions is denoted by 
0(R

n).

Definition 4 (Projections) LetC be a closed convex subset of
R

n . To every x ∈ R
n , there exists a unique element πC (x) ∈

C called the projection of x onto C that is closest to x in
Euclidean norm, i.e.,

πC (x) := argmin
y∈C

‖x − y‖22 . (10)

This correspondence defines a map x �→ πC (x) from R
n to

C called the projector onto C ( [3], Chapter 0.6, Corollary

1). It satisfies the characterization

〈x − πC (x), y − πC (x)〉 ≤ 0, ∀ y ∈ C . (11)

Definition 5 (Subdifferentials and subgradients) Let f ∈

0(R

n). The subdifferential of f at x ∈ dom f is the set
∂ f (x) of vectors p ∈ R

n that satisfies the inequality

f ( y) ≥ f (x) + 〈 p, y − x〉 (12)

for every y ∈ R
n . The subdifferential ∂ f (x) is a closed

convex subset ofRn whenever it is non-empty, and the vectors
p ∈ ∂ f (x) are called the subgradients of f at x.
The set of points x ∈ dom f for which the subdifferential

∂ f (x) is non-empty is denoted by dom ∂ f , and it includes
the relative interior of the domain of f , i.e., ri (dom f ) ⊂
dom ∂ f [58, Theorem 23.4].

If f is strongly convex of parameter m ≥ 0 and x ∈
dom ∂ f , then the subgradients p ∈ ∂ f (x) satisfy the
inequality

f ( y) ≥ f (x) + 〈 p, y − x〉 + m

2
‖ y − x‖22 .

If f is differentiable at x, then x ∈ dom ∂ f and the
gradient ∇ f (x) is the unique subgradient of f at x, and
conversely if f has a unique subgradient at x, then f is
differentiable at that point [58, Theorem 25.1].

The set-valued subdifferential mapping dom ∂ f 
 y �→
∂ f ( y) satisfies two important properties. First, it ismonotone
in that if f is strongly convex of parameter m ≥ 0, then for
every pair ( y, y0) ∈ dom ∂ f × dom ∂ f and p ∈ ∂ f ( y),
p0 ∈ ∂ f ( y0) the following inequality holds ([58], page 240
and Corollary 31.5.2):

m
∥∥ y − y0

∥∥2
2 ≤ 〈

p − p0, y − y0
〉
, (13)

Second, the mapping dom ∂ f 
 y �→ π∂ f ( y)(0) is well-
defined, and it selects the subgradient of the minimal norm in
∂ f (x) and defines a function continuous almost everywhere
on dom ∂ f , a consequence of the fact that this mapping
agrees with the gradient of f over the set of points in
int (dom J ) at which f is differentiable [58, Theorem 25.5].

Definition 6 (Fenchel–Legendre transform)Let f ∈ 
0(R
n).

The Fenchel–Legendre transform f ∗ : R
n → R∪{+∞} of

f is defined by

f ∗( p) = sup
x∈Rn

{〈 p, x〉 − f (x)} . (14)

For every f ∈ 
0(R
n), the mapping f �→ f ∗ is one-to-one,

f ∗ ∈ 
0(R
n), and ( f ∗)∗ = f . Moreover, for every x ∈ R

n
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and p ∈ R
n , f and f ∗ satisfy Fenchel’s inequality

f (x) + f ∗( p) ≥ 〈 p, x〉 , (15)

where equality holds if and only if p ∈ ∂ f (x), if and only if
x ∈ ∂ f ∗( p) [39, corollary 1.4.4]. If f is also differentiable,
the supremum in (14) is attained whenever there exists x ∈
R

n such that p = ∇ f (x).

Definition 7 (Bregman divergences) Let f ∈ 
0(R
n). The

Bregman divergence of f is the function D f : R
n × R

n →
R ∪ {+∞} defined by

D f (x, p) = f (x) − 〈 p, x〉 + f ∗( p). (16)

It satisfies D f (x, p) ≥ 0 for every x ∈ R
n and p ∈ R

n

by Fenchel’s inequality (15), with D f (x, p) = 0 whenever
p ∈ ∂ f (x). It also satisfies D f (x, p) = D f ∗( p, x), with
D f (x, p) = D f ( p, x) if and only if f is the quadratic f =
1
2 ‖·‖22.
Definition 8 (Infimal convolutions) Let f1 ∈ 
0(R

n) and
f2 ∈ 
0(R

n). The infimal convolution of f1 and f2 is the
function

R
n 
 x �→ ( f1� f2)(x) = inf

x1+x2=x
{ f1(x1) + f2(x2)} . (17)

The infimal convolution is exact if the infimum is attained
at x1 ∈ dom f1 and x2 ∈ dom f2, and in that case the
infimum in (17) can be replaced by a minimum. When the
relative interiors of f1 and f2 have a point in common, i.e.,
ri dom f1∩ri dom f2 �= ∅, the Fenchel–Legendre transform
of the infimal convolution (17) equals the sumof their respec-
tive Fenchel–Legendre transforms [58, Theorem 16.4], that
is,

( f1� f2)
∗ ( p) = f ∗

1 ( p) + f ∗
2 ( p).

If f ∈ 
0(R
n), then Moreau’s decomposition Theorem [40,

50] asserts that

1

2
‖·‖22 � f + 1

2
‖·‖22 � f ∗ = 1

2
‖·‖22 .

The following proposition provides conditions for which
two functions f1 and f2 satisfying f1 + f2 = 1

2 ‖·‖22
can be factorized, respectively, in the form 1

2 ‖·‖22 � f and
1
2 ‖·‖22 � f ∗. The proof can be found in [40].

Proposition 2.1 (Infimal deconvolutions [40]) Suppose f1
and f2 are two convex functions on R

n such that f1 + f2 =
1
2 ‖·‖22. Then, there exists a unique function f ∈ 
0(R

n) such
that

f1 = 1

2
‖·‖22 � f and f2 = 1

2
‖·‖22 � f ∗,

where f (x) = f ∗
2 (x)− 1

2 ‖x‖22 for every x ∈ R
n. Moreover,

f1 and f2 are continuously differentiable and

∇ f1(x) ∈ ∂ f (∇h(x)) and ∇ f2(x) ∈ ∂ f ∗(∇g(x)).

Definition 9 (Moreau–Yosida envelopes and proximal map-
pings) Let t > 0 and J ∈ 
0(R

n). The functions

x �→
(
1

2t
‖ · ‖22�J

)
(x)

= inf
y∈Rn

{
1

2t
‖x − y‖22 + J ( y)

}
(18)

and

x �→ argmin
y∈Rn

{
1

2t
‖x − y‖22 + J ( y)

}
(19)

are called the Moreau–Yosida envelope and proximal map-
ping of J , respectively [39,50,59].

The following proposition provides connections between
HJ PDEs and Moreau–Yosida envelopes and proximal map-
pings, which corresponds to certain optimization problems
in image denoising problems. Specifically, this proposition
describes the behavior of the solution to the infimum prob-
lem (8) and its correspondingminimizer (2), and in particular
that for any observed image x ∈ R

n and parameter t > 0,
the imaging problem (8) has always a unique solution. A
summary of these results and their proof can be found in
[17].

Proposition 2.2 ([17]) Let J ∈ 
0(R
n). Then, the following

statements hold.

(i) The unique continuously differentiable and convex func-
tion S0 : R

n ×[0,+∞) → R that satisfies the first-order
Hamilton–Jacobi equation with initial data

{
∂S0
∂t (x, t) + 1

2 ‖∇x S0(x, t)‖22 = 0 in R
n × (0, +∞),

S0(x, 0) = J (x) in R
n ,

(20)

is defined by

S0(x, t) =
((

1

2t
‖·‖22

)
�J

)
(x) (Lax–Oleinik formula) (21)

= inf
y∈Rn

{
1

2t
‖x − y‖22 + J ( y)

}
. (22)

Furthermore, for every x ∈ dom J , sequence {tk}+∞
k=1

of positive real numbers converging to 0, and sequence
{dk}+∞

k=1 of vectors converging to d ∈ R
n, the pointwise

limit S0(x + tkdk, tk) as k → +∞ exists and satisfies

lim
k→+∞ S0(x + tkdk, tk) = J (x).
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(ii) For every x ∈ R
n and t > 0, the infimum in (22)

exists and is attained at a unique point uM AP (x, t) ∈
dom ∂ J (see Eq. (2)). In addition, the minimizer
uM AP (x, t) satisfies the formula

uM AP (x, t) = x − t∇xS0(x, t), (23)

and
(
x−uM AP (x,t)

t

)
∈ ∂ J (uM AP (x, t)).

(iii) Let {tk}+∞
k=1 be a sequence of positive real numbers

converging to zero and let {dk}+∞
k=1 be a sequence of

elements in R
n converging to some d ∈ R

n. Then, for
every x ∈ dom J the pointwise limit of uM AP (x, t)
as t → 0 exists and satisfies

lim
k→+∞ uM AP (x + tkdk, tk) = x.

(iv) Let x ∈ dom ∂ J and let {tk}+∞
k=1 be a sequence of

positive real numbers converging to zero. Then, the
limit of ∇xS0(x, tk) as k → +∞ exists and satisfies

lim
k→+∞ ∇xS0(x, tk) = π∂ J (x)(0). (24)

3 Connections between Bayesian Posterior
Mean Estimators and Hamilton–Jacobi
Partial Differential Equations

3.1 Setup

To establish connections between Bayesian posterior mean
estimators and Hamilton–Jacobi equations, we will assume
that the regularization term J in the variational imaging
model (8) satisfies the following assumptions:

(A1) J ∈ 
0(R
n),

(A2) int (dom J ) �= ∅,
(A3) inf y∈Rn J ( y) ∈ R, and without loss of generality,

inf y∈Rn J ( y) = 0.

Assumption (A1) ensures that the minimal value of the
convex imaging problem (8) and its minimizer (2) are
well-defined and enjoy several properties (see Sect. 2, Propo-
sition 2.2). Assumption (A2) ensures that for every x ∈ R

n ,
t > 0, and ε > 0, the posterior distribution

R
n 
 y �→ e

−
(

1
2t ‖x− y‖22+J ( y)

)
/ε

∫
Rn e

−
(

1
2t ‖x− y‖22+J ( y)

)
/ε

d y
(25)

and its associated partition function

R
n × (0,+∞) × (0,+∞) 
 (x, t, ε) �→ Z J (x, t, ε)

=
∫
Rn

e
−
(

1
2t ‖x− y‖22+J ( y)

)
/ε

d y (26)

are well-defined, and finally, Assumption (A3) guarantees
that the partition function (26) is also bounded from above
independently of x ∈ R

n .Wewill denote the posterior expec-
tation (with respect to the posterior distribution (25)) of a
measurable function f : � �→ R with � ⊂ dom f inte-
grable on the set dom f ∩ dom J by

EJ [ f ( y)] = 1

Z J (x, t, ε)

∫
�∩ dom J

f ( y)e
−
(

1
2t ‖x−y‖22+J ( y)

)
/ε

d y.

(27)

Posterior expectations of vector quantities are defined
similarly component-wise. Posterior expectations generally
depend on (x, t, ε), but we will omit writing this dependence
explicitly.

3.2 Connections to Viscous Hamilton–Jacobi Partial
Differential Equations

The next proposition establishes connections between vis-
cous HJ PDEs with initial data J satisfying Assumptions
(A1)–(A3) and both the partition function (26) and the
Bayesian posterior mean estimate (3). These connections
mirror those between the first-order HJ PDE (20) with ini-
tial data J satisfying assumption (A1) and both the convex
minimization problem (8) and the MAP estimate (2). The
connections between viscous HJ PDEs and Bayesian pos-
terior mean estimators will be leveraged later to describe
several properties of posterior mean estimators in terms of
the observed image x and parameters t and ε, and in partic-
ular in Sect. 3.3 to show that the posterior mean estimate (3)
can be expressed as the minimizer associated with the solu-
tion to a first-order HJ PDE (Proposition 3.2) with at least
twice continuously differentiable and convex regularization
term.

Proposition 3.1 (TheviscousHamilton–Jacobi equationwith
initial data in 
0(R

n)) Suppose the function J satisfies
assumptions (A1)–(A3). Then, the following statements hold.

(i) (Cole–Hopf transformation, [26] Section 4.4.1) For every
ε > 0, the function Sε : R

n × [0,+∞) → [0,+∞)

defined by

Sε(x, t) := −ε ln

(
1

(2π tε)n/2 Z J (x, t, ε)

)

= −ε ln

(
1

(2π tε)n/2

∫
Rn

e
−
(

1
2t ‖x− y‖22+J (y)

)
/ε

d y
)

(28)
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is the unique smooth solution to the viscous HJ PDE with
initial data

{
∂Sε
∂t (x, t) + 1

2 ‖∇x Sε(x, t)‖22 = ε
2	x Sε(x, t) in R

n × (0, +∞),

Sε(x, 0) = J (x) in R
n .

(29)

In addition, the domain of integration in (3.1) can be
taken to be dom J or, up to a set of Lebesgue measure
zero, int (dom J ) or dom (∂ J ). Furthermore, for every
x ∈ dom J and ε > 0, except possibly at the boundary
points x ∈ (dom J ) \ int (dom J ) if such points exist,
the pointwise limit Sε(x, t) as t → 0 exists and satisfies

lim
t→0
t>0

Sε(x, t) = J (x).

(ii) (Convexity and monotonicity properties).

(a) The function R
n × (0,+∞) 
 (x, t) �→ Sε(x, t) −

nε
2 ln t is jointly convex.

(b) The function (0,+∞) 
 t �→ Sε(x, t) − nε
2 ln t is

strictly monotone decreasing.
(c) The function (0,+∞) 
 ε �→ Sε(x, t) − nε

2 ln ε is
strictly monotone decreasing.

(d) The function R
n 
 x �→ 1

2 ‖x‖22−t Sε(x, t) is strictly
convex.

(iii) (Connections to the posterior mean and mean squared
error) The posterior mean estimate uP M (x, t, ε) and
the mean squared error EJ

[‖ y − uP M (x, t, ε)‖22
]

sat-
isfy the formulas

uP M (x, t, ε) = x − t∇xSε(x, t) (30)

and

EJ

[
‖ y − uP M (x, t, ε)‖22

]
= tε∇x · uP M (x, t, ε)

= ntε − t2ε	xSε(x, t).
(31)

Moreover, x �→ uP M (x, t, ε) is a bijective function.
(iv) (Vanishing ε → 0 limit) Let S0 : R

n × (0,+∞) → R

denote the continuously differentiable and convex solu-
tion to the first-order HJ PDE (20) with initial data J .
For every x ∈ R

n and t > 0, the following limit holds:

lim
ε→0
ε>0

−ε ln

(
1

(2π tε)n/2

∫
Rn

e
−
(

1
2t ‖x− y‖22+J ( y)

)
/ε

d y
)

= inf
y∈Rn

{
1

2t
‖x − y‖22 + J ( y)

}
, (32)

that is,

lim
ε→0
ε>0

Sε(x, t) = S0(x, t),

and the limit converges uniformly over every compact
set of R

n × (0,+∞) in (x, t). In addition, the gradient
∇xSε(x, t), the partial derivative ∂Sε (x,t)

∂t , and the Lapla-
cian ε

2	xSε(x, t) satisfy the limits

lim
ε→0
ε>0

∇x Sε(x, t) = ∇x S0(x, t), lim
ε→0
ε>0

∂Sε

∂t
(x, t) = ∂S0

∂t
(x, t),

and

lim
ε→0
ε>0

ε

2
	xSε(x, t) = 0,

where each limit converges uniformly over every compact
set of R

n ×(0,+∞) in (x, t). As a consequence, for every
x ∈ R

n and t > 0, the pointwise limit of uP M (x, t, ε) as
ε → 0 exists and satisfies

lim
ε→0
ε>0

uP M (x, t, ε) = uM AP (x, t),

and the limit converges uniformly over every compact set
of R

n × (0,+∞) in (x, t).

Proof See “Appendix A” for the proof. ��
To illustrate certain aspects of Proposition 3.1 and proper-

ties of posterior mean estimates, we give here two analytical
examples.

Example 3.1 (Tikhonov–Phillips regularization) Let J (x) =
m
2 ‖x‖22 with m > 0, and consider the solution S0(x, t) and
Sε(x, t) to the first-order PDE (20) and viscous HJ PDE (29)
with initial data J , respectively.

The solution S0(x, t) is given by the Lax–Oleinik formula
(Proposition 2.2, Eq. (22))

S0(x, t) = inf
y∈Rn

{
1

2t
‖x − y‖22 + m

2
‖ y‖22

}

= m ‖x‖22
2(1 + mt)

.

This minimization problem is a special case of Tikhonov–
Phillips regularization (also known as ridge regression in
statistics), a method for regularizing ill-posed problems in
inverse problems and statistics using a quadratic regular-
ization term [55,64]. The corresponding minimizer can be
computed using the gradient ∇xS0(x, t) via equation (23) in
Proposition 3.1:

uM AP (x, t) = x − t∇xS0(x, t) = x − mtx
1 + mt

= x
1 + mt

.
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The solution Sε(x, t) is given by the integral

Sε(x, t)

= −ε ln

(
1

(2π tε)n/2

∫
Rn

e
−
(

1
2t ‖x− y‖22+ m

2 ‖ y‖22
)
/ε

d y
)

= m ‖x‖2
2(1 + mt)

+ nε

2
ln (1 + mt) .

The posterior mean estimate uP M (x, t, ε) can be computed
using the representation formula (30) in Proposition 3.1(iii)
by calculating the gradient ∇xSε(x, t):

uP M (x, t, ε) = x − t∇xSε(x, t) = x − mtx
1 + mt

= x
1 + mt

.

The mean squared error EJ
[‖ y − uP M (x, t, ε)‖22

]
can be

computed using the representation formula (31) in Proposi-
tion 3.1(iii) by calculating the divergence of uP M (x, t, ε):

EJ

[
‖ y − uP M (x, t, ε)‖22

]
= tε∇x · uP M (x, t, ε) = ntε

1 + mt
.

(33)

Comparing the solutions S0(x, t) and Sε(x, t), we see that
limε→0

ε>0
Sε(x, t) = S0(x, t) for every x ∈ R

n and t > 0, in

accordance with the result established in Proposition 3.1(iv).
Note also that while (x, t) �→ S0(x, t) is jointly convex, its
viscous counterpart (x, t) �→ Sε(x, t) is not. Indeed, t �→
Sε(x, t) is not convex, and it is convex only after subtracting
nε
2 ln t from Sε(x, t).

Example 3.2 (Soft thresholding) Let J (x) = ∑n
i=1 λi |xi |,

where λi > 0 for each i ∈ {1, . . . , n}, and consider the solu-
tions S0(x, t) and Sε(x, t) to the first-order (20) and viscous
HJ PDEs (29) with initial data J , respectively.

The solution S0(x, t) is given by the Lax–Oleinik formula

S0(x, t) = inf
y∈Rn

{
1

2t
‖x − y‖22 +

n∑
i=1

λi |yi |
}

=
n∑

i=1

(
inf

yi ∈R

{
1

2t
(xi − yi )

2 + λi |yi |
})

,

where xi and yi denote the i th component of the vectors x
and y, respectively. In the context of imaging, this minimiza-
tion problem corresponds to denoising an image with the
weighted sum of a quadratic fidelity term and a weighted l1-
norm as the regularization term. This term is widely used in
imaging to encourage sparsity of an image, and it has received
considerable interest due to its connection with compressed
sensing reconstruction [10,24]. The solution to this mini-
mization problem corresponds to a soft thresholding applied

component-wise to the vector x [20,29,47]. The soft thresh-
olding operator is defined for any real number a and positive
real number α as

R × (0, +∞) 
 (a, α) �→ T (a, α) =

⎧⎪⎨
⎪⎩

a − α if a > α,

0 if a ∈ [−α, α],
a + α if a < −α.

(34)

Theminimizer in the Lax–Oleinik formula of S0(x, t) is then
given component-wise for i ∈ {1, . . . , n} by

(uM AP (x, t))i = T (xi , tλi ),

so that

S0(x, t) =
n∑

i=1

(
1

2t
(xi − T (xi , tλi ))

2 + λi |T (xi , tλi )|
)

.

The solution Sε(x, t) is given by the integral

Sε(x, t) = −ε ln

(
1

(2π tε)n/2

∫
Rn

e
−
(

1
2t ‖x− y‖22+

∑n
k=1 λi |yi |

)
/ε

d y

)

= −ε

n∑
i=1

ln

(
1

2

√
2

π tε

∫ +∞
−∞

e
−
(

1
2t (xi −yi )

2+λi |yi |
)
/ε

dyi

)

= −ε

n∑
i=1

ln

(
1

2

√
2

π tε

(∫ +∞
0

e
−
(

1
2t (xi +yi )

2+λi yi

)
/ε

dyi

+
∫ +∞
0

e
−
(

1
2t (xi −yi )

2+λi yi

)
/ε

dyi

))

To compute this integral, first define the function

R 
 z �→ L(z) = 1

2
ez2erfc (z) ,

where erfc denotes the complementary error function. Then,
we have ([33], page 336, integral 3.332, 2., and page 887,
integral 8.250, 1.)

1

2

√
2

π tε

∫ +∞

0
e
−
(

1
2t (xi +yi )

2+λi yi

)
/ε

dyi = e− x2i
2tε L

(
xi + tλi√

2tε

)

and

1

2

√
2

π tε

∫ +∞

0
e
−
(

1
2t (xi −yi )

2+λi yi

)
/ε

dyi = e− x2i
2tε L

(−xi + tλi√
2tε

)
,
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from which we get

Sε(x, t) = ‖x‖22
2t

− ε

n∑
i=1

ln

(
L

(
xi + tλi√

2tε

)

+L

(−xi + tλi√
2tε

))
.

Now, to find the posterior mean estimate it suffices to com-
pute the gradient of ∇xSε(x, t) and use formula (30). To do
so, we need the derivative of the function L . Since

d L

dz
(z) = 2zL(z) + 1√

π
,

the chain rule gives

∂

∂xi

(
L

(
xi + tλi√

2tε

)
+ L

(−xi + tλi√
2tε

))

=
(

xi + tλi

tε

)
L

(
xi + tλi√

2tε

)

−
(−xi + tλi

tε

)
L

(−xi + tλi√
2tε

)
.

The posterior mean estimate is therefore given component-
wise by

(uP M (x, t, ε))i = xi − t(∇xSε(x, t))i

= xi + tλi

⎛
⎝ L

(
xi +tλi√

2tε

)
+ L

(−xi +tλi√
2tε

)

L
(

xi +tλi√
2tε

)
− L

(−xi +tλi√
2tε

)
⎞
⎠

The posteriormean estimate uP M (x, t, ε) yields a smooth
analogue of the soft thresholding operator T (defined in (34))
evaluated at (xi , tλi ), in the sense that limε→0

ε>0
(uP M (x, t, ε))i

= T (xi , tλi ) for every i ∈ {1, . . . , n} by Proposition 3.1(iv).
Figure 3 shows the MAP and posterior mean estimates
in one dimension for the choice of t = 1.25, ε =
{0.025, 0.1, 0.25, 0.5, 1}, and λ1 = 2 for x ∈ [−5, 5].

3.3 Connections to First-Order Hamilton–Jacobi
Equations

In this section, we use the connections between the poste-
rior mean estimate (3) and viscous HJ PDEs established in
Proposition 3.1 to show that the posterior mean estimate can
be expressed through the solution to afirst-orderHJPDEwith
initial data of the form of (20). In particular, we show that
the posterior mean estimate satisfies the proximal mapping
formula
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Fig. 3 Numerical example of the MAP and posterior mean estimates
in one dimension with J (x) = λ1 |x | for the choice of t = 1.25,
ε = {0.025, 0.1, 0.25, 0.5, 1}, and λ1 = 2 for x ∈ [−5, 5]

uP M (x, t, ε)

= argmin
y∈Rn

{
1

2
‖x − y‖22 +

(
K ∗

ε ( y, t) − 1

2
‖ y‖22

)}
,

where the function Kε : R
n × ×(0,+∞) → R is defined

through the solution Sε(x, t) to the viscous HJ PDE (29) via

Kε(x, t)

:= 1

2
‖x‖22 − t Sε(x, t)

≡ tε ln

(
1

(2π tε)n/2

∫
dom J

e

(
1
t 〈x, y〉− 1

2t ‖y‖22−J ( y)
)
/ε

d y
)

,

which is convexbyProposition3.1(ii)(d), andwhere K ∗
ε ( y, t)

denotes the Fenchel–Legendre transform of y �→ Kε( y, t).
This result gives the representation of the convex imag-
ing regularization term whose existence was derived by
[34,35,48,49] (and later extended to non-quadratic data
fidelity terms in [36,37]). This representation result depends
crucially on the connections established between the poste-
riormean estimate uP M (x, t, ε) and the viscousHJ PDE (29)
established in Proposition 3.1. Moreover, we also show
that y �→ K ∗

ε ( y, t) is at least twice continuously differ-
entiable. This fact implies that the posterior mean estimate
uP M (x, t, ε) for image denoising does not suffer from stair-
casing effects thanks to a result established in [51, Theorem
3] as proven for Total Variation regularization terms in [48].
Here, our results are applicable to any regularization term J
satisfying assumptions (A1)–(A3).

Proposition 3.2 (Connections between the posterior mean
estimate and first-order HJ PDEs) Suppose the function J
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satisfies assumptions (A1)-(A3). For every x ∈ R
n, t > 0,

and ε > 0, let Sε(x, t) denote the solution to the viscous
HJ PDE (29) with initial data J and let uP M (x, t, ε) denote
the posterior mean estimate (3). Consider the first-order HJ
PDE
⎧⎨
⎩

∂ S̃
∂s (x, s) + 1

2

∥∥∥∇x S̃(x, s)
∥∥∥2
2

= 0 in R
n × (0,+∞),

S̃(x, 0) = K ∗
ε (x, t) − 1

2‖x‖22 in R
n .

(35)

Then, the initial data x �→ K ∗
ε (x, t) − 1

2‖x‖22 is convex,
the solution to the HJ PDE (35) satisfies the Lax–Oleinik
formula

S̃(x, s) = inf
y∈Rn

{
1

2s
‖x − y‖22 +

(
K ∗

ε ( y, t) − 1

2
‖ y‖22

)}
,

and the corresponding minimizer at s = 1 is the posterior
mean estimate uP M (x, t, ε):

uP M (x, t, ε)

= argmin
y∈Rn

{
1

2
‖x − y‖22 +

(
K ∗

ε ( y, t) − 1

2
‖ y‖22

)}
. (36)

Moreover, for every t > 0 and ε > 0 the function R
n 


y �→ K ∗
ε ( y, t) is at least twice continuously differentiable.

Proof By definition of the function (x, t) �→ Kε(x, t), we
can write

t Sε(x, t) + Kε(x, t) = 1

2
‖x‖22.

As both x �→ t Sε(x, t) and x �→ Kε(x, t) are convex by
Proposition 3.1(ii)(a) and (d), we can apply Proposition 2.1
in Sect. 2 to conclude that x �→ K ∗

ε (x, t)− 1
2‖x‖22 is convex

and to express t Sε(x, t) as

t Sε(x, t)

= inf
y∈Rn

{
1

2
‖x − y‖22 +

(
K ∗

ε ( y, t) − 1

2
‖ y‖22

)}
(37)

On the one hand, by Proposition 2.2 the right hand side of
(37) is the solution S̃0(x, s) to the first-order HJ PDE (35) at
s = 1, and therefore itsminimizer is given by x−∇x S̃0(x, 1).
On the other hand, the gradient∇x S̃0(x, 1) is equal to the left
hand side of (37), that is, ∇x S̃0(x, 1) = t∇xSε(x, t), which
is equal to x − uP M (x, t, ε) by formula (3). As a result, the
posterior mean estimate uP M (x, t, ε) minimizes the right
hand side of (37), that is,

uP M (x, t, ε)

= argmin
y∈Rn

{
1

2
‖x − y‖22 +

(
K ∗

ε ( y, t) − 1

2
‖ y‖22

)}
.

Now, using the strict convexity of x �→ Kε(x, t) and
that ∇Kε(x, t) = uP M (x, t, ε) is a bijective function in x
for every t > 0 and ε > 0 by Proposition 3.1(iii) we can
invoke [58, Theorem 26.5] to conclude that y �→ K ∗

ε ( y, t)
is a continuously differentiable, strictly convex, and bijec-
tive function on R

n , and moreover that y �→ ∇ yK ∗
ε ( y, t)

corresponds to the inverse of x �→ uP M (x, t, ε), i.e.,
∇ yK ∗

ε (uP M (x, t, ε), t) = x. Finally, as x �→ Kε(x, t) is
twice differentiable and strictly convex on R

n , the inverse
function theorem [26, Appendix C, Theorem 7] implies that
y �→ ∇ yK ∗

ε ( y, t) is continuously differentiable on R
n ,

whence y �→ Kε( y, t). ��

4 Properties of Posterior Mean andMAP
Estimators

In this section,we describe various properties of theBayesian
posterior mean estimate (3) in terms of the data x ∈ R

n ,
parameters t > 0 and ε > 0, and the imaging regulariza-
tion term J . Specifically, in Sect. 4.1, we derive topological,
representation, and monotonicity properties of the poste-
rior mean estimate, which we use in Sect. 4.2 to further
derive an optimal upper bound on the mean squared error
EJ

[‖ y − uP M (x, t, ε)‖22
]
, an estimate of the squared dif-

ference between the MAP and posterior mean estimates,
monotonicity and non-expansiveness properties of the pos-
terior mean estimate, and the behavior of the posterior mean
estimate uP M (x, t, ε) in the limit t → 0. Finally,we describe
theMAPandposteriormean estimates in termsofBayes risks
and their connections to HJ PDEs in Sect. 4.3.

4.1 Topological, Representation, andMonotonicity
Properties

This section describes the topological, representation, and
monotonicity properties of the Bayesian posterior mean
estimate (3), which are stated, respectively, in Proposi-
tions 4.1, 4.2, and 4.3.

The first result, Proposition 4.1, states that the posterior
mean estimate belongs in the interior of the domain of J for
all data x ∈ R

n and parameters t > 0 and ε > 0.

Proposition 4.1 (Topological properties) Suppose that the
function J satisfies assumptions (A1)–(A3). Then, the fol-
lowing properties hold.

(i) For every x ∈ R
n, t > 0, and ε > 0, the posterior mean

estimate uP M (x, t, ε) is contained in int (dom J ).
(ii) Let x ∈ R

n, t > 0, and ε > 0, and let Sε : R
n ×

(0,+∞) → R denote the solution to the viscous HJ
PDEs (29) with initial data J . Then, the expected value
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of the initial data EJ
[
J ( y)

]
satisfies the bounds

0 ≤ J (uP M (x, t, ε)) ≤ EJ
[
J ( y)

]
< ε

(
eSε (x,t)/ε − 1

)
< +∞. (38)

Proof See “Appendix B”. ��
The second result, Proposition 4.2, gives representation

formulas for the posterior mean estimate. In particular, when
the regularization term J satisfies assumptions (A1)–(A3)
and dom J = R

n , the posterior mean estimate and mean
squared error then satisfy representation formulas in terms of
the mean minimal subgradient of J given byEJ

[
π∂ J ( y)(0)

]
.

These representation formulas are then used to show that
when dom J �= R

n , the posteriormean estimate can nonethe-
less be approximated using the first-order HJ PDE (20) by
smoothing the initial value J via a Moreau–Yosida approxi-
mation S0(x, μ) with μ > 0.

Proposition 4.2 (Representation properties) Suppose that
the function J satisfies assumptions (A1)–(A3), let x ∈ R

n,
t > 0, and ε > 0, and let (x, t) �→ S0(x, t) and (x, t) �→
Sε(x, t) denote the solutions, respectively, to the first-order
and viscous HJ PDEs (20) and (29) with initial data J .

(i) (Representation formulas) If dom J = R
n, then

EJ
[∥∥π∂ J ( y)(0)

∥∥
2

]
< +∞, for every y0 ∈ R

n we have

EJ

[〈(
y − x

t

)
+ π∂ J ( y)(0), y − y0

〉]
= nε, (39)

and the posterior mean estimate uP M (x, t, ε) and mean
squared error EJ

[‖ y − uP M (x, t, ε)‖22
]

of the Bayesian
posterior distribution (25) satisfy the representation for-
mulas

uP M (x, t, ε) = x − tEJ
[
π∂ J ( y)(0)

]
(40)

and

EJ

[
‖ y − uP M (x, t, ε)‖22

]

= ntε − tEJ
[〈
π∂ J ( y)(0), y − uP M (x, t, ε)

〉]
. (41)

Moreover, the gradient ∇xSε(x, t) and Laplacian 	xSε

(x, t) satisfy the representation formulas

∇xSε(x, t) = EJ
[
π∂ J ( y)(0)

]
(42)

and

	xSε(x, t) = 1

tε
EJ

[〈
π∂ J ( y)(0), y − uP M (x, t, ε)

〉]
.

(43)

(ii) (Limit formulas) Let {μk}+∞
k=1 be a sequence of positive

real numbers decreasing to zero. The solution Sε(x, t)
to the viscous HJ PDE (29) and its gradient ∇xSε(x, t)
satisfy the limits

Sε (x, t)

:= −ε ln

(
1

(2π tε)n/2

∫
Rn

e
−
(

1
2t ‖x− y‖22+J ( y)

)
/ε

d y
)

= lim
k→+∞ −ε ln

(
1

(2π tε)n/2

∫
Rn

e
−
(

1
2t ‖x− y‖22+S0( y,μk )

)
/ε

d y
) (44)

and

∇x Sε (x, t) = limk→+∞

( ∫
Rn ∇ y S0( y,μk )e

−
(
1
2t ‖x− y‖22+S0 ( y,μk )

)
/ε

d y
∫
Rn e

−
(
1
2t ‖x− y‖22+S0 ( y,μk )

)
/ε

d y

)
.

(45)

In particular, the posterior mean estimate uP M (x, t, ε)
satisfies the limits

uP M (x, t, ε)

= lim
k→+∞

⎛
⎝
∫
Rn ye

−
(

1
2t ‖x− y‖22+S0( y,μk )

)
/ε

d y
∫
Rn e

−
(

1
2t ‖x− y‖22+S0( y,μk )

)
/ε

d y

⎞
⎠

= x − t lim
k→+∞

⎛
⎝
∫
Rn ∇ yS0( y, μk)e

−
(

1
2t ‖x− y‖22+S0( y,μk )

)
/ε

d y
∫
Rn e

−
(

1
2t ‖x− y‖22+S0( y,μk )

)
/ε

d y

⎞
⎠ ,

(46)

Proof See “Appendix C” for the proof. ��
Remark 4.1 Note that the representation formulas in Proposi-
tion 4.2(i) may not hold if dom J �= R

n . To see this, consider
J : R

n → R ∪ {+∞} defined by

J ( y) =
{
0, if ‖ y‖2 ≤ 1,

+∞, otherwise.

The domain of J is the unit sphere in R
n , which is convex,

and J satisfies assumptions (A1)–(A3). The function J is
continuously differentiable on int (dom J ), with ∇ J ( y) =
0 for every y ∈ int (dom J ). Clearly, EJ

[
π∂ J ( y)(0)

] =
0. However, for every x �= 0, the posterior mean estimate
uP M (x, t, ε) �= x. Hence, the representation formula (40)
does not hold in that case.

The next result, Proposition 4.3, uses the properties of
solutions to first-order HJ PDEs presented in Proposition 2.2
together with the representation formulas (40) and (41) to
describe monotonicity properties of the posterior mean esti-
mate. Proposition 4.3 will be leveraged in the next subsection
to derive an optimal upper bound for the mean squared error
EJ

[‖ y − uP M (x, t, ε)‖22
]
and several estimates and limit

results of uP M (x, t, ε) in terms of the observed image x and
parameter t > 0.
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For the statement and proof of Proposition 4.3, and later
for Proposition 4.5, we define the function

dom ∂ J 
 y �→ ϕJ ( y|x, t) =
(
y − x

t

)
+ π∂ J ( y)(0),

which is a subgradient of the convex function y 
 y �→
1
2t ‖x − y‖22 + J ( y) for every y ∈ dom ∂ J .

Proposition 4.3 (Monotonicity property) Suppose that the
function J is strongly convex of parameter m ≥ 0 and satis-
fies assumptions (A1)–(A3). Let x ∈ R

n, t > 0, and ε > 0.
Then, for every y0 ∈ dom ∂ J ,

(
1 + mt

t

)
EJ

[∥∥ y − y0
∥∥2
2

]

≤ EJ
[〈
ϕJ ( y|x, t) − ϕJ ( y0|x, t), y − y0

〉]
≤ nε − 〈

ϕJ ( y0|x, t), uP M (x, t, ε) − y0
〉
. (47)

Moreover, the mean Euclidean norm of the minimal subgra-
dient of J is finite, i.e., EJ

[∥∥π∂ J ( y)(0)
∥∥
2

]
< +∞.

Proof See “Appendix D” for the proof. ��

4.2 Error Bounds and Limit Properties

In this section, we derive an optimal bound for the mean
squared error EJ

[‖ y − uP M (x, t, ε)‖22
]
, a bound on the

squared difference between theMAPandposteriormean esti-
mates,monotonicity and non-expansiveness properties of the
posterior mean estimate, and limiting results of the posterior
mean estimate in terms of the parameters t .

Proposition 4.4 (Error Bounds and limit properties) Suppose
that the function J is strongly convex of parameter m ≥ 0
and satisfies assumptions (A1)–(A3).

(i) For every x ∈ R
n, t > 0, and ε > 0, the mean squared

error EJ
[‖ y − uP M (x, t, ε)‖22

]
of the Bayesian poste-

rior distribution (25) satisfies the upper bound

EJ

[
‖ y − uP M (x, t, ε)‖22

]
≤ ntε

1 + mt
. (48)

(ii) For every x ∈ R
n, t > 0, and ε > 0, the squared dif-

ference between the MAP and posterior mean estimates
satisfies the upper bound

‖uM AP (x, t) − uP M (x, t, ε)‖22 ≤ ntε

1 + mt
. (49)

(iii) The posterior mean estimate is monotone and non-
expansive, that is, for every x, d ∈ R

n, t > 0, and ε > 0,

〈uP M (x + d, t, ε) − uP M (x, t, ε), d〉 ≥ 0 (50)

and

‖uP M (x + d, t, ε) − uP M (x, t, ε)‖2 ≤ ‖d‖2 . (51)

(iv) Let {tk}+∞
k=1 be a sequence of positive real numbers con-

verging to 0 and let {dk}+∞
k=1 be a sequence of elements

of R
n converging to d ∈ R

n. Then, for every x ∈ dom J
and ε > 0, the pointwise limit of uP M (x + tkdk, tk, ε)
as k → +∞ exists and satisfies

lim
k→+∞ uP M (x + tkdk, tk, ε) = x.

Proof Proof of (i): Since uP M (x, t, ε) ∈ int (dom J ) by
Proposition 4.1 and int (dom J ) ⊂ dom ∂ J (see Defini-
tion 5), we can set y0 = uP M (x, t, ε) in the monotonicity
inequality (47) in Proposition 4.3(i) and rearrange to get the
upper bound (48).

Proof of (ii):Note that for every y0 ∈ dom ∂ J , the mono-
tonicity inequality (47) in Proposition 4.3 yields

EJ

[〈(
y − x

t
+ π∂ J ( y)(0)

)
, y − y0

〉]
≤ nε.

Choose y0 = uM AP (x, t), which for every x and t > 0 is
always an element of dom ∂ J and also satisfies the inclusion(
x−uM AP (x,t)

t

)
∈ ∂ J (uM AP (x, t)) by part (ii) of Proposi-

tion 2.2. Hence, the monotonicity of the subdifferential of
y �→ 1

2t ‖x − y‖22 + J ( y) and strong convexity of J of
parameter m ≥ 0 implies

(
1 + mt

t

)
‖ y − uM AP (x, t)‖22

≤
〈(

x − y
t

+ π∂ J ( y)(0)
)

, y − uM AP (x, t)

〉
.

Combine these inequalities to getEJ
[‖ y − uM AP (x, t)‖22

] ≤
ntε

1+mt , and use the convexity of the Euclidean norm to get
inequality (49).

Proof of (iii): The convexity of x �→ Kε(x, t) by Propo-
sition 3.1(ii)(d) and ∇xKε(x, t) = uP M (x, t, ε) implies the
monotonicity property (50) (see definition 5, equation (13),
and [58], page 240 and Corollary 31.5.2). Since both func-
tions x �→ Sε(x, t) and x �→ 1

2 ‖x‖22 − t Sε(x, t) are convex
by Proposition 3.1(ii)(a) and (d), the gradient of the func-
tion x �→ 1

2 ‖x‖22 − t Sε(x, t), whose value is the posterior
mean estimate uP M (x, t, ε) by Proposition 3.1(iii), is Lip-
schitz continuous with unit constant (see [69] for a simple
proof), that is,

‖(x + d − t∇xSε(x + d, t)) − (x − t∇xSε(x, t))‖2
≡ ‖uP M (x + d, t, ε) − uP M (x, t, ε)‖2 ≤ ‖d‖2 ,
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which proves inequality (51).
Proof of (iv): Inequality (49) and the triangle inequality

imply

‖(x + tkdk) − uP M (x + tkdk, tk, ε)‖2
≤ ‖(x + tkdk) − uM AP (x + tkdk, tk)‖2 +

√
ntkε

1 + mt
.

The limit limk→+∞ uP M (x + tkdk, tk, ε) = x then follows
by Proposition 2.2(iii). ��

Remark 4.2 The upper bound for the mean squared error in
(48) is optimal. As shown in Example 3.1, it is attained for
the quadratic term J (x) = m

2 ‖x‖22.

4.3 Bayesian Risks and Hamilton–Jacobi Partial
Differential Equations

In this section, we will consider the Bayesian risk associated
with the following Bregman divergence (see Definition 7)

R
n × R

n 
 (u, y)

�→
{

D�J (u, ϕJ ( y|x, t)) if y ∈ dom ∂ J ,

+∞ otherwise,
(52)

where

dom ∂ J 
 y �→ ϕJ ( y|x, t) =
(
y − x

t

)
+ π∂ J ( y)(0),

R
n 
 y �→ �J ( y|x, t) = 1

2t
‖x − y‖22 + J ( y).

The associatedBayesian risk to the posterior distribution (25)
corresponds to the expected value EJ

[
D�J (u, ϕJ ( y|x, t))

]
.

We refer the reader to [4] and [44] for discussions onBregman
loss functions and Bayesian estimation theory.

Here, we will use the connections between maximum a
posteriori and posteriormean estimates andHamilton–Jacobi
equations derived in Sect. 3 to show that when the regular-
ization term J is convex on R

n and bounded from below,
then the MAP estimate uM AP (x, t) minimizes in expecta-
tion the Bregman loss function (52). We also show that when
dom J �= R

n and satisfies assumptions (A1)–(A3). The
results rely on the monotonicity property (47) established
in Proposition (4.3).

Proposition 4.5 (Bregman divergences) Suppose that the
function J satisfies assumptions (A1)–(A3), and let x ∈ R

n,
t > 0, and ε > 0.

(i) The mean Bregman loss function dom J 
 u �→
EJ

[
D�J (u, ϕJ ( y|x, t))

] ∈ R has a unique minimizer

ū ∈ dom ∂ J that satisfies the inclusion

(
x − ū

t

)
∈ ∂ J (ū) + (∇xSε(x, t) − EJ

[
π∂ J ( y)(0)

])
,

(53)

where addition in (53) is taken in the sense of sets.
(ii) If J is finite everywhere on R

n, then the MAP estimate
uM AP (x, t) is the unique global minimizer of the Breg-
man loss function R

n 
 u �→ EJ
[
D�J (u, ϕJ ( y|x, t))

] ∈
R, that is,

uM AP (x, t) = argmin
u∈Rn

EJ
[
D�J (u, ϕJ ( y|x, t))

]
(54)

Proof See “Appendix E” for the proof. ��

5 Conclusion

In this paper, we presented novel theoretical connections
between Hamilton–Jacobi partial differential equations and
a broad class of Bayesian posterior mean estimators with
quadratic data fidelity term and log-concave prior relevant to
image denoising problems. We derived a representation for-
mula for the posterior mean estimate uP M (x, t, ε) in terms
of the spatial gradient of the solution to a viscous HJ PDE
with initial data corresponding to the convex regularization
term J . We used these connections to show that the posterior
mean estimate can be expressed through the gradient of the
solution to a first-order HJ PDE with twice continuously dif-
ferentiable convex initial data, and furthermore, we derived
a novel representation formula for this initial data which, to
our knowledge, was not available in the literature.

The connections between HJ PDEs and Bayesian poste-
rior mean estimators were further used to establish several
topological, representation, and monotonicity properties of
posterior mean estimates. These properties were then used
to derive an optimal upper bound on the mean squared error
EJ

[‖ y − uP M (x, t, ε)‖22
]
, an estimate of the squared dif-

ference between the MAP and posterior mean estimates,
monotonicity and non-expansiveness properties of the pos-
terior mean estimate, and the behavior of the posterior mean
estimate uP M (x, t, ε) in the limit t → 0.

Finally, we used the connections between both MAP and
posterior mean estimates and HJ PDEs to show that the
MAP estimate (2) corresponds to the Bayes estimator of the
Bayesian risk (52) whenever the regularization term J is
convex on R

n and bounded from below and the data fidelity
term is quadratic. We also show that when dom J �= R

n , the
Bayesian risk (52) has still a Bayes estimator that is described
in terms of the solution to both the first-order HJ PDE (2.2)
and the viscous HJ PDE (3.1).
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We wish to note that in addition to its relevance to image
denoising problems, the viscous HJ PDE (29) has recently
received some attention in the deep learning literature, where
its solution x �→ Sε(x, t) is known as the local entropy
loss function and is a loss regularization effective at train-
ing deep networks [15,16,31,65]. While this paper focuses
on HJ PDEs and Bayesian estimators in imaging sciences,
the results in this paper may be relevant to the deep learn-
ing literature and may give new theoretical understandings
of the local entropy loss function in terms of the data x and
parameters t and ε.

The results presented in this work crucially depend on the
data fidelity term being quadratic and the generalized prior
distribution y �→ e−J ( y) being log-concave. This paper did
not consider non-quadratic data fidelity terms (correspond-
ing to non-Gaussian additive noisemodels) with log-concave
priors, or non-additive noise models [5,7].
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A Proof of Proposition 3.1

We will use the following lemma, which characterizes the
partition function (26) in terms of the solution to a Cauchy
problem involving the heat equation with initial data J ∈

0(R

n), to prove parts (i) and (ii)(a)–(d) of Proposition 3.1.

Lemma A.1 (The heat equation with initial data in 
0(R
n))

Suppose the function J : R
n → R ∪ {+∞} satisfies assump-

tions (A1)–(A3).

(i) For every ε > 0, the function wε : R
n × [0,+∞) →

(0, 1] defined by

wε(x, t) := 1

(2π tε)n/2 Z J (x, t, ε)

= 1

(2π tε)n/2

∫
Rn

e
−
(

1
2t ‖x− y‖22+J ( y)

)
/ε

d y (55)

is the unique smooth solution to the Cauchy problem

{
∂wε

∂t (x, t) = ε
2	xwε(x, t) in R

n × (0,+∞),

wε(x, 0) = e−J (x)/ε in R
n .

(56)

In addition, the domain of integration of the integral (55)
can be taken to be dom J or, up to a set of Lebesgue
measure zero, int (dom J ) or dom ∂ J . Furthermore, for
every x ∈ R

n and ε > 0, except possibly at the points x ∈

(dom J ) \ (int dom J ) if such points exist, the pointwise
limit of wε(x, t) as t → 0 exists and satisfies

lim
t→0
t>0

wε(x, t) = e−J (x)/ε,

with the limit equal to 0 whenever x /∈ dom J .
(ii) (Log-concavity and monotonicity properties).

(a) The function R
n ×(0,+∞) 
 (x, t) �→ tn/2wε(x, t)

is jointly log-concave.
(b) The function (0,+∞) 
 t �→ tn/2wε(x, t) is strictly

monotone increasing.
(c) The function (0,+∞) 
 ε �→ εn/2wε(x, t) is strictly

monotone increasing.

(d) The function R
n 
 x �→ e

1
2tε ‖x‖22wε(x, t) is strictly

log-convex.

The proof of (i) follows fromclassical PDEs arguments for
the Cauchy problem (56) tailored to the initial data (x, ε) �→
e−J (x)/ε with J satisfying assumptions (A1)–(A3), and the
proof of log-concavity and monotonicity (ii)(a)–(d) follows
from the Prékopa–Leindler and Hölder’s inequalities [30,46,
56]; we present the details below.

Proof Proof of Lemma A.1 (i): This result follows directly
from the theory of convolution of Schwartz distributions (
[42], Chapter 2, Sect. 2.1, Chapter 4, Sect. 4.2 and 4.4., and
in particular Theorem 4.4.1 on page 110). To see why this
is the case, note that by assumptions (A1)–(A3) the initial
condition y �→ e−J ( y) is a locally integrable function, and
locally integrable functions are Schwartz distributions.

Proof of Lemma A.1 (ii)(a): The log-concavity property
will be shown using the Prékopa–Leindler inequality.

Theorem A.1 (Prékopa–Leindler inequality [46,56]) Let f ,
g, and h be non-negative real-valued and measurable func-
tions on R

n, and suppose

h(λ y1 + (1 − λ) y2) ≥ f ( y1)
λg( y2)

(1−λ)

for every y1, y2 ∈ R
n and λ ∈ (0, 1). Then,

∫
Rn

h( y)d y ≥
(∫

Rn
f ( y)d y

)λ (∫
Rn

g( y)d y
)(1−λ)

.

Proof of Lemma A.1 (ii)(a) (continued): Let ε > 0,
λ ∈ (0, 1), x = λx1 + (1 − λ)x2, y = λ y1 + (1 − λ) y2,
and t = λt1 + (1 − λ)t2 for any x1, x2, y1, y2 ∈ R

n and
t1, t2 ∈ (0,+∞). The joint convexity of the function R

n ×
(0,+∞) 
 (z, t) �→ 1

2t ‖z‖22 and convexity of J imply

1

2t
‖x − y‖22 + J ( y)
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≤ λ

2t1

∥∥x1 − y1
∥∥2
2 + (1 − λ)

2t2

∥∥x2 − y2
∥∥2
2

+λJ ( y1) + (1 − λ)J ( y2),

This gives

e
−
(

1
2t ‖x− y‖22+J ( y)

)
/ε

(2πε)n/2

≥
⎛
⎝e

−
(

1
2t1

‖x1− y1‖2
2+J ( y1)

)
/ε

(2πε)n/2

⎞
⎠

λ

⎛
⎝e

−
(

1
2t2

‖x2− y2‖2
2+J ( y2)

)
/ε

(2πε)n/2

⎞
⎠

1−λ

.

Applying the Prékopa–Leindler inequality with

h( y) = e
−
(

1
2t ‖x− y‖22+J ( y)

)
/ε

(2πε)n/2 ,

f ( y) = e
−
(

1
2t1

‖x1− y‖22+J ( y)
)
/ε

(2πε)n/2 ,

and

g( y) = e
−
(

1
2t2

‖x2− y‖22+J ( y)
)
/ε

(2πε)n/2 ,

and using the definition (55) of wε(x, t), we get

tn/2wε(x, t) ≥
(

tn/2
1 wε(x1, t1)

)λ (
tn/2
2 wε(x2, t2)

)(1−λ)

,

As a result, the function (x, t) �→ tn/2wε(x, t) is jointly
log-concave on R

n × (0,+∞).
Proof of Lemma A.1 (ii)(b): Since t �→ 1

t is strictly
monotone decreasing on (0,+∞), then for every x ∈ R

n ,
y ∈ dom J , ε > 0, and 0 < t1 < t2,

e
−
(

1
2t1

‖x− y‖22+J ( y)
)
/ε

(2πε)n/2

<
e
−
(

1
2t2

‖x− y‖22+J ( y)
)
/ε

(2πε)n/2

whenever x �= y. Integrating both sides of the inequality
with respect to y over dom J yields

1

(2πε)n/2

∫
dom J

e
−
(

1
2t1

‖x− y‖22+J ( y)
)
/ε

d y

<
1

(2πε)n/2

∫
dom J

e
−
(

1
2t2

‖x− y‖22+J ( y)
)
/ε

d y,

As a result, the function t �→ tn/2wε(x, t) is strictly mono-
tone increasing on (0,+∞).

Proof of Lemma A.1 (ii)(c): Since ε �→ 1
ε
is strictly

monotone decreasing on (0,+∞) and dom J 
 y �→ J ( y)
is non-negative by assumption (A3), then for every x ∈ R

n ,
t > 0, and 0 < ε1 < ε2 we have

e
−
(

1
2t ‖x− y‖22+J ( y)

)
/ε1

< e
−
(

1
2t ‖x− y‖22+J ( y)

)
/ε2

whenever x �= y. Integrating both sides of the inequality
with respect to y over dom J yields

∫
dom J

e
−
(

1
2t ‖x− y‖22+J ( y)

)
/ε1d y

<

∫
dom J

e
−
(

1
2t ‖x− y‖22+J ( y)

)
/ε2d y,

As a result, the function ε �→ εn/2wε(x, t) is strictly mono-
tone increasing on (0,+∞).

Proof of LemmaA.1 (ii)(d):Let ε > 0, t > 0, λ ∈ (0, 1),
x1, x2 ∈ R

n with x1 �= x2 and x = λx1 + (1− λ)x2. Then,

e
1
2tε ‖x‖22wε(x, t)

= 1

(2π tε)n/2

∫
dom J

e

(
〈x, y〉/t− 1

2t ‖ y‖22−J ( y)
)
/ε

d y

=
∫
dom J

⎛
⎝e

(
〈x1, y〉/t− 1

2t ‖ y‖22−J ( y)
)
/ε

(2π tε)n/2

⎞
⎠

λ

(
e〈x2, y〉/tε− 1

2t ‖ y‖22−J ( y)/ε

(2π tε)n/2

)1−λ

d y.

Hölder’s inequality [30, Theorem 6.2] then implies

e
1
2tε ‖x‖22wε(x, t)

≤
⎛
⎝∫

dom J

e

(
〈x1, y〉/t− 1

2t ‖ y‖22−J ( y)
)
/ε

(2π tε)n/2 d y

⎞
⎠

λ

(∫
dom J

e〈x2, y〉/tε− 1
2t ‖ y‖22−J ( y)/ε

(2π tε)n/2 d y

)1−λ

=
(

e
1
2tε ‖x1‖22wε(x1, t)

)λ (
e

1
2tε ‖x2‖22wε(x2, t)

)1−λ

,

where the inequality in the equation above is an equality if and
only if there exists a constant α ∈ R such that αe〈x1, y〉/tε =
e〈xx , y〉/tε for almost every y ∈ dom J . This does not hold
here since x1 �= x2. As a result, the function R

n 
 x �→
e

1
2tε ‖x‖22wε(x, t) is strictly log-convex. ��
Proof of Proposition 3.1 (i) and (ii)(a)–(d): The proof

of these statements follows from Lemma A.1 and classic
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results about the Cole–Hopf transform (see, e.g., [26, Section
4.4.1]), with Sε(x, t) := −ε log(wε(x, t)).

Proof of Proposition 3.1 (iii): The formulas follow from
a straightforward calculation of the gradient, divergence, and
Laplacian of Sε(x, t) that we omit here. Since the function
x �→ 1

2 ‖x‖22 − t Sε(x, t) is strictly convex, we can invoke
(Corollary 26.3.1, [58]) to conclude that its gradient x �→ x−
t∇xSε(x, t), which gives the posterior mean uP M (x, t, ε), is
bijective.

Proof of Proposition 3.1 (iv): We will prove this result
in three steps. First, we will show that

lim sup
ε→0
ε>0

Sε(x, t) ≤ inf
y∈int (dom J )

{
1

2t
‖x − y‖22 + J ( y)

}

and

inf
y∈int (dom J )

{
1

2t
‖x − y‖22 + J ( y)

}

= inf
y∈dom J

{
1

2t
‖x − y‖22 + J ( y)

}
≡ S0(x, t).

Next, we will show that lim infε→0
ε>0

Sε

(x, t) ≥ S0(x, t). Finally, we will use steps 1 and 2 to con-
clude that limε→0

ε>0
Sε(x, t) = S0(x, t). Pointwise and local

uniform convergence of the gradient limε→0
ε>0

∇xSε(x, t) =
∇xS0(x, t), the partial derivative limε→0

ε>0

∂Sε (x,t)
∂t = ∂S0(x,t)

∂t ,

and the Laplacian limε→0
ε>0

ε
2	xSε(x, t) = 0 then follow

from the convexity and differentiability of the solutions
(x, t) �→ S0(x, t) and (x, t) �→ Sε(x, t) to the HJ PDEs (20)
and (29).

In what follows, we will use the following large deviation
principle result [22]: For every Lebesguemeasurable setA ∈
R

n ,

lim
ε→0
ε>0

−ε ln

(
1

(2π tε)n/2

∫
A

e− 1
2tε ‖x− y‖22d y

)

= ess inf
y∈A

{
1

2t
‖x − y‖22

}
,

where

ess inf
y∈A

{
1

2t
‖x − y‖22

}

= sup

{
a ∈ R : a ≤ 1

2t
‖x − y‖22 , for a.e. y ∈ A

}
.

Step 1. (Adapted fromDeuschel andStroock [22], Lemma
2.1.7.) By convexity, the function J is continuous for every
y0 ∈ int (dom J ), the latter set being open. Therefore, for
every such y0 there exists a number r y0 > 0 such that for

every 0 < r ≤ r y0 the open ball Br ( y0) is contained in
int (dom J ). Hence,

Sε(x, t) := −ε ln

(
1

(2π tε)n/2

∫
int (dom J )

e−( 1
2t ‖x− y‖22+J ( y))/εd y

)

≤ −ε ln

(
1

(2π tε)n/2

∫
Br ( y0)

e−( 1
2t ‖x− y‖22+J ( y))/εd y

)

≤ −ε ln

(
1

(2π tε)n/2

∫
Br ( y0)

e− 1
2tε ‖x− y‖22d y

)

+ sup
y∈Br ( y0)

J ( y).

Take lim supε→0
ε>0

and apply the large deviation principle to

the term on the right to get

lim sup
ε→0
ε>0

Sε(x, t) ≤ ess inf
y∈Br ( y0)

{
1

2t
‖x − y‖22

}
+ sup

y∈Br ( y0)
J ( y).

Take limr→0 on both sides of the inequality to find

lim sup
ε→0
ε>0

Sε(x, t) ≤ 1

2t

∥∥x − y0
∥∥2
2 + J ( y0).

Since the inequality holds for every y0 ∈ int (dom J ), we
can take the infimum over all y ∈ int (dom J ) on the right-
hand-side of the inequality to get

lim sup
ε→0
ε>0

Sε(x, t) ≤ inf
y∈int (dom J )

{
1

2t
‖x − y‖22 + J ( y)

}
.(57)

By assumptions (A1) and (A2) that J ∈ 
0(R
n) and

int (dom J ) �= ∅, the infimum on the right hand side is
equal to that taken over dom J [58, Corollary 7.3.2], i.e.,

inf
y∈int (dom J )

{
1

2t
‖x − y‖22 + J ( y)

}

= inf
y∈dom J

{
1

2t
‖x − y‖22 + J ( y)

}
≡ S0(x, t). (58)

We combine (57) and (58) to obtain

lim sup
ε→0
ε>0

Sε(x, t) ≤ S0(x, t),

which is the desired result.
Step 2. We can invoke Lemma 2.1.8 in [22] because its

conditions are satisfied (in the notation of [22], � = −J ,
which is upper semicontinuous, y �→ 1

2t ‖x − y‖22 is the rate
function, and note that the tail condition (2.1.9) is satisfied in
that sup y∈Rn −J ( y) = − inf y∈Rn J ( y) = 0 by assumption
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(A3)) to get

lim inf
ε→0
ε>0

Sε(x, t) ≥ S0(x, t).

Step 3. Combining the two limits derived in steps 1 and 2
yields

lim
ε→0
ε>0

Sε(x, t) = S0(x, t)

for every x ∈ R
n and t > 0, where the limit converges

uniformly on every compact subset (x, t) of R
n × (0,+∞)

[58, Theorem 10.8].
By differentiability and joint convexity of both R

n ×
(0,+∞) 
 (x, t) �→ S0(x, t) andR

n×(0,+∞) 
 (x, t) �→
Sε(x, t)− nε

2 ln t (Proposition 2.2 (i), and Proposition 3.1 (i)
and (ii)(a)), we can invoke [58, Theorem 25.7] to get

lim
ε→0
ε>0

∇xSε(x, t) = ∇xS0(x, t) and lim
ε→0
ε>0

(
∂Sε(x, t)

∂t
− nε

2t

)

= lim
ε→0
ε>0

∂Sε(x, t)

∂t
= ∂S0(x, t)

∂t
,

for every x ∈ R
n and t > 0, where the limit converges

uniformly on every compact subset of R
n × (0,+∞). Fur-

thermore, the viscous HJ PDE (29) for Sε implies that

lim
ε→0
ε>0

ε

2
	xSε(x, t) = lim

ε→0
ε>0

(
∂Sε(x, t)

∂t
+ 1

2
‖∇xSε(x, t)‖2

)
,

=
(

∂S0(x, t)

∂t
+ 1

2
‖∇xS0(x, t)‖2

)

= 0,

where the last equality holds thanks to the HJ PDE (20)
(see Proposition 2.2). Here, again, the limit holds for every
x ∈ R

n and t > 0, and the limit converges uniformly
over any compact subset of R

n × (0,+∞). Finally, the limit
limε→0

ε>0
uP M (x, t, ε) = uM AP (x, t) holds directly as a con-

sequence to the limit limε→0
ε>0

∇xSε(x, t) = ∇xS0(x, t) and

the representation formulas (30) (see Proposition 3.1(iii)) and
(23) (see Proposition 2.2(ii))for the posterior mean andMAP
estimates, respectively.

B Proof of Proposition 4.1

Proof of (i):We will prove that uP M (x, t, ε) ∈ int (dom J )

in two steps. First, we will use the projection operator
(10) (see Definition 4) and the posterior mean estimate
uP M (x, t, ε) to prove by contradiction that uP M (x, t, ε) ∈

cl (dom J ). Second, we will use the following variant of the
Hahn–Banach theorem for convex bodies in R

n to show in
fact that uP M (x, t, ε) ∈ int (dom J ).

Theorem B.1 [58, Theorem 11.6 and Corollary 11.6.2] Let
C be a convex set. A point u ∈ C is a relative boundary point
of C if and only if there exist a vector a ∈ R

n \ {0} and a
number b ∈ R such that

u = argmax
y∈C

{〈a, y〉 + b} ,

with 〈a, y〉 + b < 〈a, u〉 + b for every y ∈ int (C).

Step 1. Suppose uP M (x, t, ε) /∈ cl (dom J ). Since the
set cl (dom J ) is closed and convex, the projection of
uP M (x, t, ε) onto cl (dom J ) given by πcl(dom J )(uP M

(x, t, ε)) ≡ ū is well-defined and unique (see Definition 4),
with uP M (x, t, ε) �= ū by assumption. The projection ū also
satisfies the characterization (11), namely

〈uP M (x, t, ε) − ū, y − ū)〉 ≤ 0

for every y ∈ cl (dom J ). Then, by linearity of the posterior
mean estimate,

‖uP M (x, t, ε) − ū‖22 = 〈uP M (x, t, ε) − ū, uP M (x, t, ε) − ū〉
= 〈

uP M (x, t, ε) − ū, EJ
[
y
] − ū

〉
= EJ

[〈uP M (x, t, ε) − ū, y − ū〉)]
≤ 0,

which implies that uP M (x, t, ε) = ū. This contradicts the
assumption that uP M (x, t, ε) /∈ cl (dom J ). Hence, it fol-
lows that uP M (x, t, ε) ∈ cl (dom J ).

Step 2. We now wish to prove that uP M (x, t, ε) ∈
int (dom J ). Note that this inclusion trivially holds if there are
no boundary points, i.e., (cl (dom J ) \ int (dom J )) = ∅.
Now, we consider the case (cl (dom J ) \ int (dom J )) �= ∅.
Suppose that uP M (x, t, ε) ∈ (cl (dom J ) \ int (dom J )).
Then, Thm .B.1 applies and there exist a vector a ∈ R

n \ {0}
and a number b ∈ R such that

uP M (x, t, ε) = argmax
y∈cl (dom J )

{〈a, y〉 + b} ,

with 〈a, y〉 + b < 〈a, uP M (x, t, ε)〉 + b for every y ∈
int (dom J ). By linearity of the posterior mean estimate,

〈a, uP M (x, t, ε)〉 + b = 〈
a, EJ

[
y
]〉 + b

= EJ
[〈a, y〉 + b

]
< EJ [〈a, uP M (x, t, ε)〉 + b]

= 〈a, uP M (x, t, ε)〉 + b,
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where the strict inequality in the third line follows from
integrating over int (dom J ). This contradicts the assump-
tion that uP M (x, t, ε) ∈ (cl (dom J ) \ int (dom J )). Hence,
uP M (x, t, ε) ∈ int (dom J ).

Proof of (ii): First, as a consequence that uP M (x, t, ε) ∈
int (dom J ), the subdifferential of J at uP M (x, t, ε) is non-
empty because the subdifferential ∂ J is non-empty at every
point y ∈ int (dom J ) [58, Theorem 23.4]. Hence, there
exists a subgradient p ∈ ∂ J (uP M (x, t, ε)) such that

J ( y) ≥ J (uP M (x, t, ε)) − 〈 p, y − uP M (x, t, ε)〉 . (59)

Take the expectation EJ [·] on both sides of inequality (59)
to find

EJ
[
J ( y)

]
≥ EJ

[
J (uP M (x, t, ε)) − 〈 p, y − uP M (x, t, ε)〉]

= J (uP M (x, t, ε)) − EJ
[〈 p, y − uP M (x, t, ε)〉]

= J (uP M (x, t, ε)) − 〈
p, EJ

[
y
] − uP M (x, t, ε)

〉
= J (uP M (x, t, ε)) − 〈 p, uP M (x, t, ε) − uP M (x, t, ε)〉
= J (uP M (x, t, ε)).

(60)

This gives the lower bound of inequality (38).
Second, use the convex inequality 1+z ≤ ez that holds on

R with z ≡ J ( y)/ε for y ∈ dom J . This gives the inequality
1 + 1

ε
J ( y) ≤ eJ ( y)/ε . Multiply this inequality by e−J ( y)/ε

and subtract by e−J ( y)/ε on both sides to find

1

ε
J ( y)e−J ( y)/ε ≤ (1 − e−J ( y)/ε). (61)

Multiply both sides by e− 1
2tε ‖x− y‖22 , divide by the partition

function Z J (x, t, ε) (see Eq. (26)), integrate with respect to
y ∈ dom J , and use

1

Z J (x, t, ε)

∫
dom J

1

ε
J ( y)e

−
(

1
2t ‖x− y‖22+J ( y)

)
/ε

d y

= 1

ε
EJ

[
J ( y)

]

to obtain

1

ε
EJ

[
J ( y)

] ≤ 1

Z J (x, t, ε)∫
dom J

(
e− 1

2t ‖x− y‖22/ε − e
−
(

1
2t ‖x− y‖22+J ( y)

)
/ε
)

d y.

(62)

Now, we can bound the right hand side of (62) as follows

1

Z J (x, t, ε)

∫
dom J

(
e− 1

2t ‖x− y‖22/ε − e
−
(

1
2t ‖x− y‖22+J ( y)

)
/ε

)
d y

= 1

Z J (x, t, ε)

∫
dom J

e− 1
2t ‖x− y‖22/εd y

− 1

Z J (x, t, ε)

∫
dom J

e
−
(

1
2t ‖x− y‖22+J ( y)

)
/ε

d y

≤ 1

Z J (x, t, ε)

∫
Rn

e− 1
2t ‖x− y‖22/εd y − 1

= (2π tε)n/2

Z J (x, t, ε)
− 1.

(63)

Combining (62) and (63), we get

EJ
[
J ( y)

] ≤ ε

(
(2π tε)n/2

Z J (x, t, ε)
− 1

)
. (64)

Using the representation formula (28) for the solution
(x, t) �→ Sε to the viscous HJ PDE (29), we have
that (2π tε)n/2/Z J (x, t, ε) = eSε (x,t)/ε . We can therefore
write (64) as follows

EJ
[
J ( y)

] ≤ ε
(

eSε (x,t)/ε − 1
)

< +∞.

Combining the latter inequalities with (60), we obtain the
desired set of inequalities (38).

C Proof of Proposition 4.2

Proof of (i): We will show that EJ
[∥∥π∂ J ( y)(0)

∥∥
2

]
< +∞

and derive formulas (39), (40), (41), (42), and (43) in four
steps. To describe these steps, let us first introduce some
notation. Recall that J satisfies assumptions (A1)–(A3) and
dom J = R

n . Define the set

DJ := {
y ∈ R

n | ∂ J ( y) = {∇ J ( y)}} .

We can invoke [58, Theorem 25.5] to conclude that DJ is
a dense subset of R

n , the n-dimensional Lebesgue measure
of the set (Rn \ DJ ) is zero, and the function y �→ ∇ J ( y)
is continuous on DJ . Now, let x ∈ R

n , t > 0, ε > 0, and
y0 ∈ R

n . Define the function ϕJ : R
n → R

n as

ϕJ ( y|x, t) =
(
y − x

t

)
+ π∂ J ( y)(0).

Note that for every y ∈ R
n we have ϕJ ( y|x, t) ∈

∂
(
R

n 
 u �→ 1
2t ‖x − u‖22 + J (u)

)
( y), i.e., ϕJ ( y|x, t) is a

subgradient of the function u �→ 1
2t ‖x − u‖22 + J (u) eval-

uated at u = y. Let

C1(x, y0, t, ε) =
∫
Rn

∥∥ y − y0
∥∥
2 e− 1

2tε ‖x− y‖22d y, (65)
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and note that by assumption (A3), the expected value
EJ

[∥∥ y − y0
∥∥
2

]
is bounded as follows

EJ
[∥∥ y − y0

∥∥
2

]
= 1

Z J (x, t, ε)

∫
Rn

∥∥ y − y0
∥∥
2 e−( 1

2t ‖x− y‖22+J ( y))/εd y

≤ 1

Z J (x, t, ε)

∫
Rn

∥∥ y − y0
∥∥
2 e− 1

2tε ‖x− y‖22d y

= C1(x, y0, t, ε)

Z J (x, t, ε)
.

(66)

Define the vector field V : R
n → R

n as

V ( y) = ( y − y0)e
−
(

1
2t ‖x− y‖22+J ( y)

)
/ε

, (67)

which is continuous on R
n . It is also bounded on R

n ; to see
this, use the triangle inequality, assumption (A3), and the

fact that the function (0,+∞) 
 r �→ re− 1
2tε r2 attains its

maximum at r∗ = √
tε to get

‖V ( y)‖2 = ∥∥( y − y0)
∥∥
2 e

−
(

1
2t ‖x− y‖22+J ( y)

)
/ε

= ∥∥( y − x + x − y0)
∥∥
2 e

−
(

1
2t ‖x− y‖22+J ( y)

)
/ε

≤ (
∥∥x − y0

∥∥
2 + ‖x − y‖2)e−

(
1
2t ‖x− y‖22+J ( y)

)
/ε

≤ ∥∥x − y0
∥∥
2 + ‖x − y‖2 e

−
(

1
2t ‖x− y‖22+J ( y)

)
/ε

≤ ∥∥x − y0
∥∥
2 + ‖x − y‖2 e− 1

2tε ‖x− y‖22

≤ ∥∥x − y0
∥∥
2 + sup

y∈Rn

(
‖x − y‖2 e− 1

2tε ‖x− y‖22
)

≤ ∥∥x − y0
∥∥
2 + (

√
tε)e−

√
tε
2 . (68)

The divergence ∇ y ·V ( y), which is well-defined and contin-
uous on DJ , is given for every y ∈ DJ by

∇ y · V ( y)

= ∇ y ·
(

( y − y0)e
−
(

1
2t ‖x− y‖22+J ( y)

)
/ε

)

= (∇ y · ( y − y0))e
−
(

1
2t ‖x− y‖22+J ( y)

)
/ε

+
〈
∇ ye

−
(

1
2t ‖x− y‖22+J ( y)

)
/ε

, y − y0

〉

= ne
−
(

1
2t ‖x− y‖22+J ( y)

)
/ε

−
〈
1

ε

(
y − x

t
+ ∇ J ( y)

)
e
−
(

1
2t ‖x− y‖22+J ( y)

)
/ε

, y − y0

〉

=
(

n −
〈
1

ε

(
y − x

t
+ ∇ J ( y)

)
, y − y0

〉)
e
−
(

1
2t ‖x− y‖22+J ( y)

)
/ε

.

(69)

We now outline the four steps that will be used to prove
Proposition 4.2(i). In the first step, we will show that the

divergence of the vector field V on DJ integrates to zero in
the sense that

lim
r→+∞

∣∣∣∣∣
∫
{ y∈Rn | ‖ y‖2≤r}∩ DJ

∇ y · V ( y)d y

∣∣∣∣∣ = 0. (70)

In the second step,wewill show thatEJ
[∣∣〈ϕJ ( y|x, t), y − y0

〉∣∣]
< +∞, with EJ

[〈
ϕJ ( y|x, t), y − y0

〉] = nε, hereby prov-
ing formula (39), using the convexity of the function y �→
1
2t ‖x − y‖22 + J ( y), Fatou’s lemma [30, Lemma 2.18], and
Eq. (70) derived in thefirst step. In the third step,wewill com-
bine the results from the first and second steps to show that
EJ

[∥∥π∂ J ( y)(0)
∥∥
2

]
< +∞ and conclude that the representa-

tion formulas (40) and (41) hold. Finally, in the fourth stepwe
will conclude that the representation formulas (42) and (43)
hold using Eqs. (40) and (41) and Proposition (3.1)(iii).

Step 1. The proof of the limit result (70) that we present here
is based on an application of Theorem 4.14 in [54] to the
vector field V (·). As this result is fairly technical, we first
introduce some terminology and definitions that will be used
exclusively in this part of the proof of (i).
LetC be a non-empty convex subset ofR

n . The dimension of
the set C is defined as the smallest dimension of a non-empty
affine set containing C , with the dimension of a non-empty
affine set being the dimension of the subspace parallel to it
[58, pages 4 and 12]. If C consists of a single point, then its
dimension is taken to be zero.
Let k ∈ {0, . . . , n}. Denote byHn−k the (n−k)-dimensional
outer Hausdorffmeasure inR

n as defined in [28, Sect. 2.10.2,
p.171]. The measureHn−k , in particular, is a constant multi-
ple of the (n − k)-dimensional Lebesgue measure for every
measurable subset B ⊂ R

n (see [27], Section 1.2, p.7, and
Theorem 1.12, p.13).
A subset S ⊂ R

n is called slight if Hn−1(S) = 0, and a
subset T ⊂ R

n is called thin if T is σ -finite forHn−1, i.e., T
can be expressed as a countable union of sets T = ∪+∞

k=1Tk

withHn−1(Tk) < +∞ for each k ∈ N
+ (see, e.g., [54]).

Let k ∈ {0, . . . , n}. A non-empty,measurable subset� ⊂ R
n

is said to be countably Hn−k-rectifiable if it is contained, up
to a null set of (n − k)-dimensional outer Hausdorff measure
Hn−k zero, in a countable union of continuously differen-
tiable hypersurfaces of dimension (n − k) (see, e.g., [1] and
references therein). A non-empty, measurable and countably
Hn−k-rectifiable subset of R

n , in particular, is σ -finite for
Hn−k .
A subset A ⊂ R

n is called admissible if its boundary bd A
is thin and if the distributional gradient of the characteristic
function of A is a vector measure on Borel subsets of R

n

whose variation is finite (see [54] pp.151 and the reference
therein). For the purpose of our proof, we will use the fact
that the family of closed balls of radius r > 0, namely { y ∈
R

n | ‖ y‖2 ≤ r}, are admissible sets (see [32], Example 1.10,
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and note that admissible sets are also called Caccioppoli sets
[32], pages 5-6).
Let A be an admissible set and let v : A → R

n be a vector
field. In the terminology of [54], we say that v is inte-
grable over the admissible set A if v satisfies definition 4.1
of [54], and in that case, the number I (v, A) is called the
integral of v over A. Note, here, that the notion of integra-
bility considered in [54] is different from that of the usual
Lebesgue integrability. Nevertheless, if v is integrable in the
sense of [54], v is also Lebesgue measurable (Corollary 4.9,
[54]), and if the Lebesgue integral

∫
A |v( y)|d y is finite, then

I (v, A) = ∫
A |v( y)|d y ( [54], Proposition 4.7).

Let E be an non-empty subset of R
n , let v : E → R

n be a
vector field, and let Dv denote the set of points at which v is
differentiable in int E (for the definition of differentiability
of vector fields, see [61], page 150, Definition 7.22). In the
terminology of [54], we call a divergence of v any function
g : E �→ R such that g( y) = ∇ ·v( y) for each y ∈ (int E)∩
Dv .
In addition to these definitions, we will need the following
two results due to, respectively, [1] and [54].

Theorem C.1 [1, Theorem 4.1] (for convex functions) Let �

be a bounded, open, convex subset of R
n, and let f : � → R

be a convex and Lipschitz continuous function. Denote the
subdifferential of f at y ∈ � by ∂ f ( y). Then, for each
k ∈ {0, . . . , n}, the set

{ y ∈ � | dim (∂ f ( y)) ≥ k}

is countably Hn−k-rectifiable.

Theorem C.2 [54, Theorem 4.14] Let A be an admissible set,
and let S and T be, respectively, a slight and thin subset of
cl A. Let v be a bounded vector field in cl A that is continuous
in (cl A) \ S and differentiable in (int A) \ T . Then, every
divergence of v is integrable in A. Moreover, there exists a
vector field bd A 
 y → n A( y) with ‖n A( y)‖2 = 1 for every
y ∈ bd A such that if div v denotes any divergence v, then

I (div v, A) =
∫
bd A

〈v( y), nv( y)〉 dHn−1d y. (71)

Step 1 (Continued). Fix r > 0 and let A = { y ∈ R
n |

‖ y‖2 ≤ r} denote the closed ball of radius r centered at
the origin in R

n . Note that A is bounded, convex, closed,
and admissible. Consider now the restriction of the convex
function J to int A. As int A is bounded, open and convex,
the function J is Lipschitz continuous on int A [58, Theorem
10.4]. All conditions in Theorem (C.1) are satisfied (with
� = int A and f = J ), and we can invoke the theorem to
conclude that the set

T = { y ∈ int A | dim (∂ J ( y)) ≥ 1}

is countably Hn−1-rectifiable, and therefore σ -finite for
Hn−1. In particular, the set T is thin. Moreover, recalling the
definition of the set DJ := { y ∈ R

n | ∂ J ( y) = {∇ J ( y)}},
we find that the set (int A) \ T comprises the points y ∈
int A at which the subdifferential ∂ J ( y) is a singleton, i.e.,
T = (int A) ∩ (Rn \ DJ ).

Now, consider the vector field V defined by (67). This
vector field is continuous in R

n by convexity of J and
dom J = R

n . It is also bounded by (68). Now, define the
function g : A → R via

g( y) =
{

∇ · V ( y) if y ∈ A ∩ DJ ,

0, if y ∈ A ∩ (Rn \ DJ ).
(72)

The function g constitutes a divergence of the vector field V
because it coincides with the divergence ∇ · V ( y) at every
y ∈ (int A) ∩ DJ . Moreover, its Lebesgue integral over A
is finite; to see this, first note that for every y ∈ A ∩ DJ the
absolute value of g( y) can be bounded using (69), the triangle
inequality, the Cauchy–Schwarz inequality, and assumption
(A3) as follows

|g( y)| = |∇ · V ( y)|
=
∣∣∣∣
(

n −
〈
1

ε

(
y − x

t
+ ∇ J ( y)

)
, y − y0

〉)

e
−
(

1
2t ‖x− y‖22+J ( y)

)
/ε
∣∣∣∣

≤
(

n +
∣∣∣∣
〈
1

ε

(
y − x

t
+ ∇ J ( y)

)
, y − y0

〉∣∣∣∣
)

e
−
(

1
2t ‖x− y‖22+J ( y)

)
/ε

≤
(

n + 1

ε

∥∥∥∥ y − x
t

+ ∇ J ( y)

∥∥∥∥
2

∥∥ y − y0
∥∥
2

)

e
−
(

1
2t ‖x− y‖22+J ( y)

)
/ε

≤
(

n + 1

ε

(∥∥∥∥ y − x
t

∥∥∥∥
2
+ ‖∇ J ( y)‖2

)∥∥ y − y0
∥∥
2

)

e
−
(

1
2t ‖x− y‖22+J ( y)

)
/ε

≤
(

n + 1

ε

(∥∥∥∥ y − x
t

∥∥∥∥
2
+ ‖∇ J ( y)‖2

)∥∥ y − y0
∥∥
2

)

e− 1
2tε ‖x− y‖22

(73)

Second, as the set A is a closed bounded subset of dom J =
R

n the function J is Lipschitz continuous relative to A,
and therefore there exists a number L A > 0 such that
‖∇ J ( y)‖2 ≤ L A for every y ∈ A ∩ DJ . As a consequence,
we can further bound g( y) for every y ∈ A ∩ DJ in (73) as

|g( y)| ≤
(

n + 1

ε

(∥∥∥∥ y − x
t

∥∥∥∥
2

+ L A

)∥∥ y − y0
∥∥
2

)
e− 1

2tε ‖x− y‖22 . (74)
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In particular, using the definition of g given by (72), we have
that (74) holds for every y ∈ A.We can nowuse (72) and (74)
to get

∫
A

|g( y)|d y

=
∫
{ y∈Rn |‖ y‖2≤r}

|g( y)|d y

=
∫
{ y∈Rn |‖ y‖2≤r}∩DJ

|∇ · V ( y)| d y

≤
∫
{ y∈Rn |‖ y‖2≤r}∩DJ

(
n + 1

ε

(∥∥∥∥ y − x
t

∥∥∥∥
2

+ L A

)∥∥ y − y0
∥∥
2

)

e− 1
2tε ‖x− y‖22d y

≤
∫
{ y∈Rn |‖ y‖2≤r}

(
n + 1

ε

(∥∥∥∥ y − x
t

∥∥∥∥
2

+ L A

)∥∥ y − y0
∥∥
2

)

e− 1
2tε ‖x− y‖22d y.

(75)

Since the function

y �→
(

n + 1

ε

(∥∥∥∥ y − x
t

∥∥∥∥
2
+ L A

)∥∥ y − y0
∥∥
2

)
e− 1

2tε ‖x− y‖22

is continuous, it is bounded on the compact set A = { y ∈
R

n | ‖ y‖2 ≤ r}. Its integral over A is therefore finite, and
using (75) we find that

∫
A |g( y)|d y is finite as well.

The previous considerations show that all conditions in
Theorem (C.2) are satisfied (with A = { y ∈ R

n | ‖ y‖2 ≤ r},
v = V , S = ∅, T = { y ∈ int A | dim (∂ J ( y)) ≥ 1} =
(int A)∩ (Rn \ DJ )). We can therefore invoke [54, Theorem
4.14] to conclude that the divergence of g is integrable (in the
sense described by [54]), with integral I (g, A), and that there
exists a vector field bd A 
 y → nv( y) with ‖nv( y)‖2 = 1
for every y ∈ bd A such that

I (g, A) =
∫
bd A

〈V ( y), nv( y)〉 dHn−1d y. (76)

Since the Lebesgue integral of |g| over A is finite, we also
have [54, Prop 4.7]

I (g, A) =
∫

A
g( y)d y. (77)

Using that A = { y ∈ R
n | ‖ y‖2 ≤ r}, Eqs. (72), (76),

and (77), we obtain

∫
{ y∈Rn |‖y‖2≤r}

g( y)d y

=
∫

{ y∈Rn |‖ y‖2≤r}
∇ · V ( y)d y

=
∫

{ y∈Rn |‖ y‖2=r}
〈V ( y), nv( y)〉 dHn−1. (78)

As r was an arbitrary positive number, we can take the abso-
lute value and then the limit r → +∞ on both sides of (78)
to find

lim
r→+∞

∣∣∣∣∣
∫

{ y∈Rn |‖y‖2≤r}∩DJ

∇ · V ( y)d y

∣∣∣∣∣
= lim

r→+∞

∣∣∣∣∣
∫

{ y∈Rn |‖ y‖2=r}
〈V ( y), nv( y)〉 dHn−1

∣∣∣∣∣ . (79)

We will now show that the limit on the right side of (79)
is equal to zero. To show this, first take the absolute value
inside the integral on the right side of (79) to find

∣∣∣∣∣
∫

{ y∈Rn |‖y‖2=r}
〈V ( y), nv( y)〉 dHn−1

∣∣∣∣∣
≤
∫

{ y∈Rn |‖y‖2=r}
|〈V ( y), nv( y)〉| dHn−1.

(80)

Use the Cauchy–Schwarz inequality, Eq. (67), assumption
(A3) (inf y∈Rn J ( y) = 0) and ‖nv‖2 = 1 to further bound
the right side of (80) as follows

∫
{ y∈Rn |‖ y‖2=r}

|〈V ( y), nv( y)〉| dHn−1

≤
∫

{ y∈Rn |‖y‖2=r}
‖V ( y)‖2 ‖nv( y)‖2 dHn−1

≤
∫

{ y∈Rn |‖y‖2=r}
∥∥ y − y0

∥∥
2 e

−
(

1
2t ‖x− y‖22+J ( y)

)
/ε

dHn−1

≤
∫

{ y∈Rn |‖y‖2=r}
(‖ y‖2 + ∥∥ y0∥∥2)e−

(
1
2t ‖x− y‖22

)
/ε

dHn−1.

(81)

Use the parallelogram law 2(‖x‖22 + ‖u‖22) = ‖x − u‖22 +
‖x + u‖22 with u = x − y to bound the exponential

e− 1
2t ‖x− y‖22/ε by

e− 1
2t ‖x− y‖22/ε

= e− 1
2t (

1
2 (‖y‖22+‖2x− y‖22)−‖x‖22)/ε

≤ e− 1
2t (

1
2 ‖ y‖22−‖x‖22)/ε

(82)

and use it in (81) to get

∫
{ y∈Rn |‖ y‖2=r}

|〈V ( y), nv( y)〉| dHn−1

≤
∫
{ y∈Rn |‖ y‖2=r}

(‖ y‖2 + ∥∥ y0∥∥2)e− 1
2t ( 12 ‖y‖22−‖x‖22)/ε dHn−1.

(83)

Since the domain of integration in (83) is over the surface of
an n-dimensional sphere of radius ‖ y‖2 = r , the integral on
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the right side of (83) is given by

∫
{ y∈Rn |‖y‖2=r}

(‖ y‖2 + ∥∥ y0∥∥2)e− 1
2t (

1
2 ‖ y‖22−‖x‖22)/ε dHn−1

=
∫

{ y∈Rn |‖ y‖2=r}
(r + ∥∥ y0∥∥2)e− 1

2t (
1
2 r2−‖x‖22)/ε dHn−1

= (r + ∥∥ y0∥∥2)e− 1
2t (

1
2 r2−‖x‖22)/ε

∫
{ y∈Rn |‖y‖2=r}

dHn−1

= (r + ∥∥ y0∥∥2)e− 1
2t

(
1
2 r2−‖x‖22

)
/ε nπn/2



( n
2 + 1

) , (84)

where nπn/2/

( n
2 + 1

)
is the area of an n-dimensional

sphere of radius one, with 

( n
2 + 1

)
denoting the Gamma

function evaluated at n
2 + 1. Since

lim
r→+∞(r + ∥∥ y0∥∥2)e− 1

2t

(
1
2 r2−‖x‖22

)
/ε = 0,

the limit r → +∞ in (84) is equal to zero, i.e.,

lim
r→+∞

∫
{ y∈Rn |‖ y‖2=r}

(‖ y‖2 + ∥∥ y0∥∥2)e− 1
2t ( 12 ‖y‖22−‖x‖22)/ε dHn−1 = 0.

(85)

Combining (79), (80), (83) and (85) yield

lim
r→+∞

∣∣∣∣∣
∫
{ y∈Rn | ‖ y‖2≤r}∩ DJ

∇ y · V ( y)d y

∣∣∣∣∣ = 0.

which proves the limit result (70).
Step 2. Recall that the divergence of the vector field y �→
V ( y) on DJ is given by (69). Combine (70) and (69) to
conclude that

lim
r→+∞

∣∣∣∣∣
∫
{ y∈Rn | ‖ y‖2≤r}∩ DJ

(
nε −

〈(
y − x

t
+ ∇ J ( y)

)
, y − y0

〉)

e
−
(

1
2t ‖x− y‖22+J ( y)

)
/ε

d y

∣∣∣∣∣ = 0. (86)

Note that the minimal subgradient π∂ J ( y)(0) = ∇ J ( y) for
every y ∈ DJ . We can therefore substitute the minimal sub-
gradient π∂ J ( y)(0) for the gradient ∇ J ( y) inside the integral
in the limit (86) without changing its value. Moreover, since
the set DJ is dense in R

n and the n-dimensional Lebesgue
measure of (Rn \ DJ ) is zero, we can further substitute the
domain of integration

{
y ∈ R

n | ‖ y‖2 ≤ r
} ∩ DJ of the

integral in the limit (86) with
{
y ∈ R

n | ‖ y‖2 ≤ r
}
without

changing its value. With these two changes, the limit (86)
can be written as

lim
r→+∞

∣∣∣∣∣
∫
{ y∈Rn | ‖ y‖2≤r}

(
nε −

〈(
y − x

t
+ π∂ J ( y)(0)

)
, y − y0

〉)

e
−
(

1
2t ‖x− y‖22+J ( y)

)
/ε

d y

∣∣∣∣∣ = 0.

Using the notation ϕJ ( y|x, t) =
(

y−x
t

)
+π∂ J ( y)(0), we can

write this limit more succinctly as

lim
r→+∞

∣∣∣∣∣
∫
{ y∈Rn | ‖ y‖2≤r}

(
nε − 〈

ϕJ ( y|x, t), y − y0
〉)

e
−
(

1
2t ‖x− y‖22+J ( y)

)
/ε

d y

∣∣∣∣ = 0. (87)

Now, consider the function R
n 
 y �→ 〈ϕJ ( y|x, t)

−ϕJ ( y0|x, t), y − y0
〉
. Note here that as J is convex with

dom J = R
n , both ϕJ ( y|x, t) and ϕJ ( y0|x, t) are sub-

gradients of the convex function u �→ 1
2t ‖x − u‖22 +

J (u) at u = y and u = y0, respectively [58, Theo-
rem 23.4]. We can therefore apply inequality (13) (with
p = ϕJ ( y|x, t), p0 = ϕJ ( y0|x, t), and m = 0) to find〈
ϕJ ( y|x, t) − ϕJ ( y0|x, t), y − y0

〉 ≥ 0. Define F : R
n →

R and G : R
n → R as follows:

F( y) = 〈
ϕJ ( y|x, t), y − y0

〉
e
−
(

1
2t ‖x− y‖22+J ( y)

)
/ε

and

G( y) = 〈
ϕJ ( y0|x, t), y − y0

〉
e
−
(

1
2t ‖x− y‖22+J ( y)

)
/ε

.

Note that F( y)−G( y) = 〈
ϕJ ( y|x, t) − ϕJ ( y0|x, t), y − y0

〉
e
−
(

1
2t ‖x− y‖22+J ( y)

)
/ε ≥ 0 for every y ∈ R

n . Integrate
y �→ F( y) − G( y) over R

n and use Fatou’s lemma to find

0 ≤
∫
Rn

F( y) − G( y)d y

≤ lim
r→+∞

∫
{ y∈Rn | ‖ y‖2≤r}

F( y) − G( y)d y

= lim
r→+∞

(∫
{ y∈Rn | ‖ y‖2≤r}

F( y)d y

+
∫
{ y∈Rn | ‖y‖2≤r}

(−G( y))d y

)
(88)

Use theCauchy–Schwarz inequality assumption (A3) (inf y∈Rn

J ( y) = 0) to bound the second integral on the right hand side
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of (88) as follows

∫
{ y∈Rn | ‖ y‖2≤r}

(−G( y))d y

=
∫
{ y∈Rn | ‖ y‖2≤r}

− 〈
ϕJ ( y0|x, t), y − y0

〉

e
−
(

1
2t ‖x− y‖22+J ( y)

)
/ε

d y

≤
∫
{ y∈Rn | ‖y‖2≤r}

∥∥ϕJ ( y0|x, t)
∥∥
2

∥∥ y − y0
∥∥
2

e
−
(

1
2t ‖x− y‖22+J ( y)

)
/ε

d y

≤ ∥∥ϕJ ( y0|x, t)
∥∥
2

∫
Rn

∥∥ y − y0
∥∥
2

e
−
(

1
2t ‖x− y‖22

)
/ε

d y

= ∥∥ϕJ ( y0|x, t)
∥∥
2 C1(x, y0, t, ε),

(89)

where C1(x, y0, t, ε) was defined in (65). Combine (88)
and (89) to find

0 ≤
∫
Rn

F( y) − G( y)d y

≤ lim
r→+∞

(∫
{ y∈Rn | ‖ y‖2≤r}

F( y)d y + ∥∥ϕJ ( y0|x, t)
∥∥
2

C1(x, y0, t, ε)

)

=
(

lim
r→+∞

∫
{ y∈Rn | ‖ y‖2≤r}

F( y)d y

)
+ ∥∥ϕJ ( y0|x, t)

∥∥
2

C1(x, y0, t, ε).

(90)

The integral on the right hand side of (90) can be bounded
using assumption (A3) as follows

∫
{ y∈Rn | ‖ y‖2≤r}

F( y)d y

=
∫
{ y∈Rn | ‖y‖2≤r}

〈
ϕJ ( y|x, t), y − y0

〉

e
−
(

1
2t ‖x− y‖22+J ( y)

)
/ε

d y

=
∫
{ y∈Rn | ‖y‖2≤r}

(
〈
ϕJ ( y|x, t), y − y0

〉 + (nε − nε))

e
−
(

1
2t ‖x− y‖22+J ( y)

)
/ε

d y

=
∫
{ y∈Rn | ‖y‖2≤r}

(
〈
ϕJ ( y|x, t), y − y0

〉 − nε)

e
−
(

1
2t ‖x− y‖22+J ( y)

)
/ε

d y (91)

+nε

∫
{ y∈Rn | ‖ y‖2≤r}

e
−
(

1
2t ‖x− y‖22+J ( y)

)
/ε

d y

≤
∫
{ y∈Rn | ‖ y‖2≤r}

(
〈
ϕJ ( y|x, t), y − y0

〉 − nε)

e
−
(

1
2t ‖x− y‖22+J ( y)

)
/ε

d y

+nε

∫
Rn

e
−
(

1
2t ‖x− y‖22

)
/ε

d y

=
∫
{ y∈Rn | ‖ y‖2≤r}

(
〈
ϕJ ( y|x, t), y − y0

〉 − nε)

e
−
(

1
2t ‖x− y‖22+J ( y)

)
/ε

d y + nε(2π tε)n/2.

Combine (90) and (91) to get

0 ≤
∫
Rn

F( y) − G( y)d y

≤
(

lim
r→+∞

∫
{ y∈Rn | ‖ y‖2≤r}

(
〈
ϕJ ( y|x, t), y − y0

〉 − nε)

e
−
(

1
2t ‖x− y‖22+J ( y)

)
/ε

d y
)

+ ∥∥ϕJ ( y0|x, t)
∥∥
2 C1(x, y0, t, ε) + nε(2π tε)n/2.

(92)

Combine (87) and (92) to get

0 ≤
∫
Rn

F( y) − G( y)d y

=
∫
Rn

〈
ϕJ ( y|x, t) − ϕJ ( y0|x, t), y − y0

〉

e
−
(

1
2t ‖x− y‖22+J ( y)

)
/ε

d y

≤ ∥∥ϕJ ( y0|x, t)
∥∥
2 C1(x, y0, t, ε) + nε(2π tε)n/2.

(93)

Divide (93) by thepartition function Z J (x, t, ε) (seeEq. (26))
to get

0 ≤ EJ
[〈
ϕJ ( y|x, t) − ϕJ ( y0|x, t), y − y0

〉]

≤
∥∥ϕJ ( y0|x, t)

∥∥
2 C1(x, y0, t, ε) + nε(2π tε)n/2

Z J (x, t, ε)
< +∞.

(94)

Now, using the Cauchy–Schwarz inequality and (66), we can
bound EJ

[∣∣〈ϕJ ( y0|x, t), y − y0
〉∣∣] as follows

EJ
[∣∣〈ϕJ ( y0|x, t), y − y0

〉∣∣]
= 1

Z J (x, t, ε)

∫
Rn

∣∣〈ϕJ ( y0|x, t), y − y0
〉∣∣

e
−
(

1
2t ‖x− y‖22+J ( y)

)
/ε

d y

≤ ∥∥ϕJ ( y0|x, t)
∥∥
2

1

Z J (x, t, ε)

∫
Rn

∥∥ y − y0
∥∥
2
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e
−
(

1
2t ‖x− y‖22

)
/ε

d y

=
∥∥ϕJ ( y0|x, t)

∥∥
2 C1(x, y0, t, ε)

Z J (x, t, ε)
. (95)

Use the triangle inequality and the upper bounds in (94)
and (95) to obtain

EJ
[∣∣〈ϕJ ( y|x, t), y − y0

〉∣∣]
= EJ

[∣∣〈ϕJ ( y|x, t) − (ϕJ ( y0|x, t) − ϕJ ( y0|x, t)), y − y0
〉∣∣]

≤ EJ
[∣∣〈ϕJ ( y0|x, t), y − y0

〉∣∣
+ ∣∣〈ϕJ ( y|x, t) − ϕJ ( y0|x, t), y − y0

〉∣∣]
= EJ

[∣∣〈ϕJ ( y0|x, t), y − y0
〉∣∣]

+EJ
[∣∣〈ϕJ ( y|x, t) − ϕJ ( y0|x, t), y − y0

〉∣∣]

≤
∥∥ϕJ ( y0|x, t)

∥∥
2 C1(x, y0, t, ε)

Z J (x, t, ε)

+
∥∥ϕJ ( y0|x, t)

∥∥
2 C1(x, y0, t, ε) + nε(2π tε)n/2

Z J (x, t, ε)

< +∞. (96)

Since EJ
[∣∣〈ϕJ ( y|x, t), y − y0

〉∣∣] < +∞, we can use (87) to conclude
that

EJ
[〈
ϕJ ( y|x, t), y − y0

〉]

= 1

Z J (x, t, ε)

∫
Rn

〈
ϕJ ( y|x, t), y − y0

〉

e
−
(

1
2t ‖x− y‖22+J ( y)

)
/ε

d y

= 1

Z J (x, t, ε)

lim
r→+∞

∫
{ y∈Rn | ‖ y‖2≤r}

〈
ϕJ ( y|x, t), y − y0

〉

e
−
(

1
2t ‖x− y‖22+J ( y)

)
/ε

d y

= 1

Z J (x, t, ε)

lim
r→+∞

∫
{ y∈Rn | ‖ y‖2≤r}

(nε − nε + 〈
ϕJ ( y|x, t), y − y0

〉
)

e
−
(

1
2t ‖x− y‖22+J ( y)

)
/ε

d y

= nε

− lim
r→+∞

(∫
{ y∈Rn | ‖y‖2≤r}

(nε − 〈
ϕJ ( y|x, t), y − y0

〉
)

e
−
(

1
2t ‖x− y‖22+J ( y)

)
/ε

d y
)

= nε.

(97)

Inequality (96) and equality (97) show the desired results
EJ

[∣∣〈ϕJ ( y|x, t), y − y0
〉∣∣] < +∞ and EJ

[〈
ϕJ ( y|x, t), y − y0

〉] =
nε, which, after recalling the definition ϕJ ( y|x, t) =

(
y−x

t

)
+

π∂ J ( y)(0), also proves formula (39).
Step 3. Thanks to Step 2, we have EJ

[∣∣〈ϕJ ( y|x, t), y − y0
〉∣∣] < +∞

and EJ
[〈
ϕJ ( y|x, t), y − y0

〉] = nε for every y0 ∈ R
n . In particu-

lar, the choice of y0 = 0 yields EJ [|〈ϕJ ( y|x, t), y〉|] < +∞ and

EJ [〈ϕJ ( y|x, t), y〉] = nε. As a consequence, we have that

EJ
[∣∣〈ϕJ ( y|x, t), y0

〉∣∣]
= EJ

[∣∣〈ϕJ ( y|x, t), y0 + ( y − y)
〉∣∣]

≤ EJ
[∣∣〈ϕJ ( y|x, t), y − y0

〉∣∣ + |〈ϕJ ( y|x, t), y〉|]
= EJ

[∣∣〈ϕJ ( y|x, t), y − y0
〉∣∣] + EJ [|〈ϕJ ( y|x, t), y〉|]

< ∞,

(98)

and

EJ
[〈
ϕJ ( y|x, t), y0

〉]
= EJ

[〈
ϕJ ( y|x, t), ( y − y) + y0

〉]
= EJ [〈ϕJ ( y|x, t), y〉] − EJ

[〈
ϕJ ( y|x, t), y − y0

〉]
= nε − nε

= 0,

(99)

for every y0 ∈ R
n . Now, let {ei }n

i=1 denote the standard basis in R
n and

let {ϕJ ( y|x, t)i }n
i=1 denote the components of the vectorϕJ ( y|x, t), i.e.,

ϕJ ( y|x, t) = (ϕJ ( y|x, t)1, . . . , ϕJ

( y|x, t)n). Using (98) with the choice of y0 = ei for i ∈ {1, . . . , n},
we get EJ [|ϕJ ( y|x, t)i |] < +∞ for every i ∈ {1, . . . , n}. Using the
norm inequality ‖ϕJ ( y|x, t)‖2 ≤ ∑n

i=1 |ϕJ ( y|x, t)i |, we can bound
EJ

[‖ϕJ ( y|x, t)‖2
]
as follows

EJ
[‖ϕJ ( y|x, t)‖2

] ≤ EJ

[
n∑

i=1

|ϕJ ( y|x, t)i |
]

=
n∑

i=1

EJ [|ϕJ ( y|x, t)i |]

< +∞.

(100)

We can therefore combine (99) and (100) to getEJ
[〈
ϕJ ( y|x, t), y0

〉] =〈
EJ [ϕJ ( y|x, t)] , y0

〉 = 0 for every y0 ∈ R
n , which yields the follow-

ing equality:

EJ [ϕJ ( y|x, t)] = 0. (101)

Moreover, recalling the definitionϕJ ( y|x, t) =
(

y−x
t

)
+π∂ J ( y)(0) and

using (66) (with y0 = x) and (100), we can bound EJ
[∥∥π∂ J ( y)(0)

∥∥
2

]
as follows

EJ
[∥∥π∂ J ( y)(0)

∥∥
2

]

= EJ

[∥∥∥∥π∂ J ( y)(0) +
(
y − x

t

)
−
(
y − x

t

)∥∥∥∥
2

]

≤ EJ

[∥∥∥∥π∂ J ( y)(0) +
(
y − x

t

)∥∥∥∥
2
+
∥∥∥∥
(
y − x

t

)∥∥∥∥
2

]

= EJ
[‖ϕJ ( y|x, t)‖2

] + 1

t
EJ

[‖ y − x‖2
]

≤ EJ
[‖ϕJ ( y|x, t)‖2

] + C1(x, x, t, ε)

t Z J (x, t, ε)

< +∞.

(102)
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Wecan now combine (66), (101) and (102) to expand the expected value
of EJ [ϕJ ( y|x, t)] as follows

EJ [ϕJ ( y|x, t)]

= EJ

[(
y − x

t

)
+ π∂ J ( y)(0)

]

= EJ

[(
y − x

t

)]
+ EJ

[
π∂ J ( y)(0)

]

=
(
uP M (x, t, ε) − x

t

)
+ EJ

[
π∂ J ( y)(0)

]

= 0.

(103)

Solving for uP M (x, t, ε) in (103) yields uP M (x, t, ε) = x −
tEJ

[
π∂ J ( y)(0)

]
, which gives the representation formula (40).

We now derive the second representation formula (41). Let y0 =
uP M (x, t, ε) in Eq. (97) and use the representation formula (40) to find

EJ
[〈
π∂ J ( y)(0), y − uP M (x, t, ε)

〉]

= EJ

[〈
π∂ J ( y)(0) +

(
y − x

t

)
−
(
y − x

t

)
,

y − uP M (x, t, ε)〉]
= EJ

[〈
π∂ J ( y)(0) +

(
y − x

t

)
, y − uP M (x, t, ε)

〉

−
〈(

y − x
t

)
, y − uP M (x, t, ε)

〉]

= EJ

[〈
π∂ J ( y)(0) +

(
y − x

t

)
, y − uP M (x, t, ε)

〉]

− EJ

[〈(
y − x

t

)
, y − uP M (x, t, ε)

〉]

= EJ [〈ϕJ ( y|x, t), y − uP M (x, t, ε)〉]
− EJ

[〈(
y − x

t

)
, y − uP M (x, t, ε)

〉]

= nε − EJ

[〈(
y − x

t

)
, y − uP M (x, t, ε)

〉]
.

(104)

We will use (104) to derive a representation formula for
EJ

[‖ y − uP M (x, t, ε)‖22
]
. Multiply (104) by t and rearrange to get

EJ [〈 y − x, y − uP M (x, t, ε)〉]
= ntε − tEJ

[〈
π∂ J ( y)(0), y − uP M (x, t, ε)

〉]
. (105)

The left hand side of (105) can be expressed as

EJ [〈 y − x, y − uP M (x, t, ε)〉]
= EJ [〈 y − x + (uP M (x, t, ε) − uP M (x, t, ε)),

y − uP M (x, t, ε)〉]
= EJ [〈 y − uP M (x, t, ε), y − uP M (x, t, ε)〉

+ 〈uP M (x, t, ε), y − uP M (x, t, ε)〉]
= EJ

[
‖ y − uP M (x, t, ε)‖22

]
+EJ [〈uP M (x, t, ε), y − uP M (x, t, ε)〉]

= EJ

[
‖ y − uP M (x, t, ε)‖22

]
+ 〈uP M (x, t, ε), EJ [ y] − uP M (x, t, ε)〉

= EJ

[
‖ y − uP M (x, t, ε)‖22

]

+ 〈uP M (x, t, ε), uP M (x, t, ε) − uP M (x, t, ε)〉
= EJ

[
‖ y − uP M (x, t, ε)‖22

]
. (106)

Combine Eqs. (105) and (106) to get

EJ

[
‖ y − uP M (x, t, ε)‖22

]

= ntε − tEJ
[〈
π∂ J ( y)(0), y − uP M (x, t, ε)

〉]
,

which gives the representation formula (41).
Step 4. Thanks to Step 3, the representation formulas (40) and (41)
hold. Recall that by Proposition 3.1(iii), the gradient ∇x Sε(x, t) and
Laplacian 	x Sε(x, t) of the solution Sε to the viscous HJ PDE (29)
satisfy the representation formulas

uP M (x, t, ε) = x − t∇x Sε(x, t) (107)

and

EJ

[
‖ y − uP M (x, t, ε)‖22

]
= ntε − t2ε	x Sε(x, t). (108)

Use (40) and (107) to get

∇x Sε(x, t) = EJ
[
π∂ J ( y)(0)

]
,

which is the representation formula (42). Use (41) and (108) to get

t2ε	x Sε(x, t) = tEJ
[〈
π∂ J ( y)(0), y − uP M (x, t, ε)

〉]

which is, after dividing by tε on both sides, the representation formu-
las (43). This concludes Step 4.

Proof of (ii): Here, we only assume that J satisfies assumptions
(A1)–(A3); we do not assume that dom J = R

n . Let {μk}+∞
k=1 be a

sequence of positive real numbers converging to zero. Define fk : R
n ×

(0,+∞) × (0,+∞) → R by

fε(x, t, k)

= −ε log

(
1

(2π tε)n/2

∫
Rn

e
−
(

1
2t ‖x− y‖22+S0( y,μk )

)
/ε

d y
)

(109)

and let S0(x, μk) denote the solution to the first-order HJ PDE (20) with
initial data J evaluated at (x, μk), that is,

S0(x, μk) = inf
y∈Rn

{
1

2μk
‖x − y‖22 + J ( y)

}
. (110)

By Proposition 2.2(i), the function R
n 
 x �→ S0(x, μk) is continu-

ously differentiable and convex for each k ∈ N, and the sequence of
real numbers {S0(x, μk)}+∞

k=1 converges to J (x) for every x ∈ dom J .
Moreover, by assumption (A3) (inf y∈Rn J ( y) = 0) the sequence
{S0(x, μk)}+∞

k=1 is uniformly bounded from below by 0, that is,

S0(x, μk) = inf
y∈Rn

{
1

2μk
‖x − y‖22 + J ( y)

}

≥ inf
y∈Rn

{
1

2μk
‖x − y‖22

}
+ inf

y∈Rn
J ( y)

= 0.
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As a consequence, we can invoke Proposition 3.1(i) to conclude that
for each k ∈ N, the function (x, t) �→ fε(x, t, k) corresponds to the
solution to the viscous HJ PDE (29) with initial data fk(x, 0, ε) =
S0(x, μk). Moreover, R

n 
 x �→ fε(x, t, k) is continuously differ-
entiable and convex by Proposition 3.1(i) and (ii)(a). Finally, as the
domain of the function x �→ S0(x, μk) is R

n , we can use the represen-
tation formula (42) in Proposition 4.2(i) (which was proven previously
in this Appendix) to express the gradient ∇x fk(x, t, ε) as follows

∇x fε(x, t, k) =
∫
Rn ∇ yS0( y, μk)e

−
(

1
2t ‖x− y‖22+S0( y,μk )

)
/ε

d y
∫
Rn e

−
(

1
2t ‖x− y‖22+S0( y,μk )

)
/ε

d y
. (111)

Now, since S0(x, μk) ≥ 0 for every k ∈ N, we can bound the
integrand in (109) as follows

1

(2π tε)n/2 e
−
(

1
2t ‖x− y‖22+S0( y,μk )

)
/ε ≤ 1

(2π tε)n/2 e− 1
2tε ‖x− y‖22 , (112)

where
∫
Rn

1
(2π tε)n/2 e− 1

2tε ‖x− y‖22d y = 1. We can therefore invoke
the Lebesgue dominated convergence theorem [30, Theorem 2.24]
and use (109) and the limit limk→+∞ e−S0(x,μk )/ε = e−J (x)/ε (with
limk→+∞ e−S0(x,μk )/ε = 0 for every x /∈ dom J ) to find

lim
k→+∞ fε(x, t, k)

= lim
k→+∞ −ε log

(
1

(2π tε)n/2

∫
Rn

e
−
(

1
2t ‖x− y‖22+S0( y,μk )

)
/ε

d y
)

= −ε log

(
1

(2π tε)n/2

∫
dom J

e
−
(

1
2t ‖x− y‖22+J ( y)

)
/ε

d y
)

= Sε(x, t), (113)

which gives the limit (44). By continuous differentiability and con-
vexity of R

n 
 x �→ fε(x, t, k) and R
n 
 x �→ Sε(x, t) and

the limit (113), we can invoke [58, Theorem 25.7] to conclude that
the gradient ∇x fk(x, t, μk) converges to the gradient ∇x Sε(x, t) as
k → +∞. Hence, we can take the limit k → +∞ in (111) to find

lim
k→+∞ ∇x fε(x, t, k)

= lim
k→+∞

⎛
⎝
∫
Rn ∇ yS0( y, μk)e

−
(

1
2t ‖x− y‖22+S0( y,μk )

)
/ε

d y
∫
Rn e

−
(

1
2t ‖x− y‖22+S0( y,μk )

)
/ε

d y

⎞
⎠

= ∇x Sε(x, t),

(114)

which gives the limit (45). Finally, using the definition of the posterior
mean estimate (3), (114), and the representation formula (30) derived in
Proposition 3.1(iii), namely uP M (x, t, ε) = x − t∇x Sε(x, t), we find
the two limits

uP M (x, t, ε)

= lim
k→+∞

⎛
⎝
∫
Rn ye

−
(

1
2t ‖x− y‖22+S0( y,μk )

)
/ε

d y
∫
Rn e

−
(

1
2t ‖x− y‖22+S0( y,μk )

)
/ε

d y

⎞
⎠

= x − t lim
k→+∞

⎛
⎝
∫
Rn ∇ yS0( y, μk)e

−
(

1
2t ‖x− y‖22+S0( y,μk )

)
/ε

d y
∫
Rn e

−
(

1
2t ‖x− y‖22+S0( y,μk )

)
/ε

d y

⎞
⎠ ,

which establishes (46). This concludes the proof of (ii).

D Proof of Proposition 4.3

Let us first introduce some notation. Let x ∈ R
n , t > 0, ε > 0, and

y0 ∈ dom ∂ J . Define the functions

dom ∂ J 
 y �→ ϕJ ( y|x, t) =
(
y − x

t

)
+ π∂ J ( y)(0),

dom ∂ J 
 y �→ �J ( y|x, t) = 1

2t
‖x − y‖22 + J ( y),

and

ϕS0(·,μk )( y|x, t) =
(
y − x

t

)
+ ∇ yS0( y, μk).

Note that for every y ∈ R
n , ϕJ ( y|x, t) is a subgradient of the function

u �→ 1
2t ‖x − u‖22 + J (u) evaluated at u = y and ϕS0(·,μk )( y|x, t) is a

subgradient of the function u �→ 1
2t ‖x − u‖22 + S(u, μk) evaluated at

u = y. Let {μk}+∞
k=1 be a sequence of positive real numbers converging

to zero and let S0 : R
n × (0,+∞) → R denote the solution to the first-

order HJ PDE (20) with initial data J (see Proposition 2.2). Note that
the sequence {S0( y, μk)}+∞

k=1 is uniformly bounded from below since

S0( y, μk) = inf
u∈Rn

{
1

2t
‖ y − u‖22 + J (u)

}

≥ J ( y)

≥ 0.

(115)

Now, define the function F : dom ∂ J ×dom ∂ J ×R
n ×(0,+∞) →

R as

F( y, y0, x, t)

= 〈
ϕJ ( y|x, t) − ϕJ ( y0|x, t), y − y0

〉

e
−
(

1
2t ‖x− y‖22+J ( y)

)
/ε

∫
Rn e

−
(

1
2t ‖x− y‖22+J ( y)

)
/ε

d y
(116)

and the sequence of functions {Fμk }+∞
k=1 with Fμk : R

n × R
n × R

n ×
(0,+∞) → R as

Fμk ( y, y0, x, t)

= 〈
ϕS0(·,μk )( y|x, t) − ϕS0(·,μk )( y0|x, t), y − y0

〉

e
−
(

1
2t ‖x− y‖22+S0( y,μk )

)
/ε

∫
Rn e

−
(

1
2t ‖x− y‖22+S0( y,μk )

)
/ε

d y
. (117)

Since limk→+∞ S0( y, μk) = J ( y) and limk→+∞ ∇ yS0( y, μk) =
π∂ J ( y)(0) for every y ∈ dom ∂ J by Proposition 2.2(i) and (iv), and

lim
k→+∞

∫
Rn

e
−
(

1
2t ‖x− y‖22+S0( y,μk )

)
/ε

d y

=
∫
Rn

e
−
(

1
2t ‖x− y‖22+J ( y)

)
/ε

d y (118)

by (44) in Proposition 4.2(ii) and continuity of the logarithm, the
limit limk→+∞ Fμ( y, y0, x, t) = F( y, y0, x, t) holds for every y ∈
dom ∂ J , y0 ∈ dom ∂ J , x ∈ R

n and t > 0. Note that as J is strongly
convex with parameter m ≥ 0, the functions y �→ 1

2t ‖x − y‖22 + J ( y)
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and y �→ 1
2t ‖x − y‖22 + S0( y, μk) are strongly convex with parameter( 1+mt

t

)
> 0. As a consequence, for every pair ( y, y0) ∈ dom ∂ J ×

dom ∂ J , the followingmonotonicity inequalities hold (see Definition 5,
Eq. (13)):

0 ≤
(
1 + mt

t

)∥∥ y − y0
∥∥2
2

≤ 〈
ϕJ ( y|x, t) − ϕJ ( y0|x, t), y − y0

〉
(119)

and

0 ≤
(
1 + mt

t

)∥∥ y − y0
∥∥2
2

≤ 〈
ϕS0(·,μk )( y|x, t) − ϕS0(·,μk )( y0|x, t), y − y0

〉
. (120)

Multiply the first set of inequalities by

e
−
(

1
2t ‖x− y‖22+J ( y)

)
/ε

/
∫
Rn e

−
(

1
2t ‖x− y‖22+J ( y)

)
/ε

d y and the second set of

inequalities by e
−
(

1
2t ‖x− y‖22+S0( y,μk )

)
/ε

/
∫
Rn e

−
(

1
2t ‖x− y‖22+S0( y,μk )

)
/ε

d y
and use the definition of F and Fμk to get the inequalities

0 ≤
(
1 + mt

t

)∥∥ y − y0
∥∥2
2

e
−
(

1
2t ‖x− y‖22+J ( y)

)
/ε

∫
Rn e

−
(

1
2t ‖x− y‖22+J ( y)

)
/ε

d y

≤ F( y, y0, x, t) (121)

0 ≤
(
1 + mt

t

)∥∥ y − y0
∥∥2
2

e
−
(

1
2t ‖x− y‖22+S0( y,μk )

)
/ε

∫
Rn e

−
(

1
2t ‖x− y‖22+S0( y,μk )

)
/ε

d y

≤ Fμk ( y, y0, x, t).

These inequalities show, in particular, that F and Fμk are both non-
negative functions for every ( y, y0) ∈ dom ∂ J ×dom ∂ J , x ∈ R

n , and
t > 0. As a consequence, Fatou’s lemma [30, Lemma 2.18] applies to
the sequence of functions {Fμk }+∞

k=1, and hence

∫
dom ∂ J

F( y, y0, x, t)d y

≤ lim inf
k→+∞

∫
dom ∂ J

Fμk ( y, y0, x, t)d y

≤ lim inf
k→+∞

∫
Rn

Fμk ( y, y0, x, t)d y

= lim inf
k→+∞

⎛
⎝
∫
Rn

〈
ϕS0(·,μk )( y|x, t) − ϕS0(·,μk )( y0|x, t), y − y0

〉
e
−
(

1
2t ‖x− y‖22+S0( y,μk )

)
/ε

d y
∫
Rn e

−
(

1
2t ‖x− y‖22+S0( y,μk )

)
/ε

d y

⎞
⎠

= lim inf
k→+∞

⎛
⎝
∫
Rn

〈
ϕS0(·,μk )( y|x, t), y − y0

〉
e
−
(

1
2t ‖x− y‖22+S0( y,μk )

)
/ε

d y
∫
Rn e

−
(

1
2t ‖x− y‖22+S0( y,μk )

)
/ε

d y

−
∫
Rn

〈
ϕS0(·,μk )( y0|x, t), y − y0

〉
e
−
(

1
2t ‖x− y‖22+S0( y,μk )

)
/ε

d y
∫
Rn e

−
(

1
2t ‖x− y‖22+S0( y,μk )

)
/ε

d y

⎞
⎠ .

(122)

We nowwish to compute the limit in (122). On the one hand, we can
apply formula (39) in Proposition 4.2(i) (with initial data S0(·, μk) and

using ϕS0(·,μk )( y|x, t) =
(

y−x
t

)
+∇ yS0( y, μk)) to the first integral on

the right side on the last line of (122) to get

∫
Rn

〈
ϕS0(·,μk )( y|x, t), y − y0

〉
e
−
(

1
2t ‖x− y‖22+S0( y,μk )

)
/ε

d y
∫
Rn e

−
(

1
2t ‖x− y‖22+S0( y,μk )

)
/ε

d y

= nε. (123)

On the other hand, applying the limit result (46) in Proposition 4.2(ii)
for the posterior mean estimate uP M (x, t, ε) and the limit limk→+∞
ϕS0(·,μk )( y0|x, t) = ϕJ ( y0|x, t) =

(
y0−x

t

)
+π∂ J ( y0)(0) to the second

integral on the right side on the last line of (122), we get

lim inf
k→+∞

⎛
⎝
∫
Rn

〈
ϕS0(·,μk )( y0|x, t), y − y0

〉
e
−
(

1
2t ‖x− y‖22+S0( y,μk )

)
/ε

d y
∫
Rn e

−
(

1
2t ‖x− y‖22+S0( y,μk )

)
/ε

d y

⎞
⎠

= 〈
ϕJ ( y0|x, t), uP M (x, t, ε) − y0

〉
. (124)

Combine (27), (116), (121), (122), (123), and (124) to get

(
1 + mt

t

)
EJ

[∥∥ y − y0
∥∥2
2

]

≤ EJ
[〈
ϕJ ( y|x, t) − ϕJ ( y0|x, t), y − y0

〉]
≤ nε − 〈

ϕJ ( y0|x, t), uP M (x, t, ε) − y0
〉
.

This establishes the set of inequalities (47).
Next, we show that EJ

[∥∥π∂ J ( y)(0)
∥∥
2

]
< +∞ indirectly using the

set of inequalities (47). By Proposition 4.1, uP M (x, t, ε) ∈ int (dom J ).
Hence, there exists a numberδ > 0 such that the open ball { y ∈ R

n |
‖ y − uP M (x, t, ε)‖2 < δ} is contained in int (dom J ). Let y0 ∈
{ y ∈ R

n | ‖ y − uP M (x, t, ε)‖2 < δ} with y0 �= uP M (x, t, ε). Recall
int (dom J ) ⊂ dom ∂ J , so that both uP M (x, t, ε) and y0 are in the set
dom ∂ J . We claim thatEJ

[∣∣〈ϕJ ( y|x, t), uP M (x, t, ε) − y0
〉∣∣] < +∞.

Indeed, using the triangle inequality, the set of inequalities (47) proven
previously, the Cauchy-Schwarz inequality, and thatEJ

[∥∥ y − y0
∥∥
2

] ≤(∫
Rn

∥∥ y − y0
∥∥
2 e− 1

2tε ‖x− y‖22d y
)

/Z J (x, t, ε) < +∞ by assumption

(A3),

0 ≤ EJ
[∣∣〈ϕJ ( y|x, t), uP M (x, t, ε) − y0

〉∣∣]
= EJ

[∣∣〈ϕJ ( y|x, t), uP M (x, t, ε) − y0 + ( y − y)
〉∣∣]
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= EJ
[∣∣〈ϕJ ( y|x, t), y − y0

〉
− 〈ϕJ ( y|x, t), y − uP M (x, t, ε)〉|]

≤ EJ
[∣∣〈ϕJ ( y|x, t), y − y0

〉∣∣
+ |〈ϕJ ( y|x, t), y − uP M (x, t, ε)〉|]

= EJ
[∣∣〈ϕJ ( y|x, t), y − y0

〉∣∣]
+EJ [|〈ϕJ ( y|x, t), y − uP M (x, t, ε)〉|]

≤ EJ
[∣∣〈ϕJ ( y|x, t), y − y0

〉∣∣] + nε

= EJ [|〈ϕJ ( y|x, t)

+(ϕJ ( y0|x, t) − ϕJ ( y0|x, t)), y − y0
〉∣∣] + nε

= EJ
[∣∣〈ϕJ ( y|x, t) − ϕJ ( y0|x, t), y − y0

〉
+ 〈

ϕJ ( y0|x, t), y − y0
〉∣∣] + nε

≤ EJ
[∣∣〈ϕJ ( y|x, t) − ϕJ ( y0|x, t), y − y0

〉∣∣
+ ∣∣〈ϕJ ( y0|x, t), y − y0

〉∣∣] + nε

≤ EJ
[∣∣〈ϕJ ( y|x, t) − ϕJ ( y0|x, t), y − y0

〉∣∣]
+EJ

[∣∣〈ϕJ ( y0|x, t), y − y0
〉∣∣] + nε

≤ EJ
[〈
ϕJ ( y|x, t) − ϕJ ( y0|x, t), y − y0

〉]
+EJ

[∥∥ϕJ ( y0|x, t)
∥∥
2

∥∥ y − y0
∥∥
2

] + nε

≤ nε − 〈
ϕJ ( y0|x, t), uP M (x, t, ε) − y0

〉
+ ∥∥ϕJ ( y0|x, t)

∥∥
2 EJ

[∥∥ y − y0
∥∥
2

] + nε

< +∞. (125)

This shows that EJ
[∣∣〈ϕJ ( y|x, t), uP M (x, t, ε) − y0

〉∣∣] < +∞ for
every y0 ∈ { y ∈ R

n | ‖ y − uP M (x, t, ε)‖2 < δ} different from
uP M (x, t, ε). Now, let {ei }n

i=1 denote the standard basis in R
n and

let {ϕJ ( y|x, t)i }n
i=1 denote the components of the vector ϕJ ( y|x, t),

i.e., ϕJ ( y|x, t) = (ϕJ ( y|x, t)1, . . . , ϕJ ( y|x, t)n). Using (125) with
the choice of y0 = uP M (x, t, ε) − δ

2 ei , which is contained in the open
ball { y ∈ R

n | ‖ y − uP M (x, t, ε)‖2 < δ} for each i ∈ {1, . . . , n}, we
get

0 ≤ EJ

[∣∣∣∣
〈
ϕJ ( y|x, t), uP M (x, t, ε) − (uP M (x, t, ε) − δ

2
ei )

〉∣∣∣∣
]

= EJ

[∣∣∣∣
〈
ϕJ ( y|x, t),

δ

2
ei

〉∣∣∣∣
]

= δ

2
EJ [|ϕJ ( y|x, t)i |]

≤ 2nε −
〈
ϕJ (uP M (x, t, ε) − δ

2
ei | x, t),

δ

2
ei

〉

+
∥∥∥∥ϕJ (uP M (x, t, ε) − δ

2
ei |x, t)

∥∥∥∥
2

EJ

[∥∥∥∥ y − (uP M (x, t, ε) − δ

2
ei )

∥∥∥∥
2

]

< +∞.

(126)

Using (126) and the norm inequality ‖ϕJ ( y|x, t)‖2 ≤ ∑n
i=1

|ϕJ ( y|x, t)i |, we can bound EJ
[‖ϕJ ( y|x, t)‖2

]
as follows

0 ≤ EJ
[‖ϕJ ( y|x, t)‖2

]

≤ EJ

[
n∑

i=1

|ϕJ ( y|x, t)i |
]

=
n∑

i=1

EJ [|ϕJ ( y|x, t)i |]

≤ 2n2ε −
n∑

i=1

〈
ϕJ (uP M (x, t, ε) − δ

2
ei |x, t),

δ

2
ei

〉

+
n∑

i=1

∥∥∥∥ϕJ (uP M (x, t, ε) + δ

2
ei |x, t)

∥∥∥∥
2

EJ

[∥∥∥∥ y − (uP M (x, t, ε)
δ

2
ei )

∥∥∥∥
2

]

< +∞. (127)

This shows that EJ
[‖ϕJ ( y|x, t)‖2

]
< +∞. Finally, use (127),

ϕJ ( y|x, t) = y−x
t + π∂ J ( y)(0), and assumption (A3) to find

EJ
[∥∥π∂ J ( y)(0)

∥∥
2

]

= EJ

[∥∥∥∥π∂ J ( y)(0) +
(
y − x

t

)
−
(
y − x

t

)∥∥∥∥
2

]

≤ EJ

[∥∥∥∥π∂ J ( y)(0) +
(
y − x

t

)∥∥∥∥
2
+
∥∥∥∥
(
y − x

t

)∥∥∥∥
2

]

= EJ
[‖ϕJ ( y|x, t)‖2

] + EJ

[∥∥∥∥ y − x
t

∥∥∥∥
2

]

≤ EJ
[‖ϕJ ( y|x, t)‖2

]

+ 1

t Z J (x, t, ε)

∫
Rn

‖ y − x‖2 e− 1
2tε ‖ y−x‖22d y

< +∞.

This shows that EJ
[∥∥π∂ J ( y)(0)

∥∥
2

]
< +∞.

E Proof of Proposition 4.5

Proof of (i): Let x ∈ R
n and t > 0 and define the functions

dom ∂ J 
 y �→ ϕJ ( y|x, t) =
(
y − x

t

)
+ π∂ J ( y)(0),

dom ∂ J 
 y �→ �J ( y|x, t) = 1

2t
‖x − y‖22 + J ( y).

Note that for every y ∈ R
n , ϕJ ( y|x, t) is a subgradient of the function

u �→ 1
2t ‖x − u‖22 + J (u) evaluated at u = y.

Let u ∈ dom ∂ J . TheBregman divergence of the function dom ∂ J 

y �→ �J ( y|x, t) at (u, ϕJ ( y|x, t)) is given by

D�J (u, ϕJ ( y|x, t))

= �J (u|x, t) − 〈ϕJ ( y|x, t)), u〉 + �∗
J (ϕJ ( y|x, t))

≡ �J (u|x, t) − �J ( y|x, t) + 〈ϕJ ( y|x, t)), y − u〉 ,

where the second equality follows by definition of the subdifferential
(see Definition 6) and that ϕJ ( y|x, t) ∈ ∂�J ( y, x, t).

Take the expected value with respect to the variable y over dom ∂ J
to find

EJ
[
D�J (u, ϕJ ( y|x, t))

]
= �J (u|x, t) − EJ

[〈ϕJ ( y|x, t)), u〉 + �∗
J (ϕJ ( y|x, t))

]
≡ �J (u|x, t) − EJ [�J ( y|x, t) + 〈ϕJ ( y|x, t)), y − u〉] .

(128)

We claim that the expected value EJ
[
D�J (u, ϕJ ( y|x, t))

]
is finite.

We will show this by proving, in turn, that the expected values
EJ [�J ( y|x, t)] and EJ [〈ϕJ ( y|x, t)), y − u〉] are finite. Establishing
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the finiteness of EJ
[
D�J (u, ϕJ ( y|x, t))

]
will enable us to conclude

that the expected value EJ
[
�∗

J (ϕJ ( y|x, t))
]
on the right hand side of

the first equality of (128) is also finite.
First, using the definition of �J ( y|x, t) we have

EJ [�J ( y|x, t)] ≡ EJ

[
1

2t
‖x − y‖22 + J ( y)

]
.

The expected value EJ
[ 1
2t ‖x − y‖22

]
is finite because we can use the

definitions of the posterior mean estimate and inequality (48) (with
m ≡ 0 in (48)) to express it as

0 < EJ

[
1

2t
‖x − y‖22

]

= EJ

[
1

2t
‖(x − uP M (x, t, ε)) − ( y − uP M (x, t, ε))‖22

]

= EJ

[
1

2t
‖x − uP M (x, t, ε)‖22

]

+ EJ

[
1

2t
‖ y − uP M (x, t, ε)‖22

]

+ 2EJ [〈x − uP M (x, t, ε), y − uP M (x, t, ε)〉]
= 1

2t
‖x − uP M (x, t, ε)‖22

+ EJ

[
1

2t
‖ y − uP M (x, t, ε)‖22

]

+ 2 〈x − uP M (x, t, ε), EJ [ y] − uP M (x, t, ε)〉
= 1

2t
‖x − uP M (x, t, ε)‖22

+ EJ

[
1

2t
‖ y − uP M (x, t, ε)‖22

]

+ 2 〈x − uP M (x, t, ε), uP M (x, t, ε) − uP M (x, t, ε)〉
= 1

2t
‖x − uP M (x, t, ε)‖22

+ EJ

[
1

2t
‖ y − uP M (x, t, ε)‖22

]

≤ 1

2t
‖x − uP M (x, t, ε)‖22 + nε

2
.

The expected value EJ [J ( y)] is also finite because it is bounded by the
set of inequalities (38) in Proposition 4.1. Hence, the expected value
EJ [�J ( y|x, t)] ≡ EJ

[ 1
2t ‖x − y‖22

] + EJ [J ( y)] is finite.
Second, note that the expected value

EJ [〈ϕJ ( y|x, t), y − u〉] can be written as

EJ [〈ϕJ ( y|x, t), y − u〉]
= EJ [〈ϕJ ( y|x, t) − ϕJ (u|x, t), y − u〉 + 〈ϕJ (u|x, t), y − u〉]
= EJ [〈ϕJ ( y|x, t) − ϕJ (u|x, t), y − u〉]

+ 〈ϕJ (u|x, t), EJ [ y] − u〉
= EJ [〈ϕJ ( y|x, t) − ϕJ (u|x, t), y − u〉]

+ 〈ϕJ (u|x, t), uP M (x, t, ε) − u〉 .

(129)

Apply the monotonicity property (47) to the expected value
EJ [〈ϕJ ( y|x, t) − ϕJ (u|x, t), y − u〉] (with y0 ≡ u in (47)) in the
previous equation to find

0 ≤ EJ [〈ϕJ ( y|x, t) − ϕJ (u|x, t), y − u〉]
≤ nε − 〈ϕJ (u|x, t), uP M (x, t, ε) − u〉 .

Add the term 〈ϕJ (u|x, t), uP M (x, t, ε) − u〉 on both sides of these
inequalities to get

〈ϕJ (u|x, t), uP M (x, t, ε) − u〉
≤ EJ [〈ϕJ ( y|x, t) − ϕJ (u|x, t), y − u〉]

+ 〈ϕJ (u|x, t), uP M (x, t, ε) − u〉 ≤ nε. (130)

Combine the inequalities (130) with the equality (129) to find

〈ϕJ (u|x, t), uP M (x, t, ε) − u〉
≤ EJ [〈ϕJ ( y|x, t), y − u〉] ≤ nε.

These bounds prove that the expected value EJ [〈ϕJ ( y|x, t), y − u〉] is
finite.

The previous arguments show that the expected value
EJ

[
D�J (u, ϕJ ( y|x, t))

]
is finite. Now, we claim that the expected

value EJ [〈ϕJ ( y|x, t)), u〉] ≡ 〈EJ [ϕJ ( y|x, t))] , u〉 is finite. Indeed,
we can use the representation formula (30) for expressing the posterior
mean estimate in terms of the gradient ∇x Sε(x, t) of the solution to
the viscous HJ PDE (29) and use that EJ

[
π∂ J ( y)(0)

]
is finite (Proposi-

tion 4.3) to write

EJ [ϕJ ( y|x, t))]

= EJ

[(
y − x

t

)
+ π∂ J ( y)(0)

]

= EJ

[(
y − x

t

)]
+ EJ

[
π∂ J ( y)(0)

]

≡ −∇x Sε(x, t) + EJ
[
π∂ J ( y)(0)

]
,

where both terms on the right hand side are finite. This shows that
EJ [ϕJ ( y|x, t))] is finite.

Using that EJ
[
D�J (u, ϕJ ( y|x, t))

]
and EJ [ϕJ ( y|x, t))] are finite

in Eq. (128), we conclude that the expected value EJ
[
�∗

J (ϕJ ( y|x, t))
]

is also finite. We can now use the definitions of �J and ϕJ to express
Eq. (128) as

EJ
[
D�J (u, ϕJ ( y|x, t))

]
= EJ

[
�J (u|x, t) − 〈ϕJ ( y|x, t)), u〉 + �∗

J (ϕJ ( y|x, t))
]

= 1

2t
‖x − u‖22 + J (u)

+ 〈∇x Sε(x, t) − EJ
[
π∂ J ( y)(0)

]
, u

〉
+ EJ

[
�∗

J (ϕJ ( y|x, t))
]
,

(131)

where, again, we used that EJ [ϕJ ( y|x, t))] = −∇x Sε(x, t) +
EJ

[
π∂ J ( y)(0)

]
. Now, let

J̃ (u) = J (u) + 〈∇x Sε(x, t) − EJ
[
π∂ J ( y)(0)

]
, u

〉
.

Take the infimum over u ∈ R
n on both sides of Eq. (131) to find:

inf
u∈Rn

EJ
[
D�J (u, ϕJ ( y|x, t))

]

= inf
u∈Rn

{
1

2t
‖x − u‖22 + J̃ (u)

}
+ EJ

[
�∗

J (ϕJ ( y|x, t))
]

Now, note that by assumption (A1) y �→ J ( y) ∈ 
0(R
n), and

therefore the function u �→ J̃ (u) ∈ 
0(R
n). Therefore, the func-

tion u 
 R
n →�→ 1

2 ‖x − u‖22 + J̃ (u) is strictly convex and has a
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unique minimizer denoted by ū. Therefore, the infimum in the equal-
ity above can be replaced by a minimum. In addition, recall that
minu∈Rn

1
2 ‖x − u‖22 + J̃ (u) corresponds to the solution to the first-

order HJ PDE (20) with initial condition J̃ . Using Proposition 2.2(ii),
the unique minimizer ū can be expressed using the inclusion relation

(
x − ū

t

)
∈ ∂ J (ū) + (∇x Sε(x, t) − EJ

[
π∂ J ( y)(0)

])
. (132)

Therefore, the minimizer ū is also the unique minimizer to u �→
EJ

[
D�J (u, ϕJ ( y|x, t))

]
.

Proof of (ii): If dom J = R
n , then the representation formula

∇x Sε(x, t) = EJ
[
π∂ J ( y)(0)

]
derived in Proposition 4.2 holds and the

characterization of the unique minimizer ū in equation (132) reduces
to

(
x − ū

t

)
∈ ∂ J (ū).

By Proposition 2.2(ii), the unique minimizer that satisfies this charac-
terization is the MAP estimate uM AP (x, t), i.e., ū = uM AP (x, t). ��

References

1. Alberti, G., Ambrosio, L., Cannarsa, P.: On the singularities of con-
vex functions. Manuscripta Math. 76(3–4), 421–435 (1992)

2. Aubert, G., Kornprobst, P.: Mathematical Problems in Image
Processing: Partial Differential Equations and the Calculus of Vari-
ations, vol. 147. Springer Science &BusinessMedia, Berlin (2006)

3. Aubin, J.P., Cellina, A.: Differential inclusions: set-valued maps
and viability theory, vol. 264. Springer Science & Business Media,
Berlin (2012)

4. Banerjee, A., Guo, X., Wang, H.: On the optimality of conditional
expectation as a Bregman predictor. IEEE Trans. Inform. Theory
51(7), 2664–2669 (2005)

5. Boncelet, C.: Chapter 7 - image noise models. In: Bovik, A. (ed.)
The Essential Guide to Image Processing, pp. 143–167. Academic
Press, Cambridge (2009)

6. Bouman, C., Sauer, K.: A generalized Gaussian image model for
edge-preserving map estimation. IEEE Trans. Image Process. 2(3),
296–310 (1993)

7. Boyat, A.K., Joshi, B.K.: A review paper: noise models in digital
image processing. Signal Image Process. Int. J. (SIPIJ) 6(2), 63–75
(2015)

8. Burger, M., Dong, Y., Sciacchitano, F.: Bregman cost for non-
Gaussian noise (2016). arXiv preprint arXiv:1608.07483

9. Burger, M., Lucka, F.: Maximum a posteriori estimates in linear
inverse problems with log-concave priors are proper Bayes estima-
tors. Inverse Probl. 30(11), 114004 (2014)

10. Candès, E., Romberg, J., Tao, T.: Robust uncertainty principles:
exact signal reconstruction fromhighly incomplete frequency infor-
mation. IEEE Trans. Inform. Theory 52(2), 489–509 (2006)

11. Chambolle, A., Darbon, J.: On total variation minimization and
surface evolution using parametric maximum flows. Int. J. Comput.
Vis. 84(3), 288 (2009)

12. Chambolle, A., Lions, P.L.: Image recovery via total variation
minimization and related problems. Numer. Math. 76(2), 167–188
(1997)

13. Chambolle, A., Pock, T.: An introduction to continuous optimiza-
tion for imaging. Acta Numer. 25, 161–319 (2016)

14. Chan, T., Marquina, A., Mulet, P.: High-order total variation-based
image restoration. SIAM J. Sci. Comput. 22(2), 503–516 (2000)

15. Chaudhari, P., Choromanska, A., Soatto, S., LeCun, Y., Baldassi,
C., Borgs, C., Chayes, J., Sagun, L., Zecchina, R.: Entropy-sgd:
Biasing gradient descent into wide valleys. J. Stat. Mech. Theory
Exp. 2019(12), 124018 (2019)

16. Chaudhari, P., Oberman, A., Osher, S., Soatto, S., Carlier, G.: Deep
relaxation: partial differential equations for optimizing deep neural
networks. Res. Math. Sci. 5(3), 30 (2018)

17. Darbon, J.: On convex finite-dimensional variational methods in
imaging sciences andHamilton-Jacobi equations. SIAM J. Imaging
Sci. 8(4), 2268–2293 (2015)

18. Darbon, J., Meng, T.: On decomposition models in imaging sci-
ences andmulti-timeHamilton-Jacobi partial differential equations.
SIAM J. Imaging Sci. 13(2), 971–1014 (2020)

19. Darbon, J., Sigelle, M.: Image restoration with discrete constrained
total variation part I: Fast and exact optimization. J. Math. Imaging
Vis. 26(3), 261–276 (2006)

20. Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding
algorithm for linear inverse problems with a sparsity constraint.
Commun. Pure Appl. Math. A J. Issued Courant Insti. Math. Sci.
57(11), 1413–1457 (2004)

21. Demoment, G.: Image reconstruction and restoration: overview of
common estimation structures and problems. IEEE Trans. Acoust.
Speech Signal Process. 37(12), 2024–2036 (1989)

22. Deuschel, J.D., Stroock, D.: Large Deviations, Pure and Applied
Mathematics, vol. 137. Academic Press, Cambridge (1989)

23. Dobson, D.C., Santosa, F.: Recovery of blocky images from noisy
and blurred data. SIAM J. Appl. Math. 56(4), 1181–1198 (1996)

24. Donoho, D.: Compressed sensing. IEEE Trans. Inform. Theory
52(4), 1289–1306 (2006)

25. Durand, S., Malgouyres, F., Rougé, B.: Image deblurring, spectrum
interpolation and application to satellite imaging. ESAIM Control
Optim. Calc. Var. 5, 445–475 (2000)

26. Evans, L.: Partial Differential Equations. American Mathematical
Society, Providence, RI (2010)

27. Falconer, K.J.: The Geometry of Fractal Sets. Cambridge Tracts
in Mathematics. Cambridge University Press, Cambridge (1985).
https://doi.org/10.1017/CBO9780511623738

28. Federer, H.: Geometric Measure Theory. Springer, Berlin (1969)
29. Figueiredo, M.A., Nowak, R.D.: Wavelet-based image estimation:

an empirical Bayes approach using Jeffrey’s noninformative prior.
IEEE Trans. Image Process. 10(9), 1322–1331 (2001)

30. Folland, G.B.: Real Analysis: Modern Techniques and Their Appli-
cations. John Wiley & Sons, Hoboken (2013)

31. García Trillos, N., Kaplan, Z., Sanz-Alonso, D.: Variational charac-
terizations of local entropy and heat regularization in deep learning.
Entropy 21(5), 511 (2019)

32. Giusti, E.: Minimal Surfaces and Functions of Bounded Variation,
Monographs in Mathematics, vol. 80. Birkhäuser Verlag, Basel
(1984)

33. Gradshtein, I., Ryzhik, I., Jeffrey, A., Zwillinger, D.: Table of inte-
grals, series and products. Academic Press, Cambridge (2007)

34. Gribonval, R.: Should penalized least squares regression be inter-
preted as maximum a posteriori estimation? IEEE Trans. Signal
Process. 59(5), 2405–2410 (2011)

35. Gribonval, R.,Machart, P.: Reconciling “priors”& “priors” without
prejudice? In:Advances inNeural Information Processing Systems,
pp. 2193–2201 (2013)

36. Gribonval, R., Nikolova, M.: A characterization of proximity oper-
ators. J. Math. Imaging Vis. 62, 773–789 (2020). https://doi.org/
10.1007/s10851-020-00951-y

37. Gribonval, R., Nikolova,M.:OnBayesian estimation and proximity
operators. Appl. Comput. Harmon. Anal. 50, 49–72 (2021). https://
doi.org/10.1016/j.acha.2019.07.002

38. Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Mini-
mization Algorithms I: Fundamentals, Grundlehren Text Editions,
vol. 305. Springer Science & Business Media, Berlin (1993)

123

http://arxiv.org/abs/1608.07483
https://doi.org/10.1017/CBO9780511623738
https://doi.org/10.1007/s10851-020-00951-y
https://doi.org/10.1007/s10851-020-00951-y
https://doi.org/10.1016/j.acha.2019.07.002
https://doi.org/10.1016/j.acha.2019.07.002


854 Journal of Mathematical Imaging and Vision (2021) 63:821–854

39. Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Mini-
mization Algorithms II: Advanced Theory and Bundle Methods,
Grundlehren Text Editions, vol. 306. Springer Science & Business
Media, Berlin (1993)

40. Hiriart-Urruty, J.B., Plazanet, P.H.: Moreau’s decomposition the-
orem revisited. In: Annales de l’Institut Henri Poincare (C) Non
Linear Analysis, vol. 6, pp. 325–338. Elsevier (1989)

41. Hochbaum, D.S.: An efficient algorithm for image segmentation,
Markov randomfields and related problems. J. ACM(JACM) 48(4),
686–701 (2001)

42. Hörmander, L.: The analysis of linear partial differential opera-
tors. I. Classics in Mathematics. Springer-Verlag, Berlin (2003).
https://doi.org/10.1007/978-3-642-61497-2. Distribution theory
andFourier analysis, Reprint of the second (1990) edition [Springer,
Berlin; MR1065993 (91m:35001a)]

43. Kay, S.M.: Fundamentals of Statistical Signal Processing. Prentice
Hall PTR, Hoboken (1993)

44. Keener, R.W.: Theoretical Statistics: Topics for a Core Course.
Springer, Berlin (2011)

45. Lang, R.: A note on the measurability of convex sets. Arch. Math.
(Basel) 47(1), 90–92 (1986)

46. Leindler, L.:On a certain converse ofHölder’s inequality inequality.
In: Linear Operators and Approximation, Lineare Operatoren und
Approximation, pp. 182–184. Springer (1972)

47. Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two
nonlinear operators. SIAM J. Numer. Anal. 16(6), 964–979 (1979)

48. Louchet, C.: Modèles variationnels et bayésiens pour le débruitage
d’images: de la variation totale vers les moyennes non-locales.
Ph.D. thesis, Université René Descartes-Paris V (2008)

49. Louchet, C., Moisan, L.: Posterior expectation of the total variation
model: properties and experiments. SIAM J. Imaging Sci. 6(4),
2640–2684 (2013)

50. Moreau, J.J.: Proximité et dualité dans un espace hilbertien. Bull.
de la Société mathématique de France 93, 273–299 (1965)

51. Nikolova, M.: Weakly constrained minimization: application to
the estimation of images and signals involving constant regions.
J. Math. Imaging Vis. 21(2), 155–175 (2004)

52. Nikolova, M.: Model distortions in Bayesian map reconstruction.
Inverse Probl. Imaging 1(2), 399 (2007)

53. Pereyra, M.: Revisiting maximum-a-posteriori estimation in log-
concave models. SIAM J. Imaging Sci. 12(1), 650–670 (2019)

54. Pfeffer, W.F.: Divergence theorem for vector fields with singulari-
ties. In: New Integrals, pp. 150–166. Springer (1990)

55. Phillips, D.L.: A technique for the numerical solution of certain
integral equations of the first kind. J. ACM (JACM) 9(1), 84–97
(1962)

56. Prékopa, A.: Logarithmic concave measures with application to
stochastic programming. Acta Sci. Math. 32, 301–316 (1971)

57. Roberts, G.O., Rosenthal, J.S., et al.: Optimal scaling for various
Metropolis-Hastings algorithms. Stat. Sci. 16(4), 351–367 (2001)

58. Rockafellar, R.T.: Convex Analysis. Princeton University Press,
Princeton (1970)

59. Rockafellar, R.T., Wets, R.J.B.: Variational Analysis, Grundlehren
der Mathematischen Wissenschaften [Fundamental Principles of
Mathematical Sciences], vol. 317. Springer-Verlag, Berlin (2009)

60. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based
noise removal algorithms. Phys. D 60(1–4), 259–268 (1992)

61. Rudin, W.: Real and Complex Analysis. Tata McGraw-Hill educa-
tion, New York (2006)

62. Stuart, A.M.: Inverse problems: a Bayesian perspective. Acta
Numer. 19, 451–559 (2010)

63. Tarantola, A.: Inverse Problem Theory and Methods for Model
Parameter Estimation. Society for Industrial and Applied Math-
ematics (SIAM), Philadelphia, PA (2005)

64. Tikhonov, A.N., Goncharsky, A., Stepanov, V., Yagola, A.G.:
Numerical Methods for the Solution of Ill-Posed Problems, vol.
328. Springer Science & Business Media, Berlin (1995)

65. Vidal, R., Bruna, J., Giryes, R., Soatto, S.: Mathematics of deep
learning (2017). arXiv preprint arXiv:1712.04741

66. Vogel, C.R.: Computational Methods for Inverse Problems, Fron-
tiers in Applied Mathematics, vol. 23. Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, PA (2002)

67. Winkler, G.: Image Analysis, Random Fields and Markov Chain
Monte Carlo Methods: a Mathematical Introduction, Applications
of Mathematics (New York), vol. 27, 2nd edn. Springer-Verlag,
Berlin (2003)

68. Woodford, O.J., Rother, C., Kolmogorov, V.: A global perspective
on map inference for low-level vision. In: 2009 IEEE 12th Inter-
national Conference on Computer Vision, pp. 2319–2326. IEEE
(2009)

69. Zhou,X.: On the Fenchel duality between strong convexity andLip-
schitz continuous gradient (2018). arXivpreprint arXiv:1803.06573

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Jérôme Darbon is an associate
professor of Applied Mathemat-
ics at Brown University. He is
currently on leave from CNRS
(at Ecole Normale Superieure
Paris-Saclay). His current research
interest includes fast algorithms
for solving high-dimensional
Hamilton-Jacobi partial differen-
tial equations and optimal control
problems, image processing and
optimization algorithms.

Gabriel P. Langlois is a Ph.D.
candidate in Jérôme Darbon’s
research group in the Division of
Applied Mathematics at Brown
University. He is interested in
machine learning and optimiza-
tion, and his current research inter-
ests focus on the development of
efficient supervised machine
learning algorithms tailored to
handle big datasets. Prior to his
doctoral studies, he earned a
master’s degree in applied math-
ematics from the Swiss Federal
Institute of Technology in Zürich

in 2015, and he earned a bachelor of science in applied mathematics
and physics in 2013 from McGill University.

123

https://doi.org/10.1007/978-3-642-61497-2
http://arxiv.org/abs/1712.04741
http://arxiv.org/abs/1803.06573

	On Bayesian Posterior Mean Estimators in Imaging Sciences and Hamilton–Jacobi Partial Differential Equations
	Abstract
	1 Introduction
	2 Background
	3 Connections between Bayesian Posterior Mean Estimators and Hamilton–Jacobi Partial Differential Equations
	3.1 Setup
	3.2 Connections to Viscous Hamilton–Jacobi Partial Differential Equations
	3.3 Connections to First-Order Hamilton–Jacobi Equations

	4 Properties of Posterior Mean and MAP Estimators
	4.1 Topological, Representation, and Monotonicity Properties
	4.2 Error Bounds and Limit Properties
	4.3 Bayesian Risks and Hamilton–Jacobi Partial Differential Equations

	5 Conclusion
	A Proof of Proposition 3.1
	B Proof of Proposition 4.1
	C Proof of Proposition 4.2
	D Proof of Proposition 4.3
	E Proof of Proposition 4.5
	References






